xref: /linux/drivers/md/raid10.c (revision 8886640dade4ae2595fcdce511c8bcc716aa47d3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27 
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *    use_far_sets (stored in bit 17 of layout )
37  *    use_far_sets_bugfixed (stored in bit 18 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.  Each device
40  * is divided into far_copies sections.   In each section, chunks are laid out
41  * in a style similar to raid0, but near_copies copies of each chunk is stored
42  * (each on a different drive).  The starting device for each section is offset
43  * near_copies from the starting device of the previous section.  Thus there
44  * are (near_copies * far_copies) of each chunk, and each is on a different
45  * drive.  near_copies and far_copies must be at least one, and their product
46  * is at most raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of being very far
50  * apart on disk, there are adjacent stripes.
51  *
52  * The far and offset algorithms are handled slightly differently if
53  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
54  * sets that are (near_copies * far_copies) in size.  The far copied stripes
55  * are still shifted by 'near_copies' devices, but this shifting stays confined
56  * to the set rather than the entire array.  This is done to improve the number
57  * of device combinations that can fail without causing the array to fail.
58  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59  * on a device):
60  *    A B C D    A B C D E
61  *      ...         ...
62  *    D A B C    E A B C D
63  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64  *    [A B] [C D]    [A B] [C D E]
65  *    |...| |...|    |...| | ... |
66  *    [B A] [D C]    [B A] [E C D]
67  */
68 
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int _enough(struct r10conf *conf, int previous, int ignore);
72 static int enough(struct r10conf *conf, int ignore);
73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74 				int *skipped);
75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76 static void end_reshape_write(struct bio *bio);
77 static void end_reshape(struct r10conf *conf);
78 
79 #define raid10_log(md, fmt, args...)				\
80 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
81 
82 #include "raid1-10.c"
83 
84 #define NULL_CMD
85 #define cmd_before(conf, cmd) \
86 	do { \
87 		write_sequnlock_irq(&(conf)->resync_lock); \
88 		cmd; \
89 	} while (0)
90 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
91 
92 #define wait_event_barrier_cmd(conf, cond, cmd) \
93 	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
94 		       cmd_after(conf))
95 
96 #define wait_event_barrier(conf, cond) \
97 	wait_event_barrier_cmd(conf, cond, NULL_CMD)
98 
99 /*
100  * for resync bio, r10bio pointer can be retrieved from the per-bio
101  * 'struct resync_pages'.
102  */
103 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
104 {
105 	return get_resync_pages(bio)->raid_bio;
106 }
107 
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 	struct r10conf *conf = data;
111 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
112 
113 	/* allocate a r10bio with room for raid_disks entries in the
114 	 * bios array */
115 	return kzalloc(size, gfp_flags);
116 }
117 
118 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
119 /* amount of memory to reserve for resync requests */
120 #define RESYNC_WINDOW (1024*1024)
121 /* maximum number of concurrent requests, memory permitting */
122 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
123 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
124 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
125 
126 /*
127  * When performing a resync, we need to read and compare, so
128  * we need as many pages are there are copies.
129  * When performing a recovery, we need 2 bios, one for read,
130  * one for write (we recover only one drive per r10buf)
131  *
132  */
133 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
134 {
135 	struct r10conf *conf = data;
136 	struct r10bio *r10_bio;
137 	struct bio *bio;
138 	int j;
139 	int nalloc, nalloc_rp;
140 	struct resync_pages *rps;
141 
142 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
143 	if (!r10_bio)
144 		return NULL;
145 
146 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
147 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
148 		nalloc = conf->copies; /* resync */
149 	else
150 		nalloc = 2; /* recovery */
151 
152 	/* allocate once for all bios */
153 	if (!conf->have_replacement)
154 		nalloc_rp = nalloc;
155 	else
156 		nalloc_rp = nalloc * 2;
157 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
158 	if (!rps)
159 		goto out_free_r10bio;
160 
161 	/*
162 	 * Allocate bios.
163 	 */
164 	for (j = nalloc ; j-- ; ) {
165 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
166 		if (!bio)
167 			goto out_free_bio;
168 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
169 		r10_bio->devs[j].bio = bio;
170 		if (!conf->have_replacement)
171 			continue;
172 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
173 		if (!bio)
174 			goto out_free_bio;
175 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
176 		r10_bio->devs[j].repl_bio = bio;
177 	}
178 	/*
179 	 * Allocate RESYNC_PAGES data pages and attach them
180 	 * where needed.
181 	 */
182 	for (j = 0; j < nalloc; j++) {
183 		struct bio *rbio = r10_bio->devs[j].repl_bio;
184 		struct resync_pages *rp, *rp_repl;
185 
186 		rp = &rps[j];
187 		if (rbio)
188 			rp_repl = &rps[nalloc + j];
189 
190 		bio = r10_bio->devs[j].bio;
191 
192 		if (!j || test_bit(MD_RECOVERY_SYNC,
193 				   &conf->mddev->recovery)) {
194 			if (resync_alloc_pages(rp, gfp_flags))
195 				goto out_free_pages;
196 		} else {
197 			memcpy(rp, &rps[0], sizeof(*rp));
198 			resync_get_all_pages(rp);
199 		}
200 
201 		rp->raid_bio = r10_bio;
202 		bio->bi_private = rp;
203 		if (rbio) {
204 			memcpy(rp_repl, rp, sizeof(*rp));
205 			rbio->bi_private = rp_repl;
206 		}
207 	}
208 
209 	return r10_bio;
210 
211 out_free_pages:
212 	while (--j >= 0)
213 		resync_free_pages(&rps[j]);
214 
215 	j = 0;
216 out_free_bio:
217 	for ( ; j < nalloc; j++) {
218 		if (r10_bio->devs[j].bio)
219 			bio_uninit(r10_bio->devs[j].bio);
220 		kfree(r10_bio->devs[j].bio);
221 		if (r10_bio->devs[j].repl_bio)
222 			bio_uninit(r10_bio->devs[j].repl_bio);
223 		kfree(r10_bio->devs[j].repl_bio);
224 	}
225 	kfree(rps);
226 out_free_r10bio:
227 	rbio_pool_free(r10_bio, conf);
228 	return NULL;
229 }
230 
231 static void r10buf_pool_free(void *__r10_bio, void *data)
232 {
233 	struct r10conf *conf = data;
234 	struct r10bio *r10bio = __r10_bio;
235 	int j;
236 	struct resync_pages *rp = NULL;
237 
238 	for (j = conf->copies; j--; ) {
239 		struct bio *bio = r10bio->devs[j].bio;
240 
241 		if (bio) {
242 			rp = get_resync_pages(bio);
243 			resync_free_pages(rp);
244 			bio_uninit(bio);
245 			kfree(bio);
246 		}
247 
248 		bio = r10bio->devs[j].repl_bio;
249 		if (bio) {
250 			bio_uninit(bio);
251 			kfree(bio);
252 		}
253 	}
254 
255 	/* resync pages array stored in the 1st bio's .bi_private */
256 	kfree(rp);
257 
258 	rbio_pool_free(r10bio, conf);
259 }
260 
261 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
262 {
263 	int i;
264 
265 	for (i = 0; i < conf->geo.raid_disks; i++) {
266 		struct bio **bio = & r10_bio->devs[i].bio;
267 		if (!BIO_SPECIAL(*bio))
268 			bio_put(*bio);
269 		*bio = NULL;
270 		bio = &r10_bio->devs[i].repl_bio;
271 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
272 			bio_put(*bio);
273 		*bio = NULL;
274 	}
275 }
276 
277 static void free_r10bio(struct r10bio *r10_bio)
278 {
279 	struct r10conf *conf = r10_bio->mddev->private;
280 
281 	put_all_bios(conf, r10_bio);
282 	mempool_free(r10_bio, &conf->r10bio_pool);
283 }
284 
285 static void put_buf(struct r10bio *r10_bio)
286 {
287 	struct r10conf *conf = r10_bio->mddev->private;
288 
289 	mempool_free(r10_bio, &conf->r10buf_pool);
290 
291 	lower_barrier(conf);
292 }
293 
294 static void wake_up_barrier(struct r10conf *conf)
295 {
296 	if (wq_has_sleeper(&conf->wait_barrier))
297 		wake_up(&conf->wait_barrier);
298 }
299 
300 static void reschedule_retry(struct r10bio *r10_bio)
301 {
302 	unsigned long flags;
303 	struct mddev *mddev = r10_bio->mddev;
304 	struct r10conf *conf = mddev->private;
305 
306 	spin_lock_irqsave(&conf->device_lock, flags);
307 	list_add(&r10_bio->retry_list, &conf->retry_list);
308 	conf->nr_queued ++;
309 	spin_unlock_irqrestore(&conf->device_lock, flags);
310 
311 	/* wake up frozen array... */
312 	wake_up(&conf->wait_barrier);
313 
314 	md_wakeup_thread(mddev->thread);
315 }
316 
317 /*
318  * raid_end_bio_io() is called when we have finished servicing a mirrored
319  * operation and are ready to return a success/failure code to the buffer
320  * cache layer.
321  */
322 static void raid_end_bio_io(struct r10bio *r10_bio)
323 {
324 	struct bio *bio = r10_bio->master_bio;
325 	struct r10conf *conf = r10_bio->mddev->private;
326 
327 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
328 		bio->bi_status = BLK_STS_IOERR;
329 
330 	bio_endio(bio);
331 	/*
332 	 * Wake up any possible resync thread that waits for the device
333 	 * to go idle.
334 	 */
335 	allow_barrier(conf);
336 
337 	free_r10bio(r10_bio);
338 }
339 
340 /*
341  * Update disk head position estimator based on IRQ completion info.
342  */
343 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
344 {
345 	struct r10conf *conf = r10_bio->mddev->private;
346 
347 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
348 		r10_bio->devs[slot].addr + (r10_bio->sectors);
349 }
350 
351 /*
352  * Find the disk number which triggered given bio
353  */
354 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
355 			 struct bio *bio, int *slotp, int *replp)
356 {
357 	int slot;
358 	int repl = 0;
359 
360 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
361 		if (r10_bio->devs[slot].bio == bio)
362 			break;
363 		if (r10_bio->devs[slot].repl_bio == bio) {
364 			repl = 1;
365 			break;
366 		}
367 	}
368 
369 	update_head_pos(slot, r10_bio);
370 
371 	if (slotp)
372 		*slotp = slot;
373 	if (replp)
374 		*replp = repl;
375 	return r10_bio->devs[slot].devnum;
376 }
377 
378 static void raid10_end_read_request(struct bio *bio)
379 {
380 	int uptodate = !bio->bi_status;
381 	struct r10bio *r10_bio = bio->bi_private;
382 	int slot;
383 	struct md_rdev *rdev;
384 	struct r10conf *conf = r10_bio->mddev->private;
385 
386 	slot = r10_bio->read_slot;
387 	rdev = r10_bio->devs[slot].rdev;
388 	/*
389 	 * this branch is our 'one mirror IO has finished' event handler:
390 	 */
391 	update_head_pos(slot, r10_bio);
392 
393 	if (uptodate) {
394 		/*
395 		 * Set R10BIO_Uptodate in our master bio, so that
396 		 * we will return a good error code to the higher
397 		 * levels even if IO on some other mirrored buffer fails.
398 		 *
399 		 * The 'master' represents the composite IO operation to
400 		 * user-side. So if something waits for IO, then it will
401 		 * wait for the 'master' bio.
402 		 */
403 		set_bit(R10BIO_Uptodate, &r10_bio->state);
404 	} else {
405 		/* If all other devices that store this block have
406 		 * failed, we want to return the error upwards rather
407 		 * than fail the last device.  Here we redefine
408 		 * "uptodate" to mean "Don't want to retry"
409 		 */
410 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
411 			     rdev->raid_disk))
412 			uptodate = 1;
413 	}
414 	if (uptodate) {
415 		raid_end_bio_io(r10_bio);
416 		rdev_dec_pending(rdev, conf->mddev);
417 	} else {
418 		/*
419 		 * oops, read error - keep the refcount on the rdev
420 		 */
421 		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
422 				   mdname(conf->mddev),
423 				   rdev->bdev,
424 				   (unsigned long long)r10_bio->sector);
425 		set_bit(R10BIO_ReadError, &r10_bio->state);
426 		reschedule_retry(r10_bio);
427 	}
428 }
429 
430 static void close_write(struct r10bio *r10_bio)
431 {
432 	/* clear the bitmap if all writes complete successfully */
433 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
434 			   r10_bio->sectors,
435 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
436 			   0);
437 	md_write_end(r10_bio->mddev);
438 }
439 
440 static void one_write_done(struct r10bio *r10_bio)
441 {
442 	if (atomic_dec_and_test(&r10_bio->remaining)) {
443 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
444 			reschedule_retry(r10_bio);
445 		else {
446 			close_write(r10_bio);
447 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
448 				reschedule_retry(r10_bio);
449 			else
450 				raid_end_bio_io(r10_bio);
451 		}
452 	}
453 }
454 
455 static void raid10_end_write_request(struct bio *bio)
456 {
457 	struct r10bio *r10_bio = bio->bi_private;
458 	int dev;
459 	int dec_rdev = 1;
460 	struct r10conf *conf = r10_bio->mddev->private;
461 	int slot, repl;
462 	struct md_rdev *rdev = NULL;
463 	struct bio *to_put = NULL;
464 	bool discard_error;
465 
466 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
467 
468 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
469 
470 	if (repl)
471 		rdev = conf->mirrors[dev].replacement;
472 	if (!rdev) {
473 		smp_rmb();
474 		repl = 0;
475 		rdev = conf->mirrors[dev].rdev;
476 	}
477 	/*
478 	 * this branch is our 'one mirror IO has finished' event handler:
479 	 */
480 	if (bio->bi_status && !discard_error) {
481 		if (repl)
482 			/* Never record new bad blocks to replacement,
483 			 * just fail it.
484 			 */
485 			md_error(rdev->mddev, rdev);
486 		else {
487 			set_bit(WriteErrorSeen,	&rdev->flags);
488 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
489 				set_bit(MD_RECOVERY_NEEDED,
490 					&rdev->mddev->recovery);
491 
492 			dec_rdev = 0;
493 			if (test_bit(FailFast, &rdev->flags) &&
494 			    (bio->bi_opf & MD_FAILFAST)) {
495 				md_error(rdev->mddev, rdev);
496 			}
497 
498 			/*
499 			 * When the device is faulty, it is not necessary to
500 			 * handle write error.
501 			 */
502 			if (!test_bit(Faulty, &rdev->flags))
503 				set_bit(R10BIO_WriteError, &r10_bio->state);
504 			else {
505 				/* Fail the request */
506 				set_bit(R10BIO_Degraded, &r10_bio->state);
507 				r10_bio->devs[slot].bio = NULL;
508 				to_put = bio;
509 				dec_rdev = 1;
510 			}
511 		}
512 	} else {
513 		/*
514 		 * Set R10BIO_Uptodate in our master bio, so that
515 		 * we will return a good error code for to the higher
516 		 * levels even if IO on some other mirrored buffer fails.
517 		 *
518 		 * The 'master' represents the composite IO operation to
519 		 * user-side. So if something waits for IO, then it will
520 		 * wait for the 'master' bio.
521 		 */
522 		sector_t first_bad;
523 		int bad_sectors;
524 
525 		/*
526 		 * Do not set R10BIO_Uptodate if the current device is
527 		 * rebuilding or Faulty. This is because we cannot use
528 		 * such device for properly reading the data back (we could
529 		 * potentially use it, if the current write would have felt
530 		 * before rdev->recovery_offset, but for simplicity we don't
531 		 * check this here.
532 		 */
533 		if (test_bit(In_sync, &rdev->flags) &&
534 		    !test_bit(Faulty, &rdev->flags))
535 			set_bit(R10BIO_Uptodate, &r10_bio->state);
536 
537 		/* Maybe we can clear some bad blocks. */
538 		if (is_badblock(rdev,
539 				r10_bio->devs[slot].addr,
540 				r10_bio->sectors,
541 				&first_bad, &bad_sectors) && !discard_error) {
542 			bio_put(bio);
543 			if (repl)
544 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
545 			else
546 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
547 			dec_rdev = 0;
548 			set_bit(R10BIO_MadeGood, &r10_bio->state);
549 		}
550 	}
551 
552 	/*
553 	 *
554 	 * Let's see if all mirrored write operations have finished
555 	 * already.
556 	 */
557 	one_write_done(r10_bio);
558 	if (dec_rdev)
559 		rdev_dec_pending(rdev, conf->mddev);
560 	if (to_put)
561 		bio_put(to_put);
562 }
563 
564 /*
565  * RAID10 layout manager
566  * As well as the chunksize and raid_disks count, there are two
567  * parameters: near_copies and far_copies.
568  * near_copies * far_copies must be <= raid_disks.
569  * Normally one of these will be 1.
570  * If both are 1, we get raid0.
571  * If near_copies == raid_disks, we get raid1.
572  *
573  * Chunks are laid out in raid0 style with near_copies copies of the
574  * first chunk, followed by near_copies copies of the next chunk and
575  * so on.
576  * If far_copies > 1, then after 1/far_copies of the array has been assigned
577  * as described above, we start again with a device offset of near_copies.
578  * So we effectively have another copy of the whole array further down all
579  * the drives, but with blocks on different drives.
580  * With this layout, and block is never stored twice on the one device.
581  *
582  * raid10_find_phys finds the sector offset of a given virtual sector
583  * on each device that it is on.
584  *
585  * raid10_find_virt does the reverse mapping, from a device and a
586  * sector offset to a virtual address
587  */
588 
589 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
590 {
591 	int n,f;
592 	sector_t sector;
593 	sector_t chunk;
594 	sector_t stripe;
595 	int dev;
596 	int slot = 0;
597 	int last_far_set_start, last_far_set_size;
598 
599 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
600 	last_far_set_start *= geo->far_set_size;
601 
602 	last_far_set_size = geo->far_set_size;
603 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
604 
605 	/* now calculate first sector/dev */
606 	chunk = r10bio->sector >> geo->chunk_shift;
607 	sector = r10bio->sector & geo->chunk_mask;
608 
609 	chunk *= geo->near_copies;
610 	stripe = chunk;
611 	dev = sector_div(stripe, geo->raid_disks);
612 	if (geo->far_offset)
613 		stripe *= geo->far_copies;
614 
615 	sector += stripe << geo->chunk_shift;
616 
617 	/* and calculate all the others */
618 	for (n = 0; n < geo->near_copies; n++) {
619 		int d = dev;
620 		int set;
621 		sector_t s = sector;
622 		r10bio->devs[slot].devnum = d;
623 		r10bio->devs[slot].addr = s;
624 		slot++;
625 
626 		for (f = 1; f < geo->far_copies; f++) {
627 			set = d / geo->far_set_size;
628 			d += geo->near_copies;
629 
630 			if ((geo->raid_disks % geo->far_set_size) &&
631 			    (d > last_far_set_start)) {
632 				d -= last_far_set_start;
633 				d %= last_far_set_size;
634 				d += last_far_set_start;
635 			} else {
636 				d %= geo->far_set_size;
637 				d += geo->far_set_size * set;
638 			}
639 			s += geo->stride;
640 			r10bio->devs[slot].devnum = d;
641 			r10bio->devs[slot].addr = s;
642 			slot++;
643 		}
644 		dev++;
645 		if (dev >= geo->raid_disks) {
646 			dev = 0;
647 			sector += (geo->chunk_mask + 1);
648 		}
649 	}
650 }
651 
652 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
653 {
654 	struct geom *geo = &conf->geo;
655 
656 	if (conf->reshape_progress != MaxSector &&
657 	    ((r10bio->sector >= conf->reshape_progress) !=
658 	     conf->mddev->reshape_backwards)) {
659 		set_bit(R10BIO_Previous, &r10bio->state);
660 		geo = &conf->prev;
661 	} else
662 		clear_bit(R10BIO_Previous, &r10bio->state);
663 
664 	__raid10_find_phys(geo, r10bio);
665 }
666 
667 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
668 {
669 	sector_t offset, chunk, vchunk;
670 	/* Never use conf->prev as this is only called during resync
671 	 * or recovery, so reshape isn't happening
672 	 */
673 	struct geom *geo = &conf->geo;
674 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
675 	int far_set_size = geo->far_set_size;
676 	int last_far_set_start;
677 
678 	if (geo->raid_disks % geo->far_set_size) {
679 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
680 		last_far_set_start *= geo->far_set_size;
681 
682 		if (dev >= last_far_set_start) {
683 			far_set_size = geo->far_set_size;
684 			far_set_size += (geo->raid_disks % geo->far_set_size);
685 			far_set_start = last_far_set_start;
686 		}
687 	}
688 
689 	offset = sector & geo->chunk_mask;
690 	if (geo->far_offset) {
691 		int fc;
692 		chunk = sector >> geo->chunk_shift;
693 		fc = sector_div(chunk, geo->far_copies);
694 		dev -= fc * geo->near_copies;
695 		if (dev < far_set_start)
696 			dev += far_set_size;
697 	} else {
698 		while (sector >= geo->stride) {
699 			sector -= geo->stride;
700 			if (dev < (geo->near_copies + far_set_start))
701 				dev += far_set_size - geo->near_copies;
702 			else
703 				dev -= geo->near_copies;
704 		}
705 		chunk = sector >> geo->chunk_shift;
706 	}
707 	vchunk = chunk * geo->raid_disks + dev;
708 	sector_div(vchunk, geo->near_copies);
709 	return (vchunk << geo->chunk_shift) + offset;
710 }
711 
712 /*
713  * This routine returns the disk from which the requested read should
714  * be done. There is a per-array 'next expected sequential IO' sector
715  * number - if this matches on the next IO then we use the last disk.
716  * There is also a per-disk 'last know head position' sector that is
717  * maintained from IRQ contexts, both the normal and the resync IO
718  * completion handlers update this position correctly. If there is no
719  * perfect sequential match then we pick the disk whose head is closest.
720  *
721  * If there are 2 mirrors in the same 2 devices, performance degrades
722  * because position is mirror, not device based.
723  *
724  * The rdev for the device selected will have nr_pending incremented.
725  */
726 
727 /*
728  * FIXME: possibly should rethink readbalancing and do it differently
729  * depending on near_copies / far_copies geometry.
730  */
731 static struct md_rdev *read_balance(struct r10conf *conf,
732 				    struct r10bio *r10_bio,
733 				    int *max_sectors)
734 {
735 	const sector_t this_sector = r10_bio->sector;
736 	int disk, slot;
737 	int sectors = r10_bio->sectors;
738 	int best_good_sectors;
739 	sector_t new_distance, best_dist;
740 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
741 	int do_balance;
742 	int best_dist_slot, best_pending_slot;
743 	bool has_nonrot_disk = false;
744 	unsigned int min_pending;
745 	struct geom *geo = &conf->geo;
746 
747 	raid10_find_phys(conf, r10_bio);
748 	best_dist_slot = -1;
749 	min_pending = UINT_MAX;
750 	best_dist_rdev = NULL;
751 	best_pending_rdev = NULL;
752 	best_dist = MaxSector;
753 	best_good_sectors = 0;
754 	do_balance = 1;
755 	clear_bit(R10BIO_FailFast, &r10_bio->state);
756 	/*
757 	 * Check if we can balance. We can balance on the whole
758 	 * device if no resync is going on (recovery is ok), or below
759 	 * the resync window. We take the first readable disk when
760 	 * above the resync window.
761 	 */
762 	if ((conf->mddev->recovery_cp < MaxSector
763 	     && (this_sector + sectors >= conf->next_resync)) ||
764 	    (mddev_is_clustered(conf->mddev) &&
765 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
766 					    this_sector + sectors)))
767 		do_balance = 0;
768 
769 	for (slot = 0; slot < conf->copies ; slot++) {
770 		sector_t first_bad;
771 		int bad_sectors;
772 		sector_t dev_sector;
773 		unsigned int pending;
774 		bool nonrot;
775 
776 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
777 			continue;
778 		disk = r10_bio->devs[slot].devnum;
779 		rdev = conf->mirrors[disk].replacement;
780 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
781 		    r10_bio->devs[slot].addr + sectors >
782 		    rdev->recovery_offset)
783 			rdev = conf->mirrors[disk].rdev;
784 		if (rdev == NULL ||
785 		    test_bit(Faulty, &rdev->flags))
786 			continue;
787 		if (!test_bit(In_sync, &rdev->flags) &&
788 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789 			continue;
790 
791 		dev_sector = r10_bio->devs[slot].addr;
792 		if (is_badblock(rdev, dev_sector, sectors,
793 				&first_bad, &bad_sectors)) {
794 			if (best_dist < MaxSector)
795 				/* Already have a better slot */
796 				continue;
797 			if (first_bad <= dev_sector) {
798 				/* Cannot read here.  If this is the
799 				 * 'primary' device, then we must not read
800 				 * beyond 'bad_sectors' from another device.
801 				 */
802 				bad_sectors -= (dev_sector - first_bad);
803 				if (!do_balance && sectors > bad_sectors)
804 					sectors = bad_sectors;
805 				if (best_good_sectors > sectors)
806 					best_good_sectors = sectors;
807 			} else {
808 				sector_t good_sectors =
809 					first_bad - dev_sector;
810 				if (good_sectors > best_good_sectors) {
811 					best_good_sectors = good_sectors;
812 					best_dist_slot = slot;
813 					best_dist_rdev = rdev;
814 				}
815 				if (!do_balance)
816 					/* Must read from here */
817 					break;
818 			}
819 			continue;
820 		} else
821 			best_good_sectors = sectors;
822 
823 		if (!do_balance)
824 			break;
825 
826 		nonrot = bdev_nonrot(rdev->bdev);
827 		has_nonrot_disk |= nonrot;
828 		pending = atomic_read(&rdev->nr_pending);
829 		if (min_pending > pending && nonrot) {
830 			min_pending = pending;
831 			best_pending_slot = slot;
832 			best_pending_rdev = rdev;
833 		}
834 
835 		if (best_dist_slot >= 0)
836 			/* At least 2 disks to choose from so failfast is OK */
837 			set_bit(R10BIO_FailFast, &r10_bio->state);
838 		/* This optimisation is debatable, and completely destroys
839 		 * sequential read speed for 'far copies' arrays.  So only
840 		 * keep it for 'near' arrays, and review those later.
841 		 */
842 		if (geo->near_copies > 1 && !pending)
843 			new_distance = 0;
844 
845 		/* for far > 1 always use the lowest address */
846 		else if (geo->far_copies > 1)
847 			new_distance = r10_bio->devs[slot].addr;
848 		else
849 			new_distance = abs(r10_bio->devs[slot].addr -
850 					   conf->mirrors[disk].head_position);
851 
852 		if (new_distance < best_dist) {
853 			best_dist = new_distance;
854 			best_dist_slot = slot;
855 			best_dist_rdev = rdev;
856 		}
857 	}
858 	if (slot >= conf->copies) {
859 		if (has_nonrot_disk) {
860 			slot = best_pending_slot;
861 			rdev = best_pending_rdev;
862 		} else {
863 			slot = best_dist_slot;
864 			rdev = best_dist_rdev;
865 		}
866 	}
867 
868 	if (slot >= 0) {
869 		atomic_inc(&rdev->nr_pending);
870 		r10_bio->read_slot = slot;
871 	} else
872 		rdev = NULL;
873 	*max_sectors = best_good_sectors;
874 
875 	return rdev;
876 }
877 
878 static void flush_pending_writes(struct r10conf *conf)
879 {
880 	/* Any writes that have been queued but are awaiting
881 	 * bitmap updates get flushed here.
882 	 */
883 	spin_lock_irq(&conf->device_lock);
884 
885 	if (conf->pending_bio_list.head) {
886 		struct blk_plug plug;
887 		struct bio *bio;
888 
889 		bio = bio_list_get(&conf->pending_bio_list);
890 		spin_unlock_irq(&conf->device_lock);
891 
892 		/*
893 		 * As this is called in a wait_event() loop (see freeze_array),
894 		 * current->state might be TASK_UNINTERRUPTIBLE which will
895 		 * cause a warning when we prepare to wait again.  As it is
896 		 * rare that this path is taken, it is perfectly safe to force
897 		 * us to go around the wait_event() loop again, so the warning
898 		 * is a false-positive. Silence the warning by resetting
899 		 * thread state
900 		 */
901 		__set_current_state(TASK_RUNNING);
902 
903 		blk_start_plug(&plug);
904 		raid1_prepare_flush_writes(conf->mddev->bitmap);
905 		wake_up(&conf->wait_barrier);
906 
907 		while (bio) { /* submit pending writes */
908 			struct bio *next = bio->bi_next;
909 
910 			raid1_submit_write(bio);
911 			bio = next;
912 			cond_resched();
913 		}
914 		blk_finish_plug(&plug);
915 	} else
916 		spin_unlock_irq(&conf->device_lock);
917 }
918 
919 /* Barriers....
920  * Sometimes we need to suspend IO while we do something else,
921  * either some resync/recovery, or reconfigure the array.
922  * To do this we raise a 'barrier'.
923  * The 'barrier' is a counter that can be raised multiple times
924  * to count how many activities are happening which preclude
925  * normal IO.
926  * We can only raise the barrier if there is no pending IO.
927  * i.e. if nr_pending == 0.
928  * We choose only to raise the barrier if no-one is waiting for the
929  * barrier to go down.  This means that as soon as an IO request
930  * is ready, no other operations which require a barrier will start
931  * until the IO request has had a chance.
932  *
933  * So: regular IO calls 'wait_barrier'.  When that returns there
934  *    is no backgroup IO happening,  It must arrange to call
935  *    allow_barrier when it has finished its IO.
936  * backgroup IO calls must call raise_barrier.  Once that returns
937  *    there is no normal IO happeing.  It must arrange to call
938  *    lower_barrier when the particular background IO completes.
939  */
940 
941 static void raise_barrier(struct r10conf *conf, int force)
942 {
943 	write_seqlock_irq(&conf->resync_lock);
944 
945 	if (WARN_ON_ONCE(force && !conf->barrier))
946 		force = false;
947 
948 	/* Wait until no block IO is waiting (unless 'force') */
949 	wait_event_barrier(conf, force || !conf->nr_waiting);
950 
951 	/* block any new IO from starting */
952 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
953 
954 	/* Now wait for all pending IO to complete */
955 	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
956 				 conf->barrier < RESYNC_DEPTH);
957 
958 	write_sequnlock_irq(&conf->resync_lock);
959 }
960 
961 static void lower_barrier(struct r10conf *conf)
962 {
963 	unsigned long flags;
964 
965 	write_seqlock_irqsave(&conf->resync_lock, flags);
966 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
967 	write_sequnlock_irqrestore(&conf->resync_lock, flags);
968 	wake_up(&conf->wait_barrier);
969 }
970 
971 static bool stop_waiting_barrier(struct r10conf *conf)
972 {
973 	struct bio_list *bio_list = current->bio_list;
974 	struct md_thread *thread;
975 
976 	/* barrier is dropped */
977 	if (!conf->barrier)
978 		return true;
979 
980 	/*
981 	 * If there are already pending requests (preventing the barrier from
982 	 * rising completely), and the pre-process bio queue isn't empty, then
983 	 * don't wait, as we need to empty that queue to get the nr_pending
984 	 * count down.
985 	 */
986 	if (atomic_read(&conf->nr_pending) && bio_list &&
987 	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
988 		return true;
989 
990 	/* daemon thread must exist while handling io */
991 	thread = rcu_dereference_protected(conf->mddev->thread, true);
992 	/*
993 	 * move on if io is issued from raid10d(), nr_pending is not released
994 	 * from original io(see handle_read_error()). All raise barrier is
995 	 * blocked until this io is done.
996 	 */
997 	if (thread->tsk == current) {
998 		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
999 		return true;
1000 	}
1001 
1002 	return false;
1003 }
1004 
1005 static bool wait_barrier_nolock(struct r10conf *conf)
1006 {
1007 	unsigned int seq = read_seqbegin(&conf->resync_lock);
1008 
1009 	if (READ_ONCE(conf->barrier))
1010 		return false;
1011 
1012 	atomic_inc(&conf->nr_pending);
1013 	if (!read_seqretry(&conf->resync_lock, seq))
1014 		return true;
1015 
1016 	if (atomic_dec_and_test(&conf->nr_pending))
1017 		wake_up_barrier(conf);
1018 
1019 	return false;
1020 }
1021 
1022 static bool wait_barrier(struct r10conf *conf, bool nowait)
1023 {
1024 	bool ret = true;
1025 
1026 	if (wait_barrier_nolock(conf))
1027 		return true;
1028 
1029 	write_seqlock_irq(&conf->resync_lock);
1030 	if (conf->barrier) {
1031 		/* Return false when nowait flag is set */
1032 		if (nowait) {
1033 			ret = false;
1034 		} else {
1035 			conf->nr_waiting++;
1036 			raid10_log(conf->mddev, "wait barrier");
1037 			wait_event_barrier(conf, stop_waiting_barrier(conf));
1038 			conf->nr_waiting--;
1039 		}
1040 		if (!conf->nr_waiting)
1041 			wake_up(&conf->wait_barrier);
1042 	}
1043 	/* Only increment nr_pending when we wait */
1044 	if (ret)
1045 		atomic_inc(&conf->nr_pending);
1046 	write_sequnlock_irq(&conf->resync_lock);
1047 	return ret;
1048 }
1049 
1050 static void allow_barrier(struct r10conf *conf)
1051 {
1052 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1053 			(conf->array_freeze_pending))
1054 		wake_up_barrier(conf);
1055 }
1056 
1057 static void freeze_array(struct r10conf *conf, int extra)
1058 {
1059 	/* stop syncio and normal IO and wait for everything to
1060 	 * go quiet.
1061 	 * We increment barrier and nr_waiting, and then
1062 	 * wait until nr_pending match nr_queued+extra
1063 	 * This is called in the context of one normal IO request
1064 	 * that has failed. Thus any sync request that might be pending
1065 	 * will be blocked by nr_pending, and we need to wait for
1066 	 * pending IO requests to complete or be queued for re-try.
1067 	 * Thus the number queued (nr_queued) plus this request (extra)
1068 	 * must match the number of pending IOs (nr_pending) before
1069 	 * we continue.
1070 	 */
1071 	write_seqlock_irq(&conf->resync_lock);
1072 	conf->array_freeze_pending++;
1073 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1074 	conf->nr_waiting++;
1075 	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1076 			conf->nr_queued + extra, flush_pending_writes(conf));
1077 	conf->array_freeze_pending--;
1078 	write_sequnlock_irq(&conf->resync_lock);
1079 }
1080 
1081 static void unfreeze_array(struct r10conf *conf)
1082 {
1083 	/* reverse the effect of the freeze */
1084 	write_seqlock_irq(&conf->resync_lock);
1085 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1086 	conf->nr_waiting--;
1087 	wake_up(&conf->wait_barrier);
1088 	write_sequnlock_irq(&conf->resync_lock);
1089 }
1090 
1091 static sector_t choose_data_offset(struct r10bio *r10_bio,
1092 				   struct md_rdev *rdev)
1093 {
1094 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1095 	    test_bit(R10BIO_Previous, &r10_bio->state))
1096 		return rdev->data_offset;
1097 	else
1098 		return rdev->new_data_offset;
1099 }
1100 
1101 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1102 {
1103 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1104 	struct mddev *mddev = plug->cb.data;
1105 	struct r10conf *conf = mddev->private;
1106 	struct bio *bio;
1107 
1108 	if (from_schedule) {
1109 		spin_lock_irq(&conf->device_lock);
1110 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1111 		spin_unlock_irq(&conf->device_lock);
1112 		wake_up_barrier(conf);
1113 		md_wakeup_thread(mddev->thread);
1114 		kfree(plug);
1115 		return;
1116 	}
1117 
1118 	/* we aren't scheduling, so we can do the write-out directly. */
1119 	bio = bio_list_get(&plug->pending);
1120 	raid1_prepare_flush_writes(mddev->bitmap);
1121 	wake_up_barrier(conf);
1122 
1123 	while (bio) { /* submit pending writes */
1124 		struct bio *next = bio->bi_next;
1125 
1126 		raid1_submit_write(bio);
1127 		bio = next;
1128 		cond_resched();
1129 	}
1130 	kfree(plug);
1131 }
1132 
1133 /*
1134  * 1. Register the new request and wait if the reconstruction thread has put
1135  * up a bar for new requests. Continue immediately if no resync is active
1136  * currently.
1137  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1138  */
1139 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1140 				 struct bio *bio, sector_t sectors)
1141 {
1142 	/* Bail out if REQ_NOWAIT is set for the bio */
1143 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1144 		bio_wouldblock_error(bio);
1145 		return false;
1146 	}
1147 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1148 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1149 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1150 		allow_barrier(conf);
1151 		if (bio->bi_opf & REQ_NOWAIT) {
1152 			bio_wouldblock_error(bio);
1153 			return false;
1154 		}
1155 		raid10_log(conf->mddev, "wait reshape");
1156 		wait_event(conf->wait_barrier,
1157 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1158 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1159 			   sectors);
1160 		wait_barrier(conf, false);
1161 	}
1162 	return true;
1163 }
1164 
1165 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1166 				struct r10bio *r10_bio, bool io_accounting)
1167 {
1168 	struct r10conf *conf = mddev->private;
1169 	struct bio *read_bio;
1170 	const enum req_op op = bio_op(bio);
1171 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1172 	int max_sectors;
1173 	struct md_rdev *rdev;
1174 	char b[BDEVNAME_SIZE];
1175 	int slot = r10_bio->read_slot;
1176 	struct md_rdev *err_rdev = NULL;
1177 	gfp_t gfp = GFP_NOIO;
1178 
1179 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1180 		/*
1181 		 * This is an error retry, but we cannot
1182 		 * safely dereference the rdev in the r10_bio,
1183 		 * we must use the one in conf.
1184 		 * If it has already been disconnected (unlikely)
1185 		 * we lose the device name in error messages.
1186 		 */
1187 		int disk;
1188 		/*
1189 		 * As we are blocking raid10, it is a little safer to
1190 		 * use __GFP_HIGH.
1191 		 */
1192 		gfp = GFP_NOIO | __GFP_HIGH;
1193 
1194 		disk = r10_bio->devs[slot].devnum;
1195 		err_rdev = conf->mirrors[disk].rdev;
1196 		if (err_rdev)
1197 			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1198 		else {
1199 			strcpy(b, "???");
1200 			/* This never gets dereferenced */
1201 			err_rdev = r10_bio->devs[slot].rdev;
1202 		}
1203 	}
1204 
1205 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1206 		return;
1207 	rdev = read_balance(conf, r10_bio, &max_sectors);
1208 	if (!rdev) {
1209 		if (err_rdev) {
1210 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1211 					    mdname(mddev), b,
1212 					    (unsigned long long)r10_bio->sector);
1213 		}
1214 		raid_end_bio_io(r10_bio);
1215 		return;
1216 	}
1217 	if (err_rdev)
1218 		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1219 				   mdname(mddev),
1220 				   rdev->bdev,
1221 				   (unsigned long long)r10_bio->sector);
1222 	if (max_sectors < bio_sectors(bio)) {
1223 		struct bio *split = bio_split(bio, max_sectors,
1224 					      gfp, &conf->bio_split);
1225 		bio_chain(split, bio);
1226 		allow_barrier(conf);
1227 		submit_bio_noacct(bio);
1228 		wait_barrier(conf, false);
1229 		bio = split;
1230 		r10_bio->master_bio = bio;
1231 		r10_bio->sectors = max_sectors;
1232 	}
1233 	slot = r10_bio->read_slot;
1234 
1235 	if (io_accounting) {
1236 		md_account_bio(mddev, &bio);
1237 		r10_bio->master_bio = bio;
1238 	}
1239 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1240 
1241 	r10_bio->devs[slot].bio = read_bio;
1242 	r10_bio->devs[slot].rdev = rdev;
1243 
1244 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1245 		choose_data_offset(r10_bio, rdev);
1246 	read_bio->bi_end_io = raid10_end_read_request;
1247 	read_bio->bi_opf = op | do_sync;
1248 	if (test_bit(FailFast, &rdev->flags) &&
1249 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1250 	        read_bio->bi_opf |= MD_FAILFAST;
1251 	read_bio->bi_private = r10_bio;
1252 
1253 	if (mddev->gendisk)
1254 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1255 	                              r10_bio->sector);
1256 	submit_bio_noacct(read_bio);
1257 	return;
1258 }
1259 
1260 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1261 				  struct bio *bio, bool replacement,
1262 				  int n_copy)
1263 {
1264 	const enum req_op op = bio_op(bio);
1265 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1266 	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1267 	unsigned long flags;
1268 	struct r10conf *conf = mddev->private;
1269 	struct md_rdev *rdev;
1270 	int devnum = r10_bio->devs[n_copy].devnum;
1271 	struct bio *mbio;
1272 
1273 	rdev = replacement ? conf->mirrors[devnum].replacement :
1274 			     conf->mirrors[devnum].rdev;
1275 
1276 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1277 	if (replacement)
1278 		r10_bio->devs[n_copy].repl_bio = mbio;
1279 	else
1280 		r10_bio->devs[n_copy].bio = mbio;
1281 
1282 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1283 				   choose_data_offset(r10_bio, rdev));
1284 	mbio->bi_end_io	= raid10_end_write_request;
1285 	mbio->bi_opf = op | do_sync | do_fua;
1286 	if (!replacement && test_bit(FailFast,
1287 				     &conf->mirrors[devnum].rdev->flags)
1288 			 && enough(conf, devnum))
1289 		mbio->bi_opf |= MD_FAILFAST;
1290 	mbio->bi_private = r10_bio;
1291 
1292 	if (conf->mddev->gendisk)
1293 		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1294 				      r10_bio->sector);
1295 	/* flush_pending_writes() needs access to the rdev so...*/
1296 	mbio->bi_bdev = (void *)rdev;
1297 
1298 	atomic_inc(&r10_bio->remaining);
1299 
1300 	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1301 		spin_lock_irqsave(&conf->device_lock, flags);
1302 		bio_list_add(&conf->pending_bio_list, mbio);
1303 		spin_unlock_irqrestore(&conf->device_lock, flags);
1304 		md_wakeup_thread(mddev->thread);
1305 	}
1306 }
1307 
1308 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1309 {
1310 	int i;
1311 	struct r10conf *conf = mddev->private;
1312 	struct md_rdev *blocked_rdev;
1313 
1314 retry_wait:
1315 	blocked_rdev = NULL;
1316 	for (i = 0; i < conf->copies; i++) {
1317 		struct md_rdev *rdev, *rrdev;
1318 
1319 		rdev = conf->mirrors[i].rdev;
1320 		rrdev = conf->mirrors[i].replacement;
1321 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1322 			atomic_inc(&rdev->nr_pending);
1323 			blocked_rdev = rdev;
1324 			break;
1325 		}
1326 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1327 			atomic_inc(&rrdev->nr_pending);
1328 			blocked_rdev = rrdev;
1329 			break;
1330 		}
1331 
1332 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1333 			sector_t first_bad;
1334 			sector_t dev_sector = r10_bio->devs[i].addr;
1335 			int bad_sectors;
1336 			int is_bad;
1337 
1338 			/*
1339 			 * Discard request doesn't care the write result
1340 			 * so it doesn't need to wait blocked disk here.
1341 			 */
1342 			if (!r10_bio->sectors)
1343 				continue;
1344 
1345 			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1346 					     &first_bad, &bad_sectors);
1347 			if (is_bad < 0) {
1348 				/*
1349 				 * Mustn't write here until the bad block
1350 				 * is acknowledged
1351 				 */
1352 				atomic_inc(&rdev->nr_pending);
1353 				set_bit(BlockedBadBlocks, &rdev->flags);
1354 				blocked_rdev = rdev;
1355 				break;
1356 			}
1357 		}
1358 	}
1359 
1360 	if (unlikely(blocked_rdev)) {
1361 		/* Have to wait for this device to get unblocked, then retry */
1362 		allow_barrier(conf);
1363 		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1364 				__func__, blocked_rdev->raid_disk);
1365 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1366 		wait_barrier(conf, false);
1367 		goto retry_wait;
1368 	}
1369 }
1370 
1371 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1372 				 struct r10bio *r10_bio)
1373 {
1374 	struct r10conf *conf = mddev->private;
1375 	int i;
1376 	sector_t sectors;
1377 	int max_sectors;
1378 
1379 	if ((mddev_is_clustered(mddev) &&
1380 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1381 					    bio->bi_iter.bi_sector,
1382 					    bio_end_sector(bio)))) {
1383 		DEFINE_WAIT(w);
1384 		/* Bail out if REQ_NOWAIT is set for the bio */
1385 		if (bio->bi_opf & REQ_NOWAIT) {
1386 			bio_wouldblock_error(bio);
1387 			return;
1388 		}
1389 		for (;;) {
1390 			prepare_to_wait(&conf->wait_barrier,
1391 					&w, TASK_IDLE);
1392 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1393 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1394 				break;
1395 			schedule();
1396 		}
1397 		finish_wait(&conf->wait_barrier, &w);
1398 	}
1399 
1400 	sectors = r10_bio->sectors;
1401 	if (!regular_request_wait(mddev, conf, bio, sectors))
1402 		return;
1403 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1404 	    (mddev->reshape_backwards
1405 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1406 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1407 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1408 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1409 		/* Need to update reshape_position in metadata */
1410 		mddev->reshape_position = conf->reshape_progress;
1411 		set_mask_bits(&mddev->sb_flags, 0,
1412 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1413 		md_wakeup_thread(mddev->thread);
1414 		if (bio->bi_opf & REQ_NOWAIT) {
1415 			allow_barrier(conf);
1416 			bio_wouldblock_error(bio);
1417 			return;
1418 		}
1419 		raid10_log(conf->mddev, "wait reshape metadata");
1420 		wait_event(mddev->sb_wait,
1421 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1422 
1423 		conf->reshape_safe = mddev->reshape_position;
1424 	}
1425 
1426 	/* first select target devices under rcu_lock and
1427 	 * inc refcount on their rdev.  Record them by setting
1428 	 * bios[x] to bio
1429 	 * If there are known/acknowledged bad blocks on any device
1430 	 * on which we have seen a write error, we want to avoid
1431 	 * writing to those blocks.  This potentially requires several
1432 	 * writes to write around the bad blocks.  Each set of writes
1433 	 * gets its own r10_bio with a set of bios attached.
1434 	 */
1435 
1436 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1437 	raid10_find_phys(conf, r10_bio);
1438 
1439 	wait_blocked_dev(mddev, r10_bio);
1440 
1441 	max_sectors = r10_bio->sectors;
1442 
1443 	for (i = 0;  i < conf->copies; i++) {
1444 		int d = r10_bio->devs[i].devnum;
1445 		struct md_rdev *rdev, *rrdev;
1446 
1447 		rdev = conf->mirrors[d].rdev;
1448 		rrdev = conf->mirrors[d].replacement;
1449 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1450 			rdev = NULL;
1451 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1452 			rrdev = NULL;
1453 
1454 		r10_bio->devs[i].bio = NULL;
1455 		r10_bio->devs[i].repl_bio = NULL;
1456 
1457 		if (!rdev && !rrdev) {
1458 			set_bit(R10BIO_Degraded, &r10_bio->state);
1459 			continue;
1460 		}
1461 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1462 			sector_t first_bad;
1463 			sector_t dev_sector = r10_bio->devs[i].addr;
1464 			int bad_sectors;
1465 			int is_bad;
1466 
1467 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1468 					     &first_bad, &bad_sectors);
1469 			if (is_bad && first_bad <= dev_sector) {
1470 				/* Cannot write here at all */
1471 				bad_sectors -= (dev_sector - first_bad);
1472 				if (bad_sectors < max_sectors)
1473 					/* Mustn't write more than bad_sectors
1474 					 * to other devices yet
1475 					 */
1476 					max_sectors = bad_sectors;
1477 				/* We don't set R10BIO_Degraded as that
1478 				 * only applies if the disk is missing,
1479 				 * so it might be re-added, and we want to
1480 				 * know to recover this chunk.
1481 				 * In this case the device is here, and the
1482 				 * fact that this chunk is not in-sync is
1483 				 * recorded in the bad block log.
1484 				 */
1485 				continue;
1486 			}
1487 			if (is_bad) {
1488 				int good_sectors = first_bad - dev_sector;
1489 				if (good_sectors < max_sectors)
1490 					max_sectors = good_sectors;
1491 			}
1492 		}
1493 		if (rdev) {
1494 			r10_bio->devs[i].bio = bio;
1495 			atomic_inc(&rdev->nr_pending);
1496 		}
1497 		if (rrdev) {
1498 			r10_bio->devs[i].repl_bio = bio;
1499 			atomic_inc(&rrdev->nr_pending);
1500 		}
1501 	}
1502 
1503 	if (max_sectors < r10_bio->sectors)
1504 		r10_bio->sectors = max_sectors;
1505 
1506 	if (r10_bio->sectors < bio_sectors(bio)) {
1507 		struct bio *split = bio_split(bio, r10_bio->sectors,
1508 					      GFP_NOIO, &conf->bio_split);
1509 		bio_chain(split, bio);
1510 		allow_barrier(conf);
1511 		submit_bio_noacct(bio);
1512 		wait_barrier(conf, false);
1513 		bio = split;
1514 		r10_bio->master_bio = bio;
1515 	}
1516 
1517 	md_account_bio(mddev, &bio);
1518 	r10_bio->master_bio = bio;
1519 	atomic_set(&r10_bio->remaining, 1);
1520 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1521 
1522 	for (i = 0; i < conf->copies; i++) {
1523 		if (r10_bio->devs[i].bio)
1524 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1525 		if (r10_bio->devs[i].repl_bio)
1526 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1527 	}
1528 	one_write_done(r10_bio);
1529 }
1530 
1531 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1532 {
1533 	struct r10conf *conf = mddev->private;
1534 	struct r10bio *r10_bio;
1535 
1536 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1537 
1538 	r10_bio->master_bio = bio;
1539 	r10_bio->sectors = sectors;
1540 
1541 	r10_bio->mddev = mddev;
1542 	r10_bio->sector = bio->bi_iter.bi_sector;
1543 	r10_bio->state = 0;
1544 	r10_bio->read_slot = -1;
1545 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1546 			conf->geo.raid_disks);
1547 
1548 	if (bio_data_dir(bio) == READ)
1549 		raid10_read_request(mddev, bio, r10_bio, true);
1550 	else
1551 		raid10_write_request(mddev, bio, r10_bio);
1552 }
1553 
1554 static void raid_end_discard_bio(struct r10bio *r10bio)
1555 {
1556 	struct r10conf *conf = r10bio->mddev->private;
1557 	struct r10bio *first_r10bio;
1558 
1559 	while (atomic_dec_and_test(&r10bio->remaining)) {
1560 
1561 		allow_barrier(conf);
1562 
1563 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1564 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1565 			free_r10bio(r10bio);
1566 			r10bio = first_r10bio;
1567 		} else {
1568 			md_write_end(r10bio->mddev);
1569 			bio_endio(r10bio->master_bio);
1570 			free_r10bio(r10bio);
1571 			break;
1572 		}
1573 	}
1574 }
1575 
1576 static void raid10_end_discard_request(struct bio *bio)
1577 {
1578 	struct r10bio *r10_bio = bio->bi_private;
1579 	struct r10conf *conf = r10_bio->mddev->private;
1580 	struct md_rdev *rdev = NULL;
1581 	int dev;
1582 	int slot, repl;
1583 
1584 	/*
1585 	 * We don't care the return value of discard bio
1586 	 */
1587 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1588 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1589 
1590 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1591 	rdev = repl ? conf->mirrors[dev].replacement :
1592 		      conf->mirrors[dev].rdev;
1593 
1594 	raid_end_discard_bio(r10_bio);
1595 	rdev_dec_pending(rdev, conf->mddev);
1596 }
1597 
1598 /*
1599  * There are some limitations to handle discard bio
1600  * 1st, the discard size is bigger than stripe_size*2.
1601  * 2st, if the discard bio spans reshape progress, we use the old way to
1602  * handle discard bio
1603  */
1604 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1605 {
1606 	struct r10conf *conf = mddev->private;
1607 	struct geom *geo = &conf->geo;
1608 	int far_copies = geo->far_copies;
1609 	bool first_copy = true;
1610 	struct r10bio *r10_bio, *first_r10bio;
1611 	struct bio *split;
1612 	int disk;
1613 	sector_t chunk;
1614 	unsigned int stripe_size;
1615 	unsigned int stripe_data_disks;
1616 	sector_t split_size;
1617 	sector_t bio_start, bio_end;
1618 	sector_t first_stripe_index, last_stripe_index;
1619 	sector_t start_disk_offset;
1620 	unsigned int start_disk_index;
1621 	sector_t end_disk_offset;
1622 	unsigned int end_disk_index;
1623 	unsigned int remainder;
1624 
1625 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1626 		return -EAGAIN;
1627 
1628 	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1629 		bio_wouldblock_error(bio);
1630 		return 0;
1631 	}
1632 	wait_barrier(conf, false);
1633 
1634 	/*
1635 	 * Check reshape again to avoid reshape happens after checking
1636 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1637 	 */
1638 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1639 		goto out;
1640 
1641 	if (geo->near_copies)
1642 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1643 					geo->raid_disks % geo->near_copies;
1644 	else
1645 		stripe_data_disks = geo->raid_disks;
1646 
1647 	stripe_size = stripe_data_disks << geo->chunk_shift;
1648 
1649 	bio_start = bio->bi_iter.bi_sector;
1650 	bio_end = bio_end_sector(bio);
1651 
1652 	/*
1653 	 * Maybe one discard bio is smaller than strip size or across one
1654 	 * stripe and discard region is larger than one stripe size. For far
1655 	 * offset layout, if the discard region is not aligned with stripe
1656 	 * size, there is hole when we submit discard bio to member disk.
1657 	 * For simplicity, we only handle discard bio which discard region
1658 	 * is bigger than stripe_size * 2
1659 	 */
1660 	if (bio_sectors(bio) < stripe_size*2)
1661 		goto out;
1662 
1663 	/*
1664 	 * Keep bio aligned with strip size.
1665 	 */
1666 	div_u64_rem(bio_start, stripe_size, &remainder);
1667 	if (remainder) {
1668 		split_size = stripe_size - remainder;
1669 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1670 		bio_chain(split, bio);
1671 		allow_barrier(conf);
1672 		/* Resend the fist split part */
1673 		submit_bio_noacct(split);
1674 		wait_barrier(conf, false);
1675 	}
1676 	div_u64_rem(bio_end, stripe_size, &remainder);
1677 	if (remainder) {
1678 		split_size = bio_sectors(bio) - remainder;
1679 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1680 		bio_chain(split, bio);
1681 		allow_barrier(conf);
1682 		/* Resend the second split part */
1683 		submit_bio_noacct(bio);
1684 		bio = split;
1685 		wait_barrier(conf, false);
1686 	}
1687 
1688 	bio_start = bio->bi_iter.bi_sector;
1689 	bio_end = bio_end_sector(bio);
1690 
1691 	/*
1692 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1693 	 * One stripe contains the chunks from all member disk (one chunk from
1694 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1695 	 */
1696 	chunk = bio_start >> geo->chunk_shift;
1697 	chunk *= geo->near_copies;
1698 	first_stripe_index = chunk;
1699 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1700 	if (geo->far_offset)
1701 		first_stripe_index *= geo->far_copies;
1702 	start_disk_offset = (bio_start & geo->chunk_mask) +
1703 				(first_stripe_index << geo->chunk_shift);
1704 
1705 	chunk = bio_end >> geo->chunk_shift;
1706 	chunk *= geo->near_copies;
1707 	last_stripe_index = chunk;
1708 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1709 	if (geo->far_offset)
1710 		last_stripe_index *= geo->far_copies;
1711 	end_disk_offset = (bio_end & geo->chunk_mask) +
1712 				(last_stripe_index << geo->chunk_shift);
1713 
1714 retry_discard:
1715 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1716 	r10_bio->mddev = mddev;
1717 	r10_bio->state = 0;
1718 	r10_bio->sectors = 0;
1719 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1720 	wait_blocked_dev(mddev, r10_bio);
1721 
1722 	/*
1723 	 * For far layout it needs more than one r10bio to cover all regions.
1724 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1725 	 * to record the discard bio. Other r10bio->master_bio record the first
1726 	 * r10bio. The first r10bio only release after all other r10bios finish.
1727 	 * The discard bio returns only first r10bio finishes
1728 	 */
1729 	if (first_copy) {
1730 		r10_bio->master_bio = bio;
1731 		set_bit(R10BIO_Discard, &r10_bio->state);
1732 		first_copy = false;
1733 		first_r10bio = r10_bio;
1734 	} else
1735 		r10_bio->master_bio = (struct bio *)first_r10bio;
1736 
1737 	/*
1738 	 * first select target devices under rcu_lock and
1739 	 * inc refcount on their rdev.  Record them by setting
1740 	 * bios[x] to bio
1741 	 */
1742 	for (disk = 0; disk < geo->raid_disks; disk++) {
1743 		struct md_rdev *rdev, *rrdev;
1744 
1745 		rdev = conf->mirrors[disk].rdev;
1746 		rrdev = conf->mirrors[disk].replacement;
1747 		r10_bio->devs[disk].bio = NULL;
1748 		r10_bio->devs[disk].repl_bio = NULL;
1749 
1750 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1751 			rdev = NULL;
1752 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1753 			rrdev = NULL;
1754 		if (!rdev && !rrdev)
1755 			continue;
1756 
1757 		if (rdev) {
1758 			r10_bio->devs[disk].bio = bio;
1759 			atomic_inc(&rdev->nr_pending);
1760 		}
1761 		if (rrdev) {
1762 			r10_bio->devs[disk].repl_bio = bio;
1763 			atomic_inc(&rrdev->nr_pending);
1764 		}
1765 	}
1766 
1767 	atomic_set(&r10_bio->remaining, 1);
1768 	for (disk = 0; disk < geo->raid_disks; disk++) {
1769 		sector_t dev_start, dev_end;
1770 		struct bio *mbio, *rbio = NULL;
1771 
1772 		/*
1773 		 * Now start to calculate the start and end address for each disk.
1774 		 * The space between dev_start and dev_end is the discard region.
1775 		 *
1776 		 * For dev_start, it needs to consider three conditions:
1777 		 * 1st, the disk is before start_disk, you can imagine the disk in
1778 		 * the next stripe. So the dev_start is the start address of next
1779 		 * stripe.
1780 		 * 2st, the disk is after start_disk, it means the disk is at the
1781 		 * same stripe of first disk
1782 		 * 3st, the first disk itself, we can use start_disk_offset directly
1783 		 */
1784 		if (disk < start_disk_index)
1785 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1786 		else if (disk > start_disk_index)
1787 			dev_start = first_stripe_index * mddev->chunk_sectors;
1788 		else
1789 			dev_start = start_disk_offset;
1790 
1791 		if (disk < end_disk_index)
1792 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1793 		else if (disk > end_disk_index)
1794 			dev_end = last_stripe_index * mddev->chunk_sectors;
1795 		else
1796 			dev_end = end_disk_offset;
1797 
1798 		/*
1799 		 * It only handles discard bio which size is >= stripe size, so
1800 		 * dev_end > dev_start all the time.
1801 		 * It doesn't need to use rcu lock to get rdev here. We already
1802 		 * add rdev->nr_pending in the first loop.
1803 		 */
1804 		if (r10_bio->devs[disk].bio) {
1805 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1806 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1807 					       &mddev->bio_set);
1808 			mbio->bi_end_io = raid10_end_discard_request;
1809 			mbio->bi_private = r10_bio;
1810 			r10_bio->devs[disk].bio = mbio;
1811 			r10_bio->devs[disk].devnum = disk;
1812 			atomic_inc(&r10_bio->remaining);
1813 			md_submit_discard_bio(mddev, rdev, mbio,
1814 					dev_start + choose_data_offset(r10_bio, rdev),
1815 					dev_end - dev_start);
1816 			bio_endio(mbio);
1817 		}
1818 		if (r10_bio->devs[disk].repl_bio) {
1819 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1820 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1821 					       &mddev->bio_set);
1822 			rbio->bi_end_io = raid10_end_discard_request;
1823 			rbio->bi_private = r10_bio;
1824 			r10_bio->devs[disk].repl_bio = rbio;
1825 			r10_bio->devs[disk].devnum = disk;
1826 			atomic_inc(&r10_bio->remaining);
1827 			md_submit_discard_bio(mddev, rrdev, rbio,
1828 					dev_start + choose_data_offset(r10_bio, rrdev),
1829 					dev_end - dev_start);
1830 			bio_endio(rbio);
1831 		}
1832 	}
1833 
1834 	if (!geo->far_offset && --far_copies) {
1835 		first_stripe_index += geo->stride >> geo->chunk_shift;
1836 		start_disk_offset += geo->stride;
1837 		last_stripe_index += geo->stride >> geo->chunk_shift;
1838 		end_disk_offset += geo->stride;
1839 		atomic_inc(&first_r10bio->remaining);
1840 		raid_end_discard_bio(r10_bio);
1841 		wait_barrier(conf, false);
1842 		goto retry_discard;
1843 	}
1844 
1845 	raid_end_discard_bio(r10_bio);
1846 
1847 	return 0;
1848 out:
1849 	allow_barrier(conf);
1850 	return -EAGAIN;
1851 }
1852 
1853 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1854 {
1855 	struct r10conf *conf = mddev->private;
1856 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1857 	int chunk_sects = chunk_mask + 1;
1858 	int sectors = bio_sectors(bio);
1859 
1860 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1861 	    && md_flush_request(mddev, bio))
1862 		return true;
1863 
1864 	if (!md_write_start(mddev, bio))
1865 		return false;
1866 
1867 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1868 		if (!raid10_handle_discard(mddev, bio))
1869 			return true;
1870 
1871 	/*
1872 	 * If this request crosses a chunk boundary, we need to split
1873 	 * it.
1874 	 */
1875 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1876 		     sectors > chunk_sects
1877 		     && (conf->geo.near_copies < conf->geo.raid_disks
1878 			 || conf->prev.near_copies <
1879 			 conf->prev.raid_disks)))
1880 		sectors = chunk_sects -
1881 			(bio->bi_iter.bi_sector &
1882 			 (chunk_sects - 1));
1883 	__make_request(mddev, bio, sectors);
1884 
1885 	/* In case raid10d snuck in to freeze_array */
1886 	wake_up_barrier(conf);
1887 	return true;
1888 }
1889 
1890 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1891 {
1892 	struct r10conf *conf = mddev->private;
1893 	int i;
1894 
1895 	lockdep_assert_held(&mddev->lock);
1896 
1897 	if (conf->geo.near_copies < conf->geo.raid_disks)
1898 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1899 	if (conf->geo.near_copies > 1)
1900 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1901 	if (conf->geo.far_copies > 1) {
1902 		if (conf->geo.far_offset)
1903 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1904 		else
1905 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1906 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1907 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1908 	}
1909 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1910 					conf->geo.raid_disks - mddev->degraded);
1911 	for (i = 0; i < conf->geo.raid_disks; i++) {
1912 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1913 
1914 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1915 	}
1916 	seq_printf(seq, "]");
1917 }
1918 
1919 /* check if there are enough drives for
1920  * every block to appear on atleast one.
1921  * Don't consider the device numbered 'ignore'
1922  * as we might be about to remove it.
1923  */
1924 static int _enough(struct r10conf *conf, int previous, int ignore)
1925 {
1926 	int first = 0;
1927 	int has_enough = 0;
1928 	int disks, ncopies;
1929 	if (previous) {
1930 		disks = conf->prev.raid_disks;
1931 		ncopies = conf->prev.near_copies;
1932 	} else {
1933 		disks = conf->geo.raid_disks;
1934 		ncopies = conf->geo.near_copies;
1935 	}
1936 
1937 	do {
1938 		int n = conf->copies;
1939 		int cnt = 0;
1940 		int this = first;
1941 		while (n--) {
1942 			struct md_rdev *rdev;
1943 			if (this != ignore &&
1944 			    (rdev = conf->mirrors[this].rdev) &&
1945 			    test_bit(In_sync, &rdev->flags))
1946 				cnt++;
1947 			this = (this+1) % disks;
1948 		}
1949 		if (cnt == 0)
1950 			goto out;
1951 		first = (first + ncopies) % disks;
1952 	} while (first != 0);
1953 	has_enough = 1;
1954 out:
1955 	return has_enough;
1956 }
1957 
1958 static int enough(struct r10conf *conf, int ignore)
1959 {
1960 	/* when calling 'enough', both 'prev' and 'geo' must
1961 	 * be stable.
1962 	 * This is ensured if ->reconfig_mutex or ->device_lock
1963 	 * is held.
1964 	 */
1965 	return _enough(conf, 0, ignore) &&
1966 		_enough(conf, 1, ignore);
1967 }
1968 
1969 /**
1970  * raid10_error() - RAID10 error handler.
1971  * @mddev: affected md device.
1972  * @rdev: member device to fail.
1973  *
1974  * The routine acknowledges &rdev failure and determines new @mddev state.
1975  * If it failed, then:
1976  *	- &MD_BROKEN flag is set in &mddev->flags.
1977  * Otherwise, it must be degraded:
1978  *	- recovery is interrupted.
1979  *	- &mddev->degraded is bumped.
1980  *
1981  * @rdev is marked as &Faulty excluding case when array is failed and
1982  * &mddev->fail_last_dev is off.
1983  */
1984 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1985 {
1986 	struct r10conf *conf = mddev->private;
1987 	unsigned long flags;
1988 
1989 	spin_lock_irqsave(&conf->device_lock, flags);
1990 
1991 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1992 		set_bit(MD_BROKEN, &mddev->flags);
1993 
1994 		if (!mddev->fail_last_dev) {
1995 			spin_unlock_irqrestore(&conf->device_lock, flags);
1996 			return;
1997 		}
1998 	}
1999 	if (test_and_clear_bit(In_sync, &rdev->flags))
2000 		mddev->degraded++;
2001 
2002 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2003 	set_bit(Blocked, &rdev->flags);
2004 	set_bit(Faulty, &rdev->flags);
2005 	set_mask_bits(&mddev->sb_flags, 0,
2006 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2007 	spin_unlock_irqrestore(&conf->device_lock, flags);
2008 	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2009 		"md/raid10:%s: Operation continuing on %d devices.\n",
2010 		mdname(mddev), rdev->bdev,
2011 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2012 }
2013 
2014 static void print_conf(struct r10conf *conf)
2015 {
2016 	int i;
2017 	struct md_rdev *rdev;
2018 
2019 	pr_debug("RAID10 conf printout:\n");
2020 	if (!conf) {
2021 		pr_debug("(!conf)\n");
2022 		return;
2023 	}
2024 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2025 		 conf->geo.raid_disks);
2026 
2027 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
2028 	for (i = 0; i < conf->geo.raid_disks; i++) {
2029 		rdev = conf->mirrors[i].rdev;
2030 		if (rdev)
2031 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2032 				 i, !test_bit(In_sync, &rdev->flags),
2033 				 !test_bit(Faulty, &rdev->flags),
2034 				 rdev->bdev);
2035 	}
2036 }
2037 
2038 static void close_sync(struct r10conf *conf)
2039 {
2040 	wait_barrier(conf, false);
2041 	allow_barrier(conf);
2042 
2043 	mempool_exit(&conf->r10buf_pool);
2044 }
2045 
2046 static int raid10_spare_active(struct mddev *mddev)
2047 {
2048 	int i;
2049 	struct r10conf *conf = mddev->private;
2050 	struct raid10_info *tmp;
2051 	int count = 0;
2052 	unsigned long flags;
2053 
2054 	/*
2055 	 * Find all non-in_sync disks within the RAID10 configuration
2056 	 * and mark them in_sync
2057 	 */
2058 	for (i = 0; i < conf->geo.raid_disks; i++) {
2059 		tmp = conf->mirrors + i;
2060 		if (tmp->replacement
2061 		    && tmp->replacement->recovery_offset == MaxSector
2062 		    && !test_bit(Faulty, &tmp->replacement->flags)
2063 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2064 			/* Replacement has just become active */
2065 			if (!tmp->rdev
2066 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2067 				count++;
2068 			if (tmp->rdev) {
2069 				/* Replaced device not technically faulty,
2070 				 * but we need to be sure it gets removed
2071 				 * and never re-added.
2072 				 */
2073 				set_bit(Faulty, &tmp->rdev->flags);
2074 				sysfs_notify_dirent_safe(
2075 					tmp->rdev->sysfs_state);
2076 			}
2077 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2078 		} else if (tmp->rdev
2079 			   && tmp->rdev->recovery_offset == MaxSector
2080 			   && !test_bit(Faulty, &tmp->rdev->flags)
2081 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2082 			count++;
2083 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2084 		}
2085 	}
2086 	spin_lock_irqsave(&conf->device_lock, flags);
2087 	mddev->degraded -= count;
2088 	spin_unlock_irqrestore(&conf->device_lock, flags);
2089 
2090 	print_conf(conf);
2091 	return count;
2092 }
2093 
2094 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2095 {
2096 	struct r10conf *conf = mddev->private;
2097 	int err = -EEXIST;
2098 	int mirror, repl_slot = -1;
2099 	int first = 0;
2100 	int last = conf->geo.raid_disks - 1;
2101 	struct raid10_info *p;
2102 
2103 	if (mddev->recovery_cp < MaxSector)
2104 		/* only hot-add to in-sync arrays, as recovery is
2105 		 * very different from resync
2106 		 */
2107 		return -EBUSY;
2108 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2109 		return -EINVAL;
2110 
2111 	if (md_integrity_add_rdev(rdev, mddev))
2112 		return -ENXIO;
2113 
2114 	if (rdev->raid_disk >= 0)
2115 		first = last = rdev->raid_disk;
2116 
2117 	if (rdev->saved_raid_disk >= first &&
2118 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2119 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2120 		mirror = rdev->saved_raid_disk;
2121 	else
2122 		mirror = first;
2123 	for ( ; mirror <= last ; mirror++) {
2124 		p = &conf->mirrors[mirror];
2125 		if (p->recovery_disabled == mddev->recovery_disabled)
2126 			continue;
2127 		if (p->rdev) {
2128 			if (test_bit(WantReplacement, &p->rdev->flags) &&
2129 			    p->replacement == NULL && repl_slot < 0)
2130 				repl_slot = mirror;
2131 			continue;
2132 		}
2133 
2134 		if (mddev->gendisk)
2135 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2136 					  rdev->data_offset << 9);
2137 
2138 		p->head_position = 0;
2139 		p->recovery_disabled = mddev->recovery_disabled - 1;
2140 		rdev->raid_disk = mirror;
2141 		err = 0;
2142 		if (rdev->saved_raid_disk != mirror)
2143 			conf->fullsync = 1;
2144 		WRITE_ONCE(p->rdev, rdev);
2145 		break;
2146 	}
2147 
2148 	if (err && repl_slot >= 0) {
2149 		p = &conf->mirrors[repl_slot];
2150 		clear_bit(In_sync, &rdev->flags);
2151 		set_bit(Replacement, &rdev->flags);
2152 		rdev->raid_disk = repl_slot;
2153 		err = 0;
2154 		if (mddev->gendisk)
2155 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2156 					  rdev->data_offset << 9);
2157 		conf->fullsync = 1;
2158 		WRITE_ONCE(p->replacement, rdev);
2159 	}
2160 
2161 	print_conf(conf);
2162 	return err;
2163 }
2164 
2165 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2166 {
2167 	struct r10conf *conf = mddev->private;
2168 	int err = 0;
2169 	int number = rdev->raid_disk;
2170 	struct md_rdev **rdevp;
2171 	struct raid10_info *p;
2172 
2173 	print_conf(conf);
2174 	if (unlikely(number >= mddev->raid_disks))
2175 		return 0;
2176 	p = conf->mirrors + number;
2177 	if (rdev == p->rdev)
2178 		rdevp = &p->rdev;
2179 	else if (rdev == p->replacement)
2180 		rdevp = &p->replacement;
2181 	else
2182 		return 0;
2183 
2184 	if (test_bit(In_sync, &rdev->flags) ||
2185 	    atomic_read(&rdev->nr_pending)) {
2186 		err = -EBUSY;
2187 		goto abort;
2188 	}
2189 	/* Only remove non-faulty devices if recovery
2190 	 * is not possible.
2191 	 */
2192 	if (!test_bit(Faulty, &rdev->flags) &&
2193 	    mddev->recovery_disabled != p->recovery_disabled &&
2194 	    (!p->replacement || p->replacement == rdev) &&
2195 	    number < conf->geo.raid_disks &&
2196 	    enough(conf, -1)) {
2197 		err = -EBUSY;
2198 		goto abort;
2199 	}
2200 	WRITE_ONCE(*rdevp, NULL);
2201 	if (p->replacement) {
2202 		/* We must have just cleared 'rdev' */
2203 		WRITE_ONCE(p->rdev, p->replacement);
2204 		clear_bit(Replacement, &p->replacement->flags);
2205 		WRITE_ONCE(p->replacement, NULL);
2206 	}
2207 
2208 	clear_bit(WantReplacement, &rdev->flags);
2209 	err = md_integrity_register(mddev);
2210 
2211 abort:
2212 
2213 	print_conf(conf);
2214 	return err;
2215 }
2216 
2217 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2218 {
2219 	struct r10conf *conf = r10_bio->mddev->private;
2220 
2221 	if (!bio->bi_status)
2222 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2223 	else
2224 		/* The write handler will notice the lack of
2225 		 * R10BIO_Uptodate and record any errors etc
2226 		 */
2227 		atomic_add(r10_bio->sectors,
2228 			   &conf->mirrors[d].rdev->corrected_errors);
2229 
2230 	/* for reconstruct, we always reschedule after a read.
2231 	 * for resync, only after all reads
2232 	 */
2233 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2234 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2235 	    atomic_dec_and_test(&r10_bio->remaining)) {
2236 		/* we have read all the blocks,
2237 		 * do the comparison in process context in raid10d
2238 		 */
2239 		reschedule_retry(r10_bio);
2240 	}
2241 }
2242 
2243 static void end_sync_read(struct bio *bio)
2244 {
2245 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2246 	struct r10conf *conf = r10_bio->mddev->private;
2247 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2248 
2249 	__end_sync_read(r10_bio, bio, d);
2250 }
2251 
2252 static void end_reshape_read(struct bio *bio)
2253 {
2254 	/* reshape read bio isn't allocated from r10buf_pool */
2255 	struct r10bio *r10_bio = bio->bi_private;
2256 
2257 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2258 }
2259 
2260 static void end_sync_request(struct r10bio *r10_bio)
2261 {
2262 	struct mddev *mddev = r10_bio->mddev;
2263 
2264 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2265 		if (r10_bio->master_bio == NULL) {
2266 			/* the primary of several recovery bios */
2267 			sector_t s = r10_bio->sectors;
2268 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2269 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2270 				reschedule_retry(r10_bio);
2271 			else
2272 				put_buf(r10_bio);
2273 			md_done_sync(mddev, s, 1);
2274 			break;
2275 		} else {
2276 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2277 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2278 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2279 				reschedule_retry(r10_bio);
2280 			else
2281 				put_buf(r10_bio);
2282 			r10_bio = r10_bio2;
2283 		}
2284 	}
2285 }
2286 
2287 static void end_sync_write(struct bio *bio)
2288 {
2289 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2290 	struct mddev *mddev = r10_bio->mddev;
2291 	struct r10conf *conf = mddev->private;
2292 	int d;
2293 	sector_t first_bad;
2294 	int bad_sectors;
2295 	int slot;
2296 	int repl;
2297 	struct md_rdev *rdev = NULL;
2298 
2299 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2300 	if (repl)
2301 		rdev = conf->mirrors[d].replacement;
2302 	else
2303 		rdev = conf->mirrors[d].rdev;
2304 
2305 	if (bio->bi_status) {
2306 		if (repl)
2307 			md_error(mddev, rdev);
2308 		else {
2309 			set_bit(WriteErrorSeen, &rdev->flags);
2310 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2311 				set_bit(MD_RECOVERY_NEEDED,
2312 					&rdev->mddev->recovery);
2313 			set_bit(R10BIO_WriteError, &r10_bio->state);
2314 		}
2315 	} else if (is_badblock(rdev,
2316 			     r10_bio->devs[slot].addr,
2317 			     r10_bio->sectors,
2318 			     &first_bad, &bad_sectors))
2319 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2320 
2321 	rdev_dec_pending(rdev, mddev);
2322 
2323 	end_sync_request(r10_bio);
2324 }
2325 
2326 /*
2327  * Note: sync and recover and handled very differently for raid10
2328  * This code is for resync.
2329  * For resync, we read through virtual addresses and read all blocks.
2330  * If there is any error, we schedule a write.  The lowest numbered
2331  * drive is authoritative.
2332  * However requests come for physical address, so we need to map.
2333  * For every physical address there are raid_disks/copies virtual addresses,
2334  * which is always are least one, but is not necessarly an integer.
2335  * This means that a physical address can span multiple chunks, so we may
2336  * have to submit multiple io requests for a single sync request.
2337  */
2338 /*
2339  * We check if all blocks are in-sync and only write to blocks that
2340  * aren't in sync
2341  */
2342 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2343 {
2344 	struct r10conf *conf = mddev->private;
2345 	int i, first;
2346 	struct bio *tbio, *fbio;
2347 	int vcnt;
2348 	struct page **tpages, **fpages;
2349 
2350 	atomic_set(&r10_bio->remaining, 1);
2351 
2352 	/* find the first device with a block */
2353 	for (i=0; i<conf->copies; i++)
2354 		if (!r10_bio->devs[i].bio->bi_status)
2355 			break;
2356 
2357 	if (i == conf->copies)
2358 		goto done;
2359 
2360 	first = i;
2361 	fbio = r10_bio->devs[i].bio;
2362 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2363 	fbio->bi_iter.bi_idx = 0;
2364 	fpages = get_resync_pages(fbio)->pages;
2365 
2366 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2367 	/* now find blocks with errors */
2368 	for (i=0 ; i < conf->copies ; i++) {
2369 		int  j, d;
2370 		struct md_rdev *rdev;
2371 		struct resync_pages *rp;
2372 
2373 		tbio = r10_bio->devs[i].bio;
2374 
2375 		if (tbio->bi_end_io != end_sync_read)
2376 			continue;
2377 		if (i == first)
2378 			continue;
2379 
2380 		tpages = get_resync_pages(tbio)->pages;
2381 		d = r10_bio->devs[i].devnum;
2382 		rdev = conf->mirrors[d].rdev;
2383 		if (!r10_bio->devs[i].bio->bi_status) {
2384 			/* We know that the bi_io_vec layout is the same for
2385 			 * both 'first' and 'i', so we just compare them.
2386 			 * All vec entries are PAGE_SIZE;
2387 			 */
2388 			int sectors = r10_bio->sectors;
2389 			for (j = 0; j < vcnt; j++) {
2390 				int len = PAGE_SIZE;
2391 				if (sectors < (len / 512))
2392 					len = sectors * 512;
2393 				if (memcmp(page_address(fpages[j]),
2394 					   page_address(tpages[j]),
2395 					   len))
2396 					break;
2397 				sectors -= len/512;
2398 			}
2399 			if (j == vcnt)
2400 				continue;
2401 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2402 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2403 				/* Don't fix anything. */
2404 				continue;
2405 		} else if (test_bit(FailFast, &rdev->flags)) {
2406 			/* Just give up on this device */
2407 			md_error(rdev->mddev, rdev);
2408 			continue;
2409 		}
2410 		/* Ok, we need to write this bio, either to correct an
2411 		 * inconsistency or to correct an unreadable block.
2412 		 * First we need to fixup bv_offset, bv_len and
2413 		 * bi_vecs, as the read request might have corrupted these
2414 		 */
2415 		rp = get_resync_pages(tbio);
2416 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2417 
2418 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2419 
2420 		rp->raid_bio = r10_bio;
2421 		tbio->bi_private = rp;
2422 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2423 		tbio->bi_end_io = end_sync_write;
2424 
2425 		bio_copy_data(tbio, fbio);
2426 
2427 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2428 		atomic_inc(&r10_bio->remaining);
2429 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2430 
2431 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2432 			tbio->bi_opf |= MD_FAILFAST;
2433 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2434 		submit_bio_noacct(tbio);
2435 	}
2436 
2437 	/* Now write out to any replacement devices
2438 	 * that are active
2439 	 */
2440 	for (i = 0; i < conf->copies; i++) {
2441 		int d;
2442 
2443 		tbio = r10_bio->devs[i].repl_bio;
2444 		if (!tbio || !tbio->bi_end_io)
2445 			continue;
2446 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2447 		    && r10_bio->devs[i].bio != fbio)
2448 			bio_copy_data(tbio, fbio);
2449 		d = r10_bio->devs[i].devnum;
2450 		atomic_inc(&r10_bio->remaining);
2451 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2452 			     bio_sectors(tbio));
2453 		submit_bio_noacct(tbio);
2454 	}
2455 
2456 done:
2457 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2458 		md_done_sync(mddev, r10_bio->sectors, 1);
2459 		put_buf(r10_bio);
2460 	}
2461 }
2462 
2463 /*
2464  * Now for the recovery code.
2465  * Recovery happens across physical sectors.
2466  * We recover all non-is_sync drives by finding the virtual address of
2467  * each, and then choose a working drive that also has that virt address.
2468  * There is a separate r10_bio for each non-in_sync drive.
2469  * Only the first two slots are in use. The first for reading,
2470  * The second for writing.
2471  *
2472  */
2473 static void fix_recovery_read_error(struct r10bio *r10_bio)
2474 {
2475 	/* We got a read error during recovery.
2476 	 * We repeat the read in smaller page-sized sections.
2477 	 * If a read succeeds, write it to the new device or record
2478 	 * a bad block if we cannot.
2479 	 * If a read fails, record a bad block on both old and
2480 	 * new devices.
2481 	 */
2482 	struct mddev *mddev = r10_bio->mddev;
2483 	struct r10conf *conf = mddev->private;
2484 	struct bio *bio = r10_bio->devs[0].bio;
2485 	sector_t sect = 0;
2486 	int sectors = r10_bio->sectors;
2487 	int idx = 0;
2488 	int dr = r10_bio->devs[0].devnum;
2489 	int dw = r10_bio->devs[1].devnum;
2490 	struct page **pages = get_resync_pages(bio)->pages;
2491 
2492 	while (sectors) {
2493 		int s = sectors;
2494 		struct md_rdev *rdev;
2495 		sector_t addr;
2496 		int ok;
2497 
2498 		if (s > (PAGE_SIZE>>9))
2499 			s = PAGE_SIZE >> 9;
2500 
2501 		rdev = conf->mirrors[dr].rdev;
2502 		addr = r10_bio->devs[0].addr + sect,
2503 		ok = sync_page_io(rdev,
2504 				  addr,
2505 				  s << 9,
2506 				  pages[idx],
2507 				  REQ_OP_READ, false);
2508 		if (ok) {
2509 			rdev = conf->mirrors[dw].rdev;
2510 			addr = r10_bio->devs[1].addr + sect;
2511 			ok = sync_page_io(rdev,
2512 					  addr,
2513 					  s << 9,
2514 					  pages[idx],
2515 					  REQ_OP_WRITE, false);
2516 			if (!ok) {
2517 				set_bit(WriteErrorSeen, &rdev->flags);
2518 				if (!test_and_set_bit(WantReplacement,
2519 						      &rdev->flags))
2520 					set_bit(MD_RECOVERY_NEEDED,
2521 						&rdev->mddev->recovery);
2522 			}
2523 		}
2524 		if (!ok) {
2525 			/* We don't worry if we cannot set a bad block -
2526 			 * it really is bad so there is no loss in not
2527 			 * recording it yet
2528 			 */
2529 			rdev_set_badblocks(rdev, addr, s, 0);
2530 
2531 			if (rdev != conf->mirrors[dw].rdev) {
2532 				/* need bad block on destination too */
2533 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2534 				addr = r10_bio->devs[1].addr + sect;
2535 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2536 				if (!ok) {
2537 					/* just abort the recovery */
2538 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2539 						  mdname(mddev));
2540 
2541 					conf->mirrors[dw].recovery_disabled
2542 						= mddev->recovery_disabled;
2543 					set_bit(MD_RECOVERY_INTR,
2544 						&mddev->recovery);
2545 					break;
2546 				}
2547 			}
2548 		}
2549 
2550 		sectors -= s;
2551 		sect += s;
2552 		idx++;
2553 	}
2554 }
2555 
2556 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2557 {
2558 	struct r10conf *conf = mddev->private;
2559 	int d;
2560 	struct bio *wbio = r10_bio->devs[1].bio;
2561 	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2562 
2563 	/* Need to test wbio2->bi_end_io before we call
2564 	 * submit_bio_noacct as if the former is NULL,
2565 	 * the latter is free to free wbio2.
2566 	 */
2567 	if (wbio2 && !wbio2->bi_end_io)
2568 		wbio2 = NULL;
2569 
2570 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2571 		fix_recovery_read_error(r10_bio);
2572 		if (wbio->bi_end_io)
2573 			end_sync_request(r10_bio);
2574 		if (wbio2)
2575 			end_sync_request(r10_bio);
2576 		return;
2577 	}
2578 
2579 	/*
2580 	 * share the pages with the first bio
2581 	 * and submit the write request
2582 	 */
2583 	d = r10_bio->devs[1].devnum;
2584 	if (wbio->bi_end_io) {
2585 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2586 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2587 		submit_bio_noacct(wbio);
2588 	}
2589 	if (wbio2) {
2590 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2591 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2592 			     bio_sectors(wbio2));
2593 		submit_bio_noacct(wbio2);
2594 	}
2595 }
2596 
2597 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2598 			    int sectors, struct page *page, enum req_op op)
2599 {
2600 	sector_t first_bad;
2601 	int bad_sectors;
2602 
2603 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2604 	    && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2605 		return -1;
2606 	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2607 		/* success */
2608 		return 1;
2609 	if (op == REQ_OP_WRITE) {
2610 		set_bit(WriteErrorSeen, &rdev->flags);
2611 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2612 			set_bit(MD_RECOVERY_NEEDED,
2613 				&rdev->mddev->recovery);
2614 	}
2615 	/* need to record an error - either for the block or the device */
2616 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2617 		md_error(rdev->mddev, rdev);
2618 	return 0;
2619 }
2620 
2621 /*
2622  * This is a kernel thread which:
2623  *
2624  *	1.	Retries failed read operations on working mirrors.
2625  *	2.	Updates the raid superblock when problems encounter.
2626  *	3.	Performs writes following reads for array synchronising.
2627  */
2628 
2629 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2630 {
2631 	int sect = 0; /* Offset from r10_bio->sector */
2632 	int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2633 	struct md_rdev *rdev;
2634 	int d = r10_bio->devs[slot].devnum;
2635 
2636 	/* still own a reference to this rdev, so it cannot
2637 	 * have been cleared recently.
2638 	 */
2639 	rdev = conf->mirrors[d].rdev;
2640 
2641 	if (test_bit(Faulty, &rdev->flags))
2642 		/* drive has already been failed, just ignore any
2643 		   more fix_read_error() attempts */
2644 		return;
2645 
2646 	if (exceed_read_errors(mddev, rdev)) {
2647 		r10_bio->devs[slot].bio = IO_BLOCKED;
2648 		return;
2649 	}
2650 
2651 	while(sectors) {
2652 		int s = sectors;
2653 		int sl = slot;
2654 		int success = 0;
2655 		int start;
2656 
2657 		if (s > (PAGE_SIZE>>9))
2658 			s = PAGE_SIZE >> 9;
2659 
2660 		do {
2661 			sector_t first_bad;
2662 			int bad_sectors;
2663 
2664 			d = r10_bio->devs[sl].devnum;
2665 			rdev = conf->mirrors[d].rdev;
2666 			if (rdev &&
2667 			    test_bit(In_sync, &rdev->flags) &&
2668 			    !test_bit(Faulty, &rdev->flags) &&
2669 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2670 					&first_bad, &bad_sectors) == 0) {
2671 				atomic_inc(&rdev->nr_pending);
2672 				success = sync_page_io(rdev,
2673 						       r10_bio->devs[sl].addr +
2674 						       sect,
2675 						       s<<9,
2676 						       conf->tmppage,
2677 						       REQ_OP_READ, false);
2678 				rdev_dec_pending(rdev, mddev);
2679 				if (success)
2680 					break;
2681 			}
2682 			sl++;
2683 			if (sl == conf->copies)
2684 				sl = 0;
2685 		} while (sl != slot);
2686 
2687 		if (!success) {
2688 			/* Cannot read from anywhere, just mark the block
2689 			 * as bad on the first device to discourage future
2690 			 * reads.
2691 			 */
2692 			int dn = r10_bio->devs[slot].devnum;
2693 			rdev = conf->mirrors[dn].rdev;
2694 
2695 			if (!rdev_set_badblocks(
2696 				    rdev,
2697 				    r10_bio->devs[slot].addr
2698 				    + sect,
2699 				    s, 0)) {
2700 				md_error(mddev, rdev);
2701 				r10_bio->devs[slot].bio
2702 					= IO_BLOCKED;
2703 			}
2704 			break;
2705 		}
2706 
2707 		start = sl;
2708 		/* write it back and re-read */
2709 		while (sl != slot) {
2710 			if (sl==0)
2711 				sl = conf->copies;
2712 			sl--;
2713 			d = r10_bio->devs[sl].devnum;
2714 			rdev = conf->mirrors[d].rdev;
2715 			if (!rdev ||
2716 			    test_bit(Faulty, &rdev->flags) ||
2717 			    !test_bit(In_sync, &rdev->flags))
2718 				continue;
2719 
2720 			atomic_inc(&rdev->nr_pending);
2721 			if (r10_sync_page_io(rdev,
2722 					     r10_bio->devs[sl].addr +
2723 					     sect,
2724 					     s, conf->tmppage, REQ_OP_WRITE)
2725 			    == 0) {
2726 				/* Well, this device is dead */
2727 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2728 					  mdname(mddev), s,
2729 					  (unsigned long long)(
2730 						  sect +
2731 						  choose_data_offset(r10_bio,
2732 								     rdev)),
2733 					  rdev->bdev);
2734 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2735 					  mdname(mddev),
2736 					  rdev->bdev);
2737 			}
2738 			rdev_dec_pending(rdev, mddev);
2739 		}
2740 		sl = start;
2741 		while (sl != slot) {
2742 			if (sl==0)
2743 				sl = conf->copies;
2744 			sl--;
2745 			d = r10_bio->devs[sl].devnum;
2746 			rdev = conf->mirrors[d].rdev;
2747 			if (!rdev ||
2748 			    test_bit(Faulty, &rdev->flags) ||
2749 			    !test_bit(In_sync, &rdev->flags))
2750 				continue;
2751 
2752 			atomic_inc(&rdev->nr_pending);
2753 			switch (r10_sync_page_io(rdev,
2754 					     r10_bio->devs[sl].addr +
2755 					     sect,
2756 					     s, conf->tmppage, REQ_OP_READ)) {
2757 			case 0:
2758 				/* Well, this device is dead */
2759 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2760 				       mdname(mddev), s,
2761 				       (unsigned long long)(
2762 					       sect +
2763 					       choose_data_offset(r10_bio, rdev)),
2764 				       rdev->bdev);
2765 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2766 				       mdname(mddev),
2767 				       rdev->bdev);
2768 				break;
2769 			case 1:
2770 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2771 				       mdname(mddev), s,
2772 				       (unsigned long long)(
2773 					       sect +
2774 					       choose_data_offset(r10_bio, rdev)),
2775 				       rdev->bdev);
2776 				atomic_add(s, &rdev->corrected_errors);
2777 			}
2778 
2779 			rdev_dec_pending(rdev, mddev);
2780 		}
2781 
2782 		sectors -= s;
2783 		sect += s;
2784 	}
2785 }
2786 
2787 static int narrow_write_error(struct r10bio *r10_bio, int i)
2788 {
2789 	struct bio *bio = r10_bio->master_bio;
2790 	struct mddev *mddev = r10_bio->mddev;
2791 	struct r10conf *conf = mddev->private;
2792 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2793 	/* bio has the data to be written to slot 'i' where
2794 	 * we just recently had a write error.
2795 	 * We repeatedly clone the bio and trim down to one block,
2796 	 * then try the write.  Where the write fails we record
2797 	 * a bad block.
2798 	 * It is conceivable that the bio doesn't exactly align with
2799 	 * blocks.  We must handle this.
2800 	 *
2801 	 * We currently own a reference to the rdev.
2802 	 */
2803 
2804 	int block_sectors;
2805 	sector_t sector;
2806 	int sectors;
2807 	int sect_to_write = r10_bio->sectors;
2808 	int ok = 1;
2809 
2810 	if (rdev->badblocks.shift < 0)
2811 		return 0;
2812 
2813 	block_sectors = roundup(1 << rdev->badblocks.shift,
2814 				bdev_logical_block_size(rdev->bdev) >> 9);
2815 	sector = r10_bio->sector;
2816 	sectors = ((r10_bio->sector + block_sectors)
2817 		   & ~(sector_t)(block_sectors - 1))
2818 		- sector;
2819 
2820 	while (sect_to_write) {
2821 		struct bio *wbio;
2822 		sector_t wsector;
2823 		if (sectors > sect_to_write)
2824 			sectors = sect_to_write;
2825 		/* Write at 'sector' for 'sectors' */
2826 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2827 				       &mddev->bio_set);
2828 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2829 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2830 		wbio->bi_iter.bi_sector = wsector +
2831 				   choose_data_offset(r10_bio, rdev);
2832 		wbio->bi_opf = REQ_OP_WRITE;
2833 
2834 		if (submit_bio_wait(wbio) < 0)
2835 			/* Failure! */
2836 			ok = rdev_set_badblocks(rdev, wsector,
2837 						sectors, 0)
2838 				&& ok;
2839 
2840 		bio_put(wbio);
2841 		sect_to_write -= sectors;
2842 		sector += sectors;
2843 		sectors = block_sectors;
2844 	}
2845 	return ok;
2846 }
2847 
2848 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2849 {
2850 	int slot = r10_bio->read_slot;
2851 	struct bio *bio;
2852 	struct r10conf *conf = mddev->private;
2853 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2854 
2855 	/* we got a read error. Maybe the drive is bad.  Maybe just
2856 	 * the block and we can fix it.
2857 	 * We freeze all other IO, and try reading the block from
2858 	 * other devices.  When we find one, we re-write
2859 	 * and check it that fixes the read error.
2860 	 * This is all done synchronously while the array is
2861 	 * frozen.
2862 	 */
2863 	bio = r10_bio->devs[slot].bio;
2864 	bio_put(bio);
2865 	r10_bio->devs[slot].bio = NULL;
2866 
2867 	if (mddev->ro)
2868 		r10_bio->devs[slot].bio = IO_BLOCKED;
2869 	else if (!test_bit(FailFast, &rdev->flags)) {
2870 		freeze_array(conf, 1);
2871 		fix_read_error(conf, mddev, r10_bio);
2872 		unfreeze_array(conf);
2873 	} else
2874 		md_error(mddev, rdev);
2875 
2876 	rdev_dec_pending(rdev, mddev);
2877 	r10_bio->state = 0;
2878 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2879 	/*
2880 	 * allow_barrier after re-submit to ensure no sync io
2881 	 * can be issued while regular io pending.
2882 	 */
2883 	allow_barrier(conf);
2884 }
2885 
2886 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2887 {
2888 	/* Some sort of write request has finished and it
2889 	 * succeeded in writing where we thought there was a
2890 	 * bad block.  So forget the bad block.
2891 	 * Or possibly if failed and we need to record
2892 	 * a bad block.
2893 	 */
2894 	int m;
2895 	struct md_rdev *rdev;
2896 
2897 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2898 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2899 		for (m = 0; m < conf->copies; m++) {
2900 			int dev = r10_bio->devs[m].devnum;
2901 			rdev = conf->mirrors[dev].rdev;
2902 			if (r10_bio->devs[m].bio == NULL ||
2903 				r10_bio->devs[m].bio->bi_end_io == NULL)
2904 				continue;
2905 			if (!r10_bio->devs[m].bio->bi_status) {
2906 				rdev_clear_badblocks(
2907 					rdev,
2908 					r10_bio->devs[m].addr,
2909 					r10_bio->sectors, 0);
2910 			} else {
2911 				if (!rdev_set_badblocks(
2912 					    rdev,
2913 					    r10_bio->devs[m].addr,
2914 					    r10_bio->sectors, 0))
2915 					md_error(conf->mddev, rdev);
2916 			}
2917 			rdev = conf->mirrors[dev].replacement;
2918 			if (r10_bio->devs[m].repl_bio == NULL ||
2919 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2920 				continue;
2921 
2922 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2923 				rdev_clear_badblocks(
2924 					rdev,
2925 					r10_bio->devs[m].addr,
2926 					r10_bio->sectors, 0);
2927 			} else {
2928 				if (!rdev_set_badblocks(
2929 					    rdev,
2930 					    r10_bio->devs[m].addr,
2931 					    r10_bio->sectors, 0))
2932 					md_error(conf->mddev, rdev);
2933 			}
2934 		}
2935 		put_buf(r10_bio);
2936 	} else {
2937 		bool fail = false;
2938 		for (m = 0; m < conf->copies; m++) {
2939 			int dev = r10_bio->devs[m].devnum;
2940 			struct bio *bio = r10_bio->devs[m].bio;
2941 			rdev = conf->mirrors[dev].rdev;
2942 			if (bio == IO_MADE_GOOD) {
2943 				rdev_clear_badblocks(
2944 					rdev,
2945 					r10_bio->devs[m].addr,
2946 					r10_bio->sectors, 0);
2947 				rdev_dec_pending(rdev, conf->mddev);
2948 			} else if (bio != NULL && bio->bi_status) {
2949 				fail = true;
2950 				if (!narrow_write_error(r10_bio, m)) {
2951 					md_error(conf->mddev, rdev);
2952 					set_bit(R10BIO_Degraded,
2953 						&r10_bio->state);
2954 				}
2955 				rdev_dec_pending(rdev, conf->mddev);
2956 			}
2957 			bio = r10_bio->devs[m].repl_bio;
2958 			rdev = conf->mirrors[dev].replacement;
2959 			if (rdev && bio == IO_MADE_GOOD) {
2960 				rdev_clear_badblocks(
2961 					rdev,
2962 					r10_bio->devs[m].addr,
2963 					r10_bio->sectors, 0);
2964 				rdev_dec_pending(rdev, conf->mddev);
2965 			}
2966 		}
2967 		if (fail) {
2968 			spin_lock_irq(&conf->device_lock);
2969 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2970 			conf->nr_queued++;
2971 			spin_unlock_irq(&conf->device_lock);
2972 			/*
2973 			 * In case freeze_array() is waiting for condition
2974 			 * nr_pending == nr_queued + extra to be true.
2975 			 */
2976 			wake_up(&conf->wait_barrier);
2977 			md_wakeup_thread(conf->mddev->thread);
2978 		} else {
2979 			if (test_bit(R10BIO_WriteError,
2980 				     &r10_bio->state))
2981 				close_write(r10_bio);
2982 			raid_end_bio_io(r10_bio);
2983 		}
2984 	}
2985 }
2986 
2987 static void raid10d(struct md_thread *thread)
2988 {
2989 	struct mddev *mddev = thread->mddev;
2990 	struct r10bio *r10_bio;
2991 	unsigned long flags;
2992 	struct r10conf *conf = mddev->private;
2993 	struct list_head *head = &conf->retry_list;
2994 	struct blk_plug plug;
2995 
2996 	md_check_recovery(mddev);
2997 
2998 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2999 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3000 		LIST_HEAD(tmp);
3001 		spin_lock_irqsave(&conf->device_lock, flags);
3002 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3003 			while (!list_empty(&conf->bio_end_io_list)) {
3004 				list_move(conf->bio_end_io_list.prev, &tmp);
3005 				conf->nr_queued--;
3006 			}
3007 		}
3008 		spin_unlock_irqrestore(&conf->device_lock, flags);
3009 		while (!list_empty(&tmp)) {
3010 			r10_bio = list_first_entry(&tmp, struct r10bio,
3011 						   retry_list);
3012 			list_del(&r10_bio->retry_list);
3013 			if (mddev->degraded)
3014 				set_bit(R10BIO_Degraded, &r10_bio->state);
3015 
3016 			if (test_bit(R10BIO_WriteError,
3017 				     &r10_bio->state))
3018 				close_write(r10_bio);
3019 			raid_end_bio_io(r10_bio);
3020 		}
3021 	}
3022 
3023 	blk_start_plug(&plug);
3024 	for (;;) {
3025 
3026 		flush_pending_writes(conf);
3027 
3028 		spin_lock_irqsave(&conf->device_lock, flags);
3029 		if (list_empty(head)) {
3030 			spin_unlock_irqrestore(&conf->device_lock, flags);
3031 			break;
3032 		}
3033 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3034 		list_del(head->prev);
3035 		conf->nr_queued--;
3036 		spin_unlock_irqrestore(&conf->device_lock, flags);
3037 
3038 		mddev = r10_bio->mddev;
3039 		conf = mddev->private;
3040 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3041 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3042 			handle_write_completed(conf, r10_bio);
3043 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3044 			reshape_request_write(mddev, r10_bio);
3045 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3046 			sync_request_write(mddev, r10_bio);
3047 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3048 			recovery_request_write(mddev, r10_bio);
3049 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3050 			handle_read_error(mddev, r10_bio);
3051 		else
3052 			WARN_ON_ONCE(1);
3053 
3054 		cond_resched();
3055 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3056 			md_check_recovery(mddev);
3057 	}
3058 	blk_finish_plug(&plug);
3059 }
3060 
3061 static int init_resync(struct r10conf *conf)
3062 {
3063 	int ret, buffs, i;
3064 
3065 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3066 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3067 	conf->have_replacement = 0;
3068 	for (i = 0; i < conf->geo.raid_disks; i++)
3069 		if (conf->mirrors[i].replacement)
3070 			conf->have_replacement = 1;
3071 	ret = mempool_init(&conf->r10buf_pool, buffs,
3072 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3073 	if (ret)
3074 		return ret;
3075 	conf->next_resync = 0;
3076 	return 0;
3077 }
3078 
3079 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3080 {
3081 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3082 	struct rsync_pages *rp;
3083 	struct bio *bio;
3084 	int nalloc;
3085 	int i;
3086 
3087 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3088 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3089 		nalloc = conf->copies; /* resync */
3090 	else
3091 		nalloc = 2; /* recovery */
3092 
3093 	for (i = 0; i < nalloc; i++) {
3094 		bio = r10bio->devs[i].bio;
3095 		rp = bio->bi_private;
3096 		bio_reset(bio, NULL, 0);
3097 		bio->bi_private = rp;
3098 		bio = r10bio->devs[i].repl_bio;
3099 		if (bio) {
3100 			rp = bio->bi_private;
3101 			bio_reset(bio, NULL, 0);
3102 			bio->bi_private = rp;
3103 		}
3104 	}
3105 	return r10bio;
3106 }
3107 
3108 /*
3109  * Set cluster_sync_high since we need other nodes to add the
3110  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3111  */
3112 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3113 {
3114 	sector_t window_size;
3115 	int extra_chunk, chunks;
3116 
3117 	/*
3118 	 * First, here we define "stripe" as a unit which across
3119 	 * all member devices one time, so we get chunks by use
3120 	 * raid_disks / near_copies. Otherwise, if near_copies is
3121 	 * close to raid_disks, then resync window could increases
3122 	 * linearly with the increase of raid_disks, which means
3123 	 * we will suspend a really large IO window while it is not
3124 	 * necessary. If raid_disks is not divisible by near_copies,
3125 	 * an extra chunk is needed to ensure the whole "stripe" is
3126 	 * covered.
3127 	 */
3128 
3129 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3130 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3131 		extra_chunk = 0;
3132 	else
3133 		extra_chunk = 1;
3134 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3135 
3136 	/*
3137 	 * At least use a 32M window to align with raid1's resync window
3138 	 */
3139 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3140 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3141 
3142 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3143 }
3144 
3145 /*
3146  * perform a "sync" on one "block"
3147  *
3148  * We need to make sure that no normal I/O request - particularly write
3149  * requests - conflict with active sync requests.
3150  *
3151  * This is achieved by tracking pending requests and a 'barrier' concept
3152  * that can be installed to exclude normal IO requests.
3153  *
3154  * Resync and recovery are handled very differently.
3155  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3156  *
3157  * For resync, we iterate over virtual addresses, read all copies,
3158  * and update if there are differences.  If only one copy is live,
3159  * skip it.
3160  * For recovery, we iterate over physical addresses, read a good
3161  * value for each non-in_sync drive, and over-write.
3162  *
3163  * So, for recovery we may have several outstanding complex requests for a
3164  * given address, one for each out-of-sync device.  We model this by allocating
3165  * a number of r10_bio structures, one for each out-of-sync device.
3166  * As we setup these structures, we collect all bio's together into a list
3167  * which we then process collectively to add pages, and then process again
3168  * to pass to submit_bio_noacct.
3169  *
3170  * The r10_bio structures are linked using a borrowed master_bio pointer.
3171  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3172  * has its remaining count decremented to 0, the whole complex operation
3173  * is complete.
3174  *
3175  */
3176 
3177 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3178 			     int *skipped)
3179 {
3180 	struct r10conf *conf = mddev->private;
3181 	struct r10bio *r10_bio;
3182 	struct bio *biolist = NULL, *bio;
3183 	sector_t max_sector, nr_sectors;
3184 	int i;
3185 	int max_sync;
3186 	sector_t sync_blocks;
3187 	sector_t sectors_skipped = 0;
3188 	int chunks_skipped = 0;
3189 	sector_t chunk_mask = conf->geo.chunk_mask;
3190 	int page_idx = 0;
3191 	int error_disk = -1;
3192 
3193 	/*
3194 	 * Allow skipping a full rebuild for incremental assembly
3195 	 * of a clean array, like RAID1 does.
3196 	 */
3197 	if (mddev->bitmap == NULL &&
3198 	    mddev->recovery_cp == MaxSector &&
3199 	    mddev->reshape_position == MaxSector &&
3200 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3201 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3202 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3203 	    conf->fullsync == 0) {
3204 		*skipped = 1;
3205 		return mddev->dev_sectors - sector_nr;
3206 	}
3207 
3208 	if (!mempool_initialized(&conf->r10buf_pool))
3209 		if (init_resync(conf))
3210 			return 0;
3211 
3212  skipped:
3213 	max_sector = mddev->dev_sectors;
3214 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3215 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3216 		max_sector = mddev->resync_max_sectors;
3217 	if (sector_nr >= max_sector) {
3218 		conf->cluster_sync_low = 0;
3219 		conf->cluster_sync_high = 0;
3220 
3221 		/* If we aborted, we need to abort the
3222 		 * sync on the 'current' bitmap chucks (there can
3223 		 * be several when recovering multiple devices).
3224 		 * as we may have started syncing it but not finished.
3225 		 * We can find the current address in
3226 		 * mddev->curr_resync, but for recovery,
3227 		 * we need to convert that to several
3228 		 * virtual addresses.
3229 		 */
3230 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3231 			end_reshape(conf);
3232 			close_sync(conf);
3233 			return 0;
3234 		}
3235 
3236 		if (mddev->curr_resync < max_sector) { /* aborted */
3237 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3238 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3239 						   &sync_blocks, 1);
3240 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3241 				sector_t sect =
3242 					raid10_find_virt(conf, mddev->curr_resync, i);
3243 				md_bitmap_end_sync(mddev->bitmap, sect,
3244 						   &sync_blocks, 1);
3245 			}
3246 		} else {
3247 			/* completed sync */
3248 			if ((!mddev->bitmap || conf->fullsync)
3249 			    && conf->have_replacement
3250 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3251 				/* Completed a full sync so the replacements
3252 				 * are now fully recovered.
3253 				 */
3254 				for (i = 0; i < conf->geo.raid_disks; i++) {
3255 					struct md_rdev *rdev =
3256 						conf->mirrors[i].replacement;
3257 
3258 					if (rdev)
3259 						rdev->recovery_offset = MaxSector;
3260 				}
3261 			}
3262 			conf->fullsync = 0;
3263 		}
3264 		md_bitmap_close_sync(mddev->bitmap);
3265 		close_sync(conf);
3266 		*skipped = 1;
3267 		return sectors_skipped;
3268 	}
3269 
3270 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3271 		return reshape_request(mddev, sector_nr, skipped);
3272 
3273 	if (chunks_skipped >= conf->geo.raid_disks) {
3274 		pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3275 			test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3276 		if (error_disk >= 0 &&
3277 		    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3278 			/*
3279 			 * recovery fails, set mirrors.recovery_disabled,
3280 			 * device shouldn't be added to there.
3281 			 */
3282 			conf->mirrors[error_disk].recovery_disabled =
3283 						mddev->recovery_disabled;
3284 			return 0;
3285 		}
3286 		/*
3287 		 * if there has been nothing to do on any drive,
3288 		 * then there is nothing to do at all.
3289 		 */
3290 		*skipped = 1;
3291 		return (max_sector - sector_nr) + sectors_skipped;
3292 	}
3293 
3294 	if (max_sector > mddev->resync_max)
3295 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3296 
3297 	/* make sure whole request will fit in a chunk - if chunks
3298 	 * are meaningful
3299 	 */
3300 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3301 	    max_sector > (sector_nr | chunk_mask))
3302 		max_sector = (sector_nr | chunk_mask) + 1;
3303 
3304 	/*
3305 	 * If there is non-resync activity waiting for a turn, then let it
3306 	 * though before starting on this new sync request.
3307 	 */
3308 	if (conf->nr_waiting)
3309 		schedule_timeout_uninterruptible(1);
3310 
3311 	/* Again, very different code for resync and recovery.
3312 	 * Both must result in an r10bio with a list of bios that
3313 	 * have bi_end_io, bi_sector, bi_bdev set,
3314 	 * and bi_private set to the r10bio.
3315 	 * For recovery, we may actually create several r10bios
3316 	 * with 2 bios in each, that correspond to the bios in the main one.
3317 	 * In this case, the subordinate r10bios link back through a
3318 	 * borrowed master_bio pointer, and the counter in the master
3319 	 * includes a ref from each subordinate.
3320 	 */
3321 	/* First, we decide what to do and set ->bi_end_io
3322 	 * To end_sync_read if we want to read, and
3323 	 * end_sync_write if we will want to write.
3324 	 */
3325 
3326 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3327 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3328 		/* recovery... the complicated one */
3329 		int j;
3330 		r10_bio = NULL;
3331 
3332 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3333 			int still_degraded;
3334 			struct r10bio *rb2;
3335 			sector_t sect;
3336 			int must_sync;
3337 			int any_working;
3338 			struct raid10_info *mirror = &conf->mirrors[i];
3339 			struct md_rdev *mrdev, *mreplace;
3340 
3341 			mrdev = mirror->rdev;
3342 			mreplace = mirror->replacement;
3343 
3344 			if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3345 			    test_bit(In_sync, &mrdev->flags)))
3346 				mrdev = NULL;
3347 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3348 				mreplace = NULL;
3349 
3350 			if (!mrdev && !mreplace)
3351 				continue;
3352 
3353 			still_degraded = 0;
3354 			/* want to reconstruct this device */
3355 			rb2 = r10_bio;
3356 			sect = raid10_find_virt(conf, sector_nr, i);
3357 			if (sect >= mddev->resync_max_sectors)
3358 				/* last stripe is not complete - don't
3359 				 * try to recover this sector.
3360 				 */
3361 				continue;
3362 			/* Unless we are doing a full sync, or a replacement
3363 			 * we only need to recover the block if it is set in
3364 			 * the bitmap
3365 			 */
3366 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3367 							 &sync_blocks, 1);
3368 			if (sync_blocks < max_sync)
3369 				max_sync = sync_blocks;
3370 			if (!must_sync &&
3371 			    mreplace == NULL &&
3372 			    !conf->fullsync) {
3373 				/* yep, skip the sync_blocks here, but don't assume
3374 				 * that there will never be anything to do here
3375 				 */
3376 				chunks_skipped = -1;
3377 				continue;
3378 			}
3379 			if (mrdev)
3380 				atomic_inc(&mrdev->nr_pending);
3381 			if (mreplace)
3382 				atomic_inc(&mreplace->nr_pending);
3383 
3384 			r10_bio = raid10_alloc_init_r10buf(conf);
3385 			r10_bio->state = 0;
3386 			raise_barrier(conf, rb2 != NULL);
3387 			atomic_set(&r10_bio->remaining, 0);
3388 
3389 			r10_bio->master_bio = (struct bio*)rb2;
3390 			if (rb2)
3391 				atomic_inc(&rb2->remaining);
3392 			r10_bio->mddev = mddev;
3393 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3394 			r10_bio->sector = sect;
3395 
3396 			raid10_find_phys(conf, r10_bio);
3397 
3398 			/* Need to check if the array will still be
3399 			 * degraded
3400 			 */
3401 			for (j = 0; j < conf->geo.raid_disks; j++) {
3402 				struct md_rdev *rdev = conf->mirrors[j].rdev;
3403 
3404 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3405 					still_degraded = 1;
3406 					break;
3407 				}
3408 			}
3409 
3410 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3411 							 &sync_blocks, still_degraded);
3412 
3413 			any_working = 0;
3414 			for (j=0; j<conf->copies;j++) {
3415 				int k;
3416 				int d = r10_bio->devs[j].devnum;
3417 				sector_t from_addr, to_addr;
3418 				struct md_rdev *rdev = conf->mirrors[d].rdev;
3419 				sector_t sector, first_bad;
3420 				int bad_sectors;
3421 				if (!rdev ||
3422 				    !test_bit(In_sync, &rdev->flags))
3423 					continue;
3424 				/* This is where we read from */
3425 				any_working = 1;
3426 				sector = r10_bio->devs[j].addr;
3427 
3428 				if (is_badblock(rdev, sector, max_sync,
3429 						&first_bad, &bad_sectors)) {
3430 					if (first_bad > sector)
3431 						max_sync = first_bad - sector;
3432 					else {
3433 						bad_sectors -= (sector
3434 								- first_bad);
3435 						if (max_sync > bad_sectors)
3436 							max_sync = bad_sectors;
3437 						continue;
3438 					}
3439 				}
3440 				bio = r10_bio->devs[0].bio;
3441 				bio->bi_next = biolist;
3442 				biolist = bio;
3443 				bio->bi_end_io = end_sync_read;
3444 				bio->bi_opf = REQ_OP_READ;
3445 				if (test_bit(FailFast, &rdev->flags))
3446 					bio->bi_opf |= MD_FAILFAST;
3447 				from_addr = r10_bio->devs[j].addr;
3448 				bio->bi_iter.bi_sector = from_addr +
3449 					rdev->data_offset;
3450 				bio_set_dev(bio, rdev->bdev);
3451 				atomic_inc(&rdev->nr_pending);
3452 				/* and we write to 'i' (if not in_sync) */
3453 
3454 				for (k=0; k<conf->copies; k++)
3455 					if (r10_bio->devs[k].devnum == i)
3456 						break;
3457 				BUG_ON(k == conf->copies);
3458 				to_addr = r10_bio->devs[k].addr;
3459 				r10_bio->devs[0].devnum = d;
3460 				r10_bio->devs[0].addr = from_addr;
3461 				r10_bio->devs[1].devnum = i;
3462 				r10_bio->devs[1].addr = to_addr;
3463 
3464 				if (mrdev) {
3465 					bio = r10_bio->devs[1].bio;
3466 					bio->bi_next = biolist;
3467 					biolist = bio;
3468 					bio->bi_end_io = end_sync_write;
3469 					bio->bi_opf = REQ_OP_WRITE;
3470 					bio->bi_iter.bi_sector = to_addr
3471 						+ mrdev->data_offset;
3472 					bio_set_dev(bio, mrdev->bdev);
3473 					atomic_inc(&r10_bio->remaining);
3474 				} else
3475 					r10_bio->devs[1].bio->bi_end_io = NULL;
3476 
3477 				/* and maybe write to replacement */
3478 				bio = r10_bio->devs[1].repl_bio;
3479 				if (bio)
3480 					bio->bi_end_io = NULL;
3481 				/* Note: if replace is not NULL, then bio
3482 				 * cannot be NULL as r10buf_pool_alloc will
3483 				 * have allocated it.
3484 				 */
3485 				if (!mreplace)
3486 					break;
3487 				bio->bi_next = biolist;
3488 				biolist = bio;
3489 				bio->bi_end_io = end_sync_write;
3490 				bio->bi_opf = REQ_OP_WRITE;
3491 				bio->bi_iter.bi_sector = to_addr +
3492 					mreplace->data_offset;
3493 				bio_set_dev(bio, mreplace->bdev);
3494 				atomic_inc(&r10_bio->remaining);
3495 				break;
3496 			}
3497 			if (j == conf->copies) {
3498 				/* Cannot recover, so abort the recovery or
3499 				 * record a bad block */
3500 				if (any_working) {
3501 					/* problem is that there are bad blocks
3502 					 * on other device(s)
3503 					 */
3504 					int k;
3505 					for (k = 0; k < conf->copies; k++)
3506 						if (r10_bio->devs[k].devnum == i)
3507 							break;
3508 					if (mrdev && !test_bit(In_sync,
3509 						      &mrdev->flags)
3510 					    && !rdev_set_badblocks(
3511 						    mrdev,
3512 						    r10_bio->devs[k].addr,
3513 						    max_sync, 0))
3514 						any_working = 0;
3515 					if (mreplace &&
3516 					    !rdev_set_badblocks(
3517 						    mreplace,
3518 						    r10_bio->devs[k].addr,
3519 						    max_sync, 0))
3520 						any_working = 0;
3521 				}
3522 				if (!any_working)  {
3523 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3524 							      &mddev->recovery))
3525 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3526 						       mdname(mddev));
3527 					mirror->recovery_disabled
3528 						= mddev->recovery_disabled;
3529 				} else {
3530 					error_disk = i;
3531 				}
3532 				put_buf(r10_bio);
3533 				if (rb2)
3534 					atomic_dec(&rb2->remaining);
3535 				r10_bio = rb2;
3536 				if (mrdev)
3537 					rdev_dec_pending(mrdev, mddev);
3538 				if (mreplace)
3539 					rdev_dec_pending(mreplace, mddev);
3540 				break;
3541 			}
3542 			if (mrdev)
3543 				rdev_dec_pending(mrdev, mddev);
3544 			if (mreplace)
3545 				rdev_dec_pending(mreplace, mddev);
3546 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3547 				/* Only want this if there is elsewhere to
3548 				 * read from. 'j' is currently the first
3549 				 * readable copy.
3550 				 */
3551 				int targets = 1;
3552 				for (; j < conf->copies; j++) {
3553 					int d = r10_bio->devs[j].devnum;
3554 					if (conf->mirrors[d].rdev &&
3555 					    test_bit(In_sync,
3556 						      &conf->mirrors[d].rdev->flags))
3557 						targets++;
3558 				}
3559 				if (targets == 1)
3560 					r10_bio->devs[0].bio->bi_opf
3561 						&= ~MD_FAILFAST;
3562 			}
3563 		}
3564 		if (biolist == NULL) {
3565 			while (r10_bio) {
3566 				struct r10bio *rb2 = r10_bio;
3567 				r10_bio = (struct r10bio*) rb2->master_bio;
3568 				rb2->master_bio = NULL;
3569 				put_buf(rb2);
3570 			}
3571 			goto giveup;
3572 		}
3573 	} else {
3574 		/* resync. Schedule a read for every block at this virt offset */
3575 		int count = 0;
3576 
3577 		/*
3578 		 * Since curr_resync_completed could probably not update in
3579 		 * time, and we will set cluster_sync_low based on it.
3580 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3581 		 * safety reason, which ensures curr_resync_completed is
3582 		 * updated in bitmap_cond_end_sync.
3583 		 */
3584 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3585 					mddev_is_clustered(mddev) &&
3586 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3587 
3588 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3589 					  &sync_blocks, mddev->degraded) &&
3590 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3591 						 &mddev->recovery)) {
3592 			/* We can skip this block */
3593 			*skipped = 1;
3594 			return sync_blocks + sectors_skipped;
3595 		}
3596 		if (sync_blocks < max_sync)
3597 			max_sync = sync_blocks;
3598 		r10_bio = raid10_alloc_init_r10buf(conf);
3599 		r10_bio->state = 0;
3600 
3601 		r10_bio->mddev = mddev;
3602 		atomic_set(&r10_bio->remaining, 0);
3603 		raise_barrier(conf, 0);
3604 		conf->next_resync = sector_nr;
3605 
3606 		r10_bio->master_bio = NULL;
3607 		r10_bio->sector = sector_nr;
3608 		set_bit(R10BIO_IsSync, &r10_bio->state);
3609 		raid10_find_phys(conf, r10_bio);
3610 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3611 
3612 		for (i = 0; i < conf->copies; i++) {
3613 			int d = r10_bio->devs[i].devnum;
3614 			sector_t first_bad, sector;
3615 			int bad_sectors;
3616 			struct md_rdev *rdev;
3617 
3618 			if (r10_bio->devs[i].repl_bio)
3619 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3620 
3621 			bio = r10_bio->devs[i].bio;
3622 			bio->bi_status = BLK_STS_IOERR;
3623 			rdev = conf->mirrors[d].rdev;
3624 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3625 				continue;
3626 
3627 			sector = r10_bio->devs[i].addr;
3628 			if (is_badblock(rdev, sector, max_sync,
3629 					&first_bad, &bad_sectors)) {
3630 				if (first_bad > sector)
3631 					max_sync = first_bad - sector;
3632 				else {
3633 					bad_sectors -= (sector - first_bad);
3634 					if (max_sync > bad_sectors)
3635 						max_sync = bad_sectors;
3636 					continue;
3637 				}
3638 			}
3639 			atomic_inc(&rdev->nr_pending);
3640 			atomic_inc(&r10_bio->remaining);
3641 			bio->bi_next = biolist;
3642 			biolist = bio;
3643 			bio->bi_end_io = end_sync_read;
3644 			bio->bi_opf = REQ_OP_READ;
3645 			if (test_bit(FailFast, &rdev->flags))
3646 				bio->bi_opf |= MD_FAILFAST;
3647 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3648 			bio_set_dev(bio, rdev->bdev);
3649 			count++;
3650 
3651 			rdev = conf->mirrors[d].replacement;
3652 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3653 				continue;
3654 
3655 			atomic_inc(&rdev->nr_pending);
3656 
3657 			/* Need to set up for writing to the replacement */
3658 			bio = r10_bio->devs[i].repl_bio;
3659 			bio->bi_status = BLK_STS_IOERR;
3660 
3661 			sector = r10_bio->devs[i].addr;
3662 			bio->bi_next = biolist;
3663 			biolist = bio;
3664 			bio->bi_end_io = end_sync_write;
3665 			bio->bi_opf = REQ_OP_WRITE;
3666 			if (test_bit(FailFast, &rdev->flags))
3667 				bio->bi_opf |= MD_FAILFAST;
3668 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3669 			bio_set_dev(bio, rdev->bdev);
3670 			count++;
3671 		}
3672 
3673 		if (count < 2) {
3674 			for (i=0; i<conf->copies; i++) {
3675 				int d = r10_bio->devs[i].devnum;
3676 				if (r10_bio->devs[i].bio->bi_end_io)
3677 					rdev_dec_pending(conf->mirrors[d].rdev,
3678 							 mddev);
3679 				if (r10_bio->devs[i].repl_bio &&
3680 				    r10_bio->devs[i].repl_bio->bi_end_io)
3681 					rdev_dec_pending(
3682 						conf->mirrors[d].replacement,
3683 						mddev);
3684 			}
3685 			put_buf(r10_bio);
3686 			biolist = NULL;
3687 			goto giveup;
3688 		}
3689 	}
3690 
3691 	nr_sectors = 0;
3692 	if (sector_nr + max_sync < max_sector)
3693 		max_sector = sector_nr + max_sync;
3694 	do {
3695 		struct page *page;
3696 		int len = PAGE_SIZE;
3697 		if (sector_nr + (len>>9) > max_sector)
3698 			len = (max_sector - sector_nr) << 9;
3699 		if (len == 0)
3700 			break;
3701 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3702 			struct resync_pages *rp = get_resync_pages(bio);
3703 			page = resync_fetch_page(rp, page_idx);
3704 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3705 				bio->bi_status = BLK_STS_RESOURCE;
3706 				bio_endio(bio);
3707 				goto giveup;
3708 			}
3709 		}
3710 		nr_sectors += len>>9;
3711 		sector_nr += len>>9;
3712 	} while (++page_idx < RESYNC_PAGES);
3713 	r10_bio->sectors = nr_sectors;
3714 
3715 	if (mddev_is_clustered(mddev) &&
3716 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3717 		/* It is resync not recovery */
3718 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3719 			conf->cluster_sync_low = mddev->curr_resync_completed;
3720 			raid10_set_cluster_sync_high(conf);
3721 			/* Send resync message */
3722 			md_cluster_ops->resync_info_update(mddev,
3723 						conf->cluster_sync_low,
3724 						conf->cluster_sync_high);
3725 		}
3726 	} else if (mddev_is_clustered(mddev)) {
3727 		/* This is recovery not resync */
3728 		sector_t sect_va1, sect_va2;
3729 		bool broadcast_msg = false;
3730 
3731 		for (i = 0; i < conf->geo.raid_disks; i++) {
3732 			/*
3733 			 * sector_nr is a device address for recovery, so we
3734 			 * need translate it to array address before compare
3735 			 * with cluster_sync_high.
3736 			 */
3737 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3738 
3739 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3740 				broadcast_msg = true;
3741 				/*
3742 				 * curr_resync_completed is similar as
3743 				 * sector_nr, so make the translation too.
3744 				 */
3745 				sect_va2 = raid10_find_virt(conf,
3746 					mddev->curr_resync_completed, i);
3747 
3748 				if (conf->cluster_sync_low == 0 ||
3749 				    conf->cluster_sync_low > sect_va2)
3750 					conf->cluster_sync_low = sect_va2;
3751 			}
3752 		}
3753 		if (broadcast_msg) {
3754 			raid10_set_cluster_sync_high(conf);
3755 			md_cluster_ops->resync_info_update(mddev,
3756 						conf->cluster_sync_low,
3757 						conf->cluster_sync_high);
3758 		}
3759 	}
3760 
3761 	while (biolist) {
3762 		bio = biolist;
3763 		biolist = biolist->bi_next;
3764 
3765 		bio->bi_next = NULL;
3766 		r10_bio = get_resync_r10bio(bio);
3767 		r10_bio->sectors = nr_sectors;
3768 
3769 		if (bio->bi_end_io == end_sync_read) {
3770 			md_sync_acct_bio(bio, nr_sectors);
3771 			bio->bi_status = 0;
3772 			submit_bio_noacct(bio);
3773 		}
3774 	}
3775 
3776 	if (sectors_skipped)
3777 		/* pretend they weren't skipped, it makes
3778 		 * no important difference in this case
3779 		 */
3780 		md_done_sync(mddev, sectors_skipped, 1);
3781 
3782 	return sectors_skipped + nr_sectors;
3783  giveup:
3784 	/* There is nowhere to write, so all non-sync
3785 	 * drives must be failed or in resync, all drives
3786 	 * have a bad block, so try the next chunk...
3787 	 */
3788 	if (sector_nr + max_sync < max_sector)
3789 		max_sector = sector_nr + max_sync;
3790 
3791 	sectors_skipped += (max_sector - sector_nr);
3792 	chunks_skipped ++;
3793 	sector_nr = max_sector;
3794 	goto skipped;
3795 }
3796 
3797 static sector_t
3798 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3799 {
3800 	sector_t size;
3801 	struct r10conf *conf = mddev->private;
3802 
3803 	if (!raid_disks)
3804 		raid_disks = min(conf->geo.raid_disks,
3805 				 conf->prev.raid_disks);
3806 	if (!sectors)
3807 		sectors = conf->dev_sectors;
3808 
3809 	size = sectors >> conf->geo.chunk_shift;
3810 	sector_div(size, conf->geo.far_copies);
3811 	size = size * raid_disks;
3812 	sector_div(size, conf->geo.near_copies);
3813 
3814 	return size << conf->geo.chunk_shift;
3815 }
3816 
3817 static void calc_sectors(struct r10conf *conf, sector_t size)
3818 {
3819 	/* Calculate the number of sectors-per-device that will
3820 	 * actually be used, and set conf->dev_sectors and
3821 	 * conf->stride
3822 	 */
3823 
3824 	size = size >> conf->geo.chunk_shift;
3825 	sector_div(size, conf->geo.far_copies);
3826 	size = size * conf->geo.raid_disks;
3827 	sector_div(size, conf->geo.near_copies);
3828 	/* 'size' is now the number of chunks in the array */
3829 	/* calculate "used chunks per device" */
3830 	size = size * conf->copies;
3831 
3832 	/* We need to round up when dividing by raid_disks to
3833 	 * get the stride size.
3834 	 */
3835 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3836 
3837 	conf->dev_sectors = size << conf->geo.chunk_shift;
3838 
3839 	if (conf->geo.far_offset)
3840 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3841 	else {
3842 		sector_div(size, conf->geo.far_copies);
3843 		conf->geo.stride = size << conf->geo.chunk_shift;
3844 	}
3845 }
3846 
3847 enum geo_type {geo_new, geo_old, geo_start};
3848 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3849 {
3850 	int nc, fc, fo;
3851 	int layout, chunk, disks;
3852 	switch (new) {
3853 	case geo_old:
3854 		layout = mddev->layout;
3855 		chunk = mddev->chunk_sectors;
3856 		disks = mddev->raid_disks - mddev->delta_disks;
3857 		break;
3858 	case geo_new:
3859 		layout = mddev->new_layout;
3860 		chunk = mddev->new_chunk_sectors;
3861 		disks = mddev->raid_disks;
3862 		break;
3863 	default: /* avoid 'may be unused' warnings */
3864 	case geo_start: /* new when starting reshape - raid_disks not
3865 			 * updated yet. */
3866 		layout = mddev->new_layout;
3867 		chunk = mddev->new_chunk_sectors;
3868 		disks = mddev->raid_disks + mddev->delta_disks;
3869 		break;
3870 	}
3871 	if (layout >> 19)
3872 		return -1;
3873 	if (chunk < (PAGE_SIZE >> 9) ||
3874 	    !is_power_of_2(chunk))
3875 		return -2;
3876 	nc = layout & 255;
3877 	fc = (layout >> 8) & 255;
3878 	fo = layout & (1<<16);
3879 	geo->raid_disks = disks;
3880 	geo->near_copies = nc;
3881 	geo->far_copies = fc;
3882 	geo->far_offset = fo;
3883 	switch (layout >> 17) {
3884 	case 0:	/* original layout.  simple but not always optimal */
3885 		geo->far_set_size = disks;
3886 		break;
3887 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3888 		 * actually using this, but leave code here just in case.*/
3889 		geo->far_set_size = disks/fc;
3890 		WARN(geo->far_set_size < fc,
3891 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3892 		break;
3893 	case 2: /* "improved" layout fixed to match documentation */
3894 		geo->far_set_size = fc * nc;
3895 		break;
3896 	default: /* Not a valid layout */
3897 		return -1;
3898 	}
3899 	geo->chunk_mask = chunk - 1;
3900 	geo->chunk_shift = ffz(~chunk);
3901 	return nc*fc;
3902 }
3903 
3904 static void raid10_free_conf(struct r10conf *conf)
3905 {
3906 	if (!conf)
3907 		return;
3908 
3909 	mempool_exit(&conf->r10bio_pool);
3910 	kfree(conf->mirrors);
3911 	kfree(conf->mirrors_old);
3912 	kfree(conf->mirrors_new);
3913 	safe_put_page(conf->tmppage);
3914 	bioset_exit(&conf->bio_split);
3915 	kfree(conf);
3916 }
3917 
3918 static struct r10conf *setup_conf(struct mddev *mddev)
3919 {
3920 	struct r10conf *conf = NULL;
3921 	int err = -EINVAL;
3922 	struct geom geo;
3923 	int copies;
3924 
3925 	copies = setup_geo(&geo, mddev, geo_new);
3926 
3927 	if (copies == -2) {
3928 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3929 			mdname(mddev), PAGE_SIZE);
3930 		goto out;
3931 	}
3932 
3933 	if (copies < 2 || copies > mddev->raid_disks) {
3934 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3935 			mdname(mddev), mddev->new_layout);
3936 		goto out;
3937 	}
3938 
3939 	err = -ENOMEM;
3940 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3941 	if (!conf)
3942 		goto out;
3943 
3944 	/* FIXME calc properly */
3945 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3946 				sizeof(struct raid10_info),
3947 				GFP_KERNEL);
3948 	if (!conf->mirrors)
3949 		goto out;
3950 
3951 	conf->tmppage = alloc_page(GFP_KERNEL);
3952 	if (!conf->tmppage)
3953 		goto out;
3954 
3955 	conf->geo = geo;
3956 	conf->copies = copies;
3957 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3958 			   rbio_pool_free, conf);
3959 	if (err)
3960 		goto out;
3961 
3962 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3963 	if (err)
3964 		goto out;
3965 
3966 	calc_sectors(conf, mddev->dev_sectors);
3967 	if (mddev->reshape_position == MaxSector) {
3968 		conf->prev = conf->geo;
3969 		conf->reshape_progress = MaxSector;
3970 	} else {
3971 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3972 			err = -EINVAL;
3973 			goto out;
3974 		}
3975 		conf->reshape_progress = mddev->reshape_position;
3976 		if (conf->prev.far_offset)
3977 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3978 		else
3979 			/* far_copies must be 1 */
3980 			conf->prev.stride = conf->dev_sectors;
3981 	}
3982 	conf->reshape_safe = conf->reshape_progress;
3983 	spin_lock_init(&conf->device_lock);
3984 	INIT_LIST_HEAD(&conf->retry_list);
3985 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3986 
3987 	seqlock_init(&conf->resync_lock);
3988 	init_waitqueue_head(&conf->wait_barrier);
3989 	atomic_set(&conf->nr_pending, 0);
3990 
3991 	err = -ENOMEM;
3992 	rcu_assign_pointer(conf->thread,
3993 			   md_register_thread(raid10d, mddev, "raid10"));
3994 	if (!conf->thread)
3995 		goto out;
3996 
3997 	conf->mddev = mddev;
3998 	return conf;
3999 
4000  out:
4001 	raid10_free_conf(conf);
4002 	return ERR_PTR(err);
4003 }
4004 
4005 static void raid10_set_io_opt(struct r10conf *conf)
4006 {
4007 	int raid_disks = conf->geo.raid_disks;
4008 
4009 	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4010 		raid_disks /= conf->geo.near_copies;
4011 	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4012 			 raid_disks);
4013 }
4014 
4015 static int raid10_run(struct mddev *mddev)
4016 {
4017 	struct r10conf *conf;
4018 	int i, disk_idx;
4019 	struct raid10_info *disk;
4020 	struct md_rdev *rdev;
4021 	sector_t size;
4022 	sector_t min_offset_diff = 0;
4023 	int first = 1;
4024 
4025 	if (mddev->private == NULL) {
4026 		conf = setup_conf(mddev);
4027 		if (IS_ERR(conf))
4028 			return PTR_ERR(conf);
4029 		mddev->private = conf;
4030 	}
4031 	conf = mddev->private;
4032 	if (!conf)
4033 		goto out;
4034 
4035 	rcu_assign_pointer(mddev->thread, conf->thread);
4036 	rcu_assign_pointer(conf->thread, NULL);
4037 
4038 	if (mddev_is_clustered(conf->mddev)) {
4039 		int fc, fo;
4040 
4041 		fc = (mddev->layout >> 8) & 255;
4042 		fo = mddev->layout & (1<<16);
4043 		if (fc > 1 || fo > 0) {
4044 			pr_err("only near layout is supported by clustered"
4045 				" raid10\n");
4046 			goto out_free_conf;
4047 		}
4048 	}
4049 
4050 	if (mddev->queue) {
4051 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4052 		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4053 		raid10_set_io_opt(conf);
4054 	}
4055 
4056 	rdev_for_each(rdev, mddev) {
4057 		long long diff;
4058 
4059 		disk_idx = rdev->raid_disk;
4060 		if (disk_idx < 0)
4061 			continue;
4062 		if (disk_idx >= conf->geo.raid_disks &&
4063 		    disk_idx >= conf->prev.raid_disks)
4064 			continue;
4065 		disk = conf->mirrors + disk_idx;
4066 
4067 		if (test_bit(Replacement, &rdev->flags)) {
4068 			if (disk->replacement)
4069 				goto out_free_conf;
4070 			disk->replacement = rdev;
4071 		} else {
4072 			if (disk->rdev)
4073 				goto out_free_conf;
4074 			disk->rdev = rdev;
4075 		}
4076 		diff = (rdev->new_data_offset - rdev->data_offset);
4077 		if (!mddev->reshape_backwards)
4078 			diff = -diff;
4079 		if (diff < 0)
4080 			diff = 0;
4081 		if (first || diff < min_offset_diff)
4082 			min_offset_diff = diff;
4083 
4084 		if (mddev->gendisk)
4085 			disk_stack_limits(mddev->gendisk, rdev->bdev,
4086 					  rdev->data_offset << 9);
4087 
4088 		disk->head_position = 0;
4089 		first = 0;
4090 	}
4091 
4092 	/* need to check that every block has at least one working mirror */
4093 	if (!enough(conf, -1)) {
4094 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4095 		       mdname(mddev));
4096 		goto out_free_conf;
4097 	}
4098 
4099 	if (conf->reshape_progress != MaxSector) {
4100 		/* must ensure that shape change is supported */
4101 		if (conf->geo.far_copies != 1 &&
4102 		    conf->geo.far_offset == 0)
4103 			goto out_free_conf;
4104 		if (conf->prev.far_copies != 1 &&
4105 		    conf->prev.far_offset == 0)
4106 			goto out_free_conf;
4107 	}
4108 
4109 	mddev->degraded = 0;
4110 	for (i = 0;
4111 	     i < conf->geo.raid_disks
4112 		     || i < conf->prev.raid_disks;
4113 	     i++) {
4114 
4115 		disk = conf->mirrors + i;
4116 
4117 		if (!disk->rdev && disk->replacement) {
4118 			/* The replacement is all we have - use it */
4119 			disk->rdev = disk->replacement;
4120 			disk->replacement = NULL;
4121 			clear_bit(Replacement, &disk->rdev->flags);
4122 		}
4123 
4124 		if (!disk->rdev ||
4125 		    !test_bit(In_sync, &disk->rdev->flags)) {
4126 			disk->head_position = 0;
4127 			mddev->degraded++;
4128 			if (disk->rdev &&
4129 			    disk->rdev->saved_raid_disk < 0)
4130 				conf->fullsync = 1;
4131 		}
4132 
4133 		if (disk->replacement &&
4134 		    !test_bit(In_sync, &disk->replacement->flags) &&
4135 		    disk->replacement->saved_raid_disk < 0) {
4136 			conf->fullsync = 1;
4137 		}
4138 
4139 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4140 	}
4141 
4142 	if (mddev->recovery_cp != MaxSector)
4143 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4144 			  mdname(mddev));
4145 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4146 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4147 		conf->geo.raid_disks);
4148 	/*
4149 	 * Ok, everything is just fine now
4150 	 */
4151 	mddev->dev_sectors = conf->dev_sectors;
4152 	size = raid10_size(mddev, 0, 0);
4153 	md_set_array_sectors(mddev, size);
4154 	mddev->resync_max_sectors = size;
4155 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4156 
4157 	if (md_integrity_register(mddev))
4158 		goto out_free_conf;
4159 
4160 	if (conf->reshape_progress != MaxSector) {
4161 		unsigned long before_length, after_length;
4162 
4163 		before_length = ((1 << conf->prev.chunk_shift) *
4164 				 conf->prev.far_copies);
4165 		after_length = ((1 << conf->geo.chunk_shift) *
4166 				conf->geo.far_copies);
4167 
4168 		if (max(before_length, after_length) > min_offset_diff) {
4169 			/* This cannot work */
4170 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4171 			goto out_free_conf;
4172 		}
4173 		conf->offset_diff = min_offset_diff;
4174 
4175 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4176 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4177 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4178 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4179 		rcu_assign_pointer(mddev->sync_thread,
4180 			md_register_thread(md_do_sync, mddev, "reshape"));
4181 		if (!mddev->sync_thread)
4182 			goto out_free_conf;
4183 	}
4184 
4185 	return 0;
4186 
4187 out_free_conf:
4188 	md_unregister_thread(mddev, &mddev->thread);
4189 	raid10_free_conf(conf);
4190 	mddev->private = NULL;
4191 out:
4192 	return -EIO;
4193 }
4194 
4195 static void raid10_free(struct mddev *mddev, void *priv)
4196 {
4197 	raid10_free_conf(priv);
4198 }
4199 
4200 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4201 {
4202 	struct r10conf *conf = mddev->private;
4203 
4204 	if (quiesce)
4205 		raise_barrier(conf, 0);
4206 	else
4207 		lower_barrier(conf);
4208 }
4209 
4210 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4211 {
4212 	/* Resize of 'far' arrays is not supported.
4213 	 * For 'near' and 'offset' arrays we can set the
4214 	 * number of sectors used to be an appropriate multiple
4215 	 * of the chunk size.
4216 	 * For 'offset', this is far_copies*chunksize.
4217 	 * For 'near' the multiplier is the LCM of
4218 	 * near_copies and raid_disks.
4219 	 * So if far_copies > 1 && !far_offset, fail.
4220 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4221 	 * multiply by chunk_size.  Then round to this number.
4222 	 * This is mostly done by raid10_size()
4223 	 */
4224 	struct r10conf *conf = mddev->private;
4225 	sector_t oldsize, size;
4226 
4227 	if (mddev->reshape_position != MaxSector)
4228 		return -EBUSY;
4229 
4230 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4231 		return -EINVAL;
4232 
4233 	oldsize = raid10_size(mddev, 0, 0);
4234 	size = raid10_size(mddev, sectors, 0);
4235 	if (mddev->external_size &&
4236 	    mddev->array_sectors > size)
4237 		return -EINVAL;
4238 	if (mddev->bitmap) {
4239 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4240 		if (ret)
4241 			return ret;
4242 	}
4243 	md_set_array_sectors(mddev, size);
4244 	if (sectors > mddev->dev_sectors &&
4245 	    mddev->recovery_cp > oldsize) {
4246 		mddev->recovery_cp = oldsize;
4247 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4248 	}
4249 	calc_sectors(conf, sectors);
4250 	mddev->dev_sectors = conf->dev_sectors;
4251 	mddev->resync_max_sectors = size;
4252 	return 0;
4253 }
4254 
4255 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4256 {
4257 	struct md_rdev *rdev;
4258 	struct r10conf *conf;
4259 
4260 	if (mddev->degraded > 0) {
4261 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4262 			mdname(mddev));
4263 		return ERR_PTR(-EINVAL);
4264 	}
4265 	sector_div(size, devs);
4266 
4267 	/* Set new parameters */
4268 	mddev->new_level = 10;
4269 	/* new layout: far_copies = 1, near_copies = 2 */
4270 	mddev->new_layout = (1<<8) + 2;
4271 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4272 	mddev->delta_disks = mddev->raid_disks;
4273 	mddev->raid_disks *= 2;
4274 	/* make sure it will be not marked as dirty */
4275 	mddev->recovery_cp = MaxSector;
4276 	mddev->dev_sectors = size;
4277 
4278 	conf = setup_conf(mddev);
4279 	if (!IS_ERR(conf)) {
4280 		rdev_for_each(rdev, mddev)
4281 			if (rdev->raid_disk >= 0) {
4282 				rdev->new_raid_disk = rdev->raid_disk * 2;
4283 				rdev->sectors = size;
4284 			}
4285 	}
4286 
4287 	return conf;
4288 }
4289 
4290 static void *raid10_takeover(struct mddev *mddev)
4291 {
4292 	struct r0conf *raid0_conf;
4293 
4294 	/* raid10 can take over:
4295 	 *  raid0 - providing it has only two drives
4296 	 */
4297 	if (mddev->level == 0) {
4298 		/* for raid0 takeover only one zone is supported */
4299 		raid0_conf = mddev->private;
4300 		if (raid0_conf->nr_strip_zones > 1) {
4301 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4302 				mdname(mddev));
4303 			return ERR_PTR(-EINVAL);
4304 		}
4305 		return raid10_takeover_raid0(mddev,
4306 			raid0_conf->strip_zone->zone_end,
4307 			raid0_conf->strip_zone->nb_dev);
4308 	}
4309 	return ERR_PTR(-EINVAL);
4310 }
4311 
4312 static int raid10_check_reshape(struct mddev *mddev)
4313 {
4314 	/* Called when there is a request to change
4315 	 * - layout (to ->new_layout)
4316 	 * - chunk size (to ->new_chunk_sectors)
4317 	 * - raid_disks (by delta_disks)
4318 	 * or when trying to restart a reshape that was ongoing.
4319 	 *
4320 	 * We need to validate the request and possibly allocate
4321 	 * space if that might be an issue later.
4322 	 *
4323 	 * Currently we reject any reshape of a 'far' mode array,
4324 	 * allow chunk size to change if new is generally acceptable,
4325 	 * allow raid_disks to increase, and allow
4326 	 * a switch between 'near' mode and 'offset' mode.
4327 	 */
4328 	struct r10conf *conf = mddev->private;
4329 	struct geom geo;
4330 
4331 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4332 		return -EINVAL;
4333 
4334 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4335 		/* mustn't change number of copies */
4336 		return -EINVAL;
4337 	if (geo.far_copies > 1 && !geo.far_offset)
4338 		/* Cannot switch to 'far' mode */
4339 		return -EINVAL;
4340 
4341 	if (mddev->array_sectors & geo.chunk_mask)
4342 			/* not factor of array size */
4343 			return -EINVAL;
4344 
4345 	if (!enough(conf, -1))
4346 		return -EINVAL;
4347 
4348 	kfree(conf->mirrors_new);
4349 	conf->mirrors_new = NULL;
4350 	if (mddev->delta_disks > 0) {
4351 		/* allocate new 'mirrors' list */
4352 		conf->mirrors_new =
4353 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4354 				sizeof(struct raid10_info),
4355 				GFP_KERNEL);
4356 		if (!conf->mirrors_new)
4357 			return -ENOMEM;
4358 	}
4359 	return 0;
4360 }
4361 
4362 /*
4363  * Need to check if array has failed when deciding whether to:
4364  *  - start an array
4365  *  - remove non-faulty devices
4366  *  - add a spare
4367  *  - allow a reshape
4368  * This determination is simple when no reshape is happening.
4369  * However if there is a reshape, we need to carefully check
4370  * both the before and after sections.
4371  * This is because some failed devices may only affect one
4372  * of the two sections, and some non-in_sync devices may
4373  * be insync in the section most affected by failed devices.
4374  */
4375 static int calc_degraded(struct r10conf *conf)
4376 {
4377 	int degraded, degraded2;
4378 	int i;
4379 
4380 	degraded = 0;
4381 	/* 'prev' section first */
4382 	for (i = 0; i < conf->prev.raid_disks; i++) {
4383 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4384 
4385 		if (!rdev || test_bit(Faulty, &rdev->flags))
4386 			degraded++;
4387 		else if (!test_bit(In_sync, &rdev->flags))
4388 			/* When we can reduce the number of devices in
4389 			 * an array, this might not contribute to
4390 			 * 'degraded'.  It does now.
4391 			 */
4392 			degraded++;
4393 	}
4394 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4395 		return degraded;
4396 	degraded2 = 0;
4397 	for (i = 0; i < conf->geo.raid_disks; i++) {
4398 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4399 
4400 		if (!rdev || test_bit(Faulty, &rdev->flags))
4401 			degraded2++;
4402 		else if (!test_bit(In_sync, &rdev->flags)) {
4403 			/* If reshape is increasing the number of devices,
4404 			 * this section has already been recovered, so
4405 			 * it doesn't contribute to degraded.
4406 			 * else it does.
4407 			 */
4408 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4409 				degraded2++;
4410 		}
4411 	}
4412 	if (degraded2 > degraded)
4413 		return degraded2;
4414 	return degraded;
4415 }
4416 
4417 static int raid10_start_reshape(struct mddev *mddev)
4418 {
4419 	/* A 'reshape' has been requested. This commits
4420 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4421 	 * This also checks if there are enough spares and adds them
4422 	 * to the array.
4423 	 * We currently require enough spares to make the final
4424 	 * array non-degraded.  We also require that the difference
4425 	 * between old and new data_offset - on each device - is
4426 	 * enough that we never risk over-writing.
4427 	 */
4428 
4429 	unsigned long before_length, after_length;
4430 	sector_t min_offset_diff = 0;
4431 	int first = 1;
4432 	struct geom new;
4433 	struct r10conf *conf = mddev->private;
4434 	struct md_rdev *rdev;
4435 	int spares = 0;
4436 	int ret;
4437 
4438 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4439 		return -EBUSY;
4440 
4441 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4442 		return -EINVAL;
4443 
4444 	before_length = ((1 << conf->prev.chunk_shift) *
4445 			 conf->prev.far_copies);
4446 	after_length = ((1 << conf->geo.chunk_shift) *
4447 			conf->geo.far_copies);
4448 
4449 	rdev_for_each(rdev, mddev) {
4450 		if (!test_bit(In_sync, &rdev->flags)
4451 		    && !test_bit(Faulty, &rdev->flags))
4452 			spares++;
4453 		if (rdev->raid_disk >= 0) {
4454 			long long diff = (rdev->new_data_offset
4455 					  - rdev->data_offset);
4456 			if (!mddev->reshape_backwards)
4457 				diff = -diff;
4458 			if (diff < 0)
4459 				diff = 0;
4460 			if (first || diff < min_offset_diff)
4461 				min_offset_diff = diff;
4462 			first = 0;
4463 		}
4464 	}
4465 
4466 	if (max(before_length, after_length) > min_offset_diff)
4467 		return -EINVAL;
4468 
4469 	if (spares < mddev->delta_disks)
4470 		return -EINVAL;
4471 
4472 	conf->offset_diff = min_offset_diff;
4473 	spin_lock_irq(&conf->device_lock);
4474 	if (conf->mirrors_new) {
4475 		memcpy(conf->mirrors_new, conf->mirrors,
4476 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4477 		smp_mb();
4478 		kfree(conf->mirrors_old);
4479 		conf->mirrors_old = conf->mirrors;
4480 		conf->mirrors = conf->mirrors_new;
4481 		conf->mirrors_new = NULL;
4482 	}
4483 	setup_geo(&conf->geo, mddev, geo_start);
4484 	smp_mb();
4485 	if (mddev->reshape_backwards) {
4486 		sector_t size = raid10_size(mddev, 0, 0);
4487 		if (size < mddev->array_sectors) {
4488 			spin_unlock_irq(&conf->device_lock);
4489 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4490 				mdname(mddev));
4491 			return -EINVAL;
4492 		}
4493 		mddev->resync_max_sectors = size;
4494 		conf->reshape_progress = size;
4495 	} else
4496 		conf->reshape_progress = 0;
4497 	conf->reshape_safe = conf->reshape_progress;
4498 	spin_unlock_irq(&conf->device_lock);
4499 
4500 	if (mddev->delta_disks && mddev->bitmap) {
4501 		struct mdp_superblock_1 *sb = NULL;
4502 		sector_t oldsize, newsize;
4503 
4504 		oldsize = raid10_size(mddev, 0, 0);
4505 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4506 
4507 		if (!mddev_is_clustered(mddev)) {
4508 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4509 			if (ret)
4510 				goto abort;
4511 			else
4512 				goto out;
4513 		}
4514 
4515 		rdev_for_each(rdev, mddev) {
4516 			if (rdev->raid_disk > -1 &&
4517 			    !test_bit(Faulty, &rdev->flags))
4518 				sb = page_address(rdev->sb_page);
4519 		}
4520 
4521 		/*
4522 		 * some node is already performing reshape, and no need to
4523 		 * call md_bitmap_resize again since it should be called when
4524 		 * receiving BITMAP_RESIZE msg
4525 		 */
4526 		if ((sb && (le32_to_cpu(sb->feature_map) &
4527 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4528 			goto out;
4529 
4530 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4531 		if (ret)
4532 			goto abort;
4533 
4534 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4535 		if (ret) {
4536 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4537 			goto abort;
4538 		}
4539 	}
4540 out:
4541 	if (mddev->delta_disks > 0) {
4542 		rdev_for_each(rdev, mddev)
4543 			if (rdev->raid_disk < 0 &&
4544 			    !test_bit(Faulty, &rdev->flags)) {
4545 				if (raid10_add_disk(mddev, rdev) == 0) {
4546 					if (rdev->raid_disk >=
4547 					    conf->prev.raid_disks)
4548 						set_bit(In_sync, &rdev->flags);
4549 					else
4550 						rdev->recovery_offset = 0;
4551 
4552 					/* Failure here is OK */
4553 					sysfs_link_rdev(mddev, rdev);
4554 				}
4555 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4556 				   && !test_bit(Faulty, &rdev->flags)) {
4557 				/* This is a spare that was manually added */
4558 				set_bit(In_sync, &rdev->flags);
4559 			}
4560 	}
4561 	/* When a reshape changes the number of devices,
4562 	 * ->degraded is measured against the larger of the
4563 	 * pre and  post numbers.
4564 	 */
4565 	spin_lock_irq(&conf->device_lock);
4566 	mddev->degraded = calc_degraded(conf);
4567 	spin_unlock_irq(&conf->device_lock);
4568 	mddev->raid_disks = conf->geo.raid_disks;
4569 	mddev->reshape_position = conf->reshape_progress;
4570 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4571 
4572 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4573 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4574 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4575 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4576 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4577 
4578 	rcu_assign_pointer(mddev->sync_thread,
4579 			   md_register_thread(md_do_sync, mddev, "reshape"));
4580 	if (!mddev->sync_thread) {
4581 		ret = -EAGAIN;
4582 		goto abort;
4583 	}
4584 	conf->reshape_checkpoint = jiffies;
4585 	md_wakeup_thread(mddev->sync_thread);
4586 	md_new_event();
4587 	return 0;
4588 
4589 abort:
4590 	mddev->recovery = 0;
4591 	spin_lock_irq(&conf->device_lock);
4592 	conf->geo = conf->prev;
4593 	mddev->raid_disks = conf->geo.raid_disks;
4594 	rdev_for_each(rdev, mddev)
4595 		rdev->new_data_offset = rdev->data_offset;
4596 	smp_wmb();
4597 	conf->reshape_progress = MaxSector;
4598 	conf->reshape_safe = MaxSector;
4599 	mddev->reshape_position = MaxSector;
4600 	spin_unlock_irq(&conf->device_lock);
4601 	return ret;
4602 }
4603 
4604 /* Calculate the last device-address that could contain
4605  * any block from the chunk that includes the array-address 's'
4606  * and report the next address.
4607  * i.e. the address returned will be chunk-aligned and after
4608  * any data that is in the chunk containing 's'.
4609  */
4610 static sector_t last_dev_address(sector_t s, struct geom *geo)
4611 {
4612 	s = (s | geo->chunk_mask) + 1;
4613 	s >>= geo->chunk_shift;
4614 	s *= geo->near_copies;
4615 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4616 	s *= geo->far_copies;
4617 	s <<= geo->chunk_shift;
4618 	return s;
4619 }
4620 
4621 /* Calculate the first device-address that could contain
4622  * any block from the chunk that includes the array-address 's'.
4623  * This too will be the start of a chunk
4624  */
4625 static sector_t first_dev_address(sector_t s, struct geom *geo)
4626 {
4627 	s >>= geo->chunk_shift;
4628 	s *= geo->near_copies;
4629 	sector_div(s, geo->raid_disks);
4630 	s *= geo->far_copies;
4631 	s <<= geo->chunk_shift;
4632 	return s;
4633 }
4634 
4635 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4636 				int *skipped)
4637 {
4638 	/* We simply copy at most one chunk (smallest of old and new)
4639 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4640 	 * or we hit a bad block or something.
4641 	 * This might mean we pause for normal IO in the middle of
4642 	 * a chunk, but that is not a problem as mddev->reshape_position
4643 	 * can record any location.
4644 	 *
4645 	 * If we will want to write to a location that isn't
4646 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4647 	 * we need to flush all reshape requests and update the metadata.
4648 	 *
4649 	 * When reshaping forwards (e.g. to more devices), we interpret
4650 	 * 'safe' as the earliest block which might not have been copied
4651 	 * down yet.  We divide this by previous stripe size and multiply
4652 	 * by previous stripe length to get lowest device offset that we
4653 	 * cannot write to yet.
4654 	 * We interpret 'sector_nr' as an address that we want to write to.
4655 	 * From this we use last_device_address() to find where we might
4656 	 * write to, and first_device_address on the  'safe' position.
4657 	 * If this 'next' write position is after the 'safe' position,
4658 	 * we must update the metadata to increase the 'safe' position.
4659 	 *
4660 	 * When reshaping backwards, we round in the opposite direction
4661 	 * and perform the reverse test:  next write position must not be
4662 	 * less than current safe position.
4663 	 *
4664 	 * In all this the minimum difference in data offsets
4665 	 * (conf->offset_diff - always positive) allows a bit of slack,
4666 	 * so next can be after 'safe', but not by more than offset_diff
4667 	 *
4668 	 * We need to prepare all the bios here before we start any IO
4669 	 * to ensure the size we choose is acceptable to all devices.
4670 	 * The means one for each copy for write-out and an extra one for
4671 	 * read-in.
4672 	 * We store the read-in bio in ->master_bio and the others in
4673 	 * ->devs[x].bio and ->devs[x].repl_bio.
4674 	 */
4675 	struct r10conf *conf = mddev->private;
4676 	struct r10bio *r10_bio;
4677 	sector_t next, safe, last;
4678 	int max_sectors;
4679 	int nr_sectors;
4680 	int s;
4681 	struct md_rdev *rdev;
4682 	int need_flush = 0;
4683 	struct bio *blist;
4684 	struct bio *bio, *read_bio;
4685 	int sectors_done = 0;
4686 	struct page **pages;
4687 
4688 	if (sector_nr == 0) {
4689 		/* If restarting in the middle, skip the initial sectors */
4690 		if (mddev->reshape_backwards &&
4691 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4692 			sector_nr = (raid10_size(mddev, 0, 0)
4693 				     - conf->reshape_progress);
4694 		} else if (!mddev->reshape_backwards &&
4695 			   conf->reshape_progress > 0)
4696 			sector_nr = conf->reshape_progress;
4697 		if (sector_nr) {
4698 			mddev->curr_resync_completed = sector_nr;
4699 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4700 			*skipped = 1;
4701 			return sector_nr;
4702 		}
4703 	}
4704 
4705 	/* We don't use sector_nr to track where we are up to
4706 	 * as that doesn't work well for ->reshape_backwards.
4707 	 * So just use ->reshape_progress.
4708 	 */
4709 	if (mddev->reshape_backwards) {
4710 		/* 'next' is the earliest device address that we might
4711 		 * write to for this chunk in the new layout
4712 		 */
4713 		next = first_dev_address(conf->reshape_progress - 1,
4714 					 &conf->geo);
4715 
4716 		/* 'safe' is the last device address that we might read from
4717 		 * in the old layout after a restart
4718 		 */
4719 		safe = last_dev_address(conf->reshape_safe - 1,
4720 					&conf->prev);
4721 
4722 		if (next + conf->offset_diff < safe)
4723 			need_flush = 1;
4724 
4725 		last = conf->reshape_progress - 1;
4726 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4727 					       & conf->prev.chunk_mask);
4728 		if (sector_nr + RESYNC_SECTORS < last)
4729 			sector_nr = last + 1 - RESYNC_SECTORS;
4730 	} else {
4731 		/* 'next' is after the last device address that we
4732 		 * might write to for this chunk in the new layout
4733 		 */
4734 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4735 
4736 		/* 'safe' is the earliest device address that we might
4737 		 * read from in the old layout after a restart
4738 		 */
4739 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4740 
4741 		/* Need to update metadata if 'next' might be beyond 'safe'
4742 		 * as that would possibly corrupt data
4743 		 */
4744 		if (next > safe + conf->offset_diff)
4745 			need_flush = 1;
4746 
4747 		sector_nr = conf->reshape_progress;
4748 		last  = sector_nr | (conf->geo.chunk_mask
4749 				     & conf->prev.chunk_mask);
4750 
4751 		if (sector_nr + RESYNC_SECTORS <= last)
4752 			last = sector_nr + RESYNC_SECTORS - 1;
4753 	}
4754 
4755 	if (need_flush ||
4756 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4757 		/* Need to update reshape_position in metadata */
4758 		wait_barrier(conf, false);
4759 		mddev->reshape_position = conf->reshape_progress;
4760 		if (mddev->reshape_backwards)
4761 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4762 				- conf->reshape_progress;
4763 		else
4764 			mddev->curr_resync_completed = conf->reshape_progress;
4765 		conf->reshape_checkpoint = jiffies;
4766 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4767 		md_wakeup_thread(mddev->thread);
4768 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4769 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4770 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4771 			allow_barrier(conf);
4772 			return sectors_done;
4773 		}
4774 		conf->reshape_safe = mddev->reshape_position;
4775 		allow_barrier(conf);
4776 	}
4777 
4778 	raise_barrier(conf, 0);
4779 read_more:
4780 	/* Now schedule reads for blocks from sector_nr to last */
4781 	r10_bio = raid10_alloc_init_r10buf(conf);
4782 	r10_bio->state = 0;
4783 	raise_barrier(conf, 1);
4784 	atomic_set(&r10_bio->remaining, 0);
4785 	r10_bio->mddev = mddev;
4786 	r10_bio->sector = sector_nr;
4787 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4788 	r10_bio->sectors = last - sector_nr + 1;
4789 	rdev = read_balance(conf, r10_bio, &max_sectors);
4790 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4791 
4792 	if (!rdev) {
4793 		/* Cannot read from here, so need to record bad blocks
4794 		 * on all the target devices.
4795 		 */
4796 		// FIXME
4797 		mempool_free(r10_bio, &conf->r10buf_pool);
4798 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4799 		return sectors_done;
4800 	}
4801 
4802 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4803 				    GFP_KERNEL, &mddev->bio_set);
4804 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4805 			       + rdev->data_offset);
4806 	read_bio->bi_private = r10_bio;
4807 	read_bio->bi_end_io = end_reshape_read;
4808 	r10_bio->master_bio = read_bio;
4809 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4810 
4811 	/*
4812 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4813 	 * write to the region to avoid conflict.
4814 	*/
4815 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4816 		struct mdp_superblock_1 *sb = NULL;
4817 		int sb_reshape_pos = 0;
4818 
4819 		conf->cluster_sync_low = sector_nr;
4820 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4821 		sb = page_address(rdev->sb_page);
4822 		if (sb) {
4823 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4824 			/*
4825 			 * Set cluster_sync_low again if next address for array
4826 			 * reshape is less than cluster_sync_low. Since we can't
4827 			 * update cluster_sync_low until it has finished reshape.
4828 			 */
4829 			if (sb_reshape_pos < conf->cluster_sync_low)
4830 				conf->cluster_sync_low = sb_reshape_pos;
4831 		}
4832 
4833 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4834 							  conf->cluster_sync_high);
4835 	}
4836 
4837 	/* Now find the locations in the new layout */
4838 	__raid10_find_phys(&conf->geo, r10_bio);
4839 
4840 	blist = read_bio;
4841 	read_bio->bi_next = NULL;
4842 
4843 	for (s = 0; s < conf->copies*2; s++) {
4844 		struct bio *b;
4845 		int d = r10_bio->devs[s/2].devnum;
4846 		struct md_rdev *rdev2;
4847 		if (s&1) {
4848 			rdev2 = conf->mirrors[d].replacement;
4849 			b = r10_bio->devs[s/2].repl_bio;
4850 		} else {
4851 			rdev2 = conf->mirrors[d].rdev;
4852 			b = r10_bio->devs[s/2].bio;
4853 		}
4854 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4855 			continue;
4856 
4857 		bio_set_dev(b, rdev2->bdev);
4858 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4859 			rdev2->new_data_offset;
4860 		b->bi_end_io = end_reshape_write;
4861 		b->bi_opf = REQ_OP_WRITE;
4862 		b->bi_next = blist;
4863 		blist = b;
4864 	}
4865 
4866 	/* Now add as many pages as possible to all of these bios. */
4867 
4868 	nr_sectors = 0;
4869 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4870 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4871 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4872 		int len = (max_sectors - s) << 9;
4873 		if (len > PAGE_SIZE)
4874 			len = PAGE_SIZE;
4875 		for (bio = blist; bio ; bio = bio->bi_next) {
4876 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4877 				bio->bi_status = BLK_STS_RESOURCE;
4878 				bio_endio(bio);
4879 				return sectors_done;
4880 			}
4881 		}
4882 		sector_nr += len >> 9;
4883 		nr_sectors += len >> 9;
4884 	}
4885 	r10_bio->sectors = nr_sectors;
4886 
4887 	/* Now submit the read */
4888 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4889 	atomic_inc(&r10_bio->remaining);
4890 	read_bio->bi_next = NULL;
4891 	submit_bio_noacct(read_bio);
4892 	sectors_done += nr_sectors;
4893 	if (sector_nr <= last)
4894 		goto read_more;
4895 
4896 	lower_barrier(conf);
4897 
4898 	/* Now that we have done the whole section we can
4899 	 * update reshape_progress
4900 	 */
4901 	if (mddev->reshape_backwards)
4902 		conf->reshape_progress -= sectors_done;
4903 	else
4904 		conf->reshape_progress += sectors_done;
4905 
4906 	return sectors_done;
4907 }
4908 
4909 static void end_reshape_request(struct r10bio *r10_bio);
4910 static int handle_reshape_read_error(struct mddev *mddev,
4911 				     struct r10bio *r10_bio);
4912 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4913 {
4914 	/* Reshape read completed.  Hopefully we have a block
4915 	 * to write out.
4916 	 * If we got a read error then we do sync 1-page reads from
4917 	 * elsewhere until we find the data - or give up.
4918 	 */
4919 	struct r10conf *conf = mddev->private;
4920 	int s;
4921 
4922 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4923 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4924 			/* Reshape has been aborted */
4925 			md_done_sync(mddev, r10_bio->sectors, 0);
4926 			return;
4927 		}
4928 
4929 	/* We definitely have the data in the pages, schedule the
4930 	 * writes.
4931 	 */
4932 	atomic_set(&r10_bio->remaining, 1);
4933 	for (s = 0; s < conf->copies*2; s++) {
4934 		struct bio *b;
4935 		int d = r10_bio->devs[s/2].devnum;
4936 		struct md_rdev *rdev;
4937 		if (s&1) {
4938 			rdev = conf->mirrors[d].replacement;
4939 			b = r10_bio->devs[s/2].repl_bio;
4940 		} else {
4941 			rdev = conf->mirrors[d].rdev;
4942 			b = r10_bio->devs[s/2].bio;
4943 		}
4944 		if (!rdev || test_bit(Faulty, &rdev->flags))
4945 			continue;
4946 
4947 		atomic_inc(&rdev->nr_pending);
4948 		md_sync_acct_bio(b, r10_bio->sectors);
4949 		atomic_inc(&r10_bio->remaining);
4950 		b->bi_next = NULL;
4951 		submit_bio_noacct(b);
4952 	}
4953 	end_reshape_request(r10_bio);
4954 }
4955 
4956 static void end_reshape(struct r10conf *conf)
4957 {
4958 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4959 		return;
4960 
4961 	spin_lock_irq(&conf->device_lock);
4962 	conf->prev = conf->geo;
4963 	md_finish_reshape(conf->mddev);
4964 	smp_wmb();
4965 	conf->reshape_progress = MaxSector;
4966 	conf->reshape_safe = MaxSector;
4967 	spin_unlock_irq(&conf->device_lock);
4968 
4969 	if (conf->mddev->queue)
4970 		raid10_set_io_opt(conf);
4971 	conf->fullsync = 0;
4972 }
4973 
4974 static void raid10_update_reshape_pos(struct mddev *mddev)
4975 {
4976 	struct r10conf *conf = mddev->private;
4977 	sector_t lo, hi;
4978 
4979 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4980 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4981 	    || mddev->reshape_position == MaxSector)
4982 		conf->reshape_progress = mddev->reshape_position;
4983 	else
4984 		WARN_ON_ONCE(1);
4985 }
4986 
4987 static int handle_reshape_read_error(struct mddev *mddev,
4988 				     struct r10bio *r10_bio)
4989 {
4990 	/* Use sync reads to get the blocks from somewhere else */
4991 	int sectors = r10_bio->sectors;
4992 	struct r10conf *conf = mddev->private;
4993 	struct r10bio *r10b;
4994 	int slot = 0;
4995 	int idx = 0;
4996 	struct page **pages;
4997 
4998 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4999 	if (!r10b) {
5000 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5001 		return -ENOMEM;
5002 	}
5003 
5004 	/* reshape IOs share pages from .devs[0].bio */
5005 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5006 
5007 	r10b->sector = r10_bio->sector;
5008 	__raid10_find_phys(&conf->prev, r10b);
5009 
5010 	while (sectors) {
5011 		int s = sectors;
5012 		int success = 0;
5013 		int first_slot = slot;
5014 
5015 		if (s > (PAGE_SIZE >> 9))
5016 			s = PAGE_SIZE >> 9;
5017 
5018 		while (!success) {
5019 			int d = r10b->devs[slot].devnum;
5020 			struct md_rdev *rdev = conf->mirrors[d].rdev;
5021 			sector_t addr;
5022 			if (rdev == NULL ||
5023 			    test_bit(Faulty, &rdev->flags) ||
5024 			    !test_bit(In_sync, &rdev->flags))
5025 				goto failed;
5026 
5027 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5028 			atomic_inc(&rdev->nr_pending);
5029 			success = sync_page_io(rdev,
5030 					       addr,
5031 					       s << 9,
5032 					       pages[idx],
5033 					       REQ_OP_READ, false);
5034 			rdev_dec_pending(rdev, mddev);
5035 			if (success)
5036 				break;
5037 		failed:
5038 			slot++;
5039 			if (slot >= conf->copies)
5040 				slot = 0;
5041 			if (slot == first_slot)
5042 				break;
5043 		}
5044 		if (!success) {
5045 			/* couldn't read this block, must give up */
5046 			set_bit(MD_RECOVERY_INTR,
5047 				&mddev->recovery);
5048 			kfree(r10b);
5049 			return -EIO;
5050 		}
5051 		sectors -= s;
5052 		idx++;
5053 	}
5054 	kfree(r10b);
5055 	return 0;
5056 }
5057 
5058 static void end_reshape_write(struct bio *bio)
5059 {
5060 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5061 	struct mddev *mddev = r10_bio->mddev;
5062 	struct r10conf *conf = mddev->private;
5063 	int d;
5064 	int slot;
5065 	int repl;
5066 	struct md_rdev *rdev = NULL;
5067 
5068 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5069 	rdev = repl ? conf->mirrors[d].replacement :
5070 		      conf->mirrors[d].rdev;
5071 
5072 	if (bio->bi_status) {
5073 		/* FIXME should record badblock */
5074 		md_error(mddev, rdev);
5075 	}
5076 
5077 	rdev_dec_pending(rdev, mddev);
5078 	end_reshape_request(r10_bio);
5079 }
5080 
5081 static void end_reshape_request(struct r10bio *r10_bio)
5082 {
5083 	if (!atomic_dec_and_test(&r10_bio->remaining))
5084 		return;
5085 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5086 	bio_put(r10_bio->master_bio);
5087 	put_buf(r10_bio);
5088 }
5089 
5090 static void raid10_finish_reshape(struct mddev *mddev)
5091 {
5092 	struct r10conf *conf = mddev->private;
5093 
5094 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5095 		return;
5096 
5097 	if (mddev->delta_disks > 0) {
5098 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5099 			mddev->recovery_cp = mddev->resync_max_sectors;
5100 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5101 		}
5102 		mddev->resync_max_sectors = mddev->array_sectors;
5103 	} else {
5104 		int d;
5105 		for (d = conf->geo.raid_disks ;
5106 		     d < conf->geo.raid_disks - mddev->delta_disks;
5107 		     d++) {
5108 			struct md_rdev *rdev = conf->mirrors[d].rdev;
5109 			if (rdev)
5110 				clear_bit(In_sync, &rdev->flags);
5111 			rdev = conf->mirrors[d].replacement;
5112 			if (rdev)
5113 				clear_bit(In_sync, &rdev->flags);
5114 		}
5115 	}
5116 	mddev->layout = mddev->new_layout;
5117 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5118 	mddev->reshape_position = MaxSector;
5119 	mddev->delta_disks = 0;
5120 	mddev->reshape_backwards = 0;
5121 }
5122 
5123 static struct md_personality raid10_personality =
5124 {
5125 	.name		= "raid10",
5126 	.level		= 10,
5127 	.owner		= THIS_MODULE,
5128 	.make_request	= raid10_make_request,
5129 	.run		= raid10_run,
5130 	.free		= raid10_free,
5131 	.status		= raid10_status,
5132 	.error_handler	= raid10_error,
5133 	.hot_add_disk	= raid10_add_disk,
5134 	.hot_remove_disk= raid10_remove_disk,
5135 	.spare_active	= raid10_spare_active,
5136 	.sync_request	= raid10_sync_request,
5137 	.quiesce	= raid10_quiesce,
5138 	.size		= raid10_size,
5139 	.resize		= raid10_resize,
5140 	.takeover	= raid10_takeover,
5141 	.check_reshape	= raid10_check_reshape,
5142 	.start_reshape	= raid10_start_reshape,
5143 	.finish_reshape	= raid10_finish_reshape,
5144 	.update_reshape_pos = raid10_update_reshape_pos,
5145 };
5146 
5147 static int __init raid_init(void)
5148 {
5149 	return register_md_personality(&raid10_personality);
5150 }
5151 
5152 static void raid_exit(void)
5153 {
5154 	unregister_md_personality(&raid10_personality);
5155 }
5156 
5157 module_init(raid_init);
5158 module_exit(raid_exit);
5159 MODULE_LICENSE("GPL");
5160 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5161 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5162 MODULE_ALIAS("md-raid10");
5163 MODULE_ALIAS("md-level-10");
5164