1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 /* 83 * for resync bio, r10bio pointer can be retrieved from the per-bio 84 * 'struct resync_pages'. 85 */ 86 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 87 { 88 return get_resync_pages(bio)->raid_bio; 89 } 90 91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 92 { 93 struct r10conf *conf = data; 94 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 95 96 /* allocate a r10bio with room for raid_disks entries in the 97 * bios array */ 98 return kzalloc(size, gfp_flags); 99 } 100 101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 102 /* amount of memory to reserve for resync requests */ 103 #define RESYNC_WINDOW (1024*1024) 104 /* maximum number of concurrent requests, memory permitting */ 105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 108 109 /* 110 * When performing a resync, we need to read and compare, so 111 * we need as many pages are there are copies. 112 * When performing a recovery, we need 2 bios, one for read, 113 * one for write (we recover only one drive per r10buf) 114 * 115 */ 116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 struct r10bio *r10_bio; 120 struct bio *bio; 121 int j; 122 int nalloc, nalloc_rp; 123 struct resync_pages *rps; 124 125 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 126 if (!r10_bio) 127 return NULL; 128 129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 131 nalloc = conf->copies; /* resync */ 132 else 133 nalloc = 2; /* recovery */ 134 135 /* allocate once for all bios */ 136 if (!conf->have_replacement) 137 nalloc_rp = nalloc; 138 else 139 nalloc_rp = nalloc * 2; 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 141 if (!rps) 142 goto out_free_r10bio; 143 144 /* 145 * Allocate bios. 146 */ 147 for (j = nalloc ; j-- ; ) { 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 149 if (!bio) 150 goto out_free_bio; 151 r10_bio->devs[j].bio = bio; 152 if (!conf->have_replacement) 153 continue; 154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 155 if (!bio) 156 goto out_free_bio; 157 r10_bio->devs[j].repl_bio = bio; 158 } 159 /* 160 * Allocate RESYNC_PAGES data pages and attach them 161 * where needed. 162 */ 163 for (j = 0; j < nalloc; j++) { 164 struct bio *rbio = r10_bio->devs[j].repl_bio; 165 struct resync_pages *rp, *rp_repl; 166 167 rp = &rps[j]; 168 if (rbio) 169 rp_repl = &rps[nalloc + j]; 170 171 bio = r10_bio->devs[j].bio; 172 173 if (!j || test_bit(MD_RECOVERY_SYNC, 174 &conf->mddev->recovery)) { 175 if (resync_alloc_pages(rp, gfp_flags)) 176 goto out_free_pages; 177 } else { 178 memcpy(rp, &rps[0], sizeof(*rp)); 179 resync_get_all_pages(rp); 180 } 181 182 rp->raid_bio = r10_bio; 183 bio->bi_private = rp; 184 if (rbio) { 185 memcpy(rp_repl, rp, sizeof(*rp)); 186 rbio->bi_private = rp_repl; 187 } 188 } 189 190 return r10_bio; 191 192 out_free_pages: 193 while (--j >= 0) 194 resync_free_pages(&rps[j]); 195 196 j = 0; 197 out_free_bio: 198 for ( ; j < nalloc; j++) { 199 if (r10_bio->devs[j].bio) 200 bio_put(r10_bio->devs[j].bio); 201 if (r10_bio->devs[j].repl_bio) 202 bio_put(r10_bio->devs[j].repl_bio); 203 } 204 kfree(rps); 205 out_free_r10bio: 206 rbio_pool_free(r10_bio, conf); 207 return NULL; 208 } 209 210 static void r10buf_pool_free(void *__r10_bio, void *data) 211 { 212 struct r10conf *conf = data; 213 struct r10bio *r10bio = __r10_bio; 214 int j; 215 struct resync_pages *rp = NULL; 216 217 for (j = conf->copies; j--; ) { 218 struct bio *bio = r10bio->devs[j].bio; 219 220 if (bio) { 221 rp = get_resync_pages(bio); 222 resync_free_pages(rp); 223 bio_put(bio); 224 } 225 226 bio = r10bio->devs[j].repl_bio; 227 if (bio) 228 bio_put(bio); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r10bio, conf); 235 } 236 237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->geo.raid_disks; i++) { 242 struct bio **bio = & r10_bio->devs[i].bio; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 bio = &r10_bio->devs[i].repl_bio; 247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r10bio(struct r10bio *r10_bio) 254 { 255 struct r10conf *conf = r10_bio->mddev->private; 256 257 put_all_bios(conf, r10_bio); 258 mempool_free(r10_bio, &conf->r10bio_pool); 259 } 260 261 static void put_buf(struct r10bio *r10_bio) 262 { 263 struct r10conf *conf = r10_bio->mddev->private; 264 265 mempool_free(r10_bio, &conf->r10buf_pool); 266 267 lower_barrier(conf); 268 } 269 270 static void reschedule_retry(struct r10bio *r10_bio) 271 { 272 unsigned long flags; 273 struct mddev *mddev = r10_bio->mddev; 274 struct r10conf *conf = mddev->private; 275 276 spin_lock_irqsave(&conf->device_lock, flags); 277 list_add(&r10_bio->retry_list, &conf->retry_list); 278 conf->nr_queued ++; 279 spin_unlock_irqrestore(&conf->device_lock, flags); 280 281 /* wake up frozen array... */ 282 wake_up(&conf->wait_barrier); 283 284 md_wakeup_thread(mddev->thread); 285 } 286 287 /* 288 * raid_end_bio_io() is called when we have finished servicing a mirrored 289 * operation and are ready to return a success/failure code to the buffer 290 * cache layer. 291 */ 292 static void raid_end_bio_io(struct r10bio *r10_bio) 293 { 294 struct bio *bio = r10_bio->master_bio; 295 struct r10conf *conf = r10_bio->mddev->private; 296 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 298 bio->bi_status = BLK_STS_IOERR; 299 300 bio_endio(bio); 301 /* 302 * Wake up any possible resync thread that waits for the device 303 * to go idle. 304 */ 305 allow_barrier(conf); 306 307 free_r10bio(r10_bio); 308 } 309 310 /* 311 * Update disk head position estimator based on IRQ completion info. 312 */ 313 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 314 { 315 struct r10conf *conf = r10_bio->mddev->private; 316 317 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 318 r10_bio->devs[slot].addr + (r10_bio->sectors); 319 } 320 321 /* 322 * Find the disk number which triggered given bio 323 */ 324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 325 struct bio *bio, int *slotp, int *replp) 326 { 327 int slot; 328 int repl = 0; 329 330 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 331 if (r10_bio->devs[slot].bio == bio) 332 break; 333 if (r10_bio->devs[slot].repl_bio == bio) { 334 repl = 1; 335 break; 336 } 337 } 338 339 update_head_pos(slot, r10_bio); 340 341 if (slotp) 342 *slotp = slot; 343 if (replp) 344 *replp = repl; 345 return r10_bio->devs[slot].devnum; 346 } 347 348 static void raid10_end_read_request(struct bio *bio) 349 { 350 int uptodate = !bio->bi_status; 351 struct r10bio *r10_bio = bio->bi_private; 352 int slot; 353 struct md_rdev *rdev; 354 struct r10conf *conf = r10_bio->mddev->private; 355 356 slot = r10_bio->read_slot; 357 rdev = r10_bio->devs[slot].rdev; 358 /* 359 * this branch is our 'one mirror IO has finished' event handler: 360 */ 361 update_head_pos(slot, r10_bio); 362 363 if (uptodate) { 364 /* 365 * Set R10BIO_Uptodate in our master bio, so that 366 * we will return a good error code to the higher 367 * levels even if IO on some other mirrored buffer fails. 368 * 369 * The 'master' represents the composite IO operation to 370 * user-side. So if something waits for IO, then it will 371 * wait for the 'master' bio. 372 */ 373 set_bit(R10BIO_Uptodate, &r10_bio->state); 374 } else { 375 /* If all other devices that store this block have 376 * failed, we want to return the error upwards rather 377 * than fail the last device. Here we redefine 378 * "uptodate" to mean "Don't want to retry" 379 */ 380 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 381 rdev->raid_disk)) 382 uptodate = 1; 383 } 384 if (uptodate) { 385 raid_end_bio_io(r10_bio); 386 rdev_dec_pending(rdev, conf->mddev); 387 } else { 388 /* 389 * oops, read error - keep the refcount on the rdev 390 */ 391 char b[BDEVNAME_SIZE]; 392 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 393 mdname(conf->mddev), 394 bdevname(rdev->bdev, b), 395 (unsigned long long)r10_bio->sector); 396 set_bit(R10BIO_ReadError, &r10_bio->state); 397 reschedule_retry(r10_bio); 398 } 399 } 400 401 static void close_write(struct r10bio *r10_bio) 402 { 403 /* clear the bitmap if all writes complete successfully */ 404 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 405 r10_bio->sectors, 406 !test_bit(R10BIO_Degraded, &r10_bio->state), 407 0); 408 md_write_end(r10_bio->mddev); 409 } 410 411 static void one_write_done(struct r10bio *r10_bio) 412 { 413 if (atomic_dec_and_test(&r10_bio->remaining)) { 414 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 415 reschedule_retry(r10_bio); 416 else { 417 close_write(r10_bio); 418 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 419 reschedule_retry(r10_bio); 420 else 421 raid_end_bio_io(r10_bio); 422 } 423 } 424 } 425 426 static void raid10_end_write_request(struct bio *bio) 427 { 428 struct r10bio *r10_bio = bio->bi_private; 429 int dev; 430 int dec_rdev = 1; 431 struct r10conf *conf = r10_bio->mddev->private; 432 int slot, repl; 433 struct md_rdev *rdev = NULL; 434 struct bio *to_put = NULL; 435 bool discard_error; 436 437 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 438 439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 440 441 if (repl) 442 rdev = conf->mirrors[dev].replacement; 443 if (!rdev) { 444 smp_rmb(); 445 repl = 0; 446 rdev = conf->mirrors[dev].rdev; 447 } 448 /* 449 * this branch is our 'one mirror IO has finished' event handler: 450 */ 451 if (bio->bi_status && !discard_error) { 452 if (repl) 453 /* Never record new bad blocks to replacement, 454 * just fail it. 455 */ 456 md_error(rdev->mddev, rdev); 457 else { 458 set_bit(WriteErrorSeen, &rdev->flags); 459 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 460 set_bit(MD_RECOVERY_NEEDED, 461 &rdev->mddev->recovery); 462 463 dec_rdev = 0; 464 if (test_bit(FailFast, &rdev->flags) && 465 (bio->bi_opf & MD_FAILFAST)) { 466 md_error(rdev->mddev, rdev); 467 } 468 469 /* 470 * When the device is faulty, it is not necessary to 471 * handle write error. 472 * For failfast, this is the only remaining device, 473 * We need to retry the write without FailFast. 474 */ 475 if (!test_bit(Faulty, &rdev->flags)) 476 set_bit(R10BIO_WriteError, &r10_bio->state); 477 else { 478 r10_bio->devs[slot].bio = NULL; 479 to_put = bio; 480 dec_rdev = 1; 481 } 482 } 483 } else { 484 /* 485 * Set R10BIO_Uptodate in our master bio, so that 486 * we will return a good error code for to the higher 487 * levels even if IO on some other mirrored buffer fails. 488 * 489 * The 'master' represents the composite IO operation to 490 * user-side. So if something waits for IO, then it will 491 * wait for the 'master' bio. 492 */ 493 sector_t first_bad; 494 int bad_sectors; 495 496 /* 497 * Do not set R10BIO_Uptodate if the current device is 498 * rebuilding or Faulty. This is because we cannot use 499 * such device for properly reading the data back (we could 500 * potentially use it, if the current write would have felt 501 * before rdev->recovery_offset, but for simplicity we don't 502 * check this here. 503 */ 504 if (test_bit(In_sync, &rdev->flags) && 505 !test_bit(Faulty, &rdev->flags)) 506 set_bit(R10BIO_Uptodate, &r10_bio->state); 507 508 /* Maybe we can clear some bad blocks. */ 509 if (is_badblock(rdev, 510 r10_bio->devs[slot].addr, 511 r10_bio->sectors, 512 &first_bad, &bad_sectors) && !discard_error) { 513 bio_put(bio); 514 if (repl) 515 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 516 else 517 r10_bio->devs[slot].bio = IO_MADE_GOOD; 518 dec_rdev = 0; 519 set_bit(R10BIO_MadeGood, &r10_bio->state); 520 } 521 } 522 523 /* 524 * 525 * Let's see if all mirrored write operations have finished 526 * already. 527 */ 528 one_write_done(r10_bio); 529 if (dec_rdev) 530 rdev_dec_pending(rdev, conf->mddev); 531 if (to_put) 532 bio_put(to_put); 533 } 534 535 /* 536 * RAID10 layout manager 537 * As well as the chunksize and raid_disks count, there are two 538 * parameters: near_copies and far_copies. 539 * near_copies * far_copies must be <= raid_disks. 540 * Normally one of these will be 1. 541 * If both are 1, we get raid0. 542 * If near_copies == raid_disks, we get raid1. 543 * 544 * Chunks are laid out in raid0 style with near_copies copies of the 545 * first chunk, followed by near_copies copies of the next chunk and 546 * so on. 547 * If far_copies > 1, then after 1/far_copies of the array has been assigned 548 * as described above, we start again with a device offset of near_copies. 549 * So we effectively have another copy of the whole array further down all 550 * the drives, but with blocks on different drives. 551 * With this layout, and block is never stored twice on the one device. 552 * 553 * raid10_find_phys finds the sector offset of a given virtual sector 554 * on each device that it is on. 555 * 556 * raid10_find_virt does the reverse mapping, from a device and a 557 * sector offset to a virtual address 558 */ 559 560 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 561 { 562 int n,f; 563 sector_t sector; 564 sector_t chunk; 565 sector_t stripe; 566 int dev; 567 int slot = 0; 568 int last_far_set_start, last_far_set_size; 569 570 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 571 last_far_set_start *= geo->far_set_size; 572 573 last_far_set_size = geo->far_set_size; 574 last_far_set_size += (geo->raid_disks % geo->far_set_size); 575 576 /* now calculate first sector/dev */ 577 chunk = r10bio->sector >> geo->chunk_shift; 578 sector = r10bio->sector & geo->chunk_mask; 579 580 chunk *= geo->near_copies; 581 stripe = chunk; 582 dev = sector_div(stripe, geo->raid_disks); 583 if (geo->far_offset) 584 stripe *= geo->far_copies; 585 586 sector += stripe << geo->chunk_shift; 587 588 /* and calculate all the others */ 589 for (n = 0; n < geo->near_copies; n++) { 590 int d = dev; 591 int set; 592 sector_t s = sector; 593 r10bio->devs[slot].devnum = d; 594 r10bio->devs[slot].addr = s; 595 slot++; 596 597 for (f = 1; f < geo->far_copies; f++) { 598 set = d / geo->far_set_size; 599 d += geo->near_copies; 600 601 if ((geo->raid_disks % geo->far_set_size) && 602 (d > last_far_set_start)) { 603 d -= last_far_set_start; 604 d %= last_far_set_size; 605 d += last_far_set_start; 606 } else { 607 d %= geo->far_set_size; 608 d += geo->far_set_size * set; 609 } 610 s += geo->stride; 611 r10bio->devs[slot].devnum = d; 612 r10bio->devs[slot].addr = s; 613 slot++; 614 } 615 dev++; 616 if (dev >= geo->raid_disks) { 617 dev = 0; 618 sector += (geo->chunk_mask + 1); 619 } 620 } 621 } 622 623 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 624 { 625 struct geom *geo = &conf->geo; 626 627 if (conf->reshape_progress != MaxSector && 628 ((r10bio->sector >= conf->reshape_progress) != 629 conf->mddev->reshape_backwards)) { 630 set_bit(R10BIO_Previous, &r10bio->state); 631 geo = &conf->prev; 632 } else 633 clear_bit(R10BIO_Previous, &r10bio->state); 634 635 __raid10_find_phys(geo, r10bio); 636 } 637 638 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 639 { 640 sector_t offset, chunk, vchunk; 641 /* Never use conf->prev as this is only called during resync 642 * or recovery, so reshape isn't happening 643 */ 644 struct geom *geo = &conf->geo; 645 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 646 int far_set_size = geo->far_set_size; 647 int last_far_set_start; 648 649 if (geo->raid_disks % geo->far_set_size) { 650 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 651 last_far_set_start *= geo->far_set_size; 652 653 if (dev >= last_far_set_start) { 654 far_set_size = geo->far_set_size; 655 far_set_size += (geo->raid_disks % geo->far_set_size); 656 far_set_start = last_far_set_start; 657 } 658 } 659 660 offset = sector & geo->chunk_mask; 661 if (geo->far_offset) { 662 int fc; 663 chunk = sector >> geo->chunk_shift; 664 fc = sector_div(chunk, geo->far_copies); 665 dev -= fc * geo->near_copies; 666 if (dev < far_set_start) 667 dev += far_set_size; 668 } else { 669 while (sector >= geo->stride) { 670 sector -= geo->stride; 671 if (dev < (geo->near_copies + far_set_start)) 672 dev += far_set_size - geo->near_copies; 673 else 674 dev -= geo->near_copies; 675 } 676 chunk = sector >> geo->chunk_shift; 677 } 678 vchunk = chunk * geo->raid_disks + dev; 679 sector_div(vchunk, geo->near_copies); 680 return (vchunk << geo->chunk_shift) + offset; 681 } 682 683 /* 684 * This routine returns the disk from which the requested read should 685 * be done. There is a per-array 'next expected sequential IO' sector 686 * number - if this matches on the next IO then we use the last disk. 687 * There is also a per-disk 'last know head position' sector that is 688 * maintained from IRQ contexts, both the normal and the resync IO 689 * completion handlers update this position correctly. If there is no 690 * perfect sequential match then we pick the disk whose head is closest. 691 * 692 * If there are 2 mirrors in the same 2 devices, performance degrades 693 * because position is mirror, not device based. 694 * 695 * The rdev for the device selected will have nr_pending incremented. 696 */ 697 698 /* 699 * FIXME: possibly should rethink readbalancing and do it differently 700 * depending on near_copies / far_copies geometry. 701 */ 702 static struct md_rdev *read_balance(struct r10conf *conf, 703 struct r10bio *r10_bio, 704 int *max_sectors) 705 { 706 const sector_t this_sector = r10_bio->sector; 707 int disk, slot; 708 int sectors = r10_bio->sectors; 709 int best_good_sectors; 710 sector_t new_distance, best_dist; 711 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 712 int do_balance; 713 int best_dist_slot, best_pending_slot; 714 bool has_nonrot_disk = false; 715 unsigned int min_pending; 716 struct geom *geo = &conf->geo; 717 718 raid10_find_phys(conf, r10_bio); 719 rcu_read_lock(); 720 best_dist_slot = -1; 721 min_pending = UINT_MAX; 722 best_dist_rdev = NULL; 723 best_pending_rdev = NULL; 724 best_dist = MaxSector; 725 best_good_sectors = 0; 726 do_balance = 1; 727 clear_bit(R10BIO_FailFast, &r10_bio->state); 728 /* 729 * Check if we can balance. We can balance on the whole 730 * device if no resync is going on (recovery is ok), or below 731 * the resync window. We take the first readable disk when 732 * above the resync window. 733 */ 734 if ((conf->mddev->recovery_cp < MaxSector 735 && (this_sector + sectors >= conf->next_resync)) || 736 (mddev_is_clustered(conf->mddev) && 737 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 738 this_sector + sectors))) 739 do_balance = 0; 740 741 for (slot = 0; slot < conf->copies ; slot++) { 742 sector_t first_bad; 743 int bad_sectors; 744 sector_t dev_sector; 745 unsigned int pending; 746 bool nonrot; 747 748 if (r10_bio->devs[slot].bio == IO_BLOCKED) 749 continue; 750 disk = r10_bio->devs[slot].devnum; 751 rdev = rcu_dereference(conf->mirrors[disk].replacement); 752 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 753 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 754 rdev = rcu_dereference(conf->mirrors[disk].rdev); 755 if (rdev == NULL || 756 test_bit(Faulty, &rdev->flags)) 757 continue; 758 if (!test_bit(In_sync, &rdev->flags) && 759 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 760 continue; 761 762 dev_sector = r10_bio->devs[slot].addr; 763 if (is_badblock(rdev, dev_sector, sectors, 764 &first_bad, &bad_sectors)) { 765 if (best_dist < MaxSector) 766 /* Already have a better slot */ 767 continue; 768 if (first_bad <= dev_sector) { 769 /* Cannot read here. If this is the 770 * 'primary' device, then we must not read 771 * beyond 'bad_sectors' from another device. 772 */ 773 bad_sectors -= (dev_sector - first_bad); 774 if (!do_balance && sectors > bad_sectors) 775 sectors = bad_sectors; 776 if (best_good_sectors > sectors) 777 best_good_sectors = sectors; 778 } else { 779 sector_t good_sectors = 780 first_bad - dev_sector; 781 if (good_sectors > best_good_sectors) { 782 best_good_sectors = good_sectors; 783 best_dist_slot = slot; 784 best_dist_rdev = rdev; 785 } 786 if (!do_balance) 787 /* Must read from here */ 788 break; 789 } 790 continue; 791 } else 792 best_good_sectors = sectors; 793 794 if (!do_balance) 795 break; 796 797 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 798 has_nonrot_disk |= nonrot; 799 pending = atomic_read(&rdev->nr_pending); 800 if (min_pending > pending && nonrot) { 801 min_pending = pending; 802 best_pending_slot = slot; 803 best_pending_rdev = rdev; 804 } 805 806 if (best_dist_slot >= 0) 807 /* At least 2 disks to choose from so failfast is OK */ 808 set_bit(R10BIO_FailFast, &r10_bio->state); 809 /* This optimisation is debatable, and completely destroys 810 * sequential read speed for 'far copies' arrays. So only 811 * keep it for 'near' arrays, and review those later. 812 */ 813 if (geo->near_copies > 1 && !pending) 814 new_distance = 0; 815 816 /* for far > 1 always use the lowest address */ 817 else if (geo->far_copies > 1) 818 new_distance = r10_bio->devs[slot].addr; 819 else 820 new_distance = abs(r10_bio->devs[slot].addr - 821 conf->mirrors[disk].head_position); 822 823 if (new_distance < best_dist) { 824 best_dist = new_distance; 825 best_dist_slot = slot; 826 best_dist_rdev = rdev; 827 } 828 } 829 if (slot >= conf->copies) { 830 if (has_nonrot_disk) { 831 slot = best_pending_slot; 832 rdev = best_pending_rdev; 833 } else { 834 slot = best_dist_slot; 835 rdev = best_dist_rdev; 836 } 837 } 838 839 if (slot >= 0) { 840 atomic_inc(&rdev->nr_pending); 841 r10_bio->read_slot = slot; 842 } else 843 rdev = NULL; 844 rcu_read_unlock(); 845 *max_sectors = best_good_sectors; 846 847 return rdev; 848 } 849 850 static void flush_pending_writes(struct r10conf *conf) 851 { 852 /* Any writes that have been queued but are awaiting 853 * bitmap updates get flushed here. 854 */ 855 spin_lock_irq(&conf->device_lock); 856 857 if (conf->pending_bio_list.head) { 858 struct blk_plug plug; 859 struct bio *bio; 860 861 bio = bio_list_get(&conf->pending_bio_list); 862 conf->pending_count = 0; 863 spin_unlock_irq(&conf->device_lock); 864 865 /* 866 * As this is called in a wait_event() loop (see freeze_array), 867 * current->state might be TASK_UNINTERRUPTIBLE which will 868 * cause a warning when we prepare to wait again. As it is 869 * rare that this path is taken, it is perfectly safe to force 870 * us to go around the wait_event() loop again, so the warning 871 * is a false-positive. Silence the warning by resetting 872 * thread state 873 */ 874 __set_current_state(TASK_RUNNING); 875 876 blk_start_plug(&plug); 877 /* flush any pending bitmap writes to disk 878 * before proceeding w/ I/O */ 879 md_bitmap_unplug(conf->mddev->bitmap); 880 wake_up(&conf->wait_barrier); 881 882 while (bio) { /* submit pending writes */ 883 struct bio *next = bio->bi_next; 884 struct md_rdev *rdev = (void*)bio->bi_bdev; 885 bio->bi_next = NULL; 886 bio_set_dev(bio, rdev->bdev); 887 if (test_bit(Faulty, &rdev->flags)) { 888 bio_io_error(bio); 889 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 890 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 891 /* Just ignore it */ 892 bio_endio(bio); 893 else 894 submit_bio_noacct(bio); 895 bio = next; 896 } 897 blk_finish_plug(&plug); 898 } else 899 spin_unlock_irq(&conf->device_lock); 900 } 901 902 /* Barriers.... 903 * Sometimes we need to suspend IO while we do something else, 904 * either some resync/recovery, or reconfigure the array. 905 * To do this we raise a 'barrier'. 906 * The 'barrier' is a counter that can be raised multiple times 907 * to count how many activities are happening which preclude 908 * normal IO. 909 * We can only raise the barrier if there is no pending IO. 910 * i.e. if nr_pending == 0. 911 * We choose only to raise the barrier if no-one is waiting for the 912 * barrier to go down. This means that as soon as an IO request 913 * is ready, no other operations which require a barrier will start 914 * until the IO request has had a chance. 915 * 916 * So: regular IO calls 'wait_barrier'. When that returns there 917 * is no backgroup IO happening, It must arrange to call 918 * allow_barrier when it has finished its IO. 919 * backgroup IO calls must call raise_barrier. Once that returns 920 * there is no normal IO happeing. It must arrange to call 921 * lower_barrier when the particular background IO completes. 922 */ 923 924 static void raise_barrier(struct r10conf *conf, int force) 925 { 926 BUG_ON(force && !conf->barrier); 927 spin_lock_irq(&conf->resync_lock); 928 929 /* Wait until no block IO is waiting (unless 'force') */ 930 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 931 conf->resync_lock); 932 933 /* block any new IO from starting */ 934 conf->barrier++; 935 936 /* Now wait for all pending IO to complete */ 937 wait_event_lock_irq(conf->wait_barrier, 938 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 939 conf->resync_lock); 940 941 spin_unlock_irq(&conf->resync_lock); 942 } 943 944 static void lower_barrier(struct r10conf *conf) 945 { 946 unsigned long flags; 947 spin_lock_irqsave(&conf->resync_lock, flags); 948 conf->barrier--; 949 spin_unlock_irqrestore(&conf->resync_lock, flags); 950 wake_up(&conf->wait_barrier); 951 } 952 953 static void wait_barrier(struct r10conf *conf) 954 { 955 spin_lock_irq(&conf->resync_lock); 956 if (conf->barrier) { 957 struct bio_list *bio_list = current->bio_list; 958 conf->nr_waiting++; 959 /* Wait for the barrier to drop. 960 * However if there are already pending 961 * requests (preventing the barrier from 962 * rising completely), and the 963 * pre-process bio queue isn't empty, 964 * then don't wait, as we need to empty 965 * that queue to get the nr_pending 966 * count down. 967 */ 968 raid10_log(conf->mddev, "wait barrier"); 969 wait_event_lock_irq(conf->wait_barrier, 970 !conf->barrier || 971 (atomic_read(&conf->nr_pending) && 972 bio_list && 973 (!bio_list_empty(&bio_list[0]) || 974 !bio_list_empty(&bio_list[1]))) || 975 /* move on if recovery thread is 976 * blocked by us 977 */ 978 (conf->mddev->thread->tsk == current && 979 test_bit(MD_RECOVERY_RUNNING, 980 &conf->mddev->recovery) && 981 conf->nr_queued > 0), 982 conf->resync_lock); 983 conf->nr_waiting--; 984 if (!conf->nr_waiting) 985 wake_up(&conf->wait_barrier); 986 } 987 atomic_inc(&conf->nr_pending); 988 spin_unlock_irq(&conf->resync_lock); 989 } 990 991 static void allow_barrier(struct r10conf *conf) 992 { 993 if ((atomic_dec_and_test(&conf->nr_pending)) || 994 (conf->array_freeze_pending)) 995 wake_up(&conf->wait_barrier); 996 } 997 998 static void freeze_array(struct r10conf *conf, int extra) 999 { 1000 /* stop syncio and normal IO and wait for everything to 1001 * go quiet. 1002 * We increment barrier and nr_waiting, and then 1003 * wait until nr_pending match nr_queued+extra 1004 * This is called in the context of one normal IO request 1005 * that has failed. Thus any sync request that might be pending 1006 * will be blocked by nr_pending, and we need to wait for 1007 * pending IO requests to complete or be queued for re-try. 1008 * Thus the number queued (nr_queued) plus this request (extra) 1009 * must match the number of pending IOs (nr_pending) before 1010 * we continue. 1011 */ 1012 spin_lock_irq(&conf->resync_lock); 1013 conf->array_freeze_pending++; 1014 conf->barrier++; 1015 conf->nr_waiting++; 1016 wait_event_lock_irq_cmd(conf->wait_barrier, 1017 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1018 conf->resync_lock, 1019 flush_pending_writes(conf)); 1020 1021 conf->array_freeze_pending--; 1022 spin_unlock_irq(&conf->resync_lock); 1023 } 1024 1025 static void unfreeze_array(struct r10conf *conf) 1026 { 1027 /* reverse the effect of the freeze */ 1028 spin_lock_irq(&conf->resync_lock); 1029 conf->barrier--; 1030 conf->nr_waiting--; 1031 wake_up(&conf->wait_barrier); 1032 spin_unlock_irq(&conf->resync_lock); 1033 } 1034 1035 static sector_t choose_data_offset(struct r10bio *r10_bio, 1036 struct md_rdev *rdev) 1037 { 1038 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1039 test_bit(R10BIO_Previous, &r10_bio->state)) 1040 return rdev->data_offset; 1041 else 1042 return rdev->new_data_offset; 1043 } 1044 1045 struct raid10_plug_cb { 1046 struct blk_plug_cb cb; 1047 struct bio_list pending; 1048 int pending_cnt; 1049 }; 1050 1051 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1052 { 1053 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1054 cb); 1055 struct mddev *mddev = plug->cb.data; 1056 struct r10conf *conf = mddev->private; 1057 struct bio *bio; 1058 1059 if (from_schedule || current->bio_list) { 1060 spin_lock_irq(&conf->device_lock); 1061 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1062 conf->pending_count += plug->pending_cnt; 1063 spin_unlock_irq(&conf->device_lock); 1064 wake_up(&conf->wait_barrier); 1065 md_wakeup_thread(mddev->thread); 1066 kfree(plug); 1067 return; 1068 } 1069 1070 /* we aren't scheduling, so we can do the write-out directly. */ 1071 bio = bio_list_get(&plug->pending); 1072 md_bitmap_unplug(mddev->bitmap); 1073 wake_up(&conf->wait_barrier); 1074 1075 while (bio) { /* submit pending writes */ 1076 struct bio *next = bio->bi_next; 1077 struct md_rdev *rdev = (void*)bio->bi_bdev; 1078 bio->bi_next = NULL; 1079 bio_set_dev(bio, rdev->bdev); 1080 if (test_bit(Faulty, &rdev->flags)) { 1081 bio_io_error(bio); 1082 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1083 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 1084 /* Just ignore it */ 1085 bio_endio(bio); 1086 else 1087 submit_bio_noacct(bio); 1088 bio = next; 1089 } 1090 kfree(plug); 1091 } 1092 1093 /* 1094 * 1. Register the new request and wait if the reconstruction thread has put 1095 * up a bar for new requests. Continue immediately if no resync is active 1096 * currently. 1097 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1098 */ 1099 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1100 struct bio *bio, sector_t sectors) 1101 { 1102 wait_barrier(conf); 1103 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1104 bio->bi_iter.bi_sector < conf->reshape_progress && 1105 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1106 raid10_log(conf->mddev, "wait reshape"); 1107 allow_barrier(conf); 1108 wait_event(conf->wait_barrier, 1109 conf->reshape_progress <= bio->bi_iter.bi_sector || 1110 conf->reshape_progress >= bio->bi_iter.bi_sector + 1111 sectors); 1112 wait_barrier(conf); 1113 } 1114 } 1115 1116 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1117 struct r10bio *r10_bio) 1118 { 1119 struct r10conf *conf = mddev->private; 1120 struct bio *read_bio; 1121 const int op = bio_op(bio); 1122 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1123 int max_sectors; 1124 struct md_rdev *rdev; 1125 char b[BDEVNAME_SIZE]; 1126 int slot = r10_bio->read_slot; 1127 struct md_rdev *err_rdev = NULL; 1128 gfp_t gfp = GFP_NOIO; 1129 1130 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1131 /* 1132 * This is an error retry, but we cannot 1133 * safely dereference the rdev in the r10_bio, 1134 * we must use the one in conf. 1135 * If it has already been disconnected (unlikely) 1136 * we lose the device name in error messages. 1137 */ 1138 int disk; 1139 /* 1140 * As we are blocking raid10, it is a little safer to 1141 * use __GFP_HIGH. 1142 */ 1143 gfp = GFP_NOIO | __GFP_HIGH; 1144 1145 rcu_read_lock(); 1146 disk = r10_bio->devs[slot].devnum; 1147 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1148 if (err_rdev) 1149 bdevname(err_rdev->bdev, b); 1150 else { 1151 strcpy(b, "???"); 1152 /* This never gets dereferenced */ 1153 err_rdev = r10_bio->devs[slot].rdev; 1154 } 1155 rcu_read_unlock(); 1156 } 1157 1158 regular_request_wait(mddev, conf, bio, r10_bio->sectors); 1159 rdev = read_balance(conf, r10_bio, &max_sectors); 1160 if (!rdev) { 1161 if (err_rdev) { 1162 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1163 mdname(mddev), b, 1164 (unsigned long long)r10_bio->sector); 1165 } 1166 raid_end_bio_io(r10_bio); 1167 return; 1168 } 1169 if (err_rdev) 1170 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1171 mdname(mddev), 1172 bdevname(rdev->bdev, b), 1173 (unsigned long long)r10_bio->sector); 1174 if (max_sectors < bio_sectors(bio)) { 1175 struct bio *split = bio_split(bio, max_sectors, 1176 gfp, &conf->bio_split); 1177 bio_chain(split, bio); 1178 allow_barrier(conf); 1179 submit_bio_noacct(bio); 1180 wait_barrier(conf); 1181 bio = split; 1182 r10_bio->master_bio = bio; 1183 r10_bio->sectors = max_sectors; 1184 } 1185 slot = r10_bio->read_slot; 1186 1187 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1188 1189 r10_bio->devs[slot].bio = read_bio; 1190 r10_bio->devs[slot].rdev = rdev; 1191 1192 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1193 choose_data_offset(r10_bio, rdev); 1194 bio_set_dev(read_bio, rdev->bdev); 1195 read_bio->bi_end_io = raid10_end_read_request; 1196 bio_set_op_attrs(read_bio, op, do_sync); 1197 if (test_bit(FailFast, &rdev->flags) && 1198 test_bit(R10BIO_FailFast, &r10_bio->state)) 1199 read_bio->bi_opf |= MD_FAILFAST; 1200 read_bio->bi_private = r10_bio; 1201 1202 if (mddev->gendisk) 1203 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1204 r10_bio->sector); 1205 submit_bio_noacct(read_bio); 1206 return; 1207 } 1208 1209 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1210 struct bio *bio, bool replacement, 1211 int n_copy) 1212 { 1213 const int op = bio_op(bio); 1214 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1215 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1216 unsigned long flags; 1217 struct blk_plug_cb *cb; 1218 struct raid10_plug_cb *plug = NULL; 1219 struct r10conf *conf = mddev->private; 1220 struct md_rdev *rdev; 1221 int devnum = r10_bio->devs[n_copy].devnum; 1222 struct bio *mbio; 1223 1224 if (replacement) { 1225 rdev = conf->mirrors[devnum].replacement; 1226 if (rdev == NULL) { 1227 /* Replacement just got moved to main 'rdev' */ 1228 smp_mb(); 1229 rdev = conf->mirrors[devnum].rdev; 1230 } 1231 } else 1232 rdev = conf->mirrors[devnum].rdev; 1233 1234 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1235 if (replacement) 1236 r10_bio->devs[n_copy].repl_bio = mbio; 1237 else 1238 r10_bio->devs[n_copy].bio = mbio; 1239 1240 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1241 choose_data_offset(r10_bio, rdev)); 1242 bio_set_dev(mbio, rdev->bdev); 1243 mbio->bi_end_io = raid10_end_write_request; 1244 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1245 if (!replacement && test_bit(FailFast, 1246 &conf->mirrors[devnum].rdev->flags) 1247 && enough(conf, devnum)) 1248 mbio->bi_opf |= MD_FAILFAST; 1249 mbio->bi_private = r10_bio; 1250 1251 if (conf->mddev->gendisk) 1252 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk), 1253 r10_bio->sector); 1254 /* flush_pending_writes() needs access to the rdev so...*/ 1255 mbio->bi_bdev = (void *)rdev; 1256 1257 atomic_inc(&r10_bio->remaining); 1258 1259 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1260 if (cb) 1261 plug = container_of(cb, struct raid10_plug_cb, cb); 1262 else 1263 plug = NULL; 1264 if (plug) { 1265 bio_list_add(&plug->pending, mbio); 1266 plug->pending_cnt++; 1267 } else { 1268 spin_lock_irqsave(&conf->device_lock, flags); 1269 bio_list_add(&conf->pending_bio_list, mbio); 1270 conf->pending_count++; 1271 spin_unlock_irqrestore(&conf->device_lock, flags); 1272 md_wakeup_thread(mddev->thread); 1273 } 1274 } 1275 1276 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1277 { 1278 int i; 1279 struct r10conf *conf = mddev->private; 1280 struct md_rdev *blocked_rdev; 1281 1282 retry_wait: 1283 blocked_rdev = NULL; 1284 rcu_read_lock(); 1285 for (i = 0; i < conf->copies; i++) { 1286 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1287 struct md_rdev *rrdev = rcu_dereference( 1288 conf->mirrors[i].replacement); 1289 if (rdev == rrdev) 1290 rrdev = NULL; 1291 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1292 atomic_inc(&rdev->nr_pending); 1293 blocked_rdev = rdev; 1294 break; 1295 } 1296 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1297 atomic_inc(&rrdev->nr_pending); 1298 blocked_rdev = rrdev; 1299 break; 1300 } 1301 1302 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1303 sector_t first_bad; 1304 sector_t dev_sector = r10_bio->devs[i].addr; 1305 int bad_sectors; 1306 int is_bad; 1307 1308 /* 1309 * Discard request doesn't care the write result 1310 * so it doesn't need to wait blocked disk here. 1311 */ 1312 if (!r10_bio->sectors) 1313 continue; 1314 1315 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors, 1316 &first_bad, &bad_sectors); 1317 if (is_bad < 0) { 1318 /* 1319 * Mustn't write here until the bad block 1320 * is acknowledged 1321 */ 1322 atomic_inc(&rdev->nr_pending); 1323 set_bit(BlockedBadBlocks, &rdev->flags); 1324 blocked_rdev = rdev; 1325 break; 1326 } 1327 } 1328 } 1329 rcu_read_unlock(); 1330 1331 if (unlikely(blocked_rdev)) { 1332 /* Have to wait for this device to get unblocked, then retry */ 1333 allow_barrier(conf); 1334 raid10_log(conf->mddev, "%s wait rdev %d blocked", 1335 __func__, blocked_rdev->raid_disk); 1336 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1337 wait_barrier(conf); 1338 goto retry_wait; 1339 } 1340 } 1341 1342 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1343 struct r10bio *r10_bio) 1344 { 1345 struct r10conf *conf = mddev->private; 1346 int i; 1347 sector_t sectors; 1348 int max_sectors; 1349 1350 if ((mddev_is_clustered(mddev) && 1351 md_cluster_ops->area_resyncing(mddev, WRITE, 1352 bio->bi_iter.bi_sector, 1353 bio_end_sector(bio)))) { 1354 DEFINE_WAIT(w); 1355 for (;;) { 1356 prepare_to_wait(&conf->wait_barrier, 1357 &w, TASK_IDLE); 1358 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1359 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1360 break; 1361 schedule(); 1362 } 1363 finish_wait(&conf->wait_barrier, &w); 1364 } 1365 1366 sectors = r10_bio->sectors; 1367 regular_request_wait(mddev, conf, bio, sectors); 1368 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1369 (mddev->reshape_backwards 1370 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1371 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1372 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1373 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1374 /* Need to update reshape_position in metadata */ 1375 mddev->reshape_position = conf->reshape_progress; 1376 set_mask_bits(&mddev->sb_flags, 0, 1377 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1378 md_wakeup_thread(mddev->thread); 1379 raid10_log(conf->mddev, "wait reshape metadata"); 1380 wait_event(mddev->sb_wait, 1381 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1382 1383 conf->reshape_safe = mddev->reshape_position; 1384 } 1385 1386 if (conf->pending_count >= max_queued_requests) { 1387 md_wakeup_thread(mddev->thread); 1388 raid10_log(mddev, "wait queued"); 1389 wait_event(conf->wait_barrier, 1390 conf->pending_count < max_queued_requests); 1391 } 1392 /* first select target devices under rcu_lock and 1393 * inc refcount on their rdev. Record them by setting 1394 * bios[x] to bio 1395 * If there are known/acknowledged bad blocks on any device 1396 * on which we have seen a write error, we want to avoid 1397 * writing to those blocks. This potentially requires several 1398 * writes to write around the bad blocks. Each set of writes 1399 * gets its own r10_bio with a set of bios attached. 1400 */ 1401 1402 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1403 raid10_find_phys(conf, r10_bio); 1404 1405 wait_blocked_dev(mddev, r10_bio); 1406 1407 rcu_read_lock(); 1408 max_sectors = r10_bio->sectors; 1409 1410 for (i = 0; i < conf->copies; i++) { 1411 int d = r10_bio->devs[i].devnum; 1412 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1413 struct md_rdev *rrdev = rcu_dereference( 1414 conf->mirrors[d].replacement); 1415 if (rdev == rrdev) 1416 rrdev = NULL; 1417 if (rdev && (test_bit(Faulty, &rdev->flags))) 1418 rdev = NULL; 1419 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1420 rrdev = NULL; 1421 1422 r10_bio->devs[i].bio = NULL; 1423 r10_bio->devs[i].repl_bio = NULL; 1424 1425 if (!rdev && !rrdev) { 1426 set_bit(R10BIO_Degraded, &r10_bio->state); 1427 continue; 1428 } 1429 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1430 sector_t first_bad; 1431 sector_t dev_sector = r10_bio->devs[i].addr; 1432 int bad_sectors; 1433 int is_bad; 1434 1435 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1436 &first_bad, &bad_sectors); 1437 if (is_bad && first_bad <= dev_sector) { 1438 /* Cannot write here at all */ 1439 bad_sectors -= (dev_sector - first_bad); 1440 if (bad_sectors < max_sectors) 1441 /* Mustn't write more than bad_sectors 1442 * to other devices yet 1443 */ 1444 max_sectors = bad_sectors; 1445 /* We don't set R10BIO_Degraded as that 1446 * only applies if the disk is missing, 1447 * so it might be re-added, and we want to 1448 * know to recover this chunk. 1449 * In this case the device is here, and the 1450 * fact that this chunk is not in-sync is 1451 * recorded in the bad block log. 1452 */ 1453 continue; 1454 } 1455 if (is_bad) { 1456 int good_sectors = first_bad - dev_sector; 1457 if (good_sectors < max_sectors) 1458 max_sectors = good_sectors; 1459 } 1460 } 1461 if (rdev) { 1462 r10_bio->devs[i].bio = bio; 1463 atomic_inc(&rdev->nr_pending); 1464 } 1465 if (rrdev) { 1466 r10_bio->devs[i].repl_bio = bio; 1467 atomic_inc(&rrdev->nr_pending); 1468 } 1469 } 1470 rcu_read_unlock(); 1471 1472 if (max_sectors < r10_bio->sectors) 1473 r10_bio->sectors = max_sectors; 1474 1475 if (r10_bio->sectors < bio_sectors(bio)) { 1476 struct bio *split = bio_split(bio, r10_bio->sectors, 1477 GFP_NOIO, &conf->bio_split); 1478 bio_chain(split, bio); 1479 allow_barrier(conf); 1480 submit_bio_noacct(bio); 1481 wait_barrier(conf); 1482 bio = split; 1483 r10_bio->master_bio = bio; 1484 } 1485 1486 atomic_set(&r10_bio->remaining, 1); 1487 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1488 1489 for (i = 0; i < conf->copies; i++) { 1490 if (r10_bio->devs[i].bio) 1491 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1492 if (r10_bio->devs[i].repl_bio) 1493 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1494 } 1495 one_write_done(r10_bio); 1496 } 1497 1498 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1499 { 1500 struct r10conf *conf = mddev->private; 1501 struct r10bio *r10_bio; 1502 1503 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1504 1505 r10_bio->master_bio = bio; 1506 r10_bio->sectors = sectors; 1507 1508 r10_bio->mddev = mddev; 1509 r10_bio->sector = bio->bi_iter.bi_sector; 1510 r10_bio->state = 0; 1511 r10_bio->read_slot = -1; 1512 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1513 conf->geo.raid_disks); 1514 1515 if (bio_data_dir(bio) == READ) 1516 raid10_read_request(mddev, bio, r10_bio); 1517 else 1518 raid10_write_request(mddev, bio, r10_bio); 1519 } 1520 1521 static void raid_end_discard_bio(struct r10bio *r10bio) 1522 { 1523 struct r10conf *conf = r10bio->mddev->private; 1524 struct r10bio *first_r10bio; 1525 1526 while (atomic_dec_and_test(&r10bio->remaining)) { 1527 1528 allow_barrier(conf); 1529 1530 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1531 first_r10bio = (struct r10bio *)r10bio->master_bio; 1532 free_r10bio(r10bio); 1533 r10bio = first_r10bio; 1534 } else { 1535 md_write_end(r10bio->mddev); 1536 bio_endio(r10bio->master_bio); 1537 free_r10bio(r10bio); 1538 break; 1539 } 1540 } 1541 } 1542 1543 static void raid10_end_discard_request(struct bio *bio) 1544 { 1545 struct r10bio *r10_bio = bio->bi_private; 1546 struct r10conf *conf = r10_bio->mddev->private; 1547 struct md_rdev *rdev = NULL; 1548 int dev; 1549 int slot, repl; 1550 1551 /* 1552 * We don't care the return value of discard bio 1553 */ 1554 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1555 set_bit(R10BIO_Uptodate, &r10_bio->state); 1556 1557 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1558 if (repl) 1559 rdev = conf->mirrors[dev].replacement; 1560 if (!rdev) { 1561 /* 1562 * raid10_remove_disk uses smp_mb to make sure rdev is set to 1563 * replacement before setting replacement to NULL. It can read 1564 * rdev first without barrier protect even replacment is NULL 1565 */ 1566 smp_rmb(); 1567 rdev = conf->mirrors[dev].rdev; 1568 } 1569 1570 raid_end_discard_bio(r10_bio); 1571 rdev_dec_pending(rdev, conf->mddev); 1572 } 1573 1574 /* 1575 * There are some limitations to handle discard bio 1576 * 1st, the discard size is bigger than stripe_size*2. 1577 * 2st, if the discard bio spans reshape progress, we use the old way to 1578 * handle discard bio 1579 */ 1580 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1581 { 1582 struct r10conf *conf = mddev->private; 1583 struct geom *geo = &conf->geo; 1584 int far_copies = geo->far_copies; 1585 bool first_copy = true; 1586 struct r10bio *r10_bio, *first_r10bio; 1587 struct bio *split; 1588 int disk; 1589 sector_t chunk; 1590 unsigned int stripe_size; 1591 unsigned int stripe_data_disks; 1592 sector_t split_size; 1593 sector_t bio_start, bio_end; 1594 sector_t first_stripe_index, last_stripe_index; 1595 sector_t start_disk_offset; 1596 unsigned int start_disk_index; 1597 sector_t end_disk_offset; 1598 unsigned int end_disk_index; 1599 unsigned int remainder; 1600 1601 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1602 return -EAGAIN; 1603 1604 wait_barrier(conf); 1605 1606 /* 1607 * Check reshape again to avoid reshape happens after checking 1608 * MD_RECOVERY_RESHAPE and before wait_barrier 1609 */ 1610 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1611 goto out; 1612 1613 if (geo->near_copies) 1614 stripe_data_disks = geo->raid_disks / geo->near_copies + 1615 geo->raid_disks % geo->near_copies; 1616 else 1617 stripe_data_disks = geo->raid_disks; 1618 1619 stripe_size = stripe_data_disks << geo->chunk_shift; 1620 1621 bio_start = bio->bi_iter.bi_sector; 1622 bio_end = bio_end_sector(bio); 1623 1624 /* 1625 * Maybe one discard bio is smaller than strip size or across one 1626 * stripe and discard region is larger than one stripe size. For far 1627 * offset layout, if the discard region is not aligned with stripe 1628 * size, there is hole when we submit discard bio to member disk. 1629 * For simplicity, we only handle discard bio which discard region 1630 * is bigger than stripe_size * 2 1631 */ 1632 if (bio_sectors(bio) < stripe_size*2) 1633 goto out; 1634 1635 /* 1636 * Keep bio aligned with strip size. 1637 */ 1638 div_u64_rem(bio_start, stripe_size, &remainder); 1639 if (remainder) { 1640 split_size = stripe_size - remainder; 1641 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1642 bio_chain(split, bio); 1643 allow_barrier(conf); 1644 /* Resend the fist split part */ 1645 submit_bio_noacct(split); 1646 wait_barrier(conf); 1647 } 1648 div_u64_rem(bio_end, stripe_size, &remainder); 1649 if (remainder) { 1650 split_size = bio_sectors(bio) - remainder; 1651 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1652 bio_chain(split, bio); 1653 allow_barrier(conf); 1654 /* Resend the second split part */ 1655 submit_bio_noacct(bio); 1656 bio = split; 1657 wait_barrier(conf); 1658 } 1659 1660 bio_start = bio->bi_iter.bi_sector; 1661 bio_end = bio_end_sector(bio); 1662 1663 /* 1664 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1665 * One stripe contains the chunks from all member disk (one chunk from 1666 * one disk at the same HBA address). For layout detail, see 'man md 4' 1667 */ 1668 chunk = bio_start >> geo->chunk_shift; 1669 chunk *= geo->near_copies; 1670 first_stripe_index = chunk; 1671 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1672 if (geo->far_offset) 1673 first_stripe_index *= geo->far_copies; 1674 start_disk_offset = (bio_start & geo->chunk_mask) + 1675 (first_stripe_index << geo->chunk_shift); 1676 1677 chunk = bio_end >> geo->chunk_shift; 1678 chunk *= geo->near_copies; 1679 last_stripe_index = chunk; 1680 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1681 if (geo->far_offset) 1682 last_stripe_index *= geo->far_copies; 1683 end_disk_offset = (bio_end & geo->chunk_mask) + 1684 (last_stripe_index << geo->chunk_shift); 1685 1686 retry_discard: 1687 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1688 r10_bio->mddev = mddev; 1689 r10_bio->state = 0; 1690 r10_bio->sectors = 0; 1691 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1692 wait_blocked_dev(mddev, r10_bio); 1693 1694 /* 1695 * For far layout it needs more than one r10bio to cover all regions. 1696 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1697 * to record the discard bio. Other r10bio->master_bio record the first 1698 * r10bio. The first r10bio only release after all other r10bios finish. 1699 * The discard bio returns only first r10bio finishes 1700 */ 1701 if (first_copy) { 1702 r10_bio->master_bio = bio; 1703 set_bit(R10BIO_Discard, &r10_bio->state); 1704 first_copy = false; 1705 first_r10bio = r10_bio; 1706 } else 1707 r10_bio->master_bio = (struct bio *)first_r10bio; 1708 1709 rcu_read_lock(); 1710 for (disk = 0; disk < geo->raid_disks; disk++) { 1711 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev); 1712 struct md_rdev *rrdev = rcu_dereference( 1713 conf->mirrors[disk].replacement); 1714 1715 r10_bio->devs[disk].bio = NULL; 1716 r10_bio->devs[disk].repl_bio = NULL; 1717 1718 if (rdev && (test_bit(Faulty, &rdev->flags))) 1719 rdev = NULL; 1720 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1721 rrdev = NULL; 1722 if (!rdev && !rrdev) 1723 continue; 1724 1725 if (rdev) { 1726 r10_bio->devs[disk].bio = bio; 1727 atomic_inc(&rdev->nr_pending); 1728 } 1729 if (rrdev) { 1730 r10_bio->devs[disk].repl_bio = bio; 1731 atomic_inc(&rrdev->nr_pending); 1732 } 1733 } 1734 rcu_read_unlock(); 1735 1736 atomic_set(&r10_bio->remaining, 1); 1737 for (disk = 0; disk < geo->raid_disks; disk++) { 1738 sector_t dev_start, dev_end; 1739 struct bio *mbio, *rbio = NULL; 1740 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev); 1741 struct md_rdev *rrdev = rcu_dereference( 1742 conf->mirrors[disk].replacement); 1743 1744 /* 1745 * Now start to calculate the start and end address for each disk. 1746 * The space between dev_start and dev_end is the discard region. 1747 * 1748 * For dev_start, it needs to consider three conditions: 1749 * 1st, the disk is before start_disk, you can imagine the disk in 1750 * the next stripe. So the dev_start is the start address of next 1751 * stripe. 1752 * 2st, the disk is after start_disk, it means the disk is at the 1753 * same stripe of first disk 1754 * 3st, the first disk itself, we can use start_disk_offset directly 1755 */ 1756 if (disk < start_disk_index) 1757 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1758 else if (disk > start_disk_index) 1759 dev_start = first_stripe_index * mddev->chunk_sectors; 1760 else 1761 dev_start = start_disk_offset; 1762 1763 if (disk < end_disk_index) 1764 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1765 else if (disk > end_disk_index) 1766 dev_end = last_stripe_index * mddev->chunk_sectors; 1767 else 1768 dev_end = end_disk_offset; 1769 1770 /* 1771 * It only handles discard bio which size is >= stripe size, so 1772 * dev_end > dev_start all the time 1773 */ 1774 if (r10_bio->devs[disk].bio) { 1775 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1776 mbio->bi_end_io = raid10_end_discard_request; 1777 mbio->bi_private = r10_bio; 1778 r10_bio->devs[disk].bio = mbio; 1779 r10_bio->devs[disk].devnum = disk; 1780 atomic_inc(&r10_bio->remaining); 1781 md_submit_discard_bio(mddev, rdev, mbio, 1782 dev_start + choose_data_offset(r10_bio, rdev), 1783 dev_end - dev_start); 1784 bio_endio(mbio); 1785 } 1786 if (r10_bio->devs[disk].repl_bio) { 1787 rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1788 rbio->bi_end_io = raid10_end_discard_request; 1789 rbio->bi_private = r10_bio; 1790 r10_bio->devs[disk].repl_bio = rbio; 1791 r10_bio->devs[disk].devnum = disk; 1792 atomic_inc(&r10_bio->remaining); 1793 md_submit_discard_bio(mddev, rrdev, rbio, 1794 dev_start + choose_data_offset(r10_bio, rrdev), 1795 dev_end - dev_start); 1796 bio_endio(rbio); 1797 } 1798 } 1799 1800 if (!geo->far_offset && --far_copies) { 1801 first_stripe_index += geo->stride >> geo->chunk_shift; 1802 start_disk_offset += geo->stride; 1803 last_stripe_index += geo->stride >> geo->chunk_shift; 1804 end_disk_offset += geo->stride; 1805 atomic_inc(&first_r10bio->remaining); 1806 raid_end_discard_bio(r10_bio); 1807 wait_barrier(conf); 1808 goto retry_discard; 1809 } 1810 1811 raid_end_discard_bio(r10_bio); 1812 1813 return 0; 1814 out: 1815 allow_barrier(conf); 1816 return -EAGAIN; 1817 } 1818 1819 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1820 { 1821 struct r10conf *conf = mddev->private; 1822 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1823 int chunk_sects = chunk_mask + 1; 1824 int sectors = bio_sectors(bio); 1825 1826 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1827 && md_flush_request(mddev, bio)) 1828 return true; 1829 1830 if (!md_write_start(mddev, bio)) 1831 return false; 1832 1833 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1834 if (!raid10_handle_discard(mddev, bio)) 1835 return true; 1836 1837 /* 1838 * If this request crosses a chunk boundary, we need to split 1839 * it. 1840 */ 1841 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1842 sectors > chunk_sects 1843 && (conf->geo.near_copies < conf->geo.raid_disks 1844 || conf->prev.near_copies < 1845 conf->prev.raid_disks))) 1846 sectors = chunk_sects - 1847 (bio->bi_iter.bi_sector & 1848 (chunk_sects - 1)); 1849 __make_request(mddev, bio, sectors); 1850 1851 /* In case raid10d snuck in to freeze_array */ 1852 wake_up(&conf->wait_barrier); 1853 return true; 1854 } 1855 1856 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1857 { 1858 struct r10conf *conf = mddev->private; 1859 int i; 1860 1861 if (conf->geo.near_copies < conf->geo.raid_disks) 1862 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1863 if (conf->geo.near_copies > 1) 1864 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1865 if (conf->geo.far_copies > 1) { 1866 if (conf->geo.far_offset) 1867 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1868 else 1869 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1870 if (conf->geo.far_set_size != conf->geo.raid_disks) 1871 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1872 } 1873 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1874 conf->geo.raid_disks - mddev->degraded); 1875 rcu_read_lock(); 1876 for (i = 0; i < conf->geo.raid_disks; i++) { 1877 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1878 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1879 } 1880 rcu_read_unlock(); 1881 seq_printf(seq, "]"); 1882 } 1883 1884 /* check if there are enough drives for 1885 * every block to appear on atleast one. 1886 * Don't consider the device numbered 'ignore' 1887 * as we might be about to remove it. 1888 */ 1889 static int _enough(struct r10conf *conf, int previous, int ignore) 1890 { 1891 int first = 0; 1892 int has_enough = 0; 1893 int disks, ncopies; 1894 if (previous) { 1895 disks = conf->prev.raid_disks; 1896 ncopies = conf->prev.near_copies; 1897 } else { 1898 disks = conf->geo.raid_disks; 1899 ncopies = conf->geo.near_copies; 1900 } 1901 1902 rcu_read_lock(); 1903 do { 1904 int n = conf->copies; 1905 int cnt = 0; 1906 int this = first; 1907 while (n--) { 1908 struct md_rdev *rdev; 1909 if (this != ignore && 1910 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1911 test_bit(In_sync, &rdev->flags)) 1912 cnt++; 1913 this = (this+1) % disks; 1914 } 1915 if (cnt == 0) 1916 goto out; 1917 first = (first + ncopies) % disks; 1918 } while (first != 0); 1919 has_enough = 1; 1920 out: 1921 rcu_read_unlock(); 1922 return has_enough; 1923 } 1924 1925 static int enough(struct r10conf *conf, int ignore) 1926 { 1927 /* when calling 'enough', both 'prev' and 'geo' must 1928 * be stable. 1929 * This is ensured if ->reconfig_mutex or ->device_lock 1930 * is held. 1931 */ 1932 return _enough(conf, 0, ignore) && 1933 _enough(conf, 1, ignore); 1934 } 1935 1936 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1937 { 1938 char b[BDEVNAME_SIZE]; 1939 struct r10conf *conf = mddev->private; 1940 unsigned long flags; 1941 1942 /* 1943 * If it is not operational, then we have already marked it as dead 1944 * else if it is the last working disks with "fail_last_dev == false", 1945 * ignore the error, let the next level up know. 1946 * else mark the drive as failed 1947 */ 1948 spin_lock_irqsave(&conf->device_lock, flags); 1949 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1950 && !enough(conf, rdev->raid_disk)) { 1951 /* 1952 * Don't fail the drive, just return an IO error. 1953 */ 1954 spin_unlock_irqrestore(&conf->device_lock, flags); 1955 return; 1956 } 1957 if (test_and_clear_bit(In_sync, &rdev->flags)) 1958 mddev->degraded++; 1959 /* 1960 * If recovery is running, make sure it aborts. 1961 */ 1962 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1963 set_bit(Blocked, &rdev->flags); 1964 set_bit(Faulty, &rdev->flags); 1965 set_mask_bits(&mddev->sb_flags, 0, 1966 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1967 spin_unlock_irqrestore(&conf->device_lock, flags); 1968 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1969 "md/raid10:%s: Operation continuing on %d devices.\n", 1970 mdname(mddev), bdevname(rdev->bdev, b), 1971 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1972 } 1973 1974 static void print_conf(struct r10conf *conf) 1975 { 1976 int i; 1977 struct md_rdev *rdev; 1978 1979 pr_debug("RAID10 conf printout:\n"); 1980 if (!conf) { 1981 pr_debug("(!conf)\n"); 1982 return; 1983 } 1984 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1985 conf->geo.raid_disks); 1986 1987 /* This is only called with ->reconfix_mutex held, so 1988 * rcu protection of rdev is not needed */ 1989 for (i = 0; i < conf->geo.raid_disks; i++) { 1990 char b[BDEVNAME_SIZE]; 1991 rdev = conf->mirrors[i].rdev; 1992 if (rdev) 1993 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1994 i, !test_bit(In_sync, &rdev->flags), 1995 !test_bit(Faulty, &rdev->flags), 1996 bdevname(rdev->bdev,b)); 1997 } 1998 } 1999 2000 static void close_sync(struct r10conf *conf) 2001 { 2002 wait_barrier(conf); 2003 allow_barrier(conf); 2004 2005 mempool_exit(&conf->r10buf_pool); 2006 } 2007 2008 static int raid10_spare_active(struct mddev *mddev) 2009 { 2010 int i; 2011 struct r10conf *conf = mddev->private; 2012 struct raid10_info *tmp; 2013 int count = 0; 2014 unsigned long flags; 2015 2016 /* 2017 * Find all non-in_sync disks within the RAID10 configuration 2018 * and mark them in_sync 2019 */ 2020 for (i = 0; i < conf->geo.raid_disks; i++) { 2021 tmp = conf->mirrors + i; 2022 if (tmp->replacement 2023 && tmp->replacement->recovery_offset == MaxSector 2024 && !test_bit(Faulty, &tmp->replacement->flags) 2025 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2026 /* Replacement has just become active */ 2027 if (!tmp->rdev 2028 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2029 count++; 2030 if (tmp->rdev) { 2031 /* Replaced device not technically faulty, 2032 * but we need to be sure it gets removed 2033 * and never re-added. 2034 */ 2035 set_bit(Faulty, &tmp->rdev->flags); 2036 sysfs_notify_dirent_safe( 2037 tmp->rdev->sysfs_state); 2038 } 2039 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2040 } else if (tmp->rdev 2041 && tmp->rdev->recovery_offset == MaxSector 2042 && !test_bit(Faulty, &tmp->rdev->flags) 2043 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2044 count++; 2045 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2046 } 2047 } 2048 spin_lock_irqsave(&conf->device_lock, flags); 2049 mddev->degraded -= count; 2050 spin_unlock_irqrestore(&conf->device_lock, flags); 2051 2052 print_conf(conf); 2053 return count; 2054 } 2055 2056 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2057 { 2058 struct r10conf *conf = mddev->private; 2059 int err = -EEXIST; 2060 int mirror; 2061 int first = 0; 2062 int last = conf->geo.raid_disks - 1; 2063 2064 if (mddev->recovery_cp < MaxSector) 2065 /* only hot-add to in-sync arrays, as recovery is 2066 * very different from resync 2067 */ 2068 return -EBUSY; 2069 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2070 return -EINVAL; 2071 2072 if (md_integrity_add_rdev(rdev, mddev)) 2073 return -ENXIO; 2074 2075 if (rdev->raid_disk >= 0) 2076 first = last = rdev->raid_disk; 2077 2078 if (rdev->saved_raid_disk >= first && 2079 rdev->saved_raid_disk < conf->geo.raid_disks && 2080 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2081 mirror = rdev->saved_raid_disk; 2082 else 2083 mirror = first; 2084 for ( ; mirror <= last ; mirror++) { 2085 struct raid10_info *p = &conf->mirrors[mirror]; 2086 if (p->recovery_disabled == mddev->recovery_disabled) 2087 continue; 2088 if (p->rdev) { 2089 if (!test_bit(WantReplacement, &p->rdev->flags) || 2090 p->replacement != NULL) 2091 continue; 2092 clear_bit(In_sync, &rdev->flags); 2093 set_bit(Replacement, &rdev->flags); 2094 rdev->raid_disk = mirror; 2095 err = 0; 2096 if (mddev->gendisk) 2097 disk_stack_limits(mddev->gendisk, rdev->bdev, 2098 rdev->data_offset << 9); 2099 conf->fullsync = 1; 2100 rcu_assign_pointer(p->replacement, rdev); 2101 break; 2102 } 2103 2104 if (mddev->gendisk) 2105 disk_stack_limits(mddev->gendisk, rdev->bdev, 2106 rdev->data_offset << 9); 2107 2108 p->head_position = 0; 2109 p->recovery_disabled = mddev->recovery_disabled - 1; 2110 rdev->raid_disk = mirror; 2111 err = 0; 2112 if (rdev->saved_raid_disk != mirror) 2113 conf->fullsync = 1; 2114 rcu_assign_pointer(p->rdev, rdev); 2115 break; 2116 } 2117 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 2118 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 2119 2120 print_conf(conf); 2121 return err; 2122 } 2123 2124 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2125 { 2126 struct r10conf *conf = mddev->private; 2127 int err = 0; 2128 int number = rdev->raid_disk; 2129 struct md_rdev **rdevp; 2130 struct raid10_info *p = conf->mirrors + number; 2131 2132 print_conf(conf); 2133 if (rdev == p->rdev) 2134 rdevp = &p->rdev; 2135 else if (rdev == p->replacement) 2136 rdevp = &p->replacement; 2137 else 2138 return 0; 2139 2140 if (test_bit(In_sync, &rdev->flags) || 2141 atomic_read(&rdev->nr_pending)) { 2142 err = -EBUSY; 2143 goto abort; 2144 } 2145 /* Only remove non-faulty devices if recovery 2146 * is not possible. 2147 */ 2148 if (!test_bit(Faulty, &rdev->flags) && 2149 mddev->recovery_disabled != p->recovery_disabled && 2150 (!p->replacement || p->replacement == rdev) && 2151 number < conf->geo.raid_disks && 2152 enough(conf, -1)) { 2153 err = -EBUSY; 2154 goto abort; 2155 } 2156 *rdevp = NULL; 2157 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 2158 synchronize_rcu(); 2159 if (atomic_read(&rdev->nr_pending)) { 2160 /* lost the race, try later */ 2161 err = -EBUSY; 2162 *rdevp = rdev; 2163 goto abort; 2164 } 2165 } 2166 if (p->replacement) { 2167 /* We must have just cleared 'rdev' */ 2168 p->rdev = p->replacement; 2169 clear_bit(Replacement, &p->replacement->flags); 2170 smp_mb(); /* Make sure other CPUs may see both as identical 2171 * but will never see neither -- if they are careful. 2172 */ 2173 p->replacement = NULL; 2174 } 2175 2176 clear_bit(WantReplacement, &rdev->flags); 2177 err = md_integrity_register(mddev); 2178 2179 abort: 2180 2181 print_conf(conf); 2182 return err; 2183 } 2184 2185 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2186 { 2187 struct r10conf *conf = r10_bio->mddev->private; 2188 2189 if (!bio->bi_status) 2190 set_bit(R10BIO_Uptodate, &r10_bio->state); 2191 else 2192 /* The write handler will notice the lack of 2193 * R10BIO_Uptodate and record any errors etc 2194 */ 2195 atomic_add(r10_bio->sectors, 2196 &conf->mirrors[d].rdev->corrected_errors); 2197 2198 /* for reconstruct, we always reschedule after a read. 2199 * for resync, only after all reads 2200 */ 2201 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2202 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2203 atomic_dec_and_test(&r10_bio->remaining)) { 2204 /* we have read all the blocks, 2205 * do the comparison in process context in raid10d 2206 */ 2207 reschedule_retry(r10_bio); 2208 } 2209 } 2210 2211 static void end_sync_read(struct bio *bio) 2212 { 2213 struct r10bio *r10_bio = get_resync_r10bio(bio); 2214 struct r10conf *conf = r10_bio->mddev->private; 2215 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2216 2217 __end_sync_read(r10_bio, bio, d); 2218 } 2219 2220 static void end_reshape_read(struct bio *bio) 2221 { 2222 /* reshape read bio isn't allocated from r10buf_pool */ 2223 struct r10bio *r10_bio = bio->bi_private; 2224 2225 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2226 } 2227 2228 static void end_sync_request(struct r10bio *r10_bio) 2229 { 2230 struct mddev *mddev = r10_bio->mddev; 2231 2232 while (atomic_dec_and_test(&r10_bio->remaining)) { 2233 if (r10_bio->master_bio == NULL) { 2234 /* the primary of several recovery bios */ 2235 sector_t s = r10_bio->sectors; 2236 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2237 test_bit(R10BIO_WriteError, &r10_bio->state)) 2238 reschedule_retry(r10_bio); 2239 else 2240 put_buf(r10_bio); 2241 md_done_sync(mddev, s, 1); 2242 break; 2243 } else { 2244 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2245 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2246 test_bit(R10BIO_WriteError, &r10_bio->state)) 2247 reschedule_retry(r10_bio); 2248 else 2249 put_buf(r10_bio); 2250 r10_bio = r10_bio2; 2251 } 2252 } 2253 } 2254 2255 static void end_sync_write(struct bio *bio) 2256 { 2257 struct r10bio *r10_bio = get_resync_r10bio(bio); 2258 struct mddev *mddev = r10_bio->mddev; 2259 struct r10conf *conf = mddev->private; 2260 int d; 2261 sector_t first_bad; 2262 int bad_sectors; 2263 int slot; 2264 int repl; 2265 struct md_rdev *rdev = NULL; 2266 2267 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2268 if (repl) 2269 rdev = conf->mirrors[d].replacement; 2270 else 2271 rdev = conf->mirrors[d].rdev; 2272 2273 if (bio->bi_status) { 2274 if (repl) 2275 md_error(mddev, rdev); 2276 else { 2277 set_bit(WriteErrorSeen, &rdev->flags); 2278 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2279 set_bit(MD_RECOVERY_NEEDED, 2280 &rdev->mddev->recovery); 2281 set_bit(R10BIO_WriteError, &r10_bio->state); 2282 } 2283 } else if (is_badblock(rdev, 2284 r10_bio->devs[slot].addr, 2285 r10_bio->sectors, 2286 &first_bad, &bad_sectors)) 2287 set_bit(R10BIO_MadeGood, &r10_bio->state); 2288 2289 rdev_dec_pending(rdev, mddev); 2290 2291 end_sync_request(r10_bio); 2292 } 2293 2294 /* 2295 * Note: sync and recover and handled very differently for raid10 2296 * This code is for resync. 2297 * For resync, we read through virtual addresses and read all blocks. 2298 * If there is any error, we schedule a write. The lowest numbered 2299 * drive is authoritative. 2300 * However requests come for physical address, so we need to map. 2301 * For every physical address there are raid_disks/copies virtual addresses, 2302 * which is always are least one, but is not necessarly an integer. 2303 * This means that a physical address can span multiple chunks, so we may 2304 * have to submit multiple io requests for a single sync request. 2305 */ 2306 /* 2307 * We check if all blocks are in-sync and only write to blocks that 2308 * aren't in sync 2309 */ 2310 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2311 { 2312 struct r10conf *conf = mddev->private; 2313 int i, first; 2314 struct bio *tbio, *fbio; 2315 int vcnt; 2316 struct page **tpages, **fpages; 2317 2318 atomic_set(&r10_bio->remaining, 1); 2319 2320 /* find the first device with a block */ 2321 for (i=0; i<conf->copies; i++) 2322 if (!r10_bio->devs[i].bio->bi_status) 2323 break; 2324 2325 if (i == conf->copies) 2326 goto done; 2327 2328 first = i; 2329 fbio = r10_bio->devs[i].bio; 2330 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2331 fbio->bi_iter.bi_idx = 0; 2332 fpages = get_resync_pages(fbio)->pages; 2333 2334 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2335 /* now find blocks with errors */ 2336 for (i=0 ; i < conf->copies ; i++) { 2337 int j, d; 2338 struct md_rdev *rdev; 2339 struct resync_pages *rp; 2340 2341 tbio = r10_bio->devs[i].bio; 2342 2343 if (tbio->bi_end_io != end_sync_read) 2344 continue; 2345 if (i == first) 2346 continue; 2347 2348 tpages = get_resync_pages(tbio)->pages; 2349 d = r10_bio->devs[i].devnum; 2350 rdev = conf->mirrors[d].rdev; 2351 if (!r10_bio->devs[i].bio->bi_status) { 2352 /* We know that the bi_io_vec layout is the same for 2353 * both 'first' and 'i', so we just compare them. 2354 * All vec entries are PAGE_SIZE; 2355 */ 2356 int sectors = r10_bio->sectors; 2357 for (j = 0; j < vcnt; j++) { 2358 int len = PAGE_SIZE; 2359 if (sectors < (len / 512)) 2360 len = sectors * 512; 2361 if (memcmp(page_address(fpages[j]), 2362 page_address(tpages[j]), 2363 len)) 2364 break; 2365 sectors -= len/512; 2366 } 2367 if (j == vcnt) 2368 continue; 2369 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2370 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2371 /* Don't fix anything. */ 2372 continue; 2373 } else if (test_bit(FailFast, &rdev->flags)) { 2374 /* Just give up on this device */ 2375 md_error(rdev->mddev, rdev); 2376 continue; 2377 } 2378 /* Ok, we need to write this bio, either to correct an 2379 * inconsistency or to correct an unreadable block. 2380 * First we need to fixup bv_offset, bv_len and 2381 * bi_vecs, as the read request might have corrupted these 2382 */ 2383 rp = get_resync_pages(tbio); 2384 bio_reset(tbio); 2385 2386 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2387 2388 rp->raid_bio = r10_bio; 2389 tbio->bi_private = rp; 2390 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2391 tbio->bi_end_io = end_sync_write; 2392 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2393 2394 bio_copy_data(tbio, fbio); 2395 2396 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2397 atomic_inc(&r10_bio->remaining); 2398 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2399 2400 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2401 tbio->bi_opf |= MD_FAILFAST; 2402 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2403 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2404 submit_bio_noacct(tbio); 2405 } 2406 2407 /* Now write out to any replacement devices 2408 * that are active 2409 */ 2410 for (i = 0; i < conf->copies; i++) { 2411 int d; 2412 2413 tbio = r10_bio->devs[i].repl_bio; 2414 if (!tbio || !tbio->bi_end_io) 2415 continue; 2416 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2417 && r10_bio->devs[i].bio != fbio) 2418 bio_copy_data(tbio, fbio); 2419 d = r10_bio->devs[i].devnum; 2420 atomic_inc(&r10_bio->remaining); 2421 md_sync_acct(conf->mirrors[d].replacement->bdev, 2422 bio_sectors(tbio)); 2423 submit_bio_noacct(tbio); 2424 } 2425 2426 done: 2427 if (atomic_dec_and_test(&r10_bio->remaining)) { 2428 md_done_sync(mddev, r10_bio->sectors, 1); 2429 put_buf(r10_bio); 2430 } 2431 } 2432 2433 /* 2434 * Now for the recovery code. 2435 * Recovery happens across physical sectors. 2436 * We recover all non-is_sync drives by finding the virtual address of 2437 * each, and then choose a working drive that also has that virt address. 2438 * There is a separate r10_bio for each non-in_sync drive. 2439 * Only the first two slots are in use. The first for reading, 2440 * The second for writing. 2441 * 2442 */ 2443 static void fix_recovery_read_error(struct r10bio *r10_bio) 2444 { 2445 /* We got a read error during recovery. 2446 * We repeat the read in smaller page-sized sections. 2447 * If a read succeeds, write it to the new device or record 2448 * a bad block if we cannot. 2449 * If a read fails, record a bad block on both old and 2450 * new devices. 2451 */ 2452 struct mddev *mddev = r10_bio->mddev; 2453 struct r10conf *conf = mddev->private; 2454 struct bio *bio = r10_bio->devs[0].bio; 2455 sector_t sect = 0; 2456 int sectors = r10_bio->sectors; 2457 int idx = 0; 2458 int dr = r10_bio->devs[0].devnum; 2459 int dw = r10_bio->devs[1].devnum; 2460 struct page **pages = get_resync_pages(bio)->pages; 2461 2462 while (sectors) { 2463 int s = sectors; 2464 struct md_rdev *rdev; 2465 sector_t addr; 2466 int ok; 2467 2468 if (s > (PAGE_SIZE>>9)) 2469 s = PAGE_SIZE >> 9; 2470 2471 rdev = conf->mirrors[dr].rdev; 2472 addr = r10_bio->devs[0].addr + sect, 2473 ok = sync_page_io(rdev, 2474 addr, 2475 s << 9, 2476 pages[idx], 2477 REQ_OP_READ, 0, false); 2478 if (ok) { 2479 rdev = conf->mirrors[dw].rdev; 2480 addr = r10_bio->devs[1].addr + sect; 2481 ok = sync_page_io(rdev, 2482 addr, 2483 s << 9, 2484 pages[idx], 2485 REQ_OP_WRITE, 0, false); 2486 if (!ok) { 2487 set_bit(WriteErrorSeen, &rdev->flags); 2488 if (!test_and_set_bit(WantReplacement, 2489 &rdev->flags)) 2490 set_bit(MD_RECOVERY_NEEDED, 2491 &rdev->mddev->recovery); 2492 } 2493 } 2494 if (!ok) { 2495 /* We don't worry if we cannot set a bad block - 2496 * it really is bad so there is no loss in not 2497 * recording it yet 2498 */ 2499 rdev_set_badblocks(rdev, addr, s, 0); 2500 2501 if (rdev != conf->mirrors[dw].rdev) { 2502 /* need bad block on destination too */ 2503 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2504 addr = r10_bio->devs[1].addr + sect; 2505 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2506 if (!ok) { 2507 /* just abort the recovery */ 2508 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2509 mdname(mddev)); 2510 2511 conf->mirrors[dw].recovery_disabled 2512 = mddev->recovery_disabled; 2513 set_bit(MD_RECOVERY_INTR, 2514 &mddev->recovery); 2515 break; 2516 } 2517 } 2518 } 2519 2520 sectors -= s; 2521 sect += s; 2522 idx++; 2523 } 2524 } 2525 2526 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2527 { 2528 struct r10conf *conf = mddev->private; 2529 int d; 2530 struct bio *wbio, *wbio2; 2531 2532 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2533 fix_recovery_read_error(r10_bio); 2534 end_sync_request(r10_bio); 2535 return; 2536 } 2537 2538 /* 2539 * share the pages with the first bio 2540 * and submit the write request 2541 */ 2542 d = r10_bio->devs[1].devnum; 2543 wbio = r10_bio->devs[1].bio; 2544 wbio2 = r10_bio->devs[1].repl_bio; 2545 /* Need to test wbio2->bi_end_io before we call 2546 * submit_bio_noacct as if the former is NULL, 2547 * the latter is free to free wbio2. 2548 */ 2549 if (wbio2 && !wbio2->bi_end_io) 2550 wbio2 = NULL; 2551 if (wbio->bi_end_io) { 2552 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2553 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2554 submit_bio_noacct(wbio); 2555 } 2556 if (wbio2) { 2557 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2558 md_sync_acct(conf->mirrors[d].replacement->bdev, 2559 bio_sectors(wbio2)); 2560 submit_bio_noacct(wbio2); 2561 } 2562 } 2563 2564 /* 2565 * Used by fix_read_error() to decay the per rdev read_errors. 2566 * We halve the read error count for every hour that has elapsed 2567 * since the last recorded read error. 2568 * 2569 */ 2570 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2571 { 2572 long cur_time_mon; 2573 unsigned long hours_since_last; 2574 unsigned int read_errors = atomic_read(&rdev->read_errors); 2575 2576 cur_time_mon = ktime_get_seconds(); 2577 2578 if (rdev->last_read_error == 0) { 2579 /* first time we've seen a read error */ 2580 rdev->last_read_error = cur_time_mon; 2581 return; 2582 } 2583 2584 hours_since_last = (long)(cur_time_mon - 2585 rdev->last_read_error) / 3600; 2586 2587 rdev->last_read_error = cur_time_mon; 2588 2589 /* 2590 * if hours_since_last is > the number of bits in read_errors 2591 * just set read errors to 0. We do this to avoid 2592 * overflowing the shift of read_errors by hours_since_last. 2593 */ 2594 if (hours_since_last >= 8 * sizeof(read_errors)) 2595 atomic_set(&rdev->read_errors, 0); 2596 else 2597 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2598 } 2599 2600 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2601 int sectors, struct page *page, int rw) 2602 { 2603 sector_t first_bad; 2604 int bad_sectors; 2605 2606 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2607 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2608 return -1; 2609 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2610 /* success */ 2611 return 1; 2612 if (rw == WRITE) { 2613 set_bit(WriteErrorSeen, &rdev->flags); 2614 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2615 set_bit(MD_RECOVERY_NEEDED, 2616 &rdev->mddev->recovery); 2617 } 2618 /* need to record an error - either for the block or the device */ 2619 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2620 md_error(rdev->mddev, rdev); 2621 return 0; 2622 } 2623 2624 /* 2625 * This is a kernel thread which: 2626 * 2627 * 1. Retries failed read operations on working mirrors. 2628 * 2. Updates the raid superblock when problems encounter. 2629 * 3. Performs writes following reads for array synchronising. 2630 */ 2631 2632 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2633 { 2634 int sect = 0; /* Offset from r10_bio->sector */ 2635 int sectors = r10_bio->sectors; 2636 struct md_rdev *rdev; 2637 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2638 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2639 2640 /* still own a reference to this rdev, so it cannot 2641 * have been cleared recently. 2642 */ 2643 rdev = conf->mirrors[d].rdev; 2644 2645 if (test_bit(Faulty, &rdev->flags)) 2646 /* drive has already been failed, just ignore any 2647 more fix_read_error() attempts */ 2648 return; 2649 2650 check_decay_read_errors(mddev, rdev); 2651 atomic_inc(&rdev->read_errors); 2652 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2653 char b[BDEVNAME_SIZE]; 2654 bdevname(rdev->bdev, b); 2655 2656 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2657 mdname(mddev), b, 2658 atomic_read(&rdev->read_errors), max_read_errors); 2659 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2660 mdname(mddev), b); 2661 md_error(mddev, rdev); 2662 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2663 return; 2664 } 2665 2666 while(sectors) { 2667 int s = sectors; 2668 int sl = r10_bio->read_slot; 2669 int success = 0; 2670 int start; 2671 2672 if (s > (PAGE_SIZE>>9)) 2673 s = PAGE_SIZE >> 9; 2674 2675 rcu_read_lock(); 2676 do { 2677 sector_t first_bad; 2678 int bad_sectors; 2679 2680 d = r10_bio->devs[sl].devnum; 2681 rdev = rcu_dereference(conf->mirrors[d].rdev); 2682 if (rdev && 2683 test_bit(In_sync, &rdev->flags) && 2684 !test_bit(Faulty, &rdev->flags) && 2685 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2686 &first_bad, &bad_sectors) == 0) { 2687 atomic_inc(&rdev->nr_pending); 2688 rcu_read_unlock(); 2689 success = sync_page_io(rdev, 2690 r10_bio->devs[sl].addr + 2691 sect, 2692 s<<9, 2693 conf->tmppage, 2694 REQ_OP_READ, 0, false); 2695 rdev_dec_pending(rdev, mddev); 2696 rcu_read_lock(); 2697 if (success) 2698 break; 2699 } 2700 sl++; 2701 if (sl == conf->copies) 2702 sl = 0; 2703 } while (!success && sl != r10_bio->read_slot); 2704 rcu_read_unlock(); 2705 2706 if (!success) { 2707 /* Cannot read from anywhere, just mark the block 2708 * as bad on the first device to discourage future 2709 * reads. 2710 */ 2711 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2712 rdev = conf->mirrors[dn].rdev; 2713 2714 if (!rdev_set_badblocks( 2715 rdev, 2716 r10_bio->devs[r10_bio->read_slot].addr 2717 + sect, 2718 s, 0)) { 2719 md_error(mddev, rdev); 2720 r10_bio->devs[r10_bio->read_slot].bio 2721 = IO_BLOCKED; 2722 } 2723 break; 2724 } 2725 2726 start = sl; 2727 /* write it back and re-read */ 2728 rcu_read_lock(); 2729 while (sl != r10_bio->read_slot) { 2730 char b[BDEVNAME_SIZE]; 2731 2732 if (sl==0) 2733 sl = conf->copies; 2734 sl--; 2735 d = r10_bio->devs[sl].devnum; 2736 rdev = rcu_dereference(conf->mirrors[d].rdev); 2737 if (!rdev || 2738 test_bit(Faulty, &rdev->flags) || 2739 !test_bit(In_sync, &rdev->flags)) 2740 continue; 2741 2742 atomic_inc(&rdev->nr_pending); 2743 rcu_read_unlock(); 2744 if (r10_sync_page_io(rdev, 2745 r10_bio->devs[sl].addr + 2746 sect, 2747 s, conf->tmppage, WRITE) 2748 == 0) { 2749 /* Well, this device is dead */ 2750 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2751 mdname(mddev), s, 2752 (unsigned long long)( 2753 sect + 2754 choose_data_offset(r10_bio, 2755 rdev)), 2756 bdevname(rdev->bdev, b)); 2757 pr_notice("md/raid10:%s: %s: failing drive\n", 2758 mdname(mddev), 2759 bdevname(rdev->bdev, b)); 2760 } 2761 rdev_dec_pending(rdev, mddev); 2762 rcu_read_lock(); 2763 } 2764 sl = start; 2765 while (sl != r10_bio->read_slot) { 2766 char b[BDEVNAME_SIZE]; 2767 2768 if (sl==0) 2769 sl = conf->copies; 2770 sl--; 2771 d = r10_bio->devs[sl].devnum; 2772 rdev = rcu_dereference(conf->mirrors[d].rdev); 2773 if (!rdev || 2774 test_bit(Faulty, &rdev->flags) || 2775 !test_bit(In_sync, &rdev->flags)) 2776 continue; 2777 2778 atomic_inc(&rdev->nr_pending); 2779 rcu_read_unlock(); 2780 switch (r10_sync_page_io(rdev, 2781 r10_bio->devs[sl].addr + 2782 sect, 2783 s, conf->tmppage, 2784 READ)) { 2785 case 0: 2786 /* Well, this device is dead */ 2787 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2788 mdname(mddev), s, 2789 (unsigned long long)( 2790 sect + 2791 choose_data_offset(r10_bio, rdev)), 2792 bdevname(rdev->bdev, b)); 2793 pr_notice("md/raid10:%s: %s: failing drive\n", 2794 mdname(mddev), 2795 bdevname(rdev->bdev, b)); 2796 break; 2797 case 1: 2798 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2799 mdname(mddev), s, 2800 (unsigned long long)( 2801 sect + 2802 choose_data_offset(r10_bio, rdev)), 2803 bdevname(rdev->bdev, b)); 2804 atomic_add(s, &rdev->corrected_errors); 2805 } 2806 2807 rdev_dec_pending(rdev, mddev); 2808 rcu_read_lock(); 2809 } 2810 rcu_read_unlock(); 2811 2812 sectors -= s; 2813 sect += s; 2814 } 2815 } 2816 2817 static int narrow_write_error(struct r10bio *r10_bio, int i) 2818 { 2819 struct bio *bio = r10_bio->master_bio; 2820 struct mddev *mddev = r10_bio->mddev; 2821 struct r10conf *conf = mddev->private; 2822 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2823 /* bio has the data to be written to slot 'i' where 2824 * we just recently had a write error. 2825 * We repeatedly clone the bio and trim down to one block, 2826 * then try the write. Where the write fails we record 2827 * a bad block. 2828 * It is conceivable that the bio doesn't exactly align with 2829 * blocks. We must handle this. 2830 * 2831 * We currently own a reference to the rdev. 2832 */ 2833 2834 int block_sectors; 2835 sector_t sector; 2836 int sectors; 2837 int sect_to_write = r10_bio->sectors; 2838 int ok = 1; 2839 2840 if (rdev->badblocks.shift < 0) 2841 return 0; 2842 2843 block_sectors = roundup(1 << rdev->badblocks.shift, 2844 bdev_logical_block_size(rdev->bdev) >> 9); 2845 sector = r10_bio->sector; 2846 sectors = ((r10_bio->sector + block_sectors) 2847 & ~(sector_t)(block_sectors - 1)) 2848 - sector; 2849 2850 while (sect_to_write) { 2851 struct bio *wbio; 2852 sector_t wsector; 2853 if (sectors > sect_to_write) 2854 sectors = sect_to_write; 2855 /* Write at 'sector' for 'sectors' */ 2856 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2857 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2858 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2859 wbio->bi_iter.bi_sector = wsector + 2860 choose_data_offset(r10_bio, rdev); 2861 bio_set_dev(wbio, rdev->bdev); 2862 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2863 2864 if (submit_bio_wait(wbio) < 0) 2865 /* Failure! */ 2866 ok = rdev_set_badblocks(rdev, wsector, 2867 sectors, 0) 2868 && ok; 2869 2870 bio_put(wbio); 2871 sect_to_write -= sectors; 2872 sector += sectors; 2873 sectors = block_sectors; 2874 } 2875 return ok; 2876 } 2877 2878 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2879 { 2880 int slot = r10_bio->read_slot; 2881 struct bio *bio; 2882 struct r10conf *conf = mddev->private; 2883 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2884 2885 /* we got a read error. Maybe the drive is bad. Maybe just 2886 * the block and we can fix it. 2887 * We freeze all other IO, and try reading the block from 2888 * other devices. When we find one, we re-write 2889 * and check it that fixes the read error. 2890 * This is all done synchronously while the array is 2891 * frozen. 2892 */ 2893 bio = r10_bio->devs[slot].bio; 2894 bio_put(bio); 2895 r10_bio->devs[slot].bio = NULL; 2896 2897 if (mddev->ro) 2898 r10_bio->devs[slot].bio = IO_BLOCKED; 2899 else if (!test_bit(FailFast, &rdev->flags)) { 2900 freeze_array(conf, 1); 2901 fix_read_error(conf, mddev, r10_bio); 2902 unfreeze_array(conf); 2903 } else 2904 md_error(mddev, rdev); 2905 2906 rdev_dec_pending(rdev, mddev); 2907 allow_barrier(conf); 2908 r10_bio->state = 0; 2909 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2910 } 2911 2912 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2913 { 2914 /* Some sort of write request has finished and it 2915 * succeeded in writing where we thought there was a 2916 * bad block. So forget the bad block. 2917 * Or possibly if failed and we need to record 2918 * a bad block. 2919 */ 2920 int m; 2921 struct md_rdev *rdev; 2922 2923 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2924 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2925 for (m = 0; m < conf->copies; m++) { 2926 int dev = r10_bio->devs[m].devnum; 2927 rdev = conf->mirrors[dev].rdev; 2928 if (r10_bio->devs[m].bio == NULL || 2929 r10_bio->devs[m].bio->bi_end_io == NULL) 2930 continue; 2931 if (!r10_bio->devs[m].bio->bi_status) { 2932 rdev_clear_badblocks( 2933 rdev, 2934 r10_bio->devs[m].addr, 2935 r10_bio->sectors, 0); 2936 } else { 2937 if (!rdev_set_badblocks( 2938 rdev, 2939 r10_bio->devs[m].addr, 2940 r10_bio->sectors, 0)) 2941 md_error(conf->mddev, rdev); 2942 } 2943 rdev = conf->mirrors[dev].replacement; 2944 if (r10_bio->devs[m].repl_bio == NULL || 2945 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2946 continue; 2947 2948 if (!r10_bio->devs[m].repl_bio->bi_status) { 2949 rdev_clear_badblocks( 2950 rdev, 2951 r10_bio->devs[m].addr, 2952 r10_bio->sectors, 0); 2953 } else { 2954 if (!rdev_set_badblocks( 2955 rdev, 2956 r10_bio->devs[m].addr, 2957 r10_bio->sectors, 0)) 2958 md_error(conf->mddev, rdev); 2959 } 2960 } 2961 put_buf(r10_bio); 2962 } else { 2963 bool fail = false; 2964 for (m = 0; m < conf->copies; m++) { 2965 int dev = r10_bio->devs[m].devnum; 2966 struct bio *bio = r10_bio->devs[m].bio; 2967 rdev = conf->mirrors[dev].rdev; 2968 if (bio == IO_MADE_GOOD) { 2969 rdev_clear_badblocks( 2970 rdev, 2971 r10_bio->devs[m].addr, 2972 r10_bio->sectors, 0); 2973 rdev_dec_pending(rdev, conf->mddev); 2974 } else if (bio != NULL && bio->bi_status) { 2975 fail = true; 2976 if (!narrow_write_error(r10_bio, m)) { 2977 md_error(conf->mddev, rdev); 2978 set_bit(R10BIO_Degraded, 2979 &r10_bio->state); 2980 } 2981 rdev_dec_pending(rdev, conf->mddev); 2982 } 2983 bio = r10_bio->devs[m].repl_bio; 2984 rdev = conf->mirrors[dev].replacement; 2985 if (rdev && bio == IO_MADE_GOOD) { 2986 rdev_clear_badblocks( 2987 rdev, 2988 r10_bio->devs[m].addr, 2989 r10_bio->sectors, 0); 2990 rdev_dec_pending(rdev, conf->mddev); 2991 } 2992 } 2993 if (fail) { 2994 spin_lock_irq(&conf->device_lock); 2995 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2996 conf->nr_queued++; 2997 spin_unlock_irq(&conf->device_lock); 2998 /* 2999 * In case freeze_array() is waiting for condition 3000 * nr_pending == nr_queued + extra to be true. 3001 */ 3002 wake_up(&conf->wait_barrier); 3003 md_wakeup_thread(conf->mddev->thread); 3004 } else { 3005 if (test_bit(R10BIO_WriteError, 3006 &r10_bio->state)) 3007 close_write(r10_bio); 3008 raid_end_bio_io(r10_bio); 3009 } 3010 } 3011 } 3012 3013 static void raid10d(struct md_thread *thread) 3014 { 3015 struct mddev *mddev = thread->mddev; 3016 struct r10bio *r10_bio; 3017 unsigned long flags; 3018 struct r10conf *conf = mddev->private; 3019 struct list_head *head = &conf->retry_list; 3020 struct blk_plug plug; 3021 3022 md_check_recovery(mddev); 3023 3024 if (!list_empty_careful(&conf->bio_end_io_list) && 3025 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3026 LIST_HEAD(tmp); 3027 spin_lock_irqsave(&conf->device_lock, flags); 3028 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3029 while (!list_empty(&conf->bio_end_io_list)) { 3030 list_move(conf->bio_end_io_list.prev, &tmp); 3031 conf->nr_queued--; 3032 } 3033 } 3034 spin_unlock_irqrestore(&conf->device_lock, flags); 3035 while (!list_empty(&tmp)) { 3036 r10_bio = list_first_entry(&tmp, struct r10bio, 3037 retry_list); 3038 list_del(&r10_bio->retry_list); 3039 if (mddev->degraded) 3040 set_bit(R10BIO_Degraded, &r10_bio->state); 3041 3042 if (test_bit(R10BIO_WriteError, 3043 &r10_bio->state)) 3044 close_write(r10_bio); 3045 raid_end_bio_io(r10_bio); 3046 } 3047 } 3048 3049 blk_start_plug(&plug); 3050 for (;;) { 3051 3052 flush_pending_writes(conf); 3053 3054 spin_lock_irqsave(&conf->device_lock, flags); 3055 if (list_empty(head)) { 3056 spin_unlock_irqrestore(&conf->device_lock, flags); 3057 break; 3058 } 3059 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3060 list_del(head->prev); 3061 conf->nr_queued--; 3062 spin_unlock_irqrestore(&conf->device_lock, flags); 3063 3064 mddev = r10_bio->mddev; 3065 conf = mddev->private; 3066 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3067 test_bit(R10BIO_WriteError, &r10_bio->state)) 3068 handle_write_completed(conf, r10_bio); 3069 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3070 reshape_request_write(mddev, r10_bio); 3071 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3072 sync_request_write(mddev, r10_bio); 3073 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3074 recovery_request_write(mddev, r10_bio); 3075 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3076 handle_read_error(mddev, r10_bio); 3077 else 3078 WARN_ON_ONCE(1); 3079 3080 cond_resched(); 3081 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3082 md_check_recovery(mddev); 3083 } 3084 blk_finish_plug(&plug); 3085 } 3086 3087 static int init_resync(struct r10conf *conf) 3088 { 3089 int ret, buffs, i; 3090 3091 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3092 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3093 conf->have_replacement = 0; 3094 for (i = 0; i < conf->geo.raid_disks; i++) 3095 if (conf->mirrors[i].replacement) 3096 conf->have_replacement = 1; 3097 ret = mempool_init(&conf->r10buf_pool, buffs, 3098 r10buf_pool_alloc, r10buf_pool_free, conf); 3099 if (ret) 3100 return ret; 3101 conf->next_resync = 0; 3102 return 0; 3103 } 3104 3105 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3106 { 3107 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3108 struct rsync_pages *rp; 3109 struct bio *bio; 3110 int nalloc; 3111 int i; 3112 3113 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3114 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3115 nalloc = conf->copies; /* resync */ 3116 else 3117 nalloc = 2; /* recovery */ 3118 3119 for (i = 0; i < nalloc; i++) { 3120 bio = r10bio->devs[i].bio; 3121 rp = bio->bi_private; 3122 bio_reset(bio); 3123 bio->bi_private = rp; 3124 bio = r10bio->devs[i].repl_bio; 3125 if (bio) { 3126 rp = bio->bi_private; 3127 bio_reset(bio); 3128 bio->bi_private = rp; 3129 } 3130 } 3131 return r10bio; 3132 } 3133 3134 /* 3135 * Set cluster_sync_high since we need other nodes to add the 3136 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3137 */ 3138 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3139 { 3140 sector_t window_size; 3141 int extra_chunk, chunks; 3142 3143 /* 3144 * First, here we define "stripe" as a unit which across 3145 * all member devices one time, so we get chunks by use 3146 * raid_disks / near_copies. Otherwise, if near_copies is 3147 * close to raid_disks, then resync window could increases 3148 * linearly with the increase of raid_disks, which means 3149 * we will suspend a really large IO window while it is not 3150 * necessary. If raid_disks is not divisible by near_copies, 3151 * an extra chunk is needed to ensure the whole "stripe" is 3152 * covered. 3153 */ 3154 3155 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3156 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3157 extra_chunk = 0; 3158 else 3159 extra_chunk = 1; 3160 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3161 3162 /* 3163 * At least use a 32M window to align with raid1's resync window 3164 */ 3165 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3166 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3167 3168 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3169 } 3170 3171 /* 3172 * perform a "sync" on one "block" 3173 * 3174 * We need to make sure that no normal I/O request - particularly write 3175 * requests - conflict with active sync requests. 3176 * 3177 * This is achieved by tracking pending requests and a 'barrier' concept 3178 * that can be installed to exclude normal IO requests. 3179 * 3180 * Resync and recovery are handled very differently. 3181 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3182 * 3183 * For resync, we iterate over virtual addresses, read all copies, 3184 * and update if there are differences. If only one copy is live, 3185 * skip it. 3186 * For recovery, we iterate over physical addresses, read a good 3187 * value for each non-in_sync drive, and over-write. 3188 * 3189 * So, for recovery we may have several outstanding complex requests for a 3190 * given address, one for each out-of-sync device. We model this by allocating 3191 * a number of r10_bio structures, one for each out-of-sync device. 3192 * As we setup these structures, we collect all bio's together into a list 3193 * which we then process collectively to add pages, and then process again 3194 * to pass to submit_bio_noacct. 3195 * 3196 * The r10_bio structures are linked using a borrowed master_bio pointer. 3197 * This link is counted in ->remaining. When the r10_bio that points to NULL 3198 * has its remaining count decremented to 0, the whole complex operation 3199 * is complete. 3200 * 3201 */ 3202 3203 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3204 int *skipped) 3205 { 3206 struct r10conf *conf = mddev->private; 3207 struct r10bio *r10_bio; 3208 struct bio *biolist = NULL, *bio; 3209 sector_t max_sector, nr_sectors; 3210 int i; 3211 int max_sync; 3212 sector_t sync_blocks; 3213 sector_t sectors_skipped = 0; 3214 int chunks_skipped = 0; 3215 sector_t chunk_mask = conf->geo.chunk_mask; 3216 int page_idx = 0; 3217 3218 if (!mempool_initialized(&conf->r10buf_pool)) 3219 if (init_resync(conf)) 3220 return 0; 3221 3222 /* 3223 * Allow skipping a full rebuild for incremental assembly 3224 * of a clean array, like RAID1 does. 3225 */ 3226 if (mddev->bitmap == NULL && 3227 mddev->recovery_cp == MaxSector && 3228 mddev->reshape_position == MaxSector && 3229 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3230 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3231 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3232 conf->fullsync == 0) { 3233 *skipped = 1; 3234 return mddev->dev_sectors - sector_nr; 3235 } 3236 3237 skipped: 3238 max_sector = mddev->dev_sectors; 3239 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 3240 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3241 max_sector = mddev->resync_max_sectors; 3242 if (sector_nr >= max_sector) { 3243 conf->cluster_sync_low = 0; 3244 conf->cluster_sync_high = 0; 3245 3246 /* If we aborted, we need to abort the 3247 * sync on the 'current' bitmap chucks (there can 3248 * be several when recovering multiple devices). 3249 * as we may have started syncing it but not finished. 3250 * We can find the current address in 3251 * mddev->curr_resync, but for recovery, 3252 * we need to convert that to several 3253 * virtual addresses. 3254 */ 3255 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3256 end_reshape(conf); 3257 close_sync(conf); 3258 return 0; 3259 } 3260 3261 if (mddev->curr_resync < max_sector) { /* aborted */ 3262 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3263 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3264 &sync_blocks, 1); 3265 else for (i = 0; i < conf->geo.raid_disks; i++) { 3266 sector_t sect = 3267 raid10_find_virt(conf, mddev->curr_resync, i); 3268 md_bitmap_end_sync(mddev->bitmap, sect, 3269 &sync_blocks, 1); 3270 } 3271 } else { 3272 /* completed sync */ 3273 if ((!mddev->bitmap || conf->fullsync) 3274 && conf->have_replacement 3275 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3276 /* Completed a full sync so the replacements 3277 * are now fully recovered. 3278 */ 3279 rcu_read_lock(); 3280 for (i = 0; i < conf->geo.raid_disks; i++) { 3281 struct md_rdev *rdev = 3282 rcu_dereference(conf->mirrors[i].replacement); 3283 if (rdev) 3284 rdev->recovery_offset = MaxSector; 3285 } 3286 rcu_read_unlock(); 3287 } 3288 conf->fullsync = 0; 3289 } 3290 md_bitmap_close_sync(mddev->bitmap); 3291 close_sync(conf); 3292 *skipped = 1; 3293 return sectors_skipped; 3294 } 3295 3296 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3297 return reshape_request(mddev, sector_nr, skipped); 3298 3299 if (chunks_skipped >= conf->geo.raid_disks) { 3300 /* if there has been nothing to do on any drive, 3301 * then there is nothing to do at all.. 3302 */ 3303 *skipped = 1; 3304 return (max_sector - sector_nr) + sectors_skipped; 3305 } 3306 3307 if (max_sector > mddev->resync_max) 3308 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3309 3310 /* make sure whole request will fit in a chunk - if chunks 3311 * are meaningful 3312 */ 3313 if (conf->geo.near_copies < conf->geo.raid_disks && 3314 max_sector > (sector_nr | chunk_mask)) 3315 max_sector = (sector_nr | chunk_mask) + 1; 3316 3317 /* 3318 * If there is non-resync activity waiting for a turn, then let it 3319 * though before starting on this new sync request. 3320 */ 3321 if (conf->nr_waiting) 3322 schedule_timeout_uninterruptible(1); 3323 3324 /* Again, very different code for resync and recovery. 3325 * Both must result in an r10bio with a list of bios that 3326 * have bi_end_io, bi_sector, bi_bdev set, 3327 * and bi_private set to the r10bio. 3328 * For recovery, we may actually create several r10bios 3329 * with 2 bios in each, that correspond to the bios in the main one. 3330 * In this case, the subordinate r10bios link back through a 3331 * borrowed master_bio pointer, and the counter in the master 3332 * includes a ref from each subordinate. 3333 */ 3334 /* First, we decide what to do and set ->bi_end_io 3335 * To end_sync_read if we want to read, and 3336 * end_sync_write if we will want to write. 3337 */ 3338 3339 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3340 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3341 /* recovery... the complicated one */ 3342 int j; 3343 r10_bio = NULL; 3344 3345 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3346 int still_degraded; 3347 struct r10bio *rb2; 3348 sector_t sect; 3349 int must_sync; 3350 int any_working; 3351 int need_recover = 0; 3352 int need_replace = 0; 3353 struct raid10_info *mirror = &conf->mirrors[i]; 3354 struct md_rdev *mrdev, *mreplace; 3355 3356 rcu_read_lock(); 3357 mrdev = rcu_dereference(mirror->rdev); 3358 mreplace = rcu_dereference(mirror->replacement); 3359 3360 if (mrdev != NULL && 3361 !test_bit(Faulty, &mrdev->flags) && 3362 !test_bit(In_sync, &mrdev->flags)) 3363 need_recover = 1; 3364 if (mreplace != NULL && 3365 !test_bit(Faulty, &mreplace->flags)) 3366 need_replace = 1; 3367 3368 if (!need_recover && !need_replace) { 3369 rcu_read_unlock(); 3370 continue; 3371 } 3372 3373 still_degraded = 0; 3374 /* want to reconstruct this device */ 3375 rb2 = r10_bio; 3376 sect = raid10_find_virt(conf, sector_nr, i); 3377 if (sect >= mddev->resync_max_sectors) { 3378 /* last stripe is not complete - don't 3379 * try to recover this sector. 3380 */ 3381 rcu_read_unlock(); 3382 continue; 3383 } 3384 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3385 mreplace = NULL; 3386 /* Unless we are doing a full sync, or a replacement 3387 * we only need to recover the block if it is set in 3388 * the bitmap 3389 */ 3390 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3391 &sync_blocks, 1); 3392 if (sync_blocks < max_sync) 3393 max_sync = sync_blocks; 3394 if (!must_sync && 3395 mreplace == NULL && 3396 !conf->fullsync) { 3397 /* yep, skip the sync_blocks here, but don't assume 3398 * that there will never be anything to do here 3399 */ 3400 chunks_skipped = -1; 3401 rcu_read_unlock(); 3402 continue; 3403 } 3404 atomic_inc(&mrdev->nr_pending); 3405 if (mreplace) 3406 atomic_inc(&mreplace->nr_pending); 3407 rcu_read_unlock(); 3408 3409 r10_bio = raid10_alloc_init_r10buf(conf); 3410 r10_bio->state = 0; 3411 raise_barrier(conf, rb2 != NULL); 3412 atomic_set(&r10_bio->remaining, 0); 3413 3414 r10_bio->master_bio = (struct bio*)rb2; 3415 if (rb2) 3416 atomic_inc(&rb2->remaining); 3417 r10_bio->mddev = mddev; 3418 set_bit(R10BIO_IsRecover, &r10_bio->state); 3419 r10_bio->sector = sect; 3420 3421 raid10_find_phys(conf, r10_bio); 3422 3423 /* Need to check if the array will still be 3424 * degraded 3425 */ 3426 rcu_read_lock(); 3427 for (j = 0; j < conf->geo.raid_disks; j++) { 3428 struct md_rdev *rdev = rcu_dereference( 3429 conf->mirrors[j].rdev); 3430 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3431 still_degraded = 1; 3432 break; 3433 } 3434 } 3435 3436 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3437 &sync_blocks, still_degraded); 3438 3439 any_working = 0; 3440 for (j=0; j<conf->copies;j++) { 3441 int k; 3442 int d = r10_bio->devs[j].devnum; 3443 sector_t from_addr, to_addr; 3444 struct md_rdev *rdev = 3445 rcu_dereference(conf->mirrors[d].rdev); 3446 sector_t sector, first_bad; 3447 int bad_sectors; 3448 if (!rdev || 3449 !test_bit(In_sync, &rdev->flags)) 3450 continue; 3451 /* This is where we read from */ 3452 any_working = 1; 3453 sector = r10_bio->devs[j].addr; 3454 3455 if (is_badblock(rdev, sector, max_sync, 3456 &first_bad, &bad_sectors)) { 3457 if (first_bad > sector) 3458 max_sync = first_bad - sector; 3459 else { 3460 bad_sectors -= (sector 3461 - first_bad); 3462 if (max_sync > bad_sectors) 3463 max_sync = bad_sectors; 3464 continue; 3465 } 3466 } 3467 bio = r10_bio->devs[0].bio; 3468 bio->bi_next = biolist; 3469 biolist = bio; 3470 bio->bi_end_io = end_sync_read; 3471 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3472 if (test_bit(FailFast, &rdev->flags)) 3473 bio->bi_opf |= MD_FAILFAST; 3474 from_addr = r10_bio->devs[j].addr; 3475 bio->bi_iter.bi_sector = from_addr + 3476 rdev->data_offset; 3477 bio_set_dev(bio, rdev->bdev); 3478 atomic_inc(&rdev->nr_pending); 3479 /* and we write to 'i' (if not in_sync) */ 3480 3481 for (k=0; k<conf->copies; k++) 3482 if (r10_bio->devs[k].devnum == i) 3483 break; 3484 BUG_ON(k == conf->copies); 3485 to_addr = r10_bio->devs[k].addr; 3486 r10_bio->devs[0].devnum = d; 3487 r10_bio->devs[0].addr = from_addr; 3488 r10_bio->devs[1].devnum = i; 3489 r10_bio->devs[1].addr = to_addr; 3490 3491 if (need_recover) { 3492 bio = r10_bio->devs[1].bio; 3493 bio->bi_next = biolist; 3494 biolist = bio; 3495 bio->bi_end_io = end_sync_write; 3496 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3497 bio->bi_iter.bi_sector = to_addr 3498 + mrdev->data_offset; 3499 bio_set_dev(bio, mrdev->bdev); 3500 atomic_inc(&r10_bio->remaining); 3501 } else 3502 r10_bio->devs[1].bio->bi_end_io = NULL; 3503 3504 /* and maybe write to replacement */ 3505 bio = r10_bio->devs[1].repl_bio; 3506 if (bio) 3507 bio->bi_end_io = NULL; 3508 /* Note: if need_replace, then bio 3509 * cannot be NULL as r10buf_pool_alloc will 3510 * have allocated it. 3511 */ 3512 if (!need_replace) 3513 break; 3514 bio->bi_next = biolist; 3515 biolist = bio; 3516 bio->bi_end_io = end_sync_write; 3517 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3518 bio->bi_iter.bi_sector = to_addr + 3519 mreplace->data_offset; 3520 bio_set_dev(bio, mreplace->bdev); 3521 atomic_inc(&r10_bio->remaining); 3522 break; 3523 } 3524 rcu_read_unlock(); 3525 if (j == conf->copies) { 3526 /* Cannot recover, so abort the recovery or 3527 * record a bad block */ 3528 if (any_working) { 3529 /* problem is that there are bad blocks 3530 * on other device(s) 3531 */ 3532 int k; 3533 for (k = 0; k < conf->copies; k++) 3534 if (r10_bio->devs[k].devnum == i) 3535 break; 3536 if (!test_bit(In_sync, 3537 &mrdev->flags) 3538 && !rdev_set_badblocks( 3539 mrdev, 3540 r10_bio->devs[k].addr, 3541 max_sync, 0)) 3542 any_working = 0; 3543 if (mreplace && 3544 !rdev_set_badblocks( 3545 mreplace, 3546 r10_bio->devs[k].addr, 3547 max_sync, 0)) 3548 any_working = 0; 3549 } 3550 if (!any_working) { 3551 if (!test_and_set_bit(MD_RECOVERY_INTR, 3552 &mddev->recovery)) 3553 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3554 mdname(mddev)); 3555 mirror->recovery_disabled 3556 = mddev->recovery_disabled; 3557 } 3558 put_buf(r10_bio); 3559 if (rb2) 3560 atomic_dec(&rb2->remaining); 3561 r10_bio = rb2; 3562 rdev_dec_pending(mrdev, mddev); 3563 if (mreplace) 3564 rdev_dec_pending(mreplace, mddev); 3565 break; 3566 } 3567 rdev_dec_pending(mrdev, mddev); 3568 if (mreplace) 3569 rdev_dec_pending(mreplace, mddev); 3570 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3571 /* Only want this if there is elsewhere to 3572 * read from. 'j' is currently the first 3573 * readable copy. 3574 */ 3575 int targets = 1; 3576 for (; j < conf->copies; j++) { 3577 int d = r10_bio->devs[j].devnum; 3578 if (conf->mirrors[d].rdev && 3579 test_bit(In_sync, 3580 &conf->mirrors[d].rdev->flags)) 3581 targets++; 3582 } 3583 if (targets == 1) 3584 r10_bio->devs[0].bio->bi_opf 3585 &= ~MD_FAILFAST; 3586 } 3587 } 3588 if (biolist == NULL) { 3589 while (r10_bio) { 3590 struct r10bio *rb2 = r10_bio; 3591 r10_bio = (struct r10bio*) rb2->master_bio; 3592 rb2->master_bio = NULL; 3593 put_buf(rb2); 3594 } 3595 goto giveup; 3596 } 3597 } else { 3598 /* resync. Schedule a read for every block at this virt offset */ 3599 int count = 0; 3600 3601 /* 3602 * Since curr_resync_completed could probably not update in 3603 * time, and we will set cluster_sync_low based on it. 3604 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3605 * safety reason, which ensures curr_resync_completed is 3606 * updated in bitmap_cond_end_sync. 3607 */ 3608 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3609 mddev_is_clustered(mddev) && 3610 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3611 3612 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3613 &sync_blocks, mddev->degraded) && 3614 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3615 &mddev->recovery)) { 3616 /* We can skip this block */ 3617 *skipped = 1; 3618 return sync_blocks + sectors_skipped; 3619 } 3620 if (sync_blocks < max_sync) 3621 max_sync = sync_blocks; 3622 r10_bio = raid10_alloc_init_r10buf(conf); 3623 r10_bio->state = 0; 3624 3625 r10_bio->mddev = mddev; 3626 atomic_set(&r10_bio->remaining, 0); 3627 raise_barrier(conf, 0); 3628 conf->next_resync = sector_nr; 3629 3630 r10_bio->master_bio = NULL; 3631 r10_bio->sector = sector_nr; 3632 set_bit(R10BIO_IsSync, &r10_bio->state); 3633 raid10_find_phys(conf, r10_bio); 3634 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3635 3636 for (i = 0; i < conf->copies; i++) { 3637 int d = r10_bio->devs[i].devnum; 3638 sector_t first_bad, sector; 3639 int bad_sectors; 3640 struct md_rdev *rdev; 3641 3642 if (r10_bio->devs[i].repl_bio) 3643 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3644 3645 bio = r10_bio->devs[i].bio; 3646 bio->bi_status = BLK_STS_IOERR; 3647 rcu_read_lock(); 3648 rdev = rcu_dereference(conf->mirrors[d].rdev); 3649 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3650 rcu_read_unlock(); 3651 continue; 3652 } 3653 sector = r10_bio->devs[i].addr; 3654 if (is_badblock(rdev, sector, max_sync, 3655 &first_bad, &bad_sectors)) { 3656 if (first_bad > sector) 3657 max_sync = first_bad - sector; 3658 else { 3659 bad_sectors -= (sector - first_bad); 3660 if (max_sync > bad_sectors) 3661 max_sync = bad_sectors; 3662 rcu_read_unlock(); 3663 continue; 3664 } 3665 } 3666 atomic_inc(&rdev->nr_pending); 3667 atomic_inc(&r10_bio->remaining); 3668 bio->bi_next = biolist; 3669 biolist = bio; 3670 bio->bi_end_io = end_sync_read; 3671 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3672 if (test_bit(FailFast, &rdev->flags)) 3673 bio->bi_opf |= MD_FAILFAST; 3674 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3675 bio_set_dev(bio, rdev->bdev); 3676 count++; 3677 3678 rdev = rcu_dereference(conf->mirrors[d].replacement); 3679 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3680 rcu_read_unlock(); 3681 continue; 3682 } 3683 atomic_inc(&rdev->nr_pending); 3684 3685 /* Need to set up for writing to the replacement */ 3686 bio = r10_bio->devs[i].repl_bio; 3687 bio->bi_status = BLK_STS_IOERR; 3688 3689 sector = r10_bio->devs[i].addr; 3690 bio->bi_next = biolist; 3691 biolist = bio; 3692 bio->bi_end_io = end_sync_write; 3693 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3694 if (test_bit(FailFast, &rdev->flags)) 3695 bio->bi_opf |= MD_FAILFAST; 3696 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3697 bio_set_dev(bio, rdev->bdev); 3698 count++; 3699 rcu_read_unlock(); 3700 } 3701 3702 if (count < 2) { 3703 for (i=0; i<conf->copies; i++) { 3704 int d = r10_bio->devs[i].devnum; 3705 if (r10_bio->devs[i].bio->bi_end_io) 3706 rdev_dec_pending(conf->mirrors[d].rdev, 3707 mddev); 3708 if (r10_bio->devs[i].repl_bio && 3709 r10_bio->devs[i].repl_bio->bi_end_io) 3710 rdev_dec_pending( 3711 conf->mirrors[d].replacement, 3712 mddev); 3713 } 3714 put_buf(r10_bio); 3715 biolist = NULL; 3716 goto giveup; 3717 } 3718 } 3719 3720 nr_sectors = 0; 3721 if (sector_nr + max_sync < max_sector) 3722 max_sector = sector_nr + max_sync; 3723 do { 3724 struct page *page; 3725 int len = PAGE_SIZE; 3726 if (sector_nr + (len>>9) > max_sector) 3727 len = (max_sector - sector_nr) << 9; 3728 if (len == 0) 3729 break; 3730 for (bio= biolist ; bio ; bio=bio->bi_next) { 3731 struct resync_pages *rp = get_resync_pages(bio); 3732 page = resync_fetch_page(rp, page_idx); 3733 /* 3734 * won't fail because the vec table is big enough 3735 * to hold all these pages 3736 */ 3737 bio_add_page(bio, page, len, 0); 3738 } 3739 nr_sectors += len>>9; 3740 sector_nr += len>>9; 3741 } while (++page_idx < RESYNC_PAGES); 3742 r10_bio->sectors = nr_sectors; 3743 3744 if (mddev_is_clustered(mddev) && 3745 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3746 /* It is resync not recovery */ 3747 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3748 conf->cluster_sync_low = mddev->curr_resync_completed; 3749 raid10_set_cluster_sync_high(conf); 3750 /* Send resync message */ 3751 md_cluster_ops->resync_info_update(mddev, 3752 conf->cluster_sync_low, 3753 conf->cluster_sync_high); 3754 } 3755 } else if (mddev_is_clustered(mddev)) { 3756 /* This is recovery not resync */ 3757 sector_t sect_va1, sect_va2; 3758 bool broadcast_msg = false; 3759 3760 for (i = 0; i < conf->geo.raid_disks; i++) { 3761 /* 3762 * sector_nr is a device address for recovery, so we 3763 * need translate it to array address before compare 3764 * with cluster_sync_high. 3765 */ 3766 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3767 3768 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3769 broadcast_msg = true; 3770 /* 3771 * curr_resync_completed is similar as 3772 * sector_nr, so make the translation too. 3773 */ 3774 sect_va2 = raid10_find_virt(conf, 3775 mddev->curr_resync_completed, i); 3776 3777 if (conf->cluster_sync_low == 0 || 3778 conf->cluster_sync_low > sect_va2) 3779 conf->cluster_sync_low = sect_va2; 3780 } 3781 } 3782 if (broadcast_msg) { 3783 raid10_set_cluster_sync_high(conf); 3784 md_cluster_ops->resync_info_update(mddev, 3785 conf->cluster_sync_low, 3786 conf->cluster_sync_high); 3787 } 3788 } 3789 3790 while (biolist) { 3791 bio = biolist; 3792 biolist = biolist->bi_next; 3793 3794 bio->bi_next = NULL; 3795 r10_bio = get_resync_r10bio(bio); 3796 r10_bio->sectors = nr_sectors; 3797 3798 if (bio->bi_end_io == end_sync_read) { 3799 md_sync_acct_bio(bio, nr_sectors); 3800 bio->bi_status = 0; 3801 submit_bio_noacct(bio); 3802 } 3803 } 3804 3805 if (sectors_skipped) 3806 /* pretend they weren't skipped, it makes 3807 * no important difference in this case 3808 */ 3809 md_done_sync(mddev, sectors_skipped, 1); 3810 3811 return sectors_skipped + nr_sectors; 3812 giveup: 3813 /* There is nowhere to write, so all non-sync 3814 * drives must be failed or in resync, all drives 3815 * have a bad block, so try the next chunk... 3816 */ 3817 if (sector_nr + max_sync < max_sector) 3818 max_sector = sector_nr + max_sync; 3819 3820 sectors_skipped += (max_sector - sector_nr); 3821 chunks_skipped ++; 3822 sector_nr = max_sector; 3823 goto skipped; 3824 } 3825 3826 static sector_t 3827 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3828 { 3829 sector_t size; 3830 struct r10conf *conf = mddev->private; 3831 3832 if (!raid_disks) 3833 raid_disks = min(conf->geo.raid_disks, 3834 conf->prev.raid_disks); 3835 if (!sectors) 3836 sectors = conf->dev_sectors; 3837 3838 size = sectors >> conf->geo.chunk_shift; 3839 sector_div(size, conf->geo.far_copies); 3840 size = size * raid_disks; 3841 sector_div(size, conf->geo.near_copies); 3842 3843 return size << conf->geo.chunk_shift; 3844 } 3845 3846 static void calc_sectors(struct r10conf *conf, sector_t size) 3847 { 3848 /* Calculate the number of sectors-per-device that will 3849 * actually be used, and set conf->dev_sectors and 3850 * conf->stride 3851 */ 3852 3853 size = size >> conf->geo.chunk_shift; 3854 sector_div(size, conf->geo.far_copies); 3855 size = size * conf->geo.raid_disks; 3856 sector_div(size, conf->geo.near_copies); 3857 /* 'size' is now the number of chunks in the array */ 3858 /* calculate "used chunks per device" */ 3859 size = size * conf->copies; 3860 3861 /* We need to round up when dividing by raid_disks to 3862 * get the stride size. 3863 */ 3864 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3865 3866 conf->dev_sectors = size << conf->geo.chunk_shift; 3867 3868 if (conf->geo.far_offset) 3869 conf->geo.stride = 1 << conf->geo.chunk_shift; 3870 else { 3871 sector_div(size, conf->geo.far_copies); 3872 conf->geo.stride = size << conf->geo.chunk_shift; 3873 } 3874 } 3875 3876 enum geo_type {geo_new, geo_old, geo_start}; 3877 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3878 { 3879 int nc, fc, fo; 3880 int layout, chunk, disks; 3881 switch (new) { 3882 case geo_old: 3883 layout = mddev->layout; 3884 chunk = mddev->chunk_sectors; 3885 disks = mddev->raid_disks - mddev->delta_disks; 3886 break; 3887 case geo_new: 3888 layout = mddev->new_layout; 3889 chunk = mddev->new_chunk_sectors; 3890 disks = mddev->raid_disks; 3891 break; 3892 default: /* avoid 'may be unused' warnings */ 3893 case geo_start: /* new when starting reshape - raid_disks not 3894 * updated yet. */ 3895 layout = mddev->new_layout; 3896 chunk = mddev->new_chunk_sectors; 3897 disks = mddev->raid_disks + mddev->delta_disks; 3898 break; 3899 } 3900 if (layout >> 19) 3901 return -1; 3902 if (chunk < (PAGE_SIZE >> 9) || 3903 !is_power_of_2(chunk)) 3904 return -2; 3905 nc = layout & 255; 3906 fc = (layout >> 8) & 255; 3907 fo = layout & (1<<16); 3908 geo->raid_disks = disks; 3909 geo->near_copies = nc; 3910 geo->far_copies = fc; 3911 geo->far_offset = fo; 3912 switch (layout >> 17) { 3913 case 0: /* original layout. simple but not always optimal */ 3914 geo->far_set_size = disks; 3915 break; 3916 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3917 * actually using this, but leave code here just in case.*/ 3918 geo->far_set_size = disks/fc; 3919 WARN(geo->far_set_size < fc, 3920 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3921 break; 3922 case 2: /* "improved" layout fixed to match documentation */ 3923 geo->far_set_size = fc * nc; 3924 break; 3925 default: /* Not a valid layout */ 3926 return -1; 3927 } 3928 geo->chunk_mask = chunk - 1; 3929 geo->chunk_shift = ffz(~chunk); 3930 return nc*fc; 3931 } 3932 3933 static struct r10conf *setup_conf(struct mddev *mddev) 3934 { 3935 struct r10conf *conf = NULL; 3936 int err = -EINVAL; 3937 struct geom geo; 3938 int copies; 3939 3940 copies = setup_geo(&geo, mddev, geo_new); 3941 3942 if (copies == -2) { 3943 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3944 mdname(mddev), PAGE_SIZE); 3945 goto out; 3946 } 3947 3948 if (copies < 2 || copies > mddev->raid_disks) { 3949 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3950 mdname(mddev), mddev->new_layout); 3951 goto out; 3952 } 3953 3954 err = -ENOMEM; 3955 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3956 if (!conf) 3957 goto out; 3958 3959 /* FIXME calc properly */ 3960 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3961 sizeof(struct raid10_info), 3962 GFP_KERNEL); 3963 if (!conf->mirrors) 3964 goto out; 3965 3966 conf->tmppage = alloc_page(GFP_KERNEL); 3967 if (!conf->tmppage) 3968 goto out; 3969 3970 conf->geo = geo; 3971 conf->copies = copies; 3972 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3973 rbio_pool_free, conf); 3974 if (err) 3975 goto out; 3976 3977 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3978 if (err) 3979 goto out; 3980 3981 calc_sectors(conf, mddev->dev_sectors); 3982 if (mddev->reshape_position == MaxSector) { 3983 conf->prev = conf->geo; 3984 conf->reshape_progress = MaxSector; 3985 } else { 3986 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3987 err = -EINVAL; 3988 goto out; 3989 } 3990 conf->reshape_progress = mddev->reshape_position; 3991 if (conf->prev.far_offset) 3992 conf->prev.stride = 1 << conf->prev.chunk_shift; 3993 else 3994 /* far_copies must be 1 */ 3995 conf->prev.stride = conf->dev_sectors; 3996 } 3997 conf->reshape_safe = conf->reshape_progress; 3998 spin_lock_init(&conf->device_lock); 3999 INIT_LIST_HEAD(&conf->retry_list); 4000 INIT_LIST_HEAD(&conf->bio_end_io_list); 4001 4002 spin_lock_init(&conf->resync_lock); 4003 init_waitqueue_head(&conf->wait_barrier); 4004 atomic_set(&conf->nr_pending, 0); 4005 4006 err = -ENOMEM; 4007 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 4008 if (!conf->thread) 4009 goto out; 4010 4011 conf->mddev = mddev; 4012 return conf; 4013 4014 out: 4015 if (conf) { 4016 mempool_exit(&conf->r10bio_pool); 4017 kfree(conf->mirrors); 4018 safe_put_page(conf->tmppage); 4019 bioset_exit(&conf->bio_split); 4020 kfree(conf); 4021 } 4022 return ERR_PTR(err); 4023 } 4024 4025 static void raid10_set_io_opt(struct r10conf *conf) 4026 { 4027 int raid_disks = conf->geo.raid_disks; 4028 4029 if (!(conf->geo.raid_disks % conf->geo.near_copies)) 4030 raid_disks /= conf->geo.near_copies; 4031 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) * 4032 raid_disks); 4033 } 4034 4035 static int raid10_run(struct mddev *mddev) 4036 { 4037 struct r10conf *conf; 4038 int i, disk_idx; 4039 struct raid10_info *disk; 4040 struct md_rdev *rdev; 4041 sector_t size; 4042 sector_t min_offset_diff = 0; 4043 int first = 1; 4044 bool discard_supported = false; 4045 4046 if (mddev_init_writes_pending(mddev) < 0) 4047 return -ENOMEM; 4048 4049 if (mddev->private == NULL) { 4050 conf = setup_conf(mddev); 4051 if (IS_ERR(conf)) 4052 return PTR_ERR(conf); 4053 mddev->private = conf; 4054 } 4055 conf = mddev->private; 4056 if (!conf) 4057 goto out; 4058 4059 if (mddev_is_clustered(conf->mddev)) { 4060 int fc, fo; 4061 4062 fc = (mddev->layout >> 8) & 255; 4063 fo = mddev->layout & (1<<16); 4064 if (fc > 1 || fo > 0) { 4065 pr_err("only near layout is supported by clustered" 4066 " raid10\n"); 4067 goto out_free_conf; 4068 } 4069 } 4070 4071 mddev->thread = conf->thread; 4072 conf->thread = NULL; 4073 4074 if (mddev->queue) { 4075 blk_queue_max_discard_sectors(mddev->queue, 4076 UINT_MAX); 4077 blk_queue_max_write_same_sectors(mddev->queue, 0); 4078 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 4079 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); 4080 raid10_set_io_opt(conf); 4081 } 4082 4083 rdev_for_each(rdev, mddev) { 4084 long long diff; 4085 4086 disk_idx = rdev->raid_disk; 4087 if (disk_idx < 0) 4088 continue; 4089 if (disk_idx >= conf->geo.raid_disks && 4090 disk_idx >= conf->prev.raid_disks) 4091 continue; 4092 disk = conf->mirrors + disk_idx; 4093 4094 if (test_bit(Replacement, &rdev->flags)) { 4095 if (disk->replacement) 4096 goto out_free_conf; 4097 disk->replacement = rdev; 4098 } else { 4099 if (disk->rdev) 4100 goto out_free_conf; 4101 disk->rdev = rdev; 4102 } 4103 diff = (rdev->new_data_offset - rdev->data_offset); 4104 if (!mddev->reshape_backwards) 4105 diff = -diff; 4106 if (diff < 0) 4107 diff = 0; 4108 if (first || diff < min_offset_diff) 4109 min_offset_diff = diff; 4110 4111 if (mddev->gendisk) 4112 disk_stack_limits(mddev->gendisk, rdev->bdev, 4113 rdev->data_offset << 9); 4114 4115 disk->head_position = 0; 4116 4117 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 4118 discard_supported = true; 4119 first = 0; 4120 } 4121 4122 if (mddev->queue) { 4123 if (discard_supported) 4124 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 4125 mddev->queue); 4126 else 4127 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 4128 mddev->queue); 4129 } 4130 /* need to check that every block has at least one working mirror */ 4131 if (!enough(conf, -1)) { 4132 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4133 mdname(mddev)); 4134 goto out_free_conf; 4135 } 4136 4137 if (conf->reshape_progress != MaxSector) { 4138 /* must ensure that shape change is supported */ 4139 if (conf->geo.far_copies != 1 && 4140 conf->geo.far_offset == 0) 4141 goto out_free_conf; 4142 if (conf->prev.far_copies != 1 && 4143 conf->prev.far_offset == 0) 4144 goto out_free_conf; 4145 } 4146 4147 mddev->degraded = 0; 4148 for (i = 0; 4149 i < conf->geo.raid_disks 4150 || i < conf->prev.raid_disks; 4151 i++) { 4152 4153 disk = conf->mirrors + i; 4154 4155 if (!disk->rdev && disk->replacement) { 4156 /* The replacement is all we have - use it */ 4157 disk->rdev = disk->replacement; 4158 disk->replacement = NULL; 4159 clear_bit(Replacement, &disk->rdev->flags); 4160 } 4161 4162 if (!disk->rdev || 4163 !test_bit(In_sync, &disk->rdev->flags)) { 4164 disk->head_position = 0; 4165 mddev->degraded++; 4166 if (disk->rdev && 4167 disk->rdev->saved_raid_disk < 0) 4168 conf->fullsync = 1; 4169 } 4170 4171 if (disk->replacement && 4172 !test_bit(In_sync, &disk->replacement->flags) && 4173 disk->replacement->saved_raid_disk < 0) { 4174 conf->fullsync = 1; 4175 } 4176 4177 disk->recovery_disabled = mddev->recovery_disabled - 1; 4178 } 4179 4180 if (mddev->recovery_cp != MaxSector) 4181 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4182 mdname(mddev)); 4183 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4184 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4185 conf->geo.raid_disks); 4186 /* 4187 * Ok, everything is just fine now 4188 */ 4189 mddev->dev_sectors = conf->dev_sectors; 4190 size = raid10_size(mddev, 0, 0); 4191 md_set_array_sectors(mddev, size); 4192 mddev->resync_max_sectors = size; 4193 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4194 4195 if (md_integrity_register(mddev)) 4196 goto out_free_conf; 4197 4198 if (conf->reshape_progress != MaxSector) { 4199 unsigned long before_length, after_length; 4200 4201 before_length = ((1 << conf->prev.chunk_shift) * 4202 conf->prev.far_copies); 4203 after_length = ((1 << conf->geo.chunk_shift) * 4204 conf->geo.far_copies); 4205 4206 if (max(before_length, after_length) > min_offset_diff) { 4207 /* This cannot work */ 4208 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4209 goto out_free_conf; 4210 } 4211 conf->offset_diff = min_offset_diff; 4212 4213 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4214 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4215 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4216 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4217 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4218 "reshape"); 4219 if (!mddev->sync_thread) 4220 goto out_free_conf; 4221 } 4222 4223 return 0; 4224 4225 out_free_conf: 4226 md_unregister_thread(&mddev->thread); 4227 mempool_exit(&conf->r10bio_pool); 4228 safe_put_page(conf->tmppage); 4229 kfree(conf->mirrors); 4230 kfree(conf); 4231 mddev->private = NULL; 4232 out: 4233 return -EIO; 4234 } 4235 4236 static void raid10_free(struct mddev *mddev, void *priv) 4237 { 4238 struct r10conf *conf = priv; 4239 4240 mempool_exit(&conf->r10bio_pool); 4241 safe_put_page(conf->tmppage); 4242 kfree(conf->mirrors); 4243 kfree(conf->mirrors_old); 4244 kfree(conf->mirrors_new); 4245 bioset_exit(&conf->bio_split); 4246 kfree(conf); 4247 } 4248 4249 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4250 { 4251 struct r10conf *conf = mddev->private; 4252 4253 if (quiesce) 4254 raise_barrier(conf, 0); 4255 else 4256 lower_barrier(conf); 4257 } 4258 4259 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4260 { 4261 /* Resize of 'far' arrays is not supported. 4262 * For 'near' and 'offset' arrays we can set the 4263 * number of sectors used to be an appropriate multiple 4264 * of the chunk size. 4265 * For 'offset', this is far_copies*chunksize. 4266 * For 'near' the multiplier is the LCM of 4267 * near_copies and raid_disks. 4268 * So if far_copies > 1 && !far_offset, fail. 4269 * Else find LCM(raid_disks, near_copy)*far_copies and 4270 * multiply by chunk_size. Then round to this number. 4271 * This is mostly done by raid10_size() 4272 */ 4273 struct r10conf *conf = mddev->private; 4274 sector_t oldsize, size; 4275 4276 if (mddev->reshape_position != MaxSector) 4277 return -EBUSY; 4278 4279 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4280 return -EINVAL; 4281 4282 oldsize = raid10_size(mddev, 0, 0); 4283 size = raid10_size(mddev, sectors, 0); 4284 if (mddev->external_size && 4285 mddev->array_sectors > size) 4286 return -EINVAL; 4287 if (mddev->bitmap) { 4288 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4289 if (ret) 4290 return ret; 4291 } 4292 md_set_array_sectors(mddev, size); 4293 if (sectors > mddev->dev_sectors && 4294 mddev->recovery_cp > oldsize) { 4295 mddev->recovery_cp = oldsize; 4296 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4297 } 4298 calc_sectors(conf, sectors); 4299 mddev->dev_sectors = conf->dev_sectors; 4300 mddev->resync_max_sectors = size; 4301 return 0; 4302 } 4303 4304 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4305 { 4306 struct md_rdev *rdev; 4307 struct r10conf *conf; 4308 4309 if (mddev->degraded > 0) { 4310 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4311 mdname(mddev)); 4312 return ERR_PTR(-EINVAL); 4313 } 4314 sector_div(size, devs); 4315 4316 /* Set new parameters */ 4317 mddev->new_level = 10; 4318 /* new layout: far_copies = 1, near_copies = 2 */ 4319 mddev->new_layout = (1<<8) + 2; 4320 mddev->new_chunk_sectors = mddev->chunk_sectors; 4321 mddev->delta_disks = mddev->raid_disks; 4322 mddev->raid_disks *= 2; 4323 /* make sure it will be not marked as dirty */ 4324 mddev->recovery_cp = MaxSector; 4325 mddev->dev_sectors = size; 4326 4327 conf = setup_conf(mddev); 4328 if (!IS_ERR(conf)) { 4329 rdev_for_each(rdev, mddev) 4330 if (rdev->raid_disk >= 0) { 4331 rdev->new_raid_disk = rdev->raid_disk * 2; 4332 rdev->sectors = size; 4333 } 4334 conf->barrier = 1; 4335 } 4336 4337 return conf; 4338 } 4339 4340 static void *raid10_takeover(struct mddev *mddev) 4341 { 4342 struct r0conf *raid0_conf; 4343 4344 /* raid10 can take over: 4345 * raid0 - providing it has only two drives 4346 */ 4347 if (mddev->level == 0) { 4348 /* for raid0 takeover only one zone is supported */ 4349 raid0_conf = mddev->private; 4350 if (raid0_conf->nr_strip_zones > 1) { 4351 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4352 mdname(mddev)); 4353 return ERR_PTR(-EINVAL); 4354 } 4355 return raid10_takeover_raid0(mddev, 4356 raid0_conf->strip_zone->zone_end, 4357 raid0_conf->strip_zone->nb_dev); 4358 } 4359 return ERR_PTR(-EINVAL); 4360 } 4361 4362 static int raid10_check_reshape(struct mddev *mddev) 4363 { 4364 /* Called when there is a request to change 4365 * - layout (to ->new_layout) 4366 * - chunk size (to ->new_chunk_sectors) 4367 * - raid_disks (by delta_disks) 4368 * or when trying to restart a reshape that was ongoing. 4369 * 4370 * We need to validate the request and possibly allocate 4371 * space if that might be an issue later. 4372 * 4373 * Currently we reject any reshape of a 'far' mode array, 4374 * allow chunk size to change if new is generally acceptable, 4375 * allow raid_disks to increase, and allow 4376 * a switch between 'near' mode and 'offset' mode. 4377 */ 4378 struct r10conf *conf = mddev->private; 4379 struct geom geo; 4380 4381 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4382 return -EINVAL; 4383 4384 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4385 /* mustn't change number of copies */ 4386 return -EINVAL; 4387 if (geo.far_copies > 1 && !geo.far_offset) 4388 /* Cannot switch to 'far' mode */ 4389 return -EINVAL; 4390 4391 if (mddev->array_sectors & geo.chunk_mask) 4392 /* not factor of array size */ 4393 return -EINVAL; 4394 4395 if (!enough(conf, -1)) 4396 return -EINVAL; 4397 4398 kfree(conf->mirrors_new); 4399 conf->mirrors_new = NULL; 4400 if (mddev->delta_disks > 0) { 4401 /* allocate new 'mirrors' list */ 4402 conf->mirrors_new = 4403 kcalloc(mddev->raid_disks + mddev->delta_disks, 4404 sizeof(struct raid10_info), 4405 GFP_KERNEL); 4406 if (!conf->mirrors_new) 4407 return -ENOMEM; 4408 } 4409 return 0; 4410 } 4411 4412 /* 4413 * Need to check if array has failed when deciding whether to: 4414 * - start an array 4415 * - remove non-faulty devices 4416 * - add a spare 4417 * - allow a reshape 4418 * This determination is simple when no reshape is happening. 4419 * However if there is a reshape, we need to carefully check 4420 * both the before and after sections. 4421 * This is because some failed devices may only affect one 4422 * of the two sections, and some non-in_sync devices may 4423 * be insync in the section most affected by failed devices. 4424 */ 4425 static int calc_degraded(struct r10conf *conf) 4426 { 4427 int degraded, degraded2; 4428 int i; 4429 4430 rcu_read_lock(); 4431 degraded = 0; 4432 /* 'prev' section first */ 4433 for (i = 0; i < conf->prev.raid_disks; i++) { 4434 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4435 if (!rdev || test_bit(Faulty, &rdev->flags)) 4436 degraded++; 4437 else if (!test_bit(In_sync, &rdev->flags)) 4438 /* When we can reduce the number of devices in 4439 * an array, this might not contribute to 4440 * 'degraded'. It does now. 4441 */ 4442 degraded++; 4443 } 4444 rcu_read_unlock(); 4445 if (conf->geo.raid_disks == conf->prev.raid_disks) 4446 return degraded; 4447 rcu_read_lock(); 4448 degraded2 = 0; 4449 for (i = 0; i < conf->geo.raid_disks; i++) { 4450 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4451 if (!rdev || test_bit(Faulty, &rdev->flags)) 4452 degraded2++; 4453 else if (!test_bit(In_sync, &rdev->flags)) { 4454 /* If reshape is increasing the number of devices, 4455 * this section has already been recovered, so 4456 * it doesn't contribute to degraded. 4457 * else it does. 4458 */ 4459 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4460 degraded2++; 4461 } 4462 } 4463 rcu_read_unlock(); 4464 if (degraded2 > degraded) 4465 return degraded2; 4466 return degraded; 4467 } 4468 4469 static int raid10_start_reshape(struct mddev *mddev) 4470 { 4471 /* A 'reshape' has been requested. This commits 4472 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4473 * This also checks if there are enough spares and adds them 4474 * to the array. 4475 * We currently require enough spares to make the final 4476 * array non-degraded. We also require that the difference 4477 * between old and new data_offset - on each device - is 4478 * enough that we never risk over-writing. 4479 */ 4480 4481 unsigned long before_length, after_length; 4482 sector_t min_offset_diff = 0; 4483 int first = 1; 4484 struct geom new; 4485 struct r10conf *conf = mddev->private; 4486 struct md_rdev *rdev; 4487 int spares = 0; 4488 int ret; 4489 4490 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4491 return -EBUSY; 4492 4493 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4494 return -EINVAL; 4495 4496 before_length = ((1 << conf->prev.chunk_shift) * 4497 conf->prev.far_copies); 4498 after_length = ((1 << conf->geo.chunk_shift) * 4499 conf->geo.far_copies); 4500 4501 rdev_for_each(rdev, mddev) { 4502 if (!test_bit(In_sync, &rdev->flags) 4503 && !test_bit(Faulty, &rdev->flags)) 4504 spares++; 4505 if (rdev->raid_disk >= 0) { 4506 long long diff = (rdev->new_data_offset 4507 - rdev->data_offset); 4508 if (!mddev->reshape_backwards) 4509 diff = -diff; 4510 if (diff < 0) 4511 diff = 0; 4512 if (first || diff < min_offset_diff) 4513 min_offset_diff = diff; 4514 first = 0; 4515 } 4516 } 4517 4518 if (max(before_length, after_length) > min_offset_diff) 4519 return -EINVAL; 4520 4521 if (spares < mddev->delta_disks) 4522 return -EINVAL; 4523 4524 conf->offset_diff = min_offset_diff; 4525 spin_lock_irq(&conf->device_lock); 4526 if (conf->mirrors_new) { 4527 memcpy(conf->mirrors_new, conf->mirrors, 4528 sizeof(struct raid10_info)*conf->prev.raid_disks); 4529 smp_mb(); 4530 kfree(conf->mirrors_old); 4531 conf->mirrors_old = conf->mirrors; 4532 conf->mirrors = conf->mirrors_new; 4533 conf->mirrors_new = NULL; 4534 } 4535 setup_geo(&conf->geo, mddev, geo_start); 4536 smp_mb(); 4537 if (mddev->reshape_backwards) { 4538 sector_t size = raid10_size(mddev, 0, 0); 4539 if (size < mddev->array_sectors) { 4540 spin_unlock_irq(&conf->device_lock); 4541 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4542 mdname(mddev)); 4543 return -EINVAL; 4544 } 4545 mddev->resync_max_sectors = size; 4546 conf->reshape_progress = size; 4547 } else 4548 conf->reshape_progress = 0; 4549 conf->reshape_safe = conf->reshape_progress; 4550 spin_unlock_irq(&conf->device_lock); 4551 4552 if (mddev->delta_disks && mddev->bitmap) { 4553 struct mdp_superblock_1 *sb = NULL; 4554 sector_t oldsize, newsize; 4555 4556 oldsize = raid10_size(mddev, 0, 0); 4557 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4558 4559 if (!mddev_is_clustered(mddev)) { 4560 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4561 if (ret) 4562 goto abort; 4563 else 4564 goto out; 4565 } 4566 4567 rdev_for_each(rdev, mddev) { 4568 if (rdev->raid_disk > -1 && 4569 !test_bit(Faulty, &rdev->flags)) 4570 sb = page_address(rdev->sb_page); 4571 } 4572 4573 /* 4574 * some node is already performing reshape, and no need to 4575 * call md_bitmap_resize again since it should be called when 4576 * receiving BITMAP_RESIZE msg 4577 */ 4578 if ((sb && (le32_to_cpu(sb->feature_map) & 4579 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4580 goto out; 4581 4582 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4583 if (ret) 4584 goto abort; 4585 4586 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4587 if (ret) { 4588 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4589 goto abort; 4590 } 4591 } 4592 out: 4593 if (mddev->delta_disks > 0) { 4594 rdev_for_each(rdev, mddev) 4595 if (rdev->raid_disk < 0 && 4596 !test_bit(Faulty, &rdev->flags)) { 4597 if (raid10_add_disk(mddev, rdev) == 0) { 4598 if (rdev->raid_disk >= 4599 conf->prev.raid_disks) 4600 set_bit(In_sync, &rdev->flags); 4601 else 4602 rdev->recovery_offset = 0; 4603 4604 /* Failure here is OK */ 4605 sysfs_link_rdev(mddev, rdev); 4606 } 4607 } else if (rdev->raid_disk >= conf->prev.raid_disks 4608 && !test_bit(Faulty, &rdev->flags)) { 4609 /* This is a spare that was manually added */ 4610 set_bit(In_sync, &rdev->flags); 4611 } 4612 } 4613 /* When a reshape changes the number of devices, 4614 * ->degraded is measured against the larger of the 4615 * pre and post numbers. 4616 */ 4617 spin_lock_irq(&conf->device_lock); 4618 mddev->degraded = calc_degraded(conf); 4619 spin_unlock_irq(&conf->device_lock); 4620 mddev->raid_disks = conf->geo.raid_disks; 4621 mddev->reshape_position = conf->reshape_progress; 4622 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4623 4624 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4625 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4626 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4627 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4628 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4629 4630 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4631 "reshape"); 4632 if (!mddev->sync_thread) { 4633 ret = -EAGAIN; 4634 goto abort; 4635 } 4636 conf->reshape_checkpoint = jiffies; 4637 md_wakeup_thread(mddev->sync_thread); 4638 md_new_event(mddev); 4639 return 0; 4640 4641 abort: 4642 mddev->recovery = 0; 4643 spin_lock_irq(&conf->device_lock); 4644 conf->geo = conf->prev; 4645 mddev->raid_disks = conf->geo.raid_disks; 4646 rdev_for_each(rdev, mddev) 4647 rdev->new_data_offset = rdev->data_offset; 4648 smp_wmb(); 4649 conf->reshape_progress = MaxSector; 4650 conf->reshape_safe = MaxSector; 4651 mddev->reshape_position = MaxSector; 4652 spin_unlock_irq(&conf->device_lock); 4653 return ret; 4654 } 4655 4656 /* Calculate the last device-address that could contain 4657 * any block from the chunk that includes the array-address 's' 4658 * and report the next address. 4659 * i.e. the address returned will be chunk-aligned and after 4660 * any data that is in the chunk containing 's'. 4661 */ 4662 static sector_t last_dev_address(sector_t s, struct geom *geo) 4663 { 4664 s = (s | geo->chunk_mask) + 1; 4665 s >>= geo->chunk_shift; 4666 s *= geo->near_copies; 4667 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4668 s *= geo->far_copies; 4669 s <<= geo->chunk_shift; 4670 return s; 4671 } 4672 4673 /* Calculate the first device-address that could contain 4674 * any block from the chunk that includes the array-address 's'. 4675 * This too will be the start of a chunk 4676 */ 4677 static sector_t first_dev_address(sector_t s, struct geom *geo) 4678 { 4679 s >>= geo->chunk_shift; 4680 s *= geo->near_copies; 4681 sector_div(s, geo->raid_disks); 4682 s *= geo->far_copies; 4683 s <<= geo->chunk_shift; 4684 return s; 4685 } 4686 4687 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4688 int *skipped) 4689 { 4690 /* We simply copy at most one chunk (smallest of old and new) 4691 * at a time, possibly less if that exceeds RESYNC_PAGES, 4692 * or we hit a bad block or something. 4693 * This might mean we pause for normal IO in the middle of 4694 * a chunk, but that is not a problem as mddev->reshape_position 4695 * can record any location. 4696 * 4697 * If we will want to write to a location that isn't 4698 * yet recorded as 'safe' (i.e. in metadata on disk) then 4699 * we need to flush all reshape requests and update the metadata. 4700 * 4701 * When reshaping forwards (e.g. to more devices), we interpret 4702 * 'safe' as the earliest block which might not have been copied 4703 * down yet. We divide this by previous stripe size and multiply 4704 * by previous stripe length to get lowest device offset that we 4705 * cannot write to yet. 4706 * We interpret 'sector_nr' as an address that we want to write to. 4707 * From this we use last_device_address() to find where we might 4708 * write to, and first_device_address on the 'safe' position. 4709 * If this 'next' write position is after the 'safe' position, 4710 * we must update the metadata to increase the 'safe' position. 4711 * 4712 * When reshaping backwards, we round in the opposite direction 4713 * and perform the reverse test: next write position must not be 4714 * less than current safe position. 4715 * 4716 * In all this the minimum difference in data offsets 4717 * (conf->offset_diff - always positive) allows a bit of slack, 4718 * so next can be after 'safe', but not by more than offset_diff 4719 * 4720 * We need to prepare all the bios here before we start any IO 4721 * to ensure the size we choose is acceptable to all devices. 4722 * The means one for each copy for write-out and an extra one for 4723 * read-in. 4724 * We store the read-in bio in ->master_bio and the others in 4725 * ->devs[x].bio and ->devs[x].repl_bio. 4726 */ 4727 struct r10conf *conf = mddev->private; 4728 struct r10bio *r10_bio; 4729 sector_t next, safe, last; 4730 int max_sectors; 4731 int nr_sectors; 4732 int s; 4733 struct md_rdev *rdev; 4734 int need_flush = 0; 4735 struct bio *blist; 4736 struct bio *bio, *read_bio; 4737 int sectors_done = 0; 4738 struct page **pages; 4739 4740 if (sector_nr == 0) { 4741 /* If restarting in the middle, skip the initial sectors */ 4742 if (mddev->reshape_backwards && 4743 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4744 sector_nr = (raid10_size(mddev, 0, 0) 4745 - conf->reshape_progress); 4746 } else if (!mddev->reshape_backwards && 4747 conf->reshape_progress > 0) 4748 sector_nr = conf->reshape_progress; 4749 if (sector_nr) { 4750 mddev->curr_resync_completed = sector_nr; 4751 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4752 *skipped = 1; 4753 return sector_nr; 4754 } 4755 } 4756 4757 /* We don't use sector_nr to track where we are up to 4758 * as that doesn't work well for ->reshape_backwards. 4759 * So just use ->reshape_progress. 4760 */ 4761 if (mddev->reshape_backwards) { 4762 /* 'next' is the earliest device address that we might 4763 * write to for this chunk in the new layout 4764 */ 4765 next = first_dev_address(conf->reshape_progress - 1, 4766 &conf->geo); 4767 4768 /* 'safe' is the last device address that we might read from 4769 * in the old layout after a restart 4770 */ 4771 safe = last_dev_address(conf->reshape_safe - 1, 4772 &conf->prev); 4773 4774 if (next + conf->offset_diff < safe) 4775 need_flush = 1; 4776 4777 last = conf->reshape_progress - 1; 4778 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4779 & conf->prev.chunk_mask); 4780 if (sector_nr + RESYNC_SECTORS < last) 4781 sector_nr = last + 1 - RESYNC_SECTORS; 4782 } else { 4783 /* 'next' is after the last device address that we 4784 * might write to for this chunk in the new layout 4785 */ 4786 next = last_dev_address(conf->reshape_progress, &conf->geo); 4787 4788 /* 'safe' is the earliest device address that we might 4789 * read from in the old layout after a restart 4790 */ 4791 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4792 4793 /* Need to update metadata if 'next' might be beyond 'safe' 4794 * as that would possibly corrupt data 4795 */ 4796 if (next > safe + conf->offset_diff) 4797 need_flush = 1; 4798 4799 sector_nr = conf->reshape_progress; 4800 last = sector_nr | (conf->geo.chunk_mask 4801 & conf->prev.chunk_mask); 4802 4803 if (sector_nr + RESYNC_SECTORS <= last) 4804 last = sector_nr + RESYNC_SECTORS - 1; 4805 } 4806 4807 if (need_flush || 4808 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4809 /* Need to update reshape_position in metadata */ 4810 wait_barrier(conf); 4811 mddev->reshape_position = conf->reshape_progress; 4812 if (mddev->reshape_backwards) 4813 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4814 - conf->reshape_progress; 4815 else 4816 mddev->curr_resync_completed = conf->reshape_progress; 4817 conf->reshape_checkpoint = jiffies; 4818 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4819 md_wakeup_thread(mddev->thread); 4820 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4821 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4822 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4823 allow_barrier(conf); 4824 return sectors_done; 4825 } 4826 conf->reshape_safe = mddev->reshape_position; 4827 allow_barrier(conf); 4828 } 4829 4830 raise_barrier(conf, 0); 4831 read_more: 4832 /* Now schedule reads for blocks from sector_nr to last */ 4833 r10_bio = raid10_alloc_init_r10buf(conf); 4834 r10_bio->state = 0; 4835 raise_barrier(conf, 1); 4836 atomic_set(&r10_bio->remaining, 0); 4837 r10_bio->mddev = mddev; 4838 r10_bio->sector = sector_nr; 4839 set_bit(R10BIO_IsReshape, &r10_bio->state); 4840 r10_bio->sectors = last - sector_nr + 1; 4841 rdev = read_balance(conf, r10_bio, &max_sectors); 4842 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4843 4844 if (!rdev) { 4845 /* Cannot read from here, so need to record bad blocks 4846 * on all the target devices. 4847 */ 4848 // FIXME 4849 mempool_free(r10_bio, &conf->r10buf_pool); 4850 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4851 return sectors_done; 4852 } 4853 4854 read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set); 4855 4856 bio_set_dev(read_bio, rdev->bdev); 4857 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4858 + rdev->data_offset); 4859 read_bio->bi_private = r10_bio; 4860 read_bio->bi_end_io = end_reshape_read; 4861 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4862 r10_bio->master_bio = read_bio; 4863 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4864 4865 /* 4866 * Broadcast RESYNC message to other nodes, so all nodes would not 4867 * write to the region to avoid conflict. 4868 */ 4869 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4870 struct mdp_superblock_1 *sb = NULL; 4871 int sb_reshape_pos = 0; 4872 4873 conf->cluster_sync_low = sector_nr; 4874 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4875 sb = page_address(rdev->sb_page); 4876 if (sb) { 4877 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4878 /* 4879 * Set cluster_sync_low again if next address for array 4880 * reshape is less than cluster_sync_low. Since we can't 4881 * update cluster_sync_low until it has finished reshape. 4882 */ 4883 if (sb_reshape_pos < conf->cluster_sync_low) 4884 conf->cluster_sync_low = sb_reshape_pos; 4885 } 4886 4887 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4888 conf->cluster_sync_high); 4889 } 4890 4891 /* Now find the locations in the new layout */ 4892 __raid10_find_phys(&conf->geo, r10_bio); 4893 4894 blist = read_bio; 4895 read_bio->bi_next = NULL; 4896 4897 rcu_read_lock(); 4898 for (s = 0; s < conf->copies*2; s++) { 4899 struct bio *b; 4900 int d = r10_bio->devs[s/2].devnum; 4901 struct md_rdev *rdev2; 4902 if (s&1) { 4903 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4904 b = r10_bio->devs[s/2].repl_bio; 4905 } else { 4906 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4907 b = r10_bio->devs[s/2].bio; 4908 } 4909 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4910 continue; 4911 4912 bio_set_dev(b, rdev2->bdev); 4913 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4914 rdev2->new_data_offset; 4915 b->bi_end_io = end_reshape_write; 4916 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4917 b->bi_next = blist; 4918 blist = b; 4919 } 4920 4921 /* Now add as many pages as possible to all of these bios. */ 4922 4923 nr_sectors = 0; 4924 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4925 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4926 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4927 int len = (max_sectors - s) << 9; 4928 if (len > PAGE_SIZE) 4929 len = PAGE_SIZE; 4930 for (bio = blist; bio ; bio = bio->bi_next) { 4931 /* 4932 * won't fail because the vec table is big enough 4933 * to hold all these pages 4934 */ 4935 bio_add_page(bio, page, len, 0); 4936 } 4937 sector_nr += len >> 9; 4938 nr_sectors += len >> 9; 4939 } 4940 rcu_read_unlock(); 4941 r10_bio->sectors = nr_sectors; 4942 4943 /* Now submit the read */ 4944 md_sync_acct_bio(read_bio, r10_bio->sectors); 4945 atomic_inc(&r10_bio->remaining); 4946 read_bio->bi_next = NULL; 4947 submit_bio_noacct(read_bio); 4948 sectors_done += nr_sectors; 4949 if (sector_nr <= last) 4950 goto read_more; 4951 4952 lower_barrier(conf); 4953 4954 /* Now that we have done the whole section we can 4955 * update reshape_progress 4956 */ 4957 if (mddev->reshape_backwards) 4958 conf->reshape_progress -= sectors_done; 4959 else 4960 conf->reshape_progress += sectors_done; 4961 4962 return sectors_done; 4963 } 4964 4965 static void end_reshape_request(struct r10bio *r10_bio); 4966 static int handle_reshape_read_error(struct mddev *mddev, 4967 struct r10bio *r10_bio); 4968 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4969 { 4970 /* Reshape read completed. Hopefully we have a block 4971 * to write out. 4972 * If we got a read error then we do sync 1-page reads from 4973 * elsewhere until we find the data - or give up. 4974 */ 4975 struct r10conf *conf = mddev->private; 4976 int s; 4977 4978 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4979 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4980 /* Reshape has been aborted */ 4981 md_done_sync(mddev, r10_bio->sectors, 0); 4982 return; 4983 } 4984 4985 /* We definitely have the data in the pages, schedule the 4986 * writes. 4987 */ 4988 atomic_set(&r10_bio->remaining, 1); 4989 for (s = 0; s < conf->copies*2; s++) { 4990 struct bio *b; 4991 int d = r10_bio->devs[s/2].devnum; 4992 struct md_rdev *rdev; 4993 rcu_read_lock(); 4994 if (s&1) { 4995 rdev = rcu_dereference(conf->mirrors[d].replacement); 4996 b = r10_bio->devs[s/2].repl_bio; 4997 } else { 4998 rdev = rcu_dereference(conf->mirrors[d].rdev); 4999 b = r10_bio->devs[s/2].bio; 5000 } 5001 if (!rdev || test_bit(Faulty, &rdev->flags)) { 5002 rcu_read_unlock(); 5003 continue; 5004 } 5005 atomic_inc(&rdev->nr_pending); 5006 rcu_read_unlock(); 5007 md_sync_acct_bio(b, r10_bio->sectors); 5008 atomic_inc(&r10_bio->remaining); 5009 b->bi_next = NULL; 5010 submit_bio_noacct(b); 5011 } 5012 end_reshape_request(r10_bio); 5013 } 5014 5015 static void end_reshape(struct r10conf *conf) 5016 { 5017 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 5018 return; 5019 5020 spin_lock_irq(&conf->device_lock); 5021 conf->prev = conf->geo; 5022 md_finish_reshape(conf->mddev); 5023 smp_wmb(); 5024 conf->reshape_progress = MaxSector; 5025 conf->reshape_safe = MaxSector; 5026 spin_unlock_irq(&conf->device_lock); 5027 5028 if (conf->mddev->queue) 5029 raid10_set_io_opt(conf); 5030 conf->fullsync = 0; 5031 } 5032 5033 static void raid10_update_reshape_pos(struct mddev *mddev) 5034 { 5035 struct r10conf *conf = mddev->private; 5036 sector_t lo, hi; 5037 5038 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 5039 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 5040 || mddev->reshape_position == MaxSector) 5041 conf->reshape_progress = mddev->reshape_position; 5042 else 5043 WARN_ON_ONCE(1); 5044 } 5045 5046 static int handle_reshape_read_error(struct mddev *mddev, 5047 struct r10bio *r10_bio) 5048 { 5049 /* Use sync reads to get the blocks from somewhere else */ 5050 int sectors = r10_bio->sectors; 5051 struct r10conf *conf = mddev->private; 5052 struct r10bio *r10b; 5053 int slot = 0; 5054 int idx = 0; 5055 struct page **pages; 5056 5057 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 5058 if (!r10b) { 5059 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5060 return -ENOMEM; 5061 } 5062 5063 /* reshape IOs share pages from .devs[0].bio */ 5064 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5065 5066 r10b->sector = r10_bio->sector; 5067 __raid10_find_phys(&conf->prev, r10b); 5068 5069 while (sectors) { 5070 int s = sectors; 5071 int success = 0; 5072 int first_slot = slot; 5073 5074 if (s > (PAGE_SIZE >> 9)) 5075 s = PAGE_SIZE >> 9; 5076 5077 rcu_read_lock(); 5078 while (!success) { 5079 int d = r10b->devs[slot].devnum; 5080 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5081 sector_t addr; 5082 if (rdev == NULL || 5083 test_bit(Faulty, &rdev->flags) || 5084 !test_bit(In_sync, &rdev->flags)) 5085 goto failed; 5086 5087 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5088 atomic_inc(&rdev->nr_pending); 5089 rcu_read_unlock(); 5090 success = sync_page_io(rdev, 5091 addr, 5092 s << 9, 5093 pages[idx], 5094 REQ_OP_READ, 0, false); 5095 rdev_dec_pending(rdev, mddev); 5096 rcu_read_lock(); 5097 if (success) 5098 break; 5099 failed: 5100 slot++; 5101 if (slot >= conf->copies) 5102 slot = 0; 5103 if (slot == first_slot) 5104 break; 5105 } 5106 rcu_read_unlock(); 5107 if (!success) { 5108 /* couldn't read this block, must give up */ 5109 set_bit(MD_RECOVERY_INTR, 5110 &mddev->recovery); 5111 kfree(r10b); 5112 return -EIO; 5113 } 5114 sectors -= s; 5115 idx++; 5116 } 5117 kfree(r10b); 5118 return 0; 5119 } 5120 5121 static void end_reshape_write(struct bio *bio) 5122 { 5123 struct r10bio *r10_bio = get_resync_r10bio(bio); 5124 struct mddev *mddev = r10_bio->mddev; 5125 struct r10conf *conf = mddev->private; 5126 int d; 5127 int slot; 5128 int repl; 5129 struct md_rdev *rdev = NULL; 5130 5131 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5132 if (repl) 5133 rdev = conf->mirrors[d].replacement; 5134 if (!rdev) { 5135 smp_mb(); 5136 rdev = conf->mirrors[d].rdev; 5137 } 5138 5139 if (bio->bi_status) { 5140 /* FIXME should record badblock */ 5141 md_error(mddev, rdev); 5142 } 5143 5144 rdev_dec_pending(rdev, mddev); 5145 end_reshape_request(r10_bio); 5146 } 5147 5148 static void end_reshape_request(struct r10bio *r10_bio) 5149 { 5150 if (!atomic_dec_and_test(&r10_bio->remaining)) 5151 return; 5152 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5153 bio_put(r10_bio->master_bio); 5154 put_buf(r10_bio); 5155 } 5156 5157 static void raid10_finish_reshape(struct mddev *mddev) 5158 { 5159 struct r10conf *conf = mddev->private; 5160 5161 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5162 return; 5163 5164 if (mddev->delta_disks > 0) { 5165 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5166 mddev->recovery_cp = mddev->resync_max_sectors; 5167 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5168 } 5169 mddev->resync_max_sectors = mddev->array_sectors; 5170 } else { 5171 int d; 5172 rcu_read_lock(); 5173 for (d = conf->geo.raid_disks ; 5174 d < conf->geo.raid_disks - mddev->delta_disks; 5175 d++) { 5176 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5177 if (rdev) 5178 clear_bit(In_sync, &rdev->flags); 5179 rdev = rcu_dereference(conf->mirrors[d].replacement); 5180 if (rdev) 5181 clear_bit(In_sync, &rdev->flags); 5182 } 5183 rcu_read_unlock(); 5184 } 5185 mddev->layout = mddev->new_layout; 5186 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5187 mddev->reshape_position = MaxSector; 5188 mddev->delta_disks = 0; 5189 mddev->reshape_backwards = 0; 5190 } 5191 5192 static struct md_personality raid10_personality = 5193 { 5194 .name = "raid10", 5195 .level = 10, 5196 .owner = THIS_MODULE, 5197 .make_request = raid10_make_request, 5198 .run = raid10_run, 5199 .free = raid10_free, 5200 .status = raid10_status, 5201 .error_handler = raid10_error, 5202 .hot_add_disk = raid10_add_disk, 5203 .hot_remove_disk= raid10_remove_disk, 5204 .spare_active = raid10_spare_active, 5205 .sync_request = raid10_sync_request, 5206 .quiesce = raid10_quiesce, 5207 .size = raid10_size, 5208 .resize = raid10_resize, 5209 .takeover = raid10_takeover, 5210 .check_reshape = raid10_check_reshape, 5211 .start_reshape = raid10_start_reshape, 5212 .finish_reshape = raid10_finish_reshape, 5213 .update_reshape_pos = raid10_update_reshape_pos, 5214 }; 5215 5216 static int __init raid_init(void) 5217 { 5218 return register_md_personality(&raid10_personality); 5219 } 5220 5221 static void raid_exit(void) 5222 { 5223 unregister_md_personality(&raid10_personality); 5224 } 5225 5226 module_init(raid_init); 5227 module_exit(raid_exit); 5228 MODULE_LICENSE("GPL"); 5229 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5230 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5231 MODULE_ALIAS("md-raid10"); 5232 MODULE_ALIAS("md-level-10"); 5233 5234 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 5235