xref: /linux/drivers/md/raid10.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "bitmap.h"
28 
29 /*
30  * RAID10 provides a combination of RAID0 and RAID1 functionality.
31  * The layout of data is defined by
32  *    chunk_size
33  *    raid_disks
34  *    near_copies (stored in low byte of layout)
35  *    far_copies (stored in second byte of layout)
36  *    far_offset (stored in bit 16 of layout )
37  *
38  * The data to be stored is divided into chunks using chunksize.
39  * Each device is divided into far_copies sections.
40  * In each section, chunks are laid out in a style similar to raid0, but
41  * near_copies copies of each chunk is stored (each on a different drive).
42  * The starting device for each section is offset near_copies from the starting
43  * device of the previous section.
44  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
45  * drive.
46  * near_copies and far_copies must be at least one, and their product is at most
47  * raid_disks.
48  *
49  * If far_offset is true, then the far_copies are handled a bit differently.
50  * The copies are still in different stripes, but instead of be very far apart
51  * on disk, there are adjacent stripes.
52  */
53 
54 /*
55  * Number of guaranteed r10bios in case of extreme VM load:
56  */
57 #define	NR_RAID10_BIOS 256
58 
59 static void unplug_slaves(mddev_t *mddev);
60 
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
63 
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
65 {
66 	conf_t *conf = data;
67 	r10bio_t *r10_bio;
68 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
69 
70 	/* allocate a r10bio with room for raid_disks entries in the bios array */
71 	r10_bio = kzalloc(size, gfp_flags);
72 	if (!r10_bio && conf->mddev)
73 		unplug_slaves(conf->mddev);
74 
75 	return r10_bio;
76 }
77 
78 static void r10bio_pool_free(void *r10_bio, void *data)
79 {
80 	kfree(r10_bio);
81 }
82 
83 /* Maximum size of each resync request */
84 #define RESYNC_BLOCK_SIZE (64*1024)
85 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
86 /* amount of memory to reserve for resync requests */
87 #define RESYNC_WINDOW (1024*1024)
88 /* maximum number of concurrent requests, memory permitting */
89 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
90 
91 /*
92  * When performing a resync, we need to read and compare, so
93  * we need as many pages are there are copies.
94  * When performing a recovery, we need 2 bios, one for read,
95  * one for write (we recover only one drive per r10buf)
96  *
97  */
98 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
99 {
100 	conf_t *conf = data;
101 	struct page *page;
102 	r10bio_t *r10_bio;
103 	struct bio *bio;
104 	int i, j;
105 	int nalloc;
106 
107 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
108 	if (!r10_bio) {
109 		unplug_slaves(conf->mddev);
110 		return NULL;
111 	}
112 
113 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
114 		nalloc = conf->copies; /* resync */
115 	else
116 		nalloc = 2; /* recovery */
117 
118 	/*
119 	 * Allocate bios.
120 	 */
121 	for (j = nalloc ; j-- ; ) {
122 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
123 		if (!bio)
124 			goto out_free_bio;
125 		r10_bio->devs[j].bio = bio;
126 	}
127 	/*
128 	 * Allocate RESYNC_PAGES data pages and attach them
129 	 * where needed.
130 	 */
131 	for (j = 0 ; j < nalloc; j++) {
132 		bio = r10_bio->devs[j].bio;
133 		for (i = 0; i < RESYNC_PAGES; i++) {
134 			page = alloc_page(gfp_flags);
135 			if (unlikely(!page))
136 				goto out_free_pages;
137 
138 			bio->bi_io_vec[i].bv_page = page;
139 		}
140 	}
141 
142 	return r10_bio;
143 
144 out_free_pages:
145 	for ( ; i > 0 ; i--)
146 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
147 	while (j--)
148 		for (i = 0; i < RESYNC_PAGES ; i++)
149 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150 	j = -1;
151 out_free_bio:
152 	while ( ++j < nalloc )
153 		bio_put(r10_bio->devs[j].bio);
154 	r10bio_pool_free(r10_bio, conf);
155 	return NULL;
156 }
157 
158 static void r10buf_pool_free(void *__r10_bio, void *data)
159 {
160 	int i;
161 	conf_t *conf = data;
162 	r10bio_t *r10bio = __r10_bio;
163 	int j;
164 
165 	for (j=0; j < conf->copies; j++) {
166 		struct bio *bio = r10bio->devs[j].bio;
167 		if (bio) {
168 			for (i = 0; i < RESYNC_PAGES; i++) {
169 				safe_put_page(bio->bi_io_vec[i].bv_page);
170 				bio->bi_io_vec[i].bv_page = NULL;
171 			}
172 			bio_put(bio);
173 		}
174 	}
175 	r10bio_pool_free(r10bio, conf);
176 }
177 
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
179 {
180 	int i;
181 
182 	for (i = 0; i < conf->copies; i++) {
183 		struct bio **bio = & r10_bio->devs[i].bio;
184 		if (*bio && *bio != IO_BLOCKED)
185 			bio_put(*bio);
186 		*bio = NULL;
187 	}
188 }
189 
190 static void free_r10bio(r10bio_t *r10_bio)
191 {
192 	conf_t *conf = r10_bio->mddev->private;
193 
194 	/*
195 	 * Wake up any possible resync thread that waits for the device
196 	 * to go idle.
197 	 */
198 	allow_barrier(conf);
199 
200 	put_all_bios(conf, r10_bio);
201 	mempool_free(r10_bio, conf->r10bio_pool);
202 }
203 
204 static void put_buf(r10bio_t *r10_bio)
205 {
206 	conf_t *conf = r10_bio->mddev->private;
207 
208 	mempool_free(r10_bio, conf->r10buf_pool);
209 
210 	lower_barrier(conf);
211 }
212 
213 static void reschedule_retry(r10bio_t *r10_bio)
214 {
215 	unsigned long flags;
216 	mddev_t *mddev = r10_bio->mddev;
217 	conf_t *conf = mddev->private;
218 
219 	spin_lock_irqsave(&conf->device_lock, flags);
220 	list_add(&r10_bio->retry_list, &conf->retry_list);
221 	conf->nr_queued ++;
222 	spin_unlock_irqrestore(&conf->device_lock, flags);
223 
224 	/* wake up frozen array... */
225 	wake_up(&conf->wait_barrier);
226 
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void raid_end_bio_io(r10bio_t *r10_bio)
236 {
237 	struct bio *bio = r10_bio->master_bio;
238 
239 	bio_endio(bio,
240 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
241 	free_r10bio(r10_bio);
242 }
243 
244 /*
245  * Update disk head position estimator based on IRQ completion info.
246  */
247 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
248 {
249 	conf_t *conf = r10_bio->mddev->private;
250 
251 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
252 		r10_bio->devs[slot].addr + (r10_bio->sectors);
253 }
254 
255 static void raid10_end_read_request(struct bio *bio, int error)
256 {
257 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
258 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
259 	int slot, dev;
260 	conf_t *conf = r10_bio->mddev->private;
261 
262 
263 	slot = r10_bio->read_slot;
264 	dev = r10_bio->devs[slot].devnum;
265 	/*
266 	 * this branch is our 'one mirror IO has finished' event handler:
267 	 */
268 	update_head_pos(slot, r10_bio);
269 
270 	if (uptodate) {
271 		/*
272 		 * Set R10BIO_Uptodate in our master bio, so that
273 		 * we will return a good error code to the higher
274 		 * levels even if IO on some other mirrored buffer fails.
275 		 *
276 		 * The 'master' represents the composite IO operation to
277 		 * user-side. So if something waits for IO, then it will
278 		 * wait for the 'master' bio.
279 		 */
280 		set_bit(R10BIO_Uptodate, &r10_bio->state);
281 		raid_end_bio_io(r10_bio);
282 	} else {
283 		/*
284 		 * oops, read error:
285 		 */
286 		char b[BDEVNAME_SIZE];
287 		if (printk_ratelimit())
288 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
289 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
290 		reschedule_retry(r10_bio);
291 	}
292 
293 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
294 }
295 
296 static void raid10_end_write_request(struct bio *bio, int error)
297 {
298 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
299 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
300 	int slot, dev;
301 	conf_t *conf = r10_bio->mddev->private;
302 
303 	for (slot = 0; slot < conf->copies; slot++)
304 		if (r10_bio->devs[slot].bio == bio)
305 			break;
306 	dev = r10_bio->devs[slot].devnum;
307 
308 	/*
309 	 * this branch is our 'one mirror IO has finished' event handler:
310 	 */
311 	if (!uptodate) {
312 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
313 		/* an I/O failed, we can't clear the bitmap */
314 		set_bit(R10BIO_Degraded, &r10_bio->state);
315 	} else
316 		/*
317 		 * Set R10BIO_Uptodate in our master bio, so that
318 		 * we will return a good error code for to the higher
319 		 * levels even if IO on some other mirrored buffer fails.
320 		 *
321 		 * The 'master' represents the composite IO operation to
322 		 * user-side. So if something waits for IO, then it will
323 		 * wait for the 'master' bio.
324 		 */
325 		set_bit(R10BIO_Uptodate, &r10_bio->state);
326 
327 	update_head_pos(slot, r10_bio);
328 
329 	/*
330 	 *
331 	 * Let's see if all mirrored write operations have finished
332 	 * already.
333 	 */
334 	if (atomic_dec_and_test(&r10_bio->remaining)) {
335 		/* clear the bitmap if all writes complete successfully */
336 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
337 				r10_bio->sectors,
338 				!test_bit(R10BIO_Degraded, &r10_bio->state),
339 				0);
340 		md_write_end(r10_bio->mddev);
341 		raid_end_bio_io(r10_bio);
342 	}
343 
344 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
345 }
346 
347 
348 /*
349  * RAID10 layout manager
350  * Aswell as the chunksize and raid_disks count, there are two
351  * parameters: near_copies and far_copies.
352  * near_copies * far_copies must be <= raid_disks.
353  * Normally one of these will be 1.
354  * If both are 1, we get raid0.
355  * If near_copies == raid_disks, we get raid1.
356  *
357  * Chunks are layed out in raid0 style with near_copies copies of the
358  * first chunk, followed by near_copies copies of the next chunk and
359  * so on.
360  * If far_copies > 1, then after 1/far_copies of the array has been assigned
361  * as described above, we start again with a device offset of near_copies.
362  * So we effectively have another copy of the whole array further down all
363  * the drives, but with blocks on different drives.
364  * With this layout, and block is never stored twice on the one device.
365  *
366  * raid10_find_phys finds the sector offset of a given virtual sector
367  * on each device that it is on.
368  *
369  * raid10_find_virt does the reverse mapping, from a device and a
370  * sector offset to a virtual address
371  */
372 
373 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
374 {
375 	int n,f;
376 	sector_t sector;
377 	sector_t chunk;
378 	sector_t stripe;
379 	int dev;
380 
381 	int slot = 0;
382 
383 	/* now calculate first sector/dev */
384 	chunk = r10bio->sector >> conf->chunk_shift;
385 	sector = r10bio->sector & conf->chunk_mask;
386 
387 	chunk *= conf->near_copies;
388 	stripe = chunk;
389 	dev = sector_div(stripe, conf->raid_disks);
390 	if (conf->far_offset)
391 		stripe *= conf->far_copies;
392 
393 	sector += stripe << conf->chunk_shift;
394 
395 	/* and calculate all the others */
396 	for (n=0; n < conf->near_copies; n++) {
397 		int d = dev;
398 		sector_t s = sector;
399 		r10bio->devs[slot].addr = sector;
400 		r10bio->devs[slot].devnum = d;
401 		slot++;
402 
403 		for (f = 1; f < conf->far_copies; f++) {
404 			d += conf->near_copies;
405 			if (d >= conf->raid_disks)
406 				d -= conf->raid_disks;
407 			s += conf->stride;
408 			r10bio->devs[slot].devnum = d;
409 			r10bio->devs[slot].addr = s;
410 			slot++;
411 		}
412 		dev++;
413 		if (dev >= conf->raid_disks) {
414 			dev = 0;
415 			sector += (conf->chunk_mask + 1);
416 		}
417 	}
418 	BUG_ON(slot != conf->copies);
419 }
420 
421 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
422 {
423 	sector_t offset, chunk, vchunk;
424 
425 	offset = sector & conf->chunk_mask;
426 	if (conf->far_offset) {
427 		int fc;
428 		chunk = sector >> conf->chunk_shift;
429 		fc = sector_div(chunk, conf->far_copies);
430 		dev -= fc * conf->near_copies;
431 		if (dev < 0)
432 			dev += conf->raid_disks;
433 	} else {
434 		while (sector >= conf->stride) {
435 			sector -= conf->stride;
436 			if (dev < conf->near_copies)
437 				dev += conf->raid_disks - conf->near_copies;
438 			else
439 				dev -= conf->near_copies;
440 		}
441 		chunk = sector >> conf->chunk_shift;
442 	}
443 	vchunk = chunk * conf->raid_disks + dev;
444 	sector_div(vchunk, conf->near_copies);
445 	return (vchunk << conf->chunk_shift) + offset;
446 }
447 
448 /**
449  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
450  *	@q: request queue
451  *	@bvm: properties of new bio
452  *	@biovec: the request that could be merged to it.
453  *
454  *	Return amount of bytes we can accept at this offset
455  *      If near_copies == raid_disk, there are no striping issues,
456  *      but in that case, the function isn't called at all.
457  */
458 static int raid10_mergeable_bvec(struct request_queue *q,
459 				 struct bvec_merge_data *bvm,
460 				 struct bio_vec *biovec)
461 {
462 	mddev_t *mddev = q->queuedata;
463 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
464 	int max;
465 	unsigned int chunk_sectors = mddev->chunk_sectors;
466 	unsigned int bio_sectors = bvm->bi_size >> 9;
467 
468 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
469 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
470 	if (max <= biovec->bv_len && bio_sectors == 0)
471 		return biovec->bv_len;
472 	else
473 		return max;
474 }
475 
476 /*
477  * This routine returns the disk from which the requested read should
478  * be done. There is a per-array 'next expected sequential IO' sector
479  * number - if this matches on the next IO then we use the last disk.
480  * There is also a per-disk 'last know head position' sector that is
481  * maintained from IRQ contexts, both the normal and the resync IO
482  * completion handlers update this position correctly. If there is no
483  * perfect sequential match then we pick the disk whose head is closest.
484  *
485  * If there are 2 mirrors in the same 2 devices, performance degrades
486  * because position is mirror, not device based.
487  *
488  * The rdev for the device selected will have nr_pending incremented.
489  */
490 
491 /*
492  * FIXME: possibly should rethink readbalancing and do it differently
493  * depending on near_copies / far_copies geometry.
494  */
495 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
496 {
497 	const unsigned long this_sector = r10_bio->sector;
498 	int disk, slot, nslot;
499 	const int sectors = r10_bio->sectors;
500 	sector_t new_distance, current_distance;
501 	mdk_rdev_t *rdev;
502 
503 	raid10_find_phys(conf, r10_bio);
504 	rcu_read_lock();
505 	/*
506 	 * Check if we can balance. We can balance on the whole
507 	 * device if no resync is going on (recovery is ok), or below
508 	 * the resync window. We take the first readable disk when
509 	 * above the resync window.
510 	 */
511 	if (conf->mddev->recovery_cp < MaxSector
512 	    && (this_sector + sectors >= conf->next_resync)) {
513 		/* make sure that disk is operational */
514 		slot = 0;
515 		disk = r10_bio->devs[slot].devnum;
516 
517 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
518 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
519 		       !test_bit(In_sync, &rdev->flags)) {
520 			slot++;
521 			if (slot == conf->copies) {
522 				slot = 0;
523 				disk = -1;
524 				break;
525 			}
526 			disk = r10_bio->devs[slot].devnum;
527 		}
528 		goto rb_out;
529 	}
530 
531 
532 	/* make sure the disk is operational */
533 	slot = 0;
534 	disk = r10_bio->devs[slot].devnum;
535 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
536 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
537 	       !test_bit(In_sync, &rdev->flags)) {
538 		slot ++;
539 		if (slot == conf->copies) {
540 			disk = -1;
541 			goto rb_out;
542 		}
543 		disk = r10_bio->devs[slot].devnum;
544 	}
545 
546 
547 	current_distance = abs(r10_bio->devs[slot].addr -
548 			       conf->mirrors[disk].head_position);
549 
550 	/* Find the disk whose head is closest,
551 	 * or - for far > 1 - find the closest to partition beginning */
552 
553 	for (nslot = slot; nslot < conf->copies; nslot++) {
554 		int ndisk = r10_bio->devs[nslot].devnum;
555 
556 
557 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
558 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
559 		    !test_bit(In_sync, &rdev->flags))
560 			continue;
561 
562 		/* This optimisation is debatable, and completely destroys
563 		 * sequential read speed for 'far copies' arrays.  So only
564 		 * keep it for 'near' arrays, and review those later.
565 		 */
566 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
567 			disk = ndisk;
568 			slot = nslot;
569 			break;
570 		}
571 
572 		/* for far > 1 always use the lowest address */
573 		if (conf->far_copies > 1)
574 			new_distance = r10_bio->devs[nslot].addr;
575 		else
576 			new_distance = abs(r10_bio->devs[nslot].addr -
577 					   conf->mirrors[ndisk].head_position);
578 		if (new_distance < current_distance) {
579 			current_distance = new_distance;
580 			disk = ndisk;
581 			slot = nslot;
582 		}
583 	}
584 
585 rb_out:
586 	r10_bio->read_slot = slot;
587 /*	conf->next_seq_sect = this_sector + sectors;*/
588 
589 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
590 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
591 	else
592 		disk = -1;
593 	rcu_read_unlock();
594 
595 	return disk;
596 }
597 
598 static void unplug_slaves(mddev_t *mddev)
599 {
600 	conf_t *conf = mddev->private;
601 	int i;
602 
603 	rcu_read_lock();
604 	for (i=0; i<mddev->raid_disks; i++) {
605 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
606 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
607 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
608 
609 			atomic_inc(&rdev->nr_pending);
610 			rcu_read_unlock();
611 
612 			blk_unplug(r_queue);
613 
614 			rdev_dec_pending(rdev, mddev);
615 			rcu_read_lock();
616 		}
617 	}
618 	rcu_read_unlock();
619 }
620 
621 static void raid10_unplug(struct request_queue *q)
622 {
623 	mddev_t *mddev = q->queuedata;
624 
625 	unplug_slaves(q->queuedata);
626 	md_wakeup_thread(mddev->thread);
627 }
628 
629 static int raid10_congested(void *data, int bits)
630 {
631 	mddev_t *mddev = data;
632 	conf_t *conf = mddev->private;
633 	int i, ret = 0;
634 
635 	if (mddev_congested(mddev, bits))
636 		return 1;
637 	rcu_read_lock();
638 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
639 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
640 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
641 			struct request_queue *q = bdev_get_queue(rdev->bdev);
642 
643 			ret |= bdi_congested(&q->backing_dev_info, bits);
644 		}
645 	}
646 	rcu_read_unlock();
647 	return ret;
648 }
649 
650 static int flush_pending_writes(conf_t *conf)
651 {
652 	/* Any writes that have been queued but are awaiting
653 	 * bitmap updates get flushed here.
654 	 * We return 1 if any requests were actually submitted.
655 	 */
656 	int rv = 0;
657 
658 	spin_lock_irq(&conf->device_lock);
659 
660 	if (conf->pending_bio_list.head) {
661 		struct bio *bio;
662 		bio = bio_list_get(&conf->pending_bio_list);
663 		blk_remove_plug(conf->mddev->queue);
664 		spin_unlock_irq(&conf->device_lock);
665 		/* flush any pending bitmap writes to disk
666 		 * before proceeding w/ I/O */
667 		bitmap_unplug(conf->mddev->bitmap);
668 
669 		while (bio) { /* submit pending writes */
670 			struct bio *next = bio->bi_next;
671 			bio->bi_next = NULL;
672 			generic_make_request(bio);
673 			bio = next;
674 		}
675 		rv = 1;
676 	} else
677 		spin_unlock_irq(&conf->device_lock);
678 	return rv;
679 }
680 /* Barriers....
681  * Sometimes we need to suspend IO while we do something else,
682  * either some resync/recovery, or reconfigure the array.
683  * To do this we raise a 'barrier'.
684  * The 'barrier' is a counter that can be raised multiple times
685  * to count how many activities are happening which preclude
686  * normal IO.
687  * We can only raise the barrier if there is no pending IO.
688  * i.e. if nr_pending == 0.
689  * We choose only to raise the barrier if no-one is waiting for the
690  * barrier to go down.  This means that as soon as an IO request
691  * is ready, no other operations which require a barrier will start
692  * until the IO request has had a chance.
693  *
694  * So: regular IO calls 'wait_barrier'.  When that returns there
695  *    is no backgroup IO happening,  It must arrange to call
696  *    allow_barrier when it has finished its IO.
697  * backgroup IO calls must call raise_barrier.  Once that returns
698  *    there is no normal IO happeing.  It must arrange to call
699  *    lower_barrier when the particular background IO completes.
700  */
701 
702 static void raise_barrier(conf_t *conf, int force)
703 {
704 	BUG_ON(force && !conf->barrier);
705 	spin_lock_irq(&conf->resync_lock);
706 
707 	/* Wait until no block IO is waiting (unless 'force') */
708 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
709 			    conf->resync_lock,
710 			    raid10_unplug(conf->mddev->queue));
711 
712 	/* block any new IO from starting */
713 	conf->barrier++;
714 
715 	/* No wait for all pending IO to complete */
716 	wait_event_lock_irq(conf->wait_barrier,
717 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
718 			    conf->resync_lock,
719 			    raid10_unplug(conf->mddev->queue));
720 
721 	spin_unlock_irq(&conf->resync_lock);
722 }
723 
724 static void lower_barrier(conf_t *conf)
725 {
726 	unsigned long flags;
727 	spin_lock_irqsave(&conf->resync_lock, flags);
728 	conf->barrier--;
729 	spin_unlock_irqrestore(&conf->resync_lock, flags);
730 	wake_up(&conf->wait_barrier);
731 }
732 
733 static void wait_barrier(conf_t *conf)
734 {
735 	spin_lock_irq(&conf->resync_lock);
736 	if (conf->barrier) {
737 		conf->nr_waiting++;
738 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
739 				    conf->resync_lock,
740 				    raid10_unplug(conf->mddev->queue));
741 		conf->nr_waiting--;
742 	}
743 	conf->nr_pending++;
744 	spin_unlock_irq(&conf->resync_lock);
745 }
746 
747 static void allow_barrier(conf_t *conf)
748 {
749 	unsigned long flags;
750 	spin_lock_irqsave(&conf->resync_lock, flags);
751 	conf->nr_pending--;
752 	spin_unlock_irqrestore(&conf->resync_lock, flags);
753 	wake_up(&conf->wait_barrier);
754 }
755 
756 static void freeze_array(conf_t *conf)
757 {
758 	/* stop syncio and normal IO and wait for everything to
759 	 * go quiet.
760 	 * We increment barrier and nr_waiting, and then
761 	 * wait until nr_pending match nr_queued+1
762 	 * This is called in the context of one normal IO request
763 	 * that has failed. Thus any sync request that might be pending
764 	 * will be blocked by nr_pending, and we need to wait for
765 	 * pending IO requests to complete or be queued for re-try.
766 	 * Thus the number queued (nr_queued) plus this request (1)
767 	 * must match the number of pending IOs (nr_pending) before
768 	 * we continue.
769 	 */
770 	spin_lock_irq(&conf->resync_lock);
771 	conf->barrier++;
772 	conf->nr_waiting++;
773 	wait_event_lock_irq(conf->wait_barrier,
774 			    conf->nr_pending == conf->nr_queued+1,
775 			    conf->resync_lock,
776 			    ({ flush_pending_writes(conf);
777 			       raid10_unplug(conf->mddev->queue); }));
778 	spin_unlock_irq(&conf->resync_lock);
779 }
780 
781 static void unfreeze_array(conf_t *conf)
782 {
783 	/* reverse the effect of the freeze */
784 	spin_lock_irq(&conf->resync_lock);
785 	conf->barrier--;
786 	conf->nr_waiting--;
787 	wake_up(&conf->wait_barrier);
788 	spin_unlock_irq(&conf->resync_lock);
789 }
790 
791 static int make_request(struct request_queue *q, struct bio * bio)
792 {
793 	mddev_t *mddev = q->queuedata;
794 	conf_t *conf = mddev->private;
795 	mirror_info_t *mirror;
796 	r10bio_t *r10_bio;
797 	struct bio *read_bio;
798 	int cpu;
799 	int i;
800 	int chunk_sects = conf->chunk_mask + 1;
801 	const int rw = bio_data_dir(bio);
802 	const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
803 	struct bio_list bl;
804 	unsigned long flags;
805 	mdk_rdev_t *blocked_rdev;
806 
807 	if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
808 		md_barrier_request(mddev, bio);
809 		return 0;
810 	}
811 
812 	/* If this request crosses a chunk boundary, we need to
813 	 * split it.  This will only happen for 1 PAGE (or less) requests.
814 	 */
815 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
816 		      > chunk_sects &&
817 		    conf->near_copies < conf->raid_disks)) {
818 		struct bio_pair *bp;
819 		/* Sanity check -- queue functions should prevent this happening */
820 		if (bio->bi_vcnt != 1 ||
821 		    bio->bi_idx != 0)
822 			goto bad_map;
823 		/* This is a one page bio that upper layers
824 		 * refuse to split for us, so we need to split it.
825 		 */
826 		bp = bio_split(bio,
827 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
828 		if (make_request(q, &bp->bio1))
829 			generic_make_request(&bp->bio1);
830 		if (make_request(q, &bp->bio2))
831 			generic_make_request(&bp->bio2);
832 
833 		bio_pair_release(bp);
834 		return 0;
835 	bad_map:
836 		printk("raid10_make_request bug: can't convert block across chunks"
837 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
838 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
839 
840 		bio_io_error(bio);
841 		return 0;
842 	}
843 
844 	md_write_start(mddev, bio);
845 
846 	/*
847 	 * Register the new request and wait if the reconstruction
848 	 * thread has put up a bar for new requests.
849 	 * Continue immediately if no resync is active currently.
850 	 */
851 	wait_barrier(conf);
852 
853 	cpu = part_stat_lock();
854 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
855 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
856 		      bio_sectors(bio));
857 	part_stat_unlock();
858 
859 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
860 
861 	r10_bio->master_bio = bio;
862 	r10_bio->sectors = bio->bi_size >> 9;
863 
864 	r10_bio->mddev = mddev;
865 	r10_bio->sector = bio->bi_sector;
866 	r10_bio->state = 0;
867 
868 	if (rw == READ) {
869 		/*
870 		 * read balancing logic:
871 		 */
872 		int disk = read_balance(conf, r10_bio);
873 		int slot = r10_bio->read_slot;
874 		if (disk < 0) {
875 			raid_end_bio_io(r10_bio);
876 			return 0;
877 		}
878 		mirror = conf->mirrors + disk;
879 
880 		read_bio = bio_clone(bio, GFP_NOIO);
881 
882 		r10_bio->devs[slot].bio = read_bio;
883 
884 		read_bio->bi_sector = r10_bio->devs[slot].addr +
885 			mirror->rdev->data_offset;
886 		read_bio->bi_bdev = mirror->rdev->bdev;
887 		read_bio->bi_end_io = raid10_end_read_request;
888 		read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
889 		read_bio->bi_private = r10_bio;
890 
891 		generic_make_request(read_bio);
892 		return 0;
893 	}
894 
895 	/*
896 	 * WRITE:
897 	 */
898 	/* first select target devices under rcu_lock and
899 	 * inc refcount on their rdev.  Record them by setting
900 	 * bios[x] to bio
901 	 */
902 	raid10_find_phys(conf, r10_bio);
903  retry_write:
904 	blocked_rdev = NULL;
905 	rcu_read_lock();
906 	for (i = 0;  i < conf->copies; i++) {
907 		int d = r10_bio->devs[i].devnum;
908 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
909 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
910 			atomic_inc(&rdev->nr_pending);
911 			blocked_rdev = rdev;
912 			break;
913 		}
914 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
915 			atomic_inc(&rdev->nr_pending);
916 			r10_bio->devs[i].bio = bio;
917 		} else {
918 			r10_bio->devs[i].bio = NULL;
919 			set_bit(R10BIO_Degraded, &r10_bio->state);
920 		}
921 	}
922 	rcu_read_unlock();
923 
924 	if (unlikely(blocked_rdev)) {
925 		/* Have to wait for this device to get unblocked, then retry */
926 		int j;
927 		int d;
928 
929 		for (j = 0; j < i; j++)
930 			if (r10_bio->devs[j].bio) {
931 				d = r10_bio->devs[j].devnum;
932 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
933 			}
934 		allow_barrier(conf);
935 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
936 		wait_barrier(conf);
937 		goto retry_write;
938 	}
939 
940 	atomic_set(&r10_bio->remaining, 0);
941 
942 	bio_list_init(&bl);
943 	for (i = 0; i < conf->copies; i++) {
944 		struct bio *mbio;
945 		int d = r10_bio->devs[i].devnum;
946 		if (!r10_bio->devs[i].bio)
947 			continue;
948 
949 		mbio = bio_clone(bio, GFP_NOIO);
950 		r10_bio->devs[i].bio = mbio;
951 
952 		mbio->bi_sector	= r10_bio->devs[i].addr+
953 			conf->mirrors[d].rdev->data_offset;
954 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
955 		mbio->bi_end_io	= raid10_end_write_request;
956 		mbio->bi_rw = WRITE | (do_sync << BIO_RW_SYNCIO);
957 		mbio->bi_private = r10_bio;
958 
959 		atomic_inc(&r10_bio->remaining);
960 		bio_list_add(&bl, mbio);
961 	}
962 
963 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
964 		/* the array is dead */
965 		md_write_end(mddev);
966 		raid_end_bio_io(r10_bio);
967 		return 0;
968 	}
969 
970 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
971 	spin_lock_irqsave(&conf->device_lock, flags);
972 	bio_list_merge(&conf->pending_bio_list, &bl);
973 	blk_plug_device(mddev->queue);
974 	spin_unlock_irqrestore(&conf->device_lock, flags);
975 
976 	/* In case raid10d snuck in to freeze_array */
977 	wake_up(&conf->wait_barrier);
978 
979 	if (do_sync)
980 		md_wakeup_thread(mddev->thread);
981 
982 	return 0;
983 }
984 
985 static void status(struct seq_file *seq, mddev_t *mddev)
986 {
987 	conf_t *conf = mddev->private;
988 	int i;
989 
990 	if (conf->near_copies < conf->raid_disks)
991 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
992 	if (conf->near_copies > 1)
993 		seq_printf(seq, " %d near-copies", conf->near_copies);
994 	if (conf->far_copies > 1) {
995 		if (conf->far_offset)
996 			seq_printf(seq, " %d offset-copies", conf->far_copies);
997 		else
998 			seq_printf(seq, " %d far-copies", conf->far_copies);
999 	}
1000 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1001 					conf->raid_disks - mddev->degraded);
1002 	for (i = 0; i < conf->raid_disks; i++)
1003 		seq_printf(seq, "%s",
1004 			      conf->mirrors[i].rdev &&
1005 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1006 	seq_printf(seq, "]");
1007 }
1008 
1009 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1010 {
1011 	char b[BDEVNAME_SIZE];
1012 	conf_t *conf = mddev->private;
1013 
1014 	/*
1015 	 * If it is not operational, then we have already marked it as dead
1016 	 * else if it is the last working disks, ignore the error, let the
1017 	 * next level up know.
1018 	 * else mark the drive as failed
1019 	 */
1020 	if (test_bit(In_sync, &rdev->flags)
1021 	    && conf->raid_disks-mddev->degraded == 1)
1022 		/*
1023 		 * Don't fail the drive, just return an IO error.
1024 		 * The test should really be more sophisticated than
1025 		 * "working_disks == 1", but it isn't critical, and
1026 		 * can wait until we do more sophisticated "is the drive
1027 		 * really dead" tests...
1028 		 */
1029 		return;
1030 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1031 		unsigned long flags;
1032 		spin_lock_irqsave(&conf->device_lock, flags);
1033 		mddev->degraded++;
1034 		spin_unlock_irqrestore(&conf->device_lock, flags);
1035 		/*
1036 		 * if recovery is running, make sure it aborts.
1037 		 */
1038 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1039 	}
1040 	set_bit(Faulty, &rdev->flags);
1041 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1042 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1043 		"raid10: Operation continuing on %d devices.\n",
1044 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1045 }
1046 
1047 static void print_conf(conf_t *conf)
1048 {
1049 	int i;
1050 	mirror_info_t *tmp;
1051 
1052 	printk("RAID10 conf printout:\n");
1053 	if (!conf) {
1054 		printk("(!conf)\n");
1055 		return;
1056 	}
1057 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1058 		conf->raid_disks);
1059 
1060 	for (i = 0; i < conf->raid_disks; i++) {
1061 		char b[BDEVNAME_SIZE];
1062 		tmp = conf->mirrors + i;
1063 		if (tmp->rdev)
1064 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1065 				i, !test_bit(In_sync, &tmp->rdev->flags),
1066 			        !test_bit(Faulty, &tmp->rdev->flags),
1067 				bdevname(tmp->rdev->bdev,b));
1068 	}
1069 }
1070 
1071 static void close_sync(conf_t *conf)
1072 {
1073 	wait_barrier(conf);
1074 	allow_barrier(conf);
1075 
1076 	mempool_destroy(conf->r10buf_pool);
1077 	conf->r10buf_pool = NULL;
1078 }
1079 
1080 /* check if there are enough drives for
1081  * every block to appear on atleast one
1082  */
1083 static int enough(conf_t *conf)
1084 {
1085 	int first = 0;
1086 
1087 	do {
1088 		int n = conf->copies;
1089 		int cnt = 0;
1090 		while (n--) {
1091 			if (conf->mirrors[first].rdev)
1092 				cnt++;
1093 			first = (first+1) % conf->raid_disks;
1094 		}
1095 		if (cnt == 0)
1096 			return 0;
1097 	} while (first != 0);
1098 	return 1;
1099 }
1100 
1101 static int raid10_spare_active(mddev_t *mddev)
1102 {
1103 	int i;
1104 	conf_t *conf = mddev->private;
1105 	mirror_info_t *tmp;
1106 
1107 	/*
1108 	 * Find all non-in_sync disks within the RAID10 configuration
1109 	 * and mark them in_sync
1110 	 */
1111 	for (i = 0; i < conf->raid_disks; i++) {
1112 		tmp = conf->mirrors + i;
1113 		if (tmp->rdev
1114 		    && !test_bit(Faulty, &tmp->rdev->flags)
1115 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1116 			unsigned long flags;
1117 			spin_lock_irqsave(&conf->device_lock, flags);
1118 			mddev->degraded--;
1119 			spin_unlock_irqrestore(&conf->device_lock, flags);
1120 		}
1121 	}
1122 
1123 	print_conf(conf);
1124 	return 0;
1125 }
1126 
1127 
1128 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1129 {
1130 	conf_t *conf = mddev->private;
1131 	int err = -EEXIST;
1132 	int mirror;
1133 	mirror_info_t *p;
1134 	int first = 0;
1135 	int last = mddev->raid_disks - 1;
1136 
1137 	if (mddev->recovery_cp < MaxSector)
1138 		/* only hot-add to in-sync arrays, as recovery is
1139 		 * very different from resync
1140 		 */
1141 		return -EBUSY;
1142 	if (!enough(conf))
1143 		return -EINVAL;
1144 
1145 	if (rdev->raid_disk >= 0)
1146 		first = last = rdev->raid_disk;
1147 
1148 	if (rdev->saved_raid_disk >= 0 &&
1149 	    rdev->saved_raid_disk >= first &&
1150 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1151 		mirror = rdev->saved_raid_disk;
1152 	else
1153 		mirror = first;
1154 	for ( ; mirror <= last ; mirror++)
1155 		if ( !(p=conf->mirrors+mirror)->rdev) {
1156 
1157 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1158 					  rdev->data_offset << 9);
1159 			/* as we don't honour merge_bvec_fn, we must
1160 			 * never risk violating it, so limit
1161 			 * ->max_segments to one lying with a single
1162 			 * page, as a one page request is never in
1163 			 * violation.
1164 			 */
1165 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1166 				blk_queue_max_segments(mddev->queue, 1);
1167 				blk_queue_segment_boundary(mddev->queue,
1168 							   PAGE_CACHE_SIZE - 1);
1169 			}
1170 
1171 			p->head_position = 0;
1172 			rdev->raid_disk = mirror;
1173 			err = 0;
1174 			if (rdev->saved_raid_disk != mirror)
1175 				conf->fullsync = 1;
1176 			rcu_assign_pointer(p->rdev, rdev);
1177 			break;
1178 		}
1179 
1180 	md_integrity_add_rdev(rdev, mddev);
1181 	print_conf(conf);
1182 	return err;
1183 }
1184 
1185 static int raid10_remove_disk(mddev_t *mddev, int number)
1186 {
1187 	conf_t *conf = mddev->private;
1188 	int err = 0;
1189 	mdk_rdev_t *rdev;
1190 	mirror_info_t *p = conf->mirrors+ number;
1191 
1192 	print_conf(conf);
1193 	rdev = p->rdev;
1194 	if (rdev) {
1195 		if (test_bit(In_sync, &rdev->flags) ||
1196 		    atomic_read(&rdev->nr_pending)) {
1197 			err = -EBUSY;
1198 			goto abort;
1199 		}
1200 		/* Only remove faulty devices in recovery
1201 		 * is not possible.
1202 		 */
1203 		if (!test_bit(Faulty, &rdev->flags) &&
1204 		    enough(conf)) {
1205 			err = -EBUSY;
1206 			goto abort;
1207 		}
1208 		p->rdev = NULL;
1209 		synchronize_rcu();
1210 		if (atomic_read(&rdev->nr_pending)) {
1211 			/* lost the race, try later */
1212 			err = -EBUSY;
1213 			p->rdev = rdev;
1214 			goto abort;
1215 		}
1216 		md_integrity_register(mddev);
1217 	}
1218 abort:
1219 
1220 	print_conf(conf);
1221 	return err;
1222 }
1223 
1224 
1225 static void end_sync_read(struct bio *bio, int error)
1226 {
1227 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1228 	conf_t *conf = r10_bio->mddev->private;
1229 	int i,d;
1230 
1231 	for (i=0; i<conf->copies; i++)
1232 		if (r10_bio->devs[i].bio == bio)
1233 			break;
1234 	BUG_ON(i == conf->copies);
1235 	update_head_pos(i, r10_bio);
1236 	d = r10_bio->devs[i].devnum;
1237 
1238 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1239 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1240 	else {
1241 		atomic_add(r10_bio->sectors,
1242 			   &conf->mirrors[d].rdev->corrected_errors);
1243 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1244 			md_error(r10_bio->mddev,
1245 				 conf->mirrors[d].rdev);
1246 	}
1247 
1248 	/* for reconstruct, we always reschedule after a read.
1249 	 * for resync, only after all reads
1250 	 */
1251 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1252 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1253 	    atomic_dec_and_test(&r10_bio->remaining)) {
1254 		/* we have read all the blocks,
1255 		 * do the comparison in process context in raid10d
1256 		 */
1257 		reschedule_retry(r10_bio);
1258 	}
1259 }
1260 
1261 static void end_sync_write(struct bio *bio, int error)
1262 {
1263 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1264 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1265 	mddev_t *mddev = r10_bio->mddev;
1266 	conf_t *conf = mddev->private;
1267 	int i,d;
1268 
1269 	for (i = 0; i < conf->copies; i++)
1270 		if (r10_bio->devs[i].bio == bio)
1271 			break;
1272 	d = r10_bio->devs[i].devnum;
1273 
1274 	if (!uptodate)
1275 		md_error(mddev, conf->mirrors[d].rdev);
1276 
1277 	update_head_pos(i, r10_bio);
1278 
1279 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1280 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1281 		if (r10_bio->master_bio == NULL) {
1282 			/* the primary of several recovery bios */
1283 			sector_t s = r10_bio->sectors;
1284 			put_buf(r10_bio);
1285 			md_done_sync(mddev, s, 1);
1286 			break;
1287 		} else {
1288 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1289 			put_buf(r10_bio);
1290 			r10_bio = r10_bio2;
1291 		}
1292 	}
1293 }
1294 
1295 /*
1296  * Note: sync and recover and handled very differently for raid10
1297  * This code is for resync.
1298  * For resync, we read through virtual addresses and read all blocks.
1299  * If there is any error, we schedule a write.  The lowest numbered
1300  * drive is authoritative.
1301  * However requests come for physical address, so we need to map.
1302  * For every physical address there are raid_disks/copies virtual addresses,
1303  * which is always are least one, but is not necessarly an integer.
1304  * This means that a physical address can span multiple chunks, so we may
1305  * have to submit multiple io requests for a single sync request.
1306  */
1307 /*
1308  * We check if all blocks are in-sync and only write to blocks that
1309  * aren't in sync
1310  */
1311 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1312 {
1313 	conf_t *conf = mddev->private;
1314 	int i, first;
1315 	struct bio *tbio, *fbio;
1316 
1317 	atomic_set(&r10_bio->remaining, 1);
1318 
1319 	/* find the first device with a block */
1320 	for (i=0; i<conf->copies; i++)
1321 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1322 			break;
1323 
1324 	if (i == conf->copies)
1325 		goto done;
1326 
1327 	first = i;
1328 	fbio = r10_bio->devs[i].bio;
1329 
1330 	/* now find blocks with errors */
1331 	for (i=0 ; i < conf->copies ; i++) {
1332 		int  j, d;
1333 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1334 
1335 		tbio = r10_bio->devs[i].bio;
1336 
1337 		if (tbio->bi_end_io != end_sync_read)
1338 			continue;
1339 		if (i == first)
1340 			continue;
1341 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1342 			/* We know that the bi_io_vec layout is the same for
1343 			 * both 'first' and 'i', so we just compare them.
1344 			 * All vec entries are PAGE_SIZE;
1345 			 */
1346 			for (j = 0; j < vcnt; j++)
1347 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1348 					   page_address(tbio->bi_io_vec[j].bv_page),
1349 					   PAGE_SIZE))
1350 					break;
1351 			if (j == vcnt)
1352 				continue;
1353 			mddev->resync_mismatches += r10_bio->sectors;
1354 		}
1355 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1356 			/* Don't fix anything. */
1357 			continue;
1358 		/* Ok, we need to write this bio
1359 		 * First we need to fixup bv_offset, bv_len and
1360 		 * bi_vecs, as the read request might have corrupted these
1361 		 */
1362 		tbio->bi_vcnt = vcnt;
1363 		tbio->bi_size = r10_bio->sectors << 9;
1364 		tbio->bi_idx = 0;
1365 		tbio->bi_phys_segments = 0;
1366 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1367 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1368 		tbio->bi_next = NULL;
1369 		tbio->bi_rw = WRITE;
1370 		tbio->bi_private = r10_bio;
1371 		tbio->bi_sector = r10_bio->devs[i].addr;
1372 
1373 		for (j=0; j < vcnt ; j++) {
1374 			tbio->bi_io_vec[j].bv_offset = 0;
1375 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1376 
1377 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1378 			       page_address(fbio->bi_io_vec[j].bv_page),
1379 			       PAGE_SIZE);
1380 		}
1381 		tbio->bi_end_io = end_sync_write;
1382 
1383 		d = r10_bio->devs[i].devnum;
1384 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1385 		atomic_inc(&r10_bio->remaining);
1386 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1387 
1388 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1389 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1390 		generic_make_request(tbio);
1391 	}
1392 
1393 done:
1394 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1395 		md_done_sync(mddev, r10_bio->sectors, 1);
1396 		put_buf(r10_bio);
1397 	}
1398 }
1399 
1400 /*
1401  * Now for the recovery code.
1402  * Recovery happens across physical sectors.
1403  * We recover all non-is_sync drives by finding the virtual address of
1404  * each, and then choose a working drive that also has that virt address.
1405  * There is a separate r10_bio for each non-in_sync drive.
1406  * Only the first two slots are in use. The first for reading,
1407  * The second for writing.
1408  *
1409  */
1410 
1411 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1412 {
1413 	conf_t *conf = mddev->private;
1414 	int i, d;
1415 	struct bio *bio, *wbio;
1416 
1417 
1418 	/* move the pages across to the second bio
1419 	 * and submit the write request
1420 	 */
1421 	bio = r10_bio->devs[0].bio;
1422 	wbio = r10_bio->devs[1].bio;
1423 	for (i=0; i < wbio->bi_vcnt; i++) {
1424 		struct page *p = bio->bi_io_vec[i].bv_page;
1425 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1426 		wbio->bi_io_vec[i].bv_page = p;
1427 	}
1428 	d = r10_bio->devs[1].devnum;
1429 
1430 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1431 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1432 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1433 		generic_make_request(wbio);
1434 	else
1435 		bio_endio(wbio, -EIO);
1436 }
1437 
1438 
1439 /*
1440  * Used by fix_read_error() to decay the per rdev read_errors.
1441  * We halve the read error count for every hour that has elapsed
1442  * since the last recorded read error.
1443  *
1444  */
1445 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1446 {
1447 	struct timespec cur_time_mon;
1448 	unsigned long hours_since_last;
1449 	unsigned int read_errors = atomic_read(&rdev->read_errors);
1450 
1451 	ktime_get_ts(&cur_time_mon);
1452 
1453 	if (rdev->last_read_error.tv_sec == 0 &&
1454 	    rdev->last_read_error.tv_nsec == 0) {
1455 		/* first time we've seen a read error */
1456 		rdev->last_read_error = cur_time_mon;
1457 		return;
1458 	}
1459 
1460 	hours_since_last = (cur_time_mon.tv_sec -
1461 			    rdev->last_read_error.tv_sec) / 3600;
1462 
1463 	rdev->last_read_error = cur_time_mon;
1464 
1465 	/*
1466 	 * if hours_since_last is > the number of bits in read_errors
1467 	 * just set read errors to 0. We do this to avoid
1468 	 * overflowing the shift of read_errors by hours_since_last.
1469 	 */
1470 	if (hours_since_last >= 8 * sizeof(read_errors))
1471 		atomic_set(&rdev->read_errors, 0);
1472 	else
1473 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1474 }
1475 
1476 /*
1477  * This is a kernel thread which:
1478  *
1479  *	1.	Retries failed read operations on working mirrors.
1480  *	2.	Updates the raid superblock when problems encounter.
1481  *	3.	Performs writes following reads for array synchronising.
1482  */
1483 
1484 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1485 {
1486 	int sect = 0; /* Offset from r10_bio->sector */
1487 	int sectors = r10_bio->sectors;
1488 	mdk_rdev_t*rdev;
1489 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1490 
1491 	rcu_read_lock();
1492 	{
1493 		int d = r10_bio->devs[r10_bio->read_slot].devnum;
1494 		char b[BDEVNAME_SIZE];
1495 		int cur_read_error_count = 0;
1496 
1497 		rdev = rcu_dereference(conf->mirrors[d].rdev);
1498 		bdevname(rdev->bdev, b);
1499 
1500 		if (test_bit(Faulty, &rdev->flags)) {
1501 			rcu_read_unlock();
1502 			/* drive has already been failed, just ignore any
1503 			   more fix_read_error() attempts */
1504 			return;
1505 		}
1506 
1507 		check_decay_read_errors(mddev, rdev);
1508 		atomic_inc(&rdev->read_errors);
1509 		cur_read_error_count = atomic_read(&rdev->read_errors);
1510 		if (cur_read_error_count > max_read_errors) {
1511 			rcu_read_unlock();
1512 			printk(KERN_NOTICE
1513 			       "raid10: %s: Raid device exceeded "
1514 			       "read_error threshold "
1515 			       "[cur %d:max %d]\n",
1516 			       b, cur_read_error_count, max_read_errors);
1517 			printk(KERN_NOTICE
1518 			       "raid10: %s: Failing raid "
1519 			       "device\n", b);
1520 			md_error(mddev, conf->mirrors[d].rdev);
1521 			return;
1522 		}
1523 	}
1524 	rcu_read_unlock();
1525 
1526 	while(sectors) {
1527 		int s = sectors;
1528 		int sl = r10_bio->read_slot;
1529 		int success = 0;
1530 		int start;
1531 
1532 		if (s > (PAGE_SIZE>>9))
1533 			s = PAGE_SIZE >> 9;
1534 
1535 		rcu_read_lock();
1536 		do {
1537 			int d = r10_bio->devs[sl].devnum;
1538 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1539 			if (rdev &&
1540 			    test_bit(In_sync, &rdev->flags)) {
1541 				atomic_inc(&rdev->nr_pending);
1542 				rcu_read_unlock();
1543 				success = sync_page_io(rdev->bdev,
1544 						       r10_bio->devs[sl].addr +
1545 						       sect + rdev->data_offset,
1546 						       s<<9,
1547 						       conf->tmppage, READ);
1548 				rdev_dec_pending(rdev, mddev);
1549 				rcu_read_lock();
1550 				if (success)
1551 					break;
1552 			}
1553 			sl++;
1554 			if (sl == conf->copies)
1555 				sl = 0;
1556 		} while (!success && sl != r10_bio->read_slot);
1557 		rcu_read_unlock();
1558 
1559 		if (!success) {
1560 			/* Cannot read from anywhere -- bye bye array */
1561 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1562 			md_error(mddev, conf->mirrors[dn].rdev);
1563 			break;
1564 		}
1565 
1566 		start = sl;
1567 		/* write it back and re-read */
1568 		rcu_read_lock();
1569 		while (sl != r10_bio->read_slot) {
1570 			char b[BDEVNAME_SIZE];
1571 			int d;
1572 			if (sl==0)
1573 				sl = conf->copies;
1574 			sl--;
1575 			d = r10_bio->devs[sl].devnum;
1576 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1577 			if (rdev &&
1578 			    test_bit(In_sync, &rdev->flags)) {
1579 				atomic_inc(&rdev->nr_pending);
1580 				rcu_read_unlock();
1581 				atomic_add(s, &rdev->corrected_errors);
1582 				if (sync_page_io(rdev->bdev,
1583 						 r10_bio->devs[sl].addr +
1584 						 sect + rdev->data_offset,
1585 						 s<<9, conf->tmppage, WRITE)
1586 				    == 0) {
1587 					/* Well, this device is dead */
1588 					printk(KERN_NOTICE
1589 					       "raid10:%s: read correction "
1590 					       "write failed"
1591 					       " (%d sectors at %llu on %s)\n",
1592 					       mdname(mddev), s,
1593 					       (unsigned long long)(sect+
1594 					       rdev->data_offset),
1595 					       bdevname(rdev->bdev, b));
1596 					printk(KERN_NOTICE "raid10:%s: failing "
1597 					       "drive\n",
1598 					       bdevname(rdev->bdev, b));
1599 					md_error(mddev, rdev);
1600 				}
1601 				rdev_dec_pending(rdev, mddev);
1602 				rcu_read_lock();
1603 			}
1604 		}
1605 		sl = start;
1606 		while (sl != r10_bio->read_slot) {
1607 			int d;
1608 			if (sl==0)
1609 				sl = conf->copies;
1610 			sl--;
1611 			d = r10_bio->devs[sl].devnum;
1612 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1613 			if (rdev &&
1614 			    test_bit(In_sync, &rdev->flags)) {
1615 				char b[BDEVNAME_SIZE];
1616 				atomic_inc(&rdev->nr_pending);
1617 				rcu_read_unlock();
1618 				if (sync_page_io(rdev->bdev,
1619 						 r10_bio->devs[sl].addr +
1620 						 sect + rdev->data_offset,
1621 						 s<<9, conf->tmppage,
1622 						 READ) == 0) {
1623 					/* Well, this device is dead */
1624 					printk(KERN_NOTICE
1625 					       "raid10:%s: unable to read back "
1626 					       "corrected sectors"
1627 					       " (%d sectors at %llu on %s)\n",
1628 					       mdname(mddev), s,
1629 					       (unsigned long long)(sect+
1630 						    rdev->data_offset),
1631 					       bdevname(rdev->bdev, b));
1632 					printk(KERN_NOTICE "raid10:%s: failing drive\n",
1633 					       bdevname(rdev->bdev, b));
1634 
1635 					md_error(mddev, rdev);
1636 				} else {
1637 					printk(KERN_INFO
1638 					       "raid10:%s: read error corrected"
1639 					       " (%d sectors at %llu on %s)\n",
1640 					       mdname(mddev), s,
1641 					       (unsigned long long)(sect+
1642 					            rdev->data_offset),
1643 					       bdevname(rdev->bdev, b));
1644 				}
1645 
1646 				rdev_dec_pending(rdev, mddev);
1647 				rcu_read_lock();
1648 			}
1649 		}
1650 		rcu_read_unlock();
1651 
1652 		sectors -= s;
1653 		sect += s;
1654 	}
1655 }
1656 
1657 static void raid10d(mddev_t *mddev)
1658 {
1659 	r10bio_t *r10_bio;
1660 	struct bio *bio;
1661 	unsigned long flags;
1662 	conf_t *conf = mddev->private;
1663 	struct list_head *head = &conf->retry_list;
1664 	int unplug=0;
1665 	mdk_rdev_t *rdev;
1666 
1667 	md_check_recovery(mddev);
1668 
1669 	for (;;) {
1670 		char b[BDEVNAME_SIZE];
1671 
1672 		unplug += flush_pending_writes(conf);
1673 
1674 		spin_lock_irqsave(&conf->device_lock, flags);
1675 		if (list_empty(head)) {
1676 			spin_unlock_irqrestore(&conf->device_lock, flags);
1677 			break;
1678 		}
1679 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1680 		list_del(head->prev);
1681 		conf->nr_queued--;
1682 		spin_unlock_irqrestore(&conf->device_lock, flags);
1683 
1684 		mddev = r10_bio->mddev;
1685 		conf = mddev->private;
1686 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1687 			sync_request_write(mddev, r10_bio);
1688 			unplug = 1;
1689 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1690 			recovery_request_write(mddev, r10_bio);
1691 			unplug = 1;
1692 		} else {
1693 			int mirror;
1694 			/* we got a read error. Maybe the drive is bad.  Maybe just
1695 			 * the block and we can fix it.
1696 			 * We freeze all other IO, and try reading the block from
1697 			 * other devices.  When we find one, we re-write
1698 			 * and check it that fixes the read error.
1699 			 * This is all done synchronously while the array is
1700 			 * frozen.
1701 			 */
1702 			if (mddev->ro == 0) {
1703 				freeze_array(conf);
1704 				fix_read_error(conf, mddev, r10_bio);
1705 				unfreeze_array(conf);
1706 			}
1707 
1708 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1709 			r10_bio->devs[r10_bio->read_slot].bio =
1710 				mddev->ro ? IO_BLOCKED : NULL;
1711 			mirror = read_balance(conf, r10_bio);
1712 			if (mirror == -1) {
1713 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1714 				       " read error for block %llu\n",
1715 				       bdevname(bio->bi_bdev,b),
1716 				       (unsigned long long)r10_bio->sector);
1717 				raid_end_bio_io(r10_bio);
1718 				bio_put(bio);
1719 			} else {
1720 				const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO);
1721 				bio_put(bio);
1722 				rdev = conf->mirrors[mirror].rdev;
1723 				if (printk_ratelimit())
1724 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1725 					       " another mirror\n",
1726 					       bdevname(rdev->bdev,b),
1727 					       (unsigned long long)r10_bio->sector);
1728 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1729 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1730 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1731 					+ rdev->data_offset;
1732 				bio->bi_bdev = rdev->bdev;
1733 				bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1734 				bio->bi_private = r10_bio;
1735 				bio->bi_end_io = raid10_end_read_request;
1736 				unplug = 1;
1737 				generic_make_request(bio);
1738 			}
1739 		}
1740 		cond_resched();
1741 	}
1742 	if (unplug)
1743 		unplug_slaves(mddev);
1744 }
1745 
1746 
1747 static int init_resync(conf_t *conf)
1748 {
1749 	int buffs;
1750 
1751 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1752 	BUG_ON(conf->r10buf_pool);
1753 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1754 	if (!conf->r10buf_pool)
1755 		return -ENOMEM;
1756 	conf->next_resync = 0;
1757 	return 0;
1758 }
1759 
1760 /*
1761  * perform a "sync" on one "block"
1762  *
1763  * We need to make sure that no normal I/O request - particularly write
1764  * requests - conflict with active sync requests.
1765  *
1766  * This is achieved by tracking pending requests and a 'barrier' concept
1767  * that can be installed to exclude normal IO requests.
1768  *
1769  * Resync and recovery are handled very differently.
1770  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1771  *
1772  * For resync, we iterate over virtual addresses, read all copies,
1773  * and update if there are differences.  If only one copy is live,
1774  * skip it.
1775  * For recovery, we iterate over physical addresses, read a good
1776  * value for each non-in_sync drive, and over-write.
1777  *
1778  * So, for recovery we may have several outstanding complex requests for a
1779  * given address, one for each out-of-sync device.  We model this by allocating
1780  * a number of r10_bio structures, one for each out-of-sync device.
1781  * As we setup these structures, we collect all bio's together into a list
1782  * which we then process collectively to add pages, and then process again
1783  * to pass to generic_make_request.
1784  *
1785  * The r10_bio structures are linked using a borrowed master_bio pointer.
1786  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1787  * has its remaining count decremented to 0, the whole complex operation
1788  * is complete.
1789  *
1790  */
1791 
1792 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1793 {
1794 	conf_t *conf = mddev->private;
1795 	r10bio_t *r10_bio;
1796 	struct bio *biolist = NULL, *bio;
1797 	sector_t max_sector, nr_sectors;
1798 	int disk;
1799 	int i;
1800 	int max_sync;
1801 	int sync_blocks;
1802 
1803 	sector_t sectors_skipped = 0;
1804 	int chunks_skipped = 0;
1805 
1806 	if (!conf->r10buf_pool)
1807 		if (init_resync(conf))
1808 			return 0;
1809 
1810  skipped:
1811 	max_sector = mddev->dev_sectors;
1812 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1813 		max_sector = mddev->resync_max_sectors;
1814 	if (sector_nr >= max_sector) {
1815 		/* If we aborted, we need to abort the
1816 		 * sync on the 'current' bitmap chucks (there can
1817 		 * be several when recovering multiple devices).
1818 		 * as we may have started syncing it but not finished.
1819 		 * We can find the current address in
1820 		 * mddev->curr_resync, but for recovery,
1821 		 * we need to convert that to several
1822 		 * virtual addresses.
1823 		 */
1824 		if (mddev->curr_resync < max_sector) { /* aborted */
1825 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1826 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1827 						&sync_blocks, 1);
1828 			else for (i=0; i<conf->raid_disks; i++) {
1829 				sector_t sect =
1830 					raid10_find_virt(conf, mddev->curr_resync, i);
1831 				bitmap_end_sync(mddev->bitmap, sect,
1832 						&sync_blocks, 1);
1833 			}
1834 		} else /* completed sync */
1835 			conf->fullsync = 0;
1836 
1837 		bitmap_close_sync(mddev->bitmap);
1838 		close_sync(conf);
1839 		*skipped = 1;
1840 		return sectors_skipped;
1841 	}
1842 	if (chunks_skipped >= conf->raid_disks) {
1843 		/* if there has been nothing to do on any drive,
1844 		 * then there is nothing to do at all..
1845 		 */
1846 		*skipped = 1;
1847 		return (max_sector - sector_nr) + sectors_skipped;
1848 	}
1849 
1850 	if (max_sector > mddev->resync_max)
1851 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1852 
1853 	/* make sure whole request will fit in a chunk - if chunks
1854 	 * are meaningful
1855 	 */
1856 	if (conf->near_copies < conf->raid_disks &&
1857 	    max_sector > (sector_nr | conf->chunk_mask))
1858 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1859 	/*
1860 	 * If there is non-resync activity waiting for us then
1861 	 * put in a delay to throttle resync.
1862 	 */
1863 	if (!go_faster && conf->nr_waiting)
1864 		msleep_interruptible(1000);
1865 
1866 	/* Again, very different code for resync and recovery.
1867 	 * Both must result in an r10bio with a list of bios that
1868 	 * have bi_end_io, bi_sector, bi_bdev set,
1869 	 * and bi_private set to the r10bio.
1870 	 * For recovery, we may actually create several r10bios
1871 	 * with 2 bios in each, that correspond to the bios in the main one.
1872 	 * In this case, the subordinate r10bios link back through a
1873 	 * borrowed master_bio pointer, and the counter in the master
1874 	 * includes a ref from each subordinate.
1875 	 */
1876 	/* First, we decide what to do and set ->bi_end_io
1877 	 * To end_sync_read if we want to read, and
1878 	 * end_sync_write if we will want to write.
1879 	 */
1880 
1881 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1882 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1883 		/* recovery... the complicated one */
1884 		int j, k;
1885 		r10_bio = NULL;
1886 
1887 		for (i=0 ; i<conf->raid_disks; i++)
1888 			if (conf->mirrors[i].rdev &&
1889 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1890 				int still_degraded = 0;
1891 				/* want to reconstruct this device */
1892 				r10bio_t *rb2 = r10_bio;
1893 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1894 				int must_sync;
1895 				/* Unless we are doing a full sync, we only need
1896 				 * to recover the block if it is set in the bitmap
1897 				 */
1898 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1899 							      &sync_blocks, 1);
1900 				if (sync_blocks < max_sync)
1901 					max_sync = sync_blocks;
1902 				if (!must_sync &&
1903 				    !conf->fullsync) {
1904 					/* yep, skip the sync_blocks here, but don't assume
1905 					 * that there will never be anything to do here
1906 					 */
1907 					chunks_skipped = -1;
1908 					continue;
1909 				}
1910 
1911 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1912 				raise_barrier(conf, rb2 != NULL);
1913 				atomic_set(&r10_bio->remaining, 0);
1914 
1915 				r10_bio->master_bio = (struct bio*)rb2;
1916 				if (rb2)
1917 					atomic_inc(&rb2->remaining);
1918 				r10_bio->mddev = mddev;
1919 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1920 				r10_bio->sector = sect;
1921 
1922 				raid10_find_phys(conf, r10_bio);
1923 
1924 				/* Need to check if the array will still be
1925 				 * degraded
1926 				 */
1927 				for (j=0; j<conf->raid_disks; j++)
1928 					if (conf->mirrors[j].rdev == NULL ||
1929 					    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1930 						still_degraded = 1;
1931 						break;
1932 					}
1933 
1934 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1935 							      &sync_blocks, still_degraded);
1936 
1937 				for (j=0; j<conf->copies;j++) {
1938 					int d = r10_bio->devs[j].devnum;
1939 					if (conf->mirrors[d].rdev &&
1940 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1941 						/* This is where we read from */
1942 						bio = r10_bio->devs[0].bio;
1943 						bio->bi_next = biolist;
1944 						biolist = bio;
1945 						bio->bi_private = r10_bio;
1946 						bio->bi_end_io = end_sync_read;
1947 						bio->bi_rw = READ;
1948 						bio->bi_sector = r10_bio->devs[j].addr +
1949 							conf->mirrors[d].rdev->data_offset;
1950 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1951 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1952 						atomic_inc(&r10_bio->remaining);
1953 						/* and we write to 'i' */
1954 
1955 						for (k=0; k<conf->copies; k++)
1956 							if (r10_bio->devs[k].devnum == i)
1957 								break;
1958 						BUG_ON(k == conf->copies);
1959 						bio = r10_bio->devs[1].bio;
1960 						bio->bi_next = biolist;
1961 						biolist = bio;
1962 						bio->bi_private = r10_bio;
1963 						bio->bi_end_io = end_sync_write;
1964 						bio->bi_rw = WRITE;
1965 						bio->bi_sector = r10_bio->devs[k].addr +
1966 							conf->mirrors[i].rdev->data_offset;
1967 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1968 
1969 						r10_bio->devs[0].devnum = d;
1970 						r10_bio->devs[1].devnum = i;
1971 
1972 						break;
1973 					}
1974 				}
1975 				if (j == conf->copies) {
1976 					/* Cannot recover, so abort the recovery */
1977 					put_buf(r10_bio);
1978 					if (rb2)
1979 						atomic_dec(&rb2->remaining);
1980 					r10_bio = rb2;
1981 					if (!test_and_set_bit(MD_RECOVERY_INTR,
1982 							      &mddev->recovery))
1983 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1984 						       mdname(mddev));
1985 					break;
1986 				}
1987 			}
1988 		if (biolist == NULL) {
1989 			while (r10_bio) {
1990 				r10bio_t *rb2 = r10_bio;
1991 				r10_bio = (r10bio_t*) rb2->master_bio;
1992 				rb2->master_bio = NULL;
1993 				put_buf(rb2);
1994 			}
1995 			goto giveup;
1996 		}
1997 	} else {
1998 		/* resync. Schedule a read for every block at this virt offset */
1999 		int count = 0;
2000 
2001 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2002 
2003 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2004 				       &sync_blocks, mddev->degraded) &&
2005 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2006 			/* We can skip this block */
2007 			*skipped = 1;
2008 			return sync_blocks + sectors_skipped;
2009 		}
2010 		if (sync_blocks < max_sync)
2011 			max_sync = sync_blocks;
2012 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2013 
2014 		r10_bio->mddev = mddev;
2015 		atomic_set(&r10_bio->remaining, 0);
2016 		raise_barrier(conf, 0);
2017 		conf->next_resync = sector_nr;
2018 
2019 		r10_bio->master_bio = NULL;
2020 		r10_bio->sector = sector_nr;
2021 		set_bit(R10BIO_IsSync, &r10_bio->state);
2022 		raid10_find_phys(conf, r10_bio);
2023 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2024 
2025 		for (i=0; i<conf->copies; i++) {
2026 			int d = r10_bio->devs[i].devnum;
2027 			bio = r10_bio->devs[i].bio;
2028 			bio->bi_end_io = NULL;
2029 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2030 			if (conf->mirrors[d].rdev == NULL ||
2031 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2032 				continue;
2033 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2034 			atomic_inc(&r10_bio->remaining);
2035 			bio->bi_next = biolist;
2036 			biolist = bio;
2037 			bio->bi_private = r10_bio;
2038 			bio->bi_end_io = end_sync_read;
2039 			bio->bi_rw = READ;
2040 			bio->bi_sector = r10_bio->devs[i].addr +
2041 				conf->mirrors[d].rdev->data_offset;
2042 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2043 			count++;
2044 		}
2045 
2046 		if (count < 2) {
2047 			for (i=0; i<conf->copies; i++) {
2048 				int d = r10_bio->devs[i].devnum;
2049 				if (r10_bio->devs[i].bio->bi_end_io)
2050 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2051 			}
2052 			put_buf(r10_bio);
2053 			biolist = NULL;
2054 			goto giveup;
2055 		}
2056 	}
2057 
2058 	for (bio = biolist; bio ; bio=bio->bi_next) {
2059 
2060 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2061 		if (bio->bi_end_io)
2062 			bio->bi_flags |= 1 << BIO_UPTODATE;
2063 		bio->bi_vcnt = 0;
2064 		bio->bi_idx = 0;
2065 		bio->bi_phys_segments = 0;
2066 		bio->bi_size = 0;
2067 	}
2068 
2069 	nr_sectors = 0;
2070 	if (sector_nr + max_sync < max_sector)
2071 		max_sector = sector_nr + max_sync;
2072 	do {
2073 		struct page *page;
2074 		int len = PAGE_SIZE;
2075 		disk = 0;
2076 		if (sector_nr + (len>>9) > max_sector)
2077 			len = (max_sector - sector_nr) << 9;
2078 		if (len == 0)
2079 			break;
2080 		for (bio= biolist ; bio ; bio=bio->bi_next) {
2081 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2082 			if (bio_add_page(bio, page, len, 0) == 0) {
2083 				/* stop here */
2084 				struct bio *bio2;
2085 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2086 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2087 					/* remove last page from this bio */
2088 					bio2->bi_vcnt--;
2089 					bio2->bi_size -= len;
2090 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2091 				}
2092 				goto bio_full;
2093 			}
2094 			disk = i;
2095 		}
2096 		nr_sectors += len>>9;
2097 		sector_nr += len>>9;
2098 	} while (biolist->bi_vcnt < RESYNC_PAGES);
2099  bio_full:
2100 	r10_bio->sectors = nr_sectors;
2101 
2102 	while (biolist) {
2103 		bio = biolist;
2104 		biolist = biolist->bi_next;
2105 
2106 		bio->bi_next = NULL;
2107 		r10_bio = bio->bi_private;
2108 		r10_bio->sectors = nr_sectors;
2109 
2110 		if (bio->bi_end_io == end_sync_read) {
2111 			md_sync_acct(bio->bi_bdev, nr_sectors);
2112 			generic_make_request(bio);
2113 		}
2114 	}
2115 
2116 	if (sectors_skipped)
2117 		/* pretend they weren't skipped, it makes
2118 		 * no important difference in this case
2119 		 */
2120 		md_done_sync(mddev, sectors_skipped, 1);
2121 
2122 	return sectors_skipped + nr_sectors;
2123  giveup:
2124 	/* There is nowhere to write, so all non-sync
2125 	 * drives must be failed, so try the next chunk...
2126 	 */
2127 	if (sector_nr + max_sync < max_sector)
2128 		max_sector = sector_nr + max_sync;
2129 
2130 	sectors_skipped += (max_sector - sector_nr);
2131 	chunks_skipped ++;
2132 	sector_nr = max_sector;
2133 	goto skipped;
2134 }
2135 
2136 static sector_t
2137 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2138 {
2139 	sector_t size;
2140 	conf_t *conf = mddev->private;
2141 
2142 	if (!raid_disks)
2143 		raid_disks = mddev->raid_disks;
2144 	if (!sectors)
2145 		sectors = mddev->dev_sectors;
2146 
2147 	size = sectors >> conf->chunk_shift;
2148 	sector_div(size, conf->far_copies);
2149 	size = size * raid_disks;
2150 	sector_div(size, conf->near_copies);
2151 
2152 	return size << conf->chunk_shift;
2153 }
2154 
2155 static int run(mddev_t *mddev)
2156 {
2157 	conf_t *conf;
2158 	int i, disk_idx, chunk_size;
2159 	mirror_info_t *disk;
2160 	mdk_rdev_t *rdev;
2161 	int nc, fc, fo;
2162 	sector_t stride, size;
2163 
2164 	if (mddev->chunk_sectors < (PAGE_SIZE >> 9) ||
2165 	    !is_power_of_2(mddev->chunk_sectors)) {
2166 		printk(KERN_ERR "md/raid10: chunk size must be "
2167 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n", PAGE_SIZE);
2168 		return -EINVAL;
2169 	}
2170 
2171 	nc = mddev->layout & 255;
2172 	fc = (mddev->layout >> 8) & 255;
2173 	fo = mddev->layout & (1<<16);
2174 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2175 	    (mddev->layout >> 17)) {
2176 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2177 		       mdname(mddev), mddev->layout);
2178 		goto out;
2179 	}
2180 	/*
2181 	 * copy the already verified devices into our private RAID10
2182 	 * bookkeeping area. [whatever we allocate in run(),
2183 	 * should be freed in stop()]
2184 	 */
2185 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2186 	mddev->private = conf;
2187 	if (!conf) {
2188 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2189 			mdname(mddev));
2190 		goto out;
2191 	}
2192 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2193 				 GFP_KERNEL);
2194 	if (!conf->mirrors) {
2195 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2196 		       mdname(mddev));
2197 		goto out_free_conf;
2198 	}
2199 
2200 	conf->tmppage = alloc_page(GFP_KERNEL);
2201 	if (!conf->tmppage)
2202 		goto out_free_conf;
2203 
2204 	conf->raid_disks = mddev->raid_disks;
2205 	conf->near_copies = nc;
2206 	conf->far_copies = fc;
2207 	conf->copies = nc*fc;
2208 	conf->far_offset = fo;
2209 	conf->chunk_mask = mddev->chunk_sectors - 1;
2210 	conf->chunk_shift = ffz(~mddev->chunk_sectors);
2211 	size = mddev->dev_sectors >> conf->chunk_shift;
2212 	sector_div(size, fc);
2213 	size = size * conf->raid_disks;
2214 	sector_div(size, nc);
2215 	/* 'size' is now the number of chunks in the array */
2216 	/* calculate "used chunks per device" in 'stride' */
2217 	stride = size * conf->copies;
2218 
2219 	/* We need to round up when dividing by raid_disks to
2220 	 * get the stride size.
2221 	 */
2222 	stride += conf->raid_disks - 1;
2223 	sector_div(stride, conf->raid_disks);
2224 	mddev->dev_sectors = stride << conf->chunk_shift;
2225 
2226 	if (fo)
2227 		stride = 1;
2228 	else
2229 		sector_div(stride, fc);
2230 	conf->stride = stride << conf->chunk_shift;
2231 
2232 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2233 						r10bio_pool_free, conf);
2234 	if (!conf->r10bio_pool) {
2235 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2236 			mdname(mddev));
2237 		goto out_free_conf;
2238 	}
2239 
2240 	conf->mddev = mddev;
2241 	spin_lock_init(&conf->device_lock);
2242 	mddev->queue->queue_lock = &conf->device_lock;
2243 
2244 	chunk_size = mddev->chunk_sectors << 9;
2245 	blk_queue_io_min(mddev->queue, chunk_size);
2246 	if (conf->raid_disks % conf->near_copies)
2247 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2248 	else
2249 		blk_queue_io_opt(mddev->queue, chunk_size *
2250 				 (conf->raid_disks / conf->near_copies));
2251 
2252 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2253 		disk_idx = rdev->raid_disk;
2254 		if (disk_idx >= mddev->raid_disks
2255 		    || disk_idx < 0)
2256 			continue;
2257 		disk = conf->mirrors + disk_idx;
2258 
2259 		disk->rdev = rdev;
2260 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2261 				  rdev->data_offset << 9);
2262 		/* as we don't honour merge_bvec_fn, we must never risk
2263 		 * violating it, so limit max_segments to 1 lying
2264 		 * within a single page.
2265 		 */
2266 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2267 			blk_queue_max_segments(mddev->queue, 1);
2268 			blk_queue_segment_boundary(mddev->queue,
2269 						   PAGE_CACHE_SIZE - 1);
2270 		}
2271 
2272 		disk->head_position = 0;
2273 	}
2274 	INIT_LIST_HEAD(&conf->retry_list);
2275 
2276 	spin_lock_init(&conf->resync_lock);
2277 	init_waitqueue_head(&conf->wait_barrier);
2278 
2279 	/* need to check that every block has at least one working mirror */
2280 	if (!enough(conf)) {
2281 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2282 		       mdname(mddev));
2283 		goto out_free_conf;
2284 	}
2285 
2286 	mddev->degraded = 0;
2287 	for (i = 0; i < conf->raid_disks; i++) {
2288 
2289 		disk = conf->mirrors + i;
2290 
2291 		if (!disk->rdev ||
2292 		    !test_bit(In_sync, &disk->rdev->flags)) {
2293 			disk->head_position = 0;
2294 			mddev->degraded++;
2295 			if (disk->rdev)
2296 				conf->fullsync = 1;
2297 		}
2298 	}
2299 
2300 
2301 	mddev->thread = md_register_thread(raid10d, mddev, NULL);
2302 	if (!mddev->thread) {
2303 		printk(KERN_ERR
2304 		       "raid10: couldn't allocate thread for %s\n",
2305 		       mdname(mddev));
2306 		goto out_free_conf;
2307 	}
2308 
2309 	if (mddev->recovery_cp != MaxSector)
2310 		printk(KERN_NOTICE "raid10: %s is not clean"
2311 		       " -- starting background reconstruction\n",
2312 		       mdname(mddev));
2313 	printk(KERN_INFO
2314 		"raid10: raid set %s active with %d out of %d devices\n",
2315 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2316 		mddev->raid_disks);
2317 	/*
2318 	 * Ok, everything is just fine now
2319 	 */
2320 	md_set_array_sectors(mddev, raid10_size(mddev, 0, 0));
2321 	mddev->resync_max_sectors = raid10_size(mddev, 0, 0);
2322 
2323 	mddev->queue->unplug_fn = raid10_unplug;
2324 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2325 	mddev->queue->backing_dev_info.congested_data = mddev;
2326 
2327 	/* Calculate max read-ahead size.
2328 	 * We need to readahead at least twice a whole stripe....
2329 	 * maybe...
2330 	 */
2331 	{
2332 		int stripe = conf->raid_disks *
2333 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2334 		stripe /= conf->near_copies;
2335 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2336 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2337 	}
2338 
2339 	if (conf->near_copies < mddev->raid_disks)
2340 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2341 	md_integrity_register(mddev);
2342 	return 0;
2343 
2344 out_free_conf:
2345 	if (conf->r10bio_pool)
2346 		mempool_destroy(conf->r10bio_pool);
2347 	safe_put_page(conf->tmppage);
2348 	kfree(conf->mirrors);
2349 	kfree(conf);
2350 	mddev->private = NULL;
2351 out:
2352 	return -EIO;
2353 }
2354 
2355 static int stop(mddev_t *mddev)
2356 {
2357 	conf_t *conf = mddev->private;
2358 
2359 	raise_barrier(conf, 0);
2360 	lower_barrier(conf);
2361 
2362 	md_unregister_thread(mddev->thread);
2363 	mddev->thread = NULL;
2364 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2365 	if (conf->r10bio_pool)
2366 		mempool_destroy(conf->r10bio_pool);
2367 	kfree(conf->mirrors);
2368 	kfree(conf);
2369 	mddev->private = NULL;
2370 	return 0;
2371 }
2372 
2373 static void raid10_quiesce(mddev_t *mddev, int state)
2374 {
2375 	conf_t *conf = mddev->private;
2376 
2377 	switch(state) {
2378 	case 1:
2379 		raise_barrier(conf, 0);
2380 		break;
2381 	case 0:
2382 		lower_barrier(conf);
2383 		break;
2384 	}
2385 }
2386 
2387 static struct mdk_personality raid10_personality =
2388 {
2389 	.name		= "raid10",
2390 	.level		= 10,
2391 	.owner		= THIS_MODULE,
2392 	.make_request	= make_request,
2393 	.run		= run,
2394 	.stop		= stop,
2395 	.status		= status,
2396 	.error_handler	= error,
2397 	.hot_add_disk	= raid10_add_disk,
2398 	.hot_remove_disk= raid10_remove_disk,
2399 	.spare_active	= raid10_spare_active,
2400 	.sync_request	= sync_request,
2401 	.quiesce	= raid10_quiesce,
2402 	.size		= raid10_size,
2403 };
2404 
2405 static int __init raid_init(void)
2406 {
2407 	return register_md_personality(&raid10_personality);
2408 }
2409 
2410 static void raid_exit(void)
2411 {
2412 	unregister_md_personality(&raid10_personality);
2413 }
2414 
2415 module_init(raid_init);
2416 module_exit(raid_exit);
2417 MODULE_LICENSE("GPL");
2418 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2419 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2420 MODULE_ALIAS("md-raid10");
2421 MODULE_ALIAS("md-level-10");
2422