1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/seq_file.h> 25 #include "md.h" 26 #include "raid10.h" 27 #include "bitmap.h" 28 29 /* 30 * RAID10 provides a combination of RAID0 and RAID1 functionality. 31 * The layout of data is defined by 32 * chunk_size 33 * raid_disks 34 * near_copies (stored in low byte of layout) 35 * far_copies (stored in second byte of layout) 36 * far_offset (stored in bit 16 of layout ) 37 * 38 * The data to be stored is divided into chunks using chunksize. 39 * Each device is divided into far_copies sections. 40 * In each section, chunks are laid out in a style similar to raid0, but 41 * near_copies copies of each chunk is stored (each on a different drive). 42 * The starting device for each section is offset near_copies from the starting 43 * device of the previous section. 44 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 45 * drive. 46 * near_copies and far_copies must be at least one, and their product is at most 47 * raid_disks. 48 * 49 * If far_offset is true, then the far_copies are handled a bit differently. 50 * The copies are still in different stripes, but instead of be very far apart 51 * on disk, there are adjacent stripes. 52 */ 53 54 /* 55 * Number of guaranteed r10bios in case of extreme VM load: 56 */ 57 #define NR_RAID10_BIOS 256 58 59 static void unplug_slaves(mddev_t *mddev); 60 61 static void allow_barrier(conf_t *conf); 62 static void lower_barrier(conf_t *conf); 63 64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 65 { 66 conf_t *conf = data; 67 r10bio_t *r10_bio; 68 int size = offsetof(struct r10bio_s, devs[conf->copies]); 69 70 /* allocate a r10bio with room for raid_disks entries in the bios array */ 71 r10_bio = kzalloc(size, gfp_flags); 72 if (!r10_bio && conf->mddev) 73 unplug_slaves(conf->mddev); 74 75 return r10_bio; 76 } 77 78 static void r10bio_pool_free(void *r10_bio, void *data) 79 { 80 kfree(r10_bio); 81 } 82 83 /* Maximum size of each resync request */ 84 #define RESYNC_BLOCK_SIZE (64*1024) 85 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 86 /* amount of memory to reserve for resync requests */ 87 #define RESYNC_WINDOW (1024*1024) 88 /* maximum number of concurrent requests, memory permitting */ 89 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 90 91 /* 92 * When performing a resync, we need to read and compare, so 93 * we need as many pages are there are copies. 94 * When performing a recovery, we need 2 bios, one for read, 95 * one for write (we recover only one drive per r10buf) 96 * 97 */ 98 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 99 { 100 conf_t *conf = data; 101 struct page *page; 102 r10bio_t *r10_bio; 103 struct bio *bio; 104 int i, j; 105 int nalloc; 106 107 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 108 if (!r10_bio) { 109 unplug_slaves(conf->mddev); 110 return NULL; 111 } 112 113 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 114 nalloc = conf->copies; /* resync */ 115 else 116 nalloc = 2; /* recovery */ 117 118 /* 119 * Allocate bios. 120 */ 121 for (j = nalloc ; j-- ; ) { 122 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 123 if (!bio) 124 goto out_free_bio; 125 r10_bio->devs[j].bio = bio; 126 } 127 /* 128 * Allocate RESYNC_PAGES data pages and attach them 129 * where needed. 130 */ 131 for (j = 0 ; j < nalloc; j++) { 132 bio = r10_bio->devs[j].bio; 133 for (i = 0; i < RESYNC_PAGES; i++) { 134 page = alloc_page(gfp_flags); 135 if (unlikely(!page)) 136 goto out_free_pages; 137 138 bio->bi_io_vec[i].bv_page = page; 139 } 140 } 141 142 return r10_bio; 143 144 out_free_pages: 145 for ( ; i > 0 ; i--) 146 safe_put_page(bio->bi_io_vec[i-1].bv_page); 147 while (j--) 148 for (i = 0; i < RESYNC_PAGES ; i++) 149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 150 j = -1; 151 out_free_bio: 152 while ( ++j < nalloc ) 153 bio_put(r10_bio->devs[j].bio); 154 r10bio_pool_free(r10_bio, conf); 155 return NULL; 156 } 157 158 static void r10buf_pool_free(void *__r10_bio, void *data) 159 { 160 int i; 161 conf_t *conf = data; 162 r10bio_t *r10bio = __r10_bio; 163 int j; 164 165 for (j=0; j < conf->copies; j++) { 166 struct bio *bio = r10bio->devs[j].bio; 167 if (bio) { 168 for (i = 0; i < RESYNC_PAGES; i++) { 169 safe_put_page(bio->bi_io_vec[i].bv_page); 170 bio->bi_io_vec[i].bv_page = NULL; 171 } 172 bio_put(bio); 173 } 174 } 175 r10bio_pool_free(r10bio, conf); 176 } 177 178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 179 { 180 int i; 181 182 for (i = 0; i < conf->copies; i++) { 183 struct bio **bio = & r10_bio->devs[i].bio; 184 if (*bio && *bio != IO_BLOCKED) 185 bio_put(*bio); 186 *bio = NULL; 187 } 188 } 189 190 static void free_r10bio(r10bio_t *r10_bio) 191 { 192 conf_t *conf = r10_bio->mddev->private; 193 194 /* 195 * Wake up any possible resync thread that waits for the device 196 * to go idle. 197 */ 198 allow_barrier(conf); 199 200 put_all_bios(conf, r10_bio); 201 mempool_free(r10_bio, conf->r10bio_pool); 202 } 203 204 static void put_buf(r10bio_t *r10_bio) 205 { 206 conf_t *conf = r10_bio->mddev->private; 207 208 mempool_free(r10_bio, conf->r10buf_pool); 209 210 lower_barrier(conf); 211 } 212 213 static void reschedule_retry(r10bio_t *r10_bio) 214 { 215 unsigned long flags; 216 mddev_t *mddev = r10_bio->mddev; 217 conf_t *conf = mddev->private; 218 219 spin_lock_irqsave(&conf->device_lock, flags); 220 list_add(&r10_bio->retry_list, &conf->retry_list); 221 conf->nr_queued ++; 222 spin_unlock_irqrestore(&conf->device_lock, flags); 223 224 /* wake up frozen array... */ 225 wake_up(&conf->wait_barrier); 226 227 md_wakeup_thread(mddev->thread); 228 } 229 230 /* 231 * raid_end_bio_io() is called when we have finished servicing a mirrored 232 * operation and are ready to return a success/failure code to the buffer 233 * cache layer. 234 */ 235 static void raid_end_bio_io(r10bio_t *r10_bio) 236 { 237 struct bio *bio = r10_bio->master_bio; 238 239 bio_endio(bio, 240 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 241 free_r10bio(r10_bio); 242 } 243 244 /* 245 * Update disk head position estimator based on IRQ completion info. 246 */ 247 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 248 { 249 conf_t *conf = r10_bio->mddev->private; 250 251 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 252 r10_bio->devs[slot].addr + (r10_bio->sectors); 253 } 254 255 static void raid10_end_read_request(struct bio *bio, int error) 256 { 257 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 258 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 259 int slot, dev; 260 conf_t *conf = r10_bio->mddev->private; 261 262 263 slot = r10_bio->read_slot; 264 dev = r10_bio->devs[slot].devnum; 265 /* 266 * this branch is our 'one mirror IO has finished' event handler: 267 */ 268 update_head_pos(slot, r10_bio); 269 270 if (uptodate) { 271 /* 272 * Set R10BIO_Uptodate in our master bio, so that 273 * we will return a good error code to the higher 274 * levels even if IO on some other mirrored buffer fails. 275 * 276 * The 'master' represents the composite IO operation to 277 * user-side. So if something waits for IO, then it will 278 * wait for the 'master' bio. 279 */ 280 set_bit(R10BIO_Uptodate, &r10_bio->state); 281 raid_end_bio_io(r10_bio); 282 } else { 283 /* 284 * oops, read error: 285 */ 286 char b[BDEVNAME_SIZE]; 287 if (printk_ratelimit()) 288 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 289 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 290 reschedule_retry(r10_bio); 291 } 292 293 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 294 } 295 296 static void raid10_end_write_request(struct bio *bio, int error) 297 { 298 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 299 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 300 int slot, dev; 301 conf_t *conf = r10_bio->mddev->private; 302 303 for (slot = 0; slot < conf->copies; slot++) 304 if (r10_bio->devs[slot].bio == bio) 305 break; 306 dev = r10_bio->devs[slot].devnum; 307 308 /* 309 * this branch is our 'one mirror IO has finished' event handler: 310 */ 311 if (!uptodate) { 312 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 313 /* an I/O failed, we can't clear the bitmap */ 314 set_bit(R10BIO_Degraded, &r10_bio->state); 315 } else 316 /* 317 * Set R10BIO_Uptodate in our master bio, so that 318 * we will return a good error code for to the higher 319 * levels even if IO on some other mirrored buffer fails. 320 * 321 * The 'master' represents the composite IO operation to 322 * user-side. So if something waits for IO, then it will 323 * wait for the 'master' bio. 324 */ 325 set_bit(R10BIO_Uptodate, &r10_bio->state); 326 327 update_head_pos(slot, r10_bio); 328 329 /* 330 * 331 * Let's see if all mirrored write operations have finished 332 * already. 333 */ 334 if (atomic_dec_and_test(&r10_bio->remaining)) { 335 /* clear the bitmap if all writes complete successfully */ 336 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 337 r10_bio->sectors, 338 !test_bit(R10BIO_Degraded, &r10_bio->state), 339 0); 340 md_write_end(r10_bio->mddev); 341 raid_end_bio_io(r10_bio); 342 } 343 344 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 345 } 346 347 348 /* 349 * RAID10 layout manager 350 * Aswell as the chunksize and raid_disks count, there are two 351 * parameters: near_copies and far_copies. 352 * near_copies * far_copies must be <= raid_disks. 353 * Normally one of these will be 1. 354 * If both are 1, we get raid0. 355 * If near_copies == raid_disks, we get raid1. 356 * 357 * Chunks are layed out in raid0 style with near_copies copies of the 358 * first chunk, followed by near_copies copies of the next chunk and 359 * so on. 360 * If far_copies > 1, then after 1/far_copies of the array has been assigned 361 * as described above, we start again with a device offset of near_copies. 362 * So we effectively have another copy of the whole array further down all 363 * the drives, but with blocks on different drives. 364 * With this layout, and block is never stored twice on the one device. 365 * 366 * raid10_find_phys finds the sector offset of a given virtual sector 367 * on each device that it is on. 368 * 369 * raid10_find_virt does the reverse mapping, from a device and a 370 * sector offset to a virtual address 371 */ 372 373 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 374 { 375 int n,f; 376 sector_t sector; 377 sector_t chunk; 378 sector_t stripe; 379 int dev; 380 381 int slot = 0; 382 383 /* now calculate first sector/dev */ 384 chunk = r10bio->sector >> conf->chunk_shift; 385 sector = r10bio->sector & conf->chunk_mask; 386 387 chunk *= conf->near_copies; 388 stripe = chunk; 389 dev = sector_div(stripe, conf->raid_disks); 390 if (conf->far_offset) 391 stripe *= conf->far_copies; 392 393 sector += stripe << conf->chunk_shift; 394 395 /* and calculate all the others */ 396 for (n=0; n < conf->near_copies; n++) { 397 int d = dev; 398 sector_t s = sector; 399 r10bio->devs[slot].addr = sector; 400 r10bio->devs[slot].devnum = d; 401 slot++; 402 403 for (f = 1; f < conf->far_copies; f++) { 404 d += conf->near_copies; 405 if (d >= conf->raid_disks) 406 d -= conf->raid_disks; 407 s += conf->stride; 408 r10bio->devs[slot].devnum = d; 409 r10bio->devs[slot].addr = s; 410 slot++; 411 } 412 dev++; 413 if (dev >= conf->raid_disks) { 414 dev = 0; 415 sector += (conf->chunk_mask + 1); 416 } 417 } 418 BUG_ON(slot != conf->copies); 419 } 420 421 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 422 { 423 sector_t offset, chunk, vchunk; 424 425 offset = sector & conf->chunk_mask; 426 if (conf->far_offset) { 427 int fc; 428 chunk = sector >> conf->chunk_shift; 429 fc = sector_div(chunk, conf->far_copies); 430 dev -= fc * conf->near_copies; 431 if (dev < 0) 432 dev += conf->raid_disks; 433 } else { 434 while (sector >= conf->stride) { 435 sector -= conf->stride; 436 if (dev < conf->near_copies) 437 dev += conf->raid_disks - conf->near_copies; 438 else 439 dev -= conf->near_copies; 440 } 441 chunk = sector >> conf->chunk_shift; 442 } 443 vchunk = chunk * conf->raid_disks + dev; 444 sector_div(vchunk, conf->near_copies); 445 return (vchunk << conf->chunk_shift) + offset; 446 } 447 448 /** 449 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 450 * @q: request queue 451 * @bvm: properties of new bio 452 * @biovec: the request that could be merged to it. 453 * 454 * Return amount of bytes we can accept at this offset 455 * If near_copies == raid_disk, there are no striping issues, 456 * but in that case, the function isn't called at all. 457 */ 458 static int raid10_mergeable_bvec(struct request_queue *q, 459 struct bvec_merge_data *bvm, 460 struct bio_vec *biovec) 461 { 462 mddev_t *mddev = q->queuedata; 463 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 464 int max; 465 unsigned int chunk_sectors = mddev->chunk_sectors; 466 unsigned int bio_sectors = bvm->bi_size >> 9; 467 468 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 469 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 470 if (max <= biovec->bv_len && bio_sectors == 0) 471 return biovec->bv_len; 472 else 473 return max; 474 } 475 476 /* 477 * This routine returns the disk from which the requested read should 478 * be done. There is a per-array 'next expected sequential IO' sector 479 * number - if this matches on the next IO then we use the last disk. 480 * There is also a per-disk 'last know head position' sector that is 481 * maintained from IRQ contexts, both the normal and the resync IO 482 * completion handlers update this position correctly. If there is no 483 * perfect sequential match then we pick the disk whose head is closest. 484 * 485 * If there are 2 mirrors in the same 2 devices, performance degrades 486 * because position is mirror, not device based. 487 * 488 * The rdev for the device selected will have nr_pending incremented. 489 */ 490 491 /* 492 * FIXME: possibly should rethink readbalancing and do it differently 493 * depending on near_copies / far_copies geometry. 494 */ 495 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 496 { 497 const unsigned long this_sector = r10_bio->sector; 498 int disk, slot, nslot; 499 const int sectors = r10_bio->sectors; 500 sector_t new_distance, current_distance; 501 mdk_rdev_t *rdev; 502 503 raid10_find_phys(conf, r10_bio); 504 rcu_read_lock(); 505 /* 506 * Check if we can balance. We can balance on the whole 507 * device if no resync is going on (recovery is ok), or below 508 * the resync window. We take the first readable disk when 509 * above the resync window. 510 */ 511 if (conf->mddev->recovery_cp < MaxSector 512 && (this_sector + sectors >= conf->next_resync)) { 513 /* make sure that disk is operational */ 514 slot = 0; 515 disk = r10_bio->devs[slot].devnum; 516 517 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 518 r10_bio->devs[slot].bio == IO_BLOCKED || 519 !test_bit(In_sync, &rdev->flags)) { 520 slot++; 521 if (slot == conf->copies) { 522 slot = 0; 523 disk = -1; 524 break; 525 } 526 disk = r10_bio->devs[slot].devnum; 527 } 528 goto rb_out; 529 } 530 531 532 /* make sure the disk is operational */ 533 slot = 0; 534 disk = r10_bio->devs[slot].devnum; 535 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 536 r10_bio->devs[slot].bio == IO_BLOCKED || 537 !test_bit(In_sync, &rdev->flags)) { 538 slot ++; 539 if (slot == conf->copies) { 540 disk = -1; 541 goto rb_out; 542 } 543 disk = r10_bio->devs[slot].devnum; 544 } 545 546 547 current_distance = abs(r10_bio->devs[slot].addr - 548 conf->mirrors[disk].head_position); 549 550 /* Find the disk whose head is closest, 551 * or - for far > 1 - find the closest to partition beginning */ 552 553 for (nslot = slot; nslot < conf->copies; nslot++) { 554 int ndisk = r10_bio->devs[nslot].devnum; 555 556 557 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 558 r10_bio->devs[nslot].bio == IO_BLOCKED || 559 !test_bit(In_sync, &rdev->flags)) 560 continue; 561 562 /* This optimisation is debatable, and completely destroys 563 * sequential read speed for 'far copies' arrays. So only 564 * keep it for 'near' arrays, and review those later. 565 */ 566 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 567 disk = ndisk; 568 slot = nslot; 569 break; 570 } 571 572 /* for far > 1 always use the lowest address */ 573 if (conf->far_copies > 1) 574 new_distance = r10_bio->devs[nslot].addr; 575 else 576 new_distance = abs(r10_bio->devs[nslot].addr - 577 conf->mirrors[ndisk].head_position); 578 if (new_distance < current_distance) { 579 current_distance = new_distance; 580 disk = ndisk; 581 slot = nslot; 582 } 583 } 584 585 rb_out: 586 r10_bio->read_slot = slot; 587 /* conf->next_seq_sect = this_sector + sectors;*/ 588 589 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 590 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 591 else 592 disk = -1; 593 rcu_read_unlock(); 594 595 return disk; 596 } 597 598 static void unplug_slaves(mddev_t *mddev) 599 { 600 conf_t *conf = mddev->private; 601 int i; 602 603 rcu_read_lock(); 604 for (i=0; i<mddev->raid_disks; i++) { 605 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 606 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 607 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 608 609 atomic_inc(&rdev->nr_pending); 610 rcu_read_unlock(); 611 612 blk_unplug(r_queue); 613 614 rdev_dec_pending(rdev, mddev); 615 rcu_read_lock(); 616 } 617 } 618 rcu_read_unlock(); 619 } 620 621 static void raid10_unplug(struct request_queue *q) 622 { 623 mddev_t *mddev = q->queuedata; 624 625 unplug_slaves(q->queuedata); 626 md_wakeup_thread(mddev->thread); 627 } 628 629 static int raid10_congested(void *data, int bits) 630 { 631 mddev_t *mddev = data; 632 conf_t *conf = mddev->private; 633 int i, ret = 0; 634 635 if (mddev_congested(mddev, bits)) 636 return 1; 637 rcu_read_lock(); 638 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 639 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 640 if (rdev && !test_bit(Faulty, &rdev->flags)) { 641 struct request_queue *q = bdev_get_queue(rdev->bdev); 642 643 ret |= bdi_congested(&q->backing_dev_info, bits); 644 } 645 } 646 rcu_read_unlock(); 647 return ret; 648 } 649 650 static int flush_pending_writes(conf_t *conf) 651 { 652 /* Any writes that have been queued but are awaiting 653 * bitmap updates get flushed here. 654 * We return 1 if any requests were actually submitted. 655 */ 656 int rv = 0; 657 658 spin_lock_irq(&conf->device_lock); 659 660 if (conf->pending_bio_list.head) { 661 struct bio *bio; 662 bio = bio_list_get(&conf->pending_bio_list); 663 blk_remove_plug(conf->mddev->queue); 664 spin_unlock_irq(&conf->device_lock); 665 /* flush any pending bitmap writes to disk 666 * before proceeding w/ I/O */ 667 bitmap_unplug(conf->mddev->bitmap); 668 669 while (bio) { /* submit pending writes */ 670 struct bio *next = bio->bi_next; 671 bio->bi_next = NULL; 672 generic_make_request(bio); 673 bio = next; 674 } 675 rv = 1; 676 } else 677 spin_unlock_irq(&conf->device_lock); 678 return rv; 679 } 680 /* Barriers.... 681 * Sometimes we need to suspend IO while we do something else, 682 * either some resync/recovery, or reconfigure the array. 683 * To do this we raise a 'barrier'. 684 * The 'barrier' is a counter that can be raised multiple times 685 * to count how many activities are happening which preclude 686 * normal IO. 687 * We can only raise the barrier if there is no pending IO. 688 * i.e. if nr_pending == 0. 689 * We choose only to raise the barrier if no-one is waiting for the 690 * barrier to go down. This means that as soon as an IO request 691 * is ready, no other operations which require a barrier will start 692 * until the IO request has had a chance. 693 * 694 * So: regular IO calls 'wait_barrier'. When that returns there 695 * is no backgroup IO happening, It must arrange to call 696 * allow_barrier when it has finished its IO. 697 * backgroup IO calls must call raise_barrier. Once that returns 698 * there is no normal IO happeing. It must arrange to call 699 * lower_barrier when the particular background IO completes. 700 */ 701 702 static void raise_barrier(conf_t *conf, int force) 703 { 704 BUG_ON(force && !conf->barrier); 705 spin_lock_irq(&conf->resync_lock); 706 707 /* Wait until no block IO is waiting (unless 'force') */ 708 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 709 conf->resync_lock, 710 raid10_unplug(conf->mddev->queue)); 711 712 /* block any new IO from starting */ 713 conf->barrier++; 714 715 /* No wait for all pending IO to complete */ 716 wait_event_lock_irq(conf->wait_barrier, 717 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 718 conf->resync_lock, 719 raid10_unplug(conf->mddev->queue)); 720 721 spin_unlock_irq(&conf->resync_lock); 722 } 723 724 static void lower_barrier(conf_t *conf) 725 { 726 unsigned long flags; 727 spin_lock_irqsave(&conf->resync_lock, flags); 728 conf->barrier--; 729 spin_unlock_irqrestore(&conf->resync_lock, flags); 730 wake_up(&conf->wait_barrier); 731 } 732 733 static void wait_barrier(conf_t *conf) 734 { 735 spin_lock_irq(&conf->resync_lock); 736 if (conf->barrier) { 737 conf->nr_waiting++; 738 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 739 conf->resync_lock, 740 raid10_unplug(conf->mddev->queue)); 741 conf->nr_waiting--; 742 } 743 conf->nr_pending++; 744 spin_unlock_irq(&conf->resync_lock); 745 } 746 747 static void allow_barrier(conf_t *conf) 748 { 749 unsigned long flags; 750 spin_lock_irqsave(&conf->resync_lock, flags); 751 conf->nr_pending--; 752 spin_unlock_irqrestore(&conf->resync_lock, flags); 753 wake_up(&conf->wait_barrier); 754 } 755 756 static void freeze_array(conf_t *conf) 757 { 758 /* stop syncio and normal IO and wait for everything to 759 * go quiet. 760 * We increment barrier and nr_waiting, and then 761 * wait until nr_pending match nr_queued+1 762 * This is called in the context of one normal IO request 763 * that has failed. Thus any sync request that might be pending 764 * will be blocked by nr_pending, and we need to wait for 765 * pending IO requests to complete or be queued for re-try. 766 * Thus the number queued (nr_queued) plus this request (1) 767 * must match the number of pending IOs (nr_pending) before 768 * we continue. 769 */ 770 spin_lock_irq(&conf->resync_lock); 771 conf->barrier++; 772 conf->nr_waiting++; 773 wait_event_lock_irq(conf->wait_barrier, 774 conf->nr_pending == conf->nr_queued+1, 775 conf->resync_lock, 776 ({ flush_pending_writes(conf); 777 raid10_unplug(conf->mddev->queue); })); 778 spin_unlock_irq(&conf->resync_lock); 779 } 780 781 static void unfreeze_array(conf_t *conf) 782 { 783 /* reverse the effect of the freeze */ 784 spin_lock_irq(&conf->resync_lock); 785 conf->barrier--; 786 conf->nr_waiting--; 787 wake_up(&conf->wait_barrier); 788 spin_unlock_irq(&conf->resync_lock); 789 } 790 791 static int make_request(struct request_queue *q, struct bio * bio) 792 { 793 mddev_t *mddev = q->queuedata; 794 conf_t *conf = mddev->private; 795 mirror_info_t *mirror; 796 r10bio_t *r10_bio; 797 struct bio *read_bio; 798 int cpu; 799 int i; 800 int chunk_sects = conf->chunk_mask + 1; 801 const int rw = bio_data_dir(bio); 802 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 803 struct bio_list bl; 804 unsigned long flags; 805 mdk_rdev_t *blocked_rdev; 806 807 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { 808 md_barrier_request(mddev, bio); 809 return 0; 810 } 811 812 /* If this request crosses a chunk boundary, we need to 813 * split it. This will only happen for 1 PAGE (or less) requests. 814 */ 815 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 816 > chunk_sects && 817 conf->near_copies < conf->raid_disks)) { 818 struct bio_pair *bp; 819 /* Sanity check -- queue functions should prevent this happening */ 820 if (bio->bi_vcnt != 1 || 821 bio->bi_idx != 0) 822 goto bad_map; 823 /* This is a one page bio that upper layers 824 * refuse to split for us, so we need to split it. 825 */ 826 bp = bio_split(bio, 827 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 828 if (make_request(q, &bp->bio1)) 829 generic_make_request(&bp->bio1); 830 if (make_request(q, &bp->bio2)) 831 generic_make_request(&bp->bio2); 832 833 bio_pair_release(bp); 834 return 0; 835 bad_map: 836 printk("raid10_make_request bug: can't convert block across chunks" 837 " or bigger than %dk %llu %d\n", chunk_sects/2, 838 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 839 840 bio_io_error(bio); 841 return 0; 842 } 843 844 md_write_start(mddev, bio); 845 846 /* 847 * Register the new request and wait if the reconstruction 848 * thread has put up a bar for new requests. 849 * Continue immediately if no resync is active currently. 850 */ 851 wait_barrier(conf); 852 853 cpu = part_stat_lock(); 854 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 855 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 856 bio_sectors(bio)); 857 part_stat_unlock(); 858 859 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 860 861 r10_bio->master_bio = bio; 862 r10_bio->sectors = bio->bi_size >> 9; 863 864 r10_bio->mddev = mddev; 865 r10_bio->sector = bio->bi_sector; 866 r10_bio->state = 0; 867 868 if (rw == READ) { 869 /* 870 * read balancing logic: 871 */ 872 int disk = read_balance(conf, r10_bio); 873 int slot = r10_bio->read_slot; 874 if (disk < 0) { 875 raid_end_bio_io(r10_bio); 876 return 0; 877 } 878 mirror = conf->mirrors + disk; 879 880 read_bio = bio_clone(bio, GFP_NOIO); 881 882 r10_bio->devs[slot].bio = read_bio; 883 884 read_bio->bi_sector = r10_bio->devs[slot].addr + 885 mirror->rdev->data_offset; 886 read_bio->bi_bdev = mirror->rdev->bdev; 887 read_bio->bi_end_io = raid10_end_read_request; 888 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 889 read_bio->bi_private = r10_bio; 890 891 generic_make_request(read_bio); 892 return 0; 893 } 894 895 /* 896 * WRITE: 897 */ 898 /* first select target devices under rcu_lock and 899 * inc refcount on their rdev. Record them by setting 900 * bios[x] to bio 901 */ 902 raid10_find_phys(conf, r10_bio); 903 retry_write: 904 blocked_rdev = NULL; 905 rcu_read_lock(); 906 for (i = 0; i < conf->copies; i++) { 907 int d = r10_bio->devs[i].devnum; 908 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 909 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 910 atomic_inc(&rdev->nr_pending); 911 blocked_rdev = rdev; 912 break; 913 } 914 if (rdev && !test_bit(Faulty, &rdev->flags)) { 915 atomic_inc(&rdev->nr_pending); 916 r10_bio->devs[i].bio = bio; 917 } else { 918 r10_bio->devs[i].bio = NULL; 919 set_bit(R10BIO_Degraded, &r10_bio->state); 920 } 921 } 922 rcu_read_unlock(); 923 924 if (unlikely(blocked_rdev)) { 925 /* Have to wait for this device to get unblocked, then retry */ 926 int j; 927 int d; 928 929 for (j = 0; j < i; j++) 930 if (r10_bio->devs[j].bio) { 931 d = r10_bio->devs[j].devnum; 932 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 933 } 934 allow_barrier(conf); 935 md_wait_for_blocked_rdev(blocked_rdev, mddev); 936 wait_barrier(conf); 937 goto retry_write; 938 } 939 940 atomic_set(&r10_bio->remaining, 0); 941 942 bio_list_init(&bl); 943 for (i = 0; i < conf->copies; i++) { 944 struct bio *mbio; 945 int d = r10_bio->devs[i].devnum; 946 if (!r10_bio->devs[i].bio) 947 continue; 948 949 mbio = bio_clone(bio, GFP_NOIO); 950 r10_bio->devs[i].bio = mbio; 951 952 mbio->bi_sector = r10_bio->devs[i].addr+ 953 conf->mirrors[d].rdev->data_offset; 954 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 955 mbio->bi_end_io = raid10_end_write_request; 956 mbio->bi_rw = WRITE | (do_sync << BIO_RW_SYNCIO); 957 mbio->bi_private = r10_bio; 958 959 atomic_inc(&r10_bio->remaining); 960 bio_list_add(&bl, mbio); 961 } 962 963 if (unlikely(!atomic_read(&r10_bio->remaining))) { 964 /* the array is dead */ 965 md_write_end(mddev); 966 raid_end_bio_io(r10_bio); 967 return 0; 968 } 969 970 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 971 spin_lock_irqsave(&conf->device_lock, flags); 972 bio_list_merge(&conf->pending_bio_list, &bl); 973 blk_plug_device(mddev->queue); 974 spin_unlock_irqrestore(&conf->device_lock, flags); 975 976 /* In case raid10d snuck in to freeze_array */ 977 wake_up(&conf->wait_barrier); 978 979 if (do_sync) 980 md_wakeup_thread(mddev->thread); 981 982 return 0; 983 } 984 985 static void status(struct seq_file *seq, mddev_t *mddev) 986 { 987 conf_t *conf = mddev->private; 988 int i; 989 990 if (conf->near_copies < conf->raid_disks) 991 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 992 if (conf->near_copies > 1) 993 seq_printf(seq, " %d near-copies", conf->near_copies); 994 if (conf->far_copies > 1) { 995 if (conf->far_offset) 996 seq_printf(seq, " %d offset-copies", conf->far_copies); 997 else 998 seq_printf(seq, " %d far-copies", conf->far_copies); 999 } 1000 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1001 conf->raid_disks - mddev->degraded); 1002 for (i = 0; i < conf->raid_disks; i++) 1003 seq_printf(seq, "%s", 1004 conf->mirrors[i].rdev && 1005 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1006 seq_printf(seq, "]"); 1007 } 1008 1009 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1010 { 1011 char b[BDEVNAME_SIZE]; 1012 conf_t *conf = mddev->private; 1013 1014 /* 1015 * If it is not operational, then we have already marked it as dead 1016 * else if it is the last working disks, ignore the error, let the 1017 * next level up know. 1018 * else mark the drive as failed 1019 */ 1020 if (test_bit(In_sync, &rdev->flags) 1021 && conf->raid_disks-mddev->degraded == 1) 1022 /* 1023 * Don't fail the drive, just return an IO error. 1024 * The test should really be more sophisticated than 1025 * "working_disks == 1", but it isn't critical, and 1026 * can wait until we do more sophisticated "is the drive 1027 * really dead" tests... 1028 */ 1029 return; 1030 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1031 unsigned long flags; 1032 spin_lock_irqsave(&conf->device_lock, flags); 1033 mddev->degraded++; 1034 spin_unlock_irqrestore(&conf->device_lock, flags); 1035 /* 1036 * if recovery is running, make sure it aborts. 1037 */ 1038 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1039 } 1040 set_bit(Faulty, &rdev->flags); 1041 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1042 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n" 1043 "raid10: Operation continuing on %d devices.\n", 1044 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1045 } 1046 1047 static void print_conf(conf_t *conf) 1048 { 1049 int i; 1050 mirror_info_t *tmp; 1051 1052 printk("RAID10 conf printout:\n"); 1053 if (!conf) { 1054 printk("(!conf)\n"); 1055 return; 1056 } 1057 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1058 conf->raid_disks); 1059 1060 for (i = 0; i < conf->raid_disks; i++) { 1061 char b[BDEVNAME_SIZE]; 1062 tmp = conf->mirrors + i; 1063 if (tmp->rdev) 1064 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1065 i, !test_bit(In_sync, &tmp->rdev->flags), 1066 !test_bit(Faulty, &tmp->rdev->flags), 1067 bdevname(tmp->rdev->bdev,b)); 1068 } 1069 } 1070 1071 static void close_sync(conf_t *conf) 1072 { 1073 wait_barrier(conf); 1074 allow_barrier(conf); 1075 1076 mempool_destroy(conf->r10buf_pool); 1077 conf->r10buf_pool = NULL; 1078 } 1079 1080 /* check if there are enough drives for 1081 * every block to appear on atleast one 1082 */ 1083 static int enough(conf_t *conf) 1084 { 1085 int first = 0; 1086 1087 do { 1088 int n = conf->copies; 1089 int cnt = 0; 1090 while (n--) { 1091 if (conf->mirrors[first].rdev) 1092 cnt++; 1093 first = (first+1) % conf->raid_disks; 1094 } 1095 if (cnt == 0) 1096 return 0; 1097 } while (first != 0); 1098 return 1; 1099 } 1100 1101 static int raid10_spare_active(mddev_t *mddev) 1102 { 1103 int i; 1104 conf_t *conf = mddev->private; 1105 mirror_info_t *tmp; 1106 1107 /* 1108 * Find all non-in_sync disks within the RAID10 configuration 1109 * and mark them in_sync 1110 */ 1111 for (i = 0; i < conf->raid_disks; i++) { 1112 tmp = conf->mirrors + i; 1113 if (tmp->rdev 1114 && !test_bit(Faulty, &tmp->rdev->flags) 1115 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1116 unsigned long flags; 1117 spin_lock_irqsave(&conf->device_lock, flags); 1118 mddev->degraded--; 1119 spin_unlock_irqrestore(&conf->device_lock, flags); 1120 } 1121 } 1122 1123 print_conf(conf); 1124 return 0; 1125 } 1126 1127 1128 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1129 { 1130 conf_t *conf = mddev->private; 1131 int err = -EEXIST; 1132 int mirror; 1133 mirror_info_t *p; 1134 int first = 0; 1135 int last = mddev->raid_disks - 1; 1136 1137 if (mddev->recovery_cp < MaxSector) 1138 /* only hot-add to in-sync arrays, as recovery is 1139 * very different from resync 1140 */ 1141 return -EBUSY; 1142 if (!enough(conf)) 1143 return -EINVAL; 1144 1145 if (rdev->raid_disk >= 0) 1146 first = last = rdev->raid_disk; 1147 1148 if (rdev->saved_raid_disk >= 0 && 1149 rdev->saved_raid_disk >= first && 1150 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1151 mirror = rdev->saved_raid_disk; 1152 else 1153 mirror = first; 1154 for ( ; mirror <= last ; mirror++) 1155 if ( !(p=conf->mirrors+mirror)->rdev) { 1156 1157 disk_stack_limits(mddev->gendisk, rdev->bdev, 1158 rdev->data_offset << 9); 1159 /* as we don't honour merge_bvec_fn, we must 1160 * never risk violating it, so limit 1161 * ->max_segments to one lying with a single 1162 * page, as a one page request is never in 1163 * violation. 1164 */ 1165 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1166 blk_queue_max_segments(mddev->queue, 1); 1167 blk_queue_segment_boundary(mddev->queue, 1168 PAGE_CACHE_SIZE - 1); 1169 } 1170 1171 p->head_position = 0; 1172 rdev->raid_disk = mirror; 1173 err = 0; 1174 if (rdev->saved_raid_disk != mirror) 1175 conf->fullsync = 1; 1176 rcu_assign_pointer(p->rdev, rdev); 1177 break; 1178 } 1179 1180 md_integrity_add_rdev(rdev, mddev); 1181 print_conf(conf); 1182 return err; 1183 } 1184 1185 static int raid10_remove_disk(mddev_t *mddev, int number) 1186 { 1187 conf_t *conf = mddev->private; 1188 int err = 0; 1189 mdk_rdev_t *rdev; 1190 mirror_info_t *p = conf->mirrors+ number; 1191 1192 print_conf(conf); 1193 rdev = p->rdev; 1194 if (rdev) { 1195 if (test_bit(In_sync, &rdev->flags) || 1196 atomic_read(&rdev->nr_pending)) { 1197 err = -EBUSY; 1198 goto abort; 1199 } 1200 /* Only remove faulty devices in recovery 1201 * is not possible. 1202 */ 1203 if (!test_bit(Faulty, &rdev->flags) && 1204 enough(conf)) { 1205 err = -EBUSY; 1206 goto abort; 1207 } 1208 p->rdev = NULL; 1209 synchronize_rcu(); 1210 if (atomic_read(&rdev->nr_pending)) { 1211 /* lost the race, try later */ 1212 err = -EBUSY; 1213 p->rdev = rdev; 1214 goto abort; 1215 } 1216 md_integrity_register(mddev); 1217 } 1218 abort: 1219 1220 print_conf(conf); 1221 return err; 1222 } 1223 1224 1225 static void end_sync_read(struct bio *bio, int error) 1226 { 1227 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1228 conf_t *conf = r10_bio->mddev->private; 1229 int i,d; 1230 1231 for (i=0; i<conf->copies; i++) 1232 if (r10_bio->devs[i].bio == bio) 1233 break; 1234 BUG_ON(i == conf->copies); 1235 update_head_pos(i, r10_bio); 1236 d = r10_bio->devs[i].devnum; 1237 1238 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1239 set_bit(R10BIO_Uptodate, &r10_bio->state); 1240 else { 1241 atomic_add(r10_bio->sectors, 1242 &conf->mirrors[d].rdev->corrected_errors); 1243 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1244 md_error(r10_bio->mddev, 1245 conf->mirrors[d].rdev); 1246 } 1247 1248 /* for reconstruct, we always reschedule after a read. 1249 * for resync, only after all reads 1250 */ 1251 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1252 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1253 atomic_dec_and_test(&r10_bio->remaining)) { 1254 /* we have read all the blocks, 1255 * do the comparison in process context in raid10d 1256 */ 1257 reschedule_retry(r10_bio); 1258 } 1259 } 1260 1261 static void end_sync_write(struct bio *bio, int error) 1262 { 1263 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1264 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1265 mddev_t *mddev = r10_bio->mddev; 1266 conf_t *conf = mddev->private; 1267 int i,d; 1268 1269 for (i = 0; i < conf->copies; i++) 1270 if (r10_bio->devs[i].bio == bio) 1271 break; 1272 d = r10_bio->devs[i].devnum; 1273 1274 if (!uptodate) 1275 md_error(mddev, conf->mirrors[d].rdev); 1276 1277 update_head_pos(i, r10_bio); 1278 1279 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1280 while (atomic_dec_and_test(&r10_bio->remaining)) { 1281 if (r10_bio->master_bio == NULL) { 1282 /* the primary of several recovery bios */ 1283 sector_t s = r10_bio->sectors; 1284 put_buf(r10_bio); 1285 md_done_sync(mddev, s, 1); 1286 break; 1287 } else { 1288 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1289 put_buf(r10_bio); 1290 r10_bio = r10_bio2; 1291 } 1292 } 1293 } 1294 1295 /* 1296 * Note: sync and recover and handled very differently for raid10 1297 * This code is for resync. 1298 * For resync, we read through virtual addresses and read all blocks. 1299 * If there is any error, we schedule a write. The lowest numbered 1300 * drive is authoritative. 1301 * However requests come for physical address, so we need to map. 1302 * For every physical address there are raid_disks/copies virtual addresses, 1303 * which is always are least one, but is not necessarly an integer. 1304 * This means that a physical address can span multiple chunks, so we may 1305 * have to submit multiple io requests for a single sync request. 1306 */ 1307 /* 1308 * We check if all blocks are in-sync and only write to blocks that 1309 * aren't in sync 1310 */ 1311 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1312 { 1313 conf_t *conf = mddev->private; 1314 int i, first; 1315 struct bio *tbio, *fbio; 1316 1317 atomic_set(&r10_bio->remaining, 1); 1318 1319 /* find the first device with a block */ 1320 for (i=0; i<conf->copies; i++) 1321 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1322 break; 1323 1324 if (i == conf->copies) 1325 goto done; 1326 1327 first = i; 1328 fbio = r10_bio->devs[i].bio; 1329 1330 /* now find blocks with errors */ 1331 for (i=0 ; i < conf->copies ; i++) { 1332 int j, d; 1333 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1334 1335 tbio = r10_bio->devs[i].bio; 1336 1337 if (tbio->bi_end_io != end_sync_read) 1338 continue; 1339 if (i == first) 1340 continue; 1341 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1342 /* We know that the bi_io_vec layout is the same for 1343 * both 'first' and 'i', so we just compare them. 1344 * All vec entries are PAGE_SIZE; 1345 */ 1346 for (j = 0; j < vcnt; j++) 1347 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1348 page_address(tbio->bi_io_vec[j].bv_page), 1349 PAGE_SIZE)) 1350 break; 1351 if (j == vcnt) 1352 continue; 1353 mddev->resync_mismatches += r10_bio->sectors; 1354 } 1355 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1356 /* Don't fix anything. */ 1357 continue; 1358 /* Ok, we need to write this bio 1359 * First we need to fixup bv_offset, bv_len and 1360 * bi_vecs, as the read request might have corrupted these 1361 */ 1362 tbio->bi_vcnt = vcnt; 1363 tbio->bi_size = r10_bio->sectors << 9; 1364 tbio->bi_idx = 0; 1365 tbio->bi_phys_segments = 0; 1366 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1367 tbio->bi_flags |= 1 << BIO_UPTODATE; 1368 tbio->bi_next = NULL; 1369 tbio->bi_rw = WRITE; 1370 tbio->bi_private = r10_bio; 1371 tbio->bi_sector = r10_bio->devs[i].addr; 1372 1373 for (j=0; j < vcnt ; j++) { 1374 tbio->bi_io_vec[j].bv_offset = 0; 1375 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1376 1377 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1378 page_address(fbio->bi_io_vec[j].bv_page), 1379 PAGE_SIZE); 1380 } 1381 tbio->bi_end_io = end_sync_write; 1382 1383 d = r10_bio->devs[i].devnum; 1384 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1385 atomic_inc(&r10_bio->remaining); 1386 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1387 1388 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1389 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1390 generic_make_request(tbio); 1391 } 1392 1393 done: 1394 if (atomic_dec_and_test(&r10_bio->remaining)) { 1395 md_done_sync(mddev, r10_bio->sectors, 1); 1396 put_buf(r10_bio); 1397 } 1398 } 1399 1400 /* 1401 * Now for the recovery code. 1402 * Recovery happens across physical sectors. 1403 * We recover all non-is_sync drives by finding the virtual address of 1404 * each, and then choose a working drive that also has that virt address. 1405 * There is a separate r10_bio for each non-in_sync drive. 1406 * Only the first two slots are in use. The first for reading, 1407 * The second for writing. 1408 * 1409 */ 1410 1411 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1412 { 1413 conf_t *conf = mddev->private; 1414 int i, d; 1415 struct bio *bio, *wbio; 1416 1417 1418 /* move the pages across to the second bio 1419 * and submit the write request 1420 */ 1421 bio = r10_bio->devs[0].bio; 1422 wbio = r10_bio->devs[1].bio; 1423 for (i=0; i < wbio->bi_vcnt; i++) { 1424 struct page *p = bio->bi_io_vec[i].bv_page; 1425 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1426 wbio->bi_io_vec[i].bv_page = p; 1427 } 1428 d = r10_bio->devs[1].devnum; 1429 1430 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1431 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1432 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1433 generic_make_request(wbio); 1434 else 1435 bio_endio(wbio, -EIO); 1436 } 1437 1438 1439 /* 1440 * Used by fix_read_error() to decay the per rdev read_errors. 1441 * We halve the read error count for every hour that has elapsed 1442 * since the last recorded read error. 1443 * 1444 */ 1445 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev) 1446 { 1447 struct timespec cur_time_mon; 1448 unsigned long hours_since_last; 1449 unsigned int read_errors = atomic_read(&rdev->read_errors); 1450 1451 ktime_get_ts(&cur_time_mon); 1452 1453 if (rdev->last_read_error.tv_sec == 0 && 1454 rdev->last_read_error.tv_nsec == 0) { 1455 /* first time we've seen a read error */ 1456 rdev->last_read_error = cur_time_mon; 1457 return; 1458 } 1459 1460 hours_since_last = (cur_time_mon.tv_sec - 1461 rdev->last_read_error.tv_sec) / 3600; 1462 1463 rdev->last_read_error = cur_time_mon; 1464 1465 /* 1466 * if hours_since_last is > the number of bits in read_errors 1467 * just set read errors to 0. We do this to avoid 1468 * overflowing the shift of read_errors by hours_since_last. 1469 */ 1470 if (hours_since_last >= 8 * sizeof(read_errors)) 1471 atomic_set(&rdev->read_errors, 0); 1472 else 1473 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 1474 } 1475 1476 /* 1477 * This is a kernel thread which: 1478 * 1479 * 1. Retries failed read operations on working mirrors. 1480 * 2. Updates the raid superblock when problems encounter. 1481 * 3. Performs writes following reads for array synchronising. 1482 */ 1483 1484 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1485 { 1486 int sect = 0; /* Offset from r10_bio->sector */ 1487 int sectors = r10_bio->sectors; 1488 mdk_rdev_t*rdev; 1489 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 1490 1491 rcu_read_lock(); 1492 { 1493 int d = r10_bio->devs[r10_bio->read_slot].devnum; 1494 char b[BDEVNAME_SIZE]; 1495 int cur_read_error_count = 0; 1496 1497 rdev = rcu_dereference(conf->mirrors[d].rdev); 1498 bdevname(rdev->bdev, b); 1499 1500 if (test_bit(Faulty, &rdev->flags)) { 1501 rcu_read_unlock(); 1502 /* drive has already been failed, just ignore any 1503 more fix_read_error() attempts */ 1504 return; 1505 } 1506 1507 check_decay_read_errors(mddev, rdev); 1508 atomic_inc(&rdev->read_errors); 1509 cur_read_error_count = atomic_read(&rdev->read_errors); 1510 if (cur_read_error_count > max_read_errors) { 1511 rcu_read_unlock(); 1512 printk(KERN_NOTICE 1513 "raid10: %s: Raid device exceeded " 1514 "read_error threshold " 1515 "[cur %d:max %d]\n", 1516 b, cur_read_error_count, max_read_errors); 1517 printk(KERN_NOTICE 1518 "raid10: %s: Failing raid " 1519 "device\n", b); 1520 md_error(mddev, conf->mirrors[d].rdev); 1521 return; 1522 } 1523 } 1524 rcu_read_unlock(); 1525 1526 while(sectors) { 1527 int s = sectors; 1528 int sl = r10_bio->read_slot; 1529 int success = 0; 1530 int start; 1531 1532 if (s > (PAGE_SIZE>>9)) 1533 s = PAGE_SIZE >> 9; 1534 1535 rcu_read_lock(); 1536 do { 1537 int d = r10_bio->devs[sl].devnum; 1538 rdev = rcu_dereference(conf->mirrors[d].rdev); 1539 if (rdev && 1540 test_bit(In_sync, &rdev->flags)) { 1541 atomic_inc(&rdev->nr_pending); 1542 rcu_read_unlock(); 1543 success = sync_page_io(rdev->bdev, 1544 r10_bio->devs[sl].addr + 1545 sect + rdev->data_offset, 1546 s<<9, 1547 conf->tmppage, READ); 1548 rdev_dec_pending(rdev, mddev); 1549 rcu_read_lock(); 1550 if (success) 1551 break; 1552 } 1553 sl++; 1554 if (sl == conf->copies) 1555 sl = 0; 1556 } while (!success && sl != r10_bio->read_slot); 1557 rcu_read_unlock(); 1558 1559 if (!success) { 1560 /* Cannot read from anywhere -- bye bye array */ 1561 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1562 md_error(mddev, conf->mirrors[dn].rdev); 1563 break; 1564 } 1565 1566 start = sl; 1567 /* write it back and re-read */ 1568 rcu_read_lock(); 1569 while (sl != r10_bio->read_slot) { 1570 char b[BDEVNAME_SIZE]; 1571 int d; 1572 if (sl==0) 1573 sl = conf->copies; 1574 sl--; 1575 d = r10_bio->devs[sl].devnum; 1576 rdev = rcu_dereference(conf->mirrors[d].rdev); 1577 if (rdev && 1578 test_bit(In_sync, &rdev->flags)) { 1579 atomic_inc(&rdev->nr_pending); 1580 rcu_read_unlock(); 1581 atomic_add(s, &rdev->corrected_errors); 1582 if (sync_page_io(rdev->bdev, 1583 r10_bio->devs[sl].addr + 1584 sect + rdev->data_offset, 1585 s<<9, conf->tmppage, WRITE) 1586 == 0) { 1587 /* Well, this device is dead */ 1588 printk(KERN_NOTICE 1589 "raid10:%s: read correction " 1590 "write failed" 1591 " (%d sectors at %llu on %s)\n", 1592 mdname(mddev), s, 1593 (unsigned long long)(sect+ 1594 rdev->data_offset), 1595 bdevname(rdev->bdev, b)); 1596 printk(KERN_NOTICE "raid10:%s: failing " 1597 "drive\n", 1598 bdevname(rdev->bdev, b)); 1599 md_error(mddev, rdev); 1600 } 1601 rdev_dec_pending(rdev, mddev); 1602 rcu_read_lock(); 1603 } 1604 } 1605 sl = start; 1606 while (sl != r10_bio->read_slot) { 1607 int d; 1608 if (sl==0) 1609 sl = conf->copies; 1610 sl--; 1611 d = r10_bio->devs[sl].devnum; 1612 rdev = rcu_dereference(conf->mirrors[d].rdev); 1613 if (rdev && 1614 test_bit(In_sync, &rdev->flags)) { 1615 char b[BDEVNAME_SIZE]; 1616 atomic_inc(&rdev->nr_pending); 1617 rcu_read_unlock(); 1618 if (sync_page_io(rdev->bdev, 1619 r10_bio->devs[sl].addr + 1620 sect + rdev->data_offset, 1621 s<<9, conf->tmppage, 1622 READ) == 0) { 1623 /* Well, this device is dead */ 1624 printk(KERN_NOTICE 1625 "raid10:%s: unable to read back " 1626 "corrected sectors" 1627 " (%d sectors at %llu on %s)\n", 1628 mdname(mddev), s, 1629 (unsigned long long)(sect+ 1630 rdev->data_offset), 1631 bdevname(rdev->bdev, b)); 1632 printk(KERN_NOTICE "raid10:%s: failing drive\n", 1633 bdevname(rdev->bdev, b)); 1634 1635 md_error(mddev, rdev); 1636 } else { 1637 printk(KERN_INFO 1638 "raid10:%s: read error corrected" 1639 " (%d sectors at %llu on %s)\n", 1640 mdname(mddev), s, 1641 (unsigned long long)(sect+ 1642 rdev->data_offset), 1643 bdevname(rdev->bdev, b)); 1644 } 1645 1646 rdev_dec_pending(rdev, mddev); 1647 rcu_read_lock(); 1648 } 1649 } 1650 rcu_read_unlock(); 1651 1652 sectors -= s; 1653 sect += s; 1654 } 1655 } 1656 1657 static void raid10d(mddev_t *mddev) 1658 { 1659 r10bio_t *r10_bio; 1660 struct bio *bio; 1661 unsigned long flags; 1662 conf_t *conf = mddev->private; 1663 struct list_head *head = &conf->retry_list; 1664 int unplug=0; 1665 mdk_rdev_t *rdev; 1666 1667 md_check_recovery(mddev); 1668 1669 for (;;) { 1670 char b[BDEVNAME_SIZE]; 1671 1672 unplug += flush_pending_writes(conf); 1673 1674 spin_lock_irqsave(&conf->device_lock, flags); 1675 if (list_empty(head)) { 1676 spin_unlock_irqrestore(&conf->device_lock, flags); 1677 break; 1678 } 1679 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1680 list_del(head->prev); 1681 conf->nr_queued--; 1682 spin_unlock_irqrestore(&conf->device_lock, flags); 1683 1684 mddev = r10_bio->mddev; 1685 conf = mddev->private; 1686 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1687 sync_request_write(mddev, r10_bio); 1688 unplug = 1; 1689 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1690 recovery_request_write(mddev, r10_bio); 1691 unplug = 1; 1692 } else { 1693 int mirror; 1694 /* we got a read error. Maybe the drive is bad. Maybe just 1695 * the block and we can fix it. 1696 * We freeze all other IO, and try reading the block from 1697 * other devices. When we find one, we re-write 1698 * and check it that fixes the read error. 1699 * This is all done synchronously while the array is 1700 * frozen. 1701 */ 1702 if (mddev->ro == 0) { 1703 freeze_array(conf); 1704 fix_read_error(conf, mddev, r10_bio); 1705 unfreeze_array(conf); 1706 } 1707 1708 bio = r10_bio->devs[r10_bio->read_slot].bio; 1709 r10_bio->devs[r10_bio->read_slot].bio = 1710 mddev->ro ? IO_BLOCKED : NULL; 1711 mirror = read_balance(conf, r10_bio); 1712 if (mirror == -1) { 1713 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1714 " read error for block %llu\n", 1715 bdevname(bio->bi_bdev,b), 1716 (unsigned long long)r10_bio->sector); 1717 raid_end_bio_io(r10_bio); 1718 bio_put(bio); 1719 } else { 1720 const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO); 1721 bio_put(bio); 1722 rdev = conf->mirrors[mirror].rdev; 1723 if (printk_ratelimit()) 1724 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1725 " another mirror\n", 1726 bdevname(rdev->bdev,b), 1727 (unsigned long long)r10_bio->sector); 1728 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1729 r10_bio->devs[r10_bio->read_slot].bio = bio; 1730 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1731 + rdev->data_offset; 1732 bio->bi_bdev = rdev->bdev; 1733 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 1734 bio->bi_private = r10_bio; 1735 bio->bi_end_io = raid10_end_read_request; 1736 unplug = 1; 1737 generic_make_request(bio); 1738 } 1739 } 1740 cond_resched(); 1741 } 1742 if (unplug) 1743 unplug_slaves(mddev); 1744 } 1745 1746 1747 static int init_resync(conf_t *conf) 1748 { 1749 int buffs; 1750 1751 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1752 BUG_ON(conf->r10buf_pool); 1753 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1754 if (!conf->r10buf_pool) 1755 return -ENOMEM; 1756 conf->next_resync = 0; 1757 return 0; 1758 } 1759 1760 /* 1761 * perform a "sync" on one "block" 1762 * 1763 * We need to make sure that no normal I/O request - particularly write 1764 * requests - conflict with active sync requests. 1765 * 1766 * This is achieved by tracking pending requests and a 'barrier' concept 1767 * that can be installed to exclude normal IO requests. 1768 * 1769 * Resync and recovery are handled very differently. 1770 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1771 * 1772 * For resync, we iterate over virtual addresses, read all copies, 1773 * and update if there are differences. If only one copy is live, 1774 * skip it. 1775 * For recovery, we iterate over physical addresses, read a good 1776 * value for each non-in_sync drive, and over-write. 1777 * 1778 * So, for recovery we may have several outstanding complex requests for a 1779 * given address, one for each out-of-sync device. We model this by allocating 1780 * a number of r10_bio structures, one for each out-of-sync device. 1781 * As we setup these structures, we collect all bio's together into a list 1782 * which we then process collectively to add pages, and then process again 1783 * to pass to generic_make_request. 1784 * 1785 * The r10_bio structures are linked using a borrowed master_bio pointer. 1786 * This link is counted in ->remaining. When the r10_bio that points to NULL 1787 * has its remaining count decremented to 0, the whole complex operation 1788 * is complete. 1789 * 1790 */ 1791 1792 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1793 { 1794 conf_t *conf = mddev->private; 1795 r10bio_t *r10_bio; 1796 struct bio *biolist = NULL, *bio; 1797 sector_t max_sector, nr_sectors; 1798 int disk; 1799 int i; 1800 int max_sync; 1801 int sync_blocks; 1802 1803 sector_t sectors_skipped = 0; 1804 int chunks_skipped = 0; 1805 1806 if (!conf->r10buf_pool) 1807 if (init_resync(conf)) 1808 return 0; 1809 1810 skipped: 1811 max_sector = mddev->dev_sectors; 1812 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1813 max_sector = mddev->resync_max_sectors; 1814 if (sector_nr >= max_sector) { 1815 /* If we aborted, we need to abort the 1816 * sync on the 'current' bitmap chucks (there can 1817 * be several when recovering multiple devices). 1818 * as we may have started syncing it but not finished. 1819 * We can find the current address in 1820 * mddev->curr_resync, but for recovery, 1821 * we need to convert that to several 1822 * virtual addresses. 1823 */ 1824 if (mddev->curr_resync < max_sector) { /* aborted */ 1825 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1826 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1827 &sync_blocks, 1); 1828 else for (i=0; i<conf->raid_disks; i++) { 1829 sector_t sect = 1830 raid10_find_virt(conf, mddev->curr_resync, i); 1831 bitmap_end_sync(mddev->bitmap, sect, 1832 &sync_blocks, 1); 1833 } 1834 } else /* completed sync */ 1835 conf->fullsync = 0; 1836 1837 bitmap_close_sync(mddev->bitmap); 1838 close_sync(conf); 1839 *skipped = 1; 1840 return sectors_skipped; 1841 } 1842 if (chunks_skipped >= conf->raid_disks) { 1843 /* if there has been nothing to do on any drive, 1844 * then there is nothing to do at all.. 1845 */ 1846 *skipped = 1; 1847 return (max_sector - sector_nr) + sectors_skipped; 1848 } 1849 1850 if (max_sector > mddev->resync_max) 1851 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1852 1853 /* make sure whole request will fit in a chunk - if chunks 1854 * are meaningful 1855 */ 1856 if (conf->near_copies < conf->raid_disks && 1857 max_sector > (sector_nr | conf->chunk_mask)) 1858 max_sector = (sector_nr | conf->chunk_mask) + 1; 1859 /* 1860 * If there is non-resync activity waiting for us then 1861 * put in a delay to throttle resync. 1862 */ 1863 if (!go_faster && conf->nr_waiting) 1864 msleep_interruptible(1000); 1865 1866 /* Again, very different code for resync and recovery. 1867 * Both must result in an r10bio with a list of bios that 1868 * have bi_end_io, bi_sector, bi_bdev set, 1869 * and bi_private set to the r10bio. 1870 * For recovery, we may actually create several r10bios 1871 * with 2 bios in each, that correspond to the bios in the main one. 1872 * In this case, the subordinate r10bios link back through a 1873 * borrowed master_bio pointer, and the counter in the master 1874 * includes a ref from each subordinate. 1875 */ 1876 /* First, we decide what to do and set ->bi_end_io 1877 * To end_sync_read if we want to read, and 1878 * end_sync_write if we will want to write. 1879 */ 1880 1881 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1882 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1883 /* recovery... the complicated one */ 1884 int j, k; 1885 r10_bio = NULL; 1886 1887 for (i=0 ; i<conf->raid_disks; i++) 1888 if (conf->mirrors[i].rdev && 1889 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1890 int still_degraded = 0; 1891 /* want to reconstruct this device */ 1892 r10bio_t *rb2 = r10_bio; 1893 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1894 int must_sync; 1895 /* Unless we are doing a full sync, we only need 1896 * to recover the block if it is set in the bitmap 1897 */ 1898 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1899 &sync_blocks, 1); 1900 if (sync_blocks < max_sync) 1901 max_sync = sync_blocks; 1902 if (!must_sync && 1903 !conf->fullsync) { 1904 /* yep, skip the sync_blocks here, but don't assume 1905 * that there will never be anything to do here 1906 */ 1907 chunks_skipped = -1; 1908 continue; 1909 } 1910 1911 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1912 raise_barrier(conf, rb2 != NULL); 1913 atomic_set(&r10_bio->remaining, 0); 1914 1915 r10_bio->master_bio = (struct bio*)rb2; 1916 if (rb2) 1917 atomic_inc(&rb2->remaining); 1918 r10_bio->mddev = mddev; 1919 set_bit(R10BIO_IsRecover, &r10_bio->state); 1920 r10_bio->sector = sect; 1921 1922 raid10_find_phys(conf, r10_bio); 1923 1924 /* Need to check if the array will still be 1925 * degraded 1926 */ 1927 for (j=0; j<conf->raid_disks; j++) 1928 if (conf->mirrors[j].rdev == NULL || 1929 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 1930 still_degraded = 1; 1931 break; 1932 } 1933 1934 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1935 &sync_blocks, still_degraded); 1936 1937 for (j=0; j<conf->copies;j++) { 1938 int d = r10_bio->devs[j].devnum; 1939 if (conf->mirrors[d].rdev && 1940 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1941 /* This is where we read from */ 1942 bio = r10_bio->devs[0].bio; 1943 bio->bi_next = biolist; 1944 biolist = bio; 1945 bio->bi_private = r10_bio; 1946 bio->bi_end_io = end_sync_read; 1947 bio->bi_rw = READ; 1948 bio->bi_sector = r10_bio->devs[j].addr + 1949 conf->mirrors[d].rdev->data_offset; 1950 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1951 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1952 atomic_inc(&r10_bio->remaining); 1953 /* and we write to 'i' */ 1954 1955 for (k=0; k<conf->copies; k++) 1956 if (r10_bio->devs[k].devnum == i) 1957 break; 1958 BUG_ON(k == conf->copies); 1959 bio = r10_bio->devs[1].bio; 1960 bio->bi_next = biolist; 1961 biolist = bio; 1962 bio->bi_private = r10_bio; 1963 bio->bi_end_io = end_sync_write; 1964 bio->bi_rw = WRITE; 1965 bio->bi_sector = r10_bio->devs[k].addr + 1966 conf->mirrors[i].rdev->data_offset; 1967 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1968 1969 r10_bio->devs[0].devnum = d; 1970 r10_bio->devs[1].devnum = i; 1971 1972 break; 1973 } 1974 } 1975 if (j == conf->copies) { 1976 /* Cannot recover, so abort the recovery */ 1977 put_buf(r10_bio); 1978 if (rb2) 1979 atomic_dec(&rb2->remaining); 1980 r10_bio = rb2; 1981 if (!test_and_set_bit(MD_RECOVERY_INTR, 1982 &mddev->recovery)) 1983 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1984 mdname(mddev)); 1985 break; 1986 } 1987 } 1988 if (biolist == NULL) { 1989 while (r10_bio) { 1990 r10bio_t *rb2 = r10_bio; 1991 r10_bio = (r10bio_t*) rb2->master_bio; 1992 rb2->master_bio = NULL; 1993 put_buf(rb2); 1994 } 1995 goto giveup; 1996 } 1997 } else { 1998 /* resync. Schedule a read for every block at this virt offset */ 1999 int count = 0; 2000 2001 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2002 2003 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2004 &sync_blocks, mddev->degraded) && 2005 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2006 /* We can skip this block */ 2007 *skipped = 1; 2008 return sync_blocks + sectors_skipped; 2009 } 2010 if (sync_blocks < max_sync) 2011 max_sync = sync_blocks; 2012 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2013 2014 r10_bio->mddev = mddev; 2015 atomic_set(&r10_bio->remaining, 0); 2016 raise_barrier(conf, 0); 2017 conf->next_resync = sector_nr; 2018 2019 r10_bio->master_bio = NULL; 2020 r10_bio->sector = sector_nr; 2021 set_bit(R10BIO_IsSync, &r10_bio->state); 2022 raid10_find_phys(conf, r10_bio); 2023 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 2024 2025 for (i=0; i<conf->copies; i++) { 2026 int d = r10_bio->devs[i].devnum; 2027 bio = r10_bio->devs[i].bio; 2028 bio->bi_end_io = NULL; 2029 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2030 if (conf->mirrors[d].rdev == NULL || 2031 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 2032 continue; 2033 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2034 atomic_inc(&r10_bio->remaining); 2035 bio->bi_next = biolist; 2036 biolist = bio; 2037 bio->bi_private = r10_bio; 2038 bio->bi_end_io = end_sync_read; 2039 bio->bi_rw = READ; 2040 bio->bi_sector = r10_bio->devs[i].addr + 2041 conf->mirrors[d].rdev->data_offset; 2042 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2043 count++; 2044 } 2045 2046 if (count < 2) { 2047 for (i=0; i<conf->copies; i++) { 2048 int d = r10_bio->devs[i].devnum; 2049 if (r10_bio->devs[i].bio->bi_end_io) 2050 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 2051 } 2052 put_buf(r10_bio); 2053 biolist = NULL; 2054 goto giveup; 2055 } 2056 } 2057 2058 for (bio = biolist; bio ; bio=bio->bi_next) { 2059 2060 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 2061 if (bio->bi_end_io) 2062 bio->bi_flags |= 1 << BIO_UPTODATE; 2063 bio->bi_vcnt = 0; 2064 bio->bi_idx = 0; 2065 bio->bi_phys_segments = 0; 2066 bio->bi_size = 0; 2067 } 2068 2069 nr_sectors = 0; 2070 if (sector_nr + max_sync < max_sector) 2071 max_sector = sector_nr + max_sync; 2072 do { 2073 struct page *page; 2074 int len = PAGE_SIZE; 2075 disk = 0; 2076 if (sector_nr + (len>>9) > max_sector) 2077 len = (max_sector - sector_nr) << 9; 2078 if (len == 0) 2079 break; 2080 for (bio= biolist ; bio ; bio=bio->bi_next) { 2081 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2082 if (bio_add_page(bio, page, len, 0) == 0) { 2083 /* stop here */ 2084 struct bio *bio2; 2085 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2086 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 2087 /* remove last page from this bio */ 2088 bio2->bi_vcnt--; 2089 bio2->bi_size -= len; 2090 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 2091 } 2092 goto bio_full; 2093 } 2094 disk = i; 2095 } 2096 nr_sectors += len>>9; 2097 sector_nr += len>>9; 2098 } while (biolist->bi_vcnt < RESYNC_PAGES); 2099 bio_full: 2100 r10_bio->sectors = nr_sectors; 2101 2102 while (biolist) { 2103 bio = biolist; 2104 biolist = biolist->bi_next; 2105 2106 bio->bi_next = NULL; 2107 r10_bio = bio->bi_private; 2108 r10_bio->sectors = nr_sectors; 2109 2110 if (bio->bi_end_io == end_sync_read) { 2111 md_sync_acct(bio->bi_bdev, nr_sectors); 2112 generic_make_request(bio); 2113 } 2114 } 2115 2116 if (sectors_skipped) 2117 /* pretend they weren't skipped, it makes 2118 * no important difference in this case 2119 */ 2120 md_done_sync(mddev, sectors_skipped, 1); 2121 2122 return sectors_skipped + nr_sectors; 2123 giveup: 2124 /* There is nowhere to write, so all non-sync 2125 * drives must be failed, so try the next chunk... 2126 */ 2127 if (sector_nr + max_sync < max_sector) 2128 max_sector = sector_nr + max_sync; 2129 2130 sectors_skipped += (max_sector - sector_nr); 2131 chunks_skipped ++; 2132 sector_nr = max_sector; 2133 goto skipped; 2134 } 2135 2136 static sector_t 2137 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks) 2138 { 2139 sector_t size; 2140 conf_t *conf = mddev->private; 2141 2142 if (!raid_disks) 2143 raid_disks = mddev->raid_disks; 2144 if (!sectors) 2145 sectors = mddev->dev_sectors; 2146 2147 size = sectors >> conf->chunk_shift; 2148 sector_div(size, conf->far_copies); 2149 size = size * raid_disks; 2150 sector_div(size, conf->near_copies); 2151 2152 return size << conf->chunk_shift; 2153 } 2154 2155 static int run(mddev_t *mddev) 2156 { 2157 conf_t *conf; 2158 int i, disk_idx, chunk_size; 2159 mirror_info_t *disk; 2160 mdk_rdev_t *rdev; 2161 int nc, fc, fo; 2162 sector_t stride, size; 2163 2164 if (mddev->chunk_sectors < (PAGE_SIZE >> 9) || 2165 !is_power_of_2(mddev->chunk_sectors)) { 2166 printk(KERN_ERR "md/raid10: chunk size must be " 2167 "at least PAGE_SIZE(%ld) and be a power of 2.\n", PAGE_SIZE); 2168 return -EINVAL; 2169 } 2170 2171 nc = mddev->layout & 255; 2172 fc = (mddev->layout >> 8) & 255; 2173 fo = mddev->layout & (1<<16); 2174 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2175 (mddev->layout >> 17)) { 2176 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 2177 mdname(mddev), mddev->layout); 2178 goto out; 2179 } 2180 /* 2181 * copy the already verified devices into our private RAID10 2182 * bookkeeping area. [whatever we allocate in run(), 2183 * should be freed in stop()] 2184 */ 2185 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2186 mddev->private = conf; 2187 if (!conf) { 2188 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2189 mdname(mddev)); 2190 goto out; 2191 } 2192 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2193 GFP_KERNEL); 2194 if (!conf->mirrors) { 2195 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2196 mdname(mddev)); 2197 goto out_free_conf; 2198 } 2199 2200 conf->tmppage = alloc_page(GFP_KERNEL); 2201 if (!conf->tmppage) 2202 goto out_free_conf; 2203 2204 conf->raid_disks = mddev->raid_disks; 2205 conf->near_copies = nc; 2206 conf->far_copies = fc; 2207 conf->copies = nc*fc; 2208 conf->far_offset = fo; 2209 conf->chunk_mask = mddev->chunk_sectors - 1; 2210 conf->chunk_shift = ffz(~mddev->chunk_sectors); 2211 size = mddev->dev_sectors >> conf->chunk_shift; 2212 sector_div(size, fc); 2213 size = size * conf->raid_disks; 2214 sector_div(size, nc); 2215 /* 'size' is now the number of chunks in the array */ 2216 /* calculate "used chunks per device" in 'stride' */ 2217 stride = size * conf->copies; 2218 2219 /* We need to round up when dividing by raid_disks to 2220 * get the stride size. 2221 */ 2222 stride += conf->raid_disks - 1; 2223 sector_div(stride, conf->raid_disks); 2224 mddev->dev_sectors = stride << conf->chunk_shift; 2225 2226 if (fo) 2227 stride = 1; 2228 else 2229 sector_div(stride, fc); 2230 conf->stride = stride << conf->chunk_shift; 2231 2232 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2233 r10bio_pool_free, conf); 2234 if (!conf->r10bio_pool) { 2235 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2236 mdname(mddev)); 2237 goto out_free_conf; 2238 } 2239 2240 conf->mddev = mddev; 2241 spin_lock_init(&conf->device_lock); 2242 mddev->queue->queue_lock = &conf->device_lock; 2243 2244 chunk_size = mddev->chunk_sectors << 9; 2245 blk_queue_io_min(mddev->queue, chunk_size); 2246 if (conf->raid_disks % conf->near_copies) 2247 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 2248 else 2249 blk_queue_io_opt(mddev->queue, chunk_size * 2250 (conf->raid_disks / conf->near_copies)); 2251 2252 list_for_each_entry(rdev, &mddev->disks, same_set) { 2253 disk_idx = rdev->raid_disk; 2254 if (disk_idx >= mddev->raid_disks 2255 || disk_idx < 0) 2256 continue; 2257 disk = conf->mirrors + disk_idx; 2258 2259 disk->rdev = rdev; 2260 disk_stack_limits(mddev->gendisk, rdev->bdev, 2261 rdev->data_offset << 9); 2262 /* as we don't honour merge_bvec_fn, we must never risk 2263 * violating it, so limit max_segments to 1 lying 2264 * within a single page. 2265 */ 2266 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2267 blk_queue_max_segments(mddev->queue, 1); 2268 blk_queue_segment_boundary(mddev->queue, 2269 PAGE_CACHE_SIZE - 1); 2270 } 2271 2272 disk->head_position = 0; 2273 } 2274 INIT_LIST_HEAD(&conf->retry_list); 2275 2276 spin_lock_init(&conf->resync_lock); 2277 init_waitqueue_head(&conf->wait_barrier); 2278 2279 /* need to check that every block has at least one working mirror */ 2280 if (!enough(conf)) { 2281 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2282 mdname(mddev)); 2283 goto out_free_conf; 2284 } 2285 2286 mddev->degraded = 0; 2287 for (i = 0; i < conf->raid_disks; i++) { 2288 2289 disk = conf->mirrors + i; 2290 2291 if (!disk->rdev || 2292 !test_bit(In_sync, &disk->rdev->flags)) { 2293 disk->head_position = 0; 2294 mddev->degraded++; 2295 if (disk->rdev) 2296 conf->fullsync = 1; 2297 } 2298 } 2299 2300 2301 mddev->thread = md_register_thread(raid10d, mddev, NULL); 2302 if (!mddev->thread) { 2303 printk(KERN_ERR 2304 "raid10: couldn't allocate thread for %s\n", 2305 mdname(mddev)); 2306 goto out_free_conf; 2307 } 2308 2309 if (mddev->recovery_cp != MaxSector) 2310 printk(KERN_NOTICE "raid10: %s is not clean" 2311 " -- starting background reconstruction\n", 2312 mdname(mddev)); 2313 printk(KERN_INFO 2314 "raid10: raid set %s active with %d out of %d devices\n", 2315 mdname(mddev), mddev->raid_disks - mddev->degraded, 2316 mddev->raid_disks); 2317 /* 2318 * Ok, everything is just fine now 2319 */ 2320 md_set_array_sectors(mddev, raid10_size(mddev, 0, 0)); 2321 mddev->resync_max_sectors = raid10_size(mddev, 0, 0); 2322 2323 mddev->queue->unplug_fn = raid10_unplug; 2324 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2325 mddev->queue->backing_dev_info.congested_data = mddev; 2326 2327 /* Calculate max read-ahead size. 2328 * We need to readahead at least twice a whole stripe.... 2329 * maybe... 2330 */ 2331 { 2332 int stripe = conf->raid_disks * 2333 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 2334 stripe /= conf->near_copies; 2335 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2336 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2337 } 2338 2339 if (conf->near_copies < mddev->raid_disks) 2340 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2341 md_integrity_register(mddev); 2342 return 0; 2343 2344 out_free_conf: 2345 if (conf->r10bio_pool) 2346 mempool_destroy(conf->r10bio_pool); 2347 safe_put_page(conf->tmppage); 2348 kfree(conf->mirrors); 2349 kfree(conf); 2350 mddev->private = NULL; 2351 out: 2352 return -EIO; 2353 } 2354 2355 static int stop(mddev_t *mddev) 2356 { 2357 conf_t *conf = mddev->private; 2358 2359 raise_barrier(conf, 0); 2360 lower_barrier(conf); 2361 2362 md_unregister_thread(mddev->thread); 2363 mddev->thread = NULL; 2364 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2365 if (conf->r10bio_pool) 2366 mempool_destroy(conf->r10bio_pool); 2367 kfree(conf->mirrors); 2368 kfree(conf); 2369 mddev->private = NULL; 2370 return 0; 2371 } 2372 2373 static void raid10_quiesce(mddev_t *mddev, int state) 2374 { 2375 conf_t *conf = mddev->private; 2376 2377 switch(state) { 2378 case 1: 2379 raise_barrier(conf, 0); 2380 break; 2381 case 0: 2382 lower_barrier(conf); 2383 break; 2384 } 2385 } 2386 2387 static struct mdk_personality raid10_personality = 2388 { 2389 .name = "raid10", 2390 .level = 10, 2391 .owner = THIS_MODULE, 2392 .make_request = make_request, 2393 .run = run, 2394 .stop = stop, 2395 .status = status, 2396 .error_handler = error, 2397 .hot_add_disk = raid10_add_disk, 2398 .hot_remove_disk= raid10_remove_disk, 2399 .spare_active = raid10_spare_active, 2400 .sync_request = sync_request, 2401 .quiesce = raid10_quiesce, 2402 .size = raid10_size, 2403 }; 2404 2405 static int __init raid_init(void) 2406 { 2407 return register_md_personality(&raid10_personality); 2408 } 2409 2410 static void raid_exit(void) 2411 { 2412 unregister_md_personality(&raid10_personality); 2413 } 2414 2415 module_init(raid_init); 2416 module_exit(raid_exit); 2417 MODULE_LICENSE("GPL"); 2418 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 2419 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2420 MODULE_ALIAS("md-raid10"); 2421 MODULE_ALIAS("md-level-10"); 2422