1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * use_far_sets_bugfixed (stored in bit 18 of layout ) 43 * 44 * The data to be stored is divided into chunks using chunksize. Each device 45 * is divided into far_copies sections. In each section, chunks are laid out 46 * in a style similar to raid0, but near_copies copies of each chunk is stored 47 * (each on a different drive). The starting device for each section is offset 48 * near_copies from the starting device of the previous section. Thus there 49 * are (near_copies * far_copies) of each chunk, and each is on a different 50 * drive. near_copies and far_copies must be at least one, and their product 51 * is at most raid_disks. 52 * 53 * If far_offset is true, then the far_copies are handled a bit differently. 54 * The copies are still in different stripes, but instead of being very far 55 * apart on disk, there are adjacent stripes. 56 * 57 * The far and offset algorithms are handled slightly differently if 58 * 'use_far_sets' is true. In this case, the array's devices are grouped into 59 * sets that are (near_copies * far_copies) in size. The far copied stripes 60 * are still shifted by 'near_copies' devices, but this shifting stays confined 61 * to the set rather than the entire array. This is done to improve the number 62 * of device combinations that can fail without causing the array to fail. 63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 64 * on a device): 65 * A B C D A B C D E 66 * ... ... 67 * D A B C E A B C D 68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 69 * [A B] [C D] [A B] [C D E] 70 * |...| |...| |...| | ... | 71 * [B A] [D C] [B A] [E C D] 72 */ 73 74 /* 75 * Number of guaranteed r10bios in case of extreme VM load: 76 */ 77 #define NR_RAID10_BIOS 256 78 79 /* when we get a read error on a read-only array, we redirect to another 80 * device without failing the first device, or trying to over-write to 81 * correct the read error. To keep track of bad blocks on a per-bio 82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 83 */ 84 #define IO_BLOCKED ((struct bio *)1) 85 /* When we successfully write to a known bad-block, we need to remove the 86 * bad-block marking which must be done from process context. So we record 87 * the success by setting devs[n].bio to IO_MADE_GOOD 88 */ 89 #define IO_MADE_GOOD ((struct bio *)2) 90 91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 92 93 /* When there are this many requests queued to be written by 94 * the raid10 thread, we become 'congested' to provide back-pressure 95 * for writeback. 96 */ 97 static int max_queued_requests = 1024; 98 99 static void allow_barrier(struct r10conf *conf); 100 static void lower_barrier(struct r10conf *conf); 101 static int _enough(struct r10conf *conf, int previous, int ignore); 102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 103 int *skipped); 104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 105 static void end_reshape_write(struct bio *bio); 106 static void end_reshape(struct r10conf *conf); 107 108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 109 { 110 struct r10conf *conf = data; 111 int size = offsetof(struct r10bio, devs[conf->copies]); 112 113 /* allocate a r10bio with room for raid_disks entries in the 114 * bios array */ 115 return kzalloc(size, gfp_flags); 116 } 117 118 static void r10bio_pool_free(void *r10_bio, void *data) 119 { 120 kfree(r10_bio); 121 } 122 123 /* Maximum size of each resync request */ 124 #define RESYNC_BLOCK_SIZE (64*1024) 125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 126 /* amount of memory to reserve for resync requests */ 127 #define RESYNC_WINDOW (1024*1024) 128 /* maximum number of concurrent requests, memory permitting */ 129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 130 131 /* 132 * When performing a resync, we need to read and compare, so 133 * we need as many pages are there are copies. 134 * When performing a recovery, we need 2 bios, one for read, 135 * one for write (we recover only one drive per r10buf) 136 * 137 */ 138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 139 { 140 struct r10conf *conf = data; 141 struct page *page; 142 struct r10bio *r10_bio; 143 struct bio *bio; 144 int i, j; 145 int nalloc; 146 147 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 148 if (!r10_bio) 149 return NULL; 150 151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 153 nalloc = conf->copies; /* resync */ 154 else 155 nalloc = 2; /* recovery */ 156 157 /* 158 * Allocate bios. 159 */ 160 for (j = nalloc ; j-- ; ) { 161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 162 if (!bio) 163 goto out_free_bio; 164 r10_bio->devs[j].bio = bio; 165 if (!conf->have_replacement) 166 continue; 167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 168 if (!bio) 169 goto out_free_bio; 170 r10_bio->devs[j].repl_bio = bio; 171 } 172 /* 173 * Allocate RESYNC_PAGES data pages and attach them 174 * where needed. 175 */ 176 for (j = 0 ; j < nalloc; j++) { 177 struct bio *rbio = r10_bio->devs[j].repl_bio; 178 bio = r10_bio->devs[j].bio; 179 for (i = 0; i < RESYNC_PAGES; i++) { 180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 181 &conf->mddev->recovery)) { 182 /* we can share bv_page's during recovery 183 * and reshape */ 184 struct bio *rbio = r10_bio->devs[0].bio; 185 page = rbio->bi_io_vec[i].bv_page; 186 get_page(page); 187 } else 188 page = alloc_page(gfp_flags); 189 if (unlikely(!page)) 190 goto out_free_pages; 191 192 bio->bi_io_vec[i].bv_page = page; 193 if (rbio) 194 rbio->bi_io_vec[i].bv_page = page; 195 } 196 } 197 198 return r10_bio; 199 200 out_free_pages: 201 for ( ; i > 0 ; i--) 202 safe_put_page(bio->bi_io_vec[i-1].bv_page); 203 while (j--) 204 for (i = 0; i < RESYNC_PAGES ; i++) 205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 206 j = 0; 207 out_free_bio: 208 for ( ; j < nalloc; j++) { 209 if (r10_bio->devs[j].bio) 210 bio_put(r10_bio->devs[j].bio); 211 if (r10_bio->devs[j].repl_bio) 212 bio_put(r10_bio->devs[j].repl_bio); 213 } 214 r10bio_pool_free(r10_bio, conf); 215 return NULL; 216 } 217 218 static void r10buf_pool_free(void *__r10_bio, void *data) 219 { 220 int i; 221 struct r10conf *conf = data; 222 struct r10bio *r10bio = __r10_bio; 223 int j; 224 225 for (j=0; j < conf->copies; j++) { 226 struct bio *bio = r10bio->devs[j].bio; 227 if (bio) { 228 for (i = 0; i < RESYNC_PAGES; i++) { 229 safe_put_page(bio->bi_io_vec[i].bv_page); 230 bio->bi_io_vec[i].bv_page = NULL; 231 } 232 bio_put(bio); 233 } 234 bio = r10bio->devs[j].repl_bio; 235 if (bio) 236 bio_put(bio); 237 } 238 r10bio_pool_free(r10bio, conf); 239 } 240 241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 242 { 243 int i; 244 245 for (i = 0; i < conf->copies; i++) { 246 struct bio **bio = & r10_bio->devs[i].bio; 247 if (!BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 bio = &r10_bio->devs[i].repl_bio; 251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 252 bio_put(*bio); 253 *bio = NULL; 254 } 255 } 256 257 static void free_r10bio(struct r10bio *r10_bio) 258 { 259 struct r10conf *conf = r10_bio->mddev->private; 260 261 put_all_bios(conf, r10_bio); 262 mempool_free(r10_bio, conf->r10bio_pool); 263 } 264 265 static void put_buf(struct r10bio *r10_bio) 266 { 267 struct r10conf *conf = r10_bio->mddev->private; 268 269 mempool_free(r10_bio, conf->r10buf_pool); 270 271 lower_barrier(conf); 272 } 273 274 static void reschedule_retry(struct r10bio *r10_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r10_bio->mddev; 278 struct r10conf *conf = mddev->private; 279 280 spin_lock_irqsave(&conf->device_lock, flags); 281 list_add(&r10_bio->retry_list, &conf->retry_list); 282 conf->nr_queued ++; 283 spin_unlock_irqrestore(&conf->device_lock, flags); 284 285 /* wake up frozen array... */ 286 wake_up(&conf->wait_barrier); 287 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void raid_end_bio_io(struct r10bio *r10_bio) 297 { 298 struct bio *bio = r10_bio->master_bio; 299 int done; 300 struct r10conf *conf = r10_bio->mddev->private; 301 302 if (bio->bi_phys_segments) { 303 unsigned long flags; 304 spin_lock_irqsave(&conf->device_lock, flags); 305 bio->bi_phys_segments--; 306 done = (bio->bi_phys_segments == 0); 307 spin_unlock_irqrestore(&conf->device_lock, flags); 308 } else 309 done = 1; 310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 311 bio->bi_error = -EIO; 312 if (done) { 313 bio_endio(bio); 314 /* 315 * Wake up any possible resync thread that waits for the device 316 * to go idle. 317 */ 318 allow_barrier(conf); 319 } 320 free_r10bio(r10_bio); 321 } 322 323 /* 324 * Update disk head position estimator based on IRQ completion info. 325 */ 326 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 327 { 328 struct r10conf *conf = r10_bio->mddev->private; 329 330 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 331 r10_bio->devs[slot].addr + (r10_bio->sectors); 332 } 333 334 /* 335 * Find the disk number which triggered given bio 336 */ 337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 338 struct bio *bio, int *slotp, int *replp) 339 { 340 int slot; 341 int repl = 0; 342 343 for (slot = 0; slot < conf->copies; slot++) { 344 if (r10_bio->devs[slot].bio == bio) 345 break; 346 if (r10_bio->devs[slot].repl_bio == bio) { 347 repl = 1; 348 break; 349 } 350 } 351 352 BUG_ON(slot == conf->copies); 353 update_head_pos(slot, r10_bio); 354 355 if (slotp) 356 *slotp = slot; 357 if (replp) 358 *replp = repl; 359 return r10_bio->devs[slot].devnum; 360 } 361 362 static void raid10_end_read_request(struct bio *bio) 363 { 364 int uptodate = !bio->bi_error; 365 struct r10bio *r10_bio = bio->bi_private; 366 int slot, dev; 367 struct md_rdev *rdev; 368 struct r10conf *conf = r10_bio->mddev->private; 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 396 rdev->raid_disk)) 397 uptodate = 1; 398 } 399 if (uptodate) { 400 raid_end_bio_io(r10_bio); 401 rdev_dec_pending(rdev, conf->mddev); 402 } else { 403 /* 404 * oops, read error - keep the refcount on the rdev 405 */ 406 char b[BDEVNAME_SIZE]; 407 printk_ratelimited(KERN_ERR 408 "md/raid10:%s: %s: rescheduling sector %llu\n", 409 mdname(conf->mddev), 410 bdevname(rdev->bdev, b), 411 (unsigned long long)r10_bio->sector); 412 set_bit(R10BIO_ReadError, &r10_bio->state); 413 reschedule_retry(r10_bio); 414 } 415 } 416 417 static void close_write(struct r10bio *r10_bio) 418 { 419 /* clear the bitmap if all writes complete successfully */ 420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 421 r10_bio->sectors, 422 !test_bit(R10BIO_Degraded, &r10_bio->state), 423 0); 424 md_write_end(r10_bio->mddev); 425 } 426 427 static void one_write_done(struct r10bio *r10_bio) 428 { 429 if (atomic_dec_and_test(&r10_bio->remaining)) { 430 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 431 reschedule_retry(r10_bio); 432 else { 433 close_write(r10_bio); 434 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 435 reschedule_retry(r10_bio); 436 else 437 raid_end_bio_io(r10_bio); 438 } 439 } 440 } 441 442 static void raid10_end_write_request(struct bio *bio) 443 { 444 struct r10bio *r10_bio = bio->bi_private; 445 int dev; 446 int dec_rdev = 1; 447 struct r10conf *conf = r10_bio->mddev->private; 448 int slot, repl; 449 struct md_rdev *rdev = NULL; 450 451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 452 453 if (repl) 454 rdev = conf->mirrors[dev].replacement; 455 if (!rdev) { 456 smp_rmb(); 457 repl = 0; 458 rdev = conf->mirrors[dev].rdev; 459 } 460 /* 461 * this branch is our 'one mirror IO has finished' event handler: 462 */ 463 if (bio->bi_error) { 464 if (repl) 465 /* Never record new bad blocks to replacement, 466 * just fail it. 467 */ 468 md_error(rdev->mddev, rdev); 469 else { 470 set_bit(WriteErrorSeen, &rdev->flags); 471 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 472 set_bit(MD_RECOVERY_NEEDED, 473 &rdev->mddev->recovery); 474 set_bit(R10BIO_WriteError, &r10_bio->state); 475 dec_rdev = 0; 476 } 477 } else { 478 /* 479 * Set R10BIO_Uptodate in our master bio, so that 480 * we will return a good error code for to the higher 481 * levels even if IO on some other mirrored buffer fails. 482 * 483 * The 'master' represents the composite IO operation to 484 * user-side. So if something waits for IO, then it will 485 * wait for the 'master' bio. 486 */ 487 sector_t first_bad; 488 int bad_sectors; 489 490 /* 491 * Do not set R10BIO_Uptodate if the current device is 492 * rebuilding or Faulty. This is because we cannot use 493 * such device for properly reading the data back (we could 494 * potentially use it, if the current write would have felt 495 * before rdev->recovery_offset, but for simplicity we don't 496 * check this here. 497 */ 498 if (test_bit(In_sync, &rdev->flags) && 499 !test_bit(Faulty, &rdev->flags)) 500 set_bit(R10BIO_Uptodate, &r10_bio->state); 501 502 /* Maybe we can clear some bad blocks. */ 503 if (is_badblock(rdev, 504 r10_bio->devs[slot].addr, 505 r10_bio->sectors, 506 &first_bad, &bad_sectors)) { 507 bio_put(bio); 508 if (repl) 509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 510 else 511 r10_bio->devs[slot].bio = IO_MADE_GOOD; 512 dec_rdev = 0; 513 set_bit(R10BIO_MadeGood, &r10_bio->state); 514 } 515 } 516 517 /* 518 * 519 * Let's see if all mirrored write operations have finished 520 * already. 521 */ 522 one_write_done(r10_bio); 523 if (dec_rdev) 524 rdev_dec_pending(rdev, conf->mddev); 525 } 526 527 /* 528 * RAID10 layout manager 529 * As well as the chunksize and raid_disks count, there are two 530 * parameters: near_copies and far_copies. 531 * near_copies * far_copies must be <= raid_disks. 532 * Normally one of these will be 1. 533 * If both are 1, we get raid0. 534 * If near_copies == raid_disks, we get raid1. 535 * 536 * Chunks are laid out in raid0 style with near_copies copies of the 537 * first chunk, followed by near_copies copies of the next chunk and 538 * so on. 539 * If far_copies > 1, then after 1/far_copies of the array has been assigned 540 * as described above, we start again with a device offset of near_copies. 541 * So we effectively have another copy of the whole array further down all 542 * the drives, but with blocks on different drives. 543 * With this layout, and block is never stored twice on the one device. 544 * 545 * raid10_find_phys finds the sector offset of a given virtual sector 546 * on each device that it is on. 547 * 548 * raid10_find_virt does the reverse mapping, from a device and a 549 * sector offset to a virtual address 550 */ 551 552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 553 { 554 int n,f; 555 sector_t sector; 556 sector_t chunk; 557 sector_t stripe; 558 int dev; 559 int slot = 0; 560 int last_far_set_start, last_far_set_size; 561 562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 563 last_far_set_start *= geo->far_set_size; 564 565 last_far_set_size = geo->far_set_size; 566 last_far_set_size += (geo->raid_disks % geo->far_set_size); 567 568 /* now calculate first sector/dev */ 569 chunk = r10bio->sector >> geo->chunk_shift; 570 sector = r10bio->sector & geo->chunk_mask; 571 572 chunk *= geo->near_copies; 573 stripe = chunk; 574 dev = sector_div(stripe, geo->raid_disks); 575 if (geo->far_offset) 576 stripe *= geo->far_copies; 577 578 sector += stripe << geo->chunk_shift; 579 580 /* and calculate all the others */ 581 for (n = 0; n < geo->near_copies; n++) { 582 int d = dev; 583 int set; 584 sector_t s = sector; 585 r10bio->devs[slot].devnum = d; 586 r10bio->devs[slot].addr = s; 587 slot++; 588 589 for (f = 1; f < geo->far_copies; f++) { 590 set = d / geo->far_set_size; 591 d += geo->near_copies; 592 593 if ((geo->raid_disks % geo->far_set_size) && 594 (d > last_far_set_start)) { 595 d -= last_far_set_start; 596 d %= last_far_set_size; 597 d += last_far_set_start; 598 } else { 599 d %= geo->far_set_size; 600 d += geo->far_set_size * set; 601 } 602 s += geo->stride; 603 r10bio->devs[slot].devnum = d; 604 r10bio->devs[slot].addr = s; 605 slot++; 606 } 607 dev++; 608 if (dev >= geo->raid_disks) { 609 dev = 0; 610 sector += (geo->chunk_mask + 1); 611 } 612 } 613 } 614 615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 616 { 617 struct geom *geo = &conf->geo; 618 619 if (conf->reshape_progress != MaxSector && 620 ((r10bio->sector >= conf->reshape_progress) != 621 conf->mddev->reshape_backwards)) { 622 set_bit(R10BIO_Previous, &r10bio->state); 623 geo = &conf->prev; 624 } else 625 clear_bit(R10BIO_Previous, &r10bio->state); 626 627 __raid10_find_phys(geo, r10bio); 628 } 629 630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 631 { 632 sector_t offset, chunk, vchunk; 633 /* Never use conf->prev as this is only called during resync 634 * or recovery, so reshape isn't happening 635 */ 636 struct geom *geo = &conf->geo; 637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 638 int far_set_size = geo->far_set_size; 639 int last_far_set_start; 640 641 if (geo->raid_disks % geo->far_set_size) { 642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 643 last_far_set_start *= geo->far_set_size; 644 645 if (dev >= last_far_set_start) { 646 far_set_size = geo->far_set_size; 647 far_set_size += (geo->raid_disks % geo->far_set_size); 648 far_set_start = last_far_set_start; 649 } 650 } 651 652 offset = sector & geo->chunk_mask; 653 if (geo->far_offset) { 654 int fc; 655 chunk = sector >> geo->chunk_shift; 656 fc = sector_div(chunk, geo->far_copies); 657 dev -= fc * geo->near_copies; 658 if (dev < far_set_start) 659 dev += far_set_size; 660 } else { 661 while (sector >= geo->stride) { 662 sector -= geo->stride; 663 if (dev < (geo->near_copies + far_set_start)) 664 dev += far_set_size - geo->near_copies; 665 else 666 dev -= geo->near_copies; 667 } 668 chunk = sector >> geo->chunk_shift; 669 } 670 vchunk = chunk * geo->raid_disks + dev; 671 sector_div(vchunk, geo->near_copies); 672 return (vchunk << geo->chunk_shift) + offset; 673 } 674 675 /* 676 * This routine returns the disk from which the requested read should 677 * be done. There is a per-array 'next expected sequential IO' sector 678 * number - if this matches on the next IO then we use the last disk. 679 * There is also a per-disk 'last know head position' sector that is 680 * maintained from IRQ contexts, both the normal and the resync IO 681 * completion handlers update this position correctly. If there is no 682 * perfect sequential match then we pick the disk whose head is closest. 683 * 684 * If there are 2 mirrors in the same 2 devices, performance degrades 685 * because position is mirror, not device based. 686 * 687 * The rdev for the device selected will have nr_pending incremented. 688 */ 689 690 /* 691 * FIXME: possibly should rethink readbalancing and do it differently 692 * depending on near_copies / far_copies geometry. 693 */ 694 static struct md_rdev *read_balance(struct r10conf *conf, 695 struct r10bio *r10_bio, 696 int *max_sectors) 697 { 698 const sector_t this_sector = r10_bio->sector; 699 int disk, slot; 700 int sectors = r10_bio->sectors; 701 int best_good_sectors; 702 sector_t new_distance, best_dist; 703 struct md_rdev *best_rdev, *rdev = NULL; 704 int do_balance; 705 int best_slot; 706 struct geom *geo = &conf->geo; 707 708 raid10_find_phys(conf, r10_bio); 709 rcu_read_lock(); 710 retry: 711 sectors = r10_bio->sectors; 712 best_slot = -1; 713 best_rdev = NULL; 714 best_dist = MaxSector; 715 best_good_sectors = 0; 716 do_balance = 1; 717 /* 718 * Check if we can balance. We can balance on the whole 719 * device if no resync is going on (recovery is ok), or below 720 * the resync window. We take the first readable disk when 721 * above the resync window. 722 */ 723 if (conf->mddev->recovery_cp < MaxSector 724 && (this_sector + sectors >= conf->next_resync)) 725 do_balance = 0; 726 727 for (slot = 0; slot < conf->copies ; slot++) { 728 sector_t first_bad; 729 int bad_sectors; 730 sector_t dev_sector; 731 732 if (r10_bio->devs[slot].bio == IO_BLOCKED) 733 continue; 734 disk = r10_bio->devs[slot].devnum; 735 rdev = rcu_dereference(conf->mirrors[disk].replacement); 736 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 737 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 738 rdev = rcu_dereference(conf->mirrors[disk].rdev); 739 if (rdev == NULL || 740 test_bit(Faulty, &rdev->flags)) 741 continue; 742 if (!test_bit(In_sync, &rdev->flags) && 743 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 744 continue; 745 746 dev_sector = r10_bio->devs[slot].addr; 747 if (is_badblock(rdev, dev_sector, sectors, 748 &first_bad, &bad_sectors)) { 749 if (best_dist < MaxSector) 750 /* Already have a better slot */ 751 continue; 752 if (first_bad <= dev_sector) { 753 /* Cannot read here. If this is the 754 * 'primary' device, then we must not read 755 * beyond 'bad_sectors' from another device. 756 */ 757 bad_sectors -= (dev_sector - first_bad); 758 if (!do_balance && sectors > bad_sectors) 759 sectors = bad_sectors; 760 if (best_good_sectors > sectors) 761 best_good_sectors = sectors; 762 } else { 763 sector_t good_sectors = 764 first_bad - dev_sector; 765 if (good_sectors > best_good_sectors) { 766 best_good_sectors = good_sectors; 767 best_slot = slot; 768 best_rdev = rdev; 769 } 770 if (!do_balance) 771 /* Must read from here */ 772 break; 773 } 774 continue; 775 } else 776 best_good_sectors = sectors; 777 778 if (!do_balance) 779 break; 780 781 /* This optimisation is debatable, and completely destroys 782 * sequential read speed for 'far copies' arrays. So only 783 * keep it for 'near' arrays, and review those later. 784 */ 785 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 786 break; 787 788 /* for far > 1 always use the lowest address */ 789 if (geo->far_copies > 1) 790 new_distance = r10_bio->devs[slot].addr; 791 else 792 new_distance = abs(r10_bio->devs[slot].addr - 793 conf->mirrors[disk].head_position); 794 if (new_distance < best_dist) { 795 best_dist = new_distance; 796 best_slot = slot; 797 best_rdev = rdev; 798 } 799 } 800 if (slot >= conf->copies) { 801 slot = best_slot; 802 rdev = best_rdev; 803 } 804 805 if (slot >= 0) { 806 atomic_inc(&rdev->nr_pending); 807 if (test_bit(Faulty, &rdev->flags)) { 808 /* Cannot risk returning a device that failed 809 * before we inc'ed nr_pending 810 */ 811 rdev_dec_pending(rdev, conf->mddev); 812 goto retry; 813 } 814 r10_bio->read_slot = slot; 815 } else 816 rdev = NULL; 817 rcu_read_unlock(); 818 *max_sectors = best_good_sectors; 819 820 return rdev; 821 } 822 823 static int raid10_congested(struct mddev *mddev, int bits) 824 { 825 struct r10conf *conf = mddev->private; 826 int i, ret = 0; 827 828 if ((bits & (1 << WB_async_congested)) && 829 conf->pending_count >= max_queued_requests) 830 return 1; 831 832 rcu_read_lock(); 833 for (i = 0; 834 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 835 && ret == 0; 836 i++) { 837 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 838 if (rdev && !test_bit(Faulty, &rdev->flags)) { 839 struct request_queue *q = bdev_get_queue(rdev->bdev); 840 841 ret |= bdi_congested(&q->backing_dev_info, bits); 842 } 843 } 844 rcu_read_unlock(); 845 return ret; 846 } 847 848 static void flush_pending_writes(struct r10conf *conf) 849 { 850 /* Any writes that have been queued but are awaiting 851 * bitmap updates get flushed here. 852 */ 853 spin_lock_irq(&conf->device_lock); 854 855 if (conf->pending_bio_list.head) { 856 struct bio *bio; 857 bio = bio_list_get(&conf->pending_bio_list); 858 conf->pending_count = 0; 859 spin_unlock_irq(&conf->device_lock); 860 /* flush any pending bitmap writes to disk 861 * before proceeding w/ I/O */ 862 bitmap_unplug(conf->mddev->bitmap); 863 wake_up(&conf->wait_barrier); 864 865 while (bio) { /* submit pending writes */ 866 struct bio *next = bio->bi_next; 867 bio->bi_next = NULL; 868 if (unlikely((bio->bi_rw & REQ_DISCARD) && 869 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 870 /* Just ignore it */ 871 bio_endio(bio); 872 else 873 generic_make_request(bio); 874 bio = next; 875 } 876 } else 877 spin_unlock_irq(&conf->device_lock); 878 } 879 880 /* Barriers.... 881 * Sometimes we need to suspend IO while we do something else, 882 * either some resync/recovery, or reconfigure the array. 883 * To do this we raise a 'barrier'. 884 * The 'barrier' is a counter that can be raised multiple times 885 * to count how many activities are happening which preclude 886 * normal IO. 887 * We can only raise the barrier if there is no pending IO. 888 * i.e. if nr_pending == 0. 889 * We choose only to raise the barrier if no-one is waiting for the 890 * barrier to go down. This means that as soon as an IO request 891 * is ready, no other operations which require a barrier will start 892 * until the IO request has had a chance. 893 * 894 * So: regular IO calls 'wait_barrier'. When that returns there 895 * is no backgroup IO happening, It must arrange to call 896 * allow_barrier when it has finished its IO. 897 * backgroup IO calls must call raise_barrier. Once that returns 898 * there is no normal IO happeing. It must arrange to call 899 * lower_barrier when the particular background IO completes. 900 */ 901 902 static void raise_barrier(struct r10conf *conf, int force) 903 { 904 BUG_ON(force && !conf->barrier); 905 spin_lock_irq(&conf->resync_lock); 906 907 /* Wait until no block IO is waiting (unless 'force') */ 908 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 909 conf->resync_lock); 910 911 /* block any new IO from starting */ 912 conf->barrier++; 913 914 /* Now wait for all pending IO to complete */ 915 wait_event_lock_irq(conf->wait_barrier, 916 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 917 conf->resync_lock); 918 919 spin_unlock_irq(&conf->resync_lock); 920 } 921 922 static void lower_barrier(struct r10conf *conf) 923 { 924 unsigned long flags; 925 spin_lock_irqsave(&conf->resync_lock, flags); 926 conf->barrier--; 927 spin_unlock_irqrestore(&conf->resync_lock, flags); 928 wake_up(&conf->wait_barrier); 929 } 930 931 static void wait_barrier(struct r10conf *conf) 932 { 933 spin_lock_irq(&conf->resync_lock); 934 if (conf->barrier) { 935 conf->nr_waiting++; 936 /* Wait for the barrier to drop. 937 * However if there are already pending 938 * requests (preventing the barrier from 939 * rising completely), and the 940 * pre-process bio queue isn't empty, 941 * then don't wait, as we need to empty 942 * that queue to get the nr_pending 943 * count down. 944 */ 945 wait_event_lock_irq(conf->wait_barrier, 946 !conf->barrier || 947 (conf->nr_pending && 948 current->bio_list && 949 !bio_list_empty(current->bio_list)), 950 conf->resync_lock); 951 conf->nr_waiting--; 952 } 953 conf->nr_pending++; 954 spin_unlock_irq(&conf->resync_lock); 955 } 956 957 static void allow_barrier(struct r10conf *conf) 958 { 959 unsigned long flags; 960 spin_lock_irqsave(&conf->resync_lock, flags); 961 conf->nr_pending--; 962 spin_unlock_irqrestore(&conf->resync_lock, flags); 963 wake_up(&conf->wait_barrier); 964 } 965 966 static void freeze_array(struct r10conf *conf, int extra) 967 { 968 /* stop syncio and normal IO and wait for everything to 969 * go quiet. 970 * We increment barrier and nr_waiting, and then 971 * wait until nr_pending match nr_queued+extra 972 * This is called in the context of one normal IO request 973 * that has failed. Thus any sync request that might be pending 974 * will be blocked by nr_pending, and we need to wait for 975 * pending IO requests to complete or be queued for re-try. 976 * Thus the number queued (nr_queued) plus this request (extra) 977 * must match the number of pending IOs (nr_pending) before 978 * we continue. 979 */ 980 spin_lock_irq(&conf->resync_lock); 981 conf->barrier++; 982 conf->nr_waiting++; 983 wait_event_lock_irq_cmd(conf->wait_barrier, 984 conf->nr_pending == conf->nr_queued+extra, 985 conf->resync_lock, 986 flush_pending_writes(conf)); 987 988 spin_unlock_irq(&conf->resync_lock); 989 } 990 991 static void unfreeze_array(struct r10conf *conf) 992 { 993 /* reverse the effect of the freeze */ 994 spin_lock_irq(&conf->resync_lock); 995 conf->barrier--; 996 conf->nr_waiting--; 997 wake_up(&conf->wait_barrier); 998 spin_unlock_irq(&conf->resync_lock); 999 } 1000 1001 static sector_t choose_data_offset(struct r10bio *r10_bio, 1002 struct md_rdev *rdev) 1003 { 1004 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1005 test_bit(R10BIO_Previous, &r10_bio->state)) 1006 return rdev->data_offset; 1007 else 1008 return rdev->new_data_offset; 1009 } 1010 1011 struct raid10_plug_cb { 1012 struct blk_plug_cb cb; 1013 struct bio_list pending; 1014 int pending_cnt; 1015 }; 1016 1017 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1018 { 1019 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1020 cb); 1021 struct mddev *mddev = plug->cb.data; 1022 struct r10conf *conf = mddev->private; 1023 struct bio *bio; 1024 1025 if (from_schedule || current->bio_list) { 1026 spin_lock_irq(&conf->device_lock); 1027 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1028 conf->pending_count += plug->pending_cnt; 1029 spin_unlock_irq(&conf->device_lock); 1030 wake_up(&conf->wait_barrier); 1031 md_wakeup_thread(mddev->thread); 1032 kfree(plug); 1033 return; 1034 } 1035 1036 /* we aren't scheduling, so we can do the write-out directly. */ 1037 bio = bio_list_get(&plug->pending); 1038 bitmap_unplug(mddev->bitmap); 1039 wake_up(&conf->wait_barrier); 1040 1041 while (bio) { /* submit pending writes */ 1042 struct bio *next = bio->bi_next; 1043 bio->bi_next = NULL; 1044 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1045 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1046 /* Just ignore it */ 1047 bio_endio(bio); 1048 else 1049 generic_make_request(bio); 1050 bio = next; 1051 } 1052 kfree(plug); 1053 } 1054 1055 static void __make_request(struct mddev *mddev, struct bio *bio) 1056 { 1057 struct r10conf *conf = mddev->private; 1058 struct r10bio *r10_bio; 1059 struct bio *read_bio; 1060 int i; 1061 const int rw = bio_data_dir(bio); 1062 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1063 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1064 const unsigned long do_discard = (bio->bi_rw 1065 & (REQ_DISCARD | REQ_SECURE)); 1066 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1067 unsigned long flags; 1068 struct md_rdev *blocked_rdev; 1069 struct blk_plug_cb *cb; 1070 struct raid10_plug_cb *plug = NULL; 1071 int sectors_handled; 1072 int max_sectors; 1073 int sectors; 1074 1075 /* 1076 * Register the new request and wait if the reconstruction 1077 * thread has put up a bar for new requests. 1078 * Continue immediately if no resync is active currently. 1079 */ 1080 wait_barrier(conf); 1081 1082 sectors = bio_sectors(bio); 1083 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1084 bio->bi_iter.bi_sector < conf->reshape_progress && 1085 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1086 /* IO spans the reshape position. Need to wait for 1087 * reshape to pass 1088 */ 1089 allow_barrier(conf); 1090 wait_event(conf->wait_barrier, 1091 conf->reshape_progress <= bio->bi_iter.bi_sector || 1092 conf->reshape_progress >= bio->bi_iter.bi_sector + 1093 sectors); 1094 wait_barrier(conf); 1095 } 1096 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1097 bio_data_dir(bio) == WRITE && 1098 (mddev->reshape_backwards 1099 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1100 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1101 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1102 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1103 /* Need to update reshape_position in metadata */ 1104 mddev->reshape_position = conf->reshape_progress; 1105 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1106 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1107 md_wakeup_thread(mddev->thread); 1108 wait_event(mddev->sb_wait, 1109 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1110 1111 conf->reshape_safe = mddev->reshape_position; 1112 } 1113 1114 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1115 1116 r10_bio->master_bio = bio; 1117 r10_bio->sectors = sectors; 1118 1119 r10_bio->mddev = mddev; 1120 r10_bio->sector = bio->bi_iter.bi_sector; 1121 r10_bio->state = 0; 1122 1123 /* We might need to issue multiple reads to different 1124 * devices if there are bad blocks around, so we keep 1125 * track of the number of reads in bio->bi_phys_segments. 1126 * If this is 0, there is only one r10_bio and no locking 1127 * will be needed when the request completes. If it is 1128 * non-zero, then it is the number of not-completed requests. 1129 */ 1130 bio->bi_phys_segments = 0; 1131 bio_clear_flag(bio, BIO_SEG_VALID); 1132 1133 if (rw == READ) { 1134 /* 1135 * read balancing logic: 1136 */ 1137 struct md_rdev *rdev; 1138 int slot; 1139 1140 read_again: 1141 rdev = read_balance(conf, r10_bio, &max_sectors); 1142 if (!rdev) { 1143 raid_end_bio_io(r10_bio); 1144 return; 1145 } 1146 slot = r10_bio->read_slot; 1147 1148 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1149 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector, 1150 max_sectors); 1151 1152 r10_bio->devs[slot].bio = read_bio; 1153 r10_bio->devs[slot].rdev = rdev; 1154 1155 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1156 choose_data_offset(r10_bio, rdev); 1157 read_bio->bi_bdev = rdev->bdev; 1158 read_bio->bi_end_io = raid10_end_read_request; 1159 read_bio->bi_rw = READ | do_sync; 1160 read_bio->bi_private = r10_bio; 1161 1162 if (max_sectors < r10_bio->sectors) { 1163 /* Could not read all from this device, so we will 1164 * need another r10_bio. 1165 */ 1166 sectors_handled = (r10_bio->sector + max_sectors 1167 - bio->bi_iter.bi_sector); 1168 r10_bio->sectors = max_sectors; 1169 spin_lock_irq(&conf->device_lock); 1170 if (bio->bi_phys_segments == 0) 1171 bio->bi_phys_segments = 2; 1172 else 1173 bio->bi_phys_segments++; 1174 spin_unlock_irq(&conf->device_lock); 1175 /* Cannot call generic_make_request directly 1176 * as that will be queued in __generic_make_request 1177 * and subsequent mempool_alloc might block 1178 * waiting for it. so hand bio over to raid10d. 1179 */ 1180 reschedule_retry(r10_bio); 1181 1182 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1183 1184 r10_bio->master_bio = bio; 1185 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1186 r10_bio->state = 0; 1187 r10_bio->mddev = mddev; 1188 r10_bio->sector = bio->bi_iter.bi_sector + 1189 sectors_handled; 1190 goto read_again; 1191 } else 1192 generic_make_request(read_bio); 1193 return; 1194 } 1195 1196 /* 1197 * WRITE: 1198 */ 1199 if (conf->pending_count >= max_queued_requests) { 1200 md_wakeup_thread(mddev->thread); 1201 wait_event(conf->wait_barrier, 1202 conf->pending_count < max_queued_requests); 1203 } 1204 /* first select target devices under rcu_lock and 1205 * inc refcount on their rdev. Record them by setting 1206 * bios[x] to bio 1207 * If there are known/acknowledged bad blocks on any device 1208 * on which we have seen a write error, we want to avoid 1209 * writing to those blocks. This potentially requires several 1210 * writes to write around the bad blocks. Each set of writes 1211 * gets its own r10_bio with a set of bios attached. The number 1212 * of r10_bios is recored in bio->bi_phys_segments just as with 1213 * the read case. 1214 */ 1215 1216 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1217 raid10_find_phys(conf, r10_bio); 1218 retry_write: 1219 blocked_rdev = NULL; 1220 rcu_read_lock(); 1221 max_sectors = r10_bio->sectors; 1222 1223 for (i = 0; i < conf->copies; i++) { 1224 int d = r10_bio->devs[i].devnum; 1225 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1226 struct md_rdev *rrdev = rcu_dereference( 1227 conf->mirrors[d].replacement); 1228 if (rdev == rrdev) 1229 rrdev = NULL; 1230 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1231 atomic_inc(&rdev->nr_pending); 1232 blocked_rdev = rdev; 1233 break; 1234 } 1235 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1236 atomic_inc(&rrdev->nr_pending); 1237 blocked_rdev = rrdev; 1238 break; 1239 } 1240 if (rdev && (test_bit(Faulty, &rdev->flags))) 1241 rdev = NULL; 1242 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1243 rrdev = NULL; 1244 1245 r10_bio->devs[i].bio = NULL; 1246 r10_bio->devs[i].repl_bio = NULL; 1247 1248 if (!rdev && !rrdev) { 1249 set_bit(R10BIO_Degraded, &r10_bio->state); 1250 continue; 1251 } 1252 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1253 sector_t first_bad; 1254 sector_t dev_sector = r10_bio->devs[i].addr; 1255 int bad_sectors; 1256 int is_bad; 1257 1258 is_bad = is_badblock(rdev, dev_sector, 1259 max_sectors, 1260 &first_bad, &bad_sectors); 1261 if (is_bad < 0) { 1262 /* Mustn't write here until the bad block 1263 * is acknowledged 1264 */ 1265 atomic_inc(&rdev->nr_pending); 1266 set_bit(BlockedBadBlocks, &rdev->flags); 1267 blocked_rdev = rdev; 1268 break; 1269 } 1270 if (is_bad && first_bad <= dev_sector) { 1271 /* Cannot write here at all */ 1272 bad_sectors -= (dev_sector - first_bad); 1273 if (bad_sectors < max_sectors) 1274 /* Mustn't write more than bad_sectors 1275 * to other devices yet 1276 */ 1277 max_sectors = bad_sectors; 1278 /* We don't set R10BIO_Degraded as that 1279 * only applies if the disk is missing, 1280 * so it might be re-added, and we want to 1281 * know to recover this chunk. 1282 * In this case the device is here, and the 1283 * fact that this chunk is not in-sync is 1284 * recorded in the bad block log. 1285 */ 1286 continue; 1287 } 1288 if (is_bad) { 1289 int good_sectors = first_bad - dev_sector; 1290 if (good_sectors < max_sectors) 1291 max_sectors = good_sectors; 1292 } 1293 } 1294 if (rdev) { 1295 r10_bio->devs[i].bio = bio; 1296 atomic_inc(&rdev->nr_pending); 1297 } 1298 if (rrdev) { 1299 r10_bio->devs[i].repl_bio = bio; 1300 atomic_inc(&rrdev->nr_pending); 1301 } 1302 } 1303 rcu_read_unlock(); 1304 1305 if (unlikely(blocked_rdev)) { 1306 /* Have to wait for this device to get unblocked, then retry */ 1307 int j; 1308 int d; 1309 1310 for (j = 0; j < i; j++) { 1311 if (r10_bio->devs[j].bio) { 1312 d = r10_bio->devs[j].devnum; 1313 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1314 } 1315 if (r10_bio->devs[j].repl_bio) { 1316 struct md_rdev *rdev; 1317 d = r10_bio->devs[j].devnum; 1318 rdev = conf->mirrors[d].replacement; 1319 if (!rdev) { 1320 /* Race with remove_disk */ 1321 smp_mb(); 1322 rdev = conf->mirrors[d].rdev; 1323 } 1324 rdev_dec_pending(rdev, mddev); 1325 } 1326 } 1327 allow_barrier(conf); 1328 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1329 wait_barrier(conf); 1330 goto retry_write; 1331 } 1332 1333 if (max_sectors < r10_bio->sectors) { 1334 /* We are splitting this into multiple parts, so 1335 * we need to prepare for allocating another r10_bio. 1336 */ 1337 r10_bio->sectors = max_sectors; 1338 spin_lock_irq(&conf->device_lock); 1339 if (bio->bi_phys_segments == 0) 1340 bio->bi_phys_segments = 2; 1341 else 1342 bio->bi_phys_segments++; 1343 spin_unlock_irq(&conf->device_lock); 1344 } 1345 sectors_handled = r10_bio->sector + max_sectors - 1346 bio->bi_iter.bi_sector; 1347 1348 atomic_set(&r10_bio->remaining, 1); 1349 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1350 1351 for (i = 0; i < conf->copies; i++) { 1352 struct bio *mbio; 1353 int d = r10_bio->devs[i].devnum; 1354 if (r10_bio->devs[i].bio) { 1355 struct md_rdev *rdev = conf->mirrors[d].rdev; 1356 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1357 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1358 max_sectors); 1359 r10_bio->devs[i].bio = mbio; 1360 1361 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 1362 choose_data_offset(r10_bio, 1363 rdev)); 1364 mbio->bi_bdev = rdev->bdev; 1365 mbio->bi_end_io = raid10_end_write_request; 1366 mbio->bi_rw = 1367 WRITE | do_sync | do_fua | do_discard | do_same; 1368 mbio->bi_private = r10_bio; 1369 1370 atomic_inc(&r10_bio->remaining); 1371 1372 cb = blk_check_plugged(raid10_unplug, mddev, 1373 sizeof(*plug)); 1374 if (cb) 1375 plug = container_of(cb, struct raid10_plug_cb, 1376 cb); 1377 else 1378 plug = NULL; 1379 spin_lock_irqsave(&conf->device_lock, flags); 1380 if (plug) { 1381 bio_list_add(&plug->pending, mbio); 1382 plug->pending_cnt++; 1383 } else { 1384 bio_list_add(&conf->pending_bio_list, mbio); 1385 conf->pending_count++; 1386 } 1387 spin_unlock_irqrestore(&conf->device_lock, flags); 1388 if (!plug) 1389 md_wakeup_thread(mddev->thread); 1390 } 1391 1392 if (r10_bio->devs[i].repl_bio) { 1393 struct md_rdev *rdev = conf->mirrors[d].replacement; 1394 if (rdev == NULL) { 1395 /* Replacement just got moved to main 'rdev' */ 1396 smp_mb(); 1397 rdev = conf->mirrors[d].rdev; 1398 } 1399 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1400 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1401 max_sectors); 1402 r10_bio->devs[i].repl_bio = mbio; 1403 1404 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr + 1405 choose_data_offset( 1406 r10_bio, rdev)); 1407 mbio->bi_bdev = rdev->bdev; 1408 mbio->bi_end_io = raid10_end_write_request; 1409 mbio->bi_rw = 1410 WRITE | do_sync | do_fua | do_discard | do_same; 1411 mbio->bi_private = r10_bio; 1412 1413 atomic_inc(&r10_bio->remaining); 1414 spin_lock_irqsave(&conf->device_lock, flags); 1415 bio_list_add(&conf->pending_bio_list, mbio); 1416 conf->pending_count++; 1417 spin_unlock_irqrestore(&conf->device_lock, flags); 1418 if (!mddev_check_plugged(mddev)) 1419 md_wakeup_thread(mddev->thread); 1420 } 1421 } 1422 1423 /* Don't remove the bias on 'remaining' (one_write_done) until 1424 * after checking if we need to go around again. 1425 */ 1426 1427 if (sectors_handled < bio_sectors(bio)) { 1428 one_write_done(r10_bio); 1429 /* We need another r10_bio. It has already been counted 1430 * in bio->bi_phys_segments. 1431 */ 1432 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1433 1434 r10_bio->master_bio = bio; 1435 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1436 1437 r10_bio->mddev = mddev; 1438 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1439 r10_bio->state = 0; 1440 goto retry_write; 1441 } 1442 one_write_done(r10_bio); 1443 } 1444 1445 static void make_request(struct mddev *mddev, struct bio *bio) 1446 { 1447 struct r10conf *conf = mddev->private; 1448 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1449 int chunk_sects = chunk_mask + 1; 1450 1451 struct bio *split; 1452 1453 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1454 md_flush_request(mddev, bio); 1455 return; 1456 } 1457 1458 md_write_start(mddev, bio); 1459 1460 do { 1461 1462 /* 1463 * If this request crosses a chunk boundary, we need to split 1464 * it. 1465 */ 1466 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1467 bio_sectors(bio) > chunk_sects 1468 && (conf->geo.near_copies < conf->geo.raid_disks 1469 || conf->prev.near_copies < 1470 conf->prev.raid_disks))) { 1471 split = bio_split(bio, chunk_sects - 1472 (bio->bi_iter.bi_sector & 1473 (chunk_sects - 1)), 1474 GFP_NOIO, fs_bio_set); 1475 bio_chain(split, bio); 1476 } else { 1477 split = bio; 1478 } 1479 1480 __make_request(mddev, split); 1481 } while (split != bio); 1482 1483 /* In case raid10d snuck in to freeze_array */ 1484 wake_up(&conf->wait_barrier); 1485 } 1486 1487 static void status(struct seq_file *seq, struct mddev *mddev) 1488 { 1489 struct r10conf *conf = mddev->private; 1490 int i; 1491 1492 if (conf->geo.near_copies < conf->geo.raid_disks) 1493 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1494 if (conf->geo.near_copies > 1) 1495 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1496 if (conf->geo.far_copies > 1) { 1497 if (conf->geo.far_offset) 1498 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1499 else 1500 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1501 if (conf->geo.far_set_size != conf->geo.raid_disks) 1502 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1503 } 1504 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1505 conf->geo.raid_disks - mddev->degraded); 1506 for (i = 0; i < conf->geo.raid_disks; i++) 1507 seq_printf(seq, "%s", 1508 conf->mirrors[i].rdev && 1509 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1510 seq_printf(seq, "]"); 1511 } 1512 1513 /* check if there are enough drives for 1514 * every block to appear on atleast one. 1515 * Don't consider the device numbered 'ignore' 1516 * as we might be about to remove it. 1517 */ 1518 static int _enough(struct r10conf *conf, int previous, int ignore) 1519 { 1520 int first = 0; 1521 int has_enough = 0; 1522 int disks, ncopies; 1523 if (previous) { 1524 disks = conf->prev.raid_disks; 1525 ncopies = conf->prev.near_copies; 1526 } else { 1527 disks = conf->geo.raid_disks; 1528 ncopies = conf->geo.near_copies; 1529 } 1530 1531 rcu_read_lock(); 1532 do { 1533 int n = conf->copies; 1534 int cnt = 0; 1535 int this = first; 1536 while (n--) { 1537 struct md_rdev *rdev; 1538 if (this != ignore && 1539 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1540 test_bit(In_sync, &rdev->flags)) 1541 cnt++; 1542 this = (this+1) % disks; 1543 } 1544 if (cnt == 0) 1545 goto out; 1546 first = (first + ncopies) % disks; 1547 } while (first != 0); 1548 has_enough = 1; 1549 out: 1550 rcu_read_unlock(); 1551 return has_enough; 1552 } 1553 1554 static int enough(struct r10conf *conf, int ignore) 1555 { 1556 /* when calling 'enough', both 'prev' and 'geo' must 1557 * be stable. 1558 * This is ensured if ->reconfig_mutex or ->device_lock 1559 * is held. 1560 */ 1561 return _enough(conf, 0, ignore) && 1562 _enough(conf, 1, ignore); 1563 } 1564 1565 static void error(struct mddev *mddev, struct md_rdev *rdev) 1566 { 1567 char b[BDEVNAME_SIZE]; 1568 struct r10conf *conf = mddev->private; 1569 unsigned long flags; 1570 1571 /* 1572 * If it is not operational, then we have already marked it as dead 1573 * else if it is the last working disks, ignore the error, let the 1574 * next level up know. 1575 * else mark the drive as failed 1576 */ 1577 spin_lock_irqsave(&conf->device_lock, flags); 1578 if (test_bit(In_sync, &rdev->flags) 1579 && !enough(conf, rdev->raid_disk)) { 1580 /* 1581 * Don't fail the drive, just return an IO error. 1582 */ 1583 spin_unlock_irqrestore(&conf->device_lock, flags); 1584 return; 1585 } 1586 if (test_and_clear_bit(In_sync, &rdev->flags)) 1587 mddev->degraded++; 1588 /* 1589 * If recovery is running, make sure it aborts. 1590 */ 1591 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1592 set_bit(Blocked, &rdev->flags); 1593 set_bit(Faulty, &rdev->flags); 1594 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1595 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1596 spin_unlock_irqrestore(&conf->device_lock, flags); 1597 printk(KERN_ALERT 1598 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1599 "md/raid10:%s: Operation continuing on %d devices.\n", 1600 mdname(mddev), bdevname(rdev->bdev, b), 1601 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1602 } 1603 1604 static void print_conf(struct r10conf *conf) 1605 { 1606 int i; 1607 struct raid10_info *tmp; 1608 1609 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1610 if (!conf) { 1611 printk(KERN_DEBUG "(!conf)\n"); 1612 return; 1613 } 1614 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1615 conf->geo.raid_disks); 1616 1617 for (i = 0; i < conf->geo.raid_disks; i++) { 1618 char b[BDEVNAME_SIZE]; 1619 tmp = conf->mirrors + i; 1620 if (tmp->rdev) 1621 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1622 i, !test_bit(In_sync, &tmp->rdev->flags), 1623 !test_bit(Faulty, &tmp->rdev->flags), 1624 bdevname(tmp->rdev->bdev,b)); 1625 } 1626 } 1627 1628 static void close_sync(struct r10conf *conf) 1629 { 1630 wait_barrier(conf); 1631 allow_barrier(conf); 1632 1633 mempool_destroy(conf->r10buf_pool); 1634 conf->r10buf_pool = NULL; 1635 } 1636 1637 static int raid10_spare_active(struct mddev *mddev) 1638 { 1639 int i; 1640 struct r10conf *conf = mddev->private; 1641 struct raid10_info *tmp; 1642 int count = 0; 1643 unsigned long flags; 1644 1645 /* 1646 * Find all non-in_sync disks within the RAID10 configuration 1647 * and mark them in_sync 1648 */ 1649 for (i = 0; i < conf->geo.raid_disks; i++) { 1650 tmp = conf->mirrors + i; 1651 if (tmp->replacement 1652 && tmp->replacement->recovery_offset == MaxSector 1653 && !test_bit(Faulty, &tmp->replacement->flags) 1654 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1655 /* Replacement has just become active */ 1656 if (!tmp->rdev 1657 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1658 count++; 1659 if (tmp->rdev) { 1660 /* Replaced device not technically faulty, 1661 * but we need to be sure it gets removed 1662 * and never re-added. 1663 */ 1664 set_bit(Faulty, &tmp->rdev->flags); 1665 sysfs_notify_dirent_safe( 1666 tmp->rdev->sysfs_state); 1667 } 1668 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1669 } else if (tmp->rdev 1670 && tmp->rdev->recovery_offset == MaxSector 1671 && !test_bit(Faulty, &tmp->rdev->flags) 1672 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1673 count++; 1674 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1675 } 1676 } 1677 spin_lock_irqsave(&conf->device_lock, flags); 1678 mddev->degraded -= count; 1679 spin_unlock_irqrestore(&conf->device_lock, flags); 1680 1681 print_conf(conf); 1682 return count; 1683 } 1684 1685 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1686 { 1687 struct r10conf *conf = mddev->private; 1688 int err = -EEXIST; 1689 int mirror; 1690 int first = 0; 1691 int last = conf->geo.raid_disks - 1; 1692 1693 if (mddev->recovery_cp < MaxSector) 1694 /* only hot-add to in-sync arrays, as recovery is 1695 * very different from resync 1696 */ 1697 return -EBUSY; 1698 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1699 return -EINVAL; 1700 1701 if (rdev->raid_disk >= 0) 1702 first = last = rdev->raid_disk; 1703 1704 if (rdev->saved_raid_disk >= first && 1705 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1706 mirror = rdev->saved_raid_disk; 1707 else 1708 mirror = first; 1709 for ( ; mirror <= last ; mirror++) { 1710 struct raid10_info *p = &conf->mirrors[mirror]; 1711 if (p->recovery_disabled == mddev->recovery_disabled) 1712 continue; 1713 if (p->rdev) { 1714 if (!test_bit(WantReplacement, &p->rdev->flags) || 1715 p->replacement != NULL) 1716 continue; 1717 clear_bit(In_sync, &rdev->flags); 1718 set_bit(Replacement, &rdev->flags); 1719 rdev->raid_disk = mirror; 1720 err = 0; 1721 if (mddev->gendisk) 1722 disk_stack_limits(mddev->gendisk, rdev->bdev, 1723 rdev->data_offset << 9); 1724 conf->fullsync = 1; 1725 rcu_assign_pointer(p->replacement, rdev); 1726 break; 1727 } 1728 1729 if (mddev->gendisk) 1730 disk_stack_limits(mddev->gendisk, rdev->bdev, 1731 rdev->data_offset << 9); 1732 1733 p->head_position = 0; 1734 p->recovery_disabled = mddev->recovery_disabled - 1; 1735 rdev->raid_disk = mirror; 1736 err = 0; 1737 if (rdev->saved_raid_disk != mirror) 1738 conf->fullsync = 1; 1739 rcu_assign_pointer(p->rdev, rdev); 1740 break; 1741 } 1742 mddev_suspend(mddev); 1743 md_integrity_add_rdev(rdev, mddev); 1744 mddev_resume(mddev); 1745 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1746 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1747 1748 print_conf(conf); 1749 return err; 1750 } 1751 1752 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1753 { 1754 struct r10conf *conf = mddev->private; 1755 int err = 0; 1756 int number = rdev->raid_disk; 1757 struct md_rdev **rdevp; 1758 struct raid10_info *p = conf->mirrors + number; 1759 1760 print_conf(conf); 1761 if (rdev == p->rdev) 1762 rdevp = &p->rdev; 1763 else if (rdev == p->replacement) 1764 rdevp = &p->replacement; 1765 else 1766 return 0; 1767 1768 if (test_bit(In_sync, &rdev->flags) || 1769 atomic_read(&rdev->nr_pending)) { 1770 err = -EBUSY; 1771 goto abort; 1772 } 1773 /* Only remove faulty devices if recovery 1774 * is not possible. 1775 */ 1776 if (!test_bit(Faulty, &rdev->flags) && 1777 mddev->recovery_disabled != p->recovery_disabled && 1778 (!p->replacement || p->replacement == rdev) && 1779 number < conf->geo.raid_disks && 1780 enough(conf, -1)) { 1781 err = -EBUSY; 1782 goto abort; 1783 } 1784 *rdevp = NULL; 1785 synchronize_rcu(); 1786 if (atomic_read(&rdev->nr_pending)) { 1787 /* lost the race, try later */ 1788 err = -EBUSY; 1789 *rdevp = rdev; 1790 goto abort; 1791 } else if (p->replacement) { 1792 /* We must have just cleared 'rdev' */ 1793 p->rdev = p->replacement; 1794 clear_bit(Replacement, &p->replacement->flags); 1795 smp_mb(); /* Make sure other CPUs may see both as identical 1796 * but will never see neither -- if they are careful. 1797 */ 1798 p->replacement = NULL; 1799 clear_bit(WantReplacement, &rdev->flags); 1800 } else 1801 /* We might have just remove the Replacement as faulty 1802 * Clear the flag just in case 1803 */ 1804 clear_bit(WantReplacement, &rdev->flags); 1805 1806 err = md_integrity_register(mddev); 1807 1808 abort: 1809 1810 print_conf(conf); 1811 return err; 1812 } 1813 1814 static void end_sync_read(struct bio *bio) 1815 { 1816 struct r10bio *r10_bio = bio->bi_private; 1817 struct r10conf *conf = r10_bio->mddev->private; 1818 int d; 1819 1820 if (bio == r10_bio->master_bio) { 1821 /* this is a reshape read */ 1822 d = r10_bio->read_slot; /* really the read dev */ 1823 } else 1824 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1825 1826 if (!bio->bi_error) 1827 set_bit(R10BIO_Uptodate, &r10_bio->state); 1828 else 1829 /* The write handler will notice the lack of 1830 * R10BIO_Uptodate and record any errors etc 1831 */ 1832 atomic_add(r10_bio->sectors, 1833 &conf->mirrors[d].rdev->corrected_errors); 1834 1835 /* for reconstruct, we always reschedule after a read. 1836 * for resync, only after all reads 1837 */ 1838 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1839 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1840 atomic_dec_and_test(&r10_bio->remaining)) { 1841 /* we have read all the blocks, 1842 * do the comparison in process context in raid10d 1843 */ 1844 reschedule_retry(r10_bio); 1845 } 1846 } 1847 1848 static void end_sync_request(struct r10bio *r10_bio) 1849 { 1850 struct mddev *mddev = r10_bio->mddev; 1851 1852 while (atomic_dec_and_test(&r10_bio->remaining)) { 1853 if (r10_bio->master_bio == NULL) { 1854 /* the primary of several recovery bios */ 1855 sector_t s = r10_bio->sectors; 1856 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1857 test_bit(R10BIO_WriteError, &r10_bio->state)) 1858 reschedule_retry(r10_bio); 1859 else 1860 put_buf(r10_bio); 1861 md_done_sync(mddev, s, 1); 1862 break; 1863 } else { 1864 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1865 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1866 test_bit(R10BIO_WriteError, &r10_bio->state)) 1867 reschedule_retry(r10_bio); 1868 else 1869 put_buf(r10_bio); 1870 r10_bio = r10_bio2; 1871 } 1872 } 1873 } 1874 1875 static void end_sync_write(struct bio *bio) 1876 { 1877 struct r10bio *r10_bio = bio->bi_private; 1878 struct mddev *mddev = r10_bio->mddev; 1879 struct r10conf *conf = mddev->private; 1880 int d; 1881 sector_t first_bad; 1882 int bad_sectors; 1883 int slot; 1884 int repl; 1885 struct md_rdev *rdev = NULL; 1886 1887 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1888 if (repl) 1889 rdev = conf->mirrors[d].replacement; 1890 else 1891 rdev = conf->mirrors[d].rdev; 1892 1893 if (bio->bi_error) { 1894 if (repl) 1895 md_error(mddev, rdev); 1896 else { 1897 set_bit(WriteErrorSeen, &rdev->flags); 1898 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1899 set_bit(MD_RECOVERY_NEEDED, 1900 &rdev->mddev->recovery); 1901 set_bit(R10BIO_WriteError, &r10_bio->state); 1902 } 1903 } else if (is_badblock(rdev, 1904 r10_bio->devs[slot].addr, 1905 r10_bio->sectors, 1906 &first_bad, &bad_sectors)) 1907 set_bit(R10BIO_MadeGood, &r10_bio->state); 1908 1909 rdev_dec_pending(rdev, mddev); 1910 1911 end_sync_request(r10_bio); 1912 } 1913 1914 /* 1915 * Note: sync and recover and handled very differently for raid10 1916 * This code is for resync. 1917 * For resync, we read through virtual addresses and read all blocks. 1918 * If there is any error, we schedule a write. The lowest numbered 1919 * drive is authoritative. 1920 * However requests come for physical address, so we need to map. 1921 * For every physical address there are raid_disks/copies virtual addresses, 1922 * which is always are least one, but is not necessarly an integer. 1923 * This means that a physical address can span multiple chunks, so we may 1924 * have to submit multiple io requests for a single sync request. 1925 */ 1926 /* 1927 * We check if all blocks are in-sync and only write to blocks that 1928 * aren't in sync 1929 */ 1930 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1931 { 1932 struct r10conf *conf = mddev->private; 1933 int i, first; 1934 struct bio *tbio, *fbio; 1935 int vcnt; 1936 1937 atomic_set(&r10_bio->remaining, 1); 1938 1939 /* find the first device with a block */ 1940 for (i=0; i<conf->copies; i++) 1941 if (!r10_bio->devs[i].bio->bi_error) 1942 break; 1943 1944 if (i == conf->copies) 1945 goto done; 1946 1947 first = i; 1948 fbio = r10_bio->devs[i].bio; 1949 1950 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 1951 /* now find blocks with errors */ 1952 for (i=0 ; i < conf->copies ; i++) { 1953 int j, d; 1954 1955 tbio = r10_bio->devs[i].bio; 1956 1957 if (tbio->bi_end_io != end_sync_read) 1958 continue; 1959 if (i == first) 1960 continue; 1961 if (!r10_bio->devs[i].bio->bi_error) { 1962 /* We know that the bi_io_vec layout is the same for 1963 * both 'first' and 'i', so we just compare them. 1964 * All vec entries are PAGE_SIZE; 1965 */ 1966 int sectors = r10_bio->sectors; 1967 for (j = 0; j < vcnt; j++) { 1968 int len = PAGE_SIZE; 1969 if (sectors < (len / 512)) 1970 len = sectors * 512; 1971 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1972 page_address(tbio->bi_io_vec[j].bv_page), 1973 len)) 1974 break; 1975 sectors -= len/512; 1976 } 1977 if (j == vcnt) 1978 continue; 1979 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 1980 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1981 /* Don't fix anything. */ 1982 continue; 1983 } 1984 /* Ok, we need to write this bio, either to correct an 1985 * inconsistency or to correct an unreadable block. 1986 * First we need to fixup bv_offset, bv_len and 1987 * bi_vecs, as the read request might have corrupted these 1988 */ 1989 bio_reset(tbio); 1990 1991 tbio->bi_vcnt = vcnt; 1992 tbio->bi_iter.bi_size = r10_bio->sectors << 9; 1993 tbio->bi_rw = WRITE; 1994 tbio->bi_private = r10_bio; 1995 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 1996 tbio->bi_end_io = end_sync_write; 1997 1998 bio_copy_data(tbio, fbio); 1999 2000 d = r10_bio->devs[i].devnum; 2001 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2002 atomic_inc(&r10_bio->remaining); 2003 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2004 2005 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2006 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2007 generic_make_request(tbio); 2008 } 2009 2010 /* Now write out to any replacement devices 2011 * that are active 2012 */ 2013 for (i = 0; i < conf->copies; i++) { 2014 int d; 2015 2016 tbio = r10_bio->devs[i].repl_bio; 2017 if (!tbio || !tbio->bi_end_io) 2018 continue; 2019 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2020 && r10_bio->devs[i].bio != fbio) 2021 bio_copy_data(tbio, fbio); 2022 d = r10_bio->devs[i].devnum; 2023 atomic_inc(&r10_bio->remaining); 2024 md_sync_acct(conf->mirrors[d].replacement->bdev, 2025 bio_sectors(tbio)); 2026 generic_make_request(tbio); 2027 } 2028 2029 done: 2030 if (atomic_dec_and_test(&r10_bio->remaining)) { 2031 md_done_sync(mddev, r10_bio->sectors, 1); 2032 put_buf(r10_bio); 2033 } 2034 } 2035 2036 /* 2037 * Now for the recovery code. 2038 * Recovery happens across physical sectors. 2039 * We recover all non-is_sync drives by finding the virtual address of 2040 * each, and then choose a working drive that also has that virt address. 2041 * There is a separate r10_bio for each non-in_sync drive. 2042 * Only the first two slots are in use. The first for reading, 2043 * The second for writing. 2044 * 2045 */ 2046 static void fix_recovery_read_error(struct r10bio *r10_bio) 2047 { 2048 /* We got a read error during recovery. 2049 * We repeat the read in smaller page-sized sections. 2050 * If a read succeeds, write it to the new device or record 2051 * a bad block if we cannot. 2052 * If a read fails, record a bad block on both old and 2053 * new devices. 2054 */ 2055 struct mddev *mddev = r10_bio->mddev; 2056 struct r10conf *conf = mddev->private; 2057 struct bio *bio = r10_bio->devs[0].bio; 2058 sector_t sect = 0; 2059 int sectors = r10_bio->sectors; 2060 int idx = 0; 2061 int dr = r10_bio->devs[0].devnum; 2062 int dw = r10_bio->devs[1].devnum; 2063 2064 while (sectors) { 2065 int s = sectors; 2066 struct md_rdev *rdev; 2067 sector_t addr; 2068 int ok; 2069 2070 if (s > (PAGE_SIZE>>9)) 2071 s = PAGE_SIZE >> 9; 2072 2073 rdev = conf->mirrors[dr].rdev; 2074 addr = r10_bio->devs[0].addr + sect, 2075 ok = sync_page_io(rdev, 2076 addr, 2077 s << 9, 2078 bio->bi_io_vec[idx].bv_page, 2079 READ, false); 2080 if (ok) { 2081 rdev = conf->mirrors[dw].rdev; 2082 addr = r10_bio->devs[1].addr + sect; 2083 ok = sync_page_io(rdev, 2084 addr, 2085 s << 9, 2086 bio->bi_io_vec[idx].bv_page, 2087 WRITE, false); 2088 if (!ok) { 2089 set_bit(WriteErrorSeen, &rdev->flags); 2090 if (!test_and_set_bit(WantReplacement, 2091 &rdev->flags)) 2092 set_bit(MD_RECOVERY_NEEDED, 2093 &rdev->mddev->recovery); 2094 } 2095 } 2096 if (!ok) { 2097 /* We don't worry if we cannot set a bad block - 2098 * it really is bad so there is no loss in not 2099 * recording it yet 2100 */ 2101 rdev_set_badblocks(rdev, addr, s, 0); 2102 2103 if (rdev != conf->mirrors[dw].rdev) { 2104 /* need bad block on destination too */ 2105 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2106 addr = r10_bio->devs[1].addr + sect; 2107 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2108 if (!ok) { 2109 /* just abort the recovery */ 2110 printk(KERN_NOTICE 2111 "md/raid10:%s: recovery aborted" 2112 " due to read error\n", 2113 mdname(mddev)); 2114 2115 conf->mirrors[dw].recovery_disabled 2116 = mddev->recovery_disabled; 2117 set_bit(MD_RECOVERY_INTR, 2118 &mddev->recovery); 2119 break; 2120 } 2121 } 2122 } 2123 2124 sectors -= s; 2125 sect += s; 2126 idx++; 2127 } 2128 } 2129 2130 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2131 { 2132 struct r10conf *conf = mddev->private; 2133 int d; 2134 struct bio *wbio, *wbio2; 2135 2136 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2137 fix_recovery_read_error(r10_bio); 2138 end_sync_request(r10_bio); 2139 return; 2140 } 2141 2142 /* 2143 * share the pages with the first bio 2144 * and submit the write request 2145 */ 2146 d = r10_bio->devs[1].devnum; 2147 wbio = r10_bio->devs[1].bio; 2148 wbio2 = r10_bio->devs[1].repl_bio; 2149 /* Need to test wbio2->bi_end_io before we call 2150 * generic_make_request as if the former is NULL, 2151 * the latter is free to free wbio2. 2152 */ 2153 if (wbio2 && !wbio2->bi_end_io) 2154 wbio2 = NULL; 2155 if (wbio->bi_end_io) { 2156 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2157 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2158 generic_make_request(wbio); 2159 } 2160 if (wbio2) { 2161 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2162 md_sync_acct(conf->mirrors[d].replacement->bdev, 2163 bio_sectors(wbio2)); 2164 generic_make_request(wbio2); 2165 } 2166 } 2167 2168 /* 2169 * Used by fix_read_error() to decay the per rdev read_errors. 2170 * We halve the read error count for every hour that has elapsed 2171 * since the last recorded read error. 2172 * 2173 */ 2174 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2175 { 2176 struct timespec cur_time_mon; 2177 unsigned long hours_since_last; 2178 unsigned int read_errors = atomic_read(&rdev->read_errors); 2179 2180 ktime_get_ts(&cur_time_mon); 2181 2182 if (rdev->last_read_error.tv_sec == 0 && 2183 rdev->last_read_error.tv_nsec == 0) { 2184 /* first time we've seen a read error */ 2185 rdev->last_read_error = cur_time_mon; 2186 return; 2187 } 2188 2189 hours_since_last = (cur_time_mon.tv_sec - 2190 rdev->last_read_error.tv_sec) / 3600; 2191 2192 rdev->last_read_error = cur_time_mon; 2193 2194 /* 2195 * if hours_since_last is > the number of bits in read_errors 2196 * just set read errors to 0. We do this to avoid 2197 * overflowing the shift of read_errors by hours_since_last. 2198 */ 2199 if (hours_since_last >= 8 * sizeof(read_errors)) 2200 atomic_set(&rdev->read_errors, 0); 2201 else 2202 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2203 } 2204 2205 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2206 int sectors, struct page *page, int rw) 2207 { 2208 sector_t first_bad; 2209 int bad_sectors; 2210 2211 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2212 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2213 return -1; 2214 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2215 /* success */ 2216 return 1; 2217 if (rw == WRITE) { 2218 set_bit(WriteErrorSeen, &rdev->flags); 2219 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2220 set_bit(MD_RECOVERY_NEEDED, 2221 &rdev->mddev->recovery); 2222 } 2223 /* need to record an error - either for the block or the device */ 2224 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2225 md_error(rdev->mddev, rdev); 2226 return 0; 2227 } 2228 2229 /* 2230 * This is a kernel thread which: 2231 * 2232 * 1. Retries failed read operations on working mirrors. 2233 * 2. Updates the raid superblock when problems encounter. 2234 * 3. Performs writes following reads for array synchronising. 2235 */ 2236 2237 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2238 { 2239 int sect = 0; /* Offset from r10_bio->sector */ 2240 int sectors = r10_bio->sectors; 2241 struct md_rdev*rdev; 2242 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2243 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2244 2245 /* still own a reference to this rdev, so it cannot 2246 * have been cleared recently. 2247 */ 2248 rdev = conf->mirrors[d].rdev; 2249 2250 if (test_bit(Faulty, &rdev->flags)) 2251 /* drive has already been failed, just ignore any 2252 more fix_read_error() attempts */ 2253 return; 2254 2255 check_decay_read_errors(mddev, rdev); 2256 atomic_inc(&rdev->read_errors); 2257 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2258 char b[BDEVNAME_SIZE]; 2259 bdevname(rdev->bdev, b); 2260 2261 printk(KERN_NOTICE 2262 "md/raid10:%s: %s: Raid device exceeded " 2263 "read_error threshold [cur %d:max %d]\n", 2264 mdname(mddev), b, 2265 atomic_read(&rdev->read_errors), max_read_errors); 2266 printk(KERN_NOTICE 2267 "md/raid10:%s: %s: Failing raid device\n", 2268 mdname(mddev), b); 2269 md_error(mddev, conf->mirrors[d].rdev); 2270 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2271 return; 2272 } 2273 2274 while(sectors) { 2275 int s = sectors; 2276 int sl = r10_bio->read_slot; 2277 int success = 0; 2278 int start; 2279 2280 if (s > (PAGE_SIZE>>9)) 2281 s = PAGE_SIZE >> 9; 2282 2283 rcu_read_lock(); 2284 do { 2285 sector_t first_bad; 2286 int bad_sectors; 2287 2288 d = r10_bio->devs[sl].devnum; 2289 rdev = rcu_dereference(conf->mirrors[d].rdev); 2290 if (rdev && 2291 test_bit(In_sync, &rdev->flags) && 2292 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2293 &first_bad, &bad_sectors) == 0) { 2294 atomic_inc(&rdev->nr_pending); 2295 rcu_read_unlock(); 2296 success = sync_page_io(rdev, 2297 r10_bio->devs[sl].addr + 2298 sect, 2299 s<<9, 2300 conf->tmppage, READ, false); 2301 rdev_dec_pending(rdev, mddev); 2302 rcu_read_lock(); 2303 if (success) 2304 break; 2305 } 2306 sl++; 2307 if (sl == conf->copies) 2308 sl = 0; 2309 } while (!success && sl != r10_bio->read_slot); 2310 rcu_read_unlock(); 2311 2312 if (!success) { 2313 /* Cannot read from anywhere, just mark the block 2314 * as bad on the first device to discourage future 2315 * reads. 2316 */ 2317 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2318 rdev = conf->mirrors[dn].rdev; 2319 2320 if (!rdev_set_badblocks( 2321 rdev, 2322 r10_bio->devs[r10_bio->read_slot].addr 2323 + sect, 2324 s, 0)) { 2325 md_error(mddev, rdev); 2326 r10_bio->devs[r10_bio->read_slot].bio 2327 = IO_BLOCKED; 2328 } 2329 break; 2330 } 2331 2332 start = sl; 2333 /* write it back and re-read */ 2334 rcu_read_lock(); 2335 while (sl != r10_bio->read_slot) { 2336 char b[BDEVNAME_SIZE]; 2337 2338 if (sl==0) 2339 sl = conf->copies; 2340 sl--; 2341 d = r10_bio->devs[sl].devnum; 2342 rdev = rcu_dereference(conf->mirrors[d].rdev); 2343 if (!rdev || 2344 !test_bit(In_sync, &rdev->flags)) 2345 continue; 2346 2347 atomic_inc(&rdev->nr_pending); 2348 rcu_read_unlock(); 2349 if (r10_sync_page_io(rdev, 2350 r10_bio->devs[sl].addr + 2351 sect, 2352 s, conf->tmppage, WRITE) 2353 == 0) { 2354 /* Well, this device is dead */ 2355 printk(KERN_NOTICE 2356 "md/raid10:%s: read correction " 2357 "write failed" 2358 " (%d sectors at %llu on %s)\n", 2359 mdname(mddev), s, 2360 (unsigned long long)( 2361 sect + 2362 choose_data_offset(r10_bio, 2363 rdev)), 2364 bdevname(rdev->bdev, b)); 2365 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2366 "drive\n", 2367 mdname(mddev), 2368 bdevname(rdev->bdev, b)); 2369 } 2370 rdev_dec_pending(rdev, mddev); 2371 rcu_read_lock(); 2372 } 2373 sl = start; 2374 while (sl != r10_bio->read_slot) { 2375 char b[BDEVNAME_SIZE]; 2376 2377 if (sl==0) 2378 sl = conf->copies; 2379 sl--; 2380 d = r10_bio->devs[sl].devnum; 2381 rdev = rcu_dereference(conf->mirrors[d].rdev); 2382 if (!rdev || 2383 !test_bit(In_sync, &rdev->flags)) 2384 continue; 2385 2386 atomic_inc(&rdev->nr_pending); 2387 rcu_read_unlock(); 2388 switch (r10_sync_page_io(rdev, 2389 r10_bio->devs[sl].addr + 2390 sect, 2391 s, conf->tmppage, 2392 READ)) { 2393 case 0: 2394 /* Well, this device is dead */ 2395 printk(KERN_NOTICE 2396 "md/raid10:%s: unable to read back " 2397 "corrected sectors" 2398 " (%d sectors at %llu on %s)\n", 2399 mdname(mddev), s, 2400 (unsigned long long)( 2401 sect + 2402 choose_data_offset(r10_bio, rdev)), 2403 bdevname(rdev->bdev, b)); 2404 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2405 "drive\n", 2406 mdname(mddev), 2407 bdevname(rdev->bdev, b)); 2408 break; 2409 case 1: 2410 printk(KERN_INFO 2411 "md/raid10:%s: read error corrected" 2412 " (%d sectors at %llu on %s)\n", 2413 mdname(mddev), s, 2414 (unsigned long long)( 2415 sect + 2416 choose_data_offset(r10_bio, rdev)), 2417 bdevname(rdev->bdev, b)); 2418 atomic_add(s, &rdev->corrected_errors); 2419 } 2420 2421 rdev_dec_pending(rdev, mddev); 2422 rcu_read_lock(); 2423 } 2424 rcu_read_unlock(); 2425 2426 sectors -= s; 2427 sect += s; 2428 } 2429 } 2430 2431 static int narrow_write_error(struct r10bio *r10_bio, int i) 2432 { 2433 struct bio *bio = r10_bio->master_bio; 2434 struct mddev *mddev = r10_bio->mddev; 2435 struct r10conf *conf = mddev->private; 2436 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2437 /* bio has the data to be written to slot 'i' where 2438 * we just recently had a write error. 2439 * We repeatedly clone the bio and trim down to one block, 2440 * then try the write. Where the write fails we record 2441 * a bad block. 2442 * It is conceivable that the bio doesn't exactly align with 2443 * blocks. We must handle this. 2444 * 2445 * We currently own a reference to the rdev. 2446 */ 2447 2448 int block_sectors; 2449 sector_t sector; 2450 int sectors; 2451 int sect_to_write = r10_bio->sectors; 2452 int ok = 1; 2453 2454 if (rdev->badblocks.shift < 0) 2455 return 0; 2456 2457 block_sectors = roundup(1 << rdev->badblocks.shift, 2458 bdev_logical_block_size(rdev->bdev) >> 9); 2459 sector = r10_bio->sector; 2460 sectors = ((r10_bio->sector + block_sectors) 2461 & ~(sector_t)(block_sectors - 1)) 2462 - sector; 2463 2464 while (sect_to_write) { 2465 struct bio *wbio; 2466 if (sectors > sect_to_write) 2467 sectors = sect_to_write; 2468 /* Write at 'sector' for 'sectors' */ 2469 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2470 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2471 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 2472 choose_data_offset(r10_bio, rdev) + 2473 (sector - r10_bio->sector)); 2474 wbio->bi_bdev = rdev->bdev; 2475 if (submit_bio_wait(WRITE, wbio) < 0) 2476 /* Failure! */ 2477 ok = rdev_set_badblocks(rdev, sector, 2478 sectors, 0) 2479 && ok; 2480 2481 bio_put(wbio); 2482 sect_to_write -= sectors; 2483 sector += sectors; 2484 sectors = block_sectors; 2485 } 2486 return ok; 2487 } 2488 2489 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2490 { 2491 int slot = r10_bio->read_slot; 2492 struct bio *bio; 2493 struct r10conf *conf = mddev->private; 2494 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2495 char b[BDEVNAME_SIZE]; 2496 unsigned long do_sync; 2497 int max_sectors; 2498 2499 /* we got a read error. Maybe the drive is bad. Maybe just 2500 * the block and we can fix it. 2501 * We freeze all other IO, and try reading the block from 2502 * other devices. When we find one, we re-write 2503 * and check it that fixes the read error. 2504 * This is all done synchronously while the array is 2505 * frozen. 2506 */ 2507 bio = r10_bio->devs[slot].bio; 2508 bdevname(bio->bi_bdev, b); 2509 bio_put(bio); 2510 r10_bio->devs[slot].bio = NULL; 2511 2512 if (mddev->ro == 0) { 2513 freeze_array(conf, 1); 2514 fix_read_error(conf, mddev, r10_bio); 2515 unfreeze_array(conf); 2516 } else 2517 r10_bio->devs[slot].bio = IO_BLOCKED; 2518 2519 rdev_dec_pending(rdev, mddev); 2520 2521 read_more: 2522 rdev = read_balance(conf, r10_bio, &max_sectors); 2523 if (rdev == NULL) { 2524 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2525 " read error for block %llu\n", 2526 mdname(mddev), b, 2527 (unsigned long long)r10_bio->sector); 2528 raid_end_bio_io(r10_bio); 2529 return; 2530 } 2531 2532 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2533 slot = r10_bio->read_slot; 2534 printk_ratelimited( 2535 KERN_ERR 2536 "md/raid10:%s: %s: redirecting " 2537 "sector %llu to another mirror\n", 2538 mdname(mddev), 2539 bdevname(rdev->bdev, b), 2540 (unsigned long long)r10_bio->sector); 2541 bio = bio_clone_mddev(r10_bio->master_bio, 2542 GFP_NOIO, mddev); 2543 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors); 2544 r10_bio->devs[slot].bio = bio; 2545 r10_bio->devs[slot].rdev = rdev; 2546 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr 2547 + choose_data_offset(r10_bio, rdev); 2548 bio->bi_bdev = rdev->bdev; 2549 bio->bi_rw = READ | do_sync; 2550 bio->bi_private = r10_bio; 2551 bio->bi_end_io = raid10_end_read_request; 2552 if (max_sectors < r10_bio->sectors) { 2553 /* Drat - have to split this up more */ 2554 struct bio *mbio = r10_bio->master_bio; 2555 int sectors_handled = 2556 r10_bio->sector + max_sectors 2557 - mbio->bi_iter.bi_sector; 2558 r10_bio->sectors = max_sectors; 2559 spin_lock_irq(&conf->device_lock); 2560 if (mbio->bi_phys_segments == 0) 2561 mbio->bi_phys_segments = 2; 2562 else 2563 mbio->bi_phys_segments++; 2564 spin_unlock_irq(&conf->device_lock); 2565 generic_make_request(bio); 2566 2567 r10_bio = mempool_alloc(conf->r10bio_pool, 2568 GFP_NOIO); 2569 r10_bio->master_bio = mbio; 2570 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2571 r10_bio->state = 0; 2572 set_bit(R10BIO_ReadError, 2573 &r10_bio->state); 2574 r10_bio->mddev = mddev; 2575 r10_bio->sector = mbio->bi_iter.bi_sector 2576 + sectors_handled; 2577 2578 goto read_more; 2579 } else 2580 generic_make_request(bio); 2581 } 2582 2583 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2584 { 2585 /* Some sort of write request has finished and it 2586 * succeeded in writing where we thought there was a 2587 * bad block. So forget the bad block. 2588 * Or possibly if failed and we need to record 2589 * a bad block. 2590 */ 2591 int m; 2592 struct md_rdev *rdev; 2593 2594 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2595 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2596 for (m = 0; m < conf->copies; m++) { 2597 int dev = r10_bio->devs[m].devnum; 2598 rdev = conf->mirrors[dev].rdev; 2599 if (r10_bio->devs[m].bio == NULL) 2600 continue; 2601 if (!r10_bio->devs[m].bio->bi_error) { 2602 rdev_clear_badblocks( 2603 rdev, 2604 r10_bio->devs[m].addr, 2605 r10_bio->sectors, 0); 2606 } else { 2607 if (!rdev_set_badblocks( 2608 rdev, 2609 r10_bio->devs[m].addr, 2610 r10_bio->sectors, 0)) 2611 md_error(conf->mddev, rdev); 2612 } 2613 rdev = conf->mirrors[dev].replacement; 2614 if (r10_bio->devs[m].repl_bio == NULL) 2615 continue; 2616 2617 if (!r10_bio->devs[m].repl_bio->bi_error) { 2618 rdev_clear_badblocks( 2619 rdev, 2620 r10_bio->devs[m].addr, 2621 r10_bio->sectors, 0); 2622 } else { 2623 if (!rdev_set_badblocks( 2624 rdev, 2625 r10_bio->devs[m].addr, 2626 r10_bio->sectors, 0)) 2627 md_error(conf->mddev, rdev); 2628 } 2629 } 2630 put_buf(r10_bio); 2631 } else { 2632 bool fail = false; 2633 for (m = 0; m < conf->copies; m++) { 2634 int dev = r10_bio->devs[m].devnum; 2635 struct bio *bio = r10_bio->devs[m].bio; 2636 rdev = conf->mirrors[dev].rdev; 2637 if (bio == IO_MADE_GOOD) { 2638 rdev_clear_badblocks( 2639 rdev, 2640 r10_bio->devs[m].addr, 2641 r10_bio->sectors, 0); 2642 rdev_dec_pending(rdev, conf->mddev); 2643 } else if (bio != NULL && bio->bi_error) { 2644 fail = true; 2645 if (!narrow_write_error(r10_bio, m)) { 2646 md_error(conf->mddev, rdev); 2647 set_bit(R10BIO_Degraded, 2648 &r10_bio->state); 2649 } 2650 rdev_dec_pending(rdev, conf->mddev); 2651 } 2652 bio = r10_bio->devs[m].repl_bio; 2653 rdev = conf->mirrors[dev].replacement; 2654 if (rdev && bio == IO_MADE_GOOD) { 2655 rdev_clear_badblocks( 2656 rdev, 2657 r10_bio->devs[m].addr, 2658 r10_bio->sectors, 0); 2659 rdev_dec_pending(rdev, conf->mddev); 2660 } 2661 } 2662 if (fail) { 2663 spin_lock_irq(&conf->device_lock); 2664 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2665 spin_unlock_irq(&conf->device_lock); 2666 md_wakeup_thread(conf->mddev->thread); 2667 } else { 2668 if (test_bit(R10BIO_WriteError, 2669 &r10_bio->state)) 2670 close_write(r10_bio); 2671 raid_end_bio_io(r10_bio); 2672 } 2673 } 2674 } 2675 2676 static void raid10d(struct md_thread *thread) 2677 { 2678 struct mddev *mddev = thread->mddev; 2679 struct r10bio *r10_bio; 2680 unsigned long flags; 2681 struct r10conf *conf = mddev->private; 2682 struct list_head *head = &conf->retry_list; 2683 struct blk_plug plug; 2684 2685 md_check_recovery(mddev); 2686 2687 if (!list_empty_careful(&conf->bio_end_io_list) && 2688 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2689 LIST_HEAD(tmp); 2690 spin_lock_irqsave(&conf->device_lock, flags); 2691 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2692 list_add(&tmp, &conf->bio_end_io_list); 2693 list_del_init(&conf->bio_end_io_list); 2694 } 2695 spin_unlock_irqrestore(&conf->device_lock, flags); 2696 while (!list_empty(&tmp)) { 2697 r10_bio = list_first_entry(&tmp, struct r10bio, 2698 retry_list); 2699 list_del(&r10_bio->retry_list); 2700 if (mddev->degraded) 2701 set_bit(R10BIO_Degraded, &r10_bio->state); 2702 2703 if (test_bit(R10BIO_WriteError, 2704 &r10_bio->state)) 2705 close_write(r10_bio); 2706 raid_end_bio_io(r10_bio); 2707 } 2708 } 2709 2710 blk_start_plug(&plug); 2711 for (;;) { 2712 2713 flush_pending_writes(conf); 2714 2715 spin_lock_irqsave(&conf->device_lock, flags); 2716 if (list_empty(head)) { 2717 spin_unlock_irqrestore(&conf->device_lock, flags); 2718 break; 2719 } 2720 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2721 list_del(head->prev); 2722 conf->nr_queued--; 2723 spin_unlock_irqrestore(&conf->device_lock, flags); 2724 2725 mddev = r10_bio->mddev; 2726 conf = mddev->private; 2727 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2728 test_bit(R10BIO_WriteError, &r10_bio->state)) 2729 handle_write_completed(conf, r10_bio); 2730 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2731 reshape_request_write(mddev, r10_bio); 2732 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2733 sync_request_write(mddev, r10_bio); 2734 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2735 recovery_request_write(mddev, r10_bio); 2736 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2737 handle_read_error(mddev, r10_bio); 2738 else { 2739 /* just a partial read to be scheduled from a 2740 * separate context 2741 */ 2742 int slot = r10_bio->read_slot; 2743 generic_make_request(r10_bio->devs[slot].bio); 2744 } 2745 2746 cond_resched(); 2747 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2748 md_check_recovery(mddev); 2749 } 2750 blk_finish_plug(&plug); 2751 } 2752 2753 static int init_resync(struct r10conf *conf) 2754 { 2755 int buffs; 2756 int i; 2757 2758 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2759 BUG_ON(conf->r10buf_pool); 2760 conf->have_replacement = 0; 2761 for (i = 0; i < conf->geo.raid_disks; i++) 2762 if (conf->mirrors[i].replacement) 2763 conf->have_replacement = 1; 2764 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2765 if (!conf->r10buf_pool) 2766 return -ENOMEM; 2767 conf->next_resync = 0; 2768 return 0; 2769 } 2770 2771 /* 2772 * perform a "sync" on one "block" 2773 * 2774 * We need to make sure that no normal I/O request - particularly write 2775 * requests - conflict with active sync requests. 2776 * 2777 * This is achieved by tracking pending requests and a 'barrier' concept 2778 * that can be installed to exclude normal IO requests. 2779 * 2780 * Resync and recovery are handled very differently. 2781 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2782 * 2783 * For resync, we iterate over virtual addresses, read all copies, 2784 * and update if there are differences. If only one copy is live, 2785 * skip it. 2786 * For recovery, we iterate over physical addresses, read a good 2787 * value for each non-in_sync drive, and over-write. 2788 * 2789 * So, for recovery we may have several outstanding complex requests for a 2790 * given address, one for each out-of-sync device. We model this by allocating 2791 * a number of r10_bio structures, one for each out-of-sync device. 2792 * As we setup these structures, we collect all bio's together into a list 2793 * which we then process collectively to add pages, and then process again 2794 * to pass to generic_make_request. 2795 * 2796 * The r10_bio structures are linked using a borrowed master_bio pointer. 2797 * This link is counted in ->remaining. When the r10_bio that points to NULL 2798 * has its remaining count decremented to 0, the whole complex operation 2799 * is complete. 2800 * 2801 */ 2802 2803 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2804 int *skipped) 2805 { 2806 struct r10conf *conf = mddev->private; 2807 struct r10bio *r10_bio; 2808 struct bio *biolist = NULL, *bio; 2809 sector_t max_sector, nr_sectors; 2810 int i; 2811 int max_sync; 2812 sector_t sync_blocks; 2813 sector_t sectors_skipped = 0; 2814 int chunks_skipped = 0; 2815 sector_t chunk_mask = conf->geo.chunk_mask; 2816 2817 if (!conf->r10buf_pool) 2818 if (init_resync(conf)) 2819 return 0; 2820 2821 /* 2822 * Allow skipping a full rebuild for incremental assembly 2823 * of a clean array, like RAID1 does. 2824 */ 2825 if (mddev->bitmap == NULL && 2826 mddev->recovery_cp == MaxSector && 2827 mddev->reshape_position == MaxSector && 2828 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2829 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2830 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2831 conf->fullsync == 0) { 2832 *skipped = 1; 2833 return mddev->dev_sectors - sector_nr; 2834 } 2835 2836 skipped: 2837 max_sector = mddev->dev_sectors; 2838 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2839 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2840 max_sector = mddev->resync_max_sectors; 2841 if (sector_nr >= max_sector) { 2842 /* If we aborted, we need to abort the 2843 * sync on the 'current' bitmap chucks (there can 2844 * be several when recovering multiple devices). 2845 * as we may have started syncing it but not finished. 2846 * We can find the current address in 2847 * mddev->curr_resync, but for recovery, 2848 * we need to convert that to several 2849 * virtual addresses. 2850 */ 2851 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2852 end_reshape(conf); 2853 close_sync(conf); 2854 return 0; 2855 } 2856 2857 if (mddev->curr_resync < max_sector) { /* aborted */ 2858 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2859 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2860 &sync_blocks, 1); 2861 else for (i = 0; i < conf->geo.raid_disks; i++) { 2862 sector_t sect = 2863 raid10_find_virt(conf, mddev->curr_resync, i); 2864 bitmap_end_sync(mddev->bitmap, sect, 2865 &sync_blocks, 1); 2866 } 2867 } else { 2868 /* completed sync */ 2869 if ((!mddev->bitmap || conf->fullsync) 2870 && conf->have_replacement 2871 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2872 /* Completed a full sync so the replacements 2873 * are now fully recovered. 2874 */ 2875 for (i = 0; i < conf->geo.raid_disks; i++) 2876 if (conf->mirrors[i].replacement) 2877 conf->mirrors[i].replacement 2878 ->recovery_offset 2879 = MaxSector; 2880 } 2881 conf->fullsync = 0; 2882 } 2883 bitmap_close_sync(mddev->bitmap); 2884 close_sync(conf); 2885 *skipped = 1; 2886 return sectors_skipped; 2887 } 2888 2889 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2890 return reshape_request(mddev, sector_nr, skipped); 2891 2892 if (chunks_skipped >= conf->geo.raid_disks) { 2893 /* if there has been nothing to do on any drive, 2894 * then there is nothing to do at all.. 2895 */ 2896 *skipped = 1; 2897 return (max_sector - sector_nr) + sectors_skipped; 2898 } 2899 2900 if (max_sector > mddev->resync_max) 2901 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2902 2903 /* make sure whole request will fit in a chunk - if chunks 2904 * are meaningful 2905 */ 2906 if (conf->geo.near_copies < conf->geo.raid_disks && 2907 max_sector > (sector_nr | chunk_mask)) 2908 max_sector = (sector_nr | chunk_mask) + 1; 2909 2910 /* Again, very different code for resync and recovery. 2911 * Both must result in an r10bio with a list of bios that 2912 * have bi_end_io, bi_sector, bi_bdev set, 2913 * and bi_private set to the r10bio. 2914 * For recovery, we may actually create several r10bios 2915 * with 2 bios in each, that correspond to the bios in the main one. 2916 * In this case, the subordinate r10bios link back through a 2917 * borrowed master_bio pointer, and the counter in the master 2918 * includes a ref from each subordinate. 2919 */ 2920 /* First, we decide what to do and set ->bi_end_io 2921 * To end_sync_read if we want to read, and 2922 * end_sync_write if we will want to write. 2923 */ 2924 2925 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2926 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2927 /* recovery... the complicated one */ 2928 int j; 2929 r10_bio = NULL; 2930 2931 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2932 int still_degraded; 2933 struct r10bio *rb2; 2934 sector_t sect; 2935 int must_sync; 2936 int any_working; 2937 struct raid10_info *mirror = &conf->mirrors[i]; 2938 2939 if ((mirror->rdev == NULL || 2940 test_bit(In_sync, &mirror->rdev->flags)) 2941 && 2942 (mirror->replacement == NULL || 2943 test_bit(Faulty, 2944 &mirror->replacement->flags))) 2945 continue; 2946 2947 still_degraded = 0; 2948 /* want to reconstruct this device */ 2949 rb2 = r10_bio; 2950 sect = raid10_find_virt(conf, sector_nr, i); 2951 if (sect >= mddev->resync_max_sectors) { 2952 /* last stripe is not complete - don't 2953 * try to recover this sector. 2954 */ 2955 continue; 2956 } 2957 /* Unless we are doing a full sync, or a replacement 2958 * we only need to recover the block if it is set in 2959 * the bitmap 2960 */ 2961 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2962 &sync_blocks, 1); 2963 if (sync_blocks < max_sync) 2964 max_sync = sync_blocks; 2965 if (!must_sync && 2966 mirror->replacement == NULL && 2967 !conf->fullsync) { 2968 /* yep, skip the sync_blocks here, but don't assume 2969 * that there will never be anything to do here 2970 */ 2971 chunks_skipped = -1; 2972 continue; 2973 } 2974 2975 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2976 r10_bio->state = 0; 2977 raise_barrier(conf, rb2 != NULL); 2978 atomic_set(&r10_bio->remaining, 0); 2979 2980 r10_bio->master_bio = (struct bio*)rb2; 2981 if (rb2) 2982 atomic_inc(&rb2->remaining); 2983 r10_bio->mddev = mddev; 2984 set_bit(R10BIO_IsRecover, &r10_bio->state); 2985 r10_bio->sector = sect; 2986 2987 raid10_find_phys(conf, r10_bio); 2988 2989 /* Need to check if the array will still be 2990 * degraded 2991 */ 2992 for (j = 0; j < conf->geo.raid_disks; j++) 2993 if (conf->mirrors[j].rdev == NULL || 2994 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2995 still_degraded = 1; 2996 break; 2997 } 2998 2999 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3000 &sync_blocks, still_degraded); 3001 3002 any_working = 0; 3003 for (j=0; j<conf->copies;j++) { 3004 int k; 3005 int d = r10_bio->devs[j].devnum; 3006 sector_t from_addr, to_addr; 3007 struct md_rdev *rdev; 3008 sector_t sector, first_bad; 3009 int bad_sectors; 3010 if (!conf->mirrors[d].rdev || 3011 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3012 continue; 3013 /* This is where we read from */ 3014 any_working = 1; 3015 rdev = conf->mirrors[d].rdev; 3016 sector = r10_bio->devs[j].addr; 3017 3018 if (is_badblock(rdev, sector, max_sync, 3019 &first_bad, &bad_sectors)) { 3020 if (first_bad > sector) 3021 max_sync = first_bad - sector; 3022 else { 3023 bad_sectors -= (sector 3024 - first_bad); 3025 if (max_sync > bad_sectors) 3026 max_sync = bad_sectors; 3027 continue; 3028 } 3029 } 3030 bio = r10_bio->devs[0].bio; 3031 bio_reset(bio); 3032 bio->bi_next = biolist; 3033 biolist = bio; 3034 bio->bi_private = r10_bio; 3035 bio->bi_end_io = end_sync_read; 3036 bio->bi_rw = READ; 3037 from_addr = r10_bio->devs[j].addr; 3038 bio->bi_iter.bi_sector = from_addr + 3039 rdev->data_offset; 3040 bio->bi_bdev = rdev->bdev; 3041 atomic_inc(&rdev->nr_pending); 3042 /* and we write to 'i' (if not in_sync) */ 3043 3044 for (k=0; k<conf->copies; k++) 3045 if (r10_bio->devs[k].devnum == i) 3046 break; 3047 BUG_ON(k == conf->copies); 3048 to_addr = r10_bio->devs[k].addr; 3049 r10_bio->devs[0].devnum = d; 3050 r10_bio->devs[0].addr = from_addr; 3051 r10_bio->devs[1].devnum = i; 3052 r10_bio->devs[1].addr = to_addr; 3053 3054 rdev = mirror->rdev; 3055 if (!test_bit(In_sync, &rdev->flags)) { 3056 bio = r10_bio->devs[1].bio; 3057 bio_reset(bio); 3058 bio->bi_next = biolist; 3059 biolist = bio; 3060 bio->bi_private = r10_bio; 3061 bio->bi_end_io = end_sync_write; 3062 bio->bi_rw = WRITE; 3063 bio->bi_iter.bi_sector = to_addr 3064 + rdev->data_offset; 3065 bio->bi_bdev = rdev->bdev; 3066 atomic_inc(&r10_bio->remaining); 3067 } else 3068 r10_bio->devs[1].bio->bi_end_io = NULL; 3069 3070 /* and maybe write to replacement */ 3071 bio = r10_bio->devs[1].repl_bio; 3072 if (bio) 3073 bio->bi_end_io = NULL; 3074 rdev = mirror->replacement; 3075 /* Note: if rdev != NULL, then bio 3076 * cannot be NULL as r10buf_pool_alloc will 3077 * have allocated it. 3078 * So the second test here is pointless. 3079 * But it keeps semantic-checkers happy, and 3080 * this comment keeps human reviewers 3081 * happy. 3082 */ 3083 if (rdev == NULL || bio == NULL || 3084 test_bit(Faulty, &rdev->flags)) 3085 break; 3086 bio_reset(bio); 3087 bio->bi_next = biolist; 3088 biolist = bio; 3089 bio->bi_private = r10_bio; 3090 bio->bi_end_io = end_sync_write; 3091 bio->bi_rw = WRITE; 3092 bio->bi_iter.bi_sector = to_addr + 3093 rdev->data_offset; 3094 bio->bi_bdev = rdev->bdev; 3095 atomic_inc(&r10_bio->remaining); 3096 break; 3097 } 3098 if (j == conf->copies) { 3099 /* Cannot recover, so abort the recovery or 3100 * record a bad block */ 3101 if (any_working) { 3102 /* problem is that there are bad blocks 3103 * on other device(s) 3104 */ 3105 int k; 3106 for (k = 0; k < conf->copies; k++) 3107 if (r10_bio->devs[k].devnum == i) 3108 break; 3109 if (!test_bit(In_sync, 3110 &mirror->rdev->flags) 3111 && !rdev_set_badblocks( 3112 mirror->rdev, 3113 r10_bio->devs[k].addr, 3114 max_sync, 0)) 3115 any_working = 0; 3116 if (mirror->replacement && 3117 !rdev_set_badblocks( 3118 mirror->replacement, 3119 r10_bio->devs[k].addr, 3120 max_sync, 0)) 3121 any_working = 0; 3122 } 3123 if (!any_working) { 3124 if (!test_and_set_bit(MD_RECOVERY_INTR, 3125 &mddev->recovery)) 3126 printk(KERN_INFO "md/raid10:%s: insufficient " 3127 "working devices for recovery.\n", 3128 mdname(mddev)); 3129 mirror->recovery_disabled 3130 = mddev->recovery_disabled; 3131 } 3132 put_buf(r10_bio); 3133 if (rb2) 3134 atomic_dec(&rb2->remaining); 3135 r10_bio = rb2; 3136 break; 3137 } 3138 } 3139 if (biolist == NULL) { 3140 while (r10_bio) { 3141 struct r10bio *rb2 = r10_bio; 3142 r10_bio = (struct r10bio*) rb2->master_bio; 3143 rb2->master_bio = NULL; 3144 put_buf(rb2); 3145 } 3146 goto giveup; 3147 } 3148 } else { 3149 /* resync. Schedule a read for every block at this virt offset */ 3150 int count = 0; 3151 3152 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0); 3153 3154 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3155 &sync_blocks, mddev->degraded) && 3156 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3157 &mddev->recovery)) { 3158 /* We can skip this block */ 3159 *skipped = 1; 3160 return sync_blocks + sectors_skipped; 3161 } 3162 if (sync_blocks < max_sync) 3163 max_sync = sync_blocks; 3164 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3165 r10_bio->state = 0; 3166 3167 r10_bio->mddev = mddev; 3168 atomic_set(&r10_bio->remaining, 0); 3169 raise_barrier(conf, 0); 3170 conf->next_resync = sector_nr; 3171 3172 r10_bio->master_bio = NULL; 3173 r10_bio->sector = sector_nr; 3174 set_bit(R10BIO_IsSync, &r10_bio->state); 3175 raid10_find_phys(conf, r10_bio); 3176 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3177 3178 for (i = 0; i < conf->copies; i++) { 3179 int d = r10_bio->devs[i].devnum; 3180 sector_t first_bad, sector; 3181 int bad_sectors; 3182 3183 if (r10_bio->devs[i].repl_bio) 3184 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3185 3186 bio = r10_bio->devs[i].bio; 3187 bio_reset(bio); 3188 bio->bi_error = -EIO; 3189 if (conf->mirrors[d].rdev == NULL || 3190 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3191 continue; 3192 sector = r10_bio->devs[i].addr; 3193 if (is_badblock(conf->mirrors[d].rdev, 3194 sector, max_sync, 3195 &first_bad, &bad_sectors)) { 3196 if (first_bad > sector) 3197 max_sync = first_bad - sector; 3198 else { 3199 bad_sectors -= (sector - first_bad); 3200 if (max_sync > bad_sectors) 3201 max_sync = bad_sectors; 3202 continue; 3203 } 3204 } 3205 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3206 atomic_inc(&r10_bio->remaining); 3207 bio->bi_next = biolist; 3208 biolist = bio; 3209 bio->bi_private = r10_bio; 3210 bio->bi_end_io = end_sync_read; 3211 bio->bi_rw = READ; 3212 bio->bi_iter.bi_sector = sector + 3213 conf->mirrors[d].rdev->data_offset; 3214 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3215 count++; 3216 3217 if (conf->mirrors[d].replacement == NULL || 3218 test_bit(Faulty, 3219 &conf->mirrors[d].replacement->flags)) 3220 continue; 3221 3222 /* Need to set up for writing to the replacement */ 3223 bio = r10_bio->devs[i].repl_bio; 3224 bio_reset(bio); 3225 bio->bi_error = -EIO; 3226 3227 sector = r10_bio->devs[i].addr; 3228 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3229 bio->bi_next = biolist; 3230 biolist = bio; 3231 bio->bi_private = r10_bio; 3232 bio->bi_end_io = end_sync_write; 3233 bio->bi_rw = WRITE; 3234 bio->bi_iter.bi_sector = sector + 3235 conf->mirrors[d].replacement->data_offset; 3236 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3237 count++; 3238 } 3239 3240 if (count < 2) { 3241 for (i=0; i<conf->copies; i++) { 3242 int d = r10_bio->devs[i].devnum; 3243 if (r10_bio->devs[i].bio->bi_end_io) 3244 rdev_dec_pending(conf->mirrors[d].rdev, 3245 mddev); 3246 if (r10_bio->devs[i].repl_bio && 3247 r10_bio->devs[i].repl_bio->bi_end_io) 3248 rdev_dec_pending( 3249 conf->mirrors[d].replacement, 3250 mddev); 3251 } 3252 put_buf(r10_bio); 3253 biolist = NULL; 3254 goto giveup; 3255 } 3256 } 3257 3258 nr_sectors = 0; 3259 if (sector_nr + max_sync < max_sector) 3260 max_sector = sector_nr + max_sync; 3261 do { 3262 struct page *page; 3263 int len = PAGE_SIZE; 3264 if (sector_nr + (len>>9) > max_sector) 3265 len = (max_sector - sector_nr) << 9; 3266 if (len == 0) 3267 break; 3268 for (bio= biolist ; bio ; bio=bio->bi_next) { 3269 struct bio *bio2; 3270 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3271 if (bio_add_page(bio, page, len, 0)) 3272 continue; 3273 3274 /* stop here */ 3275 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3276 for (bio2 = biolist; 3277 bio2 && bio2 != bio; 3278 bio2 = bio2->bi_next) { 3279 /* remove last page from this bio */ 3280 bio2->bi_vcnt--; 3281 bio2->bi_iter.bi_size -= len; 3282 bio_clear_flag(bio2, BIO_SEG_VALID); 3283 } 3284 goto bio_full; 3285 } 3286 nr_sectors += len>>9; 3287 sector_nr += len>>9; 3288 } while (biolist->bi_vcnt < RESYNC_PAGES); 3289 bio_full: 3290 r10_bio->sectors = nr_sectors; 3291 3292 while (biolist) { 3293 bio = biolist; 3294 biolist = biolist->bi_next; 3295 3296 bio->bi_next = NULL; 3297 r10_bio = bio->bi_private; 3298 r10_bio->sectors = nr_sectors; 3299 3300 if (bio->bi_end_io == end_sync_read) { 3301 md_sync_acct(bio->bi_bdev, nr_sectors); 3302 bio->bi_error = 0; 3303 generic_make_request(bio); 3304 } 3305 } 3306 3307 if (sectors_skipped) 3308 /* pretend they weren't skipped, it makes 3309 * no important difference in this case 3310 */ 3311 md_done_sync(mddev, sectors_skipped, 1); 3312 3313 return sectors_skipped + nr_sectors; 3314 giveup: 3315 /* There is nowhere to write, so all non-sync 3316 * drives must be failed or in resync, all drives 3317 * have a bad block, so try the next chunk... 3318 */ 3319 if (sector_nr + max_sync < max_sector) 3320 max_sector = sector_nr + max_sync; 3321 3322 sectors_skipped += (max_sector - sector_nr); 3323 chunks_skipped ++; 3324 sector_nr = max_sector; 3325 goto skipped; 3326 } 3327 3328 static sector_t 3329 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3330 { 3331 sector_t size; 3332 struct r10conf *conf = mddev->private; 3333 3334 if (!raid_disks) 3335 raid_disks = min(conf->geo.raid_disks, 3336 conf->prev.raid_disks); 3337 if (!sectors) 3338 sectors = conf->dev_sectors; 3339 3340 size = sectors >> conf->geo.chunk_shift; 3341 sector_div(size, conf->geo.far_copies); 3342 size = size * raid_disks; 3343 sector_div(size, conf->geo.near_copies); 3344 3345 return size << conf->geo.chunk_shift; 3346 } 3347 3348 static void calc_sectors(struct r10conf *conf, sector_t size) 3349 { 3350 /* Calculate the number of sectors-per-device that will 3351 * actually be used, and set conf->dev_sectors and 3352 * conf->stride 3353 */ 3354 3355 size = size >> conf->geo.chunk_shift; 3356 sector_div(size, conf->geo.far_copies); 3357 size = size * conf->geo.raid_disks; 3358 sector_div(size, conf->geo.near_copies); 3359 /* 'size' is now the number of chunks in the array */ 3360 /* calculate "used chunks per device" */ 3361 size = size * conf->copies; 3362 3363 /* We need to round up when dividing by raid_disks to 3364 * get the stride size. 3365 */ 3366 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3367 3368 conf->dev_sectors = size << conf->geo.chunk_shift; 3369 3370 if (conf->geo.far_offset) 3371 conf->geo.stride = 1 << conf->geo.chunk_shift; 3372 else { 3373 sector_div(size, conf->geo.far_copies); 3374 conf->geo.stride = size << conf->geo.chunk_shift; 3375 } 3376 } 3377 3378 enum geo_type {geo_new, geo_old, geo_start}; 3379 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3380 { 3381 int nc, fc, fo; 3382 int layout, chunk, disks; 3383 switch (new) { 3384 case geo_old: 3385 layout = mddev->layout; 3386 chunk = mddev->chunk_sectors; 3387 disks = mddev->raid_disks - mddev->delta_disks; 3388 break; 3389 case geo_new: 3390 layout = mddev->new_layout; 3391 chunk = mddev->new_chunk_sectors; 3392 disks = mddev->raid_disks; 3393 break; 3394 default: /* avoid 'may be unused' warnings */ 3395 case geo_start: /* new when starting reshape - raid_disks not 3396 * updated yet. */ 3397 layout = mddev->new_layout; 3398 chunk = mddev->new_chunk_sectors; 3399 disks = mddev->raid_disks + mddev->delta_disks; 3400 break; 3401 } 3402 if (layout >> 19) 3403 return -1; 3404 if (chunk < (PAGE_SIZE >> 9) || 3405 !is_power_of_2(chunk)) 3406 return -2; 3407 nc = layout & 255; 3408 fc = (layout >> 8) & 255; 3409 fo = layout & (1<<16); 3410 geo->raid_disks = disks; 3411 geo->near_copies = nc; 3412 geo->far_copies = fc; 3413 geo->far_offset = fo; 3414 switch (layout >> 17) { 3415 case 0: /* original layout. simple but not always optimal */ 3416 geo->far_set_size = disks; 3417 break; 3418 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3419 * actually using this, but leave code here just in case.*/ 3420 geo->far_set_size = disks/fc; 3421 WARN(geo->far_set_size < fc, 3422 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3423 break; 3424 case 2: /* "improved" layout fixed to match documentation */ 3425 geo->far_set_size = fc * nc; 3426 break; 3427 default: /* Not a valid layout */ 3428 return -1; 3429 } 3430 geo->chunk_mask = chunk - 1; 3431 geo->chunk_shift = ffz(~chunk); 3432 return nc*fc; 3433 } 3434 3435 static struct r10conf *setup_conf(struct mddev *mddev) 3436 { 3437 struct r10conf *conf = NULL; 3438 int err = -EINVAL; 3439 struct geom geo; 3440 int copies; 3441 3442 copies = setup_geo(&geo, mddev, geo_new); 3443 3444 if (copies == -2) { 3445 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3446 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3447 mdname(mddev), PAGE_SIZE); 3448 goto out; 3449 } 3450 3451 if (copies < 2 || copies > mddev->raid_disks) { 3452 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3453 mdname(mddev), mddev->new_layout); 3454 goto out; 3455 } 3456 3457 err = -ENOMEM; 3458 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3459 if (!conf) 3460 goto out; 3461 3462 /* FIXME calc properly */ 3463 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3464 max(0,-mddev->delta_disks)), 3465 GFP_KERNEL); 3466 if (!conf->mirrors) 3467 goto out; 3468 3469 conf->tmppage = alloc_page(GFP_KERNEL); 3470 if (!conf->tmppage) 3471 goto out; 3472 3473 conf->geo = geo; 3474 conf->copies = copies; 3475 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3476 r10bio_pool_free, conf); 3477 if (!conf->r10bio_pool) 3478 goto out; 3479 3480 calc_sectors(conf, mddev->dev_sectors); 3481 if (mddev->reshape_position == MaxSector) { 3482 conf->prev = conf->geo; 3483 conf->reshape_progress = MaxSector; 3484 } else { 3485 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3486 err = -EINVAL; 3487 goto out; 3488 } 3489 conf->reshape_progress = mddev->reshape_position; 3490 if (conf->prev.far_offset) 3491 conf->prev.stride = 1 << conf->prev.chunk_shift; 3492 else 3493 /* far_copies must be 1 */ 3494 conf->prev.stride = conf->dev_sectors; 3495 } 3496 conf->reshape_safe = conf->reshape_progress; 3497 spin_lock_init(&conf->device_lock); 3498 INIT_LIST_HEAD(&conf->retry_list); 3499 INIT_LIST_HEAD(&conf->bio_end_io_list); 3500 3501 spin_lock_init(&conf->resync_lock); 3502 init_waitqueue_head(&conf->wait_barrier); 3503 3504 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3505 if (!conf->thread) 3506 goto out; 3507 3508 conf->mddev = mddev; 3509 return conf; 3510 3511 out: 3512 if (err == -ENOMEM) 3513 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3514 mdname(mddev)); 3515 if (conf) { 3516 mempool_destroy(conf->r10bio_pool); 3517 kfree(conf->mirrors); 3518 safe_put_page(conf->tmppage); 3519 kfree(conf); 3520 } 3521 return ERR_PTR(err); 3522 } 3523 3524 static int run(struct mddev *mddev) 3525 { 3526 struct r10conf *conf; 3527 int i, disk_idx, chunk_size; 3528 struct raid10_info *disk; 3529 struct md_rdev *rdev; 3530 sector_t size; 3531 sector_t min_offset_diff = 0; 3532 int first = 1; 3533 bool discard_supported = false; 3534 3535 if (mddev->private == NULL) { 3536 conf = setup_conf(mddev); 3537 if (IS_ERR(conf)) 3538 return PTR_ERR(conf); 3539 mddev->private = conf; 3540 } 3541 conf = mddev->private; 3542 if (!conf) 3543 goto out; 3544 3545 mddev->thread = conf->thread; 3546 conf->thread = NULL; 3547 3548 chunk_size = mddev->chunk_sectors << 9; 3549 if (mddev->queue) { 3550 blk_queue_max_discard_sectors(mddev->queue, 3551 mddev->chunk_sectors); 3552 blk_queue_max_write_same_sectors(mddev->queue, 0); 3553 blk_queue_io_min(mddev->queue, chunk_size); 3554 if (conf->geo.raid_disks % conf->geo.near_copies) 3555 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3556 else 3557 blk_queue_io_opt(mddev->queue, chunk_size * 3558 (conf->geo.raid_disks / conf->geo.near_copies)); 3559 } 3560 3561 rdev_for_each(rdev, mddev) { 3562 long long diff; 3563 struct request_queue *q; 3564 3565 disk_idx = rdev->raid_disk; 3566 if (disk_idx < 0) 3567 continue; 3568 if (disk_idx >= conf->geo.raid_disks && 3569 disk_idx >= conf->prev.raid_disks) 3570 continue; 3571 disk = conf->mirrors + disk_idx; 3572 3573 if (test_bit(Replacement, &rdev->flags)) { 3574 if (disk->replacement) 3575 goto out_free_conf; 3576 disk->replacement = rdev; 3577 } else { 3578 if (disk->rdev) 3579 goto out_free_conf; 3580 disk->rdev = rdev; 3581 } 3582 q = bdev_get_queue(rdev->bdev); 3583 diff = (rdev->new_data_offset - rdev->data_offset); 3584 if (!mddev->reshape_backwards) 3585 diff = -diff; 3586 if (diff < 0) 3587 diff = 0; 3588 if (first || diff < min_offset_diff) 3589 min_offset_diff = diff; 3590 3591 if (mddev->gendisk) 3592 disk_stack_limits(mddev->gendisk, rdev->bdev, 3593 rdev->data_offset << 9); 3594 3595 disk->head_position = 0; 3596 3597 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3598 discard_supported = true; 3599 } 3600 3601 if (mddev->queue) { 3602 if (discard_supported) 3603 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3604 mddev->queue); 3605 else 3606 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3607 mddev->queue); 3608 } 3609 /* need to check that every block has at least one working mirror */ 3610 if (!enough(conf, -1)) { 3611 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3612 mdname(mddev)); 3613 goto out_free_conf; 3614 } 3615 3616 if (conf->reshape_progress != MaxSector) { 3617 /* must ensure that shape change is supported */ 3618 if (conf->geo.far_copies != 1 && 3619 conf->geo.far_offset == 0) 3620 goto out_free_conf; 3621 if (conf->prev.far_copies != 1 && 3622 conf->prev.far_offset == 0) 3623 goto out_free_conf; 3624 } 3625 3626 mddev->degraded = 0; 3627 for (i = 0; 3628 i < conf->geo.raid_disks 3629 || i < conf->prev.raid_disks; 3630 i++) { 3631 3632 disk = conf->mirrors + i; 3633 3634 if (!disk->rdev && disk->replacement) { 3635 /* The replacement is all we have - use it */ 3636 disk->rdev = disk->replacement; 3637 disk->replacement = NULL; 3638 clear_bit(Replacement, &disk->rdev->flags); 3639 } 3640 3641 if (!disk->rdev || 3642 !test_bit(In_sync, &disk->rdev->flags)) { 3643 disk->head_position = 0; 3644 mddev->degraded++; 3645 if (disk->rdev && 3646 disk->rdev->saved_raid_disk < 0) 3647 conf->fullsync = 1; 3648 } 3649 disk->recovery_disabled = mddev->recovery_disabled - 1; 3650 } 3651 3652 if (mddev->recovery_cp != MaxSector) 3653 printk(KERN_NOTICE "md/raid10:%s: not clean" 3654 " -- starting background reconstruction\n", 3655 mdname(mddev)); 3656 printk(KERN_INFO 3657 "md/raid10:%s: active with %d out of %d devices\n", 3658 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3659 conf->geo.raid_disks); 3660 /* 3661 * Ok, everything is just fine now 3662 */ 3663 mddev->dev_sectors = conf->dev_sectors; 3664 size = raid10_size(mddev, 0, 0); 3665 md_set_array_sectors(mddev, size); 3666 mddev->resync_max_sectors = size; 3667 3668 if (mddev->queue) { 3669 int stripe = conf->geo.raid_disks * 3670 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3671 3672 /* Calculate max read-ahead size. 3673 * We need to readahead at least twice a whole stripe.... 3674 * maybe... 3675 */ 3676 stripe /= conf->geo.near_copies; 3677 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3678 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3679 } 3680 3681 if (md_integrity_register(mddev)) 3682 goto out_free_conf; 3683 3684 if (conf->reshape_progress != MaxSector) { 3685 unsigned long before_length, after_length; 3686 3687 before_length = ((1 << conf->prev.chunk_shift) * 3688 conf->prev.far_copies); 3689 after_length = ((1 << conf->geo.chunk_shift) * 3690 conf->geo.far_copies); 3691 3692 if (max(before_length, after_length) > min_offset_diff) { 3693 /* This cannot work */ 3694 printk("md/raid10: offset difference not enough to continue reshape\n"); 3695 goto out_free_conf; 3696 } 3697 conf->offset_diff = min_offset_diff; 3698 3699 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3700 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3701 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3702 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3703 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3704 "reshape"); 3705 } 3706 3707 return 0; 3708 3709 out_free_conf: 3710 md_unregister_thread(&mddev->thread); 3711 mempool_destroy(conf->r10bio_pool); 3712 safe_put_page(conf->tmppage); 3713 kfree(conf->mirrors); 3714 kfree(conf); 3715 mddev->private = NULL; 3716 out: 3717 return -EIO; 3718 } 3719 3720 static void raid10_free(struct mddev *mddev, void *priv) 3721 { 3722 struct r10conf *conf = priv; 3723 3724 mempool_destroy(conf->r10bio_pool); 3725 safe_put_page(conf->tmppage); 3726 kfree(conf->mirrors); 3727 kfree(conf->mirrors_old); 3728 kfree(conf->mirrors_new); 3729 kfree(conf); 3730 } 3731 3732 static void raid10_quiesce(struct mddev *mddev, int state) 3733 { 3734 struct r10conf *conf = mddev->private; 3735 3736 switch(state) { 3737 case 1: 3738 raise_barrier(conf, 0); 3739 break; 3740 case 0: 3741 lower_barrier(conf); 3742 break; 3743 } 3744 } 3745 3746 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3747 { 3748 /* Resize of 'far' arrays is not supported. 3749 * For 'near' and 'offset' arrays we can set the 3750 * number of sectors used to be an appropriate multiple 3751 * of the chunk size. 3752 * For 'offset', this is far_copies*chunksize. 3753 * For 'near' the multiplier is the LCM of 3754 * near_copies and raid_disks. 3755 * So if far_copies > 1 && !far_offset, fail. 3756 * Else find LCM(raid_disks, near_copy)*far_copies and 3757 * multiply by chunk_size. Then round to this number. 3758 * This is mostly done by raid10_size() 3759 */ 3760 struct r10conf *conf = mddev->private; 3761 sector_t oldsize, size; 3762 3763 if (mddev->reshape_position != MaxSector) 3764 return -EBUSY; 3765 3766 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3767 return -EINVAL; 3768 3769 oldsize = raid10_size(mddev, 0, 0); 3770 size = raid10_size(mddev, sectors, 0); 3771 if (mddev->external_size && 3772 mddev->array_sectors > size) 3773 return -EINVAL; 3774 if (mddev->bitmap) { 3775 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3776 if (ret) 3777 return ret; 3778 } 3779 md_set_array_sectors(mddev, size); 3780 set_capacity(mddev->gendisk, mddev->array_sectors); 3781 revalidate_disk(mddev->gendisk); 3782 if (sectors > mddev->dev_sectors && 3783 mddev->recovery_cp > oldsize) { 3784 mddev->recovery_cp = oldsize; 3785 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3786 } 3787 calc_sectors(conf, sectors); 3788 mddev->dev_sectors = conf->dev_sectors; 3789 mddev->resync_max_sectors = size; 3790 return 0; 3791 } 3792 3793 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3794 { 3795 struct md_rdev *rdev; 3796 struct r10conf *conf; 3797 3798 if (mddev->degraded > 0) { 3799 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3800 mdname(mddev)); 3801 return ERR_PTR(-EINVAL); 3802 } 3803 sector_div(size, devs); 3804 3805 /* Set new parameters */ 3806 mddev->new_level = 10; 3807 /* new layout: far_copies = 1, near_copies = 2 */ 3808 mddev->new_layout = (1<<8) + 2; 3809 mddev->new_chunk_sectors = mddev->chunk_sectors; 3810 mddev->delta_disks = mddev->raid_disks; 3811 mddev->raid_disks *= 2; 3812 /* make sure it will be not marked as dirty */ 3813 mddev->recovery_cp = MaxSector; 3814 mddev->dev_sectors = size; 3815 3816 conf = setup_conf(mddev); 3817 if (!IS_ERR(conf)) { 3818 rdev_for_each(rdev, mddev) 3819 if (rdev->raid_disk >= 0) { 3820 rdev->new_raid_disk = rdev->raid_disk * 2; 3821 rdev->sectors = size; 3822 } 3823 conf->barrier = 1; 3824 } 3825 3826 return conf; 3827 } 3828 3829 static void *raid10_takeover(struct mddev *mddev) 3830 { 3831 struct r0conf *raid0_conf; 3832 3833 /* raid10 can take over: 3834 * raid0 - providing it has only two drives 3835 */ 3836 if (mddev->level == 0) { 3837 /* for raid0 takeover only one zone is supported */ 3838 raid0_conf = mddev->private; 3839 if (raid0_conf->nr_strip_zones > 1) { 3840 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3841 " with more than one zone.\n", 3842 mdname(mddev)); 3843 return ERR_PTR(-EINVAL); 3844 } 3845 return raid10_takeover_raid0(mddev, 3846 raid0_conf->strip_zone->zone_end, 3847 raid0_conf->strip_zone->nb_dev); 3848 } 3849 return ERR_PTR(-EINVAL); 3850 } 3851 3852 static int raid10_check_reshape(struct mddev *mddev) 3853 { 3854 /* Called when there is a request to change 3855 * - layout (to ->new_layout) 3856 * - chunk size (to ->new_chunk_sectors) 3857 * - raid_disks (by delta_disks) 3858 * or when trying to restart a reshape that was ongoing. 3859 * 3860 * We need to validate the request and possibly allocate 3861 * space if that might be an issue later. 3862 * 3863 * Currently we reject any reshape of a 'far' mode array, 3864 * allow chunk size to change if new is generally acceptable, 3865 * allow raid_disks to increase, and allow 3866 * a switch between 'near' mode and 'offset' mode. 3867 */ 3868 struct r10conf *conf = mddev->private; 3869 struct geom geo; 3870 3871 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3872 return -EINVAL; 3873 3874 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3875 /* mustn't change number of copies */ 3876 return -EINVAL; 3877 if (geo.far_copies > 1 && !geo.far_offset) 3878 /* Cannot switch to 'far' mode */ 3879 return -EINVAL; 3880 3881 if (mddev->array_sectors & geo.chunk_mask) 3882 /* not factor of array size */ 3883 return -EINVAL; 3884 3885 if (!enough(conf, -1)) 3886 return -EINVAL; 3887 3888 kfree(conf->mirrors_new); 3889 conf->mirrors_new = NULL; 3890 if (mddev->delta_disks > 0) { 3891 /* allocate new 'mirrors' list */ 3892 conf->mirrors_new = kzalloc( 3893 sizeof(struct raid10_info) 3894 *(mddev->raid_disks + 3895 mddev->delta_disks), 3896 GFP_KERNEL); 3897 if (!conf->mirrors_new) 3898 return -ENOMEM; 3899 } 3900 return 0; 3901 } 3902 3903 /* 3904 * Need to check if array has failed when deciding whether to: 3905 * - start an array 3906 * - remove non-faulty devices 3907 * - add a spare 3908 * - allow a reshape 3909 * This determination is simple when no reshape is happening. 3910 * However if there is a reshape, we need to carefully check 3911 * both the before and after sections. 3912 * This is because some failed devices may only affect one 3913 * of the two sections, and some non-in_sync devices may 3914 * be insync in the section most affected by failed devices. 3915 */ 3916 static int calc_degraded(struct r10conf *conf) 3917 { 3918 int degraded, degraded2; 3919 int i; 3920 3921 rcu_read_lock(); 3922 degraded = 0; 3923 /* 'prev' section first */ 3924 for (i = 0; i < conf->prev.raid_disks; i++) { 3925 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3926 if (!rdev || test_bit(Faulty, &rdev->flags)) 3927 degraded++; 3928 else if (!test_bit(In_sync, &rdev->flags)) 3929 /* When we can reduce the number of devices in 3930 * an array, this might not contribute to 3931 * 'degraded'. It does now. 3932 */ 3933 degraded++; 3934 } 3935 rcu_read_unlock(); 3936 if (conf->geo.raid_disks == conf->prev.raid_disks) 3937 return degraded; 3938 rcu_read_lock(); 3939 degraded2 = 0; 3940 for (i = 0; i < conf->geo.raid_disks; i++) { 3941 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3942 if (!rdev || test_bit(Faulty, &rdev->flags)) 3943 degraded2++; 3944 else if (!test_bit(In_sync, &rdev->flags)) { 3945 /* If reshape is increasing the number of devices, 3946 * this section has already been recovered, so 3947 * it doesn't contribute to degraded. 3948 * else it does. 3949 */ 3950 if (conf->geo.raid_disks <= conf->prev.raid_disks) 3951 degraded2++; 3952 } 3953 } 3954 rcu_read_unlock(); 3955 if (degraded2 > degraded) 3956 return degraded2; 3957 return degraded; 3958 } 3959 3960 static int raid10_start_reshape(struct mddev *mddev) 3961 { 3962 /* A 'reshape' has been requested. This commits 3963 * the various 'new' fields and sets MD_RECOVER_RESHAPE 3964 * This also checks if there are enough spares and adds them 3965 * to the array. 3966 * We currently require enough spares to make the final 3967 * array non-degraded. We also require that the difference 3968 * between old and new data_offset - on each device - is 3969 * enough that we never risk over-writing. 3970 */ 3971 3972 unsigned long before_length, after_length; 3973 sector_t min_offset_diff = 0; 3974 int first = 1; 3975 struct geom new; 3976 struct r10conf *conf = mddev->private; 3977 struct md_rdev *rdev; 3978 int spares = 0; 3979 int ret; 3980 3981 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3982 return -EBUSY; 3983 3984 if (setup_geo(&new, mddev, geo_start) != conf->copies) 3985 return -EINVAL; 3986 3987 before_length = ((1 << conf->prev.chunk_shift) * 3988 conf->prev.far_copies); 3989 after_length = ((1 << conf->geo.chunk_shift) * 3990 conf->geo.far_copies); 3991 3992 rdev_for_each(rdev, mddev) { 3993 if (!test_bit(In_sync, &rdev->flags) 3994 && !test_bit(Faulty, &rdev->flags)) 3995 spares++; 3996 if (rdev->raid_disk >= 0) { 3997 long long diff = (rdev->new_data_offset 3998 - rdev->data_offset); 3999 if (!mddev->reshape_backwards) 4000 diff = -diff; 4001 if (diff < 0) 4002 diff = 0; 4003 if (first || diff < min_offset_diff) 4004 min_offset_diff = diff; 4005 } 4006 } 4007 4008 if (max(before_length, after_length) > min_offset_diff) 4009 return -EINVAL; 4010 4011 if (spares < mddev->delta_disks) 4012 return -EINVAL; 4013 4014 conf->offset_diff = min_offset_diff; 4015 spin_lock_irq(&conf->device_lock); 4016 if (conf->mirrors_new) { 4017 memcpy(conf->mirrors_new, conf->mirrors, 4018 sizeof(struct raid10_info)*conf->prev.raid_disks); 4019 smp_mb(); 4020 kfree(conf->mirrors_old); 4021 conf->mirrors_old = conf->mirrors; 4022 conf->mirrors = conf->mirrors_new; 4023 conf->mirrors_new = NULL; 4024 } 4025 setup_geo(&conf->geo, mddev, geo_start); 4026 smp_mb(); 4027 if (mddev->reshape_backwards) { 4028 sector_t size = raid10_size(mddev, 0, 0); 4029 if (size < mddev->array_sectors) { 4030 spin_unlock_irq(&conf->device_lock); 4031 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4032 mdname(mddev)); 4033 return -EINVAL; 4034 } 4035 mddev->resync_max_sectors = size; 4036 conf->reshape_progress = size; 4037 } else 4038 conf->reshape_progress = 0; 4039 conf->reshape_safe = conf->reshape_progress; 4040 spin_unlock_irq(&conf->device_lock); 4041 4042 if (mddev->delta_disks && mddev->bitmap) { 4043 ret = bitmap_resize(mddev->bitmap, 4044 raid10_size(mddev, 0, 4045 conf->geo.raid_disks), 4046 0, 0); 4047 if (ret) 4048 goto abort; 4049 } 4050 if (mddev->delta_disks > 0) { 4051 rdev_for_each(rdev, mddev) 4052 if (rdev->raid_disk < 0 && 4053 !test_bit(Faulty, &rdev->flags)) { 4054 if (raid10_add_disk(mddev, rdev) == 0) { 4055 if (rdev->raid_disk >= 4056 conf->prev.raid_disks) 4057 set_bit(In_sync, &rdev->flags); 4058 else 4059 rdev->recovery_offset = 0; 4060 4061 if (sysfs_link_rdev(mddev, rdev)) 4062 /* Failure here is OK */; 4063 } 4064 } else if (rdev->raid_disk >= conf->prev.raid_disks 4065 && !test_bit(Faulty, &rdev->flags)) { 4066 /* This is a spare that was manually added */ 4067 set_bit(In_sync, &rdev->flags); 4068 } 4069 } 4070 /* When a reshape changes the number of devices, 4071 * ->degraded is measured against the larger of the 4072 * pre and post numbers. 4073 */ 4074 spin_lock_irq(&conf->device_lock); 4075 mddev->degraded = calc_degraded(conf); 4076 spin_unlock_irq(&conf->device_lock); 4077 mddev->raid_disks = conf->geo.raid_disks; 4078 mddev->reshape_position = conf->reshape_progress; 4079 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4080 4081 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4082 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4083 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4084 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4085 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4086 4087 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4088 "reshape"); 4089 if (!mddev->sync_thread) { 4090 ret = -EAGAIN; 4091 goto abort; 4092 } 4093 conf->reshape_checkpoint = jiffies; 4094 md_wakeup_thread(mddev->sync_thread); 4095 md_new_event(mddev); 4096 return 0; 4097 4098 abort: 4099 mddev->recovery = 0; 4100 spin_lock_irq(&conf->device_lock); 4101 conf->geo = conf->prev; 4102 mddev->raid_disks = conf->geo.raid_disks; 4103 rdev_for_each(rdev, mddev) 4104 rdev->new_data_offset = rdev->data_offset; 4105 smp_wmb(); 4106 conf->reshape_progress = MaxSector; 4107 conf->reshape_safe = MaxSector; 4108 mddev->reshape_position = MaxSector; 4109 spin_unlock_irq(&conf->device_lock); 4110 return ret; 4111 } 4112 4113 /* Calculate the last device-address that could contain 4114 * any block from the chunk that includes the array-address 's' 4115 * and report the next address. 4116 * i.e. the address returned will be chunk-aligned and after 4117 * any data that is in the chunk containing 's'. 4118 */ 4119 static sector_t last_dev_address(sector_t s, struct geom *geo) 4120 { 4121 s = (s | geo->chunk_mask) + 1; 4122 s >>= geo->chunk_shift; 4123 s *= geo->near_copies; 4124 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4125 s *= geo->far_copies; 4126 s <<= geo->chunk_shift; 4127 return s; 4128 } 4129 4130 /* Calculate the first device-address that could contain 4131 * any block from the chunk that includes the array-address 's'. 4132 * This too will be the start of a chunk 4133 */ 4134 static sector_t first_dev_address(sector_t s, struct geom *geo) 4135 { 4136 s >>= geo->chunk_shift; 4137 s *= geo->near_copies; 4138 sector_div(s, geo->raid_disks); 4139 s *= geo->far_copies; 4140 s <<= geo->chunk_shift; 4141 return s; 4142 } 4143 4144 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4145 int *skipped) 4146 { 4147 /* We simply copy at most one chunk (smallest of old and new) 4148 * at a time, possibly less if that exceeds RESYNC_PAGES, 4149 * or we hit a bad block or something. 4150 * This might mean we pause for normal IO in the middle of 4151 * a chunk, but that is not a problem as mddev->reshape_position 4152 * can record any location. 4153 * 4154 * If we will want to write to a location that isn't 4155 * yet recorded as 'safe' (i.e. in metadata on disk) then 4156 * we need to flush all reshape requests and update the metadata. 4157 * 4158 * When reshaping forwards (e.g. to more devices), we interpret 4159 * 'safe' as the earliest block which might not have been copied 4160 * down yet. We divide this by previous stripe size and multiply 4161 * by previous stripe length to get lowest device offset that we 4162 * cannot write to yet. 4163 * We interpret 'sector_nr' as an address that we want to write to. 4164 * From this we use last_device_address() to find where we might 4165 * write to, and first_device_address on the 'safe' position. 4166 * If this 'next' write position is after the 'safe' position, 4167 * we must update the metadata to increase the 'safe' position. 4168 * 4169 * When reshaping backwards, we round in the opposite direction 4170 * and perform the reverse test: next write position must not be 4171 * less than current safe position. 4172 * 4173 * In all this the minimum difference in data offsets 4174 * (conf->offset_diff - always positive) allows a bit of slack, 4175 * so next can be after 'safe', but not by more than offset_diff 4176 * 4177 * We need to prepare all the bios here before we start any IO 4178 * to ensure the size we choose is acceptable to all devices. 4179 * The means one for each copy for write-out and an extra one for 4180 * read-in. 4181 * We store the read-in bio in ->master_bio and the others in 4182 * ->devs[x].bio and ->devs[x].repl_bio. 4183 */ 4184 struct r10conf *conf = mddev->private; 4185 struct r10bio *r10_bio; 4186 sector_t next, safe, last; 4187 int max_sectors; 4188 int nr_sectors; 4189 int s; 4190 struct md_rdev *rdev; 4191 int need_flush = 0; 4192 struct bio *blist; 4193 struct bio *bio, *read_bio; 4194 int sectors_done = 0; 4195 4196 if (sector_nr == 0) { 4197 /* If restarting in the middle, skip the initial sectors */ 4198 if (mddev->reshape_backwards && 4199 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4200 sector_nr = (raid10_size(mddev, 0, 0) 4201 - conf->reshape_progress); 4202 } else if (!mddev->reshape_backwards && 4203 conf->reshape_progress > 0) 4204 sector_nr = conf->reshape_progress; 4205 if (sector_nr) { 4206 mddev->curr_resync_completed = sector_nr; 4207 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4208 *skipped = 1; 4209 return sector_nr; 4210 } 4211 } 4212 4213 /* We don't use sector_nr to track where we are up to 4214 * as that doesn't work well for ->reshape_backwards. 4215 * So just use ->reshape_progress. 4216 */ 4217 if (mddev->reshape_backwards) { 4218 /* 'next' is the earliest device address that we might 4219 * write to for this chunk in the new layout 4220 */ 4221 next = first_dev_address(conf->reshape_progress - 1, 4222 &conf->geo); 4223 4224 /* 'safe' is the last device address that we might read from 4225 * in the old layout after a restart 4226 */ 4227 safe = last_dev_address(conf->reshape_safe - 1, 4228 &conf->prev); 4229 4230 if (next + conf->offset_diff < safe) 4231 need_flush = 1; 4232 4233 last = conf->reshape_progress - 1; 4234 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4235 & conf->prev.chunk_mask); 4236 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4237 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4238 } else { 4239 /* 'next' is after the last device address that we 4240 * might write to for this chunk in the new layout 4241 */ 4242 next = last_dev_address(conf->reshape_progress, &conf->geo); 4243 4244 /* 'safe' is the earliest device address that we might 4245 * read from in the old layout after a restart 4246 */ 4247 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4248 4249 /* Need to update metadata if 'next' might be beyond 'safe' 4250 * as that would possibly corrupt data 4251 */ 4252 if (next > safe + conf->offset_diff) 4253 need_flush = 1; 4254 4255 sector_nr = conf->reshape_progress; 4256 last = sector_nr | (conf->geo.chunk_mask 4257 & conf->prev.chunk_mask); 4258 4259 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4260 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4261 } 4262 4263 if (need_flush || 4264 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4265 /* Need to update reshape_position in metadata */ 4266 wait_barrier(conf); 4267 mddev->reshape_position = conf->reshape_progress; 4268 if (mddev->reshape_backwards) 4269 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4270 - conf->reshape_progress; 4271 else 4272 mddev->curr_resync_completed = conf->reshape_progress; 4273 conf->reshape_checkpoint = jiffies; 4274 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4275 md_wakeup_thread(mddev->thread); 4276 wait_event(mddev->sb_wait, mddev->flags == 0 || 4277 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4278 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4279 allow_barrier(conf); 4280 return sectors_done; 4281 } 4282 conf->reshape_safe = mddev->reshape_position; 4283 allow_barrier(conf); 4284 } 4285 4286 read_more: 4287 /* Now schedule reads for blocks from sector_nr to last */ 4288 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4289 r10_bio->state = 0; 4290 raise_barrier(conf, sectors_done != 0); 4291 atomic_set(&r10_bio->remaining, 0); 4292 r10_bio->mddev = mddev; 4293 r10_bio->sector = sector_nr; 4294 set_bit(R10BIO_IsReshape, &r10_bio->state); 4295 r10_bio->sectors = last - sector_nr + 1; 4296 rdev = read_balance(conf, r10_bio, &max_sectors); 4297 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4298 4299 if (!rdev) { 4300 /* Cannot read from here, so need to record bad blocks 4301 * on all the target devices. 4302 */ 4303 // FIXME 4304 mempool_free(r10_bio, conf->r10buf_pool); 4305 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4306 return sectors_done; 4307 } 4308 4309 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4310 4311 read_bio->bi_bdev = rdev->bdev; 4312 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4313 + rdev->data_offset); 4314 read_bio->bi_private = r10_bio; 4315 read_bio->bi_end_io = end_sync_read; 4316 read_bio->bi_rw = READ; 4317 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4318 read_bio->bi_error = 0; 4319 read_bio->bi_vcnt = 0; 4320 read_bio->bi_iter.bi_size = 0; 4321 r10_bio->master_bio = read_bio; 4322 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4323 4324 /* Now find the locations in the new layout */ 4325 __raid10_find_phys(&conf->geo, r10_bio); 4326 4327 blist = read_bio; 4328 read_bio->bi_next = NULL; 4329 4330 for (s = 0; s < conf->copies*2; s++) { 4331 struct bio *b; 4332 int d = r10_bio->devs[s/2].devnum; 4333 struct md_rdev *rdev2; 4334 if (s&1) { 4335 rdev2 = conf->mirrors[d].replacement; 4336 b = r10_bio->devs[s/2].repl_bio; 4337 } else { 4338 rdev2 = conf->mirrors[d].rdev; 4339 b = r10_bio->devs[s/2].bio; 4340 } 4341 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4342 continue; 4343 4344 bio_reset(b); 4345 b->bi_bdev = rdev2->bdev; 4346 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4347 rdev2->new_data_offset; 4348 b->bi_private = r10_bio; 4349 b->bi_end_io = end_reshape_write; 4350 b->bi_rw = WRITE; 4351 b->bi_next = blist; 4352 blist = b; 4353 } 4354 4355 /* Now add as many pages as possible to all of these bios. */ 4356 4357 nr_sectors = 0; 4358 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4359 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4360 int len = (max_sectors - s) << 9; 4361 if (len > PAGE_SIZE) 4362 len = PAGE_SIZE; 4363 for (bio = blist; bio ; bio = bio->bi_next) { 4364 struct bio *bio2; 4365 if (bio_add_page(bio, page, len, 0)) 4366 continue; 4367 4368 /* Didn't fit, must stop */ 4369 for (bio2 = blist; 4370 bio2 && bio2 != bio; 4371 bio2 = bio2->bi_next) { 4372 /* Remove last page from this bio */ 4373 bio2->bi_vcnt--; 4374 bio2->bi_iter.bi_size -= len; 4375 bio_clear_flag(bio2, BIO_SEG_VALID); 4376 } 4377 goto bio_full; 4378 } 4379 sector_nr += len >> 9; 4380 nr_sectors += len >> 9; 4381 } 4382 bio_full: 4383 r10_bio->sectors = nr_sectors; 4384 4385 /* Now submit the read */ 4386 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4387 atomic_inc(&r10_bio->remaining); 4388 read_bio->bi_next = NULL; 4389 generic_make_request(read_bio); 4390 sector_nr += nr_sectors; 4391 sectors_done += nr_sectors; 4392 if (sector_nr <= last) 4393 goto read_more; 4394 4395 /* Now that we have done the whole section we can 4396 * update reshape_progress 4397 */ 4398 if (mddev->reshape_backwards) 4399 conf->reshape_progress -= sectors_done; 4400 else 4401 conf->reshape_progress += sectors_done; 4402 4403 return sectors_done; 4404 } 4405 4406 static void end_reshape_request(struct r10bio *r10_bio); 4407 static int handle_reshape_read_error(struct mddev *mddev, 4408 struct r10bio *r10_bio); 4409 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4410 { 4411 /* Reshape read completed. Hopefully we have a block 4412 * to write out. 4413 * If we got a read error then we do sync 1-page reads from 4414 * elsewhere until we find the data - or give up. 4415 */ 4416 struct r10conf *conf = mddev->private; 4417 int s; 4418 4419 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4420 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4421 /* Reshape has been aborted */ 4422 md_done_sync(mddev, r10_bio->sectors, 0); 4423 return; 4424 } 4425 4426 /* We definitely have the data in the pages, schedule the 4427 * writes. 4428 */ 4429 atomic_set(&r10_bio->remaining, 1); 4430 for (s = 0; s < conf->copies*2; s++) { 4431 struct bio *b; 4432 int d = r10_bio->devs[s/2].devnum; 4433 struct md_rdev *rdev; 4434 if (s&1) { 4435 rdev = conf->mirrors[d].replacement; 4436 b = r10_bio->devs[s/2].repl_bio; 4437 } else { 4438 rdev = conf->mirrors[d].rdev; 4439 b = r10_bio->devs[s/2].bio; 4440 } 4441 if (!rdev || test_bit(Faulty, &rdev->flags)) 4442 continue; 4443 atomic_inc(&rdev->nr_pending); 4444 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4445 atomic_inc(&r10_bio->remaining); 4446 b->bi_next = NULL; 4447 generic_make_request(b); 4448 } 4449 end_reshape_request(r10_bio); 4450 } 4451 4452 static void end_reshape(struct r10conf *conf) 4453 { 4454 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4455 return; 4456 4457 spin_lock_irq(&conf->device_lock); 4458 conf->prev = conf->geo; 4459 md_finish_reshape(conf->mddev); 4460 smp_wmb(); 4461 conf->reshape_progress = MaxSector; 4462 conf->reshape_safe = MaxSector; 4463 spin_unlock_irq(&conf->device_lock); 4464 4465 /* read-ahead size must cover two whole stripes, which is 4466 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4467 */ 4468 if (conf->mddev->queue) { 4469 int stripe = conf->geo.raid_disks * 4470 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4471 stripe /= conf->geo.near_copies; 4472 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4473 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4474 } 4475 conf->fullsync = 0; 4476 } 4477 4478 static int handle_reshape_read_error(struct mddev *mddev, 4479 struct r10bio *r10_bio) 4480 { 4481 /* Use sync reads to get the blocks from somewhere else */ 4482 int sectors = r10_bio->sectors; 4483 struct r10conf *conf = mddev->private; 4484 struct { 4485 struct r10bio r10_bio; 4486 struct r10dev devs[conf->copies]; 4487 } on_stack; 4488 struct r10bio *r10b = &on_stack.r10_bio; 4489 int slot = 0; 4490 int idx = 0; 4491 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4492 4493 r10b->sector = r10_bio->sector; 4494 __raid10_find_phys(&conf->prev, r10b); 4495 4496 while (sectors) { 4497 int s = sectors; 4498 int success = 0; 4499 int first_slot = slot; 4500 4501 if (s > (PAGE_SIZE >> 9)) 4502 s = PAGE_SIZE >> 9; 4503 4504 while (!success) { 4505 int d = r10b->devs[slot].devnum; 4506 struct md_rdev *rdev = conf->mirrors[d].rdev; 4507 sector_t addr; 4508 if (rdev == NULL || 4509 test_bit(Faulty, &rdev->flags) || 4510 !test_bit(In_sync, &rdev->flags)) 4511 goto failed; 4512 4513 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4514 success = sync_page_io(rdev, 4515 addr, 4516 s << 9, 4517 bvec[idx].bv_page, 4518 READ, false); 4519 if (success) 4520 break; 4521 failed: 4522 slot++; 4523 if (slot >= conf->copies) 4524 slot = 0; 4525 if (slot == first_slot) 4526 break; 4527 } 4528 if (!success) { 4529 /* couldn't read this block, must give up */ 4530 set_bit(MD_RECOVERY_INTR, 4531 &mddev->recovery); 4532 return -EIO; 4533 } 4534 sectors -= s; 4535 idx++; 4536 } 4537 return 0; 4538 } 4539 4540 static void end_reshape_write(struct bio *bio) 4541 { 4542 struct r10bio *r10_bio = bio->bi_private; 4543 struct mddev *mddev = r10_bio->mddev; 4544 struct r10conf *conf = mddev->private; 4545 int d; 4546 int slot; 4547 int repl; 4548 struct md_rdev *rdev = NULL; 4549 4550 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4551 if (repl) 4552 rdev = conf->mirrors[d].replacement; 4553 if (!rdev) { 4554 smp_mb(); 4555 rdev = conf->mirrors[d].rdev; 4556 } 4557 4558 if (bio->bi_error) { 4559 /* FIXME should record badblock */ 4560 md_error(mddev, rdev); 4561 } 4562 4563 rdev_dec_pending(rdev, mddev); 4564 end_reshape_request(r10_bio); 4565 } 4566 4567 static void end_reshape_request(struct r10bio *r10_bio) 4568 { 4569 if (!atomic_dec_and_test(&r10_bio->remaining)) 4570 return; 4571 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4572 bio_put(r10_bio->master_bio); 4573 put_buf(r10_bio); 4574 } 4575 4576 static void raid10_finish_reshape(struct mddev *mddev) 4577 { 4578 struct r10conf *conf = mddev->private; 4579 4580 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4581 return; 4582 4583 if (mddev->delta_disks > 0) { 4584 sector_t size = raid10_size(mddev, 0, 0); 4585 md_set_array_sectors(mddev, size); 4586 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4587 mddev->recovery_cp = mddev->resync_max_sectors; 4588 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4589 } 4590 mddev->resync_max_sectors = size; 4591 set_capacity(mddev->gendisk, mddev->array_sectors); 4592 revalidate_disk(mddev->gendisk); 4593 } else { 4594 int d; 4595 for (d = conf->geo.raid_disks ; 4596 d < conf->geo.raid_disks - mddev->delta_disks; 4597 d++) { 4598 struct md_rdev *rdev = conf->mirrors[d].rdev; 4599 if (rdev) 4600 clear_bit(In_sync, &rdev->flags); 4601 rdev = conf->mirrors[d].replacement; 4602 if (rdev) 4603 clear_bit(In_sync, &rdev->flags); 4604 } 4605 } 4606 mddev->layout = mddev->new_layout; 4607 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4608 mddev->reshape_position = MaxSector; 4609 mddev->delta_disks = 0; 4610 mddev->reshape_backwards = 0; 4611 } 4612 4613 static struct md_personality raid10_personality = 4614 { 4615 .name = "raid10", 4616 .level = 10, 4617 .owner = THIS_MODULE, 4618 .make_request = make_request, 4619 .run = run, 4620 .free = raid10_free, 4621 .status = status, 4622 .error_handler = error, 4623 .hot_add_disk = raid10_add_disk, 4624 .hot_remove_disk= raid10_remove_disk, 4625 .spare_active = raid10_spare_active, 4626 .sync_request = sync_request, 4627 .quiesce = raid10_quiesce, 4628 .size = raid10_size, 4629 .resize = raid10_resize, 4630 .takeover = raid10_takeover, 4631 .check_reshape = raid10_check_reshape, 4632 .start_reshape = raid10_start_reshape, 4633 .finish_reshape = raid10_finish_reshape, 4634 .congested = raid10_congested, 4635 }; 4636 4637 static int __init raid_init(void) 4638 { 4639 return register_md_personality(&raid10_personality); 4640 } 4641 4642 static void raid_exit(void) 4643 { 4644 unregister_md_personality(&raid10_personality); 4645 } 4646 4647 module_init(raid_init); 4648 module_exit(raid_exit); 4649 MODULE_LICENSE("GPL"); 4650 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4651 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4652 MODULE_ALIAS("md-raid10"); 4653 MODULE_ALIAS("md-level-10"); 4654 4655 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4656