xref: /linux/drivers/md/raid10.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/raid/raid10.h>
22 
23 /*
24  * RAID10 provides a combination of RAID0 and RAID1 functionality.
25  * The layout of data is defined by
26  *    chunk_size
27  *    raid_disks
28  *    near_copies (stored in low byte of layout)
29  *    far_copies (stored in second byte of layout)
30  *
31  * The data to be stored is divided into chunks using chunksize.
32  * Each device is divided into far_copies sections.
33  * In each section, chunks are laid out in a style similar to raid0, but
34  * near_copies copies of each chunk is stored (each on a different drive).
35  * The starting device for each section is offset near_copies from the starting
36  * device of the previous section.
37  * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
38  * drive.
39  * near_copies and far_copies must be at least one, and their product is at most
40  * raid_disks.
41  */
42 
43 /*
44  * Number of guaranteed r10bios in case of extreme VM load:
45  */
46 #define	NR_RAID10_BIOS 256
47 
48 static void unplug_slaves(mddev_t *mddev);
49 
50 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
51 {
52 	conf_t *conf = data;
53 	r10bio_t *r10_bio;
54 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
55 
56 	/* allocate a r10bio with room for raid_disks entries in the bios array */
57 	r10_bio = kmalloc(size, gfp_flags);
58 	if (r10_bio)
59 		memset(r10_bio, 0, size);
60 	else
61 		unplug_slaves(conf->mddev);
62 
63 	return r10_bio;
64 }
65 
66 static void r10bio_pool_free(void *r10_bio, void *data)
67 {
68 	kfree(r10_bio);
69 }
70 
71 #define RESYNC_BLOCK_SIZE (64*1024)
72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75 #define RESYNC_WINDOW (2048*1024)
76 
77 /*
78  * When performing a resync, we need to read and compare, so
79  * we need as many pages are there are copies.
80  * When performing a recovery, we need 2 bios, one for read,
81  * one for write (we recover only one drive per r10buf)
82  *
83  */
84 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
85 {
86 	conf_t *conf = data;
87 	struct page *page;
88 	r10bio_t *r10_bio;
89 	struct bio *bio;
90 	int i, j;
91 	int nalloc;
92 
93 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
94 	if (!r10_bio) {
95 		unplug_slaves(conf->mddev);
96 		return NULL;
97 	}
98 
99 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
100 		nalloc = conf->copies; /* resync */
101 	else
102 		nalloc = 2; /* recovery */
103 
104 	/*
105 	 * Allocate bios.
106 	 */
107 	for (j = nalloc ; j-- ; ) {
108 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
109 		if (!bio)
110 			goto out_free_bio;
111 		r10_bio->devs[j].bio = bio;
112 	}
113 	/*
114 	 * Allocate RESYNC_PAGES data pages and attach them
115 	 * where needed.
116 	 */
117 	for (j = 0 ; j < nalloc; j++) {
118 		bio = r10_bio->devs[j].bio;
119 		for (i = 0; i < RESYNC_PAGES; i++) {
120 			page = alloc_page(gfp_flags);
121 			if (unlikely(!page))
122 				goto out_free_pages;
123 
124 			bio->bi_io_vec[i].bv_page = page;
125 		}
126 	}
127 
128 	return r10_bio;
129 
130 out_free_pages:
131 	for ( ; i > 0 ; i--)
132 		__free_page(bio->bi_io_vec[i-1].bv_page);
133 	while (j--)
134 		for (i = 0; i < RESYNC_PAGES ; i++)
135 			__free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
136 	j = -1;
137 out_free_bio:
138 	while ( ++j < nalloc )
139 		bio_put(r10_bio->devs[j].bio);
140 	r10bio_pool_free(r10_bio, conf);
141 	return NULL;
142 }
143 
144 static void r10buf_pool_free(void *__r10_bio, void *data)
145 {
146 	int i;
147 	conf_t *conf = data;
148 	r10bio_t *r10bio = __r10_bio;
149 	int j;
150 
151 	for (j=0; j < conf->copies; j++) {
152 		struct bio *bio = r10bio->devs[j].bio;
153 		if (bio) {
154 			for (i = 0; i < RESYNC_PAGES; i++) {
155 				__free_page(bio->bi_io_vec[i].bv_page);
156 				bio->bi_io_vec[i].bv_page = NULL;
157 			}
158 			bio_put(bio);
159 		}
160 	}
161 	r10bio_pool_free(r10bio, conf);
162 }
163 
164 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
165 {
166 	int i;
167 
168 	for (i = 0; i < conf->copies; i++) {
169 		struct bio **bio = & r10_bio->devs[i].bio;
170 		if (*bio)
171 			bio_put(*bio);
172 		*bio = NULL;
173 	}
174 }
175 
176 static inline void free_r10bio(r10bio_t *r10_bio)
177 {
178 	unsigned long flags;
179 
180 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
181 
182 	/*
183 	 * Wake up any possible resync thread that waits for the device
184 	 * to go idle.
185 	 */
186 	spin_lock_irqsave(&conf->resync_lock, flags);
187 	if (!--conf->nr_pending) {
188 		wake_up(&conf->wait_idle);
189 		wake_up(&conf->wait_resume);
190 	}
191 	spin_unlock_irqrestore(&conf->resync_lock, flags);
192 
193 	put_all_bios(conf, r10_bio);
194 	mempool_free(r10_bio, conf->r10bio_pool);
195 }
196 
197 static inline void put_buf(r10bio_t *r10_bio)
198 {
199 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
200 	unsigned long flags;
201 
202 	mempool_free(r10_bio, conf->r10buf_pool);
203 
204 	spin_lock_irqsave(&conf->resync_lock, flags);
205 	if (!conf->barrier)
206 		BUG();
207 	--conf->barrier;
208 	wake_up(&conf->wait_resume);
209 	wake_up(&conf->wait_idle);
210 
211 	if (!--conf->nr_pending) {
212 		wake_up(&conf->wait_idle);
213 		wake_up(&conf->wait_resume);
214 	}
215 	spin_unlock_irqrestore(&conf->resync_lock, flags);
216 }
217 
218 static void reschedule_retry(r10bio_t *r10_bio)
219 {
220 	unsigned long flags;
221 	mddev_t *mddev = r10_bio->mddev;
222 	conf_t *conf = mddev_to_conf(mddev);
223 
224 	spin_lock_irqsave(&conf->device_lock, flags);
225 	list_add(&r10_bio->retry_list, &conf->retry_list);
226 	spin_unlock_irqrestore(&conf->device_lock, flags);
227 
228 	md_wakeup_thread(mddev->thread);
229 }
230 
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238 	struct bio *bio = r10_bio->master_bio;
239 
240 	bio_endio(bio, bio->bi_size,
241 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 	free_r10bio(r10_bio);
243 }
244 
245 /*
246  * Update disk head position estimator based on IRQ completion info.
247  */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
251 
252 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 		r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255 
256 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
257 {
258 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
260 	int slot, dev;
261 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
262 
263 	if (bio->bi_size)
264 		return 1;
265 
266 	slot = r10_bio->read_slot;
267 	dev = r10_bio->devs[slot].devnum;
268 	/*
269 	 * this branch is our 'one mirror IO has finished' event handler:
270 	 */
271 	if (!uptodate)
272 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
273 	else
274 		/*
275 		 * Set R10BIO_Uptodate in our master bio, so that
276 		 * we will return a good error code to the higher
277 		 * levels even if IO on some other mirrored buffer fails.
278 		 *
279 		 * The 'master' represents the composite IO operation to
280 		 * user-side. So if something waits for IO, then it will
281 		 * wait for the 'master' bio.
282 		 */
283 		set_bit(R10BIO_Uptodate, &r10_bio->state);
284 
285 	update_head_pos(slot, r10_bio);
286 
287 	/*
288 	 * we have only one bio on the read side
289 	 */
290 	if (uptodate)
291 		raid_end_bio_io(r10_bio);
292 	else {
293 		/*
294 		 * oops, read error:
295 		 */
296 		char b[BDEVNAME_SIZE];
297 		if (printk_ratelimit())
298 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
299 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
300 		reschedule_retry(r10_bio);
301 	}
302 
303 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
304 	return 0;
305 }
306 
307 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
308 {
309 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
311 	int slot, dev;
312 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
313 
314 	if (bio->bi_size)
315 		return 1;
316 
317 	for (slot = 0; slot < conf->copies; slot++)
318 		if (r10_bio->devs[slot].bio == bio)
319 			break;
320 	dev = r10_bio->devs[slot].devnum;
321 
322 	/*
323 	 * this branch is our 'one mirror IO has finished' event handler:
324 	 */
325 	if (!uptodate)
326 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
327 	else
328 		/*
329 		 * Set R10BIO_Uptodate in our master bio, so that
330 		 * we will return a good error code for to the higher
331 		 * levels even if IO on some other mirrored buffer fails.
332 		 *
333 		 * The 'master' represents the composite IO operation to
334 		 * user-side. So if something waits for IO, then it will
335 		 * wait for the 'master' bio.
336 		 */
337 		set_bit(R10BIO_Uptodate, &r10_bio->state);
338 
339 	update_head_pos(slot, r10_bio);
340 
341 	/*
342 	 *
343 	 * Let's see if all mirrored write operations have finished
344 	 * already.
345 	 */
346 	if (atomic_dec_and_test(&r10_bio->remaining)) {
347 		md_write_end(r10_bio->mddev);
348 		raid_end_bio_io(r10_bio);
349 	}
350 
351 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
352 	return 0;
353 }
354 
355 
356 /*
357  * RAID10 layout manager
358  * Aswell as the chunksize and raid_disks count, there are two
359  * parameters: near_copies and far_copies.
360  * near_copies * far_copies must be <= raid_disks.
361  * Normally one of these will be 1.
362  * If both are 1, we get raid0.
363  * If near_copies == raid_disks, we get raid1.
364  *
365  * Chunks are layed out in raid0 style with near_copies copies of the
366  * first chunk, followed by near_copies copies of the next chunk and
367  * so on.
368  * If far_copies > 1, then after 1/far_copies of the array has been assigned
369  * as described above, we start again with a device offset of near_copies.
370  * So we effectively have another copy of the whole array further down all
371  * the drives, but with blocks on different drives.
372  * With this layout, and block is never stored twice on the one device.
373  *
374  * raid10_find_phys finds the sector offset of a given virtual sector
375  * on each device that it is on. If a block isn't on a device,
376  * that entry in the array is set to MaxSector.
377  *
378  * raid10_find_virt does the reverse mapping, from a device and a
379  * sector offset to a virtual address
380  */
381 
382 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
383 {
384 	int n,f;
385 	sector_t sector;
386 	sector_t chunk;
387 	sector_t stripe;
388 	int dev;
389 
390 	int slot = 0;
391 
392 	/* now calculate first sector/dev */
393 	chunk = r10bio->sector >> conf->chunk_shift;
394 	sector = r10bio->sector & conf->chunk_mask;
395 
396 	chunk *= conf->near_copies;
397 	stripe = chunk;
398 	dev = sector_div(stripe, conf->raid_disks);
399 
400 	sector += stripe << conf->chunk_shift;
401 
402 	/* and calculate all the others */
403 	for (n=0; n < conf->near_copies; n++) {
404 		int d = dev;
405 		sector_t s = sector;
406 		r10bio->devs[slot].addr = sector;
407 		r10bio->devs[slot].devnum = d;
408 		slot++;
409 
410 		for (f = 1; f < conf->far_copies; f++) {
411 			d += conf->near_copies;
412 			if (d >= conf->raid_disks)
413 				d -= conf->raid_disks;
414 			s += conf->stride;
415 			r10bio->devs[slot].devnum = d;
416 			r10bio->devs[slot].addr = s;
417 			slot++;
418 		}
419 		dev++;
420 		if (dev >= conf->raid_disks) {
421 			dev = 0;
422 			sector += (conf->chunk_mask + 1);
423 		}
424 	}
425 	BUG_ON(slot != conf->copies);
426 }
427 
428 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
429 {
430 	sector_t offset, chunk, vchunk;
431 
432 	while (sector > conf->stride) {
433 		sector -= conf->stride;
434 		if (dev < conf->near_copies)
435 			dev += conf->raid_disks - conf->near_copies;
436 		else
437 			dev -= conf->near_copies;
438 	}
439 
440 	offset = sector & conf->chunk_mask;
441 	chunk = sector >> conf->chunk_shift;
442 	vchunk = chunk * conf->raid_disks + dev;
443 	sector_div(vchunk, conf->near_copies);
444 	return (vchunk << conf->chunk_shift) + offset;
445 }
446 
447 /**
448  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449  *	@q: request queue
450  *	@bio: the buffer head that's been built up so far
451  *	@biovec: the request that could be merged to it.
452  *
453  *	Return amount of bytes we can accept at this offset
454  *      If near_copies == raid_disk, there are no striping issues,
455  *      but in that case, the function isn't called at all.
456  */
457 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
458 				struct bio_vec *bio_vec)
459 {
460 	mddev_t *mddev = q->queuedata;
461 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
462 	int max;
463 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
464 	unsigned int bio_sectors = bio->bi_size >> 9;
465 
466 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
467 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
468 	if (max <= bio_vec->bv_len && bio_sectors == 0)
469 		return bio_vec->bv_len;
470 	else
471 		return max;
472 }
473 
474 /*
475  * This routine returns the disk from which the requested read should
476  * be done. There is a per-array 'next expected sequential IO' sector
477  * number - if this matches on the next IO then we use the last disk.
478  * There is also a per-disk 'last know head position' sector that is
479  * maintained from IRQ contexts, both the normal and the resync IO
480  * completion handlers update this position correctly. If there is no
481  * perfect sequential match then we pick the disk whose head is closest.
482  *
483  * If there are 2 mirrors in the same 2 devices, performance degrades
484  * because position is mirror, not device based.
485  *
486  * The rdev for the device selected will have nr_pending incremented.
487  */
488 
489 /*
490  * FIXME: possibly should rethink readbalancing and do it differently
491  * depending on near_copies / far_copies geometry.
492  */
493 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
494 {
495 	const unsigned long this_sector = r10_bio->sector;
496 	int disk, slot, nslot;
497 	const int sectors = r10_bio->sectors;
498 	sector_t new_distance, current_distance;
499 	mdk_rdev_t *rdev;
500 
501 	raid10_find_phys(conf, r10_bio);
502 	rcu_read_lock();
503 	/*
504 	 * Check if we can balance. We can balance on the whole
505 	 * device if no resync is going on, or below the resync window.
506 	 * We take the first readable disk when above the resync window.
507 	 */
508 	if (conf->mddev->recovery_cp < MaxSector
509 	    && (this_sector + sectors >= conf->next_resync)) {
510 		/* make sure that disk is operational */
511 		slot = 0;
512 		disk = r10_bio->devs[slot].devnum;
513 
514 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
515 		       !test_bit(In_sync, &rdev->flags)) {
516 			slot++;
517 			if (slot == conf->copies) {
518 				slot = 0;
519 				disk = -1;
520 				break;
521 			}
522 			disk = r10_bio->devs[slot].devnum;
523 		}
524 		goto rb_out;
525 	}
526 
527 
528 	/* make sure the disk is operational */
529 	slot = 0;
530 	disk = r10_bio->devs[slot].devnum;
531 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
532 	       !test_bit(In_sync, &rdev->flags)) {
533 		slot ++;
534 		if (slot == conf->copies) {
535 			disk = -1;
536 			goto rb_out;
537 		}
538 		disk = r10_bio->devs[slot].devnum;
539 	}
540 
541 
542 	current_distance = abs(r10_bio->devs[slot].addr -
543 			       conf->mirrors[disk].head_position);
544 
545 	/* Find the disk whose head is closest */
546 
547 	for (nslot = slot; nslot < conf->copies; nslot++) {
548 		int ndisk = r10_bio->devs[nslot].devnum;
549 
550 
551 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
552 		    !test_bit(In_sync, &rdev->flags))
553 			continue;
554 
555 		/* This optimisation is debatable, and completely destroys
556 		 * sequential read speed for 'far copies' arrays.  So only
557 		 * keep it for 'near' arrays, and review those later.
558 		 */
559 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
560 			disk = ndisk;
561 			slot = nslot;
562 			break;
563 		}
564 		new_distance = abs(r10_bio->devs[nslot].addr -
565 				   conf->mirrors[ndisk].head_position);
566 		if (new_distance < current_distance) {
567 			current_distance = new_distance;
568 			disk = ndisk;
569 			slot = nslot;
570 		}
571 	}
572 
573 rb_out:
574 	r10_bio->read_slot = slot;
575 /*	conf->next_seq_sect = this_sector + sectors;*/
576 
577 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
578 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
579 	rcu_read_unlock();
580 
581 	return disk;
582 }
583 
584 static void unplug_slaves(mddev_t *mddev)
585 {
586 	conf_t *conf = mddev_to_conf(mddev);
587 	int i;
588 
589 	rcu_read_lock();
590 	for (i=0; i<mddev->raid_disks; i++) {
591 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
592 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
593 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
594 
595 			atomic_inc(&rdev->nr_pending);
596 			rcu_read_unlock();
597 
598 			if (r_queue->unplug_fn)
599 				r_queue->unplug_fn(r_queue);
600 
601 			rdev_dec_pending(rdev, mddev);
602 			rcu_read_lock();
603 		}
604 	}
605 	rcu_read_unlock();
606 }
607 
608 static void raid10_unplug(request_queue_t *q)
609 {
610 	unplug_slaves(q->queuedata);
611 }
612 
613 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
614 			     sector_t *error_sector)
615 {
616 	mddev_t *mddev = q->queuedata;
617 	conf_t *conf = mddev_to_conf(mddev);
618 	int i, ret = 0;
619 
620 	rcu_read_lock();
621 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
622 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
623 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
624 			struct block_device *bdev = rdev->bdev;
625 			request_queue_t *r_queue = bdev_get_queue(bdev);
626 
627 			if (!r_queue->issue_flush_fn)
628 				ret = -EOPNOTSUPP;
629 			else {
630 				atomic_inc(&rdev->nr_pending);
631 				rcu_read_unlock();
632 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
633 							      error_sector);
634 				rdev_dec_pending(rdev, mddev);
635 				rcu_read_lock();
636 			}
637 		}
638 	}
639 	rcu_read_unlock();
640 	return ret;
641 }
642 
643 /*
644  * Throttle resync depth, so that we can both get proper overlapping of
645  * requests, but are still able to handle normal requests quickly.
646  */
647 #define RESYNC_DEPTH 32
648 
649 static void device_barrier(conf_t *conf, sector_t sect)
650 {
651 	spin_lock_irq(&conf->resync_lock);
652 	wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
653 			    conf->resync_lock, unplug_slaves(conf->mddev));
654 
655 	if (!conf->barrier++) {
656 		wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
657 				    conf->resync_lock, unplug_slaves(conf->mddev));
658 		if (conf->nr_pending)
659 			BUG();
660 	}
661 	wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
662 			    conf->resync_lock, unplug_slaves(conf->mddev));
663 	conf->next_resync = sect;
664 	spin_unlock_irq(&conf->resync_lock);
665 }
666 
667 static int make_request(request_queue_t *q, struct bio * bio)
668 {
669 	mddev_t *mddev = q->queuedata;
670 	conf_t *conf = mddev_to_conf(mddev);
671 	mirror_info_t *mirror;
672 	r10bio_t *r10_bio;
673 	struct bio *read_bio;
674 	int i;
675 	int chunk_sects = conf->chunk_mask + 1;
676 	const int rw = bio_data_dir(bio);
677 
678 	if (unlikely(bio_barrier(bio))) {
679 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
680 		return 0;
681 	}
682 
683 	/* If this request crosses a chunk boundary, we need to
684 	 * split it.  This will only happen for 1 PAGE (or less) requests.
685 	 */
686 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
687 		      > chunk_sects &&
688 		    conf->near_copies < conf->raid_disks)) {
689 		struct bio_pair *bp;
690 		/* Sanity check -- queue functions should prevent this happening */
691 		if (bio->bi_vcnt != 1 ||
692 		    bio->bi_idx != 0)
693 			goto bad_map;
694 		/* This is a one page bio that upper layers
695 		 * refuse to split for us, so we need to split it.
696 		 */
697 		bp = bio_split(bio, bio_split_pool,
698 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
699 		if (make_request(q, &bp->bio1))
700 			generic_make_request(&bp->bio1);
701 		if (make_request(q, &bp->bio2))
702 			generic_make_request(&bp->bio2);
703 
704 		bio_pair_release(bp);
705 		return 0;
706 	bad_map:
707 		printk("raid10_make_request bug: can't convert block across chunks"
708 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
709 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
710 
711 		bio_io_error(bio, bio->bi_size);
712 		return 0;
713 	}
714 
715 	md_write_start(mddev, bio);
716 
717 	/*
718 	 * Register the new request and wait if the reconstruction
719 	 * thread has put up a bar for new requests.
720 	 * Continue immediately if no resync is active currently.
721 	 */
722 	spin_lock_irq(&conf->resync_lock);
723 	wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
724 	conf->nr_pending++;
725 	spin_unlock_irq(&conf->resync_lock);
726 
727 	disk_stat_inc(mddev->gendisk, ios[rw]);
728 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
729 
730 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
731 
732 	r10_bio->master_bio = bio;
733 	r10_bio->sectors = bio->bi_size >> 9;
734 
735 	r10_bio->mddev = mddev;
736 	r10_bio->sector = bio->bi_sector;
737 
738 	if (rw == READ) {
739 		/*
740 		 * read balancing logic:
741 		 */
742 		int disk = read_balance(conf, r10_bio);
743 		int slot = r10_bio->read_slot;
744 		if (disk < 0) {
745 			raid_end_bio_io(r10_bio);
746 			return 0;
747 		}
748 		mirror = conf->mirrors + disk;
749 
750 		read_bio = bio_clone(bio, GFP_NOIO);
751 
752 		r10_bio->devs[slot].bio = read_bio;
753 
754 		read_bio->bi_sector = r10_bio->devs[slot].addr +
755 			mirror->rdev->data_offset;
756 		read_bio->bi_bdev = mirror->rdev->bdev;
757 		read_bio->bi_end_io = raid10_end_read_request;
758 		read_bio->bi_rw = READ;
759 		read_bio->bi_private = r10_bio;
760 
761 		generic_make_request(read_bio);
762 		return 0;
763 	}
764 
765 	/*
766 	 * WRITE:
767 	 */
768 	/* first select target devices under spinlock and
769 	 * inc refcount on their rdev.  Record them by setting
770 	 * bios[x] to bio
771 	 */
772 	raid10_find_phys(conf, r10_bio);
773 	rcu_read_lock();
774 	for (i = 0;  i < conf->copies; i++) {
775 		int d = r10_bio->devs[i].devnum;
776 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
777 		if (rdev &&
778 		    !test_bit(Faulty, &rdev->flags)) {
779 			atomic_inc(&rdev->nr_pending);
780 			r10_bio->devs[i].bio = bio;
781 		} else
782 			r10_bio->devs[i].bio = NULL;
783 	}
784 	rcu_read_unlock();
785 
786 	atomic_set(&r10_bio->remaining, 1);
787 
788 	for (i = 0; i < conf->copies; i++) {
789 		struct bio *mbio;
790 		int d = r10_bio->devs[i].devnum;
791 		if (!r10_bio->devs[i].bio)
792 			continue;
793 
794 		mbio = bio_clone(bio, GFP_NOIO);
795 		r10_bio->devs[i].bio = mbio;
796 
797 		mbio->bi_sector	= r10_bio->devs[i].addr+
798 			conf->mirrors[d].rdev->data_offset;
799 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
800 		mbio->bi_end_io	= raid10_end_write_request;
801 		mbio->bi_rw = WRITE;
802 		mbio->bi_private = r10_bio;
803 
804 		atomic_inc(&r10_bio->remaining);
805 		generic_make_request(mbio);
806 	}
807 
808 	if (atomic_dec_and_test(&r10_bio->remaining)) {
809 		md_write_end(mddev);
810 		raid_end_bio_io(r10_bio);
811 	}
812 
813 	return 0;
814 }
815 
816 static void status(struct seq_file *seq, mddev_t *mddev)
817 {
818 	conf_t *conf = mddev_to_conf(mddev);
819 	int i;
820 
821 	if (conf->near_copies < conf->raid_disks)
822 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
823 	if (conf->near_copies > 1)
824 		seq_printf(seq, " %d near-copies", conf->near_copies);
825 	if (conf->far_copies > 1)
826 		seq_printf(seq, " %d far-copies", conf->far_copies);
827 
828 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
829 						conf->working_disks);
830 	for (i = 0; i < conf->raid_disks; i++)
831 		seq_printf(seq, "%s",
832 			      conf->mirrors[i].rdev &&
833 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
834 	seq_printf(seq, "]");
835 }
836 
837 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
838 {
839 	char b[BDEVNAME_SIZE];
840 	conf_t *conf = mddev_to_conf(mddev);
841 
842 	/*
843 	 * If it is not operational, then we have already marked it as dead
844 	 * else if it is the last working disks, ignore the error, let the
845 	 * next level up know.
846 	 * else mark the drive as failed
847 	 */
848 	if (test_bit(In_sync, &rdev->flags)
849 	    && conf->working_disks == 1)
850 		/*
851 		 * Don't fail the drive, just return an IO error.
852 		 * The test should really be more sophisticated than
853 		 * "working_disks == 1", but it isn't critical, and
854 		 * can wait until we do more sophisticated "is the drive
855 		 * really dead" tests...
856 		 */
857 		return;
858 	if (test_bit(In_sync, &rdev->flags)) {
859 		mddev->degraded++;
860 		conf->working_disks--;
861 		/*
862 		 * if recovery is running, make sure it aborts.
863 		 */
864 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
865 	}
866 	clear_bit(In_sync, &rdev->flags);
867 	set_bit(Faulty, &rdev->flags);
868 	mddev->sb_dirty = 1;
869 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
870 		"	Operation continuing on %d devices\n",
871 		bdevname(rdev->bdev,b), conf->working_disks);
872 }
873 
874 static void print_conf(conf_t *conf)
875 {
876 	int i;
877 	mirror_info_t *tmp;
878 
879 	printk("RAID10 conf printout:\n");
880 	if (!conf) {
881 		printk("(!conf)\n");
882 		return;
883 	}
884 	printk(" --- wd:%d rd:%d\n", conf->working_disks,
885 		conf->raid_disks);
886 
887 	for (i = 0; i < conf->raid_disks; i++) {
888 		char b[BDEVNAME_SIZE];
889 		tmp = conf->mirrors + i;
890 		if (tmp->rdev)
891 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
892 				i, !test_bit(In_sync, &tmp->rdev->flags),
893 			        !test_bit(Faulty, &tmp->rdev->flags),
894 				bdevname(tmp->rdev->bdev,b));
895 	}
896 }
897 
898 static void close_sync(conf_t *conf)
899 {
900 	spin_lock_irq(&conf->resync_lock);
901 	wait_event_lock_irq(conf->wait_resume, !conf->barrier,
902 			    conf->resync_lock, 	unplug_slaves(conf->mddev));
903 	spin_unlock_irq(&conf->resync_lock);
904 
905 	if (conf->barrier) BUG();
906 	if (waitqueue_active(&conf->wait_idle)) BUG();
907 
908 	mempool_destroy(conf->r10buf_pool);
909 	conf->r10buf_pool = NULL;
910 }
911 
912 /* check if there are enough drives for
913  * every block to appear on atleast one
914  */
915 static int enough(conf_t *conf)
916 {
917 	int first = 0;
918 
919 	do {
920 		int n = conf->copies;
921 		int cnt = 0;
922 		while (n--) {
923 			if (conf->mirrors[first].rdev)
924 				cnt++;
925 			first = (first+1) % conf->raid_disks;
926 		}
927 		if (cnt == 0)
928 			return 0;
929 	} while (first != 0);
930 	return 1;
931 }
932 
933 static int raid10_spare_active(mddev_t *mddev)
934 {
935 	int i;
936 	conf_t *conf = mddev->private;
937 	mirror_info_t *tmp;
938 
939 	/*
940 	 * Find all non-in_sync disks within the RAID10 configuration
941 	 * and mark them in_sync
942 	 */
943 	for (i = 0; i < conf->raid_disks; i++) {
944 		tmp = conf->mirrors + i;
945 		if (tmp->rdev
946 		    && !test_bit(Faulty, &tmp->rdev->flags)
947 		    && !test_bit(In_sync, &tmp->rdev->flags)) {
948 			conf->working_disks++;
949 			mddev->degraded--;
950 			set_bit(In_sync, &tmp->rdev->flags);
951 		}
952 	}
953 
954 	print_conf(conf);
955 	return 0;
956 }
957 
958 
959 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
960 {
961 	conf_t *conf = mddev->private;
962 	int found = 0;
963 	int mirror;
964 	mirror_info_t *p;
965 
966 	if (mddev->recovery_cp < MaxSector)
967 		/* only hot-add to in-sync arrays, as recovery is
968 		 * very different from resync
969 		 */
970 		return 0;
971 	if (!enough(conf))
972 		return 0;
973 
974 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
975 		if ( !(p=conf->mirrors+mirror)->rdev) {
976 
977 			blk_queue_stack_limits(mddev->queue,
978 					       rdev->bdev->bd_disk->queue);
979 			/* as we don't honour merge_bvec_fn, we must never risk
980 			 * violating it, so limit ->max_sector to one PAGE, as
981 			 * a one page request is never in violation.
982 			 */
983 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
984 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
985 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
986 
987 			p->head_position = 0;
988 			rdev->raid_disk = mirror;
989 			found = 1;
990 			rcu_assign_pointer(p->rdev, rdev);
991 			break;
992 		}
993 
994 	print_conf(conf);
995 	return found;
996 }
997 
998 static int raid10_remove_disk(mddev_t *mddev, int number)
999 {
1000 	conf_t *conf = mddev->private;
1001 	int err = 0;
1002 	mdk_rdev_t *rdev;
1003 	mirror_info_t *p = conf->mirrors+ number;
1004 
1005 	print_conf(conf);
1006 	rdev = p->rdev;
1007 	if (rdev) {
1008 		if (test_bit(In_sync, &rdev->flags) ||
1009 		    atomic_read(&rdev->nr_pending)) {
1010 			err = -EBUSY;
1011 			goto abort;
1012 		}
1013 		p->rdev = NULL;
1014 		synchronize_rcu();
1015 		if (atomic_read(&rdev->nr_pending)) {
1016 			/* lost the race, try later */
1017 			err = -EBUSY;
1018 			p->rdev = rdev;
1019 		}
1020 	}
1021 abort:
1022 
1023 	print_conf(conf);
1024 	return err;
1025 }
1026 
1027 
1028 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1029 {
1030 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1031 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1032 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1033 	int i,d;
1034 
1035 	if (bio->bi_size)
1036 		return 1;
1037 
1038 	for (i=0; i<conf->copies; i++)
1039 		if (r10_bio->devs[i].bio == bio)
1040 			break;
1041 	if (i == conf->copies)
1042 		BUG();
1043 	update_head_pos(i, r10_bio);
1044 	d = r10_bio->devs[i].devnum;
1045 	if (!uptodate)
1046 		md_error(r10_bio->mddev,
1047 			 conf->mirrors[d].rdev);
1048 
1049 	/* for reconstruct, we always reschedule after a read.
1050 	 * for resync, only after all reads
1051 	 */
1052 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1053 	    atomic_dec_and_test(&r10_bio->remaining)) {
1054 		/* we have read all the blocks,
1055 		 * do the comparison in process context in raid10d
1056 		 */
1057 		reschedule_retry(r10_bio);
1058 	}
1059 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1060 	return 0;
1061 }
1062 
1063 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1064 {
1065 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1066 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1067 	mddev_t *mddev = r10_bio->mddev;
1068 	conf_t *conf = mddev_to_conf(mddev);
1069 	int i,d;
1070 
1071 	if (bio->bi_size)
1072 		return 1;
1073 
1074 	for (i = 0; i < conf->copies; i++)
1075 		if (r10_bio->devs[i].bio == bio)
1076 			break;
1077 	d = r10_bio->devs[i].devnum;
1078 
1079 	if (!uptodate)
1080 		md_error(mddev, conf->mirrors[d].rdev);
1081 	update_head_pos(i, r10_bio);
1082 
1083 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1084 		if (r10_bio->master_bio == NULL) {
1085 			/* the primary of several recovery bios */
1086 			md_done_sync(mddev, r10_bio->sectors, 1);
1087 			put_buf(r10_bio);
1088 			break;
1089 		} else {
1090 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1091 			put_buf(r10_bio);
1092 			r10_bio = r10_bio2;
1093 		}
1094 	}
1095 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Note: sync and recover and handled very differently for raid10
1101  * This code is for resync.
1102  * For resync, we read through virtual addresses and read all blocks.
1103  * If there is any error, we schedule a write.  The lowest numbered
1104  * drive is authoritative.
1105  * However requests come for physical address, so we need to map.
1106  * For every physical address there are raid_disks/copies virtual addresses,
1107  * which is always are least one, but is not necessarly an integer.
1108  * This means that a physical address can span multiple chunks, so we may
1109  * have to submit multiple io requests for a single sync request.
1110  */
1111 /*
1112  * We check if all blocks are in-sync and only write to blocks that
1113  * aren't in sync
1114  */
1115 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1116 {
1117 	conf_t *conf = mddev_to_conf(mddev);
1118 	int i, first;
1119 	struct bio *tbio, *fbio;
1120 
1121 	atomic_set(&r10_bio->remaining, 1);
1122 
1123 	/* find the first device with a block */
1124 	for (i=0; i<conf->copies; i++)
1125 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1126 			break;
1127 
1128 	if (i == conf->copies)
1129 		goto done;
1130 
1131 	first = i;
1132 	fbio = r10_bio->devs[i].bio;
1133 
1134 	/* now find blocks with errors */
1135 	for (i=first+1 ; i < conf->copies ; i++) {
1136 		int vcnt, j, d;
1137 
1138 		if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1139 			continue;
1140 		/* We know that the bi_io_vec layout is the same for
1141 		 * both 'first' and 'i', so we just compare them.
1142 		 * All vec entries are PAGE_SIZE;
1143 		 */
1144 		tbio = r10_bio->devs[i].bio;
1145 		vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1146 		for (j = 0; j < vcnt; j++)
1147 			if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1148 				   page_address(tbio->bi_io_vec[j].bv_page),
1149 				   PAGE_SIZE))
1150 				break;
1151 		if (j == vcnt)
1152 			continue;
1153 		/* Ok, we need to write this bio
1154 		 * First we need to fixup bv_offset, bv_len and
1155 		 * bi_vecs, as the read request might have corrupted these
1156 		 */
1157 		tbio->bi_vcnt = vcnt;
1158 		tbio->bi_size = r10_bio->sectors << 9;
1159 		tbio->bi_idx = 0;
1160 		tbio->bi_phys_segments = 0;
1161 		tbio->bi_hw_segments = 0;
1162 		tbio->bi_hw_front_size = 0;
1163 		tbio->bi_hw_back_size = 0;
1164 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1165 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1166 		tbio->bi_next = NULL;
1167 		tbio->bi_rw = WRITE;
1168 		tbio->bi_private = r10_bio;
1169 		tbio->bi_sector = r10_bio->devs[i].addr;
1170 
1171 		for (j=0; j < vcnt ; j++) {
1172 			tbio->bi_io_vec[j].bv_offset = 0;
1173 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1174 
1175 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1176 			       page_address(fbio->bi_io_vec[j].bv_page),
1177 			       PAGE_SIZE);
1178 		}
1179 		tbio->bi_end_io = end_sync_write;
1180 
1181 		d = r10_bio->devs[i].devnum;
1182 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1183 		atomic_inc(&r10_bio->remaining);
1184 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1185 
1186 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1187 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1188 		generic_make_request(tbio);
1189 	}
1190 
1191 done:
1192 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1193 		md_done_sync(mddev, r10_bio->sectors, 1);
1194 		put_buf(r10_bio);
1195 	}
1196 }
1197 
1198 /*
1199  * Now for the recovery code.
1200  * Recovery happens across physical sectors.
1201  * We recover all non-is_sync drives by finding the virtual address of
1202  * each, and then choose a working drive that also has that virt address.
1203  * There is a separate r10_bio for each non-in_sync drive.
1204  * Only the first two slots are in use. The first for reading,
1205  * The second for writing.
1206  *
1207  */
1208 
1209 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1210 {
1211 	conf_t *conf = mddev_to_conf(mddev);
1212 	int i, d;
1213 	struct bio *bio, *wbio;
1214 
1215 
1216 	/* move the pages across to the second bio
1217 	 * and submit the write request
1218 	 */
1219 	bio = r10_bio->devs[0].bio;
1220 	wbio = r10_bio->devs[1].bio;
1221 	for (i=0; i < wbio->bi_vcnt; i++) {
1222 		struct page *p = bio->bi_io_vec[i].bv_page;
1223 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1224 		wbio->bi_io_vec[i].bv_page = p;
1225 	}
1226 	d = r10_bio->devs[1].devnum;
1227 
1228 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1229 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1230 	generic_make_request(wbio);
1231 }
1232 
1233 
1234 /*
1235  * This is a kernel thread which:
1236  *
1237  *	1.	Retries failed read operations on working mirrors.
1238  *	2.	Updates the raid superblock when problems encounter.
1239  *	3.	Performs writes following reads for array syncronising.
1240  */
1241 
1242 static void raid10d(mddev_t *mddev)
1243 {
1244 	r10bio_t *r10_bio;
1245 	struct bio *bio;
1246 	unsigned long flags;
1247 	conf_t *conf = mddev_to_conf(mddev);
1248 	struct list_head *head = &conf->retry_list;
1249 	int unplug=0;
1250 	mdk_rdev_t *rdev;
1251 
1252 	md_check_recovery(mddev);
1253 
1254 	for (;;) {
1255 		char b[BDEVNAME_SIZE];
1256 		spin_lock_irqsave(&conf->device_lock, flags);
1257 		if (list_empty(head))
1258 			break;
1259 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1260 		list_del(head->prev);
1261 		spin_unlock_irqrestore(&conf->device_lock, flags);
1262 
1263 		mddev = r10_bio->mddev;
1264 		conf = mddev_to_conf(mddev);
1265 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1266 			sync_request_write(mddev, r10_bio);
1267 			unplug = 1;
1268 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1269 			recovery_request_write(mddev, r10_bio);
1270 			unplug = 1;
1271 		} else {
1272 			int mirror;
1273 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1274 			r10_bio->devs[r10_bio->read_slot].bio = NULL;
1275 			bio_put(bio);
1276 			mirror = read_balance(conf, r10_bio);
1277 			if (mirror == -1) {
1278 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1279 				       " read error for block %llu\n",
1280 				       bdevname(bio->bi_bdev,b),
1281 				       (unsigned long long)r10_bio->sector);
1282 				raid_end_bio_io(r10_bio);
1283 			} else {
1284 				rdev = conf->mirrors[mirror].rdev;
1285 				if (printk_ratelimit())
1286 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1287 					       " another mirror\n",
1288 					       bdevname(rdev->bdev,b),
1289 					       (unsigned long long)r10_bio->sector);
1290 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1291 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1292 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1293 					+ rdev->data_offset;
1294 				bio->bi_bdev = rdev->bdev;
1295 				bio->bi_rw = READ;
1296 				bio->bi_private = r10_bio;
1297 				bio->bi_end_io = raid10_end_read_request;
1298 				unplug = 1;
1299 				generic_make_request(bio);
1300 			}
1301 		}
1302 	}
1303 	spin_unlock_irqrestore(&conf->device_lock, flags);
1304 	if (unplug)
1305 		unplug_slaves(mddev);
1306 }
1307 
1308 
1309 static int init_resync(conf_t *conf)
1310 {
1311 	int buffs;
1312 
1313 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1314 	if (conf->r10buf_pool)
1315 		BUG();
1316 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1317 	if (!conf->r10buf_pool)
1318 		return -ENOMEM;
1319 	conf->next_resync = 0;
1320 	return 0;
1321 }
1322 
1323 /*
1324  * perform a "sync" on one "block"
1325  *
1326  * We need to make sure that no normal I/O request - particularly write
1327  * requests - conflict with active sync requests.
1328  *
1329  * This is achieved by tracking pending requests and a 'barrier' concept
1330  * that can be installed to exclude normal IO requests.
1331  *
1332  * Resync and recovery are handled very differently.
1333  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1334  *
1335  * For resync, we iterate over virtual addresses, read all copies,
1336  * and update if there are differences.  If only one copy is live,
1337  * skip it.
1338  * For recovery, we iterate over physical addresses, read a good
1339  * value for each non-in_sync drive, and over-write.
1340  *
1341  * So, for recovery we may have several outstanding complex requests for a
1342  * given address, one for each out-of-sync device.  We model this by allocating
1343  * a number of r10_bio structures, one for each out-of-sync device.
1344  * As we setup these structures, we collect all bio's together into a list
1345  * which we then process collectively to add pages, and then process again
1346  * to pass to generic_make_request.
1347  *
1348  * The r10_bio structures are linked using a borrowed master_bio pointer.
1349  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1350  * has its remaining count decremented to 0, the whole complex operation
1351  * is complete.
1352  *
1353  */
1354 
1355 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1356 {
1357 	conf_t *conf = mddev_to_conf(mddev);
1358 	r10bio_t *r10_bio;
1359 	struct bio *biolist = NULL, *bio;
1360 	sector_t max_sector, nr_sectors;
1361 	int disk;
1362 	int i;
1363 
1364 	sector_t sectors_skipped = 0;
1365 	int chunks_skipped = 0;
1366 
1367 	if (!conf->r10buf_pool)
1368 		if (init_resync(conf))
1369 			return 0;
1370 
1371  skipped:
1372 	max_sector = mddev->size << 1;
1373 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1374 		max_sector = mddev->resync_max_sectors;
1375 	if (sector_nr >= max_sector) {
1376 		close_sync(conf);
1377 		*skipped = 1;
1378 		return sectors_skipped;
1379 	}
1380 	if (chunks_skipped >= conf->raid_disks) {
1381 		/* if there has been nothing to do on any drive,
1382 		 * then there is nothing to do at all..
1383 		 */
1384 		*skipped = 1;
1385 		return (max_sector - sector_nr) + sectors_skipped;
1386 	}
1387 
1388 	/* make sure whole request will fit in a chunk - if chunks
1389 	 * are meaningful
1390 	 */
1391 	if (conf->near_copies < conf->raid_disks &&
1392 	    max_sector > (sector_nr | conf->chunk_mask))
1393 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1394 	/*
1395 	 * If there is non-resync activity waiting for us then
1396 	 * put in a delay to throttle resync.
1397 	 */
1398 	if (!go_faster && waitqueue_active(&conf->wait_resume))
1399 		msleep_interruptible(1000);
1400 	device_barrier(conf, sector_nr + RESYNC_SECTORS);
1401 
1402 	/* Again, very different code for resync and recovery.
1403 	 * Both must result in an r10bio with a list of bios that
1404 	 * have bi_end_io, bi_sector, bi_bdev set,
1405 	 * and bi_private set to the r10bio.
1406 	 * For recovery, we may actually create several r10bios
1407 	 * with 2 bios in each, that correspond to the bios in the main one.
1408 	 * In this case, the subordinate r10bios link back through a
1409 	 * borrowed master_bio pointer, and the counter in the master
1410 	 * includes a ref from each subordinate.
1411 	 */
1412 	/* First, we decide what to do and set ->bi_end_io
1413 	 * To end_sync_read if we want to read, and
1414 	 * end_sync_write if we will want to write.
1415 	 */
1416 
1417 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1418 		/* recovery... the complicated one */
1419 		int i, j, k;
1420 		r10_bio = NULL;
1421 
1422 		for (i=0 ; i<conf->raid_disks; i++)
1423 			if (conf->mirrors[i].rdev &&
1424 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1425 				/* want to reconstruct this device */
1426 				r10bio_t *rb2 = r10_bio;
1427 
1428 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1429 				spin_lock_irq(&conf->resync_lock);
1430 				conf->nr_pending++;
1431 				if (rb2) conf->barrier++;
1432 				spin_unlock_irq(&conf->resync_lock);
1433 				atomic_set(&r10_bio->remaining, 0);
1434 
1435 				r10_bio->master_bio = (struct bio*)rb2;
1436 				if (rb2)
1437 					atomic_inc(&rb2->remaining);
1438 				r10_bio->mddev = mddev;
1439 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1440 				r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
1441 				raid10_find_phys(conf, r10_bio);
1442 				for (j=0; j<conf->copies;j++) {
1443 					int d = r10_bio->devs[j].devnum;
1444 					if (conf->mirrors[d].rdev &&
1445 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1446 						/* This is where we read from */
1447 						bio = r10_bio->devs[0].bio;
1448 						bio->bi_next = biolist;
1449 						biolist = bio;
1450 						bio->bi_private = r10_bio;
1451 						bio->bi_end_io = end_sync_read;
1452 						bio->bi_rw = 0;
1453 						bio->bi_sector = r10_bio->devs[j].addr +
1454 							conf->mirrors[d].rdev->data_offset;
1455 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1456 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1457 						atomic_inc(&r10_bio->remaining);
1458 						/* and we write to 'i' */
1459 
1460 						for (k=0; k<conf->copies; k++)
1461 							if (r10_bio->devs[k].devnum == i)
1462 								break;
1463 						bio = r10_bio->devs[1].bio;
1464 						bio->bi_next = biolist;
1465 						biolist = bio;
1466 						bio->bi_private = r10_bio;
1467 						bio->bi_end_io = end_sync_write;
1468 						bio->bi_rw = 1;
1469 						bio->bi_sector = r10_bio->devs[k].addr +
1470 							conf->mirrors[i].rdev->data_offset;
1471 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1472 
1473 						r10_bio->devs[0].devnum = d;
1474 						r10_bio->devs[1].devnum = i;
1475 
1476 						break;
1477 					}
1478 				}
1479 				if (j == conf->copies) {
1480 					/* Cannot recover, so abort the recovery */
1481 					put_buf(r10_bio);
1482 					r10_bio = rb2;
1483 					if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1484 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1485 						       mdname(mddev));
1486 					break;
1487 				}
1488 			}
1489 		if (biolist == NULL) {
1490 			while (r10_bio) {
1491 				r10bio_t *rb2 = r10_bio;
1492 				r10_bio = (r10bio_t*) rb2->master_bio;
1493 				rb2->master_bio = NULL;
1494 				put_buf(rb2);
1495 			}
1496 			goto giveup;
1497 		}
1498 	} else {
1499 		/* resync. Schedule a read for every block at this virt offset */
1500 		int count = 0;
1501 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1502 
1503 		spin_lock_irq(&conf->resync_lock);
1504 		conf->nr_pending++;
1505 		spin_unlock_irq(&conf->resync_lock);
1506 
1507 		r10_bio->mddev = mddev;
1508 		atomic_set(&r10_bio->remaining, 0);
1509 
1510 		r10_bio->master_bio = NULL;
1511 		r10_bio->sector = sector_nr;
1512 		set_bit(R10BIO_IsSync, &r10_bio->state);
1513 		raid10_find_phys(conf, r10_bio);
1514 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1515 
1516 		for (i=0; i<conf->copies; i++) {
1517 			int d = r10_bio->devs[i].devnum;
1518 			bio = r10_bio->devs[i].bio;
1519 			bio->bi_end_io = NULL;
1520 			if (conf->mirrors[d].rdev == NULL ||
1521 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1522 				continue;
1523 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1524 			atomic_inc(&r10_bio->remaining);
1525 			bio->bi_next = biolist;
1526 			biolist = bio;
1527 			bio->bi_private = r10_bio;
1528 			bio->bi_end_io = end_sync_read;
1529 			bio->bi_rw = 0;
1530 			bio->bi_sector = r10_bio->devs[i].addr +
1531 				conf->mirrors[d].rdev->data_offset;
1532 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1533 			count++;
1534 		}
1535 
1536 		if (count < 2) {
1537 			for (i=0; i<conf->copies; i++) {
1538 				int d = r10_bio->devs[i].devnum;
1539 				if (r10_bio->devs[i].bio->bi_end_io)
1540 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1541 			}
1542 			put_buf(r10_bio);
1543 			biolist = NULL;
1544 			goto giveup;
1545 		}
1546 	}
1547 
1548 	for (bio = biolist; bio ; bio=bio->bi_next) {
1549 
1550 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1551 		if (bio->bi_end_io)
1552 			bio->bi_flags |= 1 << BIO_UPTODATE;
1553 		bio->bi_vcnt = 0;
1554 		bio->bi_idx = 0;
1555 		bio->bi_phys_segments = 0;
1556 		bio->bi_hw_segments = 0;
1557 		bio->bi_size = 0;
1558 	}
1559 
1560 	nr_sectors = 0;
1561 	do {
1562 		struct page *page;
1563 		int len = PAGE_SIZE;
1564 		disk = 0;
1565 		if (sector_nr + (len>>9) > max_sector)
1566 			len = (max_sector - sector_nr) << 9;
1567 		if (len == 0)
1568 			break;
1569 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1570 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1571 			if (bio_add_page(bio, page, len, 0) == 0) {
1572 				/* stop here */
1573 				struct bio *bio2;
1574 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1575 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1576 					/* remove last page from this bio */
1577 					bio2->bi_vcnt--;
1578 					bio2->bi_size -= len;
1579 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1580 				}
1581 				goto bio_full;
1582 			}
1583 			disk = i;
1584 		}
1585 		nr_sectors += len>>9;
1586 		sector_nr += len>>9;
1587 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1588  bio_full:
1589 	r10_bio->sectors = nr_sectors;
1590 
1591 	while (biolist) {
1592 		bio = biolist;
1593 		biolist = biolist->bi_next;
1594 
1595 		bio->bi_next = NULL;
1596 		r10_bio = bio->bi_private;
1597 		r10_bio->sectors = nr_sectors;
1598 
1599 		if (bio->bi_end_io == end_sync_read) {
1600 			md_sync_acct(bio->bi_bdev, nr_sectors);
1601 			generic_make_request(bio);
1602 		}
1603 	}
1604 
1605 	if (sectors_skipped)
1606 		/* pretend they weren't skipped, it makes
1607 		 * no important difference in this case
1608 		 */
1609 		md_done_sync(mddev, sectors_skipped, 1);
1610 
1611 	return sectors_skipped + nr_sectors;
1612  giveup:
1613 	/* There is nowhere to write, so all non-sync
1614 	 * drives must be failed, so try the next chunk...
1615 	 */
1616 	{
1617 	sector_t sec = max_sector - sector_nr;
1618 	sectors_skipped += sec;
1619 	chunks_skipped ++;
1620 	sector_nr = max_sector;
1621 	goto skipped;
1622 	}
1623 }
1624 
1625 static int run(mddev_t *mddev)
1626 {
1627 	conf_t *conf;
1628 	int i, disk_idx;
1629 	mirror_info_t *disk;
1630 	mdk_rdev_t *rdev;
1631 	struct list_head *tmp;
1632 	int nc, fc;
1633 	sector_t stride, size;
1634 
1635 	if (mddev->level != 10) {
1636 		printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1637 		       mdname(mddev), mddev->level);
1638 		goto out;
1639 	}
1640 	nc = mddev->layout & 255;
1641 	fc = (mddev->layout >> 8) & 255;
1642 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1643 	    (mddev->layout >> 16)) {
1644 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1645 		       mdname(mddev), mddev->layout);
1646 		goto out;
1647 	}
1648 	/*
1649 	 * copy the already verified devices into our private RAID10
1650 	 * bookkeeping area. [whatever we allocate in run(),
1651 	 * should be freed in stop()]
1652 	 */
1653 	conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1654 	mddev->private = conf;
1655 	if (!conf) {
1656 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1657 			mdname(mddev));
1658 		goto out;
1659 	}
1660 	memset(conf, 0, sizeof(*conf));
1661 	conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1662 				 GFP_KERNEL);
1663 	if (!conf->mirrors) {
1664 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1665 		       mdname(mddev));
1666 		goto out_free_conf;
1667 	}
1668 	memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1669 
1670 	conf->near_copies = nc;
1671 	conf->far_copies = fc;
1672 	conf->copies = nc*fc;
1673 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1674 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1675 	stride = mddev->size >> (conf->chunk_shift-1);
1676 	sector_div(stride, fc);
1677 	conf->stride = stride << conf->chunk_shift;
1678 
1679 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1680 						r10bio_pool_free, conf);
1681 	if (!conf->r10bio_pool) {
1682 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1683 			mdname(mddev));
1684 		goto out_free_conf;
1685 	}
1686 
1687 	ITERATE_RDEV(mddev, rdev, tmp) {
1688 		disk_idx = rdev->raid_disk;
1689 		if (disk_idx >= mddev->raid_disks
1690 		    || disk_idx < 0)
1691 			continue;
1692 		disk = conf->mirrors + disk_idx;
1693 
1694 		disk->rdev = rdev;
1695 
1696 		blk_queue_stack_limits(mddev->queue,
1697 				       rdev->bdev->bd_disk->queue);
1698 		/* as we don't honour merge_bvec_fn, we must never risk
1699 		 * violating it, so limit ->max_sector to one PAGE, as
1700 		 * a one page request is never in violation.
1701 		 */
1702 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1703 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1704 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
1705 
1706 		disk->head_position = 0;
1707 		if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1708 			conf->working_disks++;
1709 	}
1710 	conf->raid_disks = mddev->raid_disks;
1711 	conf->mddev = mddev;
1712 	spin_lock_init(&conf->device_lock);
1713 	INIT_LIST_HEAD(&conf->retry_list);
1714 
1715 	spin_lock_init(&conf->resync_lock);
1716 	init_waitqueue_head(&conf->wait_idle);
1717 	init_waitqueue_head(&conf->wait_resume);
1718 
1719 	/* need to check that every block has at least one working mirror */
1720 	if (!enough(conf)) {
1721 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
1722 		       mdname(mddev));
1723 		goto out_free_conf;
1724 	}
1725 
1726 	mddev->degraded = 0;
1727 	for (i = 0; i < conf->raid_disks; i++) {
1728 
1729 		disk = conf->mirrors + i;
1730 
1731 		if (!disk->rdev) {
1732 			disk->head_position = 0;
1733 			mddev->degraded++;
1734 		}
1735 	}
1736 
1737 
1738 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1739 	if (!mddev->thread) {
1740 		printk(KERN_ERR
1741 		       "raid10: couldn't allocate thread for %s\n",
1742 		       mdname(mddev));
1743 		goto out_free_conf;
1744 	}
1745 
1746 	printk(KERN_INFO
1747 		"raid10: raid set %s active with %d out of %d devices\n",
1748 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1749 		mddev->raid_disks);
1750 	/*
1751 	 * Ok, everything is just fine now
1752 	 */
1753 	size = conf->stride * conf->raid_disks;
1754 	sector_div(size, conf->near_copies);
1755 	mddev->array_size = size/2;
1756 	mddev->resync_max_sectors = size;
1757 
1758 	mddev->queue->unplug_fn = raid10_unplug;
1759 	mddev->queue->issue_flush_fn = raid10_issue_flush;
1760 
1761 	/* Calculate max read-ahead size.
1762 	 * We need to readahead at least twice a whole stripe....
1763 	 * maybe...
1764 	 */
1765 	{
1766 		int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
1767 		stripe /= conf->near_copies;
1768 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
1769 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
1770 	}
1771 
1772 	if (conf->near_copies < mddev->raid_disks)
1773 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1774 	return 0;
1775 
1776 out_free_conf:
1777 	if (conf->r10bio_pool)
1778 		mempool_destroy(conf->r10bio_pool);
1779 	kfree(conf->mirrors);
1780 	kfree(conf);
1781 	mddev->private = NULL;
1782 out:
1783 	return -EIO;
1784 }
1785 
1786 static int stop(mddev_t *mddev)
1787 {
1788 	conf_t *conf = mddev_to_conf(mddev);
1789 
1790 	md_unregister_thread(mddev->thread);
1791 	mddev->thread = NULL;
1792 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1793 	if (conf->r10bio_pool)
1794 		mempool_destroy(conf->r10bio_pool);
1795 	kfree(conf->mirrors);
1796 	kfree(conf);
1797 	mddev->private = NULL;
1798 	return 0;
1799 }
1800 
1801 
1802 static mdk_personality_t raid10_personality =
1803 {
1804 	.name		= "raid10",
1805 	.owner		= THIS_MODULE,
1806 	.make_request	= make_request,
1807 	.run		= run,
1808 	.stop		= stop,
1809 	.status		= status,
1810 	.error_handler	= error,
1811 	.hot_add_disk	= raid10_add_disk,
1812 	.hot_remove_disk= raid10_remove_disk,
1813 	.spare_active	= raid10_spare_active,
1814 	.sync_request	= sync_request,
1815 };
1816 
1817 static int __init raid_init(void)
1818 {
1819 	return register_md_personality(RAID10, &raid10_personality);
1820 }
1821 
1822 static void raid_exit(void)
1823 {
1824 	unregister_md_personality(RAID10);
1825 }
1826 
1827 module_init(raid_init);
1828 module_exit(raid_exit);
1829 MODULE_LICENSE("GPL");
1830 MODULE_ALIAS("md-personality-9"); /* RAID10 */
1831