xref: /linux/drivers/md/raid10.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73 
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define	NR_RAID10_BIOS 256
78 
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90 
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92 
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98 
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 				int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107 
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 	struct r10conf *conf = data;
111 	int size = offsetof(struct r10bio, devs[conf->copies]);
112 
113 	/* allocate a r10bio with room for raid_disks entries in the
114 	 * bios array */
115 	return kzalloc(size, gfp_flags);
116 }
117 
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120 	kfree(r10_bio);
121 }
122 
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130 
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140 	struct r10conf *conf = data;
141 	struct page *page;
142 	struct r10bio *r10_bio;
143 	struct bio *bio;
144 	int i, j;
145 	int nalloc;
146 
147 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148 	if (!r10_bio)
149 		return NULL;
150 
151 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153 		nalloc = conf->copies; /* resync */
154 	else
155 		nalloc = 2; /* recovery */
156 
157 	/*
158 	 * Allocate bios.
159 	 */
160 	for (j = nalloc ; j-- ; ) {
161 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162 		if (!bio)
163 			goto out_free_bio;
164 		r10_bio->devs[j].bio = bio;
165 		if (!conf->have_replacement)
166 			continue;
167 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 		if (!bio)
169 			goto out_free_bio;
170 		r10_bio->devs[j].repl_bio = bio;
171 	}
172 	/*
173 	 * Allocate RESYNC_PAGES data pages and attach them
174 	 * where needed.
175 	 */
176 	for (j = 0 ; j < nalloc; j++) {
177 		struct bio *rbio = r10_bio->devs[j].repl_bio;
178 		bio = r10_bio->devs[j].bio;
179 		for (i = 0; i < RESYNC_PAGES; i++) {
180 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 					       &conf->mddev->recovery)) {
182 				/* we can share bv_page's during recovery
183 				 * and reshape */
184 				struct bio *rbio = r10_bio->devs[0].bio;
185 				page = rbio->bi_io_vec[i].bv_page;
186 				get_page(page);
187 			} else
188 				page = alloc_page(gfp_flags);
189 			if (unlikely(!page))
190 				goto out_free_pages;
191 
192 			bio->bi_io_vec[i].bv_page = page;
193 			if (rbio)
194 				rbio->bi_io_vec[i].bv_page = page;
195 		}
196 	}
197 
198 	return r10_bio;
199 
200 out_free_pages:
201 	for ( ; i > 0 ; i--)
202 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 	while (j--)
204 		for (i = 0; i < RESYNC_PAGES ; i++)
205 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206 	j = 0;
207 out_free_bio:
208 	for ( ; j < nalloc; j++) {
209 		if (r10_bio->devs[j].bio)
210 			bio_put(r10_bio->devs[j].bio);
211 		if (r10_bio->devs[j].repl_bio)
212 			bio_put(r10_bio->devs[j].repl_bio);
213 	}
214 	r10bio_pool_free(r10_bio, conf);
215 	return NULL;
216 }
217 
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220 	int i;
221 	struct r10conf *conf = data;
222 	struct r10bio *r10bio = __r10_bio;
223 	int j;
224 
225 	for (j=0; j < conf->copies; j++) {
226 		struct bio *bio = r10bio->devs[j].bio;
227 		if (bio) {
228 			for (i = 0; i < RESYNC_PAGES; i++) {
229 				safe_put_page(bio->bi_io_vec[i].bv_page);
230 				bio->bi_io_vec[i].bv_page = NULL;
231 			}
232 			bio_put(bio);
233 		}
234 		bio = r10bio->devs[j].repl_bio;
235 		if (bio)
236 			bio_put(bio);
237 	}
238 	r10bio_pool_free(r10bio, conf);
239 }
240 
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243 	int i;
244 
245 	for (i = 0; i < conf->copies; i++) {
246 		struct bio **bio = & r10_bio->devs[i].bio;
247 		if (!BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 		bio = &r10_bio->devs[i].repl_bio;
251 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 			bio_put(*bio);
253 		*bio = NULL;
254 	}
255 }
256 
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259 	struct r10conf *conf = r10_bio->mddev->private;
260 
261 	put_all_bios(conf, r10_bio);
262 	mempool_free(r10_bio, conf->r10bio_pool);
263 }
264 
265 static void put_buf(struct r10bio *r10_bio)
266 {
267 	struct r10conf *conf = r10_bio->mddev->private;
268 
269 	mempool_free(r10_bio, conf->r10buf_pool);
270 
271 	lower_barrier(conf);
272 }
273 
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276 	unsigned long flags;
277 	struct mddev *mddev = r10_bio->mddev;
278 	struct r10conf *conf = mddev->private;
279 
280 	spin_lock_irqsave(&conf->device_lock, flags);
281 	list_add(&r10_bio->retry_list, &conf->retry_list);
282 	conf->nr_queued ++;
283 	spin_unlock_irqrestore(&conf->device_lock, flags);
284 
285 	/* wake up frozen array... */
286 	wake_up(&conf->wait_barrier);
287 
288 	md_wakeup_thread(mddev->thread);
289 }
290 
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298 	struct bio *bio = r10_bio->master_bio;
299 	int done;
300 	struct r10conf *conf = r10_bio->mddev->private;
301 
302 	if (bio->bi_phys_segments) {
303 		unsigned long flags;
304 		spin_lock_irqsave(&conf->device_lock, flags);
305 		bio->bi_phys_segments--;
306 		done = (bio->bi_phys_segments == 0);
307 		spin_unlock_irqrestore(&conf->device_lock, flags);
308 	} else
309 		done = 1;
310 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311 		bio->bi_error = -EIO;
312 	if (done) {
313 		bio_endio(bio);
314 		/*
315 		 * Wake up any possible resync thread that waits for the device
316 		 * to go idle.
317 		 */
318 		allow_barrier(conf);
319 	}
320 	free_r10bio(r10_bio);
321 }
322 
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328 	struct r10conf *conf = r10_bio->mddev->private;
329 
330 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 		r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333 
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338 			 struct bio *bio, int *slotp, int *replp)
339 {
340 	int slot;
341 	int repl = 0;
342 
343 	for (slot = 0; slot < conf->copies; slot++) {
344 		if (r10_bio->devs[slot].bio == bio)
345 			break;
346 		if (r10_bio->devs[slot].repl_bio == bio) {
347 			repl = 1;
348 			break;
349 		}
350 	}
351 
352 	BUG_ON(slot == conf->copies);
353 	update_head_pos(slot, r10_bio);
354 
355 	if (slotp)
356 		*slotp = slot;
357 	if (replp)
358 		*replp = repl;
359 	return r10_bio->devs[slot].devnum;
360 }
361 
362 static void raid10_end_read_request(struct bio *bio)
363 {
364 	int uptodate = !bio->bi_error;
365 	struct r10bio *r10_bio = bio->bi_private;
366 	int slot, dev;
367 	struct md_rdev *rdev;
368 	struct r10conf *conf = r10_bio->mddev->private;
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 			     rdev->raid_disk))
397 			uptodate = 1;
398 	}
399 	if (uptodate) {
400 		raid_end_bio_io(r10_bio);
401 		rdev_dec_pending(rdev, conf->mddev);
402 	} else {
403 		/*
404 		 * oops, read error - keep the refcount on the rdev
405 		 */
406 		char b[BDEVNAME_SIZE];
407 		printk_ratelimited(KERN_ERR
408 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
409 				   mdname(conf->mddev),
410 				   bdevname(rdev->bdev, b),
411 				   (unsigned long long)r10_bio->sector);
412 		set_bit(R10BIO_ReadError, &r10_bio->state);
413 		reschedule_retry(r10_bio);
414 	}
415 }
416 
417 static void close_write(struct r10bio *r10_bio)
418 {
419 	/* clear the bitmap if all writes complete successfully */
420 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 			r10_bio->sectors,
422 			!test_bit(R10BIO_Degraded, &r10_bio->state),
423 			0);
424 	md_write_end(r10_bio->mddev);
425 }
426 
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 	if (atomic_dec_and_test(&r10_bio->remaining)) {
430 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 			reschedule_retry(r10_bio);
432 		else {
433 			close_write(r10_bio);
434 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 				reschedule_retry(r10_bio);
436 			else
437 				raid_end_bio_io(r10_bio);
438 		}
439 	}
440 }
441 
442 static void raid10_end_write_request(struct bio *bio)
443 {
444 	struct r10bio *r10_bio = bio->bi_private;
445 	int dev;
446 	int dec_rdev = 1;
447 	struct r10conf *conf = r10_bio->mddev->private;
448 	int slot, repl;
449 	struct md_rdev *rdev = NULL;
450 
451 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452 
453 	if (repl)
454 		rdev = conf->mirrors[dev].replacement;
455 	if (!rdev) {
456 		smp_rmb();
457 		repl = 0;
458 		rdev = conf->mirrors[dev].rdev;
459 	}
460 	/*
461 	 * this branch is our 'one mirror IO has finished' event handler:
462 	 */
463 	if (bio->bi_error) {
464 		if (repl)
465 			/* Never record new bad blocks to replacement,
466 			 * just fail it.
467 			 */
468 			md_error(rdev->mddev, rdev);
469 		else {
470 			set_bit(WriteErrorSeen,	&rdev->flags);
471 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 				set_bit(MD_RECOVERY_NEEDED,
473 					&rdev->mddev->recovery);
474 			set_bit(R10BIO_WriteError, &r10_bio->state);
475 			dec_rdev = 0;
476 		}
477 	} else {
478 		/*
479 		 * Set R10BIO_Uptodate in our master bio, so that
480 		 * we will return a good error code for to the higher
481 		 * levels even if IO on some other mirrored buffer fails.
482 		 *
483 		 * The 'master' represents the composite IO operation to
484 		 * user-side. So if something waits for IO, then it will
485 		 * wait for the 'master' bio.
486 		 */
487 		sector_t first_bad;
488 		int bad_sectors;
489 
490 		/*
491 		 * Do not set R10BIO_Uptodate if the current device is
492 		 * rebuilding or Faulty. This is because we cannot use
493 		 * such device for properly reading the data back (we could
494 		 * potentially use it, if the current write would have felt
495 		 * before rdev->recovery_offset, but for simplicity we don't
496 		 * check this here.
497 		 */
498 		if (test_bit(In_sync, &rdev->flags) &&
499 		    !test_bit(Faulty, &rdev->flags))
500 			set_bit(R10BIO_Uptodate, &r10_bio->state);
501 
502 		/* Maybe we can clear some bad blocks. */
503 		if (is_badblock(rdev,
504 				r10_bio->devs[slot].addr,
505 				r10_bio->sectors,
506 				&first_bad, &bad_sectors)) {
507 			bio_put(bio);
508 			if (repl)
509 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 			else
511 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 			dec_rdev = 0;
513 			set_bit(R10BIO_MadeGood, &r10_bio->state);
514 		}
515 	}
516 
517 	/*
518 	 *
519 	 * Let's see if all mirrored write operations have finished
520 	 * already.
521 	 */
522 	one_write_done(r10_bio);
523 	if (dec_rdev)
524 		rdev_dec_pending(rdev, conf->mddev);
525 }
526 
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551 
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 	int n,f;
555 	sector_t sector;
556 	sector_t chunk;
557 	sector_t stripe;
558 	int dev;
559 	int slot = 0;
560 	int last_far_set_start, last_far_set_size;
561 
562 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 	last_far_set_start *= geo->far_set_size;
564 
565 	last_far_set_size = geo->far_set_size;
566 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
567 
568 	/* now calculate first sector/dev */
569 	chunk = r10bio->sector >> geo->chunk_shift;
570 	sector = r10bio->sector & geo->chunk_mask;
571 
572 	chunk *= geo->near_copies;
573 	stripe = chunk;
574 	dev = sector_div(stripe, geo->raid_disks);
575 	if (geo->far_offset)
576 		stripe *= geo->far_copies;
577 
578 	sector += stripe << geo->chunk_shift;
579 
580 	/* and calculate all the others */
581 	for (n = 0; n < geo->near_copies; n++) {
582 		int d = dev;
583 		int set;
584 		sector_t s = sector;
585 		r10bio->devs[slot].devnum = d;
586 		r10bio->devs[slot].addr = s;
587 		slot++;
588 
589 		for (f = 1; f < geo->far_copies; f++) {
590 			set = d / geo->far_set_size;
591 			d += geo->near_copies;
592 
593 			if ((geo->raid_disks % geo->far_set_size) &&
594 			    (d > last_far_set_start)) {
595 				d -= last_far_set_start;
596 				d %= last_far_set_size;
597 				d += last_far_set_start;
598 			} else {
599 				d %= geo->far_set_size;
600 				d += geo->far_set_size * set;
601 			}
602 			s += geo->stride;
603 			r10bio->devs[slot].devnum = d;
604 			r10bio->devs[slot].addr = s;
605 			slot++;
606 		}
607 		dev++;
608 		if (dev >= geo->raid_disks) {
609 			dev = 0;
610 			sector += (geo->chunk_mask + 1);
611 		}
612 	}
613 }
614 
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 	struct geom *geo = &conf->geo;
618 
619 	if (conf->reshape_progress != MaxSector &&
620 	    ((r10bio->sector >= conf->reshape_progress) !=
621 	     conf->mddev->reshape_backwards)) {
622 		set_bit(R10BIO_Previous, &r10bio->state);
623 		geo = &conf->prev;
624 	} else
625 		clear_bit(R10BIO_Previous, &r10bio->state);
626 
627 	__raid10_find_phys(geo, r10bio);
628 }
629 
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 	sector_t offset, chunk, vchunk;
633 	/* Never use conf->prev as this is only called during resync
634 	 * or recovery, so reshape isn't happening
635 	 */
636 	struct geom *geo = &conf->geo;
637 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 	int far_set_size = geo->far_set_size;
639 	int last_far_set_start;
640 
641 	if (geo->raid_disks % geo->far_set_size) {
642 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 		last_far_set_start *= geo->far_set_size;
644 
645 		if (dev >= last_far_set_start) {
646 			far_set_size = geo->far_set_size;
647 			far_set_size += (geo->raid_disks % geo->far_set_size);
648 			far_set_start = last_far_set_start;
649 		}
650 	}
651 
652 	offset = sector & geo->chunk_mask;
653 	if (geo->far_offset) {
654 		int fc;
655 		chunk = sector >> geo->chunk_shift;
656 		fc = sector_div(chunk, geo->far_copies);
657 		dev -= fc * geo->near_copies;
658 		if (dev < far_set_start)
659 			dev += far_set_size;
660 	} else {
661 		while (sector >= geo->stride) {
662 			sector -= geo->stride;
663 			if (dev < (geo->near_copies + far_set_start))
664 				dev += far_set_size - geo->near_copies;
665 			else
666 				dev -= geo->near_copies;
667 		}
668 		chunk = sector >> geo->chunk_shift;
669 	}
670 	vchunk = chunk * geo->raid_disks + dev;
671 	sector_div(vchunk, geo->near_copies);
672 	return (vchunk << geo->chunk_shift) + offset;
673 }
674 
675 /*
676  * This routine returns the disk from which the requested read should
677  * be done. There is a per-array 'next expected sequential IO' sector
678  * number - if this matches on the next IO then we use the last disk.
679  * There is also a per-disk 'last know head position' sector that is
680  * maintained from IRQ contexts, both the normal and the resync IO
681  * completion handlers update this position correctly. If there is no
682  * perfect sequential match then we pick the disk whose head is closest.
683  *
684  * If there are 2 mirrors in the same 2 devices, performance degrades
685  * because position is mirror, not device based.
686  *
687  * The rdev for the device selected will have nr_pending incremented.
688  */
689 
690 /*
691  * FIXME: possibly should rethink readbalancing and do it differently
692  * depending on near_copies / far_copies geometry.
693  */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695 				    struct r10bio *r10_bio,
696 				    int *max_sectors)
697 {
698 	const sector_t this_sector = r10_bio->sector;
699 	int disk, slot;
700 	int sectors = r10_bio->sectors;
701 	int best_good_sectors;
702 	sector_t new_distance, best_dist;
703 	struct md_rdev *best_rdev, *rdev = NULL;
704 	int do_balance;
705 	int best_slot;
706 	struct geom *geo = &conf->geo;
707 
708 	raid10_find_phys(conf, r10_bio);
709 	rcu_read_lock();
710 retry:
711 	sectors = r10_bio->sectors;
712 	best_slot = -1;
713 	best_rdev = NULL;
714 	best_dist = MaxSector;
715 	best_good_sectors = 0;
716 	do_balance = 1;
717 	/*
718 	 * Check if we can balance. We can balance on the whole
719 	 * device if no resync is going on (recovery is ok), or below
720 	 * the resync window. We take the first readable disk when
721 	 * above the resync window.
722 	 */
723 	if (conf->mddev->recovery_cp < MaxSector
724 	    && (this_sector + sectors >= conf->next_resync))
725 		do_balance = 0;
726 
727 	for (slot = 0; slot < conf->copies ; slot++) {
728 		sector_t first_bad;
729 		int bad_sectors;
730 		sector_t dev_sector;
731 
732 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
733 			continue;
734 		disk = r10_bio->devs[slot].devnum;
735 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
736 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
737 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
738 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
739 		if (rdev == NULL ||
740 		    test_bit(Faulty, &rdev->flags))
741 			continue;
742 		if (!test_bit(In_sync, &rdev->flags) &&
743 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
744 			continue;
745 
746 		dev_sector = r10_bio->devs[slot].addr;
747 		if (is_badblock(rdev, dev_sector, sectors,
748 				&first_bad, &bad_sectors)) {
749 			if (best_dist < MaxSector)
750 				/* Already have a better slot */
751 				continue;
752 			if (first_bad <= dev_sector) {
753 				/* Cannot read here.  If this is the
754 				 * 'primary' device, then we must not read
755 				 * beyond 'bad_sectors' from another device.
756 				 */
757 				bad_sectors -= (dev_sector - first_bad);
758 				if (!do_balance && sectors > bad_sectors)
759 					sectors = bad_sectors;
760 				if (best_good_sectors > sectors)
761 					best_good_sectors = sectors;
762 			} else {
763 				sector_t good_sectors =
764 					first_bad - dev_sector;
765 				if (good_sectors > best_good_sectors) {
766 					best_good_sectors = good_sectors;
767 					best_slot = slot;
768 					best_rdev = rdev;
769 				}
770 				if (!do_balance)
771 					/* Must read from here */
772 					break;
773 			}
774 			continue;
775 		} else
776 			best_good_sectors = sectors;
777 
778 		if (!do_balance)
779 			break;
780 
781 		/* This optimisation is debatable, and completely destroys
782 		 * sequential read speed for 'far copies' arrays.  So only
783 		 * keep it for 'near' arrays, and review those later.
784 		 */
785 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
786 			break;
787 
788 		/* for far > 1 always use the lowest address */
789 		if (geo->far_copies > 1)
790 			new_distance = r10_bio->devs[slot].addr;
791 		else
792 			new_distance = abs(r10_bio->devs[slot].addr -
793 					   conf->mirrors[disk].head_position);
794 		if (new_distance < best_dist) {
795 			best_dist = new_distance;
796 			best_slot = slot;
797 			best_rdev = rdev;
798 		}
799 	}
800 	if (slot >= conf->copies) {
801 		slot = best_slot;
802 		rdev = best_rdev;
803 	}
804 
805 	if (slot >= 0) {
806 		atomic_inc(&rdev->nr_pending);
807 		if (test_bit(Faulty, &rdev->flags)) {
808 			/* Cannot risk returning a device that failed
809 			 * before we inc'ed nr_pending
810 			 */
811 			rdev_dec_pending(rdev, conf->mddev);
812 			goto retry;
813 		}
814 		r10_bio->read_slot = slot;
815 	} else
816 		rdev = NULL;
817 	rcu_read_unlock();
818 	*max_sectors = best_good_sectors;
819 
820 	return rdev;
821 }
822 
823 static int raid10_congested(struct mddev *mddev, int bits)
824 {
825 	struct r10conf *conf = mddev->private;
826 	int i, ret = 0;
827 
828 	if ((bits & (1 << WB_async_congested)) &&
829 	    conf->pending_count >= max_queued_requests)
830 		return 1;
831 
832 	rcu_read_lock();
833 	for (i = 0;
834 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
835 		     && ret == 0;
836 	     i++) {
837 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
838 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
839 			struct request_queue *q = bdev_get_queue(rdev->bdev);
840 
841 			ret |= bdi_congested(&q->backing_dev_info, bits);
842 		}
843 	}
844 	rcu_read_unlock();
845 	return ret;
846 }
847 
848 static void flush_pending_writes(struct r10conf *conf)
849 {
850 	/* Any writes that have been queued but are awaiting
851 	 * bitmap updates get flushed here.
852 	 */
853 	spin_lock_irq(&conf->device_lock);
854 
855 	if (conf->pending_bio_list.head) {
856 		struct bio *bio;
857 		bio = bio_list_get(&conf->pending_bio_list);
858 		conf->pending_count = 0;
859 		spin_unlock_irq(&conf->device_lock);
860 		/* flush any pending bitmap writes to disk
861 		 * before proceeding w/ I/O */
862 		bitmap_unplug(conf->mddev->bitmap);
863 		wake_up(&conf->wait_barrier);
864 
865 		while (bio) { /* submit pending writes */
866 			struct bio *next = bio->bi_next;
867 			bio->bi_next = NULL;
868 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
869 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
870 				/* Just ignore it */
871 				bio_endio(bio);
872 			else
873 				generic_make_request(bio);
874 			bio = next;
875 		}
876 	} else
877 		spin_unlock_irq(&conf->device_lock);
878 }
879 
880 /* Barriers....
881  * Sometimes we need to suspend IO while we do something else,
882  * either some resync/recovery, or reconfigure the array.
883  * To do this we raise a 'barrier'.
884  * The 'barrier' is a counter that can be raised multiple times
885  * to count how many activities are happening which preclude
886  * normal IO.
887  * We can only raise the barrier if there is no pending IO.
888  * i.e. if nr_pending == 0.
889  * We choose only to raise the barrier if no-one is waiting for the
890  * barrier to go down.  This means that as soon as an IO request
891  * is ready, no other operations which require a barrier will start
892  * until the IO request has had a chance.
893  *
894  * So: regular IO calls 'wait_barrier'.  When that returns there
895  *    is no backgroup IO happening,  It must arrange to call
896  *    allow_barrier when it has finished its IO.
897  * backgroup IO calls must call raise_barrier.  Once that returns
898  *    there is no normal IO happeing.  It must arrange to call
899  *    lower_barrier when the particular background IO completes.
900  */
901 
902 static void raise_barrier(struct r10conf *conf, int force)
903 {
904 	BUG_ON(force && !conf->barrier);
905 	spin_lock_irq(&conf->resync_lock);
906 
907 	/* Wait until no block IO is waiting (unless 'force') */
908 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
909 			    conf->resync_lock);
910 
911 	/* block any new IO from starting */
912 	conf->barrier++;
913 
914 	/* Now wait for all pending IO to complete */
915 	wait_event_lock_irq(conf->wait_barrier,
916 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
917 			    conf->resync_lock);
918 
919 	spin_unlock_irq(&conf->resync_lock);
920 }
921 
922 static void lower_barrier(struct r10conf *conf)
923 {
924 	unsigned long flags;
925 	spin_lock_irqsave(&conf->resync_lock, flags);
926 	conf->barrier--;
927 	spin_unlock_irqrestore(&conf->resync_lock, flags);
928 	wake_up(&conf->wait_barrier);
929 }
930 
931 static void wait_barrier(struct r10conf *conf)
932 {
933 	spin_lock_irq(&conf->resync_lock);
934 	if (conf->barrier) {
935 		conf->nr_waiting++;
936 		/* Wait for the barrier to drop.
937 		 * However if there are already pending
938 		 * requests (preventing the barrier from
939 		 * rising completely), and the
940 		 * pre-process bio queue isn't empty,
941 		 * then don't wait, as we need to empty
942 		 * that queue to get the nr_pending
943 		 * count down.
944 		 */
945 		wait_event_lock_irq(conf->wait_barrier,
946 				    !conf->barrier ||
947 				    (conf->nr_pending &&
948 				     current->bio_list &&
949 				     !bio_list_empty(current->bio_list)),
950 				    conf->resync_lock);
951 		conf->nr_waiting--;
952 	}
953 	conf->nr_pending++;
954 	spin_unlock_irq(&conf->resync_lock);
955 }
956 
957 static void allow_barrier(struct r10conf *conf)
958 {
959 	unsigned long flags;
960 	spin_lock_irqsave(&conf->resync_lock, flags);
961 	conf->nr_pending--;
962 	spin_unlock_irqrestore(&conf->resync_lock, flags);
963 	wake_up(&conf->wait_barrier);
964 }
965 
966 static void freeze_array(struct r10conf *conf, int extra)
967 {
968 	/* stop syncio and normal IO and wait for everything to
969 	 * go quiet.
970 	 * We increment barrier and nr_waiting, and then
971 	 * wait until nr_pending match nr_queued+extra
972 	 * This is called in the context of one normal IO request
973 	 * that has failed. Thus any sync request that might be pending
974 	 * will be blocked by nr_pending, and we need to wait for
975 	 * pending IO requests to complete or be queued for re-try.
976 	 * Thus the number queued (nr_queued) plus this request (extra)
977 	 * must match the number of pending IOs (nr_pending) before
978 	 * we continue.
979 	 */
980 	spin_lock_irq(&conf->resync_lock);
981 	conf->barrier++;
982 	conf->nr_waiting++;
983 	wait_event_lock_irq_cmd(conf->wait_barrier,
984 				conf->nr_pending == conf->nr_queued+extra,
985 				conf->resync_lock,
986 				flush_pending_writes(conf));
987 
988 	spin_unlock_irq(&conf->resync_lock);
989 }
990 
991 static void unfreeze_array(struct r10conf *conf)
992 {
993 	/* reverse the effect of the freeze */
994 	spin_lock_irq(&conf->resync_lock);
995 	conf->barrier--;
996 	conf->nr_waiting--;
997 	wake_up(&conf->wait_barrier);
998 	spin_unlock_irq(&conf->resync_lock);
999 }
1000 
1001 static sector_t choose_data_offset(struct r10bio *r10_bio,
1002 				   struct md_rdev *rdev)
1003 {
1004 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1005 	    test_bit(R10BIO_Previous, &r10_bio->state))
1006 		return rdev->data_offset;
1007 	else
1008 		return rdev->new_data_offset;
1009 }
1010 
1011 struct raid10_plug_cb {
1012 	struct blk_plug_cb	cb;
1013 	struct bio_list		pending;
1014 	int			pending_cnt;
1015 };
1016 
1017 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1018 {
1019 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1020 						   cb);
1021 	struct mddev *mddev = plug->cb.data;
1022 	struct r10conf *conf = mddev->private;
1023 	struct bio *bio;
1024 
1025 	if (from_schedule || current->bio_list) {
1026 		spin_lock_irq(&conf->device_lock);
1027 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1028 		conf->pending_count += plug->pending_cnt;
1029 		spin_unlock_irq(&conf->device_lock);
1030 		wake_up(&conf->wait_barrier);
1031 		md_wakeup_thread(mddev->thread);
1032 		kfree(plug);
1033 		return;
1034 	}
1035 
1036 	/* we aren't scheduling, so we can do the write-out directly. */
1037 	bio = bio_list_get(&plug->pending);
1038 	bitmap_unplug(mddev->bitmap);
1039 	wake_up(&conf->wait_barrier);
1040 
1041 	while (bio) { /* submit pending writes */
1042 		struct bio *next = bio->bi_next;
1043 		bio->bi_next = NULL;
1044 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1045 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1046 			/* Just ignore it */
1047 			bio_endio(bio);
1048 		else
1049 			generic_make_request(bio);
1050 		bio = next;
1051 	}
1052 	kfree(plug);
1053 }
1054 
1055 static void __make_request(struct mddev *mddev, struct bio *bio)
1056 {
1057 	struct r10conf *conf = mddev->private;
1058 	struct r10bio *r10_bio;
1059 	struct bio *read_bio;
1060 	int i;
1061 	const int rw = bio_data_dir(bio);
1062 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064 	const unsigned long do_discard = (bio->bi_rw
1065 					  & (REQ_DISCARD | REQ_SECURE));
1066 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1067 	unsigned long flags;
1068 	struct md_rdev *blocked_rdev;
1069 	struct blk_plug_cb *cb;
1070 	struct raid10_plug_cb *plug = NULL;
1071 	int sectors_handled;
1072 	int max_sectors;
1073 	int sectors;
1074 
1075 	/*
1076 	 * Register the new request and wait if the reconstruction
1077 	 * thread has put up a bar for new requests.
1078 	 * Continue immediately if no resync is active currently.
1079 	 */
1080 	wait_barrier(conf);
1081 
1082 	sectors = bio_sectors(bio);
1083 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1084 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1085 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1086 		/* IO spans the reshape position.  Need to wait for
1087 		 * reshape to pass
1088 		 */
1089 		allow_barrier(conf);
1090 		wait_event(conf->wait_barrier,
1091 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1092 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1093 			   sectors);
1094 		wait_barrier(conf);
1095 	}
1096 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1097 	    bio_data_dir(bio) == WRITE &&
1098 	    (mddev->reshape_backwards
1099 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1100 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1101 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1102 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1103 		/* Need to update reshape_position in metadata */
1104 		mddev->reshape_position = conf->reshape_progress;
1105 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1106 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1107 		md_wakeup_thread(mddev->thread);
1108 		wait_event(mddev->sb_wait,
1109 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1110 
1111 		conf->reshape_safe = mddev->reshape_position;
1112 	}
1113 
1114 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1115 
1116 	r10_bio->master_bio = bio;
1117 	r10_bio->sectors = sectors;
1118 
1119 	r10_bio->mddev = mddev;
1120 	r10_bio->sector = bio->bi_iter.bi_sector;
1121 	r10_bio->state = 0;
1122 
1123 	/* We might need to issue multiple reads to different
1124 	 * devices if there are bad blocks around, so we keep
1125 	 * track of the number of reads in bio->bi_phys_segments.
1126 	 * If this is 0, there is only one r10_bio and no locking
1127 	 * will be needed when the request completes.  If it is
1128 	 * non-zero, then it is the number of not-completed requests.
1129 	 */
1130 	bio->bi_phys_segments = 0;
1131 	bio_clear_flag(bio, BIO_SEG_VALID);
1132 
1133 	if (rw == READ) {
1134 		/*
1135 		 * read balancing logic:
1136 		 */
1137 		struct md_rdev *rdev;
1138 		int slot;
1139 
1140 read_again:
1141 		rdev = read_balance(conf, r10_bio, &max_sectors);
1142 		if (!rdev) {
1143 			raid_end_bio_io(r10_bio);
1144 			return;
1145 		}
1146 		slot = r10_bio->read_slot;
1147 
1148 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1149 		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1150 			 max_sectors);
1151 
1152 		r10_bio->devs[slot].bio = read_bio;
1153 		r10_bio->devs[slot].rdev = rdev;
1154 
1155 		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1156 			choose_data_offset(r10_bio, rdev);
1157 		read_bio->bi_bdev = rdev->bdev;
1158 		read_bio->bi_end_io = raid10_end_read_request;
1159 		read_bio->bi_rw = READ | do_sync;
1160 		read_bio->bi_private = r10_bio;
1161 
1162 		if (max_sectors < r10_bio->sectors) {
1163 			/* Could not read all from this device, so we will
1164 			 * need another r10_bio.
1165 			 */
1166 			sectors_handled = (r10_bio->sector + max_sectors
1167 					   - bio->bi_iter.bi_sector);
1168 			r10_bio->sectors = max_sectors;
1169 			spin_lock_irq(&conf->device_lock);
1170 			if (bio->bi_phys_segments == 0)
1171 				bio->bi_phys_segments = 2;
1172 			else
1173 				bio->bi_phys_segments++;
1174 			spin_unlock_irq(&conf->device_lock);
1175 			/* Cannot call generic_make_request directly
1176 			 * as that will be queued in __generic_make_request
1177 			 * and subsequent mempool_alloc might block
1178 			 * waiting for it.  so hand bio over to raid10d.
1179 			 */
1180 			reschedule_retry(r10_bio);
1181 
1182 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1183 
1184 			r10_bio->master_bio = bio;
1185 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1186 			r10_bio->state = 0;
1187 			r10_bio->mddev = mddev;
1188 			r10_bio->sector = bio->bi_iter.bi_sector +
1189 				sectors_handled;
1190 			goto read_again;
1191 		} else
1192 			generic_make_request(read_bio);
1193 		return;
1194 	}
1195 
1196 	/*
1197 	 * WRITE:
1198 	 */
1199 	if (conf->pending_count >= max_queued_requests) {
1200 		md_wakeup_thread(mddev->thread);
1201 		wait_event(conf->wait_barrier,
1202 			   conf->pending_count < max_queued_requests);
1203 	}
1204 	/* first select target devices under rcu_lock and
1205 	 * inc refcount on their rdev.  Record them by setting
1206 	 * bios[x] to bio
1207 	 * If there are known/acknowledged bad blocks on any device
1208 	 * on which we have seen a write error, we want to avoid
1209 	 * writing to those blocks.  This potentially requires several
1210 	 * writes to write around the bad blocks.  Each set of writes
1211 	 * gets its own r10_bio with a set of bios attached.  The number
1212 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1213 	 * the read case.
1214 	 */
1215 
1216 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1217 	raid10_find_phys(conf, r10_bio);
1218 retry_write:
1219 	blocked_rdev = NULL;
1220 	rcu_read_lock();
1221 	max_sectors = r10_bio->sectors;
1222 
1223 	for (i = 0;  i < conf->copies; i++) {
1224 		int d = r10_bio->devs[i].devnum;
1225 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1226 		struct md_rdev *rrdev = rcu_dereference(
1227 			conf->mirrors[d].replacement);
1228 		if (rdev == rrdev)
1229 			rrdev = NULL;
1230 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1231 			atomic_inc(&rdev->nr_pending);
1232 			blocked_rdev = rdev;
1233 			break;
1234 		}
1235 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1236 			atomic_inc(&rrdev->nr_pending);
1237 			blocked_rdev = rrdev;
1238 			break;
1239 		}
1240 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1241 			rdev = NULL;
1242 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1243 			rrdev = NULL;
1244 
1245 		r10_bio->devs[i].bio = NULL;
1246 		r10_bio->devs[i].repl_bio = NULL;
1247 
1248 		if (!rdev && !rrdev) {
1249 			set_bit(R10BIO_Degraded, &r10_bio->state);
1250 			continue;
1251 		}
1252 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1253 			sector_t first_bad;
1254 			sector_t dev_sector = r10_bio->devs[i].addr;
1255 			int bad_sectors;
1256 			int is_bad;
1257 
1258 			is_bad = is_badblock(rdev, dev_sector,
1259 					     max_sectors,
1260 					     &first_bad, &bad_sectors);
1261 			if (is_bad < 0) {
1262 				/* Mustn't write here until the bad block
1263 				 * is acknowledged
1264 				 */
1265 				atomic_inc(&rdev->nr_pending);
1266 				set_bit(BlockedBadBlocks, &rdev->flags);
1267 				blocked_rdev = rdev;
1268 				break;
1269 			}
1270 			if (is_bad && first_bad <= dev_sector) {
1271 				/* Cannot write here at all */
1272 				bad_sectors -= (dev_sector - first_bad);
1273 				if (bad_sectors < max_sectors)
1274 					/* Mustn't write more than bad_sectors
1275 					 * to other devices yet
1276 					 */
1277 					max_sectors = bad_sectors;
1278 				/* We don't set R10BIO_Degraded as that
1279 				 * only applies if the disk is missing,
1280 				 * so it might be re-added, and we want to
1281 				 * know to recover this chunk.
1282 				 * In this case the device is here, and the
1283 				 * fact that this chunk is not in-sync is
1284 				 * recorded in the bad block log.
1285 				 */
1286 				continue;
1287 			}
1288 			if (is_bad) {
1289 				int good_sectors = first_bad - dev_sector;
1290 				if (good_sectors < max_sectors)
1291 					max_sectors = good_sectors;
1292 			}
1293 		}
1294 		if (rdev) {
1295 			r10_bio->devs[i].bio = bio;
1296 			atomic_inc(&rdev->nr_pending);
1297 		}
1298 		if (rrdev) {
1299 			r10_bio->devs[i].repl_bio = bio;
1300 			atomic_inc(&rrdev->nr_pending);
1301 		}
1302 	}
1303 	rcu_read_unlock();
1304 
1305 	if (unlikely(blocked_rdev)) {
1306 		/* Have to wait for this device to get unblocked, then retry */
1307 		int j;
1308 		int d;
1309 
1310 		for (j = 0; j < i; j++) {
1311 			if (r10_bio->devs[j].bio) {
1312 				d = r10_bio->devs[j].devnum;
1313 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1314 			}
1315 			if (r10_bio->devs[j].repl_bio) {
1316 				struct md_rdev *rdev;
1317 				d = r10_bio->devs[j].devnum;
1318 				rdev = conf->mirrors[d].replacement;
1319 				if (!rdev) {
1320 					/* Race with remove_disk */
1321 					smp_mb();
1322 					rdev = conf->mirrors[d].rdev;
1323 				}
1324 				rdev_dec_pending(rdev, mddev);
1325 			}
1326 		}
1327 		allow_barrier(conf);
1328 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1329 		wait_barrier(conf);
1330 		goto retry_write;
1331 	}
1332 
1333 	if (max_sectors < r10_bio->sectors) {
1334 		/* We are splitting this into multiple parts, so
1335 		 * we need to prepare for allocating another r10_bio.
1336 		 */
1337 		r10_bio->sectors = max_sectors;
1338 		spin_lock_irq(&conf->device_lock);
1339 		if (bio->bi_phys_segments == 0)
1340 			bio->bi_phys_segments = 2;
1341 		else
1342 			bio->bi_phys_segments++;
1343 		spin_unlock_irq(&conf->device_lock);
1344 	}
1345 	sectors_handled = r10_bio->sector + max_sectors -
1346 		bio->bi_iter.bi_sector;
1347 
1348 	atomic_set(&r10_bio->remaining, 1);
1349 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1350 
1351 	for (i = 0; i < conf->copies; i++) {
1352 		struct bio *mbio;
1353 		int d = r10_bio->devs[i].devnum;
1354 		if (r10_bio->devs[i].bio) {
1355 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1356 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1357 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1358 				 max_sectors);
1359 			r10_bio->devs[i].bio = mbio;
1360 
1361 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1362 					   choose_data_offset(r10_bio,
1363 							      rdev));
1364 			mbio->bi_bdev = rdev->bdev;
1365 			mbio->bi_end_io	= raid10_end_write_request;
1366 			mbio->bi_rw =
1367 				WRITE | do_sync | do_fua | do_discard | do_same;
1368 			mbio->bi_private = r10_bio;
1369 
1370 			atomic_inc(&r10_bio->remaining);
1371 
1372 			cb = blk_check_plugged(raid10_unplug, mddev,
1373 					       sizeof(*plug));
1374 			if (cb)
1375 				plug = container_of(cb, struct raid10_plug_cb,
1376 						    cb);
1377 			else
1378 				plug = NULL;
1379 			spin_lock_irqsave(&conf->device_lock, flags);
1380 			if (plug) {
1381 				bio_list_add(&plug->pending, mbio);
1382 				plug->pending_cnt++;
1383 			} else {
1384 				bio_list_add(&conf->pending_bio_list, mbio);
1385 				conf->pending_count++;
1386 			}
1387 			spin_unlock_irqrestore(&conf->device_lock, flags);
1388 			if (!plug)
1389 				md_wakeup_thread(mddev->thread);
1390 		}
1391 
1392 		if (r10_bio->devs[i].repl_bio) {
1393 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1394 			if (rdev == NULL) {
1395 				/* Replacement just got moved to main 'rdev' */
1396 				smp_mb();
1397 				rdev = conf->mirrors[d].rdev;
1398 			}
1399 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1401 				 max_sectors);
1402 			r10_bio->devs[i].repl_bio = mbio;
1403 
1404 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1405 					   choose_data_offset(
1406 						   r10_bio, rdev));
1407 			mbio->bi_bdev = rdev->bdev;
1408 			mbio->bi_end_io	= raid10_end_write_request;
1409 			mbio->bi_rw =
1410 				WRITE | do_sync | do_fua | do_discard | do_same;
1411 			mbio->bi_private = r10_bio;
1412 
1413 			atomic_inc(&r10_bio->remaining);
1414 			spin_lock_irqsave(&conf->device_lock, flags);
1415 			bio_list_add(&conf->pending_bio_list, mbio);
1416 			conf->pending_count++;
1417 			spin_unlock_irqrestore(&conf->device_lock, flags);
1418 			if (!mddev_check_plugged(mddev))
1419 				md_wakeup_thread(mddev->thread);
1420 		}
1421 	}
1422 
1423 	/* Don't remove the bias on 'remaining' (one_write_done) until
1424 	 * after checking if we need to go around again.
1425 	 */
1426 
1427 	if (sectors_handled < bio_sectors(bio)) {
1428 		one_write_done(r10_bio);
1429 		/* We need another r10_bio.  It has already been counted
1430 		 * in bio->bi_phys_segments.
1431 		 */
1432 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1433 
1434 		r10_bio->master_bio = bio;
1435 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1436 
1437 		r10_bio->mddev = mddev;
1438 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439 		r10_bio->state = 0;
1440 		goto retry_write;
1441 	}
1442 	one_write_done(r10_bio);
1443 }
1444 
1445 static void make_request(struct mddev *mddev, struct bio *bio)
1446 {
1447 	struct r10conf *conf = mddev->private;
1448 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1449 	int chunk_sects = chunk_mask + 1;
1450 
1451 	struct bio *split;
1452 
1453 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1454 		md_flush_request(mddev, bio);
1455 		return;
1456 	}
1457 
1458 	md_write_start(mddev, bio);
1459 
1460 	do {
1461 
1462 		/*
1463 		 * If this request crosses a chunk boundary, we need to split
1464 		 * it.
1465 		 */
1466 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1467 			     bio_sectors(bio) > chunk_sects
1468 			     && (conf->geo.near_copies < conf->geo.raid_disks
1469 				 || conf->prev.near_copies <
1470 				 conf->prev.raid_disks))) {
1471 			split = bio_split(bio, chunk_sects -
1472 					  (bio->bi_iter.bi_sector &
1473 					   (chunk_sects - 1)),
1474 					  GFP_NOIO, fs_bio_set);
1475 			bio_chain(split, bio);
1476 		} else {
1477 			split = bio;
1478 		}
1479 
1480 		__make_request(mddev, split);
1481 	} while (split != bio);
1482 
1483 	/* In case raid10d snuck in to freeze_array */
1484 	wake_up(&conf->wait_barrier);
1485 }
1486 
1487 static void status(struct seq_file *seq, struct mddev *mddev)
1488 {
1489 	struct r10conf *conf = mddev->private;
1490 	int i;
1491 
1492 	if (conf->geo.near_copies < conf->geo.raid_disks)
1493 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1494 	if (conf->geo.near_copies > 1)
1495 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1496 	if (conf->geo.far_copies > 1) {
1497 		if (conf->geo.far_offset)
1498 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1499 		else
1500 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1501 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1502 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1503 	}
1504 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1505 					conf->geo.raid_disks - mddev->degraded);
1506 	for (i = 0; i < conf->geo.raid_disks; i++)
1507 		seq_printf(seq, "%s",
1508 			      conf->mirrors[i].rdev &&
1509 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1510 	seq_printf(seq, "]");
1511 }
1512 
1513 /* check if there are enough drives for
1514  * every block to appear on atleast one.
1515  * Don't consider the device numbered 'ignore'
1516  * as we might be about to remove it.
1517  */
1518 static int _enough(struct r10conf *conf, int previous, int ignore)
1519 {
1520 	int first = 0;
1521 	int has_enough = 0;
1522 	int disks, ncopies;
1523 	if (previous) {
1524 		disks = conf->prev.raid_disks;
1525 		ncopies = conf->prev.near_copies;
1526 	} else {
1527 		disks = conf->geo.raid_disks;
1528 		ncopies = conf->geo.near_copies;
1529 	}
1530 
1531 	rcu_read_lock();
1532 	do {
1533 		int n = conf->copies;
1534 		int cnt = 0;
1535 		int this = first;
1536 		while (n--) {
1537 			struct md_rdev *rdev;
1538 			if (this != ignore &&
1539 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1540 			    test_bit(In_sync, &rdev->flags))
1541 				cnt++;
1542 			this = (this+1) % disks;
1543 		}
1544 		if (cnt == 0)
1545 			goto out;
1546 		first = (first + ncopies) % disks;
1547 	} while (first != 0);
1548 	has_enough = 1;
1549 out:
1550 	rcu_read_unlock();
1551 	return has_enough;
1552 }
1553 
1554 static int enough(struct r10conf *conf, int ignore)
1555 {
1556 	/* when calling 'enough', both 'prev' and 'geo' must
1557 	 * be stable.
1558 	 * This is ensured if ->reconfig_mutex or ->device_lock
1559 	 * is held.
1560 	 */
1561 	return _enough(conf, 0, ignore) &&
1562 		_enough(conf, 1, ignore);
1563 }
1564 
1565 static void error(struct mddev *mddev, struct md_rdev *rdev)
1566 {
1567 	char b[BDEVNAME_SIZE];
1568 	struct r10conf *conf = mddev->private;
1569 	unsigned long flags;
1570 
1571 	/*
1572 	 * If it is not operational, then we have already marked it as dead
1573 	 * else if it is the last working disks, ignore the error, let the
1574 	 * next level up know.
1575 	 * else mark the drive as failed
1576 	 */
1577 	spin_lock_irqsave(&conf->device_lock, flags);
1578 	if (test_bit(In_sync, &rdev->flags)
1579 	    && !enough(conf, rdev->raid_disk)) {
1580 		/*
1581 		 * Don't fail the drive, just return an IO error.
1582 		 */
1583 		spin_unlock_irqrestore(&conf->device_lock, flags);
1584 		return;
1585 	}
1586 	if (test_and_clear_bit(In_sync, &rdev->flags))
1587 		mddev->degraded++;
1588 	/*
1589 	 * If recovery is running, make sure it aborts.
1590 	 */
1591 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1592 	set_bit(Blocked, &rdev->flags);
1593 	set_bit(Faulty, &rdev->flags);
1594 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1595 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1596 	spin_unlock_irqrestore(&conf->device_lock, flags);
1597 	printk(KERN_ALERT
1598 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1599 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1600 	       mdname(mddev), bdevname(rdev->bdev, b),
1601 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1602 }
1603 
1604 static void print_conf(struct r10conf *conf)
1605 {
1606 	int i;
1607 	struct raid10_info *tmp;
1608 
1609 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1610 	if (!conf) {
1611 		printk(KERN_DEBUG "(!conf)\n");
1612 		return;
1613 	}
1614 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1615 		conf->geo.raid_disks);
1616 
1617 	for (i = 0; i < conf->geo.raid_disks; i++) {
1618 		char b[BDEVNAME_SIZE];
1619 		tmp = conf->mirrors + i;
1620 		if (tmp->rdev)
1621 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1622 				i, !test_bit(In_sync, &tmp->rdev->flags),
1623 			        !test_bit(Faulty, &tmp->rdev->flags),
1624 				bdevname(tmp->rdev->bdev,b));
1625 	}
1626 }
1627 
1628 static void close_sync(struct r10conf *conf)
1629 {
1630 	wait_barrier(conf);
1631 	allow_barrier(conf);
1632 
1633 	mempool_destroy(conf->r10buf_pool);
1634 	conf->r10buf_pool = NULL;
1635 }
1636 
1637 static int raid10_spare_active(struct mddev *mddev)
1638 {
1639 	int i;
1640 	struct r10conf *conf = mddev->private;
1641 	struct raid10_info *tmp;
1642 	int count = 0;
1643 	unsigned long flags;
1644 
1645 	/*
1646 	 * Find all non-in_sync disks within the RAID10 configuration
1647 	 * and mark them in_sync
1648 	 */
1649 	for (i = 0; i < conf->geo.raid_disks; i++) {
1650 		tmp = conf->mirrors + i;
1651 		if (tmp->replacement
1652 		    && tmp->replacement->recovery_offset == MaxSector
1653 		    && !test_bit(Faulty, &tmp->replacement->flags)
1654 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1655 			/* Replacement has just become active */
1656 			if (!tmp->rdev
1657 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1658 				count++;
1659 			if (tmp->rdev) {
1660 				/* Replaced device not technically faulty,
1661 				 * but we need to be sure it gets removed
1662 				 * and never re-added.
1663 				 */
1664 				set_bit(Faulty, &tmp->rdev->flags);
1665 				sysfs_notify_dirent_safe(
1666 					tmp->rdev->sysfs_state);
1667 			}
1668 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1669 		} else if (tmp->rdev
1670 			   && tmp->rdev->recovery_offset == MaxSector
1671 			   && !test_bit(Faulty, &tmp->rdev->flags)
1672 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1673 			count++;
1674 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1675 		}
1676 	}
1677 	spin_lock_irqsave(&conf->device_lock, flags);
1678 	mddev->degraded -= count;
1679 	spin_unlock_irqrestore(&conf->device_lock, flags);
1680 
1681 	print_conf(conf);
1682 	return count;
1683 }
1684 
1685 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1686 {
1687 	struct r10conf *conf = mddev->private;
1688 	int err = -EEXIST;
1689 	int mirror;
1690 	int first = 0;
1691 	int last = conf->geo.raid_disks - 1;
1692 
1693 	if (mddev->recovery_cp < MaxSector)
1694 		/* only hot-add to in-sync arrays, as recovery is
1695 		 * very different from resync
1696 		 */
1697 		return -EBUSY;
1698 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1699 		return -EINVAL;
1700 
1701 	if (rdev->raid_disk >= 0)
1702 		first = last = rdev->raid_disk;
1703 
1704 	if (rdev->saved_raid_disk >= first &&
1705 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1706 		mirror = rdev->saved_raid_disk;
1707 	else
1708 		mirror = first;
1709 	for ( ; mirror <= last ; mirror++) {
1710 		struct raid10_info *p = &conf->mirrors[mirror];
1711 		if (p->recovery_disabled == mddev->recovery_disabled)
1712 			continue;
1713 		if (p->rdev) {
1714 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1715 			    p->replacement != NULL)
1716 				continue;
1717 			clear_bit(In_sync, &rdev->flags);
1718 			set_bit(Replacement, &rdev->flags);
1719 			rdev->raid_disk = mirror;
1720 			err = 0;
1721 			if (mddev->gendisk)
1722 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1723 						  rdev->data_offset << 9);
1724 			conf->fullsync = 1;
1725 			rcu_assign_pointer(p->replacement, rdev);
1726 			break;
1727 		}
1728 
1729 		if (mddev->gendisk)
1730 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1731 					  rdev->data_offset << 9);
1732 
1733 		p->head_position = 0;
1734 		p->recovery_disabled = mddev->recovery_disabled - 1;
1735 		rdev->raid_disk = mirror;
1736 		err = 0;
1737 		if (rdev->saved_raid_disk != mirror)
1738 			conf->fullsync = 1;
1739 		rcu_assign_pointer(p->rdev, rdev);
1740 		break;
1741 	}
1742 	mddev_suspend(mddev);
1743 	md_integrity_add_rdev(rdev, mddev);
1744 	mddev_resume(mddev);
1745 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1746 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1747 
1748 	print_conf(conf);
1749 	return err;
1750 }
1751 
1752 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1753 {
1754 	struct r10conf *conf = mddev->private;
1755 	int err = 0;
1756 	int number = rdev->raid_disk;
1757 	struct md_rdev **rdevp;
1758 	struct raid10_info *p = conf->mirrors + number;
1759 
1760 	print_conf(conf);
1761 	if (rdev == p->rdev)
1762 		rdevp = &p->rdev;
1763 	else if (rdev == p->replacement)
1764 		rdevp = &p->replacement;
1765 	else
1766 		return 0;
1767 
1768 	if (test_bit(In_sync, &rdev->flags) ||
1769 	    atomic_read(&rdev->nr_pending)) {
1770 		err = -EBUSY;
1771 		goto abort;
1772 	}
1773 	/* Only remove faulty devices if recovery
1774 	 * is not possible.
1775 	 */
1776 	if (!test_bit(Faulty, &rdev->flags) &&
1777 	    mddev->recovery_disabled != p->recovery_disabled &&
1778 	    (!p->replacement || p->replacement == rdev) &&
1779 	    number < conf->geo.raid_disks &&
1780 	    enough(conf, -1)) {
1781 		err = -EBUSY;
1782 		goto abort;
1783 	}
1784 	*rdevp = NULL;
1785 	synchronize_rcu();
1786 	if (atomic_read(&rdev->nr_pending)) {
1787 		/* lost the race, try later */
1788 		err = -EBUSY;
1789 		*rdevp = rdev;
1790 		goto abort;
1791 	} else if (p->replacement) {
1792 		/* We must have just cleared 'rdev' */
1793 		p->rdev = p->replacement;
1794 		clear_bit(Replacement, &p->replacement->flags);
1795 		smp_mb(); /* Make sure other CPUs may see both as identical
1796 			   * but will never see neither -- if they are careful.
1797 			   */
1798 		p->replacement = NULL;
1799 		clear_bit(WantReplacement, &rdev->flags);
1800 	} else
1801 		/* We might have just remove the Replacement as faulty
1802 		 * Clear the flag just in case
1803 		 */
1804 		clear_bit(WantReplacement, &rdev->flags);
1805 
1806 	err = md_integrity_register(mddev);
1807 
1808 abort:
1809 
1810 	print_conf(conf);
1811 	return err;
1812 }
1813 
1814 static void end_sync_read(struct bio *bio)
1815 {
1816 	struct r10bio *r10_bio = bio->bi_private;
1817 	struct r10conf *conf = r10_bio->mddev->private;
1818 	int d;
1819 
1820 	if (bio == r10_bio->master_bio) {
1821 		/* this is a reshape read */
1822 		d = r10_bio->read_slot; /* really the read dev */
1823 	} else
1824 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1825 
1826 	if (!bio->bi_error)
1827 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1828 	else
1829 		/* The write handler will notice the lack of
1830 		 * R10BIO_Uptodate and record any errors etc
1831 		 */
1832 		atomic_add(r10_bio->sectors,
1833 			   &conf->mirrors[d].rdev->corrected_errors);
1834 
1835 	/* for reconstruct, we always reschedule after a read.
1836 	 * for resync, only after all reads
1837 	 */
1838 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1839 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1840 	    atomic_dec_and_test(&r10_bio->remaining)) {
1841 		/* we have read all the blocks,
1842 		 * do the comparison in process context in raid10d
1843 		 */
1844 		reschedule_retry(r10_bio);
1845 	}
1846 }
1847 
1848 static void end_sync_request(struct r10bio *r10_bio)
1849 {
1850 	struct mddev *mddev = r10_bio->mddev;
1851 
1852 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1853 		if (r10_bio->master_bio == NULL) {
1854 			/* the primary of several recovery bios */
1855 			sector_t s = r10_bio->sectors;
1856 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1857 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1858 				reschedule_retry(r10_bio);
1859 			else
1860 				put_buf(r10_bio);
1861 			md_done_sync(mddev, s, 1);
1862 			break;
1863 		} else {
1864 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1865 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1866 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1867 				reschedule_retry(r10_bio);
1868 			else
1869 				put_buf(r10_bio);
1870 			r10_bio = r10_bio2;
1871 		}
1872 	}
1873 }
1874 
1875 static void end_sync_write(struct bio *bio)
1876 {
1877 	struct r10bio *r10_bio = bio->bi_private;
1878 	struct mddev *mddev = r10_bio->mddev;
1879 	struct r10conf *conf = mddev->private;
1880 	int d;
1881 	sector_t first_bad;
1882 	int bad_sectors;
1883 	int slot;
1884 	int repl;
1885 	struct md_rdev *rdev = NULL;
1886 
1887 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1888 	if (repl)
1889 		rdev = conf->mirrors[d].replacement;
1890 	else
1891 		rdev = conf->mirrors[d].rdev;
1892 
1893 	if (bio->bi_error) {
1894 		if (repl)
1895 			md_error(mddev, rdev);
1896 		else {
1897 			set_bit(WriteErrorSeen, &rdev->flags);
1898 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1899 				set_bit(MD_RECOVERY_NEEDED,
1900 					&rdev->mddev->recovery);
1901 			set_bit(R10BIO_WriteError, &r10_bio->state);
1902 		}
1903 	} else if (is_badblock(rdev,
1904 			     r10_bio->devs[slot].addr,
1905 			     r10_bio->sectors,
1906 			     &first_bad, &bad_sectors))
1907 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1908 
1909 	rdev_dec_pending(rdev, mddev);
1910 
1911 	end_sync_request(r10_bio);
1912 }
1913 
1914 /*
1915  * Note: sync and recover and handled very differently for raid10
1916  * This code is for resync.
1917  * For resync, we read through virtual addresses and read all blocks.
1918  * If there is any error, we schedule a write.  The lowest numbered
1919  * drive is authoritative.
1920  * However requests come for physical address, so we need to map.
1921  * For every physical address there are raid_disks/copies virtual addresses,
1922  * which is always are least one, but is not necessarly an integer.
1923  * This means that a physical address can span multiple chunks, so we may
1924  * have to submit multiple io requests for a single sync request.
1925  */
1926 /*
1927  * We check if all blocks are in-sync and only write to blocks that
1928  * aren't in sync
1929  */
1930 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1931 {
1932 	struct r10conf *conf = mddev->private;
1933 	int i, first;
1934 	struct bio *tbio, *fbio;
1935 	int vcnt;
1936 
1937 	atomic_set(&r10_bio->remaining, 1);
1938 
1939 	/* find the first device with a block */
1940 	for (i=0; i<conf->copies; i++)
1941 		if (!r10_bio->devs[i].bio->bi_error)
1942 			break;
1943 
1944 	if (i == conf->copies)
1945 		goto done;
1946 
1947 	first = i;
1948 	fbio = r10_bio->devs[i].bio;
1949 
1950 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1951 	/* now find blocks with errors */
1952 	for (i=0 ; i < conf->copies ; i++) {
1953 		int  j, d;
1954 
1955 		tbio = r10_bio->devs[i].bio;
1956 
1957 		if (tbio->bi_end_io != end_sync_read)
1958 			continue;
1959 		if (i == first)
1960 			continue;
1961 		if (!r10_bio->devs[i].bio->bi_error) {
1962 			/* We know that the bi_io_vec layout is the same for
1963 			 * both 'first' and 'i', so we just compare them.
1964 			 * All vec entries are PAGE_SIZE;
1965 			 */
1966 			int sectors = r10_bio->sectors;
1967 			for (j = 0; j < vcnt; j++) {
1968 				int len = PAGE_SIZE;
1969 				if (sectors < (len / 512))
1970 					len = sectors * 512;
1971 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1972 					   page_address(tbio->bi_io_vec[j].bv_page),
1973 					   len))
1974 					break;
1975 				sectors -= len/512;
1976 			}
1977 			if (j == vcnt)
1978 				continue;
1979 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1980 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1981 				/* Don't fix anything. */
1982 				continue;
1983 		}
1984 		/* Ok, we need to write this bio, either to correct an
1985 		 * inconsistency or to correct an unreadable block.
1986 		 * First we need to fixup bv_offset, bv_len and
1987 		 * bi_vecs, as the read request might have corrupted these
1988 		 */
1989 		bio_reset(tbio);
1990 
1991 		tbio->bi_vcnt = vcnt;
1992 		tbio->bi_iter.bi_size = r10_bio->sectors << 9;
1993 		tbio->bi_rw = WRITE;
1994 		tbio->bi_private = r10_bio;
1995 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1996 		tbio->bi_end_io = end_sync_write;
1997 
1998 		bio_copy_data(tbio, fbio);
1999 
2000 		d = r10_bio->devs[i].devnum;
2001 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2002 		atomic_inc(&r10_bio->remaining);
2003 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2004 
2005 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2006 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2007 		generic_make_request(tbio);
2008 	}
2009 
2010 	/* Now write out to any replacement devices
2011 	 * that are active
2012 	 */
2013 	for (i = 0; i < conf->copies; i++) {
2014 		int d;
2015 
2016 		tbio = r10_bio->devs[i].repl_bio;
2017 		if (!tbio || !tbio->bi_end_io)
2018 			continue;
2019 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2020 		    && r10_bio->devs[i].bio != fbio)
2021 			bio_copy_data(tbio, fbio);
2022 		d = r10_bio->devs[i].devnum;
2023 		atomic_inc(&r10_bio->remaining);
2024 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2025 			     bio_sectors(tbio));
2026 		generic_make_request(tbio);
2027 	}
2028 
2029 done:
2030 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2031 		md_done_sync(mddev, r10_bio->sectors, 1);
2032 		put_buf(r10_bio);
2033 	}
2034 }
2035 
2036 /*
2037  * Now for the recovery code.
2038  * Recovery happens across physical sectors.
2039  * We recover all non-is_sync drives by finding the virtual address of
2040  * each, and then choose a working drive that also has that virt address.
2041  * There is a separate r10_bio for each non-in_sync drive.
2042  * Only the first two slots are in use. The first for reading,
2043  * The second for writing.
2044  *
2045  */
2046 static void fix_recovery_read_error(struct r10bio *r10_bio)
2047 {
2048 	/* We got a read error during recovery.
2049 	 * We repeat the read in smaller page-sized sections.
2050 	 * If a read succeeds, write it to the new device or record
2051 	 * a bad block if we cannot.
2052 	 * If a read fails, record a bad block on both old and
2053 	 * new devices.
2054 	 */
2055 	struct mddev *mddev = r10_bio->mddev;
2056 	struct r10conf *conf = mddev->private;
2057 	struct bio *bio = r10_bio->devs[0].bio;
2058 	sector_t sect = 0;
2059 	int sectors = r10_bio->sectors;
2060 	int idx = 0;
2061 	int dr = r10_bio->devs[0].devnum;
2062 	int dw = r10_bio->devs[1].devnum;
2063 
2064 	while (sectors) {
2065 		int s = sectors;
2066 		struct md_rdev *rdev;
2067 		sector_t addr;
2068 		int ok;
2069 
2070 		if (s > (PAGE_SIZE>>9))
2071 			s = PAGE_SIZE >> 9;
2072 
2073 		rdev = conf->mirrors[dr].rdev;
2074 		addr = r10_bio->devs[0].addr + sect,
2075 		ok = sync_page_io(rdev,
2076 				  addr,
2077 				  s << 9,
2078 				  bio->bi_io_vec[idx].bv_page,
2079 				  READ, false);
2080 		if (ok) {
2081 			rdev = conf->mirrors[dw].rdev;
2082 			addr = r10_bio->devs[1].addr + sect;
2083 			ok = sync_page_io(rdev,
2084 					  addr,
2085 					  s << 9,
2086 					  bio->bi_io_vec[idx].bv_page,
2087 					  WRITE, false);
2088 			if (!ok) {
2089 				set_bit(WriteErrorSeen, &rdev->flags);
2090 				if (!test_and_set_bit(WantReplacement,
2091 						      &rdev->flags))
2092 					set_bit(MD_RECOVERY_NEEDED,
2093 						&rdev->mddev->recovery);
2094 			}
2095 		}
2096 		if (!ok) {
2097 			/* We don't worry if we cannot set a bad block -
2098 			 * it really is bad so there is no loss in not
2099 			 * recording it yet
2100 			 */
2101 			rdev_set_badblocks(rdev, addr, s, 0);
2102 
2103 			if (rdev != conf->mirrors[dw].rdev) {
2104 				/* need bad block on destination too */
2105 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2106 				addr = r10_bio->devs[1].addr + sect;
2107 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2108 				if (!ok) {
2109 					/* just abort the recovery */
2110 					printk(KERN_NOTICE
2111 					       "md/raid10:%s: recovery aborted"
2112 					       " due to read error\n",
2113 					       mdname(mddev));
2114 
2115 					conf->mirrors[dw].recovery_disabled
2116 						= mddev->recovery_disabled;
2117 					set_bit(MD_RECOVERY_INTR,
2118 						&mddev->recovery);
2119 					break;
2120 				}
2121 			}
2122 		}
2123 
2124 		sectors -= s;
2125 		sect += s;
2126 		idx++;
2127 	}
2128 }
2129 
2130 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2131 {
2132 	struct r10conf *conf = mddev->private;
2133 	int d;
2134 	struct bio *wbio, *wbio2;
2135 
2136 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2137 		fix_recovery_read_error(r10_bio);
2138 		end_sync_request(r10_bio);
2139 		return;
2140 	}
2141 
2142 	/*
2143 	 * share the pages with the first bio
2144 	 * and submit the write request
2145 	 */
2146 	d = r10_bio->devs[1].devnum;
2147 	wbio = r10_bio->devs[1].bio;
2148 	wbio2 = r10_bio->devs[1].repl_bio;
2149 	/* Need to test wbio2->bi_end_io before we call
2150 	 * generic_make_request as if the former is NULL,
2151 	 * the latter is free to free wbio2.
2152 	 */
2153 	if (wbio2 && !wbio2->bi_end_io)
2154 		wbio2 = NULL;
2155 	if (wbio->bi_end_io) {
2156 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2157 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2158 		generic_make_request(wbio);
2159 	}
2160 	if (wbio2) {
2161 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2162 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2163 			     bio_sectors(wbio2));
2164 		generic_make_request(wbio2);
2165 	}
2166 }
2167 
2168 /*
2169  * Used by fix_read_error() to decay the per rdev read_errors.
2170  * We halve the read error count for every hour that has elapsed
2171  * since the last recorded read error.
2172  *
2173  */
2174 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2175 {
2176 	struct timespec cur_time_mon;
2177 	unsigned long hours_since_last;
2178 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2179 
2180 	ktime_get_ts(&cur_time_mon);
2181 
2182 	if (rdev->last_read_error.tv_sec == 0 &&
2183 	    rdev->last_read_error.tv_nsec == 0) {
2184 		/* first time we've seen a read error */
2185 		rdev->last_read_error = cur_time_mon;
2186 		return;
2187 	}
2188 
2189 	hours_since_last = (cur_time_mon.tv_sec -
2190 			    rdev->last_read_error.tv_sec) / 3600;
2191 
2192 	rdev->last_read_error = cur_time_mon;
2193 
2194 	/*
2195 	 * if hours_since_last is > the number of bits in read_errors
2196 	 * just set read errors to 0. We do this to avoid
2197 	 * overflowing the shift of read_errors by hours_since_last.
2198 	 */
2199 	if (hours_since_last >= 8 * sizeof(read_errors))
2200 		atomic_set(&rdev->read_errors, 0);
2201 	else
2202 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2203 }
2204 
2205 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2206 			    int sectors, struct page *page, int rw)
2207 {
2208 	sector_t first_bad;
2209 	int bad_sectors;
2210 
2211 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2212 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2213 		return -1;
2214 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2215 		/* success */
2216 		return 1;
2217 	if (rw == WRITE) {
2218 		set_bit(WriteErrorSeen, &rdev->flags);
2219 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2220 			set_bit(MD_RECOVERY_NEEDED,
2221 				&rdev->mddev->recovery);
2222 	}
2223 	/* need to record an error - either for the block or the device */
2224 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2225 		md_error(rdev->mddev, rdev);
2226 	return 0;
2227 }
2228 
2229 /*
2230  * This is a kernel thread which:
2231  *
2232  *	1.	Retries failed read operations on working mirrors.
2233  *	2.	Updates the raid superblock when problems encounter.
2234  *	3.	Performs writes following reads for array synchronising.
2235  */
2236 
2237 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2238 {
2239 	int sect = 0; /* Offset from r10_bio->sector */
2240 	int sectors = r10_bio->sectors;
2241 	struct md_rdev*rdev;
2242 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2243 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2244 
2245 	/* still own a reference to this rdev, so it cannot
2246 	 * have been cleared recently.
2247 	 */
2248 	rdev = conf->mirrors[d].rdev;
2249 
2250 	if (test_bit(Faulty, &rdev->flags))
2251 		/* drive has already been failed, just ignore any
2252 		   more fix_read_error() attempts */
2253 		return;
2254 
2255 	check_decay_read_errors(mddev, rdev);
2256 	atomic_inc(&rdev->read_errors);
2257 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2258 		char b[BDEVNAME_SIZE];
2259 		bdevname(rdev->bdev, b);
2260 
2261 		printk(KERN_NOTICE
2262 		       "md/raid10:%s: %s: Raid device exceeded "
2263 		       "read_error threshold [cur %d:max %d]\n",
2264 		       mdname(mddev), b,
2265 		       atomic_read(&rdev->read_errors), max_read_errors);
2266 		printk(KERN_NOTICE
2267 		       "md/raid10:%s: %s: Failing raid device\n",
2268 		       mdname(mddev), b);
2269 		md_error(mddev, conf->mirrors[d].rdev);
2270 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2271 		return;
2272 	}
2273 
2274 	while(sectors) {
2275 		int s = sectors;
2276 		int sl = r10_bio->read_slot;
2277 		int success = 0;
2278 		int start;
2279 
2280 		if (s > (PAGE_SIZE>>9))
2281 			s = PAGE_SIZE >> 9;
2282 
2283 		rcu_read_lock();
2284 		do {
2285 			sector_t first_bad;
2286 			int bad_sectors;
2287 
2288 			d = r10_bio->devs[sl].devnum;
2289 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2290 			if (rdev &&
2291 			    test_bit(In_sync, &rdev->flags) &&
2292 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2293 					&first_bad, &bad_sectors) == 0) {
2294 				atomic_inc(&rdev->nr_pending);
2295 				rcu_read_unlock();
2296 				success = sync_page_io(rdev,
2297 						       r10_bio->devs[sl].addr +
2298 						       sect,
2299 						       s<<9,
2300 						       conf->tmppage, READ, false);
2301 				rdev_dec_pending(rdev, mddev);
2302 				rcu_read_lock();
2303 				if (success)
2304 					break;
2305 			}
2306 			sl++;
2307 			if (sl == conf->copies)
2308 				sl = 0;
2309 		} while (!success && sl != r10_bio->read_slot);
2310 		rcu_read_unlock();
2311 
2312 		if (!success) {
2313 			/* Cannot read from anywhere, just mark the block
2314 			 * as bad on the first device to discourage future
2315 			 * reads.
2316 			 */
2317 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2318 			rdev = conf->mirrors[dn].rdev;
2319 
2320 			if (!rdev_set_badblocks(
2321 				    rdev,
2322 				    r10_bio->devs[r10_bio->read_slot].addr
2323 				    + sect,
2324 				    s, 0)) {
2325 				md_error(mddev, rdev);
2326 				r10_bio->devs[r10_bio->read_slot].bio
2327 					= IO_BLOCKED;
2328 			}
2329 			break;
2330 		}
2331 
2332 		start = sl;
2333 		/* write it back and re-read */
2334 		rcu_read_lock();
2335 		while (sl != r10_bio->read_slot) {
2336 			char b[BDEVNAME_SIZE];
2337 
2338 			if (sl==0)
2339 				sl = conf->copies;
2340 			sl--;
2341 			d = r10_bio->devs[sl].devnum;
2342 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2343 			if (!rdev ||
2344 			    !test_bit(In_sync, &rdev->flags))
2345 				continue;
2346 
2347 			atomic_inc(&rdev->nr_pending);
2348 			rcu_read_unlock();
2349 			if (r10_sync_page_io(rdev,
2350 					     r10_bio->devs[sl].addr +
2351 					     sect,
2352 					     s, conf->tmppage, WRITE)
2353 			    == 0) {
2354 				/* Well, this device is dead */
2355 				printk(KERN_NOTICE
2356 				       "md/raid10:%s: read correction "
2357 				       "write failed"
2358 				       " (%d sectors at %llu on %s)\n",
2359 				       mdname(mddev), s,
2360 				       (unsigned long long)(
2361 					       sect +
2362 					       choose_data_offset(r10_bio,
2363 								  rdev)),
2364 				       bdevname(rdev->bdev, b));
2365 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2366 				       "drive\n",
2367 				       mdname(mddev),
2368 				       bdevname(rdev->bdev, b));
2369 			}
2370 			rdev_dec_pending(rdev, mddev);
2371 			rcu_read_lock();
2372 		}
2373 		sl = start;
2374 		while (sl != r10_bio->read_slot) {
2375 			char b[BDEVNAME_SIZE];
2376 
2377 			if (sl==0)
2378 				sl = conf->copies;
2379 			sl--;
2380 			d = r10_bio->devs[sl].devnum;
2381 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2382 			if (!rdev ||
2383 			    !test_bit(In_sync, &rdev->flags))
2384 				continue;
2385 
2386 			atomic_inc(&rdev->nr_pending);
2387 			rcu_read_unlock();
2388 			switch (r10_sync_page_io(rdev,
2389 					     r10_bio->devs[sl].addr +
2390 					     sect,
2391 					     s, conf->tmppage,
2392 						 READ)) {
2393 			case 0:
2394 				/* Well, this device is dead */
2395 				printk(KERN_NOTICE
2396 				       "md/raid10:%s: unable to read back "
2397 				       "corrected sectors"
2398 				       " (%d sectors at %llu on %s)\n",
2399 				       mdname(mddev), s,
2400 				       (unsigned long long)(
2401 					       sect +
2402 					       choose_data_offset(r10_bio, rdev)),
2403 				       bdevname(rdev->bdev, b));
2404 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2405 				       "drive\n",
2406 				       mdname(mddev),
2407 				       bdevname(rdev->bdev, b));
2408 				break;
2409 			case 1:
2410 				printk(KERN_INFO
2411 				       "md/raid10:%s: read error corrected"
2412 				       " (%d sectors at %llu on %s)\n",
2413 				       mdname(mddev), s,
2414 				       (unsigned long long)(
2415 					       sect +
2416 					       choose_data_offset(r10_bio, rdev)),
2417 				       bdevname(rdev->bdev, b));
2418 				atomic_add(s, &rdev->corrected_errors);
2419 			}
2420 
2421 			rdev_dec_pending(rdev, mddev);
2422 			rcu_read_lock();
2423 		}
2424 		rcu_read_unlock();
2425 
2426 		sectors -= s;
2427 		sect += s;
2428 	}
2429 }
2430 
2431 static int narrow_write_error(struct r10bio *r10_bio, int i)
2432 {
2433 	struct bio *bio = r10_bio->master_bio;
2434 	struct mddev *mddev = r10_bio->mddev;
2435 	struct r10conf *conf = mddev->private;
2436 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2437 	/* bio has the data to be written to slot 'i' where
2438 	 * we just recently had a write error.
2439 	 * We repeatedly clone the bio and trim down to one block,
2440 	 * then try the write.  Where the write fails we record
2441 	 * a bad block.
2442 	 * It is conceivable that the bio doesn't exactly align with
2443 	 * blocks.  We must handle this.
2444 	 *
2445 	 * We currently own a reference to the rdev.
2446 	 */
2447 
2448 	int block_sectors;
2449 	sector_t sector;
2450 	int sectors;
2451 	int sect_to_write = r10_bio->sectors;
2452 	int ok = 1;
2453 
2454 	if (rdev->badblocks.shift < 0)
2455 		return 0;
2456 
2457 	block_sectors = roundup(1 << rdev->badblocks.shift,
2458 				bdev_logical_block_size(rdev->bdev) >> 9);
2459 	sector = r10_bio->sector;
2460 	sectors = ((r10_bio->sector + block_sectors)
2461 		   & ~(sector_t)(block_sectors - 1))
2462 		- sector;
2463 
2464 	while (sect_to_write) {
2465 		struct bio *wbio;
2466 		if (sectors > sect_to_write)
2467 			sectors = sect_to_write;
2468 		/* Write at 'sector' for 'sectors' */
2469 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2470 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2471 		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2472 				   choose_data_offset(r10_bio, rdev) +
2473 				   (sector - r10_bio->sector));
2474 		wbio->bi_bdev = rdev->bdev;
2475 		if (submit_bio_wait(WRITE, wbio) < 0)
2476 			/* Failure! */
2477 			ok = rdev_set_badblocks(rdev, sector,
2478 						sectors, 0)
2479 				&& ok;
2480 
2481 		bio_put(wbio);
2482 		sect_to_write -= sectors;
2483 		sector += sectors;
2484 		sectors = block_sectors;
2485 	}
2486 	return ok;
2487 }
2488 
2489 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2490 {
2491 	int slot = r10_bio->read_slot;
2492 	struct bio *bio;
2493 	struct r10conf *conf = mddev->private;
2494 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2495 	char b[BDEVNAME_SIZE];
2496 	unsigned long do_sync;
2497 	int max_sectors;
2498 
2499 	/* we got a read error. Maybe the drive is bad.  Maybe just
2500 	 * the block and we can fix it.
2501 	 * We freeze all other IO, and try reading the block from
2502 	 * other devices.  When we find one, we re-write
2503 	 * and check it that fixes the read error.
2504 	 * This is all done synchronously while the array is
2505 	 * frozen.
2506 	 */
2507 	bio = r10_bio->devs[slot].bio;
2508 	bdevname(bio->bi_bdev, b);
2509 	bio_put(bio);
2510 	r10_bio->devs[slot].bio = NULL;
2511 
2512 	if (mddev->ro == 0) {
2513 		freeze_array(conf, 1);
2514 		fix_read_error(conf, mddev, r10_bio);
2515 		unfreeze_array(conf);
2516 	} else
2517 		r10_bio->devs[slot].bio = IO_BLOCKED;
2518 
2519 	rdev_dec_pending(rdev, mddev);
2520 
2521 read_more:
2522 	rdev = read_balance(conf, r10_bio, &max_sectors);
2523 	if (rdev == NULL) {
2524 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2525 		       " read error for block %llu\n",
2526 		       mdname(mddev), b,
2527 		       (unsigned long long)r10_bio->sector);
2528 		raid_end_bio_io(r10_bio);
2529 		return;
2530 	}
2531 
2532 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2533 	slot = r10_bio->read_slot;
2534 	printk_ratelimited(
2535 		KERN_ERR
2536 		"md/raid10:%s: %s: redirecting "
2537 		"sector %llu to another mirror\n",
2538 		mdname(mddev),
2539 		bdevname(rdev->bdev, b),
2540 		(unsigned long long)r10_bio->sector);
2541 	bio = bio_clone_mddev(r10_bio->master_bio,
2542 			      GFP_NOIO, mddev);
2543 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2544 	r10_bio->devs[slot].bio = bio;
2545 	r10_bio->devs[slot].rdev = rdev;
2546 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2547 		+ choose_data_offset(r10_bio, rdev);
2548 	bio->bi_bdev = rdev->bdev;
2549 	bio->bi_rw = READ | do_sync;
2550 	bio->bi_private = r10_bio;
2551 	bio->bi_end_io = raid10_end_read_request;
2552 	if (max_sectors < r10_bio->sectors) {
2553 		/* Drat - have to split this up more */
2554 		struct bio *mbio = r10_bio->master_bio;
2555 		int sectors_handled =
2556 			r10_bio->sector + max_sectors
2557 			- mbio->bi_iter.bi_sector;
2558 		r10_bio->sectors = max_sectors;
2559 		spin_lock_irq(&conf->device_lock);
2560 		if (mbio->bi_phys_segments == 0)
2561 			mbio->bi_phys_segments = 2;
2562 		else
2563 			mbio->bi_phys_segments++;
2564 		spin_unlock_irq(&conf->device_lock);
2565 		generic_make_request(bio);
2566 
2567 		r10_bio = mempool_alloc(conf->r10bio_pool,
2568 					GFP_NOIO);
2569 		r10_bio->master_bio = mbio;
2570 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2571 		r10_bio->state = 0;
2572 		set_bit(R10BIO_ReadError,
2573 			&r10_bio->state);
2574 		r10_bio->mddev = mddev;
2575 		r10_bio->sector = mbio->bi_iter.bi_sector
2576 			+ sectors_handled;
2577 
2578 		goto read_more;
2579 	} else
2580 		generic_make_request(bio);
2581 }
2582 
2583 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2584 {
2585 	/* Some sort of write request has finished and it
2586 	 * succeeded in writing where we thought there was a
2587 	 * bad block.  So forget the bad block.
2588 	 * Or possibly if failed and we need to record
2589 	 * a bad block.
2590 	 */
2591 	int m;
2592 	struct md_rdev *rdev;
2593 
2594 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2595 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2596 		for (m = 0; m < conf->copies; m++) {
2597 			int dev = r10_bio->devs[m].devnum;
2598 			rdev = conf->mirrors[dev].rdev;
2599 			if (r10_bio->devs[m].bio == NULL)
2600 				continue;
2601 			if (!r10_bio->devs[m].bio->bi_error) {
2602 				rdev_clear_badblocks(
2603 					rdev,
2604 					r10_bio->devs[m].addr,
2605 					r10_bio->sectors, 0);
2606 			} else {
2607 				if (!rdev_set_badblocks(
2608 					    rdev,
2609 					    r10_bio->devs[m].addr,
2610 					    r10_bio->sectors, 0))
2611 					md_error(conf->mddev, rdev);
2612 			}
2613 			rdev = conf->mirrors[dev].replacement;
2614 			if (r10_bio->devs[m].repl_bio == NULL)
2615 				continue;
2616 
2617 			if (!r10_bio->devs[m].repl_bio->bi_error) {
2618 				rdev_clear_badblocks(
2619 					rdev,
2620 					r10_bio->devs[m].addr,
2621 					r10_bio->sectors, 0);
2622 			} else {
2623 				if (!rdev_set_badblocks(
2624 					    rdev,
2625 					    r10_bio->devs[m].addr,
2626 					    r10_bio->sectors, 0))
2627 					md_error(conf->mddev, rdev);
2628 			}
2629 		}
2630 		put_buf(r10_bio);
2631 	} else {
2632 		bool fail = false;
2633 		for (m = 0; m < conf->copies; m++) {
2634 			int dev = r10_bio->devs[m].devnum;
2635 			struct bio *bio = r10_bio->devs[m].bio;
2636 			rdev = conf->mirrors[dev].rdev;
2637 			if (bio == IO_MADE_GOOD) {
2638 				rdev_clear_badblocks(
2639 					rdev,
2640 					r10_bio->devs[m].addr,
2641 					r10_bio->sectors, 0);
2642 				rdev_dec_pending(rdev, conf->mddev);
2643 			} else if (bio != NULL && bio->bi_error) {
2644 				fail = true;
2645 				if (!narrow_write_error(r10_bio, m)) {
2646 					md_error(conf->mddev, rdev);
2647 					set_bit(R10BIO_Degraded,
2648 						&r10_bio->state);
2649 				}
2650 				rdev_dec_pending(rdev, conf->mddev);
2651 			}
2652 			bio = r10_bio->devs[m].repl_bio;
2653 			rdev = conf->mirrors[dev].replacement;
2654 			if (rdev && bio == IO_MADE_GOOD) {
2655 				rdev_clear_badblocks(
2656 					rdev,
2657 					r10_bio->devs[m].addr,
2658 					r10_bio->sectors, 0);
2659 				rdev_dec_pending(rdev, conf->mddev);
2660 			}
2661 		}
2662 		if (fail) {
2663 			spin_lock_irq(&conf->device_lock);
2664 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2665 			spin_unlock_irq(&conf->device_lock);
2666 			md_wakeup_thread(conf->mddev->thread);
2667 		} else {
2668 			if (test_bit(R10BIO_WriteError,
2669 				     &r10_bio->state))
2670 				close_write(r10_bio);
2671 			raid_end_bio_io(r10_bio);
2672 		}
2673 	}
2674 }
2675 
2676 static void raid10d(struct md_thread *thread)
2677 {
2678 	struct mddev *mddev = thread->mddev;
2679 	struct r10bio *r10_bio;
2680 	unsigned long flags;
2681 	struct r10conf *conf = mddev->private;
2682 	struct list_head *head = &conf->retry_list;
2683 	struct blk_plug plug;
2684 
2685 	md_check_recovery(mddev);
2686 
2687 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2688 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2689 		LIST_HEAD(tmp);
2690 		spin_lock_irqsave(&conf->device_lock, flags);
2691 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2692 			list_add(&tmp, &conf->bio_end_io_list);
2693 			list_del_init(&conf->bio_end_io_list);
2694 		}
2695 		spin_unlock_irqrestore(&conf->device_lock, flags);
2696 		while (!list_empty(&tmp)) {
2697 			r10_bio = list_first_entry(&tmp, struct r10bio,
2698 						   retry_list);
2699 			list_del(&r10_bio->retry_list);
2700 			if (mddev->degraded)
2701 				set_bit(R10BIO_Degraded, &r10_bio->state);
2702 
2703 			if (test_bit(R10BIO_WriteError,
2704 				     &r10_bio->state))
2705 				close_write(r10_bio);
2706 			raid_end_bio_io(r10_bio);
2707 		}
2708 	}
2709 
2710 	blk_start_plug(&plug);
2711 	for (;;) {
2712 
2713 		flush_pending_writes(conf);
2714 
2715 		spin_lock_irqsave(&conf->device_lock, flags);
2716 		if (list_empty(head)) {
2717 			spin_unlock_irqrestore(&conf->device_lock, flags);
2718 			break;
2719 		}
2720 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2721 		list_del(head->prev);
2722 		conf->nr_queued--;
2723 		spin_unlock_irqrestore(&conf->device_lock, flags);
2724 
2725 		mddev = r10_bio->mddev;
2726 		conf = mddev->private;
2727 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2728 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2729 			handle_write_completed(conf, r10_bio);
2730 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2731 			reshape_request_write(mddev, r10_bio);
2732 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2733 			sync_request_write(mddev, r10_bio);
2734 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2735 			recovery_request_write(mddev, r10_bio);
2736 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2737 			handle_read_error(mddev, r10_bio);
2738 		else {
2739 			/* just a partial read to be scheduled from a
2740 			 * separate context
2741 			 */
2742 			int slot = r10_bio->read_slot;
2743 			generic_make_request(r10_bio->devs[slot].bio);
2744 		}
2745 
2746 		cond_resched();
2747 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2748 			md_check_recovery(mddev);
2749 	}
2750 	blk_finish_plug(&plug);
2751 }
2752 
2753 static int init_resync(struct r10conf *conf)
2754 {
2755 	int buffs;
2756 	int i;
2757 
2758 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2759 	BUG_ON(conf->r10buf_pool);
2760 	conf->have_replacement = 0;
2761 	for (i = 0; i < conf->geo.raid_disks; i++)
2762 		if (conf->mirrors[i].replacement)
2763 			conf->have_replacement = 1;
2764 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2765 	if (!conf->r10buf_pool)
2766 		return -ENOMEM;
2767 	conf->next_resync = 0;
2768 	return 0;
2769 }
2770 
2771 /*
2772  * perform a "sync" on one "block"
2773  *
2774  * We need to make sure that no normal I/O request - particularly write
2775  * requests - conflict with active sync requests.
2776  *
2777  * This is achieved by tracking pending requests and a 'barrier' concept
2778  * that can be installed to exclude normal IO requests.
2779  *
2780  * Resync and recovery are handled very differently.
2781  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2782  *
2783  * For resync, we iterate over virtual addresses, read all copies,
2784  * and update if there are differences.  If only one copy is live,
2785  * skip it.
2786  * For recovery, we iterate over physical addresses, read a good
2787  * value for each non-in_sync drive, and over-write.
2788  *
2789  * So, for recovery we may have several outstanding complex requests for a
2790  * given address, one for each out-of-sync device.  We model this by allocating
2791  * a number of r10_bio structures, one for each out-of-sync device.
2792  * As we setup these structures, we collect all bio's together into a list
2793  * which we then process collectively to add pages, and then process again
2794  * to pass to generic_make_request.
2795  *
2796  * The r10_bio structures are linked using a borrowed master_bio pointer.
2797  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2798  * has its remaining count decremented to 0, the whole complex operation
2799  * is complete.
2800  *
2801  */
2802 
2803 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2804 			     int *skipped)
2805 {
2806 	struct r10conf *conf = mddev->private;
2807 	struct r10bio *r10_bio;
2808 	struct bio *biolist = NULL, *bio;
2809 	sector_t max_sector, nr_sectors;
2810 	int i;
2811 	int max_sync;
2812 	sector_t sync_blocks;
2813 	sector_t sectors_skipped = 0;
2814 	int chunks_skipped = 0;
2815 	sector_t chunk_mask = conf->geo.chunk_mask;
2816 
2817 	if (!conf->r10buf_pool)
2818 		if (init_resync(conf))
2819 			return 0;
2820 
2821 	/*
2822 	 * Allow skipping a full rebuild for incremental assembly
2823 	 * of a clean array, like RAID1 does.
2824 	 */
2825 	if (mddev->bitmap == NULL &&
2826 	    mddev->recovery_cp == MaxSector &&
2827 	    mddev->reshape_position == MaxSector &&
2828 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2829 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2830 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2831 	    conf->fullsync == 0) {
2832 		*skipped = 1;
2833 		return mddev->dev_sectors - sector_nr;
2834 	}
2835 
2836  skipped:
2837 	max_sector = mddev->dev_sectors;
2838 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2839 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2840 		max_sector = mddev->resync_max_sectors;
2841 	if (sector_nr >= max_sector) {
2842 		/* If we aborted, we need to abort the
2843 		 * sync on the 'current' bitmap chucks (there can
2844 		 * be several when recovering multiple devices).
2845 		 * as we may have started syncing it but not finished.
2846 		 * We can find the current address in
2847 		 * mddev->curr_resync, but for recovery,
2848 		 * we need to convert that to several
2849 		 * virtual addresses.
2850 		 */
2851 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2852 			end_reshape(conf);
2853 			close_sync(conf);
2854 			return 0;
2855 		}
2856 
2857 		if (mddev->curr_resync < max_sector) { /* aborted */
2858 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2859 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2860 						&sync_blocks, 1);
2861 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2862 				sector_t sect =
2863 					raid10_find_virt(conf, mddev->curr_resync, i);
2864 				bitmap_end_sync(mddev->bitmap, sect,
2865 						&sync_blocks, 1);
2866 			}
2867 		} else {
2868 			/* completed sync */
2869 			if ((!mddev->bitmap || conf->fullsync)
2870 			    && conf->have_replacement
2871 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2872 				/* Completed a full sync so the replacements
2873 				 * are now fully recovered.
2874 				 */
2875 				for (i = 0; i < conf->geo.raid_disks; i++)
2876 					if (conf->mirrors[i].replacement)
2877 						conf->mirrors[i].replacement
2878 							->recovery_offset
2879 							= MaxSector;
2880 			}
2881 			conf->fullsync = 0;
2882 		}
2883 		bitmap_close_sync(mddev->bitmap);
2884 		close_sync(conf);
2885 		*skipped = 1;
2886 		return sectors_skipped;
2887 	}
2888 
2889 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2890 		return reshape_request(mddev, sector_nr, skipped);
2891 
2892 	if (chunks_skipped >= conf->geo.raid_disks) {
2893 		/* if there has been nothing to do on any drive,
2894 		 * then there is nothing to do at all..
2895 		 */
2896 		*skipped = 1;
2897 		return (max_sector - sector_nr) + sectors_skipped;
2898 	}
2899 
2900 	if (max_sector > mddev->resync_max)
2901 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2902 
2903 	/* make sure whole request will fit in a chunk - if chunks
2904 	 * are meaningful
2905 	 */
2906 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2907 	    max_sector > (sector_nr | chunk_mask))
2908 		max_sector = (sector_nr | chunk_mask) + 1;
2909 
2910 	/* Again, very different code for resync and recovery.
2911 	 * Both must result in an r10bio with a list of bios that
2912 	 * have bi_end_io, bi_sector, bi_bdev set,
2913 	 * and bi_private set to the r10bio.
2914 	 * For recovery, we may actually create several r10bios
2915 	 * with 2 bios in each, that correspond to the bios in the main one.
2916 	 * In this case, the subordinate r10bios link back through a
2917 	 * borrowed master_bio pointer, and the counter in the master
2918 	 * includes a ref from each subordinate.
2919 	 */
2920 	/* First, we decide what to do and set ->bi_end_io
2921 	 * To end_sync_read if we want to read, and
2922 	 * end_sync_write if we will want to write.
2923 	 */
2924 
2925 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2926 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2927 		/* recovery... the complicated one */
2928 		int j;
2929 		r10_bio = NULL;
2930 
2931 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2932 			int still_degraded;
2933 			struct r10bio *rb2;
2934 			sector_t sect;
2935 			int must_sync;
2936 			int any_working;
2937 			struct raid10_info *mirror = &conf->mirrors[i];
2938 
2939 			if ((mirror->rdev == NULL ||
2940 			     test_bit(In_sync, &mirror->rdev->flags))
2941 			    &&
2942 			    (mirror->replacement == NULL ||
2943 			     test_bit(Faulty,
2944 				      &mirror->replacement->flags)))
2945 				continue;
2946 
2947 			still_degraded = 0;
2948 			/* want to reconstruct this device */
2949 			rb2 = r10_bio;
2950 			sect = raid10_find_virt(conf, sector_nr, i);
2951 			if (sect >= mddev->resync_max_sectors) {
2952 				/* last stripe is not complete - don't
2953 				 * try to recover this sector.
2954 				 */
2955 				continue;
2956 			}
2957 			/* Unless we are doing a full sync, or a replacement
2958 			 * we only need to recover the block if it is set in
2959 			 * the bitmap
2960 			 */
2961 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2962 						      &sync_blocks, 1);
2963 			if (sync_blocks < max_sync)
2964 				max_sync = sync_blocks;
2965 			if (!must_sync &&
2966 			    mirror->replacement == NULL &&
2967 			    !conf->fullsync) {
2968 				/* yep, skip the sync_blocks here, but don't assume
2969 				 * that there will never be anything to do here
2970 				 */
2971 				chunks_skipped = -1;
2972 				continue;
2973 			}
2974 
2975 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2976 			r10_bio->state = 0;
2977 			raise_barrier(conf, rb2 != NULL);
2978 			atomic_set(&r10_bio->remaining, 0);
2979 
2980 			r10_bio->master_bio = (struct bio*)rb2;
2981 			if (rb2)
2982 				atomic_inc(&rb2->remaining);
2983 			r10_bio->mddev = mddev;
2984 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2985 			r10_bio->sector = sect;
2986 
2987 			raid10_find_phys(conf, r10_bio);
2988 
2989 			/* Need to check if the array will still be
2990 			 * degraded
2991 			 */
2992 			for (j = 0; j < conf->geo.raid_disks; j++)
2993 				if (conf->mirrors[j].rdev == NULL ||
2994 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2995 					still_degraded = 1;
2996 					break;
2997 				}
2998 
2999 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3000 						      &sync_blocks, still_degraded);
3001 
3002 			any_working = 0;
3003 			for (j=0; j<conf->copies;j++) {
3004 				int k;
3005 				int d = r10_bio->devs[j].devnum;
3006 				sector_t from_addr, to_addr;
3007 				struct md_rdev *rdev;
3008 				sector_t sector, first_bad;
3009 				int bad_sectors;
3010 				if (!conf->mirrors[d].rdev ||
3011 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3012 					continue;
3013 				/* This is where we read from */
3014 				any_working = 1;
3015 				rdev = conf->mirrors[d].rdev;
3016 				sector = r10_bio->devs[j].addr;
3017 
3018 				if (is_badblock(rdev, sector, max_sync,
3019 						&first_bad, &bad_sectors)) {
3020 					if (first_bad > sector)
3021 						max_sync = first_bad - sector;
3022 					else {
3023 						bad_sectors -= (sector
3024 								- first_bad);
3025 						if (max_sync > bad_sectors)
3026 							max_sync = bad_sectors;
3027 						continue;
3028 					}
3029 				}
3030 				bio = r10_bio->devs[0].bio;
3031 				bio_reset(bio);
3032 				bio->bi_next = biolist;
3033 				biolist = bio;
3034 				bio->bi_private = r10_bio;
3035 				bio->bi_end_io = end_sync_read;
3036 				bio->bi_rw = READ;
3037 				from_addr = r10_bio->devs[j].addr;
3038 				bio->bi_iter.bi_sector = from_addr +
3039 					rdev->data_offset;
3040 				bio->bi_bdev = rdev->bdev;
3041 				atomic_inc(&rdev->nr_pending);
3042 				/* and we write to 'i' (if not in_sync) */
3043 
3044 				for (k=0; k<conf->copies; k++)
3045 					if (r10_bio->devs[k].devnum == i)
3046 						break;
3047 				BUG_ON(k == conf->copies);
3048 				to_addr = r10_bio->devs[k].addr;
3049 				r10_bio->devs[0].devnum = d;
3050 				r10_bio->devs[0].addr = from_addr;
3051 				r10_bio->devs[1].devnum = i;
3052 				r10_bio->devs[1].addr = to_addr;
3053 
3054 				rdev = mirror->rdev;
3055 				if (!test_bit(In_sync, &rdev->flags)) {
3056 					bio = r10_bio->devs[1].bio;
3057 					bio_reset(bio);
3058 					bio->bi_next = biolist;
3059 					biolist = bio;
3060 					bio->bi_private = r10_bio;
3061 					bio->bi_end_io = end_sync_write;
3062 					bio->bi_rw = WRITE;
3063 					bio->bi_iter.bi_sector = to_addr
3064 						+ rdev->data_offset;
3065 					bio->bi_bdev = rdev->bdev;
3066 					atomic_inc(&r10_bio->remaining);
3067 				} else
3068 					r10_bio->devs[1].bio->bi_end_io = NULL;
3069 
3070 				/* and maybe write to replacement */
3071 				bio = r10_bio->devs[1].repl_bio;
3072 				if (bio)
3073 					bio->bi_end_io = NULL;
3074 				rdev = mirror->replacement;
3075 				/* Note: if rdev != NULL, then bio
3076 				 * cannot be NULL as r10buf_pool_alloc will
3077 				 * have allocated it.
3078 				 * So the second test here is pointless.
3079 				 * But it keeps semantic-checkers happy, and
3080 				 * this comment keeps human reviewers
3081 				 * happy.
3082 				 */
3083 				if (rdev == NULL || bio == NULL ||
3084 				    test_bit(Faulty, &rdev->flags))
3085 					break;
3086 				bio_reset(bio);
3087 				bio->bi_next = biolist;
3088 				biolist = bio;
3089 				bio->bi_private = r10_bio;
3090 				bio->bi_end_io = end_sync_write;
3091 				bio->bi_rw = WRITE;
3092 				bio->bi_iter.bi_sector = to_addr +
3093 					rdev->data_offset;
3094 				bio->bi_bdev = rdev->bdev;
3095 				atomic_inc(&r10_bio->remaining);
3096 				break;
3097 			}
3098 			if (j == conf->copies) {
3099 				/* Cannot recover, so abort the recovery or
3100 				 * record a bad block */
3101 				if (any_working) {
3102 					/* problem is that there are bad blocks
3103 					 * on other device(s)
3104 					 */
3105 					int k;
3106 					for (k = 0; k < conf->copies; k++)
3107 						if (r10_bio->devs[k].devnum == i)
3108 							break;
3109 					if (!test_bit(In_sync,
3110 						      &mirror->rdev->flags)
3111 					    && !rdev_set_badblocks(
3112 						    mirror->rdev,
3113 						    r10_bio->devs[k].addr,
3114 						    max_sync, 0))
3115 						any_working = 0;
3116 					if (mirror->replacement &&
3117 					    !rdev_set_badblocks(
3118 						    mirror->replacement,
3119 						    r10_bio->devs[k].addr,
3120 						    max_sync, 0))
3121 						any_working = 0;
3122 				}
3123 				if (!any_working)  {
3124 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3125 							      &mddev->recovery))
3126 						printk(KERN_INFO "md/raid10:%s: insufficient "
3127 						       "working devices for recovery.\n",
3128 						       mdname(mddev));
3129 					mirror->recovery_disabled
3130 						= mddev->recovery_disabled;
3131 				}
3132 				put_buf(r10_bio);
3133 				if (rb2)
3134 					atomic_dec(&rb2->remaining);
3135 				r10_bio = rb2;
3136 				break;
3137 			}
3138 		}
3139 		if (biolist == NULL) {
3140 			while (r10_bio) {
3141 				struct r10bio *rb2 = r10_bio;
3142 				r10_bio = (struct r10bio*) rb2->master_bio;
3143 				rb2->master_bio = NULL;
3144 				put_buf(rb2);
3145 			}
3146 			goto giveup;
3147 		}
3148 	} else {
3149 		/* resync. Schedule a read for every block at this virt offset */
3150 		int count = 0;
3151 
3152 		bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3153 
3154 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3155 				       &sync_blocks, mddev->degraded) &&
3156 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3157 						 &mddev->recovery)) {
3158 			/* We can skip this block */
3159 			*skipped = 1;
3160 			return sync_blocks + sectors_skipped;
3161 		}
3162 		if (sync_blocks < max_sync)
3163 			max_sync = sync_blocks;
3164 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3165 		r10_bio->state = 0;
3166 
3167 		r10_bio->mddev = mddev;
3168 		atomic_set(&r10_bio->remaining, 0);
3169 		raise_barrier(conf, 0);
3170 		conf->next_resync = sector_nr;
3171 
3172 		r10_bio->master_bio = NULL;
3173 		r10_bio->sector = sector_nr;
3174 		set_bit(R10BIO_IsSync, &r10_bio->state);
3175 		raid10_find_phys(conf, r10_bio);
3176 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3177 
3178 		for (i = 0; i < conf->copies; i++) {
3179 			int d = r10_bio->devs[i].devnum;
3180 			sector_t first_bad, sector;
3181 			int bad_sectors;
3182 
3183 			if (r10_bio->devs[i].repl_bio)
3184 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3185 
3186 			bio = r10_bio->devs[i].bio;
3187 			bio_reset(bio);
3188 			bio->bi_error = -EIO;
3189 			if (conf->mirrors[d].rdev == NULL ||
3190 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3191 				continue;
3192 			sector = r10_bio->devs[i].addr;
3193 			if (is_badblock(conf->mirrors[d].rdev,
3194 					sector, max_sync,
3195 					&first_bad, &bad_sectors)) {
3196 				if (first_bad > sector)
3197 					max_sync = first_bad - sector;
3198 				else {
3199 					bad_sectors -= (sector - first_bad);
3200 					if (max_sync > bad_sectors)
3201 						max_sync = bad_sectors;
3202 					continue;
3203 				}
3204 			}
3205 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3206 			atomic_inc(&r10_bio->remaining);
3207 			bio->bi_next = biolist;
3208 			biolist = bio;
3209 			bio->bi_private = r10_bio;
3210 			bio->bi_end_io = end_sync_read;
3211 			bio->bi_rw = READ;
3212 			bio->bi_iter.bi_sector = sector +
3213 				conf->mirrors[d].rdev->data_offset;
3214 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3215 			count++;
3216 
3217 			if (conf->mirrors[d].replacement == NULL ||
3218 			    test_bit(Faulty,
3219 				     &conf->mirrors[d].replacement->flags))
3220 				continue;
3221 
3222 			/* Need to set up for writing to the replacement */
3223 			bio = r10_bio->devs[i].repl_bio;
3224 			bio_reset(bio);
3225 			bio->bi_error = -EIO;
3226 
3227 			sector = r10_bio->devs[i].addr;
3228 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3229 			bio->bi_next = biolist;
3230 			biolist = bio;
3231 			bio->bi_private = r10_bio;
3232 			bio->bi_end_io = end_sync_write;
3233 			bio->bi_rw = WRITE;
3234 			bio->bi_iter.bi_sector = sector +
3235 				conf->mirrors[d].replacement->data_offset;
3236 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3237 			count++;
3238 		}
3239 
3240 		if (count < 2) {
3241 			for (i=0; i<conf->copies; i++) {
3242 				int d = r10_bio->devs[i].devnum;
3243 				if (r10_bio->devs[i].bio->bi_end_io)
3244 					rdev_dec_pending(conf->mirrors[d].rdev,
3245 							 mddev);
3246 				if (r10_bio->devs[i].repl_bio &&
3247 				    r10_bio->devs[i].repl_bio->bi_end_io)
3248 					rdev_dec_pending(
3249 						conf->mirrors[d].replacement,
3250 						mddev);
3251 			}
3252 			put_buf(r10_bio);
3253 			biolist = NULL;
3254 			goto giveup;
3255 		}
3256 	}
3257 
3258 	nr_sectors = 0;
3259 	if (sector_nr + max_sync < max_sector)
3260 		max_sector = sector_nr + max_sync;
3261 	do {
3262 		struct page *page;
3263 		int len = PAGE_SIZE;
3264 		if (sector_nr + (len>>9) > max_sector)
3265 			len = (max_sector - sector_nr) << 9;
3266 		if (len == 0)
3267 			break;
3268 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3269 			struct bio *bio2;
3270 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3271 			if (bio_add_page(bio, page, len, 0))
3272 				continue;
3273 
3274 			/* stop here */
3275 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3276 			for (bio2 = biolist;
3277 			     bio2 && bio2 != bio;
3278 			     bio2 = bio2->bi_next) {
3279 				/* remove last page from this bio */
3280 				bio2->bi_vcnt--;
3281 				bio2->bi_iter.bi_size -= len;
3282 				bio_clear_flag(bio2, BIO_SEG_VALID);
3283 			}
3284 			goto bio_full;
3285 		}
3286 		nr_sectors += len>>9;
3287 		sector_nr += len>>9;
3288 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3289  bio_full:
3290 	r10_bio->sectors = nr_sectors;
3291 
3292 	while (biolist) {
3293 		bio = biolist;
3294 		biolist = biolist->bi_next;
3295 
3296 		bio->bi_next = NULL;
3297 		r10_bio = bio->bi_private;
3298 		r10_bio->sectors = nr_sectors;
3299 
3300 		if (bio->bi_end_io == end_sync_read) {
3301 			md_sync_acct(bio->bi_bdev, nr_sectors);
3302 			bio->bi_error = 0;
3303 			generic_make_request(bio);
3304 		}
3305 	}
3306 
3307 	if (sectors_skipped)
3308 		/* pretend they weren't skipped, it makes
3309 		 * no important difference in this case
3310 		 */
3311 		md_done_sync(mddev, sectors_skipped, 1);
3312 
3313 	return sectors_skipped + nr_sectors;
3314  giveup:
3315 	/* There is nowhere to write, so all non-sync
3316 	 * drives must be failed or in resync, all drives
3317 	 * have a bad block, so try the next chunk...
3318 	 */
3319 	if (sector_nr + max_sync < max_sector)
3320 		max_sector = sector_nr + max_sync;
3321 
3322 	sectors_skipped += (max_sector - sector_nr);
3323 	chunks_skipped ++;
3324 	sector_nr = max_sector;
3325 	goto skipped;
3326 }
3327 
3328 static sector_t
3329 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3330 {
3331 	sector_t size;
3332 	struct r10conf *conf = mddev->private;
3333 
3334 	if (!raid_disks)
3335 		raid_disks = min(conf->geo.raid_disks,
3336 				 conf->prev.raid_disks);
3337 	if (!sectors)
3338 		sectors = conf->dev_sectors;
3339 
3340 	size = sectors >> conf->geo.chunk_shift;
3341 	sector_div(size, conf->geo.far_copies);
3342 	size = size * raid_disks;
3343 	sector_div(size, conf->geo.near_copies);
3344 
3345 	return size << conf->geo.chunk_shift;
3346 }
3347 
3348 static void calc_sectors(struct r10conf *conf, sector_t size)
3349 {
3350 	/* Calculate the number of sectors-per-device that will
3351 	 * actually be used, and set conf->dev_sectors and
3352 	 * conf->stride
3353 	 */
3354 
3355 	size = size >> conf->geo.chunk_shift;
3356 	sector_div(size, conf->geo.far_copies);
3357 	size = size * conf->geo.raid_disks;
3358 	sector_div(size, conf->geo.near_copies);
3359 	/* 'size' is now the number of chunks in the array */
3360 	/* calculate "used chunks per device" */
3361 	size = size * conf->copies;
3362 
3363 	/* We need to round up when dividing by raid_disks to
3364 	 * get the stride size.
3365 	 */
3366 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3367 
3368 	conf->dev_sectors = size << conf->geo.chunk_shift;
3369 
3370 	if (conf->geo.far_offset)
3371 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3372 	else {
3373 		sector_div(size, conf->geo.far_copies);
3374 		conf->geo.stride = size << conf->geo.chunk_shift;
3375 	}
3376 }
3377 
3378 enum geo_type {geo_new, geo_old, geo_start};
3379 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3380 {
3381 	int nc, fc, fo;
3382 	int layout, chunk, disks;
3383 	switch (new) {
3384 	case geo_old:
3385 		layout = mddev->layout;
3386 		chunk = mddev->chunk_sectors;
3387 		disks = mddev->raid_disks - mddev->delta_disks;
3388 		break;
3389 	case geo_new:
3390 		layout = mddev->new_layout;
3391 		chunk = mddev->new_chunk_sectors;
3392 		disks = mddev->raid_disks;
3393 		break;
3394 	default: /* avoid 'may be unused' warnings */
3395 	case geo_start: /* new when starting reshape - raid_disks not
3396 			 * updated yet. */
3397 		layout = mddev->new_layout;
3398 		chunk = mddev->new_chunk_sectors;
3399 		disks = mddev->raid_disks + mddev->delta_disks;
3400 		break;
3401 	}
3402 	if (layout >> 19)
3403 		return -1;
3404 	if (chunk < (PAGE_SIZE >> 9) ||
3405 	    !is_power_of_2(chunk))
3406 		return -2;
3407 	nc = layout & 255;
3408 	fc = (layout >> 8) & 255;
3409 	fo = layout & (1<<16);
3410 	geo->raid_disks = disks;
3411 	geo->near_copies = nc;
3412 	geo->far_copies = fc;
3413 	geo->far_offset = fo;
3414 	switch (layout >> 17) {
3415 	case 0:	/* original layout.  simple but not always optimal */
3416 		geo->far_set_size = disks;
3417 		break;
3418 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3419 		 * actually using this, but leave code here just in case.*/
3420 		geo->far_set_size = disks/fc;
3421 		WARN(geo->far_set_size < fc,
3422 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3423 		break;
3424 	case 2: /* "improved" layout fixed to match documentation */
3425 		geo->far_set_size = fc * nc;
3426 		break;
3427 	default: /* Not a valid layout */
3428 		return -1;
3429 	}
3430 	geo->chunk_mask = chunk - 1;
3431 	geo->chunk_shift = ffz(~chunk);
3432 	return nc*fc;
3433 }
3434 
3435 static struct r10conf *setup_conf(struct mddev *mddev)
3436 {
3437 	struct r10conf *conf = NULL;
3438 	int err = -EINVAL;
3439 	struct geom geo;
3440 	int copies;
3441 
3442 	copies = setup_geo(&geo, mddev, geo_new);
3443 
3444 	if (copies == -2) {
3445 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3446 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3447 		       mdname(mddev), PAGE_SIZE);
3448 		goto out;
3449 	}
3450 
3451 	if (copies < 2 || copies > mddev->raid_disks) {
3452 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3453 		       mdname(mddev), mddev->new_layout);
3454 		goto out;
3455 	}
3456 
3457 	err = -ENOMEM;
3458 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3459 	if (!conf)
3460 		goto out;
3461 
3462 	/* FIXME calc properly */
3463 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3464 							    max(0,-mddev->delta_disks)),
3465 				GFP_KERNEL);
3466 	if (!conf->mirrors)
3467 		goto out;
3468 
3469 	conf->tmppage = alloc_page(GFP_KERNEL);
3470 	if (!conf->tmppage)
3471 		goto out;
3472 
3473 	conf->geo = geo;
3474 	conf->copies = copies;
3475 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3476 					   r10bio_pool_free, conf);
3477 	if (!conf->r10bio_pool)
3478 		goto out;
3479 
3480 	calc_sectors(conf, mddev->dev_sectors);
3481 	if (mddev->reshape_position == MaxSector) {
3482 		conf->prev = conf->geo;
3483 		conf->reshape_progress = MaxSector;
3484 	} else {
3485 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3486 			err = -EINVAL;
3487 			goto out;
3488 		}
3489 		conf->reshape_progress = mddev->reshape_position;
3490 		if (conf->prev.far_offset)
3491 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3492 		else
3493 			/* far_copies must be 1 */
3494 			conf->prev.stride = conf->dev_sectors;
3495 	}
3496 	conf->reshape_safe = conf->reshape_progress;
3497 	spin_lock_init(&conf->device_lock);
3498 	INIT_LIST_HEAD(&conf->retry_list);
3499 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3500 
3501 	spin_lock_init(&conf->resync_lock);
3502 	init_waitqueue_head(&conf->wait_barrier);
3503 
3504 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3505 	if (!conf->thread)
3506 		goto out;
3507 
3508 	conf->mddev = mddev;
3509 	return conf;
3510 
3511  out:
3512 	if (err == -ENOMEM)
3513 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3514 		       mdname(mddev));
3515 	if (conf) {
3516 		mempool_destroy(conf->r10bio_pool);
3517 		kfree(conf->mirrors);
3518 		safe_put_page(conf->tmppage);
3519 		kfree(conf);
3520 	}
3521 	return ERR_PTR(err);
3522 }
3523 
3524 static int run(struct mddev *mddev)
3525 {
3526 	struct r10conf *conf;
3527 	int i, disk_idx, chunk_size;
3528 	struct raid10_info *disk;
3529 	struct md_rdev *rdev;
3530 	sector_t size;
3531 	sector_t min_offset_diff = 0;
3532 	int first = 1;
3533 	bool discard_supported = false;
3534 
3535 	if (mddev->private == NULL) {
3536 		conf = setup_conf(mddev);
3537 		if (IS_ERR(conf))
3538 			return PTR_ERR(conf);
3539 		mddev->private = conf;
3540 	}
3541 	conf = mddev->private;
3542 	if (!conf)
3543 		goto out;
3544 
3545 	mddev->thread = conf->thread;
3546 	conf->thread = NULL;
3547 
3548 	chunk_size = mddev->chunk_sectors << 9;
3549 	if (mddev->queue) {
3550 		blk_queue_max_discard_sectors(mddev->queue,
3551 					      mddev->chunk_sectors);
3552 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3553 		blk_queue_io_min(mddev->queue, chunk_size);
3554 		if (conf->geo.raid_disks % conf->geo.near_copies)
3555 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3556 		else
3557 			blk_queue_io_opt(mddev->queue, chunk_size *
3558 					 (conf->geo.raid_disks / conf->geo.near_copies));
3559 	}
3560 
3561 	rdev_for_each(rdev, mddev) {
3562 		long long diff;
3563 		struct request_queue *q;
3564 
3565 		disk_idx = rdev->raid_disk;
3566 		if (disk_idx < 0)
3567 			continue;
3568 		if (disk_idx >= conf->geo.raid_disks &&
3569 		    disk_idx >= conf->prev.raid_disks)
3570 			continue;
3571 		disk = conf->mirrors + disk_idx;
3572 
3573 		if (test_bit(Replacement, &rdev->flags)) {
3574 			if (disk->replacement)
3575 				goto out_free_conf;
3576 			disk->replacement = rdev;
3577 		} else {
3578 			if (disk->rdev)
3579 				goto out_free_conf;
3580 			disk->rdev = rdev;
3581 		}
3582 		q = bdev_get_queue(rdev->bdev);
3583 		diff = (rdev->new_data_offset - rdev->data_offset);
3584 		if (!mddev->reshape_backwards)
3585 			diff = -diff;
3586 		if (diff < 0)
3587 			diff = 0;
3588 		if (first || diff < min_offset_diff)
3589 			min_offset_diff = diff;
3590 
3591 		if (mddev->gendisk)
3592 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3593 					  rdev->data_offset << 9);
3594 
3595 		disk->head_position = 0;
3596 
3597 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3598 			discard_supported = true;
3599 	}
3600 
3601 	if (mddev->queue) {
3602 		if (discard_supported)
3603 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3604 						mddev->queue);
3605 		else
3606 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3607 						  mddev->queue);
3608 	}
3609 	/* need to check that every block has at least one working mirror */
3610 	if (!enough(conf, -1)) {
3611 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3612 		       mdname(mddev));
3613 		goto out_free_conf;
3614 	}
3615 
3616 	if (conf->reshape_progress != MaxSector) {
3617 		/* must ensure that shape change is supported */
3618 		if (conf->geo.far_copies != 1 &&
3619 		    conf->geo.far_offset == 0)
3620 			goto out_free_conf;
3621 		if (conf->prev.far_copies != 1 &&
3622 		    conf->prev.far_offset == 0)
3623 			goto out_free_conf;
3624 	}
3625 
3626 	mddev->degraded = 0;
3627 	for (i = 0;
3628 	     i < conf->geo.raid_disks
3629 		     || i < conf->prev.raid_disks;
3630 	     i++) {
3631 
3632 		disk = conf->mirrors + i;
3633 
3634 		if (!disk->rdev && disk->replacement) {
3635 			/* The replacement is all we have - use it */
3636 			disk->rdev = disk->replacement;
3637 			disk->replacement = NULL;
3638 			clear_bit(Replacement, &disk->rdev->flags);
3639 		}
3640 
3641 		if (!disk->rdev ||
3642 		    !test_bit(In_sync, &disk->rdev->flags)) {
3643 			disk->head_position = 0;
3644 			mddev->degraded++;
3645 			if (disk->rdev &&
3646 			    disk->rdev->saved_raid_disk < 0)
3647 				conf->fullsync = 1;
3648 		}
3649 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3650 	}
3651 
3652 	if (mddev->recovery_cp != MaxSector)
3653 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3654 		       " -- starting background reconstruction\n",
3655 		       mdname(mddev));
3656 	printk(KERN_INFO
3657 		"md/raid10:%s: active with %d out of %d devices\n",
3658 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3659 		conf->geo.raid_disks);
3660 	/*
3661 	 * Ok, everything is just fine now
3662 	 */
3663 	mddev->dev_sectors = conf->dev_sectors;
3664 	size = raid10_size(mddev, 0, 0);
3665 	md_set_array_sectors(mddev, size);
3666 	mddev->resync_max_sectors = size;
3667 
3668 	if (mddev->queue) {
3669 		int stripe = conf->geo.raid_disks *
3670 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3671 
3672 		/* Calculate max read-ahead size.
3673 		 * We need to readahead at least twice a whole stripe....
3674 		 * maybe...
3675 		 */
3676 		stripe /= conf->geo.near_copies;
3677 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3678 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3679 	}
3680 
3681 	if (md_integrity_register(mddev))
3682 		goto out_free_conf;
3683 
3684 	if (conf->reshape_progress != MaxSector) {
3685 		unsigned long before_length, after_length;
3686 
3687 		before_length = ((1 << conf->prev.chunk_shift) *
3688 				 conf->prev.far_copies);
3689 		after_length = ((1 << conf->geo.chunk_shift) *
3690 				conf->geo.far_copies);
3691 
3692 		if (max(before_length, after_length) > min_offset_diff) {
3693 			/* This cannot work */
3694 			printk("md/raid10: offset difference not enough to continue reshape\n");
3695 			goto out_free_conf;
3696 		}
3697 		conf->offset_diff = min_offset_diff;
3698 
3699 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3700 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3701 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3702 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3703 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3704 							"reshape");
3705 	}
3706 
3707 	return 0;
3708 
3709 out_free_conf:
3710 	md_unregister_thread(&mddev->thread);
3711 	mempool_destroy(conf->r10bio_pool);
3712 	safe_put_page(conf->tmppage);
3713 	kfree(conf->mirrors);
3714 	kfree(conf);
3715 	mddev->private = NULL;
3716 out:
3717 	return -EIO;
3718 }
3719 
3720 static void raid10_free(struct mddev *mddev, void *priv)
3721 {
3722 	struct r10conf *conf = priv;
3723 
3724 	mempool_destroy(conf->r10bio_pool);
3725 	safe_put_page(conf->tmppage);
3726 	kfree(conf->mirrors);
3727 	kfree(conf->mirrors_old);
3728 	kfree(conf->mirrors_new);
3729 	kfree(conf);
3730 }
3731 
3732 static void raid10_quiesce(struct mddev *mddev, int state)
3733 {
3734 	struct r10conf *conf = mddev->private;
3735 
3736 	switch(state) {
3737 	case 1:
3738 		raise_barrier(conf, 0);
3739 		break;
3740 	case 0:
3741 		lower_barrier(conf);
3742 		break;
3743 	}
3744 }
3745 
3746 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3747 {
3748 	/* Resize of 'far' arrays is not supported.
3749 	 * For 'near' and 'offset' arrays we can set the
3750 	 * number of sectors used to be an appropriate multiple
3751 	 * of the chunk size.
3752 	 * For 'offset', this is far_copies*chunksize.
3753 	 * For 'near' the multiplier is the LCM of
3754 	 * near_copies and raid_disks.
3755 	 * So if far_copies > 1 && !far_offset, fail.
3756 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3757 	 * multiply by chunk_size.  Then round to this number.
3758 	 * This is mostly done by raid10_size()
3759 	 */
3760 	struct r10conf *conf = mddev->private;
3761 	sector_t oldsize, size;
3762 
3763 	if (mddev->reshape_position != MaxSector)
3764 		return -EBUSY;
3765 
3766 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3767 		return -EINVAL;
3768 
3769 	oldsize = raid10_size(mddev, 0, 0);
3770 	size = raid10_size(mddev, sectors, 0);
3771 	if (mddev->external_size &&
3772 	    mddev->array_sectors > size)
3773 		return -EINVAL;
3774 	if (mddev->bitmap) {
3775 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3776 		if (ret)
3777 			return ret;
3778 	}
3779 	md_set_array_sectors(mddev, size);
3780 	set_capacity(mddev->gendisk, mddev->array_sectors);
3781 	revalidate_disk(mddev->gendisk);
3782 	if (sectors > mddev->dev_sectors &&
3783 	    mddev->recovery_cp > oldsize) {
3784 		mddev->recovery_cp = oldsize;
3785 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3786 	}
3787 	calc_sectors(conf, sectors);
3788 	mddev->dev_sectors = conf->dev_sectors;
3789 	mddev->resync_max_sectors = size;
3790 	return 0;
3791 }
3792 
3793 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3794 {
3795 	struct md_rdev *rdev;
3796 	struct r10conf *conf;
3797 
3798 	if (mddev->degraded > 0) {
3799 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3800 		       mdname(mddev));
3801 		return ERR_PTR(-EINVAL);
3802 	}
3803 	sector_div(size, devs);
3804 
3805 	/* Set new parameters */
3806 	mddev->new_level = 10;
3807 	/* new layout: far_copies = 1, near_copies = 2 */
3808 	mddev->new_layout = (1<<8) + 2;
3809 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3810 	mddev->delta_disks = mddev->raid_disks;
3811 	mddev->raid_disks *= 2;
3812 	/* make sure it will be not marked as dirty */
3813 	mddev->recovery_cp = MaxSector;
3814 	mddev->dev_sectors = size;
3815 
3816 	conf = setup_conf(mddev);
3817 	if (!IS_ERR(conf)) {
3818 		rdev_for_each(rdev, mddev)
3819 			if (rdev->raid_disk >= 0) {
3820 				rdev->new_raid_disk = rdev->raid_disk * 2;
3821 				rdev->sectors = size;
3822 			}
3823 		conf->barrier = 1;
3824 	}
3825 
3826 	return conf;
3827 }
3828 
3829 static void *raid10_takeover(struct mddev *mddev)
3830 {
3831 	struct r0conf *raid0_conf;
3832 
3833 	/* raid10 can take over:
3834 	 *  raid0 - providing it has only two drives
3835 	 */
3836 	if (mddev->level == 0) {
3837 		/* for raid0 takeover only one zone is supported */
3838 		raid0_conf = mddev->private;
3839 		if (raid0_conf->nr_strip_zones > 1) {
3840 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3841 			       " with more than one zone.\n",
3842 			       mdname(mddev));
3843 			return ERR_PTR(-EINVAL);
3844 		}
3845 		return raid10_takeover_raid0(mddev,
3846 			raid0_conf->strip_zone->zone_end,
3847 			raid0_conf->strip_zone->nb_dev);
3848 	}
3849 	return ERR_PTR(-EINVAL);
3850 }
3851 
3852 static int raid10_check_reshape(struct mddev *mddev)
3853 {
3854 	/* Called when there is a request to change
3855 	 * - layout (to ->new_layout)
3856 	 * - chunk size (to ->new_chunk_sectors)
3857 	 * - raid_disks (by delta_disks)
3858 	 * or when trying to restart a reshape that was ongoing.
3859 	 *
3860 	 * We need to validate the request and possibly allocate
3861 	 * space if that might be an issue later.
3862 	 *
3863 	 * Currently we reject any reshape of a 'far' mode array,
3864 	 * allow chunk size to change if new is generally acceptable,
3865 	 * allow raid_disks to increase, and allow
3866 	 * a switch between 'near' mode and 'offset' mode.
3867 	 */
3868 	struct r10conf *conf = mddev->private;
3869 	struct geom geo;
3870 
3871 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3872 		return -EINVAL;
3873 
3874 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3875 		/* mustn't change number of copies */
3876 		return -EINVAL;
3877 	if (geo.far_copies > 1 && !geo.far_offset)
3878 		/* Cannot switch to 'far' mode */
3879 		return -EINVAL;
3880 
3881 	if (mddev->array_sectors & geo.chunk_mask)
3882 			/* not factor of array size */
3883 			return -EINVAL;
3884 
3885 	if (!enough(conf, -1))
3886 		return -EINVAL;
3887 
3888 	kfree(conf->mirrors_new);
3889 	conf->mirrors_new = NULL;
3890 	if (mddev->delta_disks > 0) {
3891 		/* allocate new 'mirrors' list */
3892 		conf->mirrors_new = kzalloc(
3893 			sizeof(struct raid10_info)
3894 			*(mddev->raid_disks +
3895 			  mddev->delta_disks),
3896 			GFP_KERNEL);
3897 		if (!conf->mirrors_new)
3898 			return -ENOMEM;
3899 	}
3900 	return 0;
3901 }
3902 
3903 /*
3904  * Need to check if array has failed when deciding whether to:
3905  *  - start an array
3906  *  - remove non-faulty devices
3907  *  - add a spare
3908  *  - allow a reshape
3909  * This determination is simple when no reshape is happening.
3910  * However if there is a reshape, we need to carefully check
3911  * both the before and after sections.
3912  * This is because some failed devices may only affect one
3913  * of the two sections, and some non-in_sync devices may
3914  * be insync in the section most affected by failed devices.
3915  */
3916 static int calc_degraded(struct r10conf *conf)
3917 {
3918 	int degraded, degraded2;
3919 	int i;
3920 
3921 	rcu_read_lock();
3922 	degraded = 0;
3923 	/* 'prev' section first */
3924 	for (i = 0; i < conf->prev.raid_disks; i++) {
3925 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3926 		if (!rdev || test_bit(Faulty, &rdev->flags))
3927 			degraded++;
3928 		else if (!test_bit(In_sync, &rdev->flags))
3929 			/* When we can reduce the number of devices in
3930 			 * an array, this might not contribute to
3931 			 * 'degraded'.  It does now.
3932 			 */
3933 			degraded++;
3934 	}
3935 	rcu_read_unlock();
3936 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3937 		return degraded;
3938 	rcu_read_lock();
3939 	degraded2 = 0;
3940 	for (i = 0; i < conf->geo.raid_disks; i++) {
3941 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3942 		if (!rdev || test_bit(Faulty, &rdev->flags))
3943 			degraded2++;
3944 		else if (!test_bit(In_sync, &rdev->flags)) {
3945 			/* If reshape is increasing the number of devices,
3946 			 * this section has already been recovered, so
3947 			 * it doesn't contribute to degraded.
3948 			 * else it does.
3949 			 */
3950 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3951 				degraded2++;
3952 		}
3953 	}
3954 	rcu_read_unlock();
3955 	if (degraded2 > degraded)
3956 		return degraded2;
3957 	return degraded;
3958 }
3959 
3960 static int raid10_start_reshape(struct mddev *mddev)
3961 {
3962 	/* A 'reshape' has been requested. This commits
3963 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3964 	 * This also checks if there are enough spares and adds them
3965 	 * to the array.
3966 	 * We currently require enough spares to make the final
3967 	 * array non-degraded.  We also require that the difference
3968 	 * between old and new data_offset - on each device - is
3969 	 * enough that we never risk over-writing.
3970 	 */
3971 
3972 	unsigned long before_length, after_length;
3973 	sector_t min_offset_diff = 0;
3974 	int first = 1;
3975 	struct geom new;
3976 	struct r10conf *conf = mddev->private;
3977 	struct md_rdev *rdev;
3978 	int spares = 0;
3979 	int ret;
3980 
3981 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3982 		return -EBUSY;
3983 
3984 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3985 		return -EINVAL;
3986 
3987 	before_length = ((1 << conf->prev.chunk_shift) *
3988 			 conf->prev.far_copies);
3989 	after_length = ((1 << conf->geo.chunk_shift) *
3990 			conf->geo.far_copies);
3991 
3992 	rdev_for_each(rdev, mddev) {
3993 		if (!test_bit(In_sync, &rdev->flags)
3994 		    && !test_bit(Faulty, &rdev->flags))
3995 			spares++;
3996 		if (rdev->raid_disk >= 0) {
3997 			long long diff = (rdev->new_data_offset
3998 					  - rdev->data_offset);
3999 			if (!mddev->reshape_backwards)
4000 				diff = -diff;
4001 			if (diff < 0)
4002 				diff = 0;
4003 			if (first || diff < min_offset_diff)
4004 				min_offset_diff = diff;
4005 		}
4006 	}
4007 
4008 	if (max(before_length, after_length) > min_offset_diff)
4009 		return -EINVAL;
4010 
4011 	if (spares < mddev->delta_disks)
4012 		return -EINVAL;
4013 
4014 	conf->offset_diff = min_offset_diff;
4015 	spin_lock_irq(&conf->device_lock);
4016 	if (conf->mirrors_new) {
4017 		memcpy(conf->mirrors_new, conf->mirrors,
4018 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4019 		smp_mb();
4020 		kfree(conf->mirrors_old);
4021 		conf->mirrors_old = conf->mirrors;
4022 		conf->mirrors = conf->mirrors_new;
4023 		conf->mirrors_new = NULL;
4024 	}
4025 	setup_geo(&conf->geo, mddev, geo_start);
4026 	smp_mb();
4027 	if (mddev->reshape_backwards) {
4028 		sector_t size = raid10_size(mddev, 0, 0);
4029 		if (size < mddev->array_sectors) {
4030 			spin_unlock_irq(&conf->device_lock);
4031 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4032 			       mdname(mddev));
4033 			return -EINVAL;
4034 		}
4035 		mddev->resync_max_sectors = size;
4036 		conf->reshape_progress = size;
4037 	} else
4038 		conf->reshape_progress = 0;
4039 	conf->reshape_safe = conf->reshape_progress;
4040 	spin_unlock_irq(&conf->device_lock);
4041 
4042 	if (mddev->delta_disks && mddev->bitmap) {
4043 		ret = bitmap_resize(mddev->bitmap,
4044 				    raid10_size(mddev, 0,
4045 						conf->geo.raid_disks),
4046 				    0, 0);
4047 		if (ret)
4048 			goto abort;
4049 	}
4050 	if (mddev->delta_disks > 0) {
4051 		rdev_for_each(rdev, mddev)
4052 			if (rdev->raid_disk < 0 &&
4053 			    !test_bit(Faulty, &rdev->flags)) {
4054 				if (raid10_add_disk(mddev, rdev) == 0) {
4055 					if (rdev->raid_disk >=
4056 					    conf->prev.raid_disks)
4057 						set_bit(In_sync, &rdev->flags);
4058 					else
4059 						rdev->recovery_offset = 0;
4060 
4061 					if (sysfs_link_rdev(mddev, rdev))
4062 						/* Failure here  is OK */;
4063 				}
4064 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4065 				   && !test_bit(Faulty, &rdev->flags)) {
4066 				/* This is a spare that was manually added */
4067 				set_bit(In_sync, &rdev->flags);
4068 			}
4069 	}
4070 	/* When a reshape changes the number of devices,
4071 	 * ->degraded is measured against the larger of the
4072 	 * pre and  post numbers.
4073 	 */
4074 	spin_lock_irq(&conf->device_lock);
4075 	mddev->degraded = calc_degraded(conf);
4076 	spin_unlock_irq(&conf->device_lock);
4077 	mddev->raid_disks = conf->geo.raid_disks;
4078 	mddev->reshape_position = conf->reshape_progress;
4079 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4080 
4081 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4082 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4083 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4084 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4085 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4086 
4087 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4088 						"reshape");
4089 	if (!mddev->sync_thread) {
4090 		ret = -EAGAIN;
4091 		goto abort;
4092 	}
4093 	conf->reshape_checkpoint = jiffies;
4094 	md_wakeup_thread(mddev->sync_thread);
4095 	md_new_event(mddev);
4096 	return 0;
4097 
4098 abort:
4099 	mddev->recovery = 0;
4100 	spin_lock_irq(&conf->device_lock);
4101 	conf->geo = conf->prev;
4102 	mddev->raid_disks = conf->geo.raid_disks;
4103 	rdev_for_each(rdev, mddev)
4104 		rdev->new_data_offset = rdev->data_offset;
4105 	smp_wmb();
4106 	conf->reshape_progress = MaxSector;
4107 	conf->reshape_safe = MaxSector;
4108 	mddev->reshape_position = MaxSector;
4109 	spin_unlock_irq(&conf->device_lock);
4110 	return ret;
4111 }
4112 
4113 /* Calculate the last device-address that could contain
4114  * any block from the chunk that includes the array-address 's'
4115  * and report the next address.
4116  * i.e. the address returned will be chunk-aligned and after
4117  * any data that is in the chunk containing 's'.
4118  */
4119 static sector_t last_dev_address(sector_t s, struct geom *geo)
4120 {
4121 	s = (s | geo->chunk_mask) + 1;
4122 	s >>= geo->chunk_shift;
4123 	s *= geo->near_copies;
4124 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4125 	s *= geo->far_copies;
4126 	s <<= geo->chunk_shift;
4127 	return s;
4128 }
4129 
4130 /* Calculate the first device-address that could contain
4131  * any block from the chunk that includes the array-address 's'.
4132  * This too will be the start of a chunk
4133  */
4134 static sector_t first_dev_address(sector_t s, struct geom *geo)
4135 {
4136 	s >>= geo->chunk_shift;
4137 	s *= geo->near_copies;
4138 	sector_div(s, geo->raid_disks);
4139 	s *= geo->far_copies;
4140 	s <<= geo->chunk_shift;
4141 	return s;
4142 }
4143 
4144 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4145 				int *skipped)
4146 {
4147 	/* We simply copy at most one chunk (smallest of old and new)
4148 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4149 	 * or we hit a bad block or something.
4150 	 * This might mean we pause for normal IO in the middle of
4151 	 * a chunk, but that is not a problem as mddev->reshape_position
4152 	 * can record any location.
4153 	 *
4154 	 * If we will want to write to a location that isn't
4155 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4156 	 * we need to flush all reshape requests and update the metadata.
4157 	 *
4158 	 * When reshaping forwards (e.g. to more devices), we interpret
4159 	 * 'safe' as the earliest block which might not have been copied
4160 	 * down yet.  We divide this by previous stripe size and multiply
4161 	 * by previous stripe length to get lowest device offset that we
4162 	 * cannot write to yet.
4163 	 * We interpret 'sector_nr' as an address that we want to write to.
4164 	 * From this we use last_device_address() to find where we might
4165 	 * write to, and first_device_address on the  'safe' position.
4166 	 * If this 'next' write position is after the 'safe' position,
4167 	 * we must update the metadata to increase the 'safe' position.
4168 	 *
4169 	 * When reshaping backwards, we round in the opposite direction
4170 	 * and perform the reverse test:  next write position must not be
4171 	 * less than current safe position.
4172 	 *
4173 	 * In all this the minimum difference in data offsets
4174 	 * (conf->offset_diff - always positive) allows a bit of slack,
4175 	 * so next can be after 'safe', but not by more than offset_diff
4176 	 *
4177 	 * We need to prepare all the bios here before we start any IO
4178 	 * to ensure the size we choose is acceptable to all devices.
4179 	 * The means one for each copy for write-out and an extra one for
4180 	 * read-in.
4181 	 * We store the read-in bio in ->master_bio and the others in
4182 	 * ->devs[x].bio and ->devs[x].repl_bio.
4183 	 */
4184 	struct r10conf *conf = mddev->private;
4185 	struct r10bio *r10_bio;
4186 	sector_t next, safe, last;
4187 	int max_sectors;
4188 	int nr_sectors;
4189 	int s;
4190 	struct md_rdev *rdev;
4191 	int need_flush = 0;
4192 	struct bio *blist;
4193 	struct bio *bio, *read_bio;
4194 	int sectors_done = 0;
4195 
4196 	if (sector_nr == 0) {
4197 		/* If restarting in the middle, skip the initial sectors */
4198 		if (mddev->reshape_backwards &&
4199 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4200 			sector_nr = (raid10_size(mddev, 0, 0)
4201 				     - conf->reshape_progress);
4202 		} else if (!mddev->reshape_backwards &&
4203 			   conf->reshape_progress > 0)
4204 			sector_nr = conf->reshape_progress;
4205 		if (sector_nr) {
4206 			mddev->curr_resync_completed = sector_nr;
4207 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4208 			*skipped = 1;
4209 			return sector_nr;
4210 		}
4211 	}
4212 
4213 	/* We don't use sector_nr to track where we are up to
4214 	 * as that doesn't work well for ->reshape_backwards.
4215 	 * So just use ->reshape_progress.
4216 	 */
4217 	if (mddev->reshape_backwards) {
4218 		/* 'next' is the earliest device address that we might
4219 		 * write to for this chunk in the new layout
4220 		 */
4221 		next = first_dev_address(conf->reshape_progress - 1,
4222 					 &conf->geo);
4223 
4224 		/* 'safe' is the last device address that we might read from
4225 		 * in the old layout after a restart
4226 		 */
4227 		safe = last_dev_address(conf->reshape_safe - 1,
4228 					&conf->prev);
4229 
4230 		if (next + conf->offset_diff < safe)
4231 			need_flush = 1;
4232 
4233 		last = conf->reshape_progress - 1;
4234 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4235 					       & conf->prev.chunk_mask);
4236 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4237 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4238 	} else {
4239 		/* 'next' is after the last device address that we
4240 		 * might write to for this chunk in the new layout
4241 		 */
4242 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4243 
4244 		/* 'safe' is the earliest device address that we might
4245 		 * read from in the old layout after a restart
4246 		 */
4247 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4248 
4249 		/* Need to update metadata if 'next' might be beyond 'safe'
4250 		 * as that would possibly corrupt data
4251 		 */
4252 		if (next > safe + conf->offset_diff)
4253 			need_flush = 1;
4254 
4255 		sector_nr = conf->reshape_progress;
4256 		last  = sector_nr | (conf->geo.chunk_mask
4257 				     & conf->prev.chunk_mask);
4258 
4259 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4260 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4261 	}
4262 
4263 	if (need_flush ||
4264 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4265 		/* Need to update reshape_position in metadata */
4266 		wait_barrier(conf);
4267 		mddev->reshape_position = conf->reshape_progress;
4268 		if (mddev->reshape_backwards)
4269 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4270 				- conf->reshape_progress;
4271 		else
4272 			mddev->curr_resync_completed = conf->reshape_progress;
4273 		conf->reshape_checkpoint = jiffies;
4274 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4275 		md_wakeup_thread(mddev->thread);
4276 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4277 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4278 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4279 			allow_barrier(conf);
4280 			return sectors_done;
4281 		}
4282 		conf->reshape_safe = mddev->reshape_position;
4283 		allow_barrier(conf);
4284 	}
4285 
4286 read_more:
4287 	/* Now schedule reads for blocks from sector_nr to last */
4288 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4289 	r10_bio->state = 0;
4290 	raise_barrier(conf, sectors_done != 0);
4291 	atomic_set(&r10_bio->remaining, 0);
4292 	r10_bio->mddev = mddev;
4293 	r10_bio->sector = sector_nr;
4294 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4295 	r10_bio->sectors = last - sector_nr + 1;
4296 	rdev = read_balance(conf, r10_bio, &max_sectors);
4297 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4298 
4299 	if (!rdev) {
4300 		/* Cannot read from here, so need to record bad blocks
4301 		 * on all the target devices.
4302 		 */
4303 		// FIXME
4304 		mempool_free(r10_bio, conf->r10buf_pool);
4305 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4306 		return sectors_done;
4307 	}
4308 
4309 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4310 
4311 	read_bio->bi_bdev = rdev->bdev;
4312 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4313 			       + rdev->data_offset);
4314 	read_bio->bi_private = r10_bio;
4315 	read_bio->bi_end_io = end_sync_read;
4316 	read_bio->bi_rw = READ;
4317 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4318 	read_bio->bi_error = 0;
4319 	read_bio->bi_vcnt = 0;
4320 	read_bio->bi_iter.bi_size = 0;
4321 	r10_bio->master_bio = read_bio;
4322 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4323 
4324 	/* Now find the locations in the new layout */
4325 	__raid10_find_phys(&conf->geo, r10_bio);
4326 
4327 	blist = read_bio;
4328 	read_bio->bi_next = NULL;
4329 
4330 	for (s = 0; s < conf->copies*2; s++) {
4331 		struct bio *b;
4332 		int d = r10_bio->devs[s/2].devnum;
4333 		struct md_rdev *rdev2;
4334 		if (s&1) {
4335 			rdev2 = conf->mirrors[d].replacement;
4336 			b = r10_bio->devs[s/2].repl_bio;
4337 		} else {
4338 			rdev2 = conf->mirrors[d].rdev;
4339 			b = r10_bio->devs[s/2].bio;
4340 		}
4341 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4342 			continue;
4343 
4344 		bio_reset(b);
4345 		b->bi_bdev = rdev2->bdev;
4346 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4347 			rdev2->new_data_offset;
4348 		b->bi_private = r10_bio;
4349 		b->bi_end_io = end_reshape_write;
4350 		b->bi_rw = WRITE;
4351 		b->bi_next = blist;
4352 		blist = b;
4353 	}
4354 
4355 	/* Now add as many pages as possible to all of these bios. */
4356 
4357 	nr_sectors = 0;
4358 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4359 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4360 		int len = (max_sectors - s) << 9;
4361 		if (len > PAGE_SIZE)
4362 			len = PAGE_SIZE;
4363 		for (bio = blist; bio ; bio = bio->bi_next) {
4364 			struct bio *bio2;
4365 			if (bio_add_page(bio, page, len, 0))
4366 				continue;
4367 
4368 			/* Didn't fit, must stop */
4369 			for (bio2 = blist;
4370 			     bio2 && bio2 != bio;
4371 			     bio2 = bio2->bi_next) {
4372 				/* Remove last page from this bio */
4373 				bio2->bi_vcnt--;
4374 				bio2->bi_iter.bi_size -= len;
4375 				bio_clear_flag(bio2, BIO_SEG_VALID);
4376 			}
4377 			goto bio_full;
4378 		}
4379 		sector_nr += len >> 9;
4380 		nr_sectors += len >> 9;
4381 	}
4382 bio_full:
4383 	r10_bio->sectors = nr_sectors;
4384 
4385 	/* Now submit the read */
4386 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4387 	atomic_inc(&r10_bio->remaining);
4388 	read_bio->bi_next = NULL;
4389 	generic_make_request(read_bio);
4390 	sector_nr += nr_sectors;
4391 	sectors_done += nr_sectors;
4392 	if (sector_nr <= last)
4393 		goto read_more;
4394 
4395 	/* Now that we have done the whole section we can
4396 	 * update reshape_progress
4397 	 */
4398 	if (mddev->reshape_backwards)
4399 		conf->reshape_progress -= sectors_done;
4400 	else
4401 		conf->reshape_progress += sectors_done;
4402 
4403 	return sectors_done;
4404 }
4405 
4406 static void end_reshape_request(struct r10bio *r10_bio);
4407 static int handle_reshape_read_error(struct mddev *mddev,
4408 				     struct r10bio *r10_bio);
4409 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4410 {
4411 	/* Reshape read completed.  Hopefully we have a block
4412 	 * to write out.
4413 	 * If we got a read error then we do sync 1-page reads from
4414 	 * elsewhere until we find the data - or give up.
4415 	 */
4416 	struct r10conf *conf = mddev->private;
4417 	int s;
4418 
4419 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4420 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4421 			/* Reshape has been aborted */
4422 			md_done_sync(mddev, r10_bio->sectors, 0);
4423 			return;
4424 		}
4425 
4426 	/* We definitely have the data in the pages, schedule the
4427 	 * writes.
4428 	 */
4429 	atomic_set(&r10_bio->remaining, 1);
4430 	for (s = 0; s < conf->copies*2; s++) {
4431 		struct bio *b;
4432 		int d = r10_bio->devs[s/2].devnum;
4433 		struct md_rdev *rdev;
4434 		if (s&1) {
4435 			rdev = conf->mirrors[d].replacement;
4436 			b = r10_bio->devs[s/2].repl_bio;
4437 		} else {
4438 			rdev = conf->mirrors[d].rdev;
4439 			b = r10_bio->devs[s/2].bio;
4440 		}
4441 		if (!rdev || test_bit(Faulty, &rdev->flags))
4442 			continue;
4443 		atomic_inc(&rdev->nr_pending);
4444 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4445 		atomic_inc(&r10_bio->remaining);
4446 		b->bi_next = NULL;
4447 		generic_make_request(b);
4448 	}
4449 	end_reshape_request(r10_bio);
4450 }
4451 
4452 static void end_reshape(struct r10conf *conf)
4453 {
4454 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4455 		return;
4456 
4457 	spin_lock_irq(&conf->device_lock);
4458 	conf->prev = conf->geo;
4459 	md_finish_reshape(conf->mddev);
4460 	smp_wmb();
4461 	conf->reshape_progress = MaxSector;
4462 	conf->reshape_safe = MaxSector;
4463 	spin_unlock_irq(&conf->device_lock);
4464 
4465 	/* read-ahead size must cover two whole stripes, which is
4466 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4467 	 */
4468 	if (conf->mddev->queue) {
4469 		int stripe = conf->geo.raid_disks *
4470 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4471 		stripe /= conf->geo.near_copies;
4472 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4473 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4474 	}
4475 	conf->fullsync = 0;
4476 }
4477 
4478 static int handle_reshape_read_error(struct mddev *mddev,
4479 				     struct r10bio *r10_bio)
4480 {
4481 	/* Use sync reads to get the blocks from somewhere else */
4482 	int sectors = r10_bio->sectors;
4483 	struct r10conf *conf = mddev->private;
4484 	struct {
4485 		struct r10bio r10_bio;
4486 		struct r10dev devs[conf->copies];
4487 	} on_stack;
4488 	struct r10bio *r10b = &on_stack.r10_bio;
4489 	int slot = 0;
4490 	int idx = 0;
4491 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4492 
4493 	r10b->sector = r10_bio->sector;
4494 	__raid10_find_phys(&conf->prev, r10b);
4495 
4496 	while (sectors) {
4497 		int s = sectors;
4498 		int success = 0;
4499 		int first_slot = slot;
4500 
4501 		if (s > (PAGE_SIZE >> 9))
4502 			s = PAGE_SIZE >> 9;
4503 
4504 		while (!success) {
4505 			int d = r10b->devs[slot].devnum;
4506 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4507 			sector_t addr;
4508 			if (rdev == NULL ||
4509 			    test_bit(Faulty, &rdev->flags) ||
4510 			    !test_bit(In_sync, &rdev->flags))
4511 				goto failed;
4512 
4513 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4514 			success = sync_page_io(rdev,
4515 					       addr,
4516 					       s << 9,
4517 					       bvec[idx].bv_page,
4518 					       READ, false);
4519 			if (success)
4520 				break;
4521 		failed:
4522 			slot++;
4523 			if (slot >= conf->copies)
4524 				slot = 0;
4525 			if (slot == first_slot)
4526 				break;
4527 		}
4528 		if (!success) {
4529 			/* couldn't read this block, must give up */
4530 			set_bit(MD_RECOVERY_INTR,
4531 				&mddev->recovery);
4532 			return -EIO;
4533 		}
4534 		sectors -= s;
4535 		idx++;
4536 	}
4537 	return 0;
4538 }
4539 
4540 static void end_reshape_write(struct bio *bio)
4541 {
4542 	struct r10bio *r10_bio = bio->bi_private;
4543 	struct mddev *mddev = r10_bio->mddev;
4544 	struct r10conf *conf = mddev->private;
4545 	int d;
4546 	int slot;
4547 	int repl;
4548 	struct md_rdev *rdev = NULL;
4549 
4550 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4551 	if (repl)
4552 		rdev = conf->mirrors[d].replacement;
4553 	if (!rdev) {
4554 		smp_mb();
4555 		rdev = conf->mirrors[d].rdev;
4556 	}
4557 
4558 	if (bio->bi_error) {
4559 		/* FIXME should record badblock */
4560 		md_error(mddev, rdev);
4561 	}
4562 
4563 	rdev_dec_pending(rdev, mddev);
4564 	end_reshape_request(r10_bio);
4565 }
4566 
4567 static void end_reshape_request(struct r10bio *r10_bio)
4568 {
4569 	if (!atomic_dec_and_test(&r10_bio->remaining))
4570 		return;
4571 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4572 	bio_put(r10_bio->master_bio);
4573 	put_buf(r10_bio);
4574 }
4575 
4576 static void raid10_finish_reshape(struct mddev *mddev)
4577 {
4578 	struct r10conf *conf = mddev->private;
4579 
4580 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4581 		return;
4582 
4583 	if (mddev->delta_disks > 0) {
4584 		sector_t size = raid10_size(mddev, 0, 0);
4585 		md_set_array_sectors(mddev, size);
4586 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4587 			mddev->recovery_cp = mddev->resync_max_sectors;
4588 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4589 		}
4590 		mddev->resync_max_sectors = size;
4591 		set_capacity(mddev->gendisk, mddev->array_sectors);
4592 		revalidate_disk(mddev->gendisk);
4593 	} else {
4594 		int d;
4595 		for (d = conf->geo.raid_disks ;
4596 		     d < conf->geo.raid_disks - mddev->delta_disks;
4597 		     d++) {
4598 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4599 			if (rdev)
4600 				clear_bit(In_sync, &rdev->flags);
4601 			rdev = conf->mirrors[d].replacement;
4602 			if (rdev)
4603 				clear_bit(In_sync, &rdev->flags);
4604 		}
4605 	}
4606 	mddev->layout = mddev->new_layout;
4607 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4608 	mddev->reshape_position = MaxSector;
4609 	mddev->delta_disks = 0;
4610 	mddev->reshape_backwards = 0;
4611 }
4612 
4613 static struct md_personality raid10_personality =
4614 {
4615 	.name		= "raid10",
4616 	.level		= 10,
4617 	.owner		= THIS_MODULE,
4618 	.make_request	= make_request,
4619 	.run		= run,
4620 	.free		= raid10_free,
4621 	.status		= status,
4622 	.error_handler	= error,
4623 	.hot_add_disk	= raid10_add_disk,
4624 	.hot_remove_disk= raid10_remove_disk,
4625 	.spare_active	= raid10_spare_active,
4626 	.sync_request	= sync_request,
4627 	.quiesce	= raid10_quiesce,
4628 	.size		= raid10_size,
4629 	.resize		= raid10_resize,
4630 	.takeover	= raid10_takeover,
4631 	.check_reshape	= raid10_check_reshape,
4632 	.start_reshape	= raid10_start_reshape,
4633 	.finish_reshape	= raid10_finish_reshape,
4634 	.congested	= raid10_congested,
4635 };
4636 
4637 static int __init raid_init(void)
4638 {
4639 	return register_md_personality(&raid10_personality);
4640 }
4641 
4642 static void raid_exit(void)
4643 {
4644 	unregister_md_personality(&raid10_personality);
4645 }
4646 
4647 module_init(raid_init);
4648 module_exit(raid_exit);
4649 MODULE_LICENSE("GPL");
4650 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4651 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4652 MODULE_ALIAS("md-raid10");
4653 MODULE_ALIAS("md-level-10");
4654 
4655 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4656