1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 /* Maximum size of each resync request */ 80 #define RESYNC_BLOCK_SIZE (64*1024) 81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 82 /* amount of memory to reserve for resync requests */ 83 #define RESYNC_WINDOW (1024*1024) 84 /* maximum number of concurrent requests, memory permitting */ 85 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 86 87 /* 88 * When performing a resync, we need to read and compare, so 89 * we need as many pages are there are copies. 90 * When performing a recovery, we need 2 bios, one for read, 91 * one for write (we recover only one drive per r10buf) 92 * 93 */ 94 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 95 { 96 conf_t *conf = data; 97 struct page *page; 98 r10bio_t *r10_bio; 99 struct bio *bio; 100 int i, j; 101 int nalloc; 102 103 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 104 if (!r10_bio) { 105 unplug_slaves(conf->mddev); 106 return NULL; 107 } 108 109 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 110 nalloc = conf->copies; /* resync */ 111 else 112 nalloc = 2; /* recovery */ 113 114 /* 115 * Allocate bios. 116 */ 117 for (j = nalloc ; j-- ; ) { 118 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 119 if (!bio) 120 goto out_free_bio; 121 r10_bio->devs[j].bio = bio; 122 } 123 /* 124 * Allocate RESYNC_PAGES data pages and attach them 125 * where needed. 126 */ 127 for (j = 0 ; j < nalloc; j++) { 128 bio = r10_bio->devs[j].bio; 129 for (i = 0; i < RESYNC_PAGES; i++) { 130 page = alloc_page(gfp_flags); 131 if (unlikely(!page)) 132 goto out_free_pages; 133 134 bio->bi_io_vec[i].bv_page = page; 135 } 136 } 137 138 return r10_bio; 139 140 out_free_pages: 141 for ( ; i > 0 ; i--) 142 safe_put_page(bio->bi_io_vec[i-1].bv_page); 143 while (j--) 144 for (i = 0; i < RESYNC_PAGES ; i++) 145 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 146 j = -1; 147 out_free_bio: 148 while ( ++j < nalloc ) 149 bio_put(r10_bio->devs[j].bio); 150 r10bio_pool_free(r10_bio, conf); 151 return NULL; 152 } 153 154 static void r10buf_pool_free(void *__r10_bio, void *data) 155 { 156 int i; 157 conf_t *conf = data; 158 r10bio_t *r10bio = __r10_bio; 159 int j; 160 161 for (j=0; j < conf->copies; j++) { 162 struct bio *bio = r10bio->devs[j].bio; 163 if (bio) { 164 for (i = 0; i < RESYNC_PAGES; i++) { 165 safe_put_page(bio->bi_io_vec[i].bv_page); 166 bio->bi_io_vec[i].bv_page = NULL; 167 } 168 bio_put(bio); 169 } 170 } 171 r10bio_pool_free(r10bio, conf); 172 } 173 174 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 175 { 176 int i; 177 178 for (i = 0; i < conf->copies; i++) { 179 struct bio **bio = & r10_bio->devs[i].bio; 180 if (*bio && *bio != IO_BLOCKED) 181 bio_put(*bio); 182 *bio = NULL; 183 } 184 } 185 186 static void free_r10bio(r10bio_t *r10_bio) 187 { 188 conf_t *conf = mddev_to_conf(r10_bio->mddev); 189 190 /* 191 * Wake up any possible resync thread that waits for the device 192 * to go idle. 193 */ 194 allow_barrier(conf); 195 196 put_all_bios(conf, r10_bio); 197 mempool_free(r10_bio, conf->r10bio_pool); 198 } 199 200 static void put_buf(r10bio_t *r10_bio) 201 { 202 conf_t *conf = mddev_to_conf(r10_bio->mddev); 203 204 mempool_free(r10_bio, conf->r10buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r10bio_t *r10_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r10_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r10_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 /* wake up frozen array... */ 221 wake_up(&conf->wait_barrier); 222 223 md_wakeup_thread(mddev->thread); 224 } 225 226 /* 227 * raid_end_bio_io() is called when we have finished servicing a mirrored 228 * operation and are ready to return a success/failure code to the buffer 229 * cache layer. 230 */ 231 static void raid_end_bio_io(r10bio_t *r10_bio) 232 { 233 struct bio *bio = r10_bio->master_bio; 234 235 bio_endio(bio, 236 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 237 free_r10bio(r10_bio); 238 } 239 240 /* 241 * Update disk head position estimator based on IRQ completion info. 242 */ 243 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 244 { 245 conf_t *conf = mddev_to_conf(r10_bio->mddev); 246 247 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 248 r10_bio->devs[slot].addr + (r10_bio->sectors); 249 } 250 251 static void raid10_end_read_request(struct bio *bio, int error) 252 { 253 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 254 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 255 int slot, dev; 256 conf_t *conf = mddev_to_conf(r10_bio->mddev); 257 258 259 slot = r10_bio->read_slot; 260 dev = r10_bio->devs[slot].devnum; 261 /* 262 * this branch is our 'one mirror IO has finished' event handler: 263 */ 264 update_head_pos(slot, r10_bio); 265 266 if (uptodate) { 267 /* 268 * Set R10BIO_Uptodate in our master bio, so that 269 * we will return a good error code to the higher 270 * levels even if IO on some other mirrored buffer fails. 271 * 272 * The 'master' represents the composite IO operation to 273 * user-side. So if something waits for IO, then it will 274 * wait for the 'master' bio. 275 */ 276 set_bit(R10BIO_Uptodate, &r10_bio->state); 277 raid_end_bio_io(r10_bio); 278 } else { 279 /* 280 * oops, read error: 281 */ 282 char b[BDEVNAME_SIZE]; 283 if (printk_ratelimit()) 284 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 285 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 286 reschedule_retry(r10_bio); 287 } 288 289 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 290 } 291 292 static void raid10_end_write_request(struct bio *bio, int error) 293 { 294 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 295 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 296 int slot, dev; 297 conf_t *conf = mddev_to_conf(r10_bio->mddev); 298 299 for (slot = 0; slot < conf->copies; slot++) 300 if (r10_bio->devs[slot].bio == bio) 301 break; 302 dev = r10_bio->devs[slot].devnum; 303 304 /* 305 * this branch is our 'one mirror IO has finished' event handler: 306 */ 307 if (!uptodate) { 308 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 309 /* an I/O failed, we can't clear the bitmap */ 310 set_bit(R10BIO_Degraded, &r10_bio->state); 311 } else 312 /* 313 * Set R10BIO_Uptodate in our master bio, so that 314 * we will return a good error code for to the higher 315 * levels even if IO on some other mirrored buffer fails. 316 * 317 * The 'master' represents the composite IO operation to 318 * user-side. So if something waits for IO, then it will 319 * wait for the 'master' bio. 320 */ 321 set_bit(R10BIO_Uptodate, &r10_bio->state); 322 323 update_head_pos(slot, r10_bio); 324 325 /* 326 * 327 * Let's see if all mirrored write operations have finished 328 * already. 329 */ 330 if (atomic_dec_and_test(&r10_bio->remaining)) { 331 /* clear the bitmap if all writes complete successfully */ 332 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 333 r10_bio->sectors, 334 !test_bit(R10BIO_Degraded, &r10_bio->state), 335 0); 336 md_write_end(r10_bio->mddev); 337 raid_end_bio_io(r10_bio); 338 } 339 340 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 341 } 342 343 344 /* 345 * RAID10 layout manager 346 * Aswell as the chunksize and raid_disks count, there are two 347 * parameters: near_copies and far_copies. 348 * near_copies * far_copies must be <= raid_disks. 349 * Normally one of these will be 1. 350 * If both are 1, we get raid0. 351 * If near_copies == raid_disks, we get raid1. 352 * 353 * Chunks are layed out in raid0 style with near_copies copies of the 354 * first chunk, followed by near_copies copies of the next chunk and 355 * so on. 356 * If far_copies > 1, then after 1/far_copies of the array has been assigned 357 * as described above, we start again with a device offset of near_copies. 358 * So we effectively have another copy of the whole array further down all 359 * the drives, but with blocks on different drives. 360 * With this layout, and block is never stored twice on the one device. 361 * 362 * raid10_find_phys finds the sector offset of a given virtual sector 363 * on each device that it is on. 364 * 365 * raid10_find_virt does the reverse mapping, from a device and a 366 * sector offset to a virtual address 367 */ 368 369 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 370 { 371 int n,f; 372 sector_t sector; 373 sector_t chunk; 374 sector_t stripe; 375 int dev; 376 377 int slot = 0; 378 379 /* now calculate first sector/dev */ 380 chunk = r10bio->sector >> conf->chunk_shift; 381 sector = r10bio->sector & conf->chunk_mask; 382 383 chunk *= conf->near_copies; 384 stripe = chunk; 385 dev = sector_div(stripe, conf->raid_disks); 386 if (conf->far_offset) 387 stripe *= conf->far_copies; 388 389 sector += stripe << conf->chunk_shift; 390 391 /* and calculate all the others */ 392 for (n=0; n < conf->near_copies; n++) { 393 int d = dev; 394 sector_t s = sector; 395 r10bio->devs[slot].addr = sector; 396 r10bio->devs[slot].devnum = d; 397 slot++; 398 399 for (f = 1; f < conf->far_copies; f++) { 400 d += conf->near_copies; 401 if (d >= conf->raid_disks) 402 d -= conf->raid_disks; 403 s += conf->stride; 404 r10bio->devs[slot].devnum = d; 405 r10bio->devs[slot].addr = s; 406 slot++; 407 } 408 dev++; 409 if (dev >= conf->raid_disks) { 410 dev = 0; 411 sector += (conf->chunk_mask + 1); 412 } 413 } 414 BUG_ON(slot != conf->copies); 415 } 416 417 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 418 { 419 sector_t offset, chunk, vchunk; 420 421 offset = sector & conf->chunk_mask; 422 if (conf->far_offset) { 423 int fc; 424 chunk = sector >> conf->chunk_shift; 425 fc = sector_div(chunk, conf->far_copies); 426 dev -= fc * conf->near_copies; 427 if (dev < 0) 428 dev += conf->raid_disks; 429 } else { 430 while (sector >= conf->stride) { 431 sector -= conf->stride; 432 if (dev < conf->near_copies) 433 dev += conf->raid_disks - conf->near_copies; 434 else 435 dev -= conf->near_copies; 436 } 437 chunk = sector >> conf->chunk_shift; 438 } 439 vchunk = chunk * conf->raid_disks + dev; 440 sector_div(vchunk, conf->near_copies); 441 return (vchunk << conf->chunk_shift) + offset; 442 } 443 444 /** 445 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 446 * @q: request queue 447 * @bvm: properties of new bio 448 * @biovec: the request that could be merged to it. 449 * 450 * Return amount of bytes we can accept at this offset 451 * If near_copies == raid_disk, there are no striping issues, 452 * but in that case, the function isn't called at all. 453 */ 454 static int raid10_mergeable_bvec(struct request_queue *q, 455 struct bvec_merge_data *bvm, 456 struct bio_vec *biovec) 457 { 458 mddev_t *mddev = q->queuedata; 459 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 460 int max; 461 unsigned int chunk_sectors = mddev->chunk_size >> 9; 462 unsigned int bio_sectors = bvm->bi_size >> 9; 463 464 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 465 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 466 if (max <= biovec->bv_len && bio_sectors == 0) 467 return biovec->bv_len; 468 else 469 return max; 470 } 471 472 /* 473 * This routine returns the disk from which the requested read should 474 * be done. There is a per-array 'next expected sequential IO' sector 475 * number - if this matches on the next IO then we use the last disk. 476 * There is also a per-disk 'last know head position' sector that is 477 * maintained from IRQ contexts, both the normal and the resync IO 478 * completion handlers update this position correctly. If there is no 479 * perfect sequential match then we pick the disk whose head is closest. 480 * 481 * If there are 2 mirrors in the same 2 devices, performance degrades 482 * because position is mirror, not device based. 483 * 484 * The rdev for the device selected will have nr_pending incremented. 485 */ 486 487 /* 488 * FIXME: possibly should rethink readbalancing and do it differently 489 * depending on near_copies / far_copies geometry. 490 */ 491 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 492 { 493 const unsigned long this_sector = r10_bio->sector; 494 int disk, slot, nslot; 495 const int sectors = r10_bio->sectors; 496 sector_t new_distance, current_distance; 497 mdk_rdev_t *rdev; 498 499 raid10_find_phys(conf, r10_bio); 500 rcu_read_lock(); 501 /* 502 * Check if we can balance. We can balance on the whole 503 * device if no resync is going on (recovery is ok), or below 504 * the resync window. We take the first readable disk when 505 * above the resync window. 506 */ 507 if (conf->mddev->recovery_cp < MaxSector 508 && (this_sector + sectors >= conf->next_resync)) { 509 /* make sure that disk is operational */ 510 slot = 0; 511 disk = r10_bio->devs[slot].devnum; 512 513 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 514 r10_bio->devs[slot].bio == IO_BLOCKED || 515 !test_bit(In_sync, &rdev->flags)) { 516 slot++; 517 if (slot == conf->copies) { 518 slot = 0; 519 disk = -1; 520 break; 521 } 522 disk = r10_bio->devs[slot].devnum; 523 } 524 goto rb_out; 525 } 526 527 528 /* make sure the disk is operational */ 529 slot = 0; 530 disk = r10_bio->devs[slot].devnum; 531 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 532 r10_bio->devs[slot].bio == IO_BLOCKED || 533 !test_bit(In_sync, &rdev->flags)) { 534 slot ++; 535 if (slot == conf->copies) { 536 disk = -1; 537 goto rb_out; 538 } 539 disk = r10_bio->devs[slot].devnum; 540 } 541 542 543 current_distance = abs(r10_bio->devs[slot].addr - 544 conf->mirrors[disk].head_position); 545 546 /* Find the disk whose head is closest, 547 * or - for far > 1 - find the closest to partition beginning */ 548 549 for (nslot = slot; nslot < conf->copies; nslot++) { 550 int ndisk = r10_bio->devs[nslot].devnum; 551 552 553 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 554 r10_bio->devs[nslot].bio == IO_BLOCKED || 555 !test_bit(In_sync, &rdev->flags)) 556 continue; 557 558 /* This optimisation is debatable, and completely destroys 559 * sequential read speed for 'far copies' arrays. So only 560 * keep it for 'near' arrays, and review those later. 561 */ 562 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 563 disk = ndisk; 564 slot = nslot; 565 break; 566 } 567 568 /* for far > 1 always use the lowest address */ 569 if (conf->far_copies > 1) 570 new_distance = r10_bio->devs[nslot].addr; 571 else 572 new_distance = abs(r10_bio->devs[nslot].addr - 573 conf->mirrors[ndisk].head_position); 574 if (new_distance < current_distance) { 575 current_distance = new_distance; 576 disk = ndisk; 577 slot = nslot; 578 } 579 } 580 581 rb_out: 582 r10_bio->read_slot = slot; 583 /* conf->next_seq_sect = this_sector + sectors;*/ 584 585 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 586 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 587 else 588 disk = -1; 589 rcu_read_unlock(); 590 591 return disk; 592 } 593 594 static void unplug_slaves(mddev_t *mddev) 595 { 596 conf_t *conf = mddev_to_conf(mddev); 597 int i; 598 599 rcu_read_lock(); 600 for (i=0; i<mddev->raid_disks; i++) { 601 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 602 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 603 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 604 605 atomic_inc(&rdev->nr_pending); 606 rcu_read_unlock(); 607 608 blk_unplug(r_queue); 609 610 rdev_dec_pending(rdev, mddev); 611 rcu_read_lock(); 612 } 613 } 614 rcu_read_unlock(); 615 } 616 617 static void raid10_unplug(struct request_queue *q) 618 { 619 mddev_t *mddev = q->queuedata; 620 621 unplug_slaves(q->queuedata); 622 md_wakeup_thread(mddev->thread); 623 } 624 625 static int raid10_congested(void *data, int bits) 626 { 627 mddev_t *mddev = data; 628 conf_t *conf = mddev_to_conf(mddev); 629 int i, ret = 0; 630 631 rcu_read_lock(); 632 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 633 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 634 if (rdev && !test_bit(Faulty, &rdev->flags)) { 635 struct request_queue *q = bdev_get_queue(rdev->bdev); 636 637 ret |= bdi_congested(&q->backing_dev_info, bits); 638 } 639 } 640 rcu_read_unlock(); 641 return ret; 642 } 643 644 static int flush_pending_writes(conf_t *conf) 645 { 646 /* Any writes that have been queued but are awaiting 647 * bitmap updates get flushed here. 648 * We return 1 if any requests were actually submitted. 649 */ 650 int rv = 0; 651 652 spin_lock_irq(&conf->device_lock); 653 654 if (conf->pending_bio_list.head) { 655 struct bio *bio; 656 bio = bio_list_get(&conf->pending_bio_list); 657 blk_remove_plug(conf->mddev->queue); 658 spin_unlock_irq(&conf->device_lock); 659 /* flush any pending bitmap writes to disk 660 * before proceeding w/ I/O */ 661 bitmap_unplug(conf->mddev->bitmap); 662 663 while (bio) { /* submit pending writes */ 664 struct bio *next = bio->bi_next; 665 bio->bi_next = NULL; 666 generic_make_request(bio); 667 bio = next; 668 } 669 rv = 1; 670 } else 671 spin_unlock_irq(&conf->device_lock); 672 return rv; 673 } 674 /* Barriers.... 675 * Sometimes we need to suspend IO while we do something else, 676 * either some resync/recovery, or reconfigure the array. 677 * To do this we raise a 'barrier'. 678 * The 'barrier' is a counter that can be raised multiple times 679 * to count how many activities are happening which preclude 680 * normal IO. 681 * We can only raise the barrier if there is no pending IO. 682 * i.e. if nr_pending == 0. 683 * We choose only to raise the barrier if no-one is waiting for the 684 * barrier to go down. This means that as soon as an IO request 685 * is ready, no other operations which require a barrier will start 686 * until the IO request has had a chance. 687 * 688 * So: regular IO calls 'wait_barrier'. When that returns there 689 * is no backgroup IO happening, It must arrange to call 690 * allow_barrier when it has finished its IO. 691 * backgroup IO calls must call raise_barrier. Once that returns 692 * there is no normal IO happeing. It must arrange to call 693 * lower_barrier when the particular background IO completes. 694 */ 695 696 static void raise_barrier(conf_t *conf, int force) 697 { 698 BUG_ON(force && !conf->barrier); 699 spin_lock_irq(&conf->resync_lock); 700 701 /* Wait until no block IO is waiting (unless 'force') */ 702 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 703 conf->resync_lock, 704 raid10_unplug(conf->mddev->queue)); 705 706 /* block any new IO from starting */ 707 conf->barrier++; 708 709 /* No wait for all pending IO to complete */ 710 wait_event_lock_irq(conf->wait_barrier, 711 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 712 conf->resync_lock, 713 raid10_unplug(conf->mddev->queue)); 714 715 spin_unlock_irq(&conf->resync_lock); 716 } 717 718 static void lower_barrier(conf_t *conf) 719 { 720 unsigned long flags; 721 spin_lock_irqsave(&conf->resync_lock, flags); 722 conf->barrier--; 723 spin_unlock_irqrestore(&conf->resync_lock, flags); 724 wake_up(&conf->wait_barrier); 725 } 726 727 static void wait_barrier(conf_t *conf) 728 { 729 spin_lock_irq(&conf->resync_lock); 730 if (conf->barrier) { 731 conf->nr_waiting++; 732 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 733 conf->resync_lock, 734 raid10_unplug(conf->mddev->queue)); 735 conf->nr_waiting--; 736 } 737 conf->nr_pending++; 738 spin_unlock_irq(&conf->resync_lock); 739 } 740 741 static void allow_barrier(conf_t *conf) 742 { 743 unsigned long flags; 744 spin_lock_irqsave(&conf->resync_lock, flags); 745 conf->nr_pending--; 746 spin_unlock_irqrestore(&conf->resync_lock, flags); 747 wake_up(&conf->wait_barrier); 748 } 749 750 static void freeze_array(conf_t *conf) 751 { 752 /* stop syncio and normal IO and wait for everything to 753 * go quiet. 754 * We increment barrier and nr_waiting, and then 755 * wait until nr_pending match nr_queued+1 756 * This is called in the context of one normal IO request 757 * that has failed. Thus any sync request that might be pending 758 * will be blocked by nr_pending, and we need to wait for 759 * pending IO requests to complete or be queued for re-try. 760 * Thus the number queued (nr_queued) plus this request (1) 761 * must match the number of pending IOs (nr_pending) before 762 * we continue. 763 */ 764 spin_lock_irq(&conf->resync_lock); 765 conf->barrier++; 766 conf->nr_waiting++; 767 wait_event_lock_irq(conf->wait_barrier, 768 conf->nr_pending == conf->nr_queued+1, 769 conf->resync_lock, 770 ({ flush_pending_writes(conf); 771 raid10_unplug(conf->mddev->queue); })); 772 spin_unlock_irq(&conf->resync_lock); 773 } 774 775 static void unfreeze_array(conf_t *conf) 776 { 777 /* reverse the effect of the freeze */ 778 spin_lock_irq(&conf->resync_lock); 779 conf->barrier--; 780 conf->nr_waiting--; 781 wake_up(&conf->wait_barrier); 782 spin_unlock_irq(&conf->resync_lock); 783 } 784 785 static int make_request(struct request_queue *q, struct bio * bio) 786 { 787 mddev_t *mddev = q->queuedata; 788 conf_t *conf = mddev_to_conf(mddev); 789 mirror_info_t *mirror; 790 r10bio_t *r10_bio; 791 struct bio *read_bio; 792 int cpu; 793 int i; 794 int chunk_sects = conf->chunk_mask + 1; 795 const int rw = bio_data_dir(bio); 796 const int do_sync = bio_sync(bio); 797 struct bio_list bl; 798 unsigned long flags; 799 mdk_rdev_t *blocked_rdev; 800 801 if (unlikely(bio_barrier(bio))) { 802 bio_endio(bio, -EOPNOTSUPP); 803 return 0; 804 } 805 806 /* If this request crosses a chunk boundary, we need to 807 * split it. This will only happen for 1 PAGE (or less) requests. 808 */ 809 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 810 > chunk_sects && 811 conf->near_copies < conf->raid_disks)) { 812 struct bio_pair *bp; 813 /* Sanity check -- queue functions should prevent this happening */ 814 if (bio->bi_vcnt != 1 || 815 bio->bi_idx != 0) 816 goto bad_map; 817 /* This is a one page bio that upper layers 818 * refuse to split for us, so we need to split it. 819 */ 820 bp = bio_split(bio, 821 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 822 if (make_request(q, &bp->bio1)) 823 generic_make_request(&bp->bio1); 824 if (make_request(q, &bp->bio2)) 825 generic_make_request(&bp->bio2); 826 827 bio_pair_release(bp); 828 return 0; 829 bad_map: 830 printk("raid10_make_request bug: can't convert block across chunks" 831 " or bigger than %dk %llu %d\n", chunk_sects/2, 832 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 833 834 bio_io_error(bio); 835 return 0; 836 } 837 838 md_write_start(mddev, bio); 839 840 /* 841 * Register the new request and wait if the reconstruction 842 * thread has put up a bar for new requests. 843 * Continue immediately if no resync is active currently. 844 */ 845 wait_barrier(conf); 846 847 cpu = part_stat_lock(); 848 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 849 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 850 bio_sectors(bio)); 851 part_stat_unlock(); 852 853 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 854 855 r10_bio->master_bio = bio; 856 r10_bio->sectors = bio->bi_size >> 9; 857 858 r10_bio->mddev = mddev; 859 r10_bio->sector = bio->bi_sector; 860 r10_bio->state = 0; 861 862 if (rw == READ) { 863 /* 864 * read balancing logic: 865 */ 866 int disk = read_balance(conf, r10_bio); 867 int slot = r10_bio->read_slot; 868 if (disk < 0) { 869 raid_end_bio_io(r10_bio); 870 return 0; 871 } 872 mirror = conf->mirrors + disk; 873 874 read_bio = bio_clone(bio, GFP_NOIO); 875 876 r10_bio->devs[slot].bio = read_bio; 877 878 read_bio->bi_sector = r10_bio->devs[slot].addr + 879 mirror->rdev->data_offset; 880 read_bio->bi_bdev = mirror->rdev->bdev; 881 read_bio->bi_end_io = raid10_end_read_request; 882 read_bio->bi_rw = READ | do_sync; 883 read_bio->bi_private = r10_bio; 884 885 generic_make_request(read_bio); 886 return 0; 887 } 888 889 /* 890 * WRITE: 891 */ 892 /* first select target devices under rcu_lock and 893 * inc refcount on their rdev. Record them by setting 894 * bios[x] to bio 895 */ 896 raid10_find_phys(conf, r10_bio); 897 retry_write: 898 blocked_rdev = NULL; 899 rcu_read_lock(); 900 for (i = 0; i < conf->copies; i++) { 901 int d = r10_bio->devs[i].devnum; 902 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 903 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 904 atomic_inc(&rdev->nr_pending); 905 blocked_rdev = rdev; 906 break; 907 } 908 if (rdev && !test_bit(Faulty, &rdev->flags)) { 909 atomic_inc(&rdev->nr_pending); 910 r10_bio->devs[i].bio = bio; 911 } else { 912 r10_bio->devs[i].bio = NULL; 913 set_bit(R10BIO_Degraded, &r10_bio->state); 914 } 915 } 916 rcu_read_unlock(); 917 918 if (unlikely(blocked_rdev)) { 919 /* Have to wait for this device to get unblocked, then retry */ 920 int j; 921 int d; 922 923 for (j = 0; j < i; j++) 924 if (r10_bio->devs[j].bio) { 925 d = r10_bio->devs[j].devnum; 926 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 927 } 928 allow_barrier(conf); 929 md_wait_for_blocked_rdev(blocked_rdev, mddev); 930 wait_barrier(conf); 931 goto retry_write; 932 } 933 934 atomic_set(&r10_bio->remaining, 0); 935 936 bio_list_init(&bl); 937 for (i = 0; i < conf->copies; i++) { 938 struct bio *mbio; 939 int d = r10_bio->devs[i].devnum; 940 if (!r10_bio->devs[i].bio) 941 continue; 942 943 mbio = bio_clone(bio, GFP_NOIO); 944 r10_bio->devs[i].bio = mbio; 945 946 mbio->bi_sector = r10_bio->devs[i].addr+ 947 conf->mirrors[d].rdev->data_offset; 948 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 949 mbio->bi_end_io = raid10_end_write_request; 950 mbio->bi_rw = WRITE | do_sync; 951 mbio->bi_private = r10_bio; 952 953 atomic_inc(&r10_bio->remaining); 954 bio_list_add(&bl, mbio); 955 } 956 957 if (unlikely(!atomic_read(&r10_bio->remaining))) { 958 /* the array is dead */ 959 md_write_end(mddev); 960 raid_end_bio_io(r10_bio); 961 return 0; 962 } 963 964 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 965 spin_lock_irqsave(&conf->device_lock, flags); 966 bio_list_merge(&conf->pending_bio_list, &bl); 967 blk_plug_device(mddev->queue); 968 spin_unlock_irqrestore(&conf->device_lock, flags); 969 970 /* In case raid10d snuck in to freeze_array */ 971 wake_up(&conf->wait_barrier); 972 973 if (do_sync) 974 md_wakeup_thread(mddev->thread); 975 976 return 0; 977 } 978 979 static void status(struct seq_file *seq, mddev_t *mddev) 980 { 981 conf_t *conf = mddev_to_conf(mddev); 982 int i; 983 984 if (conf->near_copies < conf->raid_disks) 985 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 986 if (conf->near_copies > 1) 987 seq_printf(seq, " %d near-copies", conf->near_copies); 988 if (conf->far_copies > 1) { 989 if (conf->far_offset) 990 seq_printf(seq, " %d offset-copies", conf->far_copies); 991 else 992 seq_printf(seq, " %d far-copies", conf->far_copies); 993 } 994 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 995 conf->raid_disks - mddev->degraded); 996 for (i = 0; i < conf->raid_disks; i++) 997 seq_printf(seq, "%s", 998 conf->mirrors[i].rdev && 999 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1000 seq_printf(seq, "]"); 1001 } 1002 1003 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1004 { 1005 char b[BDEVNAME_SIZE]; 1006 conf_t *conf = mddev_to_conf(mddev); 1007 1008 /* 1009 * If it is not operational, then we have already marked it as dead 1010 * else if it is the last working disks, ignore the error, let the 1011 * next level up know. 1012 * else mark the drive as failed 1013 */ 1014 if (test_bit(In_sync, &rdev->flags) 1015 && conf->raid_disks-mddev->degraded == 1) 1016 /* 1017 * Don't fail the drive, just return an IO error. 1018 * The test should really be more sophisticated than 1019 * "working_disks == 1", but it isn't critical, and 1020 * can wait until we do more sophisticated "is the drive 1021 * really dead" tests... 1022 */ 1023 return; 1024 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1025 unsigned long flags; 1026 spin_lock_irqsave(&conf->device_lock, flags); 1027 mddev->degraded++; 1028 spin_unlock_irqrestore(&conf->device_lock, flags); 1029 /* 1030 * if recovery is running, make sure it aborts. 1031 */ 1032 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1033 } 1034 set_bit(Faulty, &rdev->flags); 1035 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1036 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n" 1037 "raid10: Operation continuing on %d devices.\n", 1038 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1039 } 1040 1041 static void print_conf(conf_t *conf) 1042 { 1043 int i; 1044 mirror_info_t *tmp; 1045 1046 printk("RAID10 conf printout:\n"); 1047 if (!conf) { 1048 printk("(!conf)\n"); 1049 return; 1050 } 1051 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1052 conf->raid_disks); 1053 1054 for (i = 0; i < conf->raid_disks; i++) { 1055 char b[BDEVNAME_SIZE]; 1056 tmp = conf->mirrors + i; 1057 if (tmp->rdev) 1058 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1059 i, !test_bit(In_sync, &tmp->rdev->flags), 1060 !test_bit(Faulty, &tmp->rdev->flags), 1061 bdevname(tmp->rdev->bdev,b)); 1062 } 1063 } 1064 1065 static void close_sync(conf_t *conf) 1066 { 1067 wait_barrier(conf); 1068 allow_barrier(conf); 1069 1070 mempool_destroy(conf->r10buf_pool); 1071 conf->r10buf_pool = NULL; 1072 } 1073 1074 /* check if there are enough drives for 1075 * every block to appear on atleast one 1076 */ 1077 static int enough(conf_t *conf) 1078 { 1079 int first = 0; 1080 1081 do { 1082 int n = conf->copies; 1083 int cnt = 0; 1084 while (n--) { 1085 if (conf->mirrors[first].rdev) 1086 cnt++; 1087 first = (first+1) % conf->raid_disks; 1088 } 1089 if (cnt == 0) 1090 return 0; 1091 } while (first != 0); 1092 return 1; 1093 } 1094 1095 static int raid10_spare_active(mddev_t *mddev) 1096 { 1097 int i; 1098 conf_t *conf = mddev->private; 1099 mirror_info_t *tmp; 1100 1101 /* 1102 * Find all non-in_sync disks within the RAID10 configuration 1103 * and mark them in_sync 1104 */ 1105 for (i = 0; i < conf->raid_disks; i++) { 1106 tmp = conf->mirrors + i; 1107 if (tmp->rdev 1108 && !test_bit(Faulty, &tmp->rdev->flags) 1109 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1110 unsigned long flags; 1111 spin_lock_irqsave(&conf->device_lock, flags); 1112 mddev->degraded--; 1113 spin_unlock_irqrestore(&conf->device_lock, flags); 1114 } 1115 } 1116 1117 print_conf(conf); 1118 return 0; 1119 } 1120 1121 1122 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1123 { 1124 conf_t *conf = mddev->private; 1125 int err = -EEXIST; 1126 int mirror; 1127 mirror_info_t *p; 1128 int first = 0; 1129 int last = mddev->raid_disks - 1; 1130 1131 if (mddev->recovery_cp < MaxSector) 1132 /* only hot-add to in-sync arrays, as recovery is 1133 * very different from resync 1134 */ 1135 return -EBUSY; 1136 if (!enough(conf)) 1137 return -EINVAL; 1138 1139 if (rdev->raid_disk) 1140 first = last = rdev->raid_disk; 1141 1142 if (rdev->saved_raid_disk >= 0 && 1143 rdev->saved_raid_disk >= first && 1144 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1145 mirror = rdev->saved_raid_disk; 1146 else 1147 mirror = first; 1148 for ( ; mirror <= last ; mirror++) 1149 if ( !(p=conf->mirrors+mirror)->rdev) { 1150 1151 blk_queue_stack_limits(mddev->queue, 1152 rdev->bdev->bd_disk->queue); 1153 /* as we don't honour merge_bvec_fn, we must never risk 1154 * violating it, so limit ->max_sector to one PAGE, as 1155 * a one page request is never in violation. 1156 */ 1157 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1158 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1159 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1160 1161 p->head_position = 0; 1162 rdev->raid_disk = mirror; 1163 err = 0; 1164 if (rdev->saved_raid_disk != mirror) 1165 conf->fullsync = 1; 1166 rcu_assign_pointer(p->rdev, rdev); 1167 break; 1168 } 1169 1170 print_conf(conf); 1171 return err; 1172 } 1173 1174 static int raid10_remove_disk(mddev_t *mddev, int number) 1175 { 1176 conf_t *conf = mddev->private; 1177 int err = 0; 1178 mdk_rdev_t *rdev; 1179 mirror_info_t *p = conf->mirrors+ number; 1180 1181 print_conf(conf); 1182 rdev = p->rdev; 1183 if (rdev) { 1184 if (test_bit(In_sync, &rdev->flags) || 1185 atomic_read(&rdev->nr_pending)) { 1186 err = -EBUSY; 1187 goto abort; 1188 } 1189 /* Only remove faulty devices in recovery 1190 * is not possible. 1191 */ 1192 if (!test_bit(Faulty, &rdev->flags) && 1193 enough(conf)) { 1194 err = -EBUSY; 1195 goto abort; 1196 } 1197 p->rdev = NULL; 1198 synchronize_rcu(); 1199 if (atomic_read(&rdev->nr_pending)) { 1200 /* lost the race, try later */ 1201 err = -EBUSY; 1202 p->rdev = rdev; 1203 } 1204 } 1205 abort: 1206 1207 print_conf(conf); 1208 return err; 1209 } 1210 1211 1212 static void end_sync_read(struct bio *bio, int error) 1213 { 1214 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1215 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1216 int i,d; 1217 1218 for (i=0; i<conf->copies; i++) 1219 if (r10_bio->devs[i].bio == bio) 1220 break; 1221 BUG_ON(i == conf->copies); 1222 update_head_pos(i, r10_bio); 1223 d = r10_bio->devs[i].devnum; 1224 1225 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1226 set_bit(R10BIO_Uptodate, &r10_bio->state); 1227 else { 1228 atomic_add(r10_bio->sectors, 1229 &conf->mirrors[d].rdev->corrected_errors); 1230 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1231 md_error(r10_bio->mddev, 1232 conf->mirrors[d].rdev); 1233 } 1234 1235 /* for reconstruct, we always reschedule after a read. 1236 * for resync, only after all reads 1237 */ 1238 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1239 atomic_dec_and_test(&r10_bio->remaining)) { 1240 /* we have read all the blocks, 1241 * do the comparison in process context in raid10d 1242 */ 1243 reschedule_retry(r10_bio); 1244 } 1245 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1246 } 1247 1248 static void end_sync_write(struct bio *bio, int error) 1249 { 1250 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1251 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1252 mddev_t *mddev = r10_bio->mddev; 1253 conf_t *conf = mddev_to_conf(mddev); 1254 int i,d; 1255 1256 for (i = 0; i < conf->copies; i++) 1257 if (r10_bio->devs[i].bio == bio) 1258 break; 1259 d = r10_bio->devs[i].devnum; 1260 1261 if (!uptodate) 1262 md_error(mddev, conf->mirrors[d].rdev); 1263 1264 update_head_pos(i, r10_bio); 1265 1266 while (atomic_dec_and_test(&r10_bio->remaining)) { 1267 if (r10_bio->master_bio == NULL) { 1268 /* the primary of several recovery bios */ 1269 md_done_sync(mddev, r10_bio->sectors, 1); 1270 put_buf(r10_bio); 1271 break; 1272 } else { 1273 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1274 put_buf(r10_bio); 1275 r10_bio = r10_bio2; 1276 } 1277 } 1278 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1279 } 1280 1281 /* 1282 * Note: sync and recover and handled very differently for raid10 1283 * This code is for resync. 1284 * For resync, we read through virtual addresses and read all blocks. 1285 * If there is any error, we schedule a write. The lowest numbered 1286 * drive is authoritative. 1287 * However requests come for physical address, so we need to map. 1288 * For every physical address there are raid_disks/copies virtual addresses, 1289 * which is always are least one, but is not necessarly an integer. 1290 * This means that a physical address can span multiple chunks, so we may 1291 * have to submit multiple io requests for a single sync request. 1292 */ 1293 /* 1294 * We check if all blocks are in-sync and only write to blocks that 1295 * aren't in sync 1296 */ 1297 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1298 { 1299 conf_t *conf = mddev_to_conf(mddev); 1300 int i, first; 1301 struct bio *tbio, *fbio; 1302 1303 atomic_set(&r10_bio->remaining, 1); 1304 1305 /* find the first device with a block */ 1306 for (i=0; i<conf->copies; i++) 1307 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1308 break; 1309 1310 if (i == conf->copies) 1311 goto done; 1312 1313 first = i; 1314 fbio = r10_bio->devs[i].bio; 1315 1316 /* now find blocks with errors */ 1317 for (i=0 ; i < conf->copies ; i++) { 1318 int j, d; 1319 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1320 1321 tbio = r10_bio->devs[i].bio; 1322 1323 if (tbio->bi_end_io != end_sync_read) 1324 continue; 1325 if (i == first) 1326 continue; 1327 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1328 /* We know that the bi_io_vec layout is the same for 1329 * both 'first' and 'i', so we just compare them. 1330 * All vec entries are PAGE_SIZE; 1331 */ 1332 for (j = 0; j < vcnt; j++) 1333 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1334 page_address(tbio->bi_io_vec[j].bv_page), 1335 PAGE_SIZE)) 1336 break; 1337 if (j == vcnt) 1338 continue; 1339 mddev->resync_mismatches += r10_bio->sectors; 1340 } 1341 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1342 /* Don't fix anything. */ 1343 continue; 1344 /* Ok, we need to write this bio 1345 * First we need to fixup bv_offset, bv_len and 1346 * bi_vecs, as the read request might have corrupted these 1347 */ 1348 tbio->bi_vcnt = vcnt; 1349 tbio->bi_size = r10_bio->sectors << 9; 1350 tbio->bi_idx = 0; 1351 tbio->bi_phys_segments = 0; 1352 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1353 tbio->bi_flags |= 1 << BIO_UPTODATE; 1354 tbio->bi_next = NULL; 1355 tbio->bi_rw = WRITE; 1356 tbio->bi_private = r10_bio; 1357 tbio->bi_sector = r10_bio->devs[i].addr; 1358 1359 for (j=0; j < vcnt ; j++) { 1360 tbio->bi_io_vec[j].bv_offset = 0; 1361 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1362 1363 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1364 page_address(fbio->bi_io_vec[j].bv_page), 1365 PAGE_SIZE); 1366 } 1367 tbio->bi_end_io = end_sync_write; 1368 1369 d = r10_bio->devs[i].devnum; 1370 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1371 atomic_inc(&r10_bio->remaining); 1372 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1373 1374 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1375 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1376 generic_make_request(tbio); 1377 } 1378 1379 done: 1380 if (atomic_dec_and_test(&r10_bio->remaining)) { 1381 md_done_sync(mddev, r10_bio->sectors, 1); 1382 put_buf(r10_bio); 1383 } 1384 } 1385 1386 /* 1387 * Now for the recovery code. 1388 * Recovery happens across physical sectors. 1389 * We recover all non-is_sync drives by finding the virtual address of 1390 * each, and then choose a working drive that also has that virt address. 1391 * There is a separate r10_bio for each non-in_sync drive. 1392 * Only the first two slots are in use. The first for reading, 1393 * The second for writing. 1394 * 1395 */ 1396 1397 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1398 { 1399 conf_t *conf = mddev_to_conf(mddev); 1400 int i, d; 1401 struct bio *bio, *wbio; 1402 1403 1404 /* move the pages across to the second bio 1405 * and submit the write request 1406 */ 1407 bio = r10_bio->devs[0].bio; 1408 wbio = r10_bio->devs[1].bio; 1409 for (i=0; i < wbio->bi_vcnt; i++) { 1410 struct page *p = bio->bi_io_vec[i].bv_page; 1411 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1412 wbio->bi_io_vec[i].bv_page = p; 1413 } 1414 d = r10_bio->devs[1].devnum; 1415 1416 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1417 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1418 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1419 generic_make_request(wbio); 1420 else 1421 bio_endio(wbio, -EIO); 1422 } 1423 1424 1425 /* 1426 * This is a kernel thread which: 1427 * 1428 * 1. Retries failed read operations on working mirrors. 1429 * 2. Updates the raid superblock when problems encounter. 1430 * 3. Performs writes following reads for array synchronising. 1431 */ 1432 1433 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1434 { 1435 int sect = 0; /* Offset from r10_bio->sector */ 1436 int sectors = r10_bio->sectors; 1437 mdk_rdev_t*rdev; 1438 while(sectors) { 1439 int s = sectors; 1440 int sl = r10_bio->read_slot; 1441 int success = 0; 1442 int start; 1443 1444 if (s > (PAGE_SIZE>>9)) 1445 s = PAGE_SIZE >> 9; 1446 1447 rcu_read_lock(); 1448 do { 1449 int d = r10_bio->devs[sl].devnum; 1450 rdev = rcu_dereference(conf->mirrors[d].rdev); 1451 if (rdev && 1452 test_bit(In_sync, &rdev->flags)) { 1453 atomic_inc(&rdev->nr_pending); 1454 rcu_read_unlock(); 1455 success = sync_page_io(rdev->bdev, 1456 r10_bio->devs[sl].addr + 1457 sect + rdev->data_offset, 1458 s<<9, 1459 conf->tmppage, READ); 1460 rdev_dec_pending(rdev, mddev); 1461 rcu_read_lock(); 1462 if (success) 1463 break; 1464 } 1465 sl++; 1466 if (sl == conf->copies) 1467 sl = 0; 1468 } while (!success && sl != r10_bio->read_slot); 1469 rcu_read_unlock(); 1470 1471 if (!success) { 1472 /* Cannot read from anywhere -- bye bye array */ 1473 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1474 md_error(mddev, conf->mirrors[dn].rdev); 1475 break; 1476 } 1477 1478 start = sl; 1479 /* write it back and re-read */ 1480 rcu_read_lock(); 1481 while (sl != r10_bio->read_slot) { 1482 int d; 1483 if (sl==0) 1484 sl = conf->copies; 1485 sl--; 1486 d = r10_bio->devs[sl].devnum; 1487 rdev = rcu_dereference(conf->mirrors[d].rdev); 1488 if (rdev && 1489 test_bit(In_sync, &rdev->flags)) { 1490 atomic_inc(&rdev->nr_pending); 1491 rcu_read_unlock(); 1492 atomic_add(s, &rdev->corrected_errors); 1493 if (sync_page_io(rdev->bdev, 1494 r10_bio->devs[sl].addr + 1495 sect + rdev->data_offset, 1496 s<<9, conf->tmppage, WRITE) 1497 == 0) 1498 /* Well, this device is dead */ 1499 md_error(mddev, rdev); 1500 rdev_dec_pending(rdev, mddev); 1501 rcu_read_lock(); 1502 } 1503 } 1504 sl = start; 1505 while (sl != r10_bio->read_slot) { 1506 int d; 1507 if (sl==0) 1508 sl = conf->copies; 1509 sl--; 1510 d = r10_bio->devs[sl].devnum; 1511 rdev = rcu_dereference(conf->mirrors[d].rdev); 1512 if (rdev && 1513 test_bit(In_sync, &rdev->flags)) { 1514 char b[BDEVNAME_SIZE]; 1515 atomic_inc(&rdev->nr_pending); 1516 rcu_read_unlock(); 1517 if (sync_page_io(rdev->bdev, 1518 r10_bio->devs[sl].addr + 1519 sect + rdev->data_offset, 1520 s<<9, conf->tmppage, READ) == 0) 1521 /* Well, this device is dead */ 1522 md_error(mddev, rdev); 1523 else 1524 printk(KERN_INFO 1525 "raid10:%s: read error corrected" 1526 " (%d sectors at %llu on %s)\n", 1527 mdname(mddev), s, 1528 (unsigned long long)(sect+ 1529 rdev->data_offset), 1530 bdevname(rdev->bdev, b)); 1531 1532 rdev_dec_pending(rdev, mddev); 1533 rcu_read_lock(); 1534 } 1535 } 1536 rcu_read_unlock(); 1537 1538 sectors -= s; 1539 sect += s; 1540 } 1541 } 1542 1543 static void raid10d(mddev_t *mddev) 1544 { 1545 r10bio_t *r10_bio; 1546 struct bio *bio; 1547 unsigned long flags; 1548 conf_t *conf = mddev_to_conf(mddev); 1549 struct list_head *head = &conf->retry_list; 1550 int unplug=0; 1551 mdk_rdev_t *rdev; 1552 1553 md_check_recovery(mddev); 1554 1555 for (;;) { 1556 char b[BDEVNAME_SIZE]; 1557 1558 unplug += flush_pending_writes(conf); 1559 1560 spin_lock_irqsave(&conf->device_lock, flags); 1561 if (list_empty(head)) { 1562 spin_unlock_irqrestore(&conf->device_lock, flags); 1563 break; 1564 } 1565 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1566 list_del(head->prev); 1567 conf->nr_queued--; 1568 spin_unlock_irqrestore(&conf->device_lock, flags); 1569 1570 mddev = r10_bio->mddev; 1571 conf = mddev_to_conf(mddev); 1572 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1573 sync_request_write(mddev, r10_bio); 1574 unplug = 1; 1575 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1576 recovery_request_write(mddev, r10_bio); 1577 unplug = 1; 1578 } else { 1579 int mirror; 1580 /* we got a read error. Maybe the drive is bad. Maybe just 1581 * the block and we can fix it. 1582 * We freeze all other IO, and try reading the block from 1583 * other devices. When we find one, we re-write 1584 * and check it that fixes the read error. 1585 * This is all done synchronously while the array is 1586 * frozen. 1587 */ 1588 if (mddev->ro == 0) { 1589 freeze_array(conf); 1590 fix_read_error(conf, mddev, r10_bio); 1591 unfreeze_array(conf); 1592 } 1593 1594 bio = r10_bio->devs[r10_bio->read_slot].bio; 1595 r10_bio->devs[r10_bio->read_slot].bio = 1596 mddev->ro ? IO_BLOCKED : NULL; 1597 mirror = read_balance(conf, r10_bio); 1598 if (mirror == -1) { 1599 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1600 " read error for block %llu\n", 1601 bdevname(bio->bi_bdev,b), 1602 (unsigned long long)r10_bio->sector); 1603 raid_end_bio_io(r10_bio); 1604 bio_put(bio); 1605 } else { 1606 const int do_sync = bio_sync(r10_bio->master_bio); 1607 bio_put(bio); 1608 rdev = conf->mirrors[mirror].rdev; 1609 if (printk_ratelimit()) 1610 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1611 " another mirror\n", 1612 bdevname(rdev->bdev,b), 1613 (unsigned long long)r10_bio->sector); 1614 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1615 r10_bio->devs[r10_bio->read_slot].bio = bio; 1616 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1617 + rdev->data_offset; 1618 bio->bi_bdev = rdev->bdev; 1619 bio->bi_rw = READ | do_sync; 1620 bio->bi_private = r10_bio; 1621 bio->bi_end_io = raid10_end_read_request; 1622 unplug = 1; 1623 generic_make_request(bio); 1624 } 1625 } 1626 } 1627 if (unplug) 1628 unplug_slaves(mddev); 1629 } 1630 1631 1632 static int init_resync(conf_t *conf) 1633 { 1634 int buffs; 1635 1636 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1637 BUG_ON(conf->r10buf_pool); 1638 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1639 if (!conf->r10buf_pool) 1640 return -ENOMEM; 1641 conf->next_resync = 0; 1642 return 0; 1643 } 1644 1645 /* 1646 * perform a "sync" on one "block" 1647 * 1648 * We need to make sure that no normal I/O request - particularly write 1649 * requests - conflict with active sync requests. 1650 * 1651 * This is achieved by tracking pending requests and a 'barrier' concept 1652 * that can be installed to exclude normal IO requests. 1653 * 1654 * Resync and recovery are handled very differently. 1655 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1656 * 1657 * For resync, we iterate over virtual addresses, read all copies, 1658 * and update if there are differences. If only one copy is live, 1659 * skip it. 1660 * For recovery, we iterate over physical addresses, read a good 1661 * value for each non-in_sync drive, and over-write. 1662 * 1663 * So, for recovery we may have several outstanding complex requests for a 1664 * given address, one for each out-of-sync device. We model this by allocating 1665 * a number of r10_bio structures, one for each out-of-sync device. 1666 * As we setup these structures, we collect all bio's together into a list 1667 * which we then process collectively to add pages, and then process again 1668 * to pass to generic_make_request. 1669 * 1670 * The r10_bio structures are linked using a borrowed master_bio pointer. 1671 * This link is counted in ->remaining. When the r10_bio that points to NULL 1672 * has its remaining count decremented to 0, the whole complex operation 1673 * is complete. 1674 * 1675 */ 1676 1677 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1678 { 1679 conf_t *conf = mddev_to_conf(mddev); 1680 r10bio_t *r10_bio; 1681 struct bio *biolist = NULL, *bio; 1682 sector_t max_sector, nr_sectors; 1683 int disk; 1684 int i; 1685 int max_sync; 1686 int sync_blocks; 1687 1688 sector_t sectors_skipped = 0; 1689 int chunks_skipped = 0; 1690 1691 if (!conf->r10buf_pool) 1692 if (init_resync(conf)) 1693 return 0; 1694 1695 skipped: 1696 max_sector = mddev->size << 1; 1697 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1698 max_sector = mddev->resync_max_sectors; 1699 if (sector_nr >= max_sector) { 1700 /* If we aborted, we need to abort the 1701 * sync on the 'current' bitmap chucks (there can 1702 * be several when recovering multiple devices). 1703 * as we may have started syncing it but not finished. 1704 * We can find the current address in 1705 * mddev->curr_resync, but for recovery, 1706 * we need to convert that to several 1707 * virtual addresses. 1708 */ 1709 if (mddev->curr_resync < max_sector) { /* aborted */ 1710 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1711 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1712 &sync_blocks, 1); 1713 else for (i=0; i<conf->raid_disks; i++) { 1714 sector_t sect = 1715 raid10_find_virt(conf, mddev->curr_resync, i); 1716 bitmap_end_sync(mddev->bitmap, sect, 1717 &sync_blocks, 1); 1718 } 1719 } else /* completed sync */ 1720 conf->fullsync = 0; 1721 1722 bitmap_close_sync(mddev->bitmap); 1723 close_sync(conf); 1724 *skipped = 1; 1725 return sectors_skipped; 1726 } 1727 if (chunks_skipped >= conf->raid_disks) { 1728 /* if there has been nothing to do on any drive, 1729 * then there is nothing to do at all.. 1730 */ 1731 *skipped = 1; 1732 return (max_sector - sector_nr) + sectors_skipped; 1733 } 1734 1735 if (max_sector > mddev->resync_max) 1736 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1737 1738 /* make sure whole request will fit in a chunk - if chunks 1739 * are meaningful 1740 */ 1741 if (conf->near_copies < conf->raid_disks && 1742 max_sector > (sector_nr | conf->chunk_mask)) 1743 max_sector = (sector_nr | conf->chunk_mask) + 1; 1744 /* 1745 * If there is non-resync activity waiting for us then 1746 * put in a delay to throttle resync. 1747 */ 1748 if (!go_faster && conf->nr_waiting) 1749 msleep_interruptible(1000); 1750 1751 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1752 1753 /* Again, very different code for resync and recovery. 1754 * Both must result in an r10bio with a list of bios that 1755 * have bi_end_io, bi_sector, bi_bdev set, 1756 * and bi_private set to the r10bio. 1757 * For recovery, we may actually create several r10bios 1758 * with 2 bios in each, that correspond to the bios in the main one. 1759 * In this case, the subordinate r10bios link back through a 1760 * borrowed master_bio pointer, and the counter in the master 1761 * includes a ref from each subordinate. 1762 */ 1763 /* First, we decide what to do and set ->bi_end_io 1764 * To end_sync_read if we want to read, and 1765 * end_sync_write if we will want to write. 1766 */ 1767 1768 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1769 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1770 /* recovery... the complicated one */ 1771 int i, j, k; 1772 r10_bio = NULL; 1773 1774 for (i=0 ; i<conf->raid_disks; i++) 1775 if (conf->mirrors[i].rdev && 1776 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1777 int still_degraded = 0; 1778 /* want to reconstruct this device */ 1779 r10bio_t *rb2 = r10_bio; 1780 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1781 int must_sync; 1782 /* Unless we are doing a full sync, we only need 1783 * to recover the block if it is set in the bitmap 1784 */ 1785 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1786 &sync_blocks, 1); 1787 if (sync_blocks < max_sync) 1788 max_sync = sync_blocks; 1789 if (!must_sync && 1790 !conf->fullsync) { 1791 /* yep, skip the sync_blocks here, but don't assume 1792 * that there will never be anything to do here 1793 */ 1794 chunks_skipped = -1; 1795 continue; 1796 } 1797 1798 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1799 raise_barrier(conf, rb2 != NULL); 1800 atomic_set(&r10_bio->remaining, 0); 1801 1802 r10_bio->master_bio = (struct bio*)rb2; 1803 if (rb2) 1804 atomic_inc(&rb2->remaining); 1805 r10_bio->mddev = mddev; 1806 set_bit(R10BIO_IsRecover, &r10_bio->state); 1807 r10_bio->sector = sect; 1808 1809 raid10_find_phys(conf, r10_bio); 1810 /* Need to check if this section will still be 1811 * degraded 1812 */ 1813 for (j=0; j<conf->copies;j++) { 1814 int d = r10_bio->devs[j].devnum; 1815 if (conf->mirrors[d].rdev == NULL || 1816 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1817 still_degraded = 1; 1818 break; 1819 } 1820 } 1821 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1822 &sync_blocks, still_degraded); 1823 1824 for (j=0; j<conf->copies;j++) { 1825 int d = r10_bio->devs[j].devnum; 1826 if (conf->mirrors[d].rdev && 1827 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1828 /* This is where we read from */ 1829 bio = r10_bio->devs[0].bio; 1830 bio->bi_next = biolist; 1831 biolist = bio; 1832 bio->bi_private = r10_bio; 1833 bio->bi_end_io = end_sync_read; 1834 bio->bi_rw = READ; 1835 bio->bi_sector = r10_bio->devs[j].addr + 1836 conf->mirrors[d].rdev->data_offset; 1837 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1838 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1839 atomic_inc(&r10_bio->remaining); 1840 /* and we write to 'i' */ 1841 1842 for (k=0; k<conf->copies; k++) 1843 if (r10_bio->devs[k].devnum == i) 1844 break; 1845 BUG_ON(k == conf->copies); 1846 bio = r10_bio->devs[1].bio; 1847 bio->bi_next = biolist; 1848 biolist = bio; 1849 bio->bi_private = r10_bio; 1850 bio->bi_end_io = end_sync_write; 1851 bio->bi_rw = WRITE; 1852 bio->bi_sector = r10_bio->devs[k].addr + 1853 conf->mirrors[i].rdev->data_offset; 1854 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1855 1856 r10_bio->devs[0].devnum = d; 1857 r10_bio->devs[1].devnum = i; 1858 1859 break; 1860 } 1861 } 1862 if (j == conf->copies) { 1863 /* Cannot recover, so abort the recovery */ 1864 put_buf(r10_bio); 1865 if (rb2) 1866 atomic_dec(&rb2->remaining); 1867 r10_bio = rb2; 1868 if (!test_and_set_bit(MD_RECOVERY_INTR, 1869 &mddev->recovery)) 1870 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1871 mdname(mddev)); 1872 break; 1873 } 1874 } 1875 if (biolist == NULL) { 1876 while (r10_bio) { 1877 r10bio_t *rb2 = r10_bio; 1878 r10_bio = (r10bio_t*) rb2->master_bio; 1879 rb2->master_bio = NULL; 1880 put_buf(rb2); 1881 } 1882 goto giveup; 1883 } 1884 } else { 1885 /* resync. Schedule a read for every block at this virt offset */ 1886 int count = 0; 1887 1888 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1889 &sync_blocks, mddev->degraded) && 1890 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1891 /* We can skip this block */ 1892 *skipped = 1; 1893 return sync_blocks + sectors_skipped; 1894 } 1895 if (sync_blocks < max_sync) 1896 max_sync = sync_blocks; 1897 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1898 1899 r10_bio->mddev = mddev; 1900 atomic_set(&r10_bio->remaining, 0); 1901 raise_barrier(conf, 0); 1902 conf->next_resync = sector_nr; 1903 1904 r10_bio->master_bio = NULL; 1905 r10_bio->sector = sector_nr; 1906 set_bit(R10BIO_IsSync, &r10_bio->state); 1907 raid10_find_phys(conf, r10_bio); 1908 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1909 1910 for (i=0; i<conf->copies; i++) { 1911 int d = r10_bio->devs[i].devnum; 1912 bio = r10_bio->devs[i].bio; 1913 bio->bi_end_io = NULL; 1914 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1915 if (conf->mirrors[d].rdev == NULL || 1916 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1917 continue; 1918 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1919 atomic_inc(&r10_bio->remaining); 1920 bio->bi_next = biolist; 1921 biolist = bio; 1922 bio->bi_private = r10_bio; 1923 bio->bi_end_io = end_sync_read; 1924 bio->bi_rw = READ; 1925 bio->bi_sector = r10_bio->devs[i].addr + 1926 conf->mirrors[d].rdev->data_offset; 1927 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1928 count++; 1929 } 1930 1931 if (count < 2) { 1932 for (i=0; i<conf->copies; i++) { 1933 int d = r10_bio->devs[i].devnum; 1934 if (r10_bio->devs[i].bio->bi_end_io) 1935 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1936 } 1937 put_buf(r10_bio); 1938 biolist = NULL; 1939 goto giveup; 1940 } 1941 } 1942 1943 for (bio = biolist; bio ; bio=bio->bi_next) { 1944 1945 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1946 if (bio->bi_end_io) 1947 bio->bi_flags |= 1 << BIO_UPTODATE; 1948 bio->bi_vcnt = 0; 1949 bio->bi_idx = 0; 1950 bio->bi_phys_segments = 0; 1951 bio->bi_size = 0; 1952 } 1953 1954 nr_sectors = 0; 1955 if (sector_nr + max_sync < max_sector) 1956 max_sector = sector_nr + max_sync; 1957 do { 1958 struct page *page; 1959 int len = PAGE_SIZE; 1960 disk = 0; 1961 if (sector_nr + (len>>9) > max_sector) 1962 len = (max_sector - sector_nr) << 9; 1963 if (len == 0) 1964 break; 1965 for (bio= biolist ; bio ; bio=bio->bi_next) { 1966 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1967 if (bio_add_page(bio, page, len, 0) == 0) { 1968 /* stop here */ 1969 struct bio *bio2; 1970 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1971 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1972 /* remove last page from this bio */ 1973 bio2->bi_vcnt--; 1974 bio2->bi_size -= len; 1975 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1976 } 1977 goto bio_full; 1978 } 1979 disk = i; 1980 } 1981 nr_sectors += len>>9; 1982 sector_nr += len>>9; 1983 } while (biolist->bi_vcnt < RESYNC_PAGES); 1984 bio_full: 1985 r10_bio->sectors = nr_sectors; 1986 1987 while (biolist) { 1988 bio = biolist; 1989 biolist = biolist->bi_next; 1990 1991 bio->bi_next = NULL; 1992 r10_bio = bio->bi_private; 1993 r10_bio->sectors = nr_sectors; 1994 1995 if (bio->bi_end_io == end_sync_read) { 1996 md_sync_acct(bio->bi_bdev, nr_sectors); 1997 generic_make_request(bio); 1998 } 1999 } 2000 2001 if (sectors_skipped) 2002 /* pretend they weren't skipped, it makes 2003 * no important difference in this case 2004 */ 2005 md_done_sync(mddev, sectors_skipped, 1); 2006 2007 return sectors_skipped + nr_sectors; 2008 giveup: 2009 /* There is nowhere to write, so all non-sync 2010 * drives must be failed, so try the next chunk... 2011 */ 2012 { 2013 sector_t sec = max_sector - sector_nr; 2014 sectors_skipped += sec; 2015 chunks_skipped ++; 2016 sector_nr = max_sector; 2017 goto skipped; 2018 } 2019 } 2020 2021 static int run(mddev_t *mddev) 2022 { 2023 conf_t *conf; 2024 int i, disk_idx; 2025 mirror_info_t *disk; 2026 mdk_rdev_t *rdev; 2027 struct list_head *tmp; 2028 int nc, fc, fo; 2029 sector_t stride, size; 2030 2031 if (mddev->chunk_size == 0) { 2032 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 2033 return -EINVAL; 2034 } 2035 2036 nc = mddev->layout & 255; 2037 fc = (mddev->layout >> 8) & 255; 2038 fo = mddev->layout & (1<<16); 2039 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2040 (mddev->layout >> 17)) { 2041 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 2042 mdname(mddev), mddev->layout); 2043 goto out; 2044 } 2045 /* 2046 * copy the already verified devices into our private RAID10 2047 * bookkeeping area. [whatever we allocate in run(), 2048 * should be freed in stop()] 2049 */ 2050 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2051 mddev->private = conf; 2052 if (!conf) { 2053 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2054 mdname(mddev)); 2055 goto out; 2056 } 2057 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2058 GFP_KERNEL); 2059 if (!conf->mirrors) { 2060 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2061 mdname(mddev)); 2062 goto out_free_conf; 2063 } 2064 2065 conf->tmppage = alloc_page(GFP_KERNEL); 2066 if (!conf->tmppage) 2067 goto out_free_conf; 2068 2069 conf->mddev = mddev; 2070 conf->raid_disks = mddev->raid_disks; 2071 conf->near_copies = nc; 2072 conf->far_copies = fc; 2073 conf->copies = nc*fc; 2074 conf->far_offset = fo; 2075 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 2076 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 2077 size = mddev->size >> (conf->chunk_shift-1); 2078 sector_div(size, fc); 2079 size = size * conf->raid_disks; 2080 sector_div(size, nc); 2081 /* 'size' is now the number of chunks in the array */ 2082 /* calculate "used chunks per device" in 'stride' */ 2083 stride = size * conf->copies; 2084 2085 /* We need to round up when dividing by raid_disks to 2086 * get the stride size. 2087 */ 2088 stride += conf->raid_disks - 1; 2089 sector_div(stride, conf->raid_disks); 2090 mddev->size = stride << (conf->chunk_shift-1); 2091 2092 if (fo) 2093 stride = 1; 2094 else 2095 sector_div(stride, fc); 2096 conf->stride = stride << conf->chunk_shift; 2097 2098 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2099 r10bio_pool_free, conf); 2100 if (!conf->r10bio_pool) { 2101 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2102 mdname(mddev)); 2103 goto out_free_conf; 2104 } 2105 2106 spin_lock_init(&conf->device_lock); 2107 mddev->queue->queue_lock = &conf->device_lock; 2108 2109 rdev_for_each(rdev, tmp, mddev) { 2110 disk_idx = rdev->raid_disk; 2111 if (disk_idx >= mddev->raid_disks 2112 || disk_idx < 0) 2113 continue; 2114 disk = conf->mirrors + disk_idx; 2115 2116 disk->rdev = rdev; 2117 2118 blk_queue_stack_limits(mddev->queue, 2119 rdev->bdev->bd_disk->queue); 2120 /* as we don't honour merge_bvec_fn, we must never risk 2121 * violating it, so limit ->max_sector to one PAGE, as 2122 * a one page request is never in violation. 2123 */ 2124 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2125 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2126 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2127 2128 disk->head_position = 0; 2129 } 2130 INIT_LIST_HEAD(&conf->retry_list); 2131 2132 spin_lock_init(&conf->resync_lock); 2133 init_waitqueue_head(&conf->wait_barrier); 2134 2135 /* need to check that every block has at least one working mirror */ 2136 if (!enough(conf)) { 2137 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2138 mdname(mddev)); 2139 goto out_free_conf; 2140 } 2141 2142 mddev->degraded = 0; 2143 for (i = 0; i < conf->raid_disks; i++) { 2144 2145 disk = conf->mirrors + i; 2146 2147 if (!disk->rdev || 2148 !test_bit(In_sync, &disk->rdev->flags)) { 2149 disk->head_position = 0; 2150 mddev->degraded++; 2151 if (disk->rdev) 2152 conf->fullsync = 1; 2153 } 2154 } 2155 2156 2157 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2158 if (!mddev->thread) { 2159 printk(KERN_ERR 2160 "raid10: couldn't allocate thread for %s\n", 2161 mdname(mddev)); 2162 goto out_free_conf; 2163 } 2164 2165 printk(KERN_INFO 2166 "raid10: raid set %s active with %d out of %d devices\n", 2167 mdname(mddev), mddev->raid_disks - mddev->degraded, 2168 mddev->raid_disks); 2169 /* 2170 * Ok, everything is just fine now 2171 */ 2172 mddev->array_sectors = size << conf->chunk_shift; 2173 mddev->resync_max_sectors = size << conf->chunk_shift; 2174 2175 mddev->queue->unplug_fn = raid10_unplug; 2176 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2177 mddev->queue->backing_dev_info.congested_data = mddev; 2178 2179 /* Calculate max read-ahead size. 2180 * We need to readahead at least twice a whole stripe.... 2181 * maybe... 2182 */ 2183 { 2184 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2185 stripe /= conf->near_copies; 2186 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2187 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2188 } 2189 2190 if (conf->near_copies < mddev->raid_disks) 2191 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2192 return 0; 2193 2194 out_free_conf: 2195 if (conf->r10bio_pool) 2196 mempool_destroy(conf->r10bio_pool); 2197 safe_put_page(conf->tmppage); 2198 kfree(conf->mirrors); 2199 kfree(conf); 2200 mddev->private = NULL; 2201 out: 2202 return -EIO; 2203 } 2204 2205 static int stop(mddev_t *mddev) 2206 { 2207 conf_t *conf = mddev_to_conf(mddev); 2208 2209 md_unregister_thread(mddev->thread); 2210 mddev->thread = NULL; 2211 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2212 if (conf->r10bio_pool) 2213 mempool_destroy(conf->r10bio_pool); 2214 kfree(conf->mirrors); 2215 kfree(conf); 2216 mddev->private = NULL; 2217 return 0; 2218 } 2219 2220 static void raid10_quiesce(mddev_t *mddev, int state) 2221 { 2222 conf_t *conf = mddev_to_conf(mddev); 2223 2224 switch(state) { 2225 case 1: 2226 raise_barrier(conf, 0); 2227 break; 2228 case 0: 2229 lower_barrier(conf); 2230 break; 2231 } 2232 if (mddev->thread) { 2233 if (mddev->bitmap) 2234 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2235 else 2236 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2237 md_wakeup_thread(mddev->thread); 2238 } 2239 } 2240 2241 static struct mdk_personality raid10_personality = 2242 { 2243 .name = "raid10", 2244 .level = 10, 2245 .owner = THIS_MODULE, 2246 .make_request = make_request, 2247 .run = run, 2248 .stop = stop, 2249 .status = status, 2250 .error_handler = error, 2251 .hot_add_disk = raid10_add_disk, 2252 .hot_remove_disk= raid10_remove_disk, 2253 .spare_active = raid10_spare_active, 2254 .sync_request = sync_request, 2255 .quiesce = raid10_quiesce, 2256 }; 2257 2258 static int __init raid_init(void) 2259 { 2260 return register_md_personality(&raid10_personality); 2261 } 2262 2263 static void raid_exit(void) 2264 { 2265 unregister_md_personality(&raid10_personality); 2266 } 2267 2268 module_init(raid_init); 2269 module_exit(raid_exit); 2270 MODULE_LICENSE("GPL"); 2271 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2272 MODULE_ALIAS("md-raid10"); 2273 MODULE_ALIAS("md-level-10"); 2274