1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 23 #define RAID_1_10_NAME "raid10" 24 #include "raid10.h" 25 #include "raid0.h" 26 #include "md-bitmap.h" 27 28 /* 29 * RAID10 provides a combination of RAID0 and RAID1 functionality. 30 * The layout of data is defined by 31 * chunk_size 32 * raid_disks 33 * near_copies (stored in low byte of layout) 34 * far_copies (stored in second byte of layout) 35 * far_offset (stored in bit 16 of layout ) 36 * use_far_sets (stored in bit 17 of layout ) 37 * use_far_sets_bugfixed (stored in bit 18 of layout ) 38 * 39 * The data to be stored is divided into chunks using chunksize. Each device 40 * is divided into far_copies sections. In each section, chunks are laid out 41 * in a style similar to raid0, but near_copies copies of each chunk is stored 42 * (each on a different drive). The starting device for each section is offset 43 * near_copies from the starting device of the previous section. Thus there 44 * are (near_copies * far_copies) of each chunk, and each is on a different 45 * drive. near_copies and far_copies must be at least one, and their product 46 * is at most raid_disks. 47 * 48 * If far_offset is true, then the far_copies are handled a bit differently. 49 * The copies are still in different stripes, but instead of being very far 50 * apart on disk, there are adjacent stripes. 51 * 52 * The far and offset algorithms are handled slightly differently if 53 * 'use_far_sets' is true. In this case, the array's devices are grouped into 54 * sets that are (near_copies * far_copies) in size. The far copied stripes 55 * are still shifted by 'near_copies' devices, but this shifting stays confined 56 * to the set rather than the entire array. This is done to improve the number 57 * of device combinations that can fail without causing the array to fail. 58 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 59 * on a device): 60 * A B C D A B C D E 61 * ... ... 62 * D A B C E A B C D 63 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 64 * [A B] [C D] [A B] [C D E] 65 * |...| |...| |...| | ... | 66 * [B A] [D C] [B A] [E C D] 67 */ 68 69 static void allow_barrier(struct r10conf *conf); 70 static void lower_barrier(struct r10conf *conf); 71 static int _enough(struct r10conf *conf, int previous, int ignore); 72 static int enough(struct r10conf *conf, int ignore); 73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 74 int *skipped); 75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 76 static void end_reshape_write(struct bio *bio); 77 static void end_reshape(struct r10conf *conf); 78 79 #include "raid1-10.c" 80 81 #define NULL_CMD 82 #define cmd_before(conf, cmd) \ 83 do { \ 84 write_sequnlock_irq(&(conf)->resync_lock); \ 85 cmd; \ 86 } while (0) 87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 88 89 #define wait_event_barrier_cmd(conf, cond, cmd) \ 90 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 91 cmd_after(conf)) 92 93 #define wait_event_barrier(conf, cond) \ 94 wait_event_barrier_cmd(conf, cond, NULL_CMD) 95 96 /* 97 * for resync bio, r10bio pointer can be retrieved from the per-bio 98 * 'struct resync_pages'. 99 */ 100 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 101 { 102 return get_resync_pages(bio)->raid_bio; 103 } 104 105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 106 { 107 struct r10conf *conf = data; 108 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 109 110 /* allocate a r10bio with room for raid_disks entries in the 111 * bios array */ 112 return kzalloc(size, gfp_flags); 113 } 114 115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 116 /* amount of memory to reserve for resync requests */ 117 #define RESYNC_WINDOW (1024*1024) 118 /* maximum number of concurrent requests, memory permitting */ 119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 122 123 /* 124 * When performing a resync, we need to read and compare, so 125 * we need as many pages are there are copies. 126 * When performing a recovery, we need 2 bios, one for read, 127 * one for write (we recover only one drive per r10buf) 128 * 129 */ 130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct r10conf *conf = data; 133 struct r10bio *r10_bio; 134 struct bio *bio; 135 int j; 136 int nalloc, nalloc_rp; 137 struct resync_pages *rps; 138 139 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 140 if (!r10_bio) 141 return NULL; 142 143 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 144 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 145 nalloc = conf->copies; /* resync */ 146 else 147 nalloc = 2; /* recovery */ 148 149 /* allocate once for all bios */ 150 if (!conf->have_replacement) 151 nalloc_rp = nalloc; 152 else 153 nalloc_rp = nalloc * 2; 154 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 155 if (!rps) 156 goto out_free_r10bio; 157 158 /* 159 * Allocate bios. 160 */ 161 for (j = nalloc ; j-- ; ) { 162 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 163 if (!bio) 164 goto out_free_bio; 165 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 166 r10_bio->devs[j].bio = bio; 167 if (!conf->have_replacement) 168 continue; 169 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 170 if (!bio) 171 goto out_free_bio; 172 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 173 r10_bio->devs[j].repl_bio = bio; 174 } 175 /* 176 * Allocate RESYNC_PAGES data pages and attach them 177 * where needed. 178 */ 179 for (j = 0; j < nalloc; j++) { 180 struct bio *rbio = r10_bio->devs[j].repl_bio; 181 struct resync_pages *rp, *rp_repl; 182 183 rp = &rps[j]; 184 if (rbio) 185 rp_repl = &rps[nalloc + j]; 186 187 bio = r10_bio->devs[j].bio; 188 189 if (!j || test_bit(MD_RECOVERY_SYNC, 190 &conf->mddev->recovery)) { 191 if (resync_alloc_pages(rp, gfp_flags)) 192 goto out_free_pages; 193 } else { 194 memcpy(rp, &rps[0], sizeof(*rp)); 195 resync_get_all_pages(rp); 196 } 197 198 rp->raid_bio = r10_bio; 199 bio->bi_private = rp; 200 if (rbio) { 201 memcpy(rp_repl, rp, sizeof(*rp)); 202 rbio->bi_private = rp_repl; 203 } 204 } 205 206 return r10_bio; 207 208 out_free_pages: 209 while (--j >= 0) 210 resync_free_pages(&rps[j]); 211 212 j = 0; 213 out_free_bio: 214 for ( ; j < nalloc; j++) { 215 if (r10_bio->devs[j].bio) 216 bio_uninit(r10_bio->devs[j].bio); 217 kfree(r10_bio->devs[j].bio); 218 if (r10_bio->devs[j].repl_bio) 219 bio_uninit(r10_bio->devs[j].repl_bio); 220 kfree(r10_bio->devs[j].repl_bio); 221 } 222 kfree(rps); 223 out_free_r10bio: 224 rbio_pool_free(r10_bio, conf); 225 return NULL; 226 } 227 228 static void r10buf_pool_free(void *__r10_bio, void *data) 229 { 230 struct r10conf *conf = data; 231 struct r10bio *r10bio = __r10_bio; 232 int j; 233 struct resync_pages *rp = NULL; 234 235 for (j = conf->copies; j--; ) { 236 struct bio *bio = r10bio->devs[j].bio; 237 238 if (bio) { 239 rp = get_resync_pages(bio); 240 resync_free_pages(rp); 241 bio_uninit(bio); 242 kfree(bio); 243 } 244 245 bio = r10bio->devs[j].repl_bio; 246 if (bio) { 247 bio_uninit(bio); 248 kfree(bio); 249 } 250 } 251 252 /* resync pages array stored in the 1st bio's .bi_private */ 253 kfree(rp); 254 255 rbio_pool_free(r10bio, conf); 256 } 257 258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 259 { 260 int i; 261 262 for (i = 0; i < conf->geo.raid_disks; i++) { 263 struct bio **bio = & r10_bio->devs[i].bio; 264 if (!BIO_SPECIAL(*bio)) 265 bio_put(*bio); 266 *bio = NULL; 267 bio = &r10_bio->devs[i].repl_bio; 268 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 269 bio_put(*bio); 270 *bio = NULL; 271 } 272 } 273 274 static void free_r10bio(struct r10bio *r10_bio) 275 { 276 struct r10conf *conf = r10_bio->mddev->private; 277 278 put_all_bios(conf, r10_bio); 279 mempool_free(r10_bio, &conf->r10bio_pool); 280 } 281 282 static void put_buf(struct r10bio *r10_bio) 283 { 284 struct r10conf *conf = r10_bio->mddev->private; 285 286 mempool_free(r10_bio, &conf->r10buf_pool); 287 288 lower_barrier(conf); 289 } 290 291 static void wake_up_barrier(struct r10conf *conf) 292 { 293 if (wq_has_sleeper(&conf->wait_barrier)) 294 wake_up(&conf->wait_barrier); 295 } 296 297 static void reschedule_retry(struct r10bio *r10_bio) 298 { 299 unsigned long flags; 300 struct mddev *mddev = r10_bio->mddev; 301 struct r10conf *conf = mddev->private; 302 303 spin_lock_irqsave(&conf->device_lock, flags); 304 list_add(&r10_bio->retry_list, &conf->retry_list); 305 conf->nr_queued ++; 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 308 /* wake up frozen array... */ 309 wake_up(&conf->wait_barrier); 310 311 md_wakeup_thread(mddev->thread); 312 } 313 314 /* 315 * raid_end_bio_io() is called when we have finished servicing a mirrored 316 * operation and are ready to return a success/failure code to the buffer 317 * cache layer. 318 */ 319 static void raid_end_bio_io(struct r10bio *r10_bio) 320 { 321 struct bio *bio = r10_bio->master_bio; 322 struct r10conf *conf = r10_bio->mddev->private; 323 324 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 325 bio->bi_status = BLK_STS_IOERR; 326 327 bio_endio(bio); 328 /* 329 * Wake up any possible resync thread that waits for the device 330 * to go idle. 331 */ 332 allow_barrier(conf); 333 334 free_r10bio(r10_bio); 335 } 336 337 /* 338 * Update disk head position estimator based on IRQ completion info. 339 */ 340 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 341 { 342 struct r10conf *conf = r10_bio->mddev->private; 343 344 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 345 r10_bio->devs[slot].addr + (r10_bio->sectors); 346 } 347 348 /* 349 * Find the disk number which triggered given bio 350 */ 351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 352 struct bio *bio, int *slotp, int *replp) 353 { 354 int slot; 355 int repl = 0; 356 357 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 358 if (r10_bio->devs[slot].bio == bio) 359 break; 360 if (r10_bio->devs[slot].repl_bio == bio) { 361 repl = 1; 362 break; 363 } 364 } 365 366 update_head_pos(slot, r10_bio); 367 368 if (slotp) 369 *slotp = slot; 370 if (replp) 371 *replp = repl; 372 return r10_bio->devs[slot].devnum; 373 } 374 375 static void raid10_end_read_request(struct bio *bio) 376 { 377 int uptodate = !bio->bi_status; 378 struct r10bio *r10_bio = bio->bi_private; 379 int slot; 380 struct md_rdev *rdev; 381 struct r10conf *conf = r10_bio->mddev->private; 382 383 slot = r10_bio->read_slot; 384 rdev = r10_bio->devs[slot].rdev; 385 /* 386 * this branch is our 'one mirror IO has finished' event handler: 387 */ 388 update_head_pos(slot, r10_bio); 389 390 if (uptodate) { 391 /* 392 * Set R10BIO_Uptodate in our master bio, so that 393 * we will return a good error code to the higher 394 * levels even if IO on some other mirrored buffer fails. 395 * 396 * The 'master' represents the composite IO operation to 397 * user-side. So if something waits for IO, then it will 398 * wait for the 'master' bio. 399 */ 400 set_bit(R10BIO_Uptodate, &r10_bio->state); 401 } else { 402 /* If all other devices that store this block have 403 * failed, we want to return the error upwards rather 404 * than fail the last device. Here we redefine 405 * "uptodate" to mean "Don't want to retry" 406 */ 407 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 408 rdev->raid_disk)) 409 uptodate = 1; 410 } 411 if (uptodate) { 412 raid_end_bio_io(r10_bio); 413 rdev_dec_pending(rdev, conf->mddev); 414 } else { 415 /* 416 * oops, read error - keep the refcount on the rdev 417 */ 418 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 419 mdname(conf->mddev), 420 rdev->bdev, 421 (unsigned long long)r10_bio->sector); 422 set_bit(R10BIO_ReadError, &r10_bio->state); 423 reschedule_retry(r10_bio); 424 } 425 } 426 427 static void close_write(struct r10bio *r10_bio) 428 { 429 /* clear the bitmap if all writes complete successfully */ 430 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 431 r10_bio->sectors, 432 !test_bit(R10BIO_Degraded, &r10_bio->state), 433 0); 434 md_write_end(r10_bio->mddev); 435 } 436 437 static void one_write_done(struct r10bio *r10_bio) 438 { 439 if (atomic_dec_and_test(&r10_bio->remaining)) { 440 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 441 reschedule_retry(r10_bio); 442 else { 443 close_write(r10_bio); 444 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 445 reschedule_retry(r10_bio); 446 else 447 raid_end_bio_io(r10_bio); 448 } 449 } 450 } 451 452 static void raid10_end_write_request(struct bio *bio) 453 { 454 struct r10bio *r10_bio = bio->bi_private; 455 int dev; 456 int dec_rdev = 1; 457 struct r10conf *conf = r10_bio->mddev->private; 458 int slot, repl; 459 struct md_rdev *rdev = NULL; 460 struct bio *to_put = NULL; 461 bool discard_error; 462 463 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 464 465 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 466 467 if (repl) 468 rdev = conf->mirrors[dev].replacement; 469 if (!rdev) { 470 smp_rmb(); 471 repl = 0; 472 rdev = conf->mirrors[dev].rdev; 473 } 474 /* 475 * this branch is our 'one mirror IO has finished' event handler: 476 */ 477 if (bio->bi_status && !discard_error) { 478 if (repl) 479 /* Never record new bad blocks to replacement, 480 * just fail it. 481 */ 482 md_error(rdev->mddev, rdev); 483 else { 484 set_bit(WriteErrorSeen, &rdev->flags); 485 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 486 set_bit(MD_RECOVERY_NEEDED, 487 &rdev->mddev->recovery); 488 489 dec_rdev = 0; 490 if (test_bit(FailFast, &rdev->flags) && 491 (bio->bi_opf & MD_FAILFAST)) { 492 md_error(rdev->mddev, rdev); 493 } 494 495 /* 496 * When the device is faulty, it is not necessary to 497 * handle write error. 498 */ 499 if (!test_bit(Faulty, &rdev->flags)) 500 set_bit(R10BIO_WriteError, &r10_bio->state); 501 else { 502 /* Fail the request */ 503 set_bit(R10BIO_Degraded, &r10_bio->state); 504 r10_bio->devs[slot].bio = NULL; 505 to_put = bio; 506 dec_rdev = 1; 507 } 508 } 509 } else { 510 /* 511 * Set R10BIO_Uptodate in our master bio, so that 512 * we will return a good error code for to the higher 513 * levels even if IO on some other mirrored buffer fails. 514 * 515 * The 'master' represents the composite IO operation to 516 * user-side. So if something waits for IO, then it will 517 * wait for the 'master' bio. 518 * 519 * Do not set R10BIO_Uptodate if the current device is 520 * rebuilding or Faulty. This is because we cannot use 521 * such device for properly reading the data back (we could 522 * potentially use it, if the current write would have felt 523 * before rdev->recovery_offset, but for simplicity we don't 524 * check this here. 525 */ 526 if (test_bit(In_sync, &rdev->flags) && 527 !test_bit(Faulty, &rdev->flags)) 528 set_bit(R10BIO_Uptodate, &r10_bio->state); 529 530 /* Maybe we can clear some bad blocks. */ 531 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 532 r10_bio->sectors) && 533 !discard_error) { 534 bio_put(bio); 535 if (repl) 536 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 537 else 538 r10_bio->devs[slot].bio = IO_MADE_GOOD; 539 dec_rdev = 0; 540 set_bit(R10BIO_MadeGood, &r10_bio->state); 541 } 542 } 543 544 /* 545 * 546 * Let's see if all mirrored write operations have finished 547 * already. 548 */ 549 one_write_done(r10_bio); 550 if (dec_rdev) 551 rdev_dec_pending(rdev, conf->mddev); 552 if (to_put) 553 bio_put(to_put); 554 } 555 556 /* 557 * RAID10 layout manager 558 * As well as the chunksize and raid_disks count, there are two 559 * parameters: near_copies and far_copies. 560 * near_copies * far_copies must be <= raid_disks. 561 * Normally one of these will be 1. 562 * If both are 1, we get raid0. 563 * If near_copies == raid_disks, we get raid1. 564 * 565 * Chunks are laid out in raid0 style with near_copies copies of the 566 * first chunk, followed by near_copies copies of the next chunk and 567 * so on. 568 * If far_copies > 1, then after 1/far_copies of the array has been assigned 569 * as described above, we start again with a device offset of near_copies. 570 * So we effectively have another copy of the whole array further down all 571 * the drives, but with blocks on different drives. 572 * With this layout, and block is never stored twice on the one device. 573 * 574 * raid10_find_phys finds the sector offset of a given virtual sector 575 * on each device that it is on. 576 * 577 * raid10_find_virt does the reverse mapping, from a device and a 578 * sector offset to a virtual address 579 */ 580 581 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 582 { 583 int n,f; 584 sector_t sector; 585 sector_t chunk; 586 sector_t stripe; 587 int dev; 588 int slot = 0; 589 int last_far_set_start, last_far_set_size; 590 591 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 592 last_far_set_start *= geo->far_set_size; 593 594 last_far_set_size = geo->far_set_size; 595 last_far_set_size += (geo->raid_disks % geo->far_set_size); 596 597 /* now calculate first sector/dev */ 598 chunk = r10bio->sector >> geo->chunk_shift; 599 sector = r10bio->sector & geo->chunk_mask; 600 601 chunk *= geo->near_copies; 602 stripe = chunk; 603 dev = sector_div(stripe, geo->raid_disks); 604 if (geo->far_offset) 605 stripe *= geo->far_copies; 606 607 sector += stripe << geo->chunk_shift; 608 609 /* and calculate all the others */ 610 for (n = 0; n < geo->near_copies; n++) { 611 int d = dev; 612 int set; 613 sector_t s = sector; 614 r10bio->devs[slot].devnum = d; 615 r10bio->devs[slot].addr = s; 616 slot++; 617 618 for (f = 1; f < geo->far_copies; f++) { 619 set = d / geo->far_set_size; 620 d += geo->near_copies; 621 622 if ((geo->raid_disks % geo->far_set_size) && 623 (d > last_far_set_start)) { 624 d -= last_far_set_start; 625 d %= last_far_set_size; 626 d += last_far_set_start; 627 } else { 628 d %= geo->far_set_size; 629 d += geo->far_set_size * set; 630 } 631 s += geo->stride; 632 r10bio->devs[slot].devnum = d; 633 r10bio->devs[slot].addr = s; 634 slot++; 635 } 636 dev++; 637 if (dev >= geo->raid_disks) { 638 dev = 0; 639 sector += (geo->chunk_mask + 1); 640 } 641 } 642 } 643 644 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 645 { 646 struct geom *geo = &conf->geo; 647 648 if (conf->reshape_progress != MaxSector && 649 ((r10bio->sector >= conf->reshape_progress) != 650 conf->mddev->reshape_backwards)) { 651 set_bit(R10BIO_Previous, &r10bio->state); 652 geo = &conf->prev; 653 } else 654 clear_bit(R10BIO_Previous, &r10bio->state); 655 656 __raid10_find_phys(geo, r10bio); 657 } 658 659 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 660 { 661 sector_t offset, chunk, vchunk; 662 /* Never use conf->prev as this is only called during resync 663 * or recovery, so reshape isn't happening 664 */ 665 struct geom *geo = &conf->geo; 666 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 667 int far_set_size = geo->far_set_size; 668 int last_far_set_start; 669 670 if (geo->raid_disks % geo->far_set_size) { 671 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 672 last_far_set_start *= geo->far_set_size; 673 674 if (dev >= last_far_set_start) { 675 far_set_size = geo->far_set_size; 676 far_set_size += (geo->raid_disks % geo->far_set_size); 677 far_set_start = last_far_set_start; 678 } 679 } 680 681 offset = sector & geo->chunk_mask; 682 if (geo->far_offset) { 683 int fc; 684 chunk = sector >> geo->chunk_shift; 685 fc = sector_div(chunk, geo->far_copies); 686 dev -= fc * geo->near_copies; 687 if (dev < far_set_start) 688 dev += far_set_size; 689 } else { 690 while (sector >= geo->stride) { 691 sector -= geo->stride; 692 if (dev < (geo->near_copies + far_set_start)) 693 dev += far_set_size - geo->near_copies; 694 else 695 dev -= geo->near_copies; 696 } 697 chunk = sector >> geo->chunk_shift; 698 } 699 vchunk = chunk * geo->raid_disks + dev; 700 sector_div(vchunk, geo->near_copies); 701 return (vchunk << geo->chunk_shift) + offset; 702 } 703 704 /* 705 * This routine returns the disk from which the requested read should 706 * be done. There is a per-array 'next expected sequential IO' sector 707 * number - if this matches on the next IO then we use the last disk. 708 * There is also a per-disk 'last know head position' sector that is 709 * maintained from IRQ contexts, both the normal and the resync IO 710 * completion handlers update this position correctly. If there is no 711 * perfect sequential match then we pick the disk whose head is closest. 712 * 713 * If there are 2 mirrors in the same 2 devices, performance degrades 714 * because position is mirror, not device based. 715 * 716 * The rdev for the device selected will have nr_pending incremented. 717 */ 718 719 /* 720 * FIXME: possibly should rethink readbalancing and do it differently 721 * depending on near_copies / far_copies geometry. 722 */ 723 static struct md_rdev *read_balance(struct r10conf *conf, 724 struct r10bio *r10_bio, 725 int *max_sectors) 726 { 727 const sector_t this_sector = r10_bio->sector; 728 int disk, slot; 729 int sectors = r10_bio->sectors; 730 int best_good_sectors; 731 sector_t new_distance, best_dist; 732 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 733 int do_balance; 734 int best_dist_slot, best_pending_slot; 735 bool has_nonrot_disk = false; 736 unsigned int min_pending; 737 struct geom *geo = &conf->geo; 738 739 raid10_find_phys(conf, r10_bio); 740 best_dist_slot = -1; 741 min_pending = UINT_MAX; 742 best_dist_rdev = NULL; 743 best_pending_rdev = NULL; 744 best_dist = MaxSector; 745 best_good_sectors = 0; 746 do_balance = 1; 747 clear_bit(R10BIO_FailFast, &r10_bio->state); 748 749 if (raid1_should_read_first(conf->mddev, this_sector, sectors)) 750 do_balance = 0; 751 752 for (slot = 0; slot < conf->copies ; slot++) { 753 sector_t first_bad; 754 int bad_sectors; 755 sector_t dev_sector; 756 unsigned int pending; 757 bool nonrot; 758 759 if (r10_bio->devs[slot].bio == IO_BLOCKED) 760 continue; 761 disk = r10_bio->devs[slot].devnum; 762 rdev = conf->mirrors[disk].replacement; 763 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 764 r10_bio->devs[slot].addr + sectors > 765 rdev->recovery_offset) 766 rdev = conf->mirrors[disk].rdev; 767 if (rdev == NULL || 768 test_bit(Faulty, &rdev->flags)) 769 continue; 770 if (!test_bit(In_sync, &rdev->flags) && 771 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 772 continue; 773 774 dev_sector = r10_bio->devs[slot].addr; 775 if (is_badblock(rdev, dev_sector, sectors, 776 &first_bad, &bad_sectors)) { 777 if (best_dist < MaxSector) 778 /* Already have a better slot */ 779 continue; 780 if (first_bad <= dev_sector) { 781 /* Cannot read here. If this is the 782 * 'primary' device, then we must not read 783 * beyond 'bad_sectors' from another device. 784 */ 785 bad_sectors -= (dev_sector - first_bad); 786 if (!do_balance && sectors > bad_sectors) 787 sectors = bad_sectors; 788 if (best_good_sectors > sectors) 789 best_good_sectors = sectors; 790 } else { 791 sector_t good_sectors = 792 first_bad - dev_sector; 793 if (good_sectors > best_good_sectors) { 794 best_good_sectors = good_sectors; 795 best_dist_slot = slot; 796 best_dist_rdev = rdev; 797 } 798 if (!do_balance) 799 /* Must read from here */ 800 break; 801 } 802 continue; 803 } else 804 best_good_sectors = sectors; 805 806 if (!do_balance) 807 break; 808 809 nonrot = bdev_nonrot(rdev->bdev); 810 has_nonrot_disk |= nonrot; 811 pending = atomic_read(&rdev->nr_pending); 812 if (min_pending > pending && nonrot) { 813 min_pending = pending; 814 best_pending_slot = slot; 815 best_pending_rdev = rdev; 816 } 817 818 if (best_dist_slot >= 0) 819 /* At least 2 disks to choose from so failfast is OK */ 820 set_bit(R10BIO_FailFast, &r10_bio->state); 821 /* This optimisation is debatable, and completely destroys 822 * sequential read speed for 'far copies' arrays. So only 823 * keep it for 'near' arrays, and review those later. 824 */ 825 if (geo->near_copies > 1 && !pending) 826 new_distance = 0; 827 828 /* for far > 1 always use the lowest address */ 829 else if (geo->far_copies > 1) 830 new_distance = r10_bio->devs[slot].addr; 831 else 832 new_distance = abs(r10_bio->devs[slot].addr - 833 conf->mirrors[disk].head_position); 834 835 if (new_distance < best_dist) { 836 best_dist = new_distance; 837 best_dist_slot = slot; 838 best_dist_rdev = rdev; 839 } 840 } 841 if (slot >= conf->copies) { 842 if (has_nonrot_disk) { 843 slot = best_pending_slot; 844 rdev = best_pending_rdev; 845 } else { 846 slot = best_dist_slot; 847 rdev = best_dist_rdev; 848 } 849 } 850 851 if (slot >= 0) { 852 atomic_inc(&rdev->nr_pending); 853 r10_bio->read_slot = slot; 854 } else 855 rdev = NULL; 856 *max_sectors = best_good_sectors; 857 858 return rdev; 859 } 860 861 static void flush_pending_writes(struct r10conf *conf) 862 { 863 /* Any writes that have been queued but are awaiting 864 * bitmap updates get flushed here. 865 */ 866 spin_lock_irq(&conf->device_lock); 867 868 if (conf->pending_bio_list.head) { 869 struct blk_plug plug; 870 struct bio *bio; 871 872 bio = bio_list_get(&conf->pending_bio_list); 873 spin_unlock_irq(&conf->device_lock); 874 875 /* 876 * As this is called in a wait_event() loop (see freeze_array), 877 * current->state might be TASK_UNINTERRUPTIBLE which will 878 * cause a warning when we prepare to wait again. As it is 879 * rare that this path is taken, it is perfectly safe to force 880 * us to go around the wait_event() loop again, so the warning 881 * is a false-positive. Silence the warning by resetting 882 * thread state 883 */ 884 __set_current_state(TASK_RUNNING); 885 886 blk_start_plug(&plug); 887 raid1_prepare_flush_writes(conf->mddev->bitmap); 888 wake_up(&conf->wait_barrier); 889 890 while (bio) { /* submit pending writes */ 891 struct bio *next = bio->bi_next; 892 893 raid1_submit_write(bio); 894 bio = next; 895 cond_resched(); 896 } 897 blk_finish_plug(&plug); 898 } else 899 spin_unlock_irq(&conf->device_lock); 900 } 901 902 /* Barriers.... 903 * Sometimes we need to suspend IO while we do something else, 904 * either some resync/recovery, or reconfigure the array. 905 * To do this we raise a 'barrier'. 906 * The 'barrier' is a counter that can be raised multiple times 907 * to count how many activities are happening which preclude 908 * normal IO. 909 * We can only raise the barrier if there is no pending IO. 910 * i.e. if nr_pending == 0. 911 * We choose only to raise the barrier if no-one is waiting for the 912 * barrier to go down. This means that as soon as an IO request 913 * is ready, no other operations which require a barrier will start 914 * until the IO request has had a chance. 915 * 916 * So: regular IO calls 'wait_barrier'. When that returns there 917 * is no backgroup IO happening, It must arrange to call 918 * allow_barrier when it has finished its IO. 919 * backgroup IO calls must call raise_barrier. Once that returns 920 * there is no normal IO happeing. It must arrange to call 921 * lower_barrier when the particular background IO completes. 922 */ 923 924 static void raise_barrier(struct r10conf *conf, int force) 925 { 926 write_seqlock_irq(&conf->resync_lock); 927 928 if (WARN_ON_ONCE(force && !conf->barrier)) 929 force = false; 930 931 /* Wait until no block IO is waiting (unless 'force') */ 932 wait_event_barrier(conf, force || !conf->nr_waiting); 933 934 /* block any new IO from starting */ 935 WRITE_ONCE(conf->barrier, conf->barrier + 1); 936 937 /* Now wait for all pending IO to complete */ 938 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 939 conf->barrier < RESYNC_DEPTH); 940 941 write_sequnlock_irq(&conf->resync_lock); 942 } 943 944 static void lower_barrier(struct r10conf *conf) 945 { 946 unsigned long flags; 947 948 write_seqlock_irqsave(&conf->resync_lock, flags); 949 WRITE_ONCE(conf->barrier, conf->barrier - 1); 950 write_sequnlock_irqrestore(&conf->resync_lock, flags); 951 wake_up(&conf->wait_barrier); 952 } 953 954 static bool stop_waiting_barrier(struct r10conf *conf) 955 { 956 struct bio_list *bio_list = current->bio_list; 957 struct md_thread *thread; 958 959 /* barrier is dropped */ 960 if (!conf->barrier) 961 return true; 962 963 /* 964 * If there are already pending requests (preventing the barrier from 965 * rising completely), and the pre-process bio queue isn't empty, then 966 * don't wait, as we need to empty that queue to get the nr_pending 967 * count down. 968 */ 969 if (atomic_read(&conf->nr_pending) && bio_list && 970 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 971 return true; 972 973 /* daemon thread must exist while handling io */ 974 thread = rcu_dereference_protected(conf->mddev->thread, true); 975 /* 976 * move on if io is issued from raid10d(), nr_pending is not released 977 * from original io(see handle_read_error()). All raise barrier is 978 * blocked until this io is done. 979 */ 980 if (thread->tsk == current) { 981 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 982 return true; 983 } 984 985 return false; 986 } 987 988 static bool wait_barrier_nolock(struct r10conf *conf) 989 { 990 unsigned int seq = read_seqbegin(&conf->resync_lock); 991 992 if (READ_ONCE(conf->barrier)) 993 return false; 994 995 atomic_inc(&conf->nr_pending); 996 if (!read_seqretry(&conf->resync_lock, seq)) 997 return true; 998 999 if (atomic_dec_and_test(&conf->nr_pending)) 1000 wake_up_barrier(conf); 1001 1002 return false; 1003 } 1004 1005 static bool wait_barrier(struct r10conf *conf, bool nowait) 1006 { 1007 bool ret = true; 1008 1009 if (wait_barrier_nolock(conf)) 1010 return true; 1011 1012 write_seqlock_irq(&conf->resync_lock); 1013 if (conf->barrier) { 1014 /* Return false when nowait flag is set */ 1015 if (nowait) { 1016 ret = false; 1017 } else { 1018 conf->nr_waiting++; 1019 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier"); 1020 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1021 conf->nr_waiting--; 1022 } 1023 if (!conf->nr_waiting) 1024 wake_up(&conf->wait_barrier); 1025 } 1026 /* Only increment nr_pending when we wait */ 1027 if (ret) 1028 atomic_inc(&conf->nr_pending); 1029 write_sequnlock_irq(&conf->resync_lock); 1030 return ret; 1031 } 1032 1033 static void allow_barrier(struct r10conf *conf) 1034 { 1035 if ((atomic_dec_and_test(&conf->nr_pending)) || 1036 (conf->array_freeze_pending)) 1037 wake_up_barrier(conf); 1038 } 1039 1040 static void freeze_array(struct r10conf *conf, int extra) 1041 { 1042 /* stop syncio and normal IO and wait for everything to 1043 * go quiet. 1044 * We increment barrier and nr_waiting, and then 1045 * wait until nr_pending match nr_queued+extra 1046 * This is called in the context of one normal IO request 1047 * that has failed. Thus any sync request that might be pending 1048 * will be blocked by nr_pending, and we need to wait for 1049 * pending IO requests to complete or be queued for re-try. 1050 * Thus the number queued (nr_queued) plus this request (extra) 1051 * must match the number of pending IOs (nr_pending) before 1052 * we continue. 1053 */ 1054 write_seqlock_irq(&conf->resync_lock); 1055 conf->array_freeze_pending++; 1056 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1057 conf->nr_waiting++; 1058 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1059 conf->nr_queued + extra, flush_pending_writes(conf)); 1060 conf->array_freeze_pending--; 1061 write_sequnlock_irq(&conf->resync_lock); 1062 } 1063 1064 static void unfreeze_array(struct r10conf *conf) 1065 { 1066 /* reverse the effect of the freeze */ 1067 write_seqlock_irq(&conf->resync_lock); 1068 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1069 conf->nr_waiting--; 1070 wake_up(&conf->wait_barrier); 1071 write_sequnlock_irq(&conf->resync_lock); 1072 } 1073 1074 static sector_t choose_data_offset(struct r10bio *r10_bio, 1075 struct md_rdev *rdev) 1076 { 1077 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1078 test_bit(R10BIO_Previous, &r10_bio->state)) 1079 return rdev->data_offset; 1080 else 1081 return rdev->new_data_offset; 1082 } 1083 1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1085 { 1086 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1087 struct mddev *mddev = plug->cb.data; 1088 struct r10conf *conf = mddev->private; 1089 struct bio *bio; 1090 1091 if (from_schedule) { 1092 spin_lock_irq(&conf->device_lock); 1093 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1094 spin_unlock_irq(&conf->device_lock); 1095 wake_up_barrier(conf); 1096 md_wakeup_thread(mddev->thread); 1097 kfree(plug); 1098 return; 1099 } 1100 1101 /* we aren't scheduling, so we can do the write-out directly. */ 1102 bio = bio_list_get(&plug->pending); 1103 raid1_prepare_flush_writes(mddev->bitmap); 1104 wake_up_barrier(conf); 1105 1106 while (bio) { /* submit pending writes */ 1107 struct bio *next = bio->bi_next; 1108 1109 raid1_submit_write(bio); 1110 bio = next; 1111 cond_resched(); 1112 } 1113 kfree(plug); 1114 } 1115 1116 /* 1117 * 1. Register the new request and wait if the reconstruction thread has put 1118 * up a bar for new requests. Continue immediately if no resync is active 1119 * currently. 1120 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1121 */ 1122 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1123 struct bio *bio, sector_t sectors) 1124 { 1125 /* Bail out if REQ_NOWAIT is set for the bio */ 1126 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1127 bio_wouldblock_error(bio); 1128 return false; 1129 } 1130 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1131 bio->bi_iter.bi_sector < conf->reshape_progress && 1132 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1133 allow_barrier(conf); 1134 if (bio->bi_opf & REQ_NOWAIT) { 1135 bio_wouldblock_error(bio); 1136 return false; 1137 } 1138 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape"); 1139 wait_event(conf->wait_barrier, 1140 conf->reshape_progress <= bio->bi_iter.bi_sector || 1141 conf->reshape_progress >= bio->bi_iter.bi_sector + 1142 sectors); 1143 wait_barrier(conf, false); 1144 } 1145 return true; 1146 } 1147 1148 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1149 struct r10bio *r10_bio, bool io_accounting) 1150 { 1151 struct r10conf *conf = mddev->private; 1152 struct bio *read_bio; 1153 const enum req_op op = bio_op(bio); 1154 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1155 int max_sectors; 1156 struct md_rdev *rdev; 1157 char b[BDEVNAME_SIZE]; 1158 int slot = r10_bio->read_slot; 1159 struct md_rdev *err_rdev = NULL; 1160 gfp_t gfp = GFP_NOIO; 1161 1162 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1163 /* 1164 * This is an error retry, but we cannot 1165 * safely dereference the rdev in the r10_bio, 1166 * we must use the one in conf. 1167 * If it has already been disconnected (unlikely) 1168 * we lose the device name in error messages. 1169 */ 1170 int disk; 1171 /* 1172 * As we are blocking raid10, it is a little safer to 1173 * use __GFP_HIGH. 1174 */ 1175 gfp = GFP_NOIO | __GFP_HIGH; 1176 1177 disk = r10_bio->devs[slot].devnum; 1178 err_rdev = conf->mirrors[disk].rdev; 1179 if (err_rdev) 1180 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1181 else { 1182 strcpy(b, "???"); 1183 /* This never gets dereferenced */ 1184 err_rdev = r10_bio->devs[slot].rdev; 1185 } 1186 } 1187 1188 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1189 return; 1190 rdev = read_balance(conf, r10_bio, &max_sectors); 1191 if (!rdev) { 1192 if (err_rdev) { 1193 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1194 mdname(mddev), b, 1195 (unsigned long long)r10_bio->sector); 1196 } 1197 raid_end_bio_io(r10_bio); 1198 return; 1199 } 1200 if (err_rdev) 1201 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1202 mdname(mddev), 1203 rdev->bdev, 1204 (unsigned long long)r10_bio->sector); 1205 if (max_sectors < bio_sectors(bio)) { 1206 struct bio *split = bio_split(bio, max_sectors, 1207 gfp, &conf->bio_split); 1208 bio_chain(split, bio); 1209 allow_barrier(conf); 1210 submit_bio_noacct(bio); 1211 wait_barrier(conf, false); 1212 bio = split; 1213 r10_bio->master_bio = bio; 1214 r10_bio->sectors = max_sectors; 1215 } 1216 slot = r10_bio->read_slot; 1217 1218 if (io_accounting) { 1219 md_account_bio(mddev, &bio); 1220 r10_bio->master_bio = bio; 1221 } 1222 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1223 1224 r10_bio->devs[slot].bio = read_bio; 1225 r10_bio->devs[slot].rdev = rdev; 1226 1227 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1228 choose_data_offset(r10_bio, rdev); 1229 read_bio->bi_end_io = raid10_end_read_request; 1230 read_bio->bi_opf = op | do_sync; 1231 if (test_bit(FailFast, &rdev->flags) && 1232 test_bit(R10BIO_FailFast, &r10_bio->state)) 1233 read_bio->bi_opf |= MD_FAILFAST; 1234 read_bio->bi_private = r10_bio; 1235 mddev_trace_remap(mddev, read_bio, r10_bio->sector); 1236 submit_bio_noacct(read_bio); 1237 return; 1238 } 1239 1240 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1241 struct bio *bio, bool replacement, 1242 int n_copy) 1243 { 1244 const enum req_op op = bio_op(bio); 1245 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1246 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA; 1247 unsigned long flags; 1248 struct r10conf *conf = mddev->private; 1249 struct md_rdev *rdev; 1250 int devnum = r10_bio->devs[n_copy].devnum; 1251 struct bio *mbio; 1252 1253 rdev = replacement ? conf->mirrors[devnum].replacement : 1254 conf->mirrors[devnum].rdev; 1255 1256 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1257 if (replacement) 1258 r10_bio->devs[n_copy].repl_bio = mbio; 1259 else 1260 r10_bio->devs[n_copy].bio = mbio; 1261 1262 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1263 choose_data_offset(r10_bio, rdev)); 1264 mbio->bi_end_io = raid10_end_write_request; 1265 mbio->bi_opf = op | do_sync | do_fua; 1266 if (!replacement && test_bit(FailFast, 1267 &conf->mirrors[devnum].rdev->flags) 1268 && enough(conf, devnum)) 1269 mbio->bi_opf |= MD_FAILFAST; 1270 mbio->bi_private = r10_bio; 1271 mddev_trace_remap(mddev, mbio, r10_bio->sector); 1272 /* flush_pending_writes() needs access to the rdev so...*/ 1273 mbio->bi_bdev = (void *)rdev; 1274 1275 atomic_inc(&r10_bio->remaining); 1276 1277 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) { 1278 spin_lock_irqsave(&conf->device_lock, flags); 1279 bio_list_add(&conf->pending_bio_list, mbio); 1280 spin_unlock_irqrestore(&conf->device_lock, flags); 1281 md_wakeup_thread(mddev->thread); 1282 } 1283 } 1284 1285 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1286 { 1287 int i; 1288 struct r10conf *conf = mddev->private; 1289 struct md_rdev *blocked_rdev; 1290 1291 retry_wait: 1292 blocked_rdev = NULL; 1293 for (i = 0; i < conf->copies; i++) { 1294 struct md_rdev *rdev, *rrdev; 1295 1296 rdev = conf->mirrors[i].rdev; 1297 rrdev = conf->mirrors[i].replacement; 1298 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1299 atomic_inc(&rdev->nr_pending); 1300 blocked_rdev = rdev; 1301 break; 1302 } 1303 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1304 atomic_inc(&rrdev->nr_pending); 1305 blocked_rdev = rrdev; 1306 break; 1307 } 1308 1309 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1310 sector_t dev_sector = r10_bio->devs[i].addr; 1311 1312 /* 1313 * Discard request doesn't care the write result 1314 * so it doesn't need to wait blocked disk here. 1315 */ 1316 if (!r10_bio->sectors) 1317 continue; 1318 1319 if (rdev_has_badblock(rdev, dev_sector, 1320 r10_bio->sectors) < 0) { 1321 /* 1322 * Mustn't write here until the bad block 1323 * is acknowledged 1324 */ 1325 atomic_inc(&rdev->nr_pending); 1326 set_bit(BlockedBadBlocks, &rdev->flags); 1327 blocked_rdev = rdev; 1328 break; 1329 } 1330 } 1331 } 1332 1333 if (unlikely(blocked_rdev)) { 1334 /* Have to wait for this device to get unblocked, then retry */ 1335 allow_barrier(conf); 1336 mddev_add_trace_msg(conf->mddev, 1337 "raid10 %s wait rdev %d blocked", 1338 __func__, blocked_rdev->raid_disk); 1339 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1340 wait_barrier(conf, false); 1341 goto retry_wait; 1342 } 1343 } 1344 1345 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1346 struct r10bio *r10_bio) 1347 { 1348 struct r10conf *conf = mddev->private; 1349 int i; 1350 sector_t sectors; 1351 int max_sectors; 1352 1353 if ((mddev_is_clustered(mddev) && 1354 md_cluster_ops->area_resyncing(mddev, WRITE, 1355 bio->bi_iter.bi_sector, 1356 bio_end_sector(bio)))) { 1357 DEFINE_WAIT(w); 1358 /* Bail out if REQ_NOWAIT is set for the bio */ 1359 if (bio->bi_opf & REQ_NOWAIT) { 1360 bio_wouldblock_error(bio); 1361 return; 1362 } 1363 for (;;) { 1364 prepare_to_wait(&conf->wait_barrier, 1365 &w, TASK_IDLE); 1366 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1367 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1368 break; 1369 schedule(); 1370 } 1371 finish_wait(&conf->wait_barrier, &w); 1372 } 1373 1374 sectors = r10_bio->sectors; 1375 if (!regular_request_wait(mddev, conf, bio, sectors)) 1376 return; 1377 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1378 (mddev->reshape_backwards 1379 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1380 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1381 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1382 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1383 /* Need to update reshape_position in metadata */ 1384 mddev->reshape_position = conf->reshape_progress; 1385 set_mask_bits(&mddev->sb_flags, 0, 1386 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1387 md_wakeup_thread(mddev->thread); 1388 if (bio->bi_opf & REQ_NOWAIT) { 1389 allow_barrier(conf); 1390 bio_wouldblock_error(bio); 1391 return; 1392 } 1393 mddev_add_trace_msg(conf->mddev, 1394 "raid10 wait reshape metadata"); 1395 wait_event(mddev->sb_wait, 1396 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1397 1398 conf->reshape_safe = mddev->reshape_position; 1399 } 1400 1401 /* first select target devices under rcu_lock and 1402 * inc refcount on their rdev. Record them by setting 1403 * bios[x] to bio 1404 * If there are known/acknowledged bad blocks on any device 1405 * on which we have seen a write error, we want to avoid 1406 * writing to those blocks. This potentially requires several 1407 * writes to write around the bad blocks. Each set of writes 1408 * gets its own r10_bio with a set of bios attached. 1409 */ 1410 1411 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1412 raid10_find_phys(conf, r10_bio); 1413 1414 wait_blocked_dev(mddev, r10_bio); 1415 1416 max_sectors = r10_bio->sectors; 1417 1418 for (i = 0; i < conf->copies; i++) { 1419 int d = r10_bio->devs[i].devnum; 1420 struct md_rdev *rdev, *rrdev; 1421 1422 rdev = conf->mirrors[d].rdev; 1423 rrdev = conf->mirrors[d].replacement; 1424 if (rdev && (test_bit(Faulty, &rdev->flags))) 1425 rdev = NULL; 1426 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1427 rrdev = NULL; 1428 1429 r10_bio->devs[i].bio = NULL; 1430 r10_bio->devs[i].repl_bio = NULL; 1431 1432 if (!rdev && !rrdev) { 1433 set_bit(R10BIO_Degraded, &r10_bio->state); 1434 continue; 1435 } 1436 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1437 sector_t first_bad; 1438 sector_t dev_sector = r10_bio->devs[i].addr; 1439 int bad_sectors; 1440 int is_bad; 1441 1442 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1443 &first_bad, &bad_sectors); 1444 if (is_bad && first_bad <= dev_sector) { 1445 /* Cannot write here at all */ 1446 bad_sectors -= (dev_sector - first_bad); 1447 if (bad_sectors < max_sectors) 1448 /* Mustn't write more than bad_sectors 1449 * to other devices yet 1450 */ 1451 max_sectors = bad_sectors; 1452 /* We don't set R10BIO_Degraded as that 1453 * only applies if the disk is missing, 1454 * so it might be re-added, and we want to 1455 * know to recover this chunk. 1456 * In this case the device is here, and the 1457 * fact that this chunk is not in-sync is 1458 * recorded in the bad block log. 1459 */ 1460 continue; 1461 } 1462 if (is_bad) { 1463 int good_sectors = first_bad - dev_sector; 1464 if (good_sectors < max_sectors) 1465 max_sectors = good_sectors; 1466 } 1467 } 1468 if (rdev) { 1469 r10_bio->devs[i].bio = bio; 1470 atomic_inc(&rdev->nr_pending); 1471 } 1472 if (rrdev) { 1473 r10_bio->devs[i].repl_bio = bio; 1474 atomic_inc(&rrdev->nr_pending); 1475 } 1476 } 1477 1478 if (max_sectors < r10_bio->sectors) 1479 r10_bio->sectors = max_sectors; 1480 1481 if (r10_bio->sectors < bio_sectors(bio)) { 1482 struct bio *split = bio_split(bio, r10_bio->sectors, 1483 GFP_NOIO, &conf->bio_split); 1484 bio_chain(split, bio); 1485 allow_barrier(conf); 1486 submit_bio_noacct(bio); 1487 wait_barrier(conf, false); 1488 bio = split; 1489 r10_bio->master_bio = bio; 1490 } 1491 1492 md_account_bio(mddev, &bio); 1493 r10_bio->master_bio = bio; 1494 atomic_set(&r10_bio->remaining, 1); 1495 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1496 1497 for (i = 0; i < conf->copies; i++) { 1498 if (r10_bio->devs[i].bio) 1499 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1500 if (r10_bio->devs[i].repl_bio) 1501 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1502 } 1503 one_write_done(r10_bio); 1504 } 1505 1506 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1507 { 1508 struct r10conf *conf = mddev->private; 1509 struct r10bio *r10_bio; 1510 1511 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1512 1513 r10_bio->master_bio = bio; 1514 r10_bio->sectors = sectors; 1515 1516 r10_bio->mddev = mddev; 1517 r10_bio->sector = bio->bi_iter.bi_sector; 1518 r10_bio->state = 0; 1519 r10_bio->read_slot = -1; 1520 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1521 conf->geo.raid_disks); 1522 1523 if (bio_data_dir(bio) == READ) 1524 raid10_read_request(mddev, bio, r10_bio, true); 1525 else 1526 raid10_write_request(mddev, bio, r10_bio); 1527 } 1528 1529 static void raid_end_discard_bio(struct r10bio *r10bio) 1530 { 1531 struct r10conf *conf = r10bio->mddev->private; 1532 struct r10bio *first_r10bio; 1533 1534 while (atomic_dec_and_test(&r10bio->remaining)) { 1535 1536 allow_barrier(conf); 1537 1538 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1539 first_r10bio = (struct r10bio *)r10bio->master_bio; 1540 free_r10bio(r10bio); 1541 r10bio = first_r10bio; 1542 } else { 1543 md_write_end(r10bio->mddev); 1544 bio_endio(r10bio->master_bio); 1545 free_r10bio(r10bio); 1546 break; 1547 } 1548 } 1549 } 1550 1551 static void raid10_end_discard_request(struct bio *bio) 1552 { 1553 struct r10bio *r10_bio = bio->bi_private; 1554 struct r10conf *conf = r10_bio->mddev->private; 1555 struct md_rdev *rdev = NULL; 1556 int dev; 1557 int slot, repl; 1558 1559 /* 1560 * We don't care the return value of discard bio 1561 */ 1562 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1563 set_bit(R10BIO_Uptodate, &r10_bio->state); 1564 1565 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1566 rdev = repl ? conf->mirrors[dev].replacement : 1567 conf->mirrors[dev].rdev; 1568 1569 raid_end_discard_bio(r10_bio); 1570 rdev_dec_pending(rdev, conf->mddev); 1571 } 1572 1573 /* 1574 * There are some limitations to handle discard bio 1575 * 1st, the discard size is bigger than stripe_size*2. 1576 * 2st, if the discard bio spans reshape progress, we use the old way to 1577 * handle discard bio 1578 */ 1579 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1580 { 1581 struct r10conf *conf = mddev->private; 1582 struct geom *geo = &conf->geo; 1583 int far_copies = geo->far_copies; 1584 bool first_copy = true; 1585 struct r10bio *r10_bio, *first_r10bio; 1586 struct bio *split; 1587 int disk; 1588 sector_t chunk; 1589 unsigned int stripe_size; 1590 unsigned int stripe_data_disks; 1591 sector_t split_size; 1592 sector_t bio_start, bio_end; 1593 sector_t first_stripe_index, last_stripe_index; 1594 sector_t start_disk_offset; 1595 unsigned int start_disk_index; 1596 sector_t end_disk_offset; 1597 unsigned int end_disk_index; 1598 unsigned int remainder; 1599 1600 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1601 return -EAGAIN; 1602 1603 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { 1604 bio_wouldblock_error(bio); 1605 return 0; 1606 } 1607 wait_barrier(conf, false); 1608 1609 /* 1610 * Check reshape again to avoid reshape happens after checking 1611 * MD_RECOVERY_RESHAPE and before wait_barrier 1612 */ 1613 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1614 goto out; 1615 1616 if (geo->near_copies) 1617 stripe_data_disks = geo->raid_disks / geo->near_copies + 1618 geo->raid_disks % geo->near_copies; 1619 else 1620 stripe_data_disks = geo->raid_disks; 1621 1622 stripe_size = stripe_data_disks << geo->chunk_shift; 1623 1624 bio_start = bio->bi_iter.bi_sector; 1625 bio_end = bio_end_sector(bio); 1626 1627 /* 1628 * Maybe one discard bio is smaller than strip size or across one 1629 * stripe and discard region is larger than one stripe size. For far 1630 * offset layout, if the discard region is not aligned with stripe 1631 * size, there is hole when we submit discard bio to member disk. 1632 * For simplicity, we only handle discard bio which discard region 1633 * is bigger than stripe_size * 2 1634 */ 1635 if (bio_sectors(bio) < stripe_size*2) 1636 goto out; 1637 1638 /* 1639 * Keep bio aligned with strip size. 1640 */ 1641 div_u64_rem(bio_start, stripe_size, &remainder); 1642 if (remainder) { 1643 split_size = stripe_size - remainder; 1644 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1645 bio_chain(split, bio); 1646 allow_barrier(conf); 1647 /* Resend the fist split part */ 1648 submit_bio_noacct(split); 1649 wait_barrier(conf, false); 1650 } 1651 div_u64_rem(bio_end, stripe_size, &remainder); 1652 if (remainder) { 1653 split_size = bio_sectors(bio) - remainder; 1654 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1655 bio_chain(split, bio); 1656 allow_barrier(conf); 1657 /* Resend the second split part */ 1658 submit_bio_noacct(bio); 1659 bio = split; 1660 wait_barrier(conf, false); 1661 } 1662 1663 bio_start = bio->bi_iter.bi_sector; 1664 bio_end = bio_end_sector(bio); 1665 1666 /* 1667 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1668 * One stripe contains the chunks from all member disk (one chunk from 1669 * one disk at the same HBA address). For layout detail, see 'man md 4' 1670 */ 1671 chunk = bio_start >> geo->chunk_shift; 1672 chunk *= geo->near_copies; 1673 first_stripe_index = chunk; 1674 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1675 if (geo->far_offset) 1676 first_stripe_index *= geo->far_copies; 1677 start_disk_offset = (bio_start & geo->chunk_mask) + 1678 (first_stripe_index << geo->chunk_shift); 1679 1680 chunk = bio_end >> geo->chunk_shift; 1681 chunk *= geo->near_copies; 1682 last_stripe_index = chunk; 1683 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1684 if (geo->far_offset) 1685 last_stripe_index *= geo->far_copies; 1686 end_disk_offset = (bio_end & geo->chunk_mask) + 1687 (last_stripe_index << geo->chunk_shift); 1688 1689 retry_discard: 1690 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1691 r10_bio->mddev = mddev; 1692 r10_bio->state = 0; 1693 r10_bio->sectors = 0; 1694 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1695 wait_blocked_dev(mddev, r10_bio); 1696 1697 /* 1698 * For far layout it needs more than one r10bio to cover all regions. 1699 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1700 * to record the discard bio. Other r10bio->master_bio record the first 1701 * r10bio. The first r10bio only release after all other r10bios finish. 1702 * The discard bio returns only first r10bio finishes 1703 */ 1704 if (first_copy) { 1705 r10_bio->master_bio = bio; 1706 set_bit(R10BIO_Discard, &r10_bio->state); 1707 first_copy = false; 1708 first_r10bio = r10_bio; 1709 } else 1710 r10_bio->master_bio = (struct bio *)first_r10bio; 1711 1712 /* 1713 * first select target devices under rcu_lock and 1714 * inc refcount on their rdev. Record them by setting 1715 * bios[x] to bio 1716 */ 1717 for (disk = 0; disk < geo->raid_disks; disk++) { 1718 struct md_rdev *rdev, *rrdev; 1719 1720 rdev = conf->mirrors[disk].rdev; 1721 rrdev = conf->mirrors[disk].replacement; 1722 r10_bio->devs[disk].bio = NULL; 1723 r10_bio->devs[disk].repl_bio = NULL; 1724 1725 if (rdev && (test_bit(Faulty, &rdev->flags))) 1726 rdev = NULL; 1727 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1728 rrdev = NULL; 1729 if (!rdev && !rrdev) 1730 continue; 1731 1732 if (rdev) { 1733 r10_bio->devs[disk].bio = bio; 1734 atomic_inc(&rdev->nr_pending); 1735 } 1736 if (rrdev) { 1737 r10_bio->devs[disk].repl_bio = bio; 1738 atomic_inc(&rrdev->nr_pending); 1739 } 1740 } 1741 1742 atomic_set(&r10_bio->remaining, 1); 1743 for (disk = 0; disk < geo->raid_disks; disk++) { 1744 sector_t dev_start, dev_end; 1745 struct bio *mbio, *rbio = NULL; 1746 1747 /* 1748 * Now start to calculate the start and end address for each disk. 1749 * The space between dev_start and dev_end is the discard region. 1750 * 1751 * For dev_start, it needs to consider three conditions: 1752 * 1st, the disk is before start_disk, you can imagine the disk in 1753 * the next stripe. So the dev_start is the start address of next 1754 * stripe. 1755 * 2st, the disk is after start_disk, it means the disk is at the 1756 * same stripe of first disk 1757 * 3st, the first disk itself, we can use start_disk_offset directly 1758 */ 1759 if (disk < start_disk_index) 1760 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1761 else if (disk > start_disk_index) 1762 dev_start = first_stripe_index * mddev->chunk_sectors; 1763 else 1764 dev_start = start_disk_offset; 1765 1766 if (disk < end_disk_index) 1767 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1768 else if (disk > end_disk_index) 1769 dev_end = last_stripe_index * mddev->chunk_sectors; 1770 else 1771 dev_end = end_disk_offset; 1772 1773 /* 1774 * It only handles discard bio which size is >= stripe size, so 1775 * dev_end > dev_start all the time. 1776 * It doesn't need to use rcu lock to get rdev here. We already 1777 * add rdev->nr_pending in the first loop. 1778 */ 1779 if (r10_bio->devs[disk].bio) { 1780 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1781 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1782 &mddev->bio_set); 1783 mbio->bi_end_io = raid10_end_discard_request; 1784 mbio->bi_private = r10_bio; 1785 r10_bio->devs[disk].bio = mbio; 1786 r10_bio->devs[disk].devnum = disk; 1787 atomic_inc(&r10_bio->remaining); 1788 md_submit_discard_bio(mddev, rdev, mbio, 1789 dev_start + choose_data_offset(r10_bio, rdev), 1790 dev_end - dev_start); 1791 bio_endio(mbio); 1792 } 1793 if (r10_bio->devs[disk].repl_bio) { 1794 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1795 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1796 &mddev->bio_set); 1797 rbio->bi_end_io = raid10_end_discard_request; 1798 rbio->bi_private = r10_bio; 1799 r10_bio->devs[disk].repl_bio = rbio; 1800 r10_bio->devs[disk].devnum = disk; 1801 atomic_inc(&r10_bio->remaining); 1802 md_submit_discard_bio(mddev, rrdev, rbio, 1803 dev_start + choose_data_offset(r10_bio, rrdev), 1804 dev_end - dev_start); 1805 bio_endio(rbio); 1806 } 1807 } 1808 1809 if (!geo->far_offset && --far_copies) { 1810 first_stripe_index += geo->stride >> geo->chunk_shift; 1811 start_disk_offset += geo->stride; 1812 last_stripe_index += geo->stride >> geo->chunk_shift; 1813 end_disk_offset += geo->stride; 1814 atomic_inc(&first_r10bio->remaining); 1815 raid_end_discard_bio(r10_bio); 1816 wait_barrier(conf, false); 1817 goto retry_discard; 1818 } 1819 1820 raid_end_discard_bio(r10_bio); 1821 1822 return 0; 1823 out: 1824 allow_barrier(conf); 1825 return -EAGAIN; 1826 } 1827 1828 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1829 { 1830 struct r10conf *conf = mddev->private; 1831 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1832 int chunk_sects = chunk_mask + 1; 1833 int sectors = bio_sectors(bio); 1834 1835 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1836 && md_flush_request(mddev, bio)) 1837 return true; 1838 1839 md_write_start(mddev, bio); 1840 1841 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1842 if (!raid10_handle_discard(mddev, bio)) 1843 return true; 1844 1845 /* 1846 * If this request crosses a chunk boundary, we need to split 1847 * it. 1848 */ 1849 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1850 sectors > chunk_sects 1851 && (conf->geo.near_copies < conf->geo.raid_disks 1852 || conf->prev.near_copies < 1853 conf->prev.raid_disks))) 1854 sectors = chunk_sects - 1855 (bio->bi_iter.bi_sector & 1856 (chunk_sects - 1)); 1857 __make_request(mddev, bio, sectors); 1858 1859 /* In case raid10d snuck in to freeze_array */ 1860 wake_up_barrier(conf); 1861 return true; 1862 } 1863 1864 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1865 { 1866 struct r10conf *conf = mddev->private; 1867 int i; 1868 1869 lockdep_assert_held(&mddev->lock); 1870 1871 if (conf->geo.near_copies < conf->geo.raid_disks) 1872 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1873 if (conf->geo.near_copies > 1) 1874 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1875 if (conf->geo.far_copies > 1) { 1876 if (conf->geo.far_offset) 1877 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1878 else 1879 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1880 if (conf->geo.far_set_size != conf->geo.raid_disks) 1881 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1882 } 1883 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1884 conf->geo.raid_disks - mddev->degraded); 1885 for (i = 0; i < conf->geo.raid_disks; i++) { 1886 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1887 1888 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1889 } 1890 seq_printf(seq, "]"); 1891 } 1892 1893 /* check if there are enough drives for 1894 * every block to appear on atleast one. 1895 * Don't consider the device numbered 'ignore' 1896 * as we might be about to remove it. 1897 */ 1898 static int _enough(struct r10conf *conf, int previous, int ignore) 1899 { 1900 int first = 0; 1901 int has_enough = 0; 1902 int disks, ncopies; 1903 if (previous) { 1904 disks = conf->prev.raid_disks; 1905 ncopies = conf->prev.near_copies; 1906 } else { 1907 disks = conf->geo.raid_disks; 1908 ncopies = conf->geo.near_copies; 1909 } 1910 1911 do { 1912 int n = conf->copies; 1913 int cnt = 0; 1914 int this = first; 1915 while (n--) { 1916 struct md_rdev *rdev; 1917 if (this != ignore && 1918 (rdev = conf->mirrors[this].rdev) && 1919 test_bit(In_sync, &rdev->flags)) 1920 cnt++; 1921 this = (this+1) % disks; 1922 } 1923 if (cnt == 0) 1924 goto out; 1925 first = (first + ncopies) % disks; 1926 } while (first != 0); 1927 has_enough = 1; 1928 out: 1929 return has_enough; 1930 } 1931 1932 static int enough(struct r10conf *conf, int ignore) 1933 { 1934 /* when calling 'enough', both 'prev' and 'geo' must 1935 * be stable. 1936 * This is ensured if ->reconfig_mutex or ->device_lock 1937 * is held. 1938 */ 1939 return _enough(conf, 0, ignore) && 1940 _enough(conf, 1, ignore); 1941 } 1942 1943 /** 1944 * raid10_error() - RAID10 error handler. 1945 * @mddev: affected md device. 1946 * @rdev: member device to fail. 1947 * 1948 * The routine acknowledges &rdev failure and determines new @mddev state. 1949 * If it failed, then: 1950 * - &MD_BROKEN flag is set in &mddev->flags. 1951 * Otherwise, it must be degraded: 1952 * - recovery is interrupted. 1953 * - &mddev->degraded is bumped. 1954 * 1955 * @rdev is marked as &Faulty excluding case when array is failed and 1956 * &mddev->fail_last_dev is off. 1957 */ 1958 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1959 { 1960 struct r10conf *conf = mddev->private; 1961 unsigned long flags; 1962 1963 spin_lock_irqsave(&conf->device_lock, flags); 1964 1965 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 1966 set_bit(MD_BROKEN, &mddev->flags); 1967 1968 if (!mddev->fail_last_dev) { 1969 spin_unlock_irqrestore(&conf->device_lock, flags); 1970 return; 1971 } 1972 } 1973 if (test_and_clear_bit(In_sync, &rdev->flags)) 1974 mddev->degraded++; 1975 1976 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1977 set_bit(Blocked, &rdev->flags); 1978 set_bit(Faulty, &rdev->flags); 1979 set_mask_bits(&mddev->sb_flags, 0, 1980 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1981 spin_unlock_irqrestore(&conf->device_lock, flags); 1982 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 1983 "md/raid10:%s: Operation continuing on %d devices.\n", 1984 mdname(mddev), rdev->bdev, 1985 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1986 } 1987 1988 static void print_conf(struct r10conf *conf) 1989 { 1990 int i; 1991 struct md_rdev *rdev; 1992 1993 pr_debug("RAID10 conf printout:\n"); 1994 if (!conf) { 1995 pr_debug("(!conf)\n"); 1996 return; 1997 } 1998 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1999 conf->geo.raid_disks); 2000 2001 lockdep_assert_held(&conf->mddev->reconfig_mutex); 2002 for (i = 0; i < conf->geo.raid_disks; i++) { 2003 rdev = conf->mirrors[i].rdev; 2004 if (rdev) 2005 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2006 i, !test_bit(In_sync, &rdev->flags), 2007 !test_bit(Faulty, &rdev->flags), 2008 rdev->bdev); 2009 } 2010 } 2011 2012 static void close_sync(struct r10conf *conf) 2013 { 2014 wait_barrier(conf, false); 2015 allow_barrier(conf); 2016 2017 mempool_exit(&conf->r10buf_pool); 2018 } 2019 2020 static int raid10_spare_active(struct mddev *mddev) 2021 { 2022 int i; 2023 struct r10conf *conf = mddev->private; 2024 struct raid10_info *tmp; 2025 int count = 0; 2026 unsigned long flags; 2027 2028 /* 2029 * Find all non-in_sync disks within the RAID10 configuration 2030 * and mark them in_sync 2031 */ 2032 for (i = 0; i < conf->geo.raid_disks; i++) { 2033 tmp = conf->mirrors + i; 2034 if (tmp->replacement 2035 && tmp->replacement->recovery_offset == MaxSector 2036 && !test_bit(Faulty, &tmp->replacement->flags) 2037 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2038 /* Replacement has just become active */ 2039 if (!tmp->rdev 2040 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2041 count++; 2042 if (tmp->rdev) { 2043 /* Replaced device not technically faulty, 2044 * but we need to be sure it gets removed 2045 * and never re-added. 2046 */ 2047 set_bit(Faulty, &tmp->rdev->flags); 2048 sysfs_notify_dirent_safe( 2049 tmp->rdev->sysfs_state); 2050 } 2051 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2052 } else if (tmp->rdev 2053 && tmp->rdev->recovery_offset == MaxSector 2054 && !test_bit(Faulty, &tmp->rdev->flags) 2055 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2056 count++; 2057 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2058 } 2059 } 2060 spin_lock_irqsave(&conf->device_lock, flags); 2061 mddev->degraded -= count; 2062 spin_unlock_irqrestore(&conf->device_lock, flags); 2063 2064 print_conf(conf); 2065 return count; 2066 } 2067 2068 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2069 { 2070 struct r10conf *conf = mddev->private; 2071 int err = -EEXIST; 2072 int mirror, repl_slot = -1; 2073 int first = 0; 2074 int last = conf->geo.raid_disks - 1; 2075 struct raid10_info *p; 2076 2077 if (mddev->recovery_cp < MaxSector) 2078 /* only hot-add to in-sync arrays, as recovery is 2079 * very different from resync 2080 */ 2081 return -EBUSY; 2082 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2083 return -EINVAL; 2084 2085 if (rdev->raid_disk >= 0) 2086 first = last = rdev->raid_disk; 2087 2088 if (rdev->saved_raid_disk >= first && 2089 rdev->saved_raid_disk < conf->geo.raid_disks && 2090 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2091 mirror = rdev->saved_raid_disk; 2092 else 2093 mirror = first; 2094 for ( ; mirror <= last ; mirror++) { 2095 p = &conf->mirrors[mirror]; 2096 if (p->recovery_disabled == mddev->recovery_disabled) 2097 continue; 2098 if (p->rdev) { 2099 if (test_bit(WantReplacement, &p->rdev->flags) && 2100 p->replacement == NULL && repl_slot < 0) 2101 repl_slot = mirror; 2102 continue; 2103 } 2104 2105 err = mddev_stack_new_rdev(mddev, rdev); 2106 if (err) 2107 return err; 2108 p->head_position = 0; 2109 p->recovery_disabled = mddev->recovery_disabled - 1; 2110 rdev->raid_disk = mirror; 2111 err = 0; 2112 if (rdev->saved_raid_disk != mirror) 2113 conf->fullsync = 1; 2114 WRITE_ONCE(p->rdev, rdev); 2115 break; 2116 } 2117 2118 if (err && repl_slot >= 0) { 2119 p = &conf->mirrors[repl_slot]; 2120 clear_bit(In_sync, &rdev->flags); 2121 set_bit(Replacement, &rdev->flags); 2122 rdev->raid_disk = repl_slot; 2123 err = mddev_stack_new_rdev(mddev, rdev); 2124 if (err) 2125 return err; 2126 conf->fullsync = 1; 2127 WRITE_ONCE(p->replacement, rdev); 2128 } 2129 2130 print_conf(conf); 2131 return err; 2132 } 2133 2134 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2135 { 2136 struct r10conf *conf = mddev->private; 2137 int err = 0; 2138 int number = rdev->raid_disk; 2139 struct md_rdev **rdevp; 2140 struct raid10_info *p; 2141 2142 print_conf(conf); 2143 if (unlikely(number >= mddev->raid_disks)) 2144 return 0; 2145 p = conf->mirrors + number; 2146 if (rdev == p->rdev) 2147 rdevp = &p->rdev; 2148 else if (rdev == p->replacement) 2149 rdevp = &p->replacement; 2150 else 2151 return 0; 2152 2153 if (test_bit(In_sync, &rdev->flags) || 2154 atomic_read(&rdev->nr_pending)) { 2155 err = -EBUSY; 2156 goto abort; 2157 } 2158 /* Only remove non-faulty devices if recovery 2159 * is not possible. 2160 */ 2161 if (!test_bit(Faulty, &rdev->flags) && 2162 mddev->recovery_disabled != p->recovery_disabled && 2163 (!p->replacement || p->replacement == rdev) && 2164 number < conf->geo.raid_disks && 2165 enough(conf, -1)) { 2166 err = -EBUSY; 2167 goto abort; 2168 } 2169 WRITE_ONCE(*rdevp, NULL); 2170 if (p->replacement) { 2171 /* We must have just cleared 'rdev' */ 2172 WRITE_ONCE(p->rdev, p->replacement); 2173 clear_bit(Replacement, &p->replacement->flags); 2174 WRITE_ONCE(p->replacement, NULL); 2175 } 2176 2177 clear_bit(WantReplacement, &rdev->flags); 2178 err = md_integrity_register(mddev); 2179 2180 abort: 2181 2182 print_conf(conf); 2183 return err; 2184 } 2185 2186 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2187 { 2188 struct r10conf *conf = r10_bio->mddev->private; 2189 2190 if (!bio->bi_status) 2191 set_bit(R10BIO_Uptodate, &r10_bio->state); 2192 else 2193 /* The write handler will notice the lack of 2194 * R10BIO_Uptodate and record any errors etc 2195 */ 2196 atomic_add(r10_bio->sectors, 2197 &conf->mirrors[d].rdev->corrected_errors); 2198 2199 /* for reconstruct, we always reschedule after a read. 2200 * for resync, only after all reads 2201 */ 2202 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2203 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2204 atomic_dec_and_test(&r10_bio->remaining)) { 2205 /* we have read all the blocks, 2206 * do the comparison in process context in raid10d 2207 */ 2208 reschedule_retry(r10_bio); 2209 } 2210 } 2211 2212 static void end_sync_read(struct bio *bio) 2213 { 2214 struct r10bio *r10_bio = get_resync_r10bio(bio); 2215 struct r10conf *conf = r10_bio->mddev->private; 2216 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2217 2218 __end_sync_read(r10_bio, bio, d); 2219 } 2220 2221 static void end_reshape_read(struct bio *bio) 2222 { 2223 /* reshape read bio isn't allocated from r10buf_pool */ 2224 struct r10bio *r10_bio = bio->bi_private; 2225 2226 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2227 } 2228 2229 static void end_sync_request(struct r10bio *r10_bio) 2230 { 2231 struct mddev *mddev = r10_bio->mddev; 2232 2233 while (atomic_dec_and_test(&r10_bio->remaining)) { 2234 if (r10_bio->master_bio == NULL) { 2235 /* the primary of several recovery bios */ 2236 sector_t s = r10_bio->sectors; 2237 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2238 test_bit(R10BIO_WriteError, &r10_bio->state)) 2239 reschedule_retry(r10_bio); 2240 else 2241 put_buf(r10_bio); 2242 md_done_sync(mddev, s, 1); 2243 break; 2244 } else { 2245 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2246 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2247 test_bit(R10BIO_WriteError, &r10_bio->state)) 2248 reschedule_retry(r10_bio); 2249 else 2250 put_buf(r10_bio); 2251 r10_bio = r10_bio2; 2252 } 2253 } 2254 } 2255 2256 static void end_sync_write(struct bio *bio) 2257 { 2258 struct r10bio *r10_bio = get_resync_r10bio(bio); 2259 struct mddev *mddev = r10_bio->mddev; 2260 struct r10conf *conf = mddev->private; 2261 int d; 2262 int slot; 2263 int repl; 2264 struct md_rdev *rdev = NULL; 2265 2266 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2267 if (repl) 2268 rdev = conf->mirrors[d].replacement; 2269 else 2270 rdev = conf->mirrors[d].rdev; 2271 2272 if (bio->bi_status) { 2273 if (repl) 2274 md_error(mddev, rdev); 2275 else { 2276 set_bit(WriteErrorSeen, &rdev->flags); 2277 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2278 set_bit(MD_RECOVERY_NEEDED, 2279 &rdev->mddev->recovery); 2280 set_bit(R10BIO_WriteError, &r10_bio->state); 2281 } 2282 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 2283 r10_bio->sectors)) { 2284 set_bit(R10BIO_MadeGood, &r10_bio->state); 2285 } 2286 2287 rdev_dec_pending(rdev, mddev); 2288 2289 end_sync_request(r10_bio); 2290 } 2291 2292 /* 2293 * Note: sync and recover and handled very differently for raid10 2294 * This code is for resync. 2295 * For resync, we read through virtual addresses and read all blocks. 2296 * If there is any error, we schedule a write. The lowest numbered 2297 * drive is authoritative. 2298 * However requests come for physical address, so we need to map. 2299 * For every physical address there are raid_disks/copies virtual addresses, 2300 * which is always are least one, but is not necessarly an integer. 2301 * This means that a physical address can span multiple chunks, so we may 2302 * have to submit multiple io requests for a single sync request. 2303 */ 2304 /* 2305 * We check if all blocks are in-sync and only write to blocks that 2306 * aren't in sync 2307 */ 2308 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2309 { 2310 struct r10conf *conf = mddev->private; 2311 int i, first; 2312 struct bio *tbio, *fbio; 2313 int vcnt; 2314 struct page **tpages, **fpages; 2315 2316 atomic_set(&r10_bio->remaining, 1); 2317 2318 /* find the first device with a block */ 2319 for (i=0; i<conf->copies; i++) 2320 if (!r10_bio->devs[i].bio->bi_status) 2321 break; 2322 2323 if (i == conf->copies) 2324 goto done; 2325 2326 first = i; 2327 fbio = r10_bio->devs[i].bio; 2328 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2329 fbio->bi_iter.bi_idx = 0; 2330 fpages = get_resync_pages(fbio)->pages; 2331 2332 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2333 /* now find blocks with errors */ 2334 for (i=0 ; i < conf->copies ; i++) { 2335 int j, d; 2336 struct md_rdev *rdev; 2337 struct resync_pages *rp; 2338 2339 tbio = r10_bio->devs[i].bio; 2340 2341 if (tbio->bi_end_io != end_sync_read) 2342 continue; 2343 if (i == first) 2344 continue; 2345 2346 tpages = get_resync_pages(tbio)->pages; 2347 d = r10_bio->devs[i].devnum; 2348 rdev = conf->mirrors[d].rdev; 2349 if (!r10_bio->devs[i].bio->bi_status) { 2350 /* We know that the bi_io_vec layout is the same for 2351 * both 'first' and 'i', so we just compare them. 2352 * All vec entries are PAGE_SIZE; 2353 */ 2354 int sectors = r10_bio->sectors; 2355 for (j = 0; j < vcnt; j++) { 2356 int len = PAGE_SIZE; 2357 if (sectors < (len / 512)) 2358 len = sectors * 512; 2359 if (memcmp(page_address(fpages[j]), 2360 page_address(tpages[j]), 2361 len)) 2362 break; 2363 sectors -= len/512; 2364 } 2365 if (j == vcnt) 2366 continue; 2367 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2368 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2369 /* Don't fix anything. */ 2370 continue; 2371 } else if (test_bit(FailFast, &rdev->flags)) { 2372 /* Just give up on this device */ 2373 md_error(rdev->mddev, rdev); 2374 continue; 2375 } 2376 /* Ok, we need to write this bio, either to correct an 2377 * inconsistency or to correct an unreadable block. 2378 * First we need to fixup bv_offset, bv_len and 2379 * bi_vecs, as the read request might have corrupted these 2380 */ 2381 rp = get_resync_pages(tbio); 2382 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2383 2384 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2385 2386 rp->raid_bio = r10_bio; 2387 tbio->bi_private = rp; 2388 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2389 tbio->bi_end_io = end_sync_write; 2390 2391 bio_copy_data(tbio, fbio); 2392 2393 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2394 atomic_inc(&r10_bio->remaining); 2395 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2396 2397 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2398 tbio->bi_opf |= MD_FAILFAST; 2399 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2400 submit_bio_noacct(tbio); 2401 } 2402 2403 /* Now write out to any replacement devices 2404 * that are active 2405 */ 2406 for (i = 0; i < conf->copies; i++) { 2407 int d; 2408 2409 tbio = r10_bio->devs[i].repl_bio; 2410 if (!tbio || !tbio->bi_end_io) 2411 continue; 2412 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2413 && r10_bio->devs[i].bio != fbio) 2414 bio_copy_data(tbio, fbio); 2415 d = r10_bio->devs[i].devnum; 2416 atomic_inc(&r10_bio->remaining); 2417 md_sync_acct(conf->mirrors[d].replacement->bdev, 2418 bio_sectors(tbio)); 2419 submit_bio_noacct(tbio); 2420 } 2421 2422 done: 2423 if (atomic_dec_and_test(&r10_bio->remaining)) { 2424 md_done_sync(mddev, r10_bio->sectors, 1); 2425 put_buf(r10_bio); 2426 } 2427 } 2428 2429 /* 2430 * Now for the recovery code. 2431 * Recovery happens across physical sectors. 2432 * We recover all non-is_sync drives by finding the virtual address of 2433 * each, and then choose a working drive that also has that virt address. 2434 * There is a separate r10_bio for each non-in_sync drive. 2435 * Only the first two slots are in use. The first for reading, 2436 * The second for writing. 2437 * 2438 */ 2439 static void fix_recovery_read_error(struct r10bio *r10_bio) 2440 { 2441 /* We got a read error during recovery. 2442 * We repeat the read in smaller page-sized sections. 2443 * If a read succeeds, write it to the new device or record 2444 * a bad block if we cannot. 2445 * If a read fails, record a bad block on both old and 2446 * new devices. 2447 */ 2448 struct mddev *mddev = r10_bio->mddev; 2449 struct r10conf *conf = mddev->private; 2450 struct bio *bio = r10_bio->devs[0].bio; 2451 sector_t sect = 0; 2452 int sectors = r10_bio->sectors; 2453 int idx = 0; 2454 int dr = r10_bio->devs[0].devnum; 2455 int dw = r10_bio->devs[1].devnum; 2456 struct page **pages = get_resync_pages(bio)->pages; 2457 2458 while (sectors) { 2459 int s = sectors; 2460 struct md_rdev *rdev; 2461 sector_t addr; 2462 int ok; 2463 2464 if (s > (PAGE_SIZE>>9)) 2465 s = PAGE_SIZE >> 9; 2466 2467 rdev = conf->mirrors[dr].rdev; 2468 addr = r10_bio->devs[0].addr + sect, 2469 ok = sync_page_io(rdev, 2470 addr, 2471 s << 9, 2472 pages[idx], 2473 REQ_OP_READ, false); 2474 if (ok) { 2475 rdev = conf->mirrors[dw].rdev; 2476 addr = r10_bio->devs[1].addr + sect; 2477 ok = sync_page_io(rdev, 2478 addr, 2479 s << 9, 2480 pages[idx], 2481 REQ_OP_WRITE, false); 2482 if (!ok) { 2483 set_bit(WriteErrorSeen, &rdev->flags); 2484 if (!test_and_set_bit(WantReplacement, 2485 &rdev->flags)) 2486 set_bit(MD_RECOVERY_NEEDED, 2487 &rdev->mddev->recovery); 2488 } 2489 } 2490 if (!ok) { 2491 /* We don't worry if we cannot set a bad block - 2492 * it really is bad so there is no loss in not 2493 * recording it yet 2494 */ 2495 rdev_set_badblocks(rdev, addr, s, 0); 2496 2497 if (rdev != conf->mirrors[dw].rdev) { 2498 /* need bad block on destination too */ 2499 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2500 addr = r10_bio->devs[1].addr + sect; 2501 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2502 if (!ok) { 2503 /* just abort the recovery */ 2504 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2505 mdname(mddev)); 2506 2507 conf->mirrors[dw].recovery_disabled 2508 = mddev->recovery_disabled; 2509 set_bit(MD_RECOVERY_INTR, 2510 &mddev->recovery); 2511 break; 2512 } 2513 } 2514 } 2515 2516 sectors -= s; 2517 sect += s; 2518 idx++; 2519 } 2520 } 2521 2522 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2523 { 2524 struct r10conf *conf = mddev->private; 2525 int d; 2526 struct bio *wbio = r10_bio->devs[1].bio; 2527 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2528 2529 /* Need to test wbio2->bi_end_io before we call 2530 * submit_bio_noacct as if the former is NULL, 2531 * the latter is free to free wbio2. 2532 */ 2533 if (wbio2 && !wbio2->bi_end_io) 2534 wbio2 = NULL; 2535 2536 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2537 fix_recovery_read_error(r10_bio); 2538 if (wbio->bi_end_io) 2539 end_sync_request(r10_bio); 2540 if (wbio2) 2541 end_sync_request(r10_bio); 2542 return; 2543 } 2544 2545 /* 2546 * share the pages with the first bio 2547 * and submit the write request 2548 */ 2549 d = r10_bio->devs[1].devnum; 2550 if (wbio->bi_end_io) { 2551 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2552 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2553 submit_bio_noacct(wbio); 2554 } 2555 if (wbio2) { 2556 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2557 md_sync_acct(conf->mirrors[d].replacement->bdev, 2558 bio_sectors(wbio2)); 2559 submit_bio_noacct(wbio2); 2560 } 2561 } 2562 2563 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2564 int sectors, struct page *page, enum req_op op) 2565 { 2566 if (rdev_has_badblock(rdev, sector, sectors) && 2567 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2568 return -1; 2569 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2570 /* success */ 2571 return 1; 2572 if (op == REQ_OP_WRITE) { 2573 set_bit(WriteErrorSeen, &rdev->flags); 2574 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2575 set_bit(MD_RECOVERY_NEEDED, 2576 &rdev->mddev->recovery); 2577 } 2578 /* need to record an error - either for the block or the device */ 2579 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2580 md_error(rdev->mddev, rdev); 2581 return 0; 2582 } 2583 2584 /* 2585 * This is a kernel thread which: 2586 * 2587 * 1. Retries failed read operations on working mirrors. 2588 * 2. Updates the raid superblock when problems encounter. 2589 * 3. Performs writes following reads for array synchronising. 2590 */ 2591 2592 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2593 { 2594 int sect = 0; /* Offset from r10_bio->sector */ 2595 int sectors = r10_bio->sectors, slot = r10_bio->read_slot; 2596 struct md_rdev *rdev; 2597 int d = r10_bio->devs[slot].devnum; 2598 2599 /* still own a reference to this rdev, so it cannot 2600 * have been cleared recently. 2601 */ 2602 rdev = conf->mirrors[d].rdev; 2603 2604 if (test_bit(Faulty, &rdev->flags)) 2605 /* drive has already been failed, just ignore any 2606 more fix_read_error() attempts */ 2607 return; 2608 2609 if (exceed_read_errors(mddev, rdev)) { 2610 r10_bio->devs[slot].bio = IO_BLOCKED; 2611 return; 2612 } 2613 2614 while(sectors) { 2615 int s = sectors; 2616 int sl = slot; 2617 int success = 0; 2618 int start; 2619 2620 if (s > (PAGE_SIZE>>9)) 2621 s = PAGE_SIZE >> 9; 2622 2623 do { 2624 d = r10_bio->devs[sl].devnum; 2625 rdev = conf->mirrors[d].rdev; 2626 if (rdev && 2627 test_bit(In_sync, &rdev->flags) && 2628 !test_bit(Faulty, &rdev->flags) && 2629 rdev_has_badblock(rdev, 2630 r10_bio->devs[sl].addr + sect, 2631 s) == 0) { 2632 atomic_inc(&rdev->nr_pending); 2633 success = sync_page_io(rdev, 2634 r10_bio->devs[sl].addr + 2635 sect, 2636 s<<9, 2637 conf->tmppage, 2638 REQ_OP_READ, false); 2639 rdev_dec_pending(rdev, mddev); 2640 if (success) 2641 break; 2642 } 2643 sl++; 2644 if (sl == conf->copies) 2645 sl = 0; 2646 } while (sl != slot); 2647 2648 if (!success) { 2649 /* Cannot read from anywhere, just mark the block 2650 * as bad on the first device to discourage future 2651 * reads. 2652 */ 2653 int dn = r10_bio->devs[slot].devnum; 2654 rdev = conf->mirrors[dn].rdev; 2655 2656 if (!rdev_set_badblocks( 2657 rdev, 2658 r10_bio->devs[slot].addr 2659 + sect, 2660 s, 0)) { 2661 md_error(mddev, rdev); 2662 r10_bio->devs[slot].bio 2663 = IO_BLOCKED; 2664 } 2665 break; 2666 } 2667 2668 start = sl; 2669 /* write it back and re-read */ 2670 while (sl != slot) { 2671 if (sl==0) 2672 sl = conf->copies; 2673 sl--; 2674 d = r10_bio->devs[sl].devnum; 2675 rdev = conf->mirrors[d].rdev; 2676 if (!rdev || 2677 test_bit(Faulty, &rdev->flags) || 2678 !test_bit(In_sync, &rdev->flags)) 2679 continue; 2680 2681 atomic_inc(&rdev->nr_pending); 2682 if (r10_sync_page_io(rdev, 2683 r10_bio->devs[sl].addr + 2684 sect, 2685 s, conf->tmppage, REQ_OP_WRITE) 2686 == 0) { 2687 /* Well, this device is dead */ 2688 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2689 mdname(mddev), s, 2690 (unsigned long long)( 2691 sect + 2692 choose_data_offset(r10_bio, 2693 rdev)), 2694 rdev->bdev); 2695 pr_notice("md/raid10:%s: %pg: failing drive\n", 2696 mdname(mddev), 2697 rdev->bdev); 2698 } 2699 rdev_dec_pending(rdev, mddev); 2700 } 2701 sl = start; 2702 while (sl != slot) { 2703 if (sl==0) 2704 sl = conf->copies; 2705 sl--; 2706 d = r10_bio->devs[sl].devnum; 2707 rdev = conf->mirrors[d].rdev; 2708 if (!rdev || 2709 test_bit(Faulty, &rdev->flags) || 2710 !test_bit(In_sync, &rdev->flags)) 2711 continue; 2712 2713 atomic_inc(&rdev->nr_pending); 2714 switch (r10_sync_page_io(rdev, 2715 r10_bio->devs[sl].addr + 2716 sect, 2717 s, conf->tmppage, REQ_OP_READ)) { 2718 case 0: 2719 /* Well, this device is dead */ 2720 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2721 mdname(mddev), s, 2722 (unsigned long long)( 2723 sect + 2724 choose_data_offset(r10_bio, rdev)), 2725 rdev->bdev); 2726 pr_notice("md/raid10:%s: %pg: failing drive\n", 2727 mdname(mddev), 2728 rdev->bdev); 2729 break; 2730 case 1: 2731 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2732 mdname(mddev), s, 2733 (unsigned long long)( 2734 sect + 2735 choose_data_offset(r10_bio, rdev)), 2736 rdev->bdev); 2737 atomic_add(s, &rdev->corrected_errors); 2738 } 2739 2740 rdev_dec_pending(rdev, mddev); 2741 } 2742 2743 sectors -= s; 2744 sect += s; 2745 } 2746 } 2747 2748 static int narrow_write_error(struct r10bio *r10_bio, int i) 2749 { 2750 struct bio *bio = r10_bio->master_bio; 2751 struct mddev *mddev = r10_bio->mddev; 2752 struct r10conf *conf = mddev->private; 2753 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2754 /* bio has the data to be written to slot 'i' where 2755 * we just recently had a write error. 2756 * We repeatedly clone the bio and trim down to one block, 2757 * then try the write. Where the write fails we record 2758 * a bad block. 2759 * It is conceivable that the bio doesn't exactly align with 2760 * blocks. We must handle this. 2761 * 2762 * We currently own a reference to the rdev. 2763 */ 2764 2765 int block_sectors; 2766 sector_t sector; 2767 int sectors; 2768 int sect_to_write = r10_bio->sectors; 2769 int ok = 1; 2770 2771 if (rdev->badblocks.shift < 0) 2772 return 0; 2773 2774 block_sectors = roundup(1 << rdev->badblocks.shift, 2775 bdev_logical_block_size(rdev->bdev) >> 9); 2776 sector = r10_bio->sector; 2777 sectors = ((r10_bio->sector + block_sectors) 2778 & ~(sector_t)(block_sectors - 1)) 2779 - sector; 2780 2781 while (sect_to_write) { 2782 struct bio *wbio; 2783 sector_t wsector; 2784 if (sectors > sect_to_write) 2785 sectors = sect_to_write; 2786 /* Write at 'sector' for 'sectors' */ 2787 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2788 &mddev->bio_set); 2789 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2790 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2791 wbio->bi_iter.bi_sector = wsector + 2792 choose_data_offset(r10_bio, rdev); 2793 wbio->bi_opf = REQ_OP_WRITE; 2794 2795 if (submit_bio_wait(wbio) < 0) 2796 /* Failure! */ 2797 ok = rdev_set_badblocks(rdev, wsector, 2798 sectors, 0) 2799 && ok; 2800 2801 bio_put(wbio); 2802 sect_to_write -= sectors; 2803 sector += sectors; 2804 sectors = block_sectors; 2805 } 2806 return ok; 2807 } 2808 2809 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2810 { 2811 int slot = r10_bio->read_slot; 2812 struct bio *bio; 2813 struct r10conf *conf = mddev->private; 2814 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2815 2816 /* we got a read error. Maybe the drive is bad. Maybe just 2817 * the block and we can fix it. 2818 * We freeze all other IO, and try reading the block from 2819 * other devices. When we find one, we re-write 2820 * and check it that fixes the read error. 2821 * This is all done synchronously while the array is 2822 * frozen. 2823 */ 2824 bio = r10_bio->devs[slot].bio; 2825 bio_put(bio); 2826 r10_bio->devs[slot].bio = NULL; 2827 2828 if (mddev->ro) 2829 r10_bio->devs[slot].bio = IO_BLOCKED; 2830 else if (!test_bit(FailFast, &rdev->flags)) { 2831 freeze_array(conf, 1); 2832 fix_read_error(conf, mddev, r10_bio); 2833 unfreeze_array(conf); 2834 } else 2835 md_error(mddev, rdev); 2836 2837 rdev_dec_pending(rdev, mddev); 2838 r10_bio->state = 0; 2839 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false); 2840 /* 2841 * allow_barrier after re-submit to ensure no sync io 2842 * can be issued while regular io pending. 2843 */ 2844 allow_barrier(conf); 2845 } 2846 2847 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2848 { 2849 /* Some sort of write request has finished and it 2850 * succeeded in writing where we thought there was a 2851 * bad block. So forget the bad block. 2852 * Or possibly if failed and we need to record 2853 * a bad block. 2854 */ 2855 int m; 2856 struct md_rdev *rdev; 2857 2858 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2859 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2860 for (m = 0; m < conf->copies; m++) { 2861 int dev = r10_bio->devs[m].devnum; 2862 rdev = conf->mirrors[dev].rdev; 2863 if (r10_bio->devs[m].bio == NULL || 2864 r10_bio->devs[m].bio->bi_end_io == NULL) 2865 continue; 2866 if (!r10_bio->devs[m].bio->bi_status) { 2867 rdev_clear_badblocks( 2868 rdev, 2869 r10_bio->devs[m].addr, 2870 r10_bio->sectors, 0); 2871 } else { 2872 if (!rdev_set_badblocks( 2873 rdev, 2874 r10_bio->devs[m].addr, 2875 r10_bio->sectors, 0)) 2876 md_error(conf->mddev, rdev); 2877 } 2878 rdev = conf->mirrors[dev].replacement; 2879 if (r10_bio->devs[m].repl_bio == NULL || 2880 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2881 continue; 2882 2883 if (!r10_bio->devs[m].repl_bio->bi_status) { 2884 rdev_clear_badblocks( 2885 rdev, 2886 r10_bio->devs[m].addr, 2887 r10_bio->sectors, 0); 2888 } else { 2889 if (!rdev_set_badblocks( 2890 rdev, 2891 r10_bio->devs[m].addr, 2892 r10_bio->sectors, 0)) 2893 md_error(conf->mddev, rdev); 2894 } 2895 } 2896 put_buf(r10_bio); 2897 } else { 2898 bool fail = false; 2899 for (m = 0; m < conf->copies; m++) { 2900 int dev = r10_bio->devs[m].devnum; 2901 struct bio *bio = r10_bio->devs[m].bio; 2902 rdev = conf->mirrors[dev].rdev; 2903 if (bio == IO_MADE_GOOD) { 2904 rdev_clear_badblocks( 2905 rdev, 2906 r10_bio->devs[m].addr, 2907 r10_bio->sectors, 0); 2908 rdev_dec_pending(rdev, conf->mddev); 2909 } else if (bio != NULL && bio->bi_status) { 2910 fail = true; 2911 if (!narrow_write_error(r10_bio, m)) { 2912 md_error(conf->mddev, rdev); 2913 set_bit(R10BIO_Degraded, 2914 &r10_bio->state); 2915 } 2916 rdev_dec_pending(rdev, conf->mddev); 2917 } 2918 bio = r10_bio->devs[m].repl_bio; 2919 rdev = conf->mirrors[dev].replacement; 2920 if (rdev && bio == IO_MADE_GOOD) { 2921 rdev_clear_badblocks( 2922 rdev, 2923 r10_bio->devs[m].addr, 2924 r10_bio->sectors, 0); 2925 rdev_dec_pending(rdev, conf->mddev); 2926 } 2927 } 2928 if (fail) { 2929 spin_lock_irq(&conf->device_lock); 2930 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2931 conf->nr_queued++; 2932 spin_unlock_irq(&conf->device_lock); 2933 /* 2934 * In case freeze_array() is waiting for condition 2935 * nr_pending == nr_queued + extra to be true. 2936 */ 2937 wake_up(&conf->wait_barrier); 2938 md_wakeup_thread(conf->mddev->thread); 2939 } else { 2940 if (test_bit(R10BIO_WriteError, 2941 &r10_bio->state)) 2942 close_write(r10_bio); 2943 raid_end_bio_io(r10_bio); 2944 } 2945 } 2946 } 2947 2948 static void raid10d(struct md_thread *thread) 2949 { 2950 struct mddev *mddev = thread->mddev; 2951 struct r10bio *r10_bio; 2952 unsigned long flags; 2953 struct r10conf *conf = mddev->private; 2954 struct list_head *head = &conf->retry_list; 2955 struct blk_plug plug; 2956 2957 md_check_recovery(mddev); 2958 2959 if (!list_empty_careful(&conf->bio_end_io_list) && 2960 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2961 LIST_HEAD(tmp); 2962 spin_lock_irqsave(&conf->device_lock, flags); 2963 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2964 while (!list_empty(&conf->bio_end_io_list)) { 2965 list_move(conf->bio_end_io_list.prev, &tmp); 2966 conf->nr_queued--; 2967 } 2968 } 2969 spin_unlock_irqrestore(&conf->device_lock, flags); 2970 while (!list_empty(&tmp)) { 2971 r10_bio = list_first_entry(&tmp, struct r10bio, 2972 retry_list); 2973 list_del(&r10_bio->retry_list); 2974 if (mddev->degraded) 2975 set_bit(R10BIO_Degraded, &r10_bio->state); 2976 2977 if (test_bit(R10BIO_WriteError, 2978 &r10_bio->state)) 2979 close_write(r10_bio); 2980 raid_end_bio_io(r10_bio); 2981 } 2982 } 2983 2984 blk_start_plug(&plug); 2985 for (;;) { 2986 2987 flush_pending_writes(conf); 2988 2989 spin_lock_irqsave(&conf->device_lock, flags); 2990 if (list_empty(head)) { 2991 spin_unlock_irqrestore(&conf->device_lock, flags); 2992 break; 2993 } 2994 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2995 list_del(head->prev); 2996 conf->nr_queued--; 2997 spin_unlock_irqrestore(&conf->device_lock, flags); 2998 2999 mddev = r10_bio->mddev; 3000 conf = mddev->private; 3001 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3002 test_bit(R10BIO_WriteError, &r10_bio->state)) 3003 handle_write_completed(conf, r10_bio); 3004 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3005 reshape_request_write(mddev, r10_bio); 3006 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3007 sync_request_write(mddev, r10_bio); 3008 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3009 recovery_request_write(mddev, r10_bio); 3010 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3011 handle_read_error(mddev, r10_bio); 3012 else 3013 WARN_ON_ONCE(1); 3014 3015 cond_resched(); 3016 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3017 md_check_recovery(mddev); 3018 } 3019 blk_finish_plug(&plug); 3020 } 3021 3022 static int init_resync(struct r10conf *conf) 3023 { 3024 int ret, buffs, i; 3025 3026 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3027 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3028 conf->have_replacement = 0; 3029 for (i = 0; i < conf->geo.raid_disks; i++) 3030 if (conf->mirrors[i].replacement) 3031 conf->have_replacement = 1; 3032 ret = mempool_init(&conf->r10buf_pool, buffs, 3033 r10buf_pool_alloc, r10buf_pool_free, conf); 3034 if (ret) 3035 return ret; 3036 conf->next_resync = 0; 3037 return 0; 3038 } 3039 3040 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3041 { 3042 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3043 struct rsync_pages *rp; 3044 struct bio *bio; 3045 int nalloc; 3046 int i; 3047 3048 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3049 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3050 nalloc = conf->copies; /* resync */ 3051 else 3052 nalloc = 2; /* recovery */ 3053 3054 for (i = 0; i < nalloc; i++) { 3055 bio = r10bio->devs[i].bio; 3056 rp = bio->bi_private; 3057 bio_reset(bio, NULL, 0); 3058 bio->bi_private = rp; 3059 bio = r10bio->devs[i].repl_bio; 3060 if (bio) { 3061 rp = bio->bi_private; 3062 bio_reset(bio, NULL, 0); 3063 bio->bi_private = rp; 3064 } 3065 } 3066 return r10bio; 3067 } 3068 3069 /* 3070 * Set cluster_sync_high since we need other nodes to add the 3071 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3072 */ 3073 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3074 { 3075 sector_t window_size; 3076 int extra_chunk, chunks; 3077 3078 /* 3079 * First, here we define "stripe" as a unit which across 3080 * all member devices one time, so we get chunks by use 3081 * raid_disks / near_copies. Otherwise, if near_copies is 3082 * close to raid_disks, then resync window could increases 3083 * linearly with the increase of raid_disks, which means 3084 * we will suspend a really large IO window while it is not 3085 * necessary. If raid_disks is not divisible by near_copies, 3086 * an extra chunk is needed to ensure the whole "stripe" is 3087 * covered. 3088 */ 3089 3090 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3091 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3092 extra_chunk = 0; 3093 else 3094 extra_chunk = 1; 3095 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3096 3097 /* 3098 * At least use a 32M window to align with raid1's resync window 3099 */ 3100 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3101 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3102 3103 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3104 } 3105 3106 /* 3107 * perform a "sync" on one "block" 3108 * 3109 * We need to make sure that no normal I/O request - particularly write 3110 * requests - conflict with active sync requests. 3111 * 3112 * This is achieved by tracking pending requests and a 'barrier' concept 3113 * that can be installed to exclude normal IO requests. 3114 * 3115 * Resync and recovery are handled very differently. 3116 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3117 * 3118 * For resync, we iterate over virtual addresses, read all copies, 3119 * and update if there are differences. If only one copy is live, 3120 * skip it. 3121 * For recovery, we iterate over physical addresses, read a good 3122 * value for each non-in_sync drive, and over-write. 3123 * 3124 * So, for recovery we may have several outstanding complex requests for a 3125 * given address, one for each out-of-sync device. We model this by allocating 3126 * a number of r10_bio structures, one for each out-of-sync device. 3127 * As we setup these structures, we collect all bio's together into a list 3128 * which we then process collectively to add pages, and then process again 3129 * to pass to submit_bio_noacct. 3130 * 3131 * The r10_bio structures are linked using a borrowed master_bio pointer. 3132 * This link is counted in ->remaining. When the r10_bio that points to NULL 3133 * has its remaining count decremented to 0, the whole complex operation 3134 * is complete. 3135 * 3136 */ 3137 3138 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3139 sector_t max_sector, int *skipped) 3140 { 3141 struct r10conf *conf = mddev->private; 3142 struct r10bio *r10_bio; 3143 struct bio *biolist = NULL, *bio; 3144 sector_t nr_sectors; 3145 int i; 3146 int max_sync; 3147 sector_t sync_blocks; 3148 sector_t sectors_skipped = 0; 3149 int chunks_skipped = 0; 3150 sector_t chunk_mask = conf->geo.chunk_mask; 3151 int page_idx = 0; 3152 int error_disk = -1; 3153 3154 /* 3155 * Allow skipping a full rebuild for incremental assembly 3156 * of a clean array, like RAID1 does. 3157 */ 3158 if (mddev->bitmap == NULL && 3159 mddev->recovery_cp == MaxSector && 3160 mddev->reshape_position == MaxSector && 3161 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3162 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3163 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3164 conf->fullsync == 0) { 3165 *skipped = 1; 3166 return mddev->dev_sectors - sector_nr; 3167 } 3168 3169 if (!mempool_initialized(&conf->r10buf_pool)) 3170 if (init_resync(conf)) 3171 return 0; 3172 3173 skipped: 3174 if (sector_nr >= max_sector) { 3175 conf->cluster_sync_low = 0; 3176 conf->cluster_sync_high = 0; 3177 3178 /* If we aborted, we need to abort the 3179 * sync on the 'current' bitmap chucks (there can 3180 * be several when recovering multiple devices). 3181 * as we may have started syncing it but not finished. 3182 * We can find the current address in 3183 * mddev->curr_resync, but for recovery, 3184 * we need to convert that to several 3185 * virtual addresses. 3186 */ 3187 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3188 end_reshape(conf); 3189 close_sync(conf); 3190 return 0; 3191 } 3192 3193 if (mddev->curr_resync < max_sector) { /* aborted */ 3194 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3195 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3196 &sync_blocks, 1); 3197 else for (i = 0; i < conf->geo.raid_disks; i++) { 3198 sector_t sect = 3199 raid10_find_virt(conf, mddev->curr_resync, i); 3200 md_bitmap_end_sync(mddev->bitmap, sect, 3201 &sync_blocks, 1); 3202 } 3203 } else { 3204 /* completed sync */ 3205 if ((!mddev->bitmap || conf->fullsync) 3206 && conf->have_replacement 3207 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3208 /* Completed a full sync so the replacements 3209 * are now fully recovered. 3210 */ 3211 for (i = 0; i < conf->geo.raid_disks; i++) { 3212 struct md_rdev *rdev = 3213 conf->mirrors[i].replacement; 3214 3215 if (rdev) 3216 rdev->recovery_offset = MaxSector; 3217 } 3218 } 3219 conf->fullsync = 0; 3220 } 3221 md_bitmap_close_sync(mddev->bitmap); 3222 close_sync(conf); 3223 *skipped = 1; 3224 return sectors_skipped; 3225 } 3226 3227 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3228 return reshape_request(mddev, sector_nr, skipped); 3229 3230 if (chunks_skipped >= conf->geo.raid_disks) { 3231 pr_err("md/raid10:%s: %s fails\n", mdname(mddev), 3232 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"); 3233 if (error_disk >= 0 && 3234 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3235 /* 3236 * recovery fails, set mirrors.recovery_disabled, 3237 * device shouldn't be added to there. 3238 */ 3239 conf->mirrors[error_disk].recovery_disabled = 3240 mddev->recovery_disabled; 3241 return 0; 3242 } 3243 /* 3244 * if there has been nothing to do on any drive, 3245 * then there is nothing to do at all. 3246 */ 3247 *skipped = 1; 3248 return (max_sector - sector_nr) + sectors_skipped; 3249 } 3250 3251 if (max_sector > mddev->resync_max) 3252 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3253 3254 /* make sure whole request will fit in a chunk - if chunks 3255 * are meaningful 3256 */ 3257 if (conf->geo.near_copies < conf->geo.raid_disks && 3258 max_sector > (sector_nr | chunk_mask)) 3259 max_sector = (sector_nr | chunk_mask) + 1; 3260 3261 /* 3262 * If there is non-resync activity waiting for a turn, then let it 3263 * though before starting on this new sync request. 3264 */ 3265 if (conf->nr_waiting) 3266 schedule_timeout_uninterruptible(1); 3267 3268 /* Again, very different code for resync and recovery. 3269 * Both must result in an r10bio with a list of bios that 3270 * have bi_end_io, bi_sector, bi_bdev set, 3271 * and bi_private set to the r10bio. 3272 * For recovery, we may actually create several r10bios 3273 * with 2 bios in each, that correspond to the bios in the main one. 3274 * In this case, the subordinate r10bios link back through a 3275 * borrowed master_bio pointer, and the counter in the master 3276 * includes a ref from each subordinate. 3277 */ 3278 /* First, we decide what to do and set ->bi_end_io 3279 * To end_sync_read if we want to read, and 3280 * end_sync_write if we will want to write. 3281 */ 3282 3283 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3284 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3285 /* recovery... the complicated one */ 3286 int j; 3287 r10_bio = NULL; 3288 3289 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3290 int still_degraded; 3291 struct r10bio *rb2; 3292 sector_t sect; 3293 int must_sync; 3294 int any_working; 3295 struct raid10_info *mirror = &conf->mirrors[i]; 3296 struct md_rdev *mrdev, *mreplace; 3297 3298 mrdev = mirror->rdev; 3299 mreplace = mirror->replacement; 3300 3301 if (mrdev && (test_bit(Faulty, &mrdev->flags) || 3302 test_bit(In_sync, &mrdev->flags))) 3303 mrdev = NULL; 3304 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3305 mreplace = NULL; 3306 3307 if (!mrdev && !mreplace) 3308 continue; 3309 3310 still_degraded = 0; 3311 /* want to reconstruct this device */ 3312 rb2 = r10_bio; 3313 sect = raid10_find_virt(conf, sector_nr, i); 3314 if (sect >= mddev->resync_max_sectors) 3315 /* last stripe is not complete - don't 3316 * try to recover this sector. 3317 */ 3318 continue; 3319 /* Unless we are doing a full sync, or a replacement 3320 * we only need to recover the block if it is set in 3321 * the bitmap 3322 */ 3323 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3324 &sync_blocks, 1); 3325 if (sync_blocks < max_sync) 3326 max_sync = sync_blocks; 3327 if (!must_sync && 3328 mreplace == NULL && 3329 !conf->fullsync) { 3330 /* yep, skip the sync_blocks here, but don't assume 3331 * that there will never be anything to do here 3332 */ 3333 chunks_skipped = -1; 3334 continue; 3335 } 3336 if (mrdev) 3337 atomic_inc(&mrdev->nr_pending); 3338 if (mreplace) 3339 atomic_inc(&mreplace->nr_pending); 3340 3341 r10_bio = raid10_alloc_init_r10buf(conf); 3342 r10_bio->state = 0; 3343 raise_barrier(conf, rb2 != NULL); 3344 atomic_set(&r10_bio->remaining, 0); 3345 3346 r10_bio->master_bio = (struct bio*)rb2; 3347 if (rb2) 3348 atomic_inc(&rb2->remaining); 3349 r10_bio->mddev = mddev; 3350 set_bit(R10BIO_IsRecover, &r10_bio->state); 3351 r10_bio->sector = sect; 3352 3353 raid10_find_phys(conf, r10_bio); 3354 3355 /* Need to check if the array will still be 3356 * degraded 3357 */ 3358 for (j = 0; j < conf->geo.raid_disks; j++) { 3359 struct md_rdev *rdev = conf->mirrors[j].rdev; 3360 3361 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3362 still_degraded = 1; 3363 break; 3364 } 3365 } 3366 3367 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3368 &sync_blocks, still_degraded); 3369 3370 any_working = 0; 3371 for (j=0; j<conf->copies;j++) { 3372 int k; 3373 int d = r10_bio->devs[j].devnum; 3374 sector_t from_addr, to_addr; 3375 struct md_rdev *rdev = conf->mirrors[d].rdev; 3376 sector_t sector, first_bad; 3377 int bad_sectors; 3378 if (!rdev || 3379 !test_bit(In_sync, &rdev->flags)) 3380 continue; 3381 /* This is where we read from */ 3382 any_working = 1; 3383 sector = r10_bio->devs[j].addr; 3384 3385 if (is_badblock(rdev, sector, max_sync, 3386 &first_bad, &bad_sectors)) { 3387 if (first_bad > sector) 3388 max_sync = first_bad - sector; 3389 else { 3390 bad_sectors -= (sector 3391 - first_bad); 3392 if (max_sync > bad_sectors) 3393 max_sync = bad_sectors; 3394 continue; 3395 } 3396 } 3397 bio = r10_bio->devs[0].bio; 3398 bio->bi_next = biolist; 3399 biolist = bio; 3400 bio->bi_end_io = end_sync_read; 3401 bio->bi_opf = REQ_OP_READ; 3402 if (test_bit(FailFast, &rdev->flags)) 3403 bio->bi_opf |= MD_FAILFAST; 3404 from_addr = r10_bio->devs[j].addr; 3405 bio->bi_iter.bi_sector = from_addr + 3406 rdev->data_offset; 3407 bio_set_dev(bio, rdev->bdev); 3408 atomic_inc(&rdev->nr_pending); 3409 /* and we write to 'i' (if not in_sync) */ 3410 3411 for (k=0; k<conf->copies; k++) 3412 if (r10_bio->devs[k].devnum == i) 3413 break; 3414 BUG_ON(k == conf->copies); 3415 to_addr = r10_bio->devs[k].addr; 3416 r10_bio->devs[0].devnum = d; 3417 r10_bio->devs[0].addr = from_addr; 3418 r10_bio->devs[1].devnum = i; 3419 r10_bio->devs[1].addr = to_addr; 3420 3421 if (mrdev) { 3422 bio = r10_bio->devs[1].bio; 3423 bio->bi_next = biolist; 3424 biolist = bio; 3425 bio->bi_end_io = end_sync_write; 3426 bio->bi_opf = REQ_OP_WRITE; 3427 bio->bi_iter.bi_sector = to_addr 3428 + mrdev->data_offset; 3429 bio_set_dev(bio, mrdev->bdev); 3430 atomic_inc(&r10_bio->remaining); 3431 } else 3432 r10_bio->devs[1].bio->bi_end_io = NULL; 3433 3434 /* and maybe write to replacement */ 3435 bio = r10_bio->devs[1].repl_bio; 3436 if (bio) 3437 bio->bi_end_io = NULL; 3438 /* Note: if replace is not NULL, then bio 3439 * cannot be NULL as r10buf_pool_alloc will 3440 * have allocated it. 3441 */ 3442 if (!mreplace) 3443 break; 3444 bio->bi_next = biolist; 3445 biolist = bio; 3446 bio->bi_end_io = end_sync_write; 3447 bio->bi_opf = REQ_OP_WRITE; 3448 bio->bi_iter.bi_sector = to_addr + 3449 mreplace->data_offset; 3450 bio_set_dev(bio, mreplace->bdev); 3451 atomic_inc(&r10_bio->remaining); 3452 break; 3453 } 3454 if (j == conf->copies) { 3455 /* Cannot recover, so abort the recovery or 3456 * record a bad block */ 3457 if (any_working) { 3458 /* problem is that there are bad blocks 3459 * on other device(s) 3460 */ 3461 int k; 3462 for (k = 0; k < conf->copies; k++) 3463 if (r10_bio->devs[k].devnum == i) 3464 break; 3465 if (mrdev && !test_bit(In_sync, 3466 &mrdev->flags) 3467 && !rdev_set_badblocks( 3468 mrdev, 3469 r10_bio->devs[k].addr, 3470 max_sync, 0)) 3471 any_working = 0; 3472 if (mreplace && 3473 !rdev_set_badblocks( 3474 mreplace, 3475 r10_bio->devs[k].addr, 3476 max_sync, 0)) 3477 any_working = 0; 3478 } 3479 if (!any_working) { 3480 if (!test_and_set_bit(MD_RECOVERY_INTR, 3481 &mddev->recovery)) 3482 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3483 mdname(mddev)); 3484 mirror->recovery_disabled 3485 = mddev->recovery_disabled; 3486 } else { 3487 error_disk = i; 3488 } 3489 put_buf(r10_bio); 3490 if (rb2) 3491 atomic_dec(&rb2->remaining); 3492 r10_bio = rb2; 3493 if (mrdev) 3494 rdev_dec_pending(mrdev, mddev); 3495 if (mreplace) 3496 rdev_dec_pending(mreplace, mddev); 3497 break; 3498 } 3499 if (mrdev) 3500 rdev_dec_pending(mrdev, mddev); 3501 if (mreplace) 3502 rdev_dec_pending(mreplace, mddev); 3503 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3504 /* Only want this if there is elsewhere to 3505 * read from. 'j' is currently the first 3506 * readable copy. 3507 */ 3508 int targets = 1; 3509 for (; j < conf->copies; j++) { 3510 int d = r10_bio->devs[j].devnum; 3511 if (conf->mirrors[d].rdev && 3512 test_bit(In_sync, 3513 &conf->mirrors[d].rdev->flags)) 3514 targets++; 3515 } 3516 if (targets == 1) 3517 r10_bio->devs[0].bio->bi_opf 3518 &= ~MD_FAILFAST; 3519 } 3520 } 3521 if (biolist == NULL) { 3522 while (r10_bio) { 3523 struct r10bio *rb2 = r10_bio; 3524 r10_bio = (struct r10bio*) rb2->master_bio; 3525 rb2->master_bio = NULL; 3526 put_buf(rb2); 3527 } 3528 goto giveup; 3529 } 3530 } else { 3531 /* resync. Schedule a read for every block at this virt offset */ 3532 int count = 0; 3533 3534 /* 3535 * Since curr_resync_completed could probably not update in 3536 * time, and we will set cluster_sync_low based on it. 3537 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3538 * safety reason, which ensures curr_resync_completed is 3539 * updated in bitmap_cond_end_sync. 3540 */ 3541 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3542 mddev_is_clustered(mddev) && 3543 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3544 3545 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3546 &sync_blocks, mddev->degraded) && 3547 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3548 &mddev->recovery)) { 3549 /* We can skip this block */ 3550 *skipped = 1; 3551 return sync_blocks + sectors_skipped; 3552 } 3553 if (sync_blocks < max_sync) 3554 max_sync = sync_blocks; 3555 r10_bio = raid10_alloc_init_r10buf(conf); 3556 r10_bio->state = 0; 3557 3558 r10_bio->mddev = mddev; 3559 atomic_set(&r10_bio->remaining, 0); 3560 raise_barrier(conf, 0); 3561 conf->next_resync = sector_nr; 3562 3563 r10_bio->master_bio = NULL; 3564 r10_bio->sector = sector_nr; 3565 set_bit(R10BIO_IsSync, &r10_bio->state); 3566 raid10_find_phys(conf, r10_bio); 3567 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3568 3569 for (i = 0; i < conf->copies; i++) { 3570 int d = r10_bio->devs[i].devnum; 3571 sector_t first_bad, sector; 3572 int bad_sectors; 3573 struct md_rdev *rdev; 3574 3575 if (r10_bio->devs[i].repl_bio) 3576 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3577 3578 bio = r10_bio->devs[i].bio; 3579 bio->bi_status = BLK_STS_IOERR; 3580 rdev = conf->mirrors[d].rdev; 3581 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3582 continue; 3583 3584 sector = r10_bio->devs[i].addr; 3585 if (is_badblock(rdev, sector, max_sync, 3586 &first_bad, &bad_sectors)) { 3587 if (first_bad > sector) 3588 max_sync = first_bad - sector; 3589 else { 3590 bad_sectors -= (sector - first_bad); 3591 if (max_sync > bad_sectors) 3592 max_sync = bad_sectors; 3593 continue; 3594 } 3595 } 3596 atomic_inc(&rdev->nr_pending); 3597 atomic_inc(&r10_bio->remaining); 3598 bio->bi_next = biolist; 3599 biolist = bio; 3600 bio->bi_end_io = end_sync_read; 3601 bio->bi_opf = REQ_OP_READ; 3602 if (test_bit(FailFast, &rdev->flags)) 3603 bio->bi_opf |= MD_FAILFAST; 3604 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3605 bio_set_dev(bio, rdev->bdev); 3606 count++; 3607 3608 rdev = conf->mirrors[d].replacement; 3609 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3610 continue; 3611 3612 atomic_inc(&rdev->nr_pending); 3613 3614 /* Need to set up for writing to the replacement */ 3615 bio = r10_bio->devs[i].repl_bio; 3616 bio->bi_status = BLK_STS_IOERR; 3617 3618 sector = r10_bio->devs[i].addr; 3619 bio->bi_next = biolist; 3620 biolist = bio; 3621 bio->bi_end_io = end_sync_write; 3622 bio->bi_opf = REQ_OP_WRITE; 3623 if (test_bit(FailFast, &rdev->flags)) 3624 bio->bi_opf |= MD_FAILFAST; 3625 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3626 bio_set_dev(bio, rdev->bdev); 3627 count++; 3628 } 3629 3630 if (count < 2) { 3631 for (i=0; i<conf->copies; i++) { 3632 int d = r10_bio->devs[i].devnum; 3633 if (r10_bio->devs[i].bio->bi_end_io) 3634 rdev_dec_pending(conf->mirrors[d].rdev, 3635 mddev); 3636 if (r10_bio->devs[i].repl_bio && 3637 r10_bio->devs[i].repl_bio->bi_end_io) 3638 rdev_dec_pending( 3639 conf->mirrors[d].replacement, 3640 mddev); 3641 } 3642 put_buf(r10_bio); 3643 biolist = NULL; 3644 goto giveup; 3645 } 3646 } 3647 3648 nr_sectors = 0; 3649 if (sector_nr + max_sync < max_sector) 3650 max_sector = sector_nr + max_sync; 3651 do { 3652 struct page *page; 3653 int len = PAGE_SIZE; 3654 if (sector_nr + (len>>9) > max_sector) 3655 len = (max_sector - sector_nr) << 9; 3656 if (len == 0) 3657 break; 3658 for (bio= biolist ; bio ; bio=bio->bi_next) { 3659 struct resync_pages *rp = get_resync_pages(bio); 3660 page = resync_fetch_page(rp, page_idx); 3661 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 3662 bio->bi_status = BLK_STS_RESOURCE; 3663 bio_endio(bio); 3664 goto giveup; 3665 } 3666 } 3667 nr_sectors += len>>9; 3668 sector_nr += len>>9; 3669 } while (++page_idx < RESYNC_PAGES); 3670 r10_bio->sectors = nr_sectors; 3671 3672 if (mddev_is_clustered(mddev) && 3673 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3674 /* It is resync not recovery */ 3675 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3676 conf->cluster_sync_low = mddev->curr_resync_completed; 3677 raid10_set_cluster_sync_high(conf); 3678 /* Send resync message */ 3679 md_cluster_ops->resync_info_update(mddev, 3680 conf->cluster_sync_low, 3681 conf->cluster_sync_high); 3682 } 3683 } else if (mddev_is_clustered(mddev)) { 3684 /* This is recovery not resync */ 3685 sector_t sect_va1, sect_va2; 3686 bool broadcast_msg = false; 3687 3688 for (i = 0; i < conf->geo.raid_disks; i++) { 3689 /* 3690 * sector_nr is a device address for recovery, so we 3691 * need translate it to array address before compare 3692 * with cluster_sync_high. 3693 */ 3694 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3695 3696 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3697 broadcast_msg = true; 3698 /* 3699 * curr_resync_completed is similar as 3700 * sector_nr, so make the translation too. 3701 */ 3702 sect_va2 = raid10_find_virt(conf, 3703 mddev->curr_resync_completed, i); 3704 3705 if (conf->cluster_sync_low == 0 || 3706 conf->cluster_sync_low > sect_va2) 3707 conf->cluster_sync_low = sect_va2; 3708 } 3709 } 3710 if (broadcast_msg) { 3711 raid10_set_cluster_sync_high(conf); 3712 md_cluster_ops->resync_info_update(mddev, 3713 conf->cluster_sync_low, 3714 conf->cluster_sync_high); 3715 } 3716 } 3717 3718 while (biolist) { 3719 bio = biolist; 3720 biolist = biolist->bi_next; 3721 3722 bio->bi_next = NULL; 3723 r10_bio = get_resync_r10bio(bio); 3724 r10_bio->sectors = nr_sectors; 3725 3726 if (bio->bi_end_io == end_sync_read) { 3727 md_sync_acct_bio(bio, nr_sectors); 3728 bio->bi_status = 0; 3729 submit_bio_noacct(bio); 3730 } 3731 } 3732 3733 if (sectors_skipped) 3734 /* pretend they weren't skipped, it makes 3735 * no important difference in this case 3736 */ 3737 md_done_sync(mddev, sectors_skipped, 1); 3738 3739 return sectors_skipped + nr_sectors; 3740 giveup: 3741 /* There is nowhere to write, so all non-sync 3742 * drives must be failed or in resync, all drives 3743 * have a bad block, so try the next chunk... 3744 */ 3745 if (sector_nr + max_sync < max_sector) 3746 max_sector = sector_nr + max_sync; 3747 3748 sectors_skipped += (max_sector - sector_nr); 3749 chunks_skipped ++; 3750 sector_nr = max_sector; 3751 goto skipped; 3752 } 3753 3754 static sector_t 3755 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3756 { 3757 sector_t size; 3758 struct r10conf *conf = mddev->private; 3759 3760 if (!raid_disks) 3761 raid_disks = min(conf->geo.raid_disks, 3762 conf->prev.raid_disks); 3763 if (!sectors) 3764 sectors = conf->dev_sectors; 3765 3766 size = sectors >> conf->geo.chunk_shift; 3767 sector_div(size, conf->geo.far_copies); 3768 size = size * raid_disks; 3769 sector_div(size, conf->geo.near_copies); 3770 3771 return size << conf->geo.chunk_shift; 3772 } 3773 3774 static void calc_sectors(struct r10conf *conf, sector_t size) 3775 { 3776 /* Calculate the number of sectors-per-device that will 3777 * actually be used, and set conf->dev_sectors and 3778 * conf->stride 3779 */ 3780 3781 size = size >> conf->geo.chunk_shift; 3782 sector_div(size, conf->geo.far_copies); 3783 size = size * conf->geo.raid_disks; 3784 sector_div(size, conf->geo.near_copies); 3785 /* 'size' is now the number of chunks in the array */ 3786 /* calculate "used chunks per device" */ 3787 size = size * conf->copies; 3788 3789 /* We need to round up when dividing by raid_disks to 3790 * get the stride size. 3791 */ 3792 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3793 3794 conf->dev_sectors = size << conf->geo.chunk_shift; 3795 3796 if (conf->geo.far_offset) 3797 conf->geo.stride = 1 << conf->geo.chunk_shift; 3798 else { 3799 sector_div(size, conf->geo.far_copies); 3800 conf->geo.stride = size << conf->geo.chunk_shift; 3801 } 3802 } 3803 3804 enum geo_type {geo_new, geo_old, geo_start}; 3805 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3806 { 3807 int nc, fc, fo; 3808 int layout, chunk, disks; 3809 switch (new) { 3810 case geo_old: 3811 layout = mddev->layout; 3812 chunk = mddev->chunk_sectors; 3813 disks = mddev->raid_disks - mddev->delta_disks; 3814 break; 3815 case geo_new: 3816 layout = mddev->new_layout; 3817 chunk = mddev->new_chunk_sectors; 3818 disks = mddev->raid_disks; 3819 break; 3820 default: /* avoid 'may be unused' warnings */ 3821 case geo_start: /* new when starting reshape - raid_disks not 3822 * updated yet. */ 3823 layout = mddev->new_layout; 3824 chunk = mddev->new_chunk_sectors; 3825 disks = mddev->raid_disks + mddev->delta_disks; 3826 break; 3827 } 3828 if (layout >> 19) 3829 return -1; 3830 if (chunk < (PAGE_SIZE >> 9) || 3831 !is_power_of_2(chunk)) 3832 return -2; 3833 nc = layout & 255; 3834 fc = (layout >> 8) & 255; 3835 fo = layout & (1<<16); 3836 geo->raid_disks = disks; 3837 geo->near_copies = nc; 3838 geo->far_copies = fc; 3839 geo->far_offset = fo; 3840 switch (layout >> 17) { 3841 case 0: /* original layout. simple but not always optimal */ 3842 geo->far_set_size = disks; 3843 break; 3844 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3845 * actually using this, but leave code here just in case.*/ 3846 geo->far_set_size = disks/fc; 3847 WARN(geo->far_set_size < fc, 3848 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3849 break; 3850 case 2: /* "improved" layout fixed to match documentation */ 3851 geo->far_set_size = fc * nc; 3852 break; 3853 default: /* Not a valid layout */ 3854 return -1; 3855 } 3856 geo->chunk_mask = chunk - 1; 3857 geo->chunk_shift = ffz(~chunk); 3858 return nc*fc; 3859 } 3860 3861 static void raid10_free_conf(struct r10conf *conf) 3862 { 3863 if (!conf) 3864 return; 3865 3866 mempool_exit(&conf->r10bio_pool); 3867 kfree(conf->mirrors); 3868 kfree(conf->mirrors_old); 3869 kfree(conf->mirrors_new); 3870 safe_put_page(conf->tmppage); 3871 bioset_exit(&conf->bio_split); 3872 kfree(conf); 3873 } 3874 3875 static struct r10conf *setup_conf(struct mddev *mddev) 3876 { 3877 struct r10conf *conf = NULL; 3878 int err = -EINVAL; 3879 struct geom geo; 3880 int copies; 3881 3882 copies = setup_geo(&geo, mddev, geo_new); 3883 3884 if (copies == -2) { 3885 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3886 mdname(mddev), PAGE_SIZE); 3887 goto out; 3888 } 3889 3890 if (copies < 2 || copies > mddev->raid_disks) { 3891 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3892 mdname(mddev), mddev->new_layout); 3893 goto out; 3894 } 3895 3896 err = -ENOMEM; 3897 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3898 if (!conf) 3899 goto out; 3900 3901 /* FIXME calc properly */ 3902 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3903 sizeof(struct raid10_info), 3904 GFP_KERNEL); 3905 if (!conf->mirrors) 3906 goto out; 3907 3908 conf->tmppage = alloc_page(GFP_KERNEL); 3909 if (!conf->tmppage) 3910 goto out; 3911 3912 conf->geo = geo; 3913 conf->copies = copies; 3914 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3915 rbio_pool_free, conf); 3916 if (err) 3917 goto out; 3918 3919 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3920 if (err) 3921 goto out; 3922 3923 calc_sectors(conf, mddev->dev_sectors); 3924 if (mddev->reshape_position == MaxSector) { 3925 conf->prev = conf->geo; 3926 conf->reshape_progress = MaxSector; 3927 } else { 3928 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3929 err = -EINVAL; 3930 goto out; 3931 } 3932 conf->reshape_progress = mddev->reshape_position; 3933 if (conf->prev.far_offset) 3934 conf->prev.stride = 1 << conf->prev.chunk_shift; 3935 else 3936 /* far_copies must be 1 */ 3937 conf->prev.stride = conf->dev_sectors; 3938 } 3939 conf->reshape_safe = conf->reshape_progress; 3940 spin_lock_init(&conf->device_lock); 3941 INIT_LIST_HEAD(&conf->retry_list); 3942 INIT_LIST_HEAD(&conf->bio_end_io_list); 3943 3944 seqlock_init(&conf->resync_lock); 3945 init_waitqueue_head(&conf->wait_barrier); 3946 atomic_set(&conf->nr_pending, 0); 3947 3948 err = -ENOMEM; 3949 rcu_assign_pointer(conf->thread, 3950 md_register_thread(raid10d, mddev, "raid10")); 3951 if (!conf->thread) 3952 goto out; 3953 3954 conf->mddev = mddev; 3955 return conf; 3956 3957 out: 3958 raid10_free_conf(conf); 3959 return ERR_PTR(err); 3960 } 3961 3962 static unsigned int raid10_nr_stripes(struct r10conf *conf) 3963 { 3964 unsigned int raid_disks = conf->geo.raid_disks; 3965 3966 if (conf->geo.raid_disks % conf->geo.near_copies) 3967 return raid_disks; 3968 return raid_disks / conf->geo.near_copies; 3969 } 3970 3971 static int raid10_set_queue_limits(struct mddev *mddev) 3972 { 3973 struct r10conf *conf = mddev->private; 3974 struct queue_limits lim; 3975 int err; 3976 3977 md_init_stacking_limits(&lim); 3978 lim.max_write_zeroes_sectors = 0; 3979 lim.io_min = mddev->chunk_sectors << 9; 3980 lim.io_opt = lim.io_min * raid10_nr_stripes(conf); 3981 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 3982 if (err) { 3983 queue_limits_cancel_update(mddev->gendisk->queue); 3984 return err; 3985 } 3986 return queue_limits_set(mddev->gendisk->queue, &lim); 3987 } 3988 3989 static int raid10_run(struct mddev *mddev) 3990 { 3991 struct r10conf *conf; 3992 int i, disk_idx; 3993 struct raid10_info *disk; 3994 struct md_rdev *rdev; 3995 sector_t size; 3996 sector_t min_offset_diff = 0; 3997 int first = 1; 3998 int ret = -EIO; 3999 4000 if (mddev->private == NULL) { 4001 conf = setup_conf(mddev); 4002 if (IS_ERR(conf)) 4003 return PTR_ERR(conf); 4004 mddev->private = conf; 4005 } 4006 conf = mddev->private; 4007 if (!conf) 4008 goto out; 4009 4010 rcu_assign_pointer(mddev->thread, conf->thread); 4011 rcu_assign_pointer(conf->thread, NULL); 4012 4013 if (mddev_is_clustered(conf->mddev)) { 4014 int fc, fo; 4015 4016 fc = (mddev->layout >> 8) & 255; 4017 fo = mddev->layout & (1<<16); 4018 if (fc > 1 || fo > 0) { 4019 pr_err("only near layout is supported by clustered" 4020 " raid10\n"); 4021 goto out_free_conf; 4022 } 4023 } 4024 4025 rdev_for_each(rdev, mddev) { 4026 long long diff; 4027 4028 disk_idx = rdev->raid_disk; 4029 if (disk_idx < 0) 4030 continue; 4031 if (disk_idx >= conf->geo.raid_disks && 4032 disk_idx >= conf->prev.raid_disks) 4033 continue; 4034 disk = conf->mirrors + disk_idx; 4035 4036 if (test_bit(Replacement, &rdev->flags)) { 4037 if (disk->replacement) 4038 goto out_free_conf; 4039 disk->replacement = rdev; 4040 } else { 4041 if (disk->rdev) 4042 goto out_free_conf; 4043 disk->rdev = rdev; 4044 } 4045 diff = (rdev->new_data_offset - rdev->data_offset); 4046 if (!mddev->reshape_backwards) 4047 diff = -diff; 4048 if (diff < 0) 4049 diff = 0; 4050 if (first || diff < min_offset_diff) 4051 min_offset_diff = diff; 4052 4053 disk->head_position = 0; 4054 first = 0; 4055 } 4056 4057 if (!mddev_is_dm(conf->mddev)) { 4058 ret = raid10_set_queue_limits(mddev); 4059 if (ret) 4060 goto out_free_conf; 4061 } 4062 4063 /* need to check that every block has at least one working mirror */ 4064 if (!enough(conf, -1)) { 4065 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4066 mdname(mddev)); 4067 goto out_free_conf; 4068 } 4069 4070 if (conf->reshape_progress != MaxSector) { 4071 /* must ensure that shape change is supported */ 4072 if (conf->geo.far_copies != 1 && 4073 conf->geo.far_offset == 0) 4074 goto out_free_conf; 4075 if (conf->prev.far_copies != 1 && 4076 conf->prev.far_offset == 0) 4077 goto out_free_conf; 4078 } 4079 4080 mddev->degraded = 0; 4081 for (i = 0; 4082 i < conf->geo.raid_disks 4083 || i < conf->prev.raid_disks; 4084 i++) { 4085 4086 disk = conf->mirrors + i; 4087 4088 if (!disk->rdev && disk->replacement) { 4089 /* The replacement is all we have - use it */ 4090 disk->rdev = disk->replacement; 4091 disk->replacement = NULL; 4092 clear_bit(Replacement, &disk->rdev->flags); 4093 } 4094 4095 if (!disk->rdev || 4096 !test_bit(In_sync, &disk->rdev->flags)) { 4097 disk->head_position = 0; 4098 mddev->degraded++; 4099 if (disk->rdev && 4100 disk->rdev->saved_raid_disk < 0) 4101 conf->fullsync = 1; 4102 } 4103 4104 if (disk->replacement && 4105 !test_bit(In_sync, &disk->replacement->flags) && 4106 disk->replacement->saved_raid_disk < 0) { 4107 conf->fullsync = 1; 4108 } 4109 4110 disk->recovery_disabled = mddev->recovery_disabled - 1; 4111 } 4112 4113 if (mddev->recovery_cp != MaxSector) 4114 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4115 mdname(mddev)); 4116 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4117 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4118 conf->geo.raid_disks); 4119 /* 4120 * Ok, everything is just fine now 4121 */ 4122 mddev->dev_sectors = conf->dev_sectors; 4123 size = raid10_size(mddev, 0, 0); 4124 md_set_array_sectors(mddev, size); 4125 mddev->resync_max_sectors = size; 4126 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4127 4128 if (md_integrity_register(mddev)) 4129 goto out_free_conf; 4130 4131 if (conf->reshape_progress != MaxSector) { 4132 unsigned long before_length, after_length; 4133 4134 before_length = ((1 << conf->prev.chunk_shift) * 4135 conf->prev.far_copies); 4136 after_length = ((1 << conf->geo.chunk_shift) * 4137 conf->geo.far_copies); 4138 4139 if (max(before_length, after_length) > min_offset_diff) { 4140 /* This cannot work */ 4141 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4142 goto out_free_conf; 4143 } 4144 conf->offset_diff = min_offset_diff; 4145 4146 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4147 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4148 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4149 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4150 } 4151 4152 return 0; 4153 4154 out_free_conf: 4155 md_unregister_thread(mddev, &mddev->thread); 4156 raid10_free_conf(conf); 4157 mddev->private = NULL; 4158 out: 4159 return ret; 4160 } 4161 4162 static void raid10_free(struct mddev *mddev, void *priv) 4163 { 4164 raid10_free_conf(priv); 4165 } 4166 4167 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4168 { 4169 struct r10conf *conf = mddev->private; 4170 4171 if (quiesce) 4172 raise_barrier(conf, 0); 4173 else 4174 lower_barrier(conf); 4175 } 4176 4177 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4178 { 4179 /* Resize of 'far' arrays is not supported. 4180 * For 'near' and 'offset' arrays we can set the 4181 * number of sectors used to be an appropriate multiple 4182 * of the chunk size. 4183 * For 'offset', this is far_copies*chunksize. 4184 * For 'near' the multiplier is the LCM of 4185 * near_copies and raid_disks. 4186 * So if far_copies > 1 && !far_offset, fail. 4187 * Else find LCM(raid_disks, near_copy)*far_copies and 4188 * multiply by chunk_size. Then round to this number. 4189 * This is mostly done by raid10_size() 4190 */ 4191 struct r10conf *conf = mddev->private; 4192 sector_t oldsize, size; 4193 4194 if (mddev->reshape_position != MaxSector) 4195 return -EBUSY; 4196 4197 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4198 return -EINVAL; 4199 4200 oldsize = raid10_size(mddev, 0, 0); 4201 size = raid10_size(mddev, sectors, 0); 4202 if (mddev->external_size && 4203 mddev->array_sectors > size) 4204 return -EINVAL; 4205 if (mddev->bitmap) { 4206 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4207 if (ret) 4208 return ret; 4209 } 4210 md_set_array_sectors(mddev, size); 4211 if (sectors > mddev->dev_sectors && 4212 mddev->recovery_cp > oldsize) { 4213 mddev->recovery_cp = oldsize; 4214 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4215 } 4216 calc_sectors(conf, sectors); 4217 mddev->dev_sectors = conf->dev_sectors; 4218 mddev->resync_max_sectors = size; 4219 return 0; 4220 } 4221 4222 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4223 { 4224 struct md_rdev *rdev; 4225 struct r10conf *conf; 4226 4227 if (mddev->degraded > 0) { 4228 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4229 mdname(mddev)); 4230 return ERR_PTR(-EINVAL); 4231 } 4232 sector_div(size, devs); 4233 4234 /* Set new parameters */ 4235 mddev->new_level = 10; 4236 /* new layout: far_copies = 1, near_copies = 2 */ 4237 mddev->new_layout = (1<<8) + 2; 4238 mddev->new_chunk_sectors = mddev->chunk_sectors; 4239 mddev->delta_disks = mddev->raid_disks; 4240 mddev->raid_disks *= 2; 4241 /* make sure it will be not marked as dirty */ 4242 mddev->recovery_cp = MaxSector; 4243 mddev->dev_sectors = size; 4244 4245 conf = setup_conf(mddev); 4246 if (!IS_ERR(conf)) { 4247 rdev_for_each(rdev, mddev) 4248 if (rdev->raid_disk >= 0) { 4249 rdev->new_raid_disk = rdev->raid_disk * 2; 4250 rdev->sectors = size; 4251 } 4252 } 4253 4254 return conf; 4255 } 4256 4257 static void *raid10_takeover(struct mddev *mddev) 4258 { 4259 struct r0conf *raid0_conf; 4260 4261 /* raid10 can take over: 4262 * raid0 - providing it has only two drives 4263 */ 4264 if (mddev->level == 0) { 4265 /* for raid0 takeover only one zone is supported */ 4266 raid0_conf = mddev->private; 4267 if (raid0_conf->nr_strip_zones > 1) { 4268 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4269 mdname(mddev)); 4270 return ERR_PTR(-EINVAL); 4271 } 4272 return raid10_takeover_raid0(mddev, 4273 raid0_conf->strip_zone->zone_end, 4274 raid0_conf->strip_zone->nb_dev); 4275 } 4276 return ERR_PTR(-EINVAL); 4277 } 4278 4279 static int raid10_check_reshape(struct mddev *mddev) 4280 { 4281 /* Called when there is a request to change 4282 * - layout (to ->new_layout) 4283 * - chunk size (to ->new_chunk_sectors) 4284 * - raid_disks (by delta_disks) 4285 * or when trying to restart a reshape that was ongoing. 4286 * 4287 * We need to validate the request and possibly allocate 4288 * space if that might be an issue later. 4289 * 4290 * Currently we reject any reshape of a 'far' mode array, 4291 * allow chunk size to change if new is generally acceptable, 4292 * allow raid_disks to increase, and allow 4293 * a switch between 'near' mode and 'offset' mode. 4294 */ 4295 struct r10conf *conf = mddev->private; 4296 struct geom geo; 4297 4298 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4299 return -EINVAL; 4300 4301 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4302 /* mustn't change number of copies */ 4303 return -EINVAL; 4304 if (geo.far_copies > 1 && !geo.far_offset) 4305 /* Cannot switch to 'far' mode */ 4306 return -EINVAL; 4307 4308 if (mddev->array_sectors & geo.chunk_mask) 4309 /* not factor of array size */ 4310 return -EINVAL; 4311 4312 if (!enough(conf, -1)) 4313 return -EINVAL; 4314 4315 kfree(conf->mirrors_new); 4316 conf->mirrors_new = NULL; 4317 if (mddev->delta_disks > 0) { 4318 /* allocate new 'mirrors' list */ 4319 conf->mirrors_new = 4320 kcalloc(mddev->raid_disks + mddev->delta_disks, 4321 sizeof(struct raid10_info), 4322 GFP_KERNEL); 4323 if (!conf->mirrors_new) 4324 return -ENOMEM; 4325 } 4326 return 0; 4327 } 4328 4329 /* 4330 * Need to check if array has failed when deciding whether to: 4331 * - start an array 4332 * - remove non-faulty devices 4333 * - add a spare 4334 * - allow a reshape 4335 * This determination is simple when no reshape is happening. 4336 * However if there is a reshape, we need to carefully check 4337 * both the before and after sections. 4338 * This is because some failed devices may only affect one 4339 * of the two sections, and some non-in_sync devices may 4340 * be insync in the section most affected by failed devices. 4341 */ 4342 static int calc_degraded(struct r10conf *conf) 4343 { 4344 int degraded, degraded2; 4345 int i; 4346 4347 degraded = 0; 4348 /* 'prev' section first */ 4349 for (i = 0; i < conf->prev.raid_disks; i++) { 4350 struct md_rdev *rdev = conf->mirrors[i].rdev; 4351 4352 if (!rdev || test_bit(Faulty, &rdev->flags)) 4353 degraded++; 4354 else if (!test_bit(In_sync, &rdev->flags)) 4355 /* When we can reduce the number of devices in 4356 * an array, this might not contribute to 4357 * 'degraded'. It does now. 4358 */ 4359 degraded++; 4360 } 4361 if (conf->geo.raid_disks == conf->prev.raid_disks) 4362 return degraded; 4363 degraded2 = 0; 4364 for (i = 0; i < conf->geo.raid_disks; i++) { 4365 struct md_rdev *rdev = conf->mirrors[i].rdev; 4366 4367 if (!rdev || test_bit(Faulty, &rdev->flags)) 4368 degraded2++; 4369 else if (!test_bit(In_sync, &rdev->flags)) { 4370 /* If reshape is increasing the number of devices, 4371 * this section has already been recovered, so 4372 * it doesn't contribute to degraded. 4373 * else it does. 4374 */ 4375 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4376 degraded2++; 4377 } 4378 } 4379 if (degraded2 > degraded) 4380 return degraded2; 4381 return degraded; 4382 } 4383 4384 static int raid10_start_reshape(struct mddev *mddev) 4385 { 4386 /* A 'reshape' has been requested. This commits 4387 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4388 * This also checks if there are enough spares and adds them 4389 * to the array. 4390 * We currently require enough spares to make the final 4391 * array non-degraded. We also require that the difference 4392 * between old and new data_offset - on each device - is 4393 * enough that we never risk over-writing. 4394 */ 4395 4396 unsigned long before_length, after_length; 4397 sector_t min_offset_diff = 0; 4398 int first = 1; 4399 struct geom new; 4400 struct r10conf *conf = mddev->private; 4401 struct md_rdev *rdev; 4402 int spares = 0; 4403 int ret; 4404 4405 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4406 return -EBUSY; 4407 4408 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4409 return -EINVAL; 4410 4411 before_length = ((1 << conf->prev.chunk_shift) * 4412 conf->prev.far_copies); 4413 after_length = ((1 << conf->geo.chunk_shift) * 4414 conf->geo.far_copies); 4415 4416 rdev_for_each(rdev, mddev) { 4417 if (!test_bit(In_sync, &rdev->flags) 4418 && !test_bit(Faulty, &rdev->flags)) 4419 spares++; 4420 if (rdev->raid_disk >= 0) { 4421 long long diff = (rdev->new_data_offset 4422 - rdev->data_offset); 4423 if (!mddev->reshape_backwards) 4424 diff = -diff; 4425 if (diff < 0) 4426 diff = 0; 4427 if (first || diff < min_offset_diff) 4428 min_offset_diff = diff; 4429 first = 0; 4430 } 4431 } 4432 4433 if (max(before_length, after_length) > min_offset_diff) 4434 return -EINVAL; 4435 4436 if (spares < mddev->delta_disks) 4437 return -EINVAL; 4438 4439 conf->offset_diff = min_offset_diff; 4440 spin_lock_irq(&conf->device_lock); 4441 if (conf->mirrors_new) { 4442 memcpy(conf->mirrors_new, conf->mirrors, 4443 sizeof(struct raid10_info)*conf->prev.raid_disks); 4444 smp_mb(); 4445 kfree(conf->mirrors_old); 4446 conf->mirrors_old = conf->mirrors; 4447 conf->mirrors = conf->mirrors_new; 4448 conf->mirrors_new = NULL; 4449 } 4450 setup_geo(&conf->geo, mddev, geo_start); 4451 smp_mb(); 4452 if (mddev->reshape_backwards) { 4453 sector_t size = raid10_size(mddev, 0, 0); 4454 if (size < mddev->array_sectors) { 4455 spin_unlock_irq(&conf->device_lock); 4456 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4457 mdname(mddev)); 4458 return -EINVAL; 4459 } 4460 mddev->resync_max_sectors = size; 4461 conf->reshape_progress = size; 4462 } else 4463 conf->reshape_progress = 0; 4464 conf->reshape_safe = conf->reshape_progress; 4465 spin_unlock_irq(&conf->device_lock); 4466 4467 if (mddev->delta_disks && mddev->bitmap) { 4468 struct mdp_superblock_1 *sb = NULL; 4469 sector_t oldsize, newsize; 4470 4471 oldsize = raid10_size(mddev, 0, 0); 4472 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4473 4474 if (!mddev_is_clustered(mddev)) { 4475 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4476 if (ret) 4477 goto abort; 4478 else 4479 goto out; 4480 } 4481 4482 rdev_for_each(rdev, mddev) { 4483 if (rdev->raid_disk > -1 && 4484 !test_bit(Faulty, &rdev->flags)) 4485 sb = page_address(rdev->sb_page); 4486 } 4487 4488 /* 4489 * some node is already performing reshape, and no need to 4490 * call md_bitmap_resize again since it should be called when 4491 * receiving BITMAP_RESIZE msg 4492 */ 4493 if ((sb && (le32_to_cpu(sb->feature_map) & 4494 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4495 goto out; 4496 4497 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4498 if (ret) 4499 goto abort; 4500 4501 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4502 if (ret) { 4503 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4504 goto abort; 4505 } 4506 } 4507 out: 4508 if (mddev->delta_disks > 0) { 4509 rdev_for_each(rdev, mddev) 4510 if (rdev->raid_disk < 0 && 4511 !test_bit(Faulty, &rdev->flags)) { 4512 if (raid10_add_disk(mddev, rdev) == 0) { 4513 if (rdev->raid_disk >= 4514 conf->prev.raid_disks) 4515 set_bit(In_sync, &rdev->flags); 4516 else 4517 rdev->recovery_offset = 0; 4518 4519 /* Failure here is OK */ 4520 sysfs_link_rdev(mddev, rdev); 4521 } 4522 } else if (rdev->raid_disk >= conf->prev.raid_disks 4523 && !test_bit(Faulty, &rdev->flags)) { 4524 /* This is a spare that was manually added */ 4525 set_bit(In_sync, &rdev->flags); 4526 } 4527 } 4528 /* When a reshape changes the number of devices, 4529 * ->degraded is measured against the larger of the 4530 * pre and post numbers. 4531 */ 4532 spin_lock_irq(&conf->device_lock); 4533 mddev->degraded = calc_degraded(conf); 4534 spin_unlock_irq(&conf->device_lock); 4535 mddev->raid_disks = conf->geo.raid_disks; 4536 mddev->reshape_position = conf->reshape_progress; 4537 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4538 4539 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4540 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4541 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4542 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4543 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4544 conf->reshape_checkpoint = jiffies; 4545 md_new_event(); 4546 return 0; 4547 4548 abort: 4549 mddev->recovery = 0; 4550 spin_lock_irq(&conf->device_lock); 4551 conf->geo = conf->prev; 4552 mddev->raid_disks = conf->geo.raid_disks; 4553 rdev_for_each(rdev, mddev) 4554 rdev->new_data_offset = rdev->data_offset; 4555 smp_wmb(); 4556 conf->reshape_progress = MaxSector; 4557 conf->reshape_safe = MaxSector; 4558 mddev->reshape_position = MaxSector; 4559 spin_unlock_irq(&conf->device_lock); 4560 return ret; 4561 } 4562 4563 /* Calculate the last device-address that could contain 4564 * any block from the chunk that includes the array-address 's' 4565 * and report the next address. 4566 * i.e. the address returned will be chunk-aligned and after 4567 * any data that is in the chunk containing 's'. 4568 */ 4569 static sector_t last_dev_address(sector_t s, struct geom *geo) 4570 { 4571 s = (s | geo->chunk_mask) + 1; 4572 s >>= geo->chunk_shift; 4573 s *= geo->near_copies; 4574 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4575 s *= geo->far_copies; 4576 s <<= geo->chunk_shift; 4577 return s; 4578 } 4579 4580 /* Calculate the first device-address that could contain 4581 * any block from the chunk that includes the array-address 's'. 4582 * This too will be the start of a chunk 4583 */ 4584 static sector_t first_dev_address(sector_t s, struct geom *geo) 4585 { 4586 s >>= geo->chunk_shift; 4587 s *= geo->near_copies; 4588 sector_div(s, geo->raid_disks); 4589 s *= geo->far_copies; 4590 s <<= geo->chunk_shift; 4591 return s; 4592 } 4593 4594 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4595 int *skipped) 4596 { 4597 /* We simply copy at most one chunk (smallest of old and new) 4598 * at a time, possibly less if that exceeds RESYNC_PAGES, 4599 * or we hit a bad block or something. 4600 * This might mean we pause for normal IO in the middle of 4601 * a chunk, but that is not a problem as mddev->reshape_position 4602 * can record any location. 4603 * 4604 * If we will want to write to a location that isn't 4605 * yet recorded as 'safe' (i.e. in metadata on disk) then 4606 * we need to flush all reshape requests and update the metadata. 4607 * 4608 * When reshaping forwards (e.g. to more devices), we interpret 4609 * 'safe' as the earliest block which might not have been copied 4610 * down yet. We divide this by previous stripe size and multiply 4611 * by previous stripe length to get lowest device offset that we 4612 * cannot write to yet. 4613 * We interpret 'sector_nr' as an address that we want to write to. 4614 * From this we use last_device_address() to find where we might 4615 * write to, and first_device_address on the 'safe' position. 4616 * If this 'next' write position is after the 'safe' position, 4617 * we must update the metadata to increase the 'safe' position. 4618 * 4619 * When reshaping backwards, we round in the opposite direction 4620 * and perform the reverse test: next write position must not be 4621 * less than current safe position. 4622 * 4623 * In all this the minimum difference in data offsets 4624 * (conf->offset_diff - always positive) allows a bit of slack, 4625 * so next can be after 'safe', but not by more than offset_diff 4626 * 4627 * We need to prepare all the bios here before we start any IO 4628 * to ensure the size we choose is acceptable to all devices. 4629 * The means one for each copy for write-out and an extra one for 4630 * read-in. 4631 * We store the read-in bio in ->master_bio and the others in 4632 * ->devs[x].bio and ->devs[x].repl_bio. 4633 */ 4634 struct r10conf *conf = mddev->private; 4635 struct r10bio *r10_bio; 4636 sector_t next, safe, last; 4637 int max_sectors; 4638 int nr_sectors; 4639 int s; 4640 struct md_rdev *rdev; 4641 int need_flush = 0; 4642 struct bio *blist; 4643 struct bio *bio, *read_bio; 4644 int sectors_done = 0; 4645 struct page **pages; 4646 4647 if (sector_nr == 0) { 4648 /* If restarting in the middle, skip the initial sectors */ 4649 if (mddev->reshape_backwards && 4650 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4651 sector_nr = (raid10_size(mddev, 0, 0) 4652 - conf->reshape_progress); 4653 } else if (!mddev->reshape_backwards && 4654 conf->reshape_progress > 0) 4655 sector_nr = conf->reshape_progress; 4656 if (sector_nr) { 4657 mddev->curr_resync_completed = sector_nr; 4658 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4659 *skipped = 1; 4660 return sector_nr; 4661 } 4662 } 4663 4664 /* We don't use sector_nr to track where we are up to 4665 * as that doesn't work well for ->reshape_backwards. 4666 * So just use ->reshape_progress. 4667 */ 4668 if (mddev->reshape_backwards) { 4669 /* 'next' is the earliest device address that we might 4670 * write to for this chunk in the new layout 4671 */ 4672 next = first_dev_address(conf->reshape_progress - 1, 4673 &conf->geo); 4674 4675 /* 'safe' is the last device address that we might read from 4676 * in the old layout after a restart 4677 */ 4678 safe = last_dev_address(conf->reshape_safe - 1, 4679 &conf->prev); 4680 4681 if (next + conf->offset_diff < safe) 4682 need_flush = 1; 4683 4684 last = conf->reshape_progress - 1; 4685 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4686 & conf->prev.chunk_mask); 4687 if (sector_nr + RESYNC_SECTORS < last) 4688 sector_nr = last + 1 - RESYNC_SECTORS; 4689 } else { 4690 /* 'next' is after the last device address that we 4691 * might write to for this chunk in the new layout 4692 */ 4693 next = last_dev_address(conf->reshape_progress, &conf->geo); 4694 4695 /* 'safe' is the earliest device address that we might 4696 * read from in the old layout after a restart 4697 */ 4698 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4699 4700 /* Need to update metadata if 'next' might be beyond 'safe' 4701 * as that would possibly corrupt data 4702 */ 4703 if (next > safe + conf->offset_diff) 4704 need_flush = 1; 4705 4706 sector_nr = conf->reshape_progress; 4707 last = sector_nr | (conf->geo.chunk_mask 4708 & conf->prev.chunk_mask); 4709 4710 if (sector_nr + RESYNC_SECTORS <= last) 4711 last = sector_nr + RESYNC_SECTORS - 1; 4712 } 4713 4714 if (need_flush || 4715 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4716 /* Need to update reshape_position in metadata */ 4717 wait_barrier(conf, false); 4718 mddev->reshape_position = conf->reshape_progress; 4719 if (mddev->reshape_backwards) 4720 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4721 - conf->reshape_progress; 4722 else 4723 mddev->curr_resync_completed = conf->reshape_progress; 4724 conf->reshape_checkpoint = jiffies; 4725 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4726 md_wakeup_thread(mddev->thread); 4727 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4728 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4729 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4730 allow_barrier(conf); 4731 return sectors_done; 4732 } 4733 conf->reshape_safe = mddev->reshape_position; 4734 allow_barrier(conf); 4735 } 4736 4737 raise_barrier(conf, 0); 4738 read_more: 4739 /* Now schedule reads for blocks from sector_nr to last */ 4740 r10_bio = raid10_alloc_init_r10buf(conf); 4741 r10_bio->state = 0; 4742 raise_barrier(conf, 1); 4743 atomic_set(&r10_bio->remaining, 0); 4744 r10_bio->mddev = mddev; 4745 r10_bio->sector = sector_nr; 4746 set_bit(R10BIO_IsReshape, &r10_bio->state); 4747 r10_bio->sectors = last - sector_nr + 1; 4748 rdev = read_balance(conf, r10_bio, &max_sectors); 4749 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4750 4751 if (!rdev) { 4752 /* Cannot read from here, so need to record bad blocks 4753 * on all the target devices. 4754 */ 4755 // FIXME 4756 mempool_free(r10_bio, &conf->r10buf_pool); 4757 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4758 return sectors_done; 4759 } 4760 4761 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4762 GFP_KERNEL, &mddev->bio_set); 4763 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4764 + rdev->data_offset); 4765 read_bio->bi_private = r10_bio; 4766 read_bio->bi_end_io = end_reshape_read; 4767 r10_bio->master_bio = read_bio; 4768 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4769 4770 /* 4771 * Broadcast RESYNC message to other nodes, so all nodes would not 4772 * write to the region to avoid conflict. 4773 */ 4774 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4775 struct mdp_superblock_1 *sb = NULL; 4776 int sb_reshape_pos = 0; 4777 4778 conf->cluster_sync_low = sector_nr; 4779 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4780 sb = page_address(rdev->sb_page); 4781 if (sb) { 4782 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4783 /* 4784 * Set cluster_sync_low again if next address for array 4785 * reshape is less than cluster_sync_low. Since we can't 4786 * update cluster_sync_low until it has finished reshape. 4787 */ 4788 if (sb_reshape_pos < conf->cluster_sync_low) 4789 conf->cluster_sync_low = sb_reshape_pos; 4790 } 4791 4792 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4793 conf->cluster_sync_high); 4794 } 4795 4796 /* Now find the locations in the new layout */ 4797 __raid10_find_phys(&conf->geo, r10_bio); 4798 4799 blist = read_bio; 4800 read_bio->bi_next = NULL; 4801 4802 for (s = 0; s < conf->copies*2; s++) { 4803 struct bio *b; 4804 int d = r10_bio->devs[s/2].devnum; 4805 struct md_rdev *rdev2; 4806 if (s&1) { 4807 rdev2 = conf->mirrors[d].replacement; 4808 b = r10_bio->devs[s/2].repl_bio; 4809 } else { 4810 rdev2 = conf->mirrors[d].rdev; 4811 b = r10_bio->devs[s/2].bio; 4812 } 4813 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4814 continue; 4815 4816 bio_set_dev(b, rdev2->bdev); 4817 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4818 rdev2->new_data_offset; 4819 b->bi_end_io = end_reshape_write; 4820 b->bi_opf = REQ_OP_WRITE; 4821 b->bi_next = blist; 4822 blist = b; 4823 } 4824 4825 /* Now add as many pages as possible to all of these bios. */ 4826 4827 nr_sectors = 0; 4828 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4829 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4830 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4831 int len = (max_sectors - s) << 9; 4832 if (len > PAGE_SIZE) 4833 len = PAGE_SIZE; 4834 for (bio = blist; bio ; bio = bio->bi_next) { 4835 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 4836 bio->bi_status = BLK_STS_RESOURCE; 4837 bio_endio(bio); 4838 return sectors_done; 4839 } 4840 } 4841 sector_nr += len >> 9; 4842 nr_sectors += len >> 9; 4843 } 4844 r10_bio->sectors = nr_sectors; 4845 4846 /* Now submit the read */ 4847 md_sync_acct_bio(read_bio, r10_bio->sectors); 4848 atomic_inc(&r10_bio->remaining); 4849 read_bio->bi_next = NULL; 4850 submit_bio_noacct(read_bio); 4851 sectors_done += nr_sectors; 4852 if (sector_nr <= last) 4853 goto read_more; 4854 4855 lower_barrier(conf); 4856 4857 /* Now that we have done the whole section we can 4858 * update reshape_progress 4859 */ 4860 if (mddev->reshape_backwards) 4861 conf->reshape_progress -= sectors_done; 4862 else 4863 conf->reshape_progress += sectors_done; 4864 4865 return sectors_done; 4866 } 4867 4868 static void end_reshape_request(struct r10bio *r10_bio); 4869 static int handle_reshape_read_error(struct mddev *mddev, 4870 struct r10bio *r10_bio); 4871 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4872 { 4873 /* Reshape read completed. Hopefully we have a block 4874 * to write out. 4875 * If we got a read error then we do sync 1-page reads from 4876 * elsewhere until we find the data - or give up. 4877 */ 4878 struct r10conf *conf = mddev->private; 4879 int s; 4880 4881 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4882 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4883 /* Reshape has been aborted */ 4884 md_done_sync(mddev, r10_bio->sectors, 0); 4885 return; 4886 } 4887 4888 /* We definitely have the data in the pages, schedule the 4889 * writes. 4890 */ 4891 atomic_set(&r10_bio->remaining, 1); 4892 for (s = 0; s < conf->copies*2; s++) { 4893 struct bio *b; 4894 int d = r10_bio->devs[s/2].devnum; 4895 struct md_rdev *rdev; 4896 if (s&1) { 4897 rdev = conf->mirrors[d].replacement; 4898 b = r10_bio->devs[s/2].repl_bio; 4899 } else { 4900 rdev = conf->mirrors[d].rdev; 4901 b = r10_bio->devs[s/2].bio; 4902 } 4903 if (!rdev || test_bit(Faulty, &rdev->flags)) 4904 continue; 4905 4906 atomic_inc(&rdev->nr_pending); 4907 md_sync_acct_bio(b, r10_bio->sectors); 4908 atomic_inc(&r10_bio->remaining); 4909 b->bi_next = NULL; 4910 submit_bio_noacct(b); 4911 } 4912 end_reshape_request(r10_bio); 4913 } 4914 4915 static void end_reshape(struct r10conf *conf) 4916 { 4917 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4918 return; 4919 4920 spin_lock_irq(&conf->device_lock); 4921 conf->prev = conf->geo; 4922 md_finish_reshape(conf->mddev); 4923 smp_wmb(); 4924 conf->reshape_progress = MaxSector; 4925 conf->reshape_safe = MaxSector; 4926 spin_unlock_irq(&conf->device_lock); 4927 4928 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf)); 4929 conf->fullsync = 0; 4930 } 4931 4932 static void raid10_update_reshape_pos(struct mddev *mddev) 4933 { 4934 struct r10conf *conf = mddev->private; 4935 sector_t lo, hi; 4936 4937 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4938 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4939 || mddev->reshape_position == MaxSector) 4940 conf->reshape_progress = mddev->reshape_position; 4941 else 4942 WARN_ON_ONCE(1); 4943 } 4944 4945 static int handle_reshape_read_error(struct mddev *mddev, 4946 struct r10bio *r10_bio) 4947 { 4948 /* Use sync reads to get the blocks from somewhere else */ 4949 int sectors = r10_bio->sectors; 4950 struct r10conf *conf = mddev->private; 4951 struct r10bio *r10b; 4952 int slot = 0; 4953 int idx = 0; 4954 struct page **pages; 4955 4956 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4957 if (!r10b) { 4958 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4959 return -ENOMEM; 4960 } 4961 4962 /* reshape IOs share pages from .devs[0].bio */ 4963 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4964 4965 r10b->sector = r10_bio->sector; 4966 __raid10_find_phys(&conf->prev, r10b); 4967 4968 while (sectors) { 4969 int s = sectors; 4970 int success = 0; 4971 int first_slot = slot; 4972 4973 if (s > (PAGE_SIZE >> 9)) 4974 s = PAGE_SIZE >> 9; 4975 4976 while (!success) { 4977 int d = r10b->devs[slot].devnum; 4978 struct md_rdev *rdev = conf->mirrors[d].rdev; 4979 sector_t addr; 4980 if (rdev == NULL || 4981 test_bit(Faulty, &rdev->flags) || 4982 !test_bit(In_sync, &rdev->flags)) 4983 goto failed; 4984 4985 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4986 atomic_inc(&rdev->nr_pending); 4987 success = sync_page_io(rdev, 4988 addr, 4989 s << 9, 4990 pages[idx], 4991 REQ_OP_READ, false); 4992 rdev_dec_pending(rdev, mddev); 4993 if (success) 4994 break; 4995 failed: 4996 slot++; 4997 if (slot >= conf->copies) 4998 slot = 0; 4999 if (slot == first_slot) 5000 break; 5001 } 5002 if (!success) { 5003 /* couldn't read this block, must give up */ 5004 set_bit(MD_RECOVERY_INTR, 5005 &mddev->recovery); 5006 kfree(r10b); 5007 return -EIO; 5008 } 5009 sectors -= s; 5010 idx++; 5011 } 5012 kfree(r10b); 5013 return 0; 5014 } 5015 5016 static void end_reshape_write(struct bio *bio) 5017 { 5018 struct r10bio *r10_bio = get_resync_r10bio(bio); 5019 struct mddev *mddev = r10_bio->mddev; 5020 struct r10conf *conf = mddev->private; 5021 int d; 5022 int slot; 5023 int repl; 5024 struct md_rdev *rdev = NULL; 5025 5026 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5027 rdev = repl ? conf->mirrors[d].replacement : 5028 conf->mirrors[d].rdev; 5029 5030 if (bio->bi_status) { 5031 /* FIXME should record badblock */ 5032 md_error(mddev, rdev); 5033 } 5034 5035 rdev_dec_pending(rdev, mddev); 5036 end_reshape_request(r10_bio); 5037 } 5038 5039 static void end_reshape_request(struct r10bio *r10_bio) 5040 { 5041 if (!atomic_dec_and_test(&r10_bio->remaining)) 5042 return; 5043 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5044 bio_put(r10_bio->master_bio); 5045 put_buf(r10_bio); 5046 } 5047 5048 static void raid10_finish_reshape(struct mddev *mddev) 5049 { 5050 struct r10conf *conf = mddev->private; 5051 5052 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5053 return; 5054 5055 if (mddev->delta_disks > 0) { 5056 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5057 mddev->recovery_cp = mddev->resync_max_sectors; 5058 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5059 } 5060 mddev->resync_max_sectors = mddev->array_sectors; 5061 } else { 5062 int d; 5063 for (d = conf->geo.raid_disks ; 5064 d < conf->geo.raid_disks - mddev->delta_disks; 5065 d++) { 5066 struct md_rdev *rdev = conf->mirrors[d].rdev; 5067 if (rdev) 5068 clear_bit(In_sync, &rdev->flags); 5069 rdev = conf->mirrors[d].replacement; 5070 if (rdev) 5071 clear_bit(In_sync, &rdev->flags); 5072 } 5073 } 5074 mddev->layout = mddev->new_layout; 5075 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5076 mddev->reshape_position = MaxSector; 5077 mddev->delta_disks = 0; 5078 mddev->reshape_backwards = 0; 5079 } 5080 5081 static struct md_personality raid10_personality = 5082 { 5083 .name = "raid10", 5084 .level = 10, 5085 .owner = THIS_MODULE, 5086 .make_request = raid10_make_request, 5087 .run = raid10_run, 5088 .free = raid10_free, 5089 .status = raid10_status, 5090 .error_handler = raid10_error, 5091 .hot_add_disk = raid10_add_disk, 5092 .hot_remove_disk= raid10_remove_disk, 5093 .spare_active = raid10_spare_active, 5094 .sync_request = raid10_sync_request, 5095 .quiesce = raid10_quiesce, 5096 .size = raid10_size, 5097 .resize = raid10_resize, 5098 .takeover = raid10_takeover, 5099 .check_reshape = raid10_check_reshape, 5100 .start_reshape = raid10_start_reshape, 5101 .finish_reshape = raid10_finish_reshape, 5102 .update_reshape_pos = raid10_update_reshape_pos, 5103 }; 5104 5105 static int __init raid_init(void) 5106 { 5107 return register_md_personality(&raid10_personality); 5108 } 5109 5110 static void raid_exit(void) 5111 { 5112 unregister_md_personality(&raid10_personality); 5113 } 5114 5115 module_init(raid_init); 5116 module_exit(raid_exit); 5117 MODULE_LICENSE("GPL"); 5118 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5119 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5120 MODULE_ALIAS("md-raid10"); 5121 MODULE_ALIAS("md-level-10"); 5122