1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/seq_file.h> 25 #include "md.h" 26 #include "raid10.h" 27 #include "raid0.h" 28 #include "bitmap.h" 29 30 /* 31 * RAID10 provides a combination of RAID0 and RAID1 functionality. 32 * The layout of data is defined by 33 * chunk_size 34 * raid_disks 35 * near_copies (stored in low byte of layout) 36 * far_copies (stored in second byte of layout) 37 * far_offset (stored in bit 16 of layout ) 38 * 39 * The data to be stored is divided into chunks using chunksize. 40 * Each device is divided into far_copies sections. 41 * In each section, chunks are laid out in a style similar to raid0, but 42 * near_copies copies of each chunk is stored (each on a different drive). 43 * The starting device for each section is offset near_copies from the starting 44 * device of the previous section. 45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 46 * drive. 47 * near_copies and far_copies must be at least one, and their product is at most 48 * raid_disks. 49 * 50 * If far_offset is true, then the far_copies are handled a bit differently. 51 * The copies are still in different stripes, but instead of be very far apart 52 * on disk, there are adjacent stripes. 53 */ 54 55 /* 56 * Number of guaranteed r10bios in case of extreme VM load: 57 */ 58 #define NR_RAID10_BIOS 256 59 60 static void allow_barrier(conf_t *conf); 61 static void lower_barrier(conf_t *conf); 62 63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 64 { 65 conf_t *conf = data; 66 int size = offsetof(struct r10bio_s, devs[conf->copies]); 67 68 /* allocate a r10bio with room for raid_disks entries in the bios array */ 69 return kzalloc(size, gfp_flags); 70 } 71 72 static void r10bio_pool_free(void *r10_bio, void *data) 73 { 74 kfree(r10_bio); 75 } 76 77 /* Maximum size of each resync request */ 78 #define RESYNC_BLOCK_SIZE (64*1024) 79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 80 /* amount of memory to reserve for resync requests */ 81 #define RESYNC_WINDOW (1024*1024) 82 /* maximum number of concurrent requests, memory permitting */ 83 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) 103 return NULL; 104 105 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 106 nalloc = conf->copies; /* resync */ 107 else 108 nalloc = 2; /* recovery */ 109 110 /* 111 * Allocate bios. 112 */ 113 for (j = nalloc ; j-- ; ) { 114 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 115 if (!bio) 116 goto out_free_bio; 117 r10_bio->devs[j].bio = bio; 118 } 119 /* 120 * Allocate RESYNC_PAGES data pages and attach them 121 * where needed. 122 */ 123 for (j = 0 ; j < nalloc; j++) { 124 bio = r10_bio->devs[j].bio; 125 for (i = 0; i < RESYNC_PAGES; i++) { 126 page = alloc_page(gfp_flags); 127 if (unlikely(!page)) 128 goto out_free_pages; 129 130 bio->bi_io_vec[i].bv_page = page; 131 } 132 } 133 134 return r10_bio; 135 136 out_free_pages: 137 for ( ; i > 0 ; i--) 138 safe_put_page(bio->bi_io_vec[i-1].bv_page); 139 while (j--) 140 for (i = 0; i < RESYNC_PAGES ; i++) 141 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 142 j = -1; 143 out_free_bio: 144 while ( ++j < nalloc ) 145 bio_put(r10_bio->devs[j].bio); 146 r10bio_pool_free(r10_bio, conf); 147 return NULL; 148 } 149 150 static void r10buf_pool_free(void *__r10_bio, void *data) 151 { 152 int i; 153 conf_t *conf = data; 154 r10bio_t *r10bio = __r10_bio; 155 int j; 156 157 for (j=0; j < conf->copies; j++) { 158 struct bio *bio = r10bio->devs[j].bio; 159 if (bio) { 160 for (i = 0; i < RESYNC_PAGES; i++) { 161 safe_put_page(bio->bi_io_vec[i].bv_page); 162 bio->bi_io_vec[i].bv_page = NULL; 163 } 164 bio_put(bio); 165 } 166 } 167 r10bio_pool_free(r10bio, conf); 168 } 169 170 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 171 { 172 int i; 173 174 for (i = 0; i < conf->copies; i++) { 175 struct bio **bio = & r10_bio->devs[i].bio; 176 if (*bio && *bio != IO_BLOCKED) 177 bio_put(*bio); 178 *bio = NULL; 179 } 180 } 181 182 static void free_r10bio(r10bio_t *r10_bio) 183 { 184 conf_t *conf = r10_bio->mddev->private; 185 186 /* 187 * Wake up any possible resync thread that waits for the device 188 * to go idle. 189 */ 190 allow_barrier(conf); 191 192 put_all_bios(conf, r10_bio); 193 mempool_free(r10_bio, conf->r10bio_pool); 194 } 195 196 static void put_buf(r10bio_t *r10_bio) 197 { 198 conf_t *conf = r10_bio->mddev->private; 199 200 mempool_free(r10_bio, conf->r10buf_pool); 201 202 lower_barrier(conf); 203 } 204 205 static void reschedule_retry(r10bio_t *r10_bio) 206 { 207 unsigned long flags; 208 mddev_t *mddev = r10_bio->mddev; 209 conf_t *conf = mddev->private; 210 211 spin_lock_irqsave(&conf->device_lock, flags); 212 list_add(&r10_bio->retry_list, &conf->retry_list); 213 conf->nr_queued ++; 214 spin_unlock_irqrestore(&conf->device_lock, flags); 215 216 /* wake up frozen array... */ 217 wake_up(&conf->wait_barrier); 218 219 md_wakeup_thread(mddev->thread); 220 } 221 222 /* 223 * raid_end_bio_io() is called when we have finished servicing a mirrored 224 * operation and are ready to return a success/failure code to the buffer 225 * cache layer. 226 */ 227 static void raid_end_bio_io(r10bio_t *r10_bio) 228 { 229 struct bio *bio = r10_bio->master_bio; 230 231 bio_endio(bio, 232 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 233 free_r10bio(r10_bio); 234 } 235 236 /* 237 * Update disk head position estimator based on IRQ completion info. 238 */ 239 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 240 { 241 conf_t *conf = r10_bio->mddev->private; 242 243 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 244 r10_bio->devs[slot].addr + (r10_bio->sectors); 245 } 246 247 static void raid10_end_read_request(struct bio *bio, int error) 248 { 249 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 250 r10bio_t *r10_bio = bio->bi_private; 251 int slot, dev; 252 conf_t *conf = r10_bio->mddev->private; 253 254 255 slot = r10_bio->read_slot; 256 dev = r10_bio->devs[slot].devnum; 257 /* 258 * this branch is our 'one mirror IO has finished' event handler: 259 */ 260 update_head_pos(slot, r10_bio); 261 262 if (uptodate) { 263 /* 264 * Set R10BIO_Uptodate in our master bio, so that 265 * we will return a good error code to the higher 266 * levels even if IO on some other mirrored buffer fails. 267 * 268 * The 'master' represents the composite IO operation to 269 * user-side. So if something waits for IO, then it will 270 * wait for the 'master' bio. 271 */ 272 set_bit(R10BIO_Uptodate, &r10_bio->state); 273 raid_end_bio_io(r10_bio); 274 } else { 275 /* 276 * oops, read error: 277 */ 278 char b[BDEVNAME_SIZE]; 279 if (printk_ratelimit()) 280 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n", 281 mdname(conf->mddev), 282 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 283 reschedule_retry(r10_bio); 284 } 285 286 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 287 } 288 289 static void raid10_end_write_request(struct bio *bio, int error) 290 { 291 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 292 r10bio_t *r10_bio = bio->bi_private; 293 int slot, dev; 294 conf_t *conf = r10_bio->mddev->private; 295 296 for (slot = 0; slot < conf->copies; slot++) 297 if (r10_bio->devs[slot].bio == bio) 298 break; 299 dev = r10_bio->devs[slot].devnum; 300 301 /* 302 * this branch is our 'one mirror IO has finished' event handler: 303 */ 304 if (!uptodate) { 305 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 306 /* an I/O failed, we can't clear the bitmap */ 307 set_bit(R10BIO_Degraded, &r10_bio->state); 308 } else 309 /* 310 * Set R10BIO_Uptodate in our master bio, so that 311 * we will return a good error code for to the higher 312 * levels even if IO on some other mirrored buffer fails. 313 * 314 * The 'master' represents the composite IO operation to 315 * user-side. So if something waits for IO, then it will 316 * wait for the 'master' bio. 317 */ 318 set_bit(R10BIO_Uptodate, &r10_bio->state); 319 320 update_head_pos(slot, r10_bio); 321 322 /* 323 * 324 * Let's see if all mirrored write operations have finished 325 * already. 326 */ 327 if (atomic_dec_and_test(&r10_bio->remaining)) { 328 /* clear the bitmap if all writes complete successfully */ 329 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 330 r10_bio->sectors, 331 !test_bit(R10BIO_Degraded, &r10_bio->state), 332 0); 333 md_write_end(r10_bio->mddev); 334 raid_end_bio_io(r10_bio); 335 } 336 337 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 338 } 339 340 341 /* 342 * RAID10 layout manager 343 * As well as the chunksize and raid_disks count, there are two 344 * parameters: near_copies and far_copies. 345 * near_copies * far_copies must be <= raid_disks. 346 * Normally one of these will be 1. 347 * If both are 1, we get raid0. 348 * If near_copies == raid_disks, we get raid1. 349 * 350 * Chunks are laid out in raid0 style with near_copies copies of the 351 * first chunk, followed by near_copies copies of the next chunk and 352 * so on. 353 * If far_copies > 1, then after 1/far_copies of the array has been assigned 354 * as described above, we start again with a device offset of near_copies. 355 * So we effectively have another copy of the whole array further down all 356 * the drives, but with blocks on different drives. 357 * With this layout, and block is never stored twice on the one device. 358 * 359 * raid10_find_phys finds the sector offset of a given virtual sector 360 * on each device that it is on. 361 * 362 * raid10_find_virt does the reverse mapping, from a device and a 363 * sector offset to a virtual address 364 */ 365 366 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 367 { 368 int n,f; 369 sector_t sector; 370 sector_t chunk; 371 sector_t stripe; 372 int dev; 373 374 int slot = 0; 375 376 /* now calculate first sector/dev */ 377 chunk = r10bio->sector >> conf->chunk_shift; 378 sector = r10bio->sector & conf->chunk_mask; 379 380 chunk *= conf->near_copies; 381 stripe = chunk; 382 dev = sector_div(stripe, conf->raid_disks); 383 if (conf->far_offset) 384 stripe *= conf->far_copies; 385 386 sector += stripe << conf->chunk_shift; 387 388 /* and calculate all the others */ 389 for (n=0; n < conf->near_copies; n++) { 390 int d = dev; 391 sector_t s = sector; 392 r10bio->devs[slot].addr = sector; 393 r10bio->devs[slot].devnum = d; 394 slot++; 395 396 for (f = 1; f < conf->far_copies; f++) { 397 d += conf->near_copies; 398 if (d >= conf->raid_disks) 399 d -= conf->raid_disks; 400 s += conf->stride; 401 r10bio->devs[slot].devnum = d; 402 r10bio->devs[slot].addr = s; 403 slot++; 404 } 405 dev++; 406 if (dev >= conf->raid_disks) { 407 dev = 0; 408 sector += (conf->chunk_mask + 1); 409 } 410 } 411 BUG_ON(slot != conf->copies); 412 } 413 414 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 415 { 416 sector_t offset, chunk, vchunk; 417 418 offset = sector & conf->chunk_mask; 419 if (conf->far_offset) { 420 int fc; 421 chunk = sector >> conf->chunk_shift; 422 fc = sector_div(chunk, conf->far_copies); 423 dev -= fc * conf->near_copies; 424 if (dev < 0) 425 dev += conf->raid_disks; 426 } else { 427 while (sector >= conf->stride) { 428 sector -= conf->stride; 429 if (dev < conf->near_copies) 430 dev += conf->raid_disks - conf->near_copies; 431 else 432 dev -= conf->near_copies; 433 } 434 chunk = sector >> conf->chunk_shift; 435 } 436 vchunk = chunk * conf->raid_disks + dev; 437 sector_div(vchunk, conf->near_copies); 438 return (vchunk << conf->chunk_shift) + offset; 439 } 440 441 /** 442 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 443 * @q: request queue 444 * @bvm: properties of new bio 445 * @biovec: the request that could be merged to it. 446 * 447 * Return amount of bytes we can accept at this offset 448 * If near_copies == raid_disk, there are no striping issues, 449 * but in that case, the function isn't called at all. 450 */ 451 static int raid10_mergeable_bvec(struct request_queue *q, 452 struct bvec_merge_data *bvm, 453 struct bio_vec *biovec) 454 { 455 mddev_t *mddev = q->queuedata; 456 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 457 int max; 458 unsigned int chunk_sectors = mddev->chunk_sectors; 459 unsigned int bio_sectors = bvm->bi_size >> 9; 460 461 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 462 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 463 if (max <= biovec->bv_len && bio_sectors == 0) 464 return biovec->bv_len; 465 else 466 return max; 467 } 468 469 /* 470 * This routine returns the disk from which the requested read should 471 * be done. There is a per-array 'next expected sequential IO' sector 472 * number - if this matches on the next IO then we use the last disk. 473 * There is also a per-disk 'last know head position' sector that is 474 * maintained from IRQ contexts, both the normal and the resync IO 475 * completion handlers update this position correctly. If there is no 476 * perfect sequential match then we pick the disk whose head is closest. 477 * 478 * If there are 2 mirrors in the same 2 devices, performance degrades 479 * because position is mirror, not device based. 480 * 481 * The rdev for the device selected will have nr_pending incremented. 482 */ 483 484 /* 485 * FIXME: possibly should rethink readbalancing and do it differently 486 * depending on near_copies / far_copies geometry. 487 */ 488 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 489 { 490 const sector_t this_sector = r10_bio->sector; 491 int disk, slot, nslot; 492 const int sectors = r10_bio->sectors; 493 sector_t new_distance, current_distance; 494 mdk_rdev_t *rdev; 495 496 raid10_find_phys(conf, r10_bio); 497 rcu_read_lock(); 498 /* 499 * Check if we can balance. We can balance on the whole 500 * device if no resync is going on (recovery is ok), or below 501 * the resync window. We take the first readable disk when 502 * above the resync window. 503 */ 504 if (conf->mddev->recovery_cp < MaxSector 505 && (this_sector + sectors >= conf->next_resync)) { 506 /* make sure that disk is operational */ 507 slot = 0; 508 disk = r10_bio->devs[slot].devnum; 509 510 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 511 r10_bio->devs[slot].bio == IO_BLOCKED || 512 !test_bit(In_sync, &rdev->flags)) { 513 slot++; 514 if (slot == conf->copies) { 515 slot = 0; 516 disk = -1; 517 break; 518 } 519 disk = r10_bio->devs[slot].devnum; 520 } 521 goto rb_out; 522 } 523 524 525 /* make sure the disk is operational */ 526 slot = 0; 527 disk = r10_bio->devs[slot].devnum; 528 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 529 r10_bio->devs[slot].bio == IO_BLOCKED || 530 !test_bit(In_sync, &rdev->flags)) { 531 slot ++; 532 if (slot == conf->copies) { 533 disk = -1; 534 goto rb_out; 535 } 536 disk = r10_bio->devs[slot].devnum; 537 } 538 539 540 current_distance = abs(r10_bio->devs[slot].addr - 541 conf->mirrors[disk].head_position); 542 543 /* Find the disk whose head is closest, 544 * or - for far > 1 - find the closest to partition beginning */ 545 546 for (nslot = slot; nslot < conf->copies; nslot++) { 547 int ndisk = r10_bio->devs[nslot].devnum; 548 549 550 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 551 r10_bio->devs[nslot].bio == IO_BLOCKED || 552 !test_bit(In_sync, &rdev->flags)) 553 continue; 554 555 /* This optimisation is debatable, and completely destroys 556 * sequential read speed for 'far copies' arrays. So only 557 * keep it for 'near' arrays, and review those later. 558 */ 559 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 560 disk = ndisk; 561 slot = nslot; 562 break; 563 } 564 565 /* for far > 1 always use the lowest address */ 566 if (conf->far_copies > 1) 567 new_distance = r10_bio->devs[nslot].addr; 568 else 569 new_distance = abs(r10_bio->devs[nslot].addr - 570 conf->mirrors[ndisk].head_position); 571 if (new_distance < current_distance) { 572 current_distance = new_distance; 573 disk = ndisk; 574 slot = nslot; 575 } 576 } 577 578 rb_out: 579 r10_bio->read_slot = slot; 580 /* conf->next_seq_sect = this_sector + sectors;*/ 581 582 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 583 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 584 else 585 disk = -1; 586 rcu_read_unlock(); 587 588 return disk; 589 } 590 591 static int raid10_congested(void *data, int bits) 592 { 593 mddev_t *mddev = data; 594 conf_t *conf = mddev->private; 595 int i, ret = 0; 596 597 if (mddev_congested(mddev, bits)) 598 return 1; 599 rcu_read_lock(); 600 for (i = 0; i < conf->raid_disks && ret == 0; i++) { 601 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 602 if (rdev && !test_bit(Faulty, &rdev->flags)) { 603 struct request_queue *q = bdev_get_queue(rdev->bdev); 604 605 ret |= bdi_congested(&q->backing_dev_info, bits); 606 } 607 } 608 rcu_read_unlock(); 609 return ret; 610 } 611 612 static void flush_pending_writes(conf_t *conf) 613 { 614 /* Any writes that have been queued but are awaiting 615 * bitmap updates get flushed here. 616 */ 617 spin_lock_irq(&conf->device_lock); 618 619 if (conf->pending_bio_list.head) { 620 struct bio *bio; 621 bio = bio_list_get(&conf->pending_bio_list); 622 spin_unlock_irq(&conf->device_lock); 623 /* flush any pending bitmap writes to disk 624 * before proceeding w/ I/O */ 625 bitmap_unplug(conf->mddev->bitmap); 626 627 while (bio) { /* submit pending writes */ 628 struct bio *next = bio->bi_next; 629 bio->bi_next = NULL; 630 generic_make_request(bio); 631 bio = next; 632 } 633 } else 634 spin_unlock_irq(&conf->device_lock); 635 } 636 637 /* Barriers.... 638 * Sometimes we need to suspend IO while we do something else, 639 * either some resync/recovery, or reconfigure the array. 640 * To do this we raise a 'barrier'. 641 * The 'barrier' is a counter that can be raised multiple times 642 * to count how many activities are happening which preclude 643 * normal IO. 644 * We can only raise the barrier if there is no pending IO. 645 * i.e. if nr_pending == 0. 646 * We choose only to raise the barrier if no-one is waiting for the 647 * barrier to go down. This means that as soon as an IO request 648 * is ready, no other operations which require a barrier will start 649 * until the IO request has had a chance. 650 * 651 * So: regular IO calls 'wait_barrier'. When that returns there 652 * is no backgroup IO happening, It must arrange to call 653 * allow_barrier when it has finished its IO. 654 * backgroup IO calls must call raise_barrier. Once that returns 655 * there is no normal IO happeing. It must arrange to call 656 * lower_barrier when the particular background IO completes. 657 */ 658 659 static void raise_barrier(conf_t *conf, int force) 660 { 661 BUG_ON(force && !conf->barrier); 662 spin_lock_irq(&conf->resync_lock); 663 664 /* Wait until no block IO is waiting (unless 'force') */ 665 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 666 conf->resync_lock, ); 667 668 /* block any new IO from starting */ 669 conf->barrier++; 670 671 /* Now wait for all pending IO to complete */ 672 wait_event_lock_irq(conf->wait_barrier, 673 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 674 conf->resync_lock, ); 675 676 spin_unlock_irq(&conf->resync_lock); 677 } 678 679 static void lower_barrier(conf_t *conf) 680 { 681 unsigned long flags; 682 spin_lock_irqsave(&conf->resync_lock, flags); 683 conf->barrier--; 684 spin_unlock_irqrestore(&conf->resync_lock, flags); 685 wake_up(&conf->wait_barrier); 686 } 687 688 static void wait_barrier(conf_t *conf) 689 { 690 spin_lock_irq(&conf->resync_lock); 691 if (conf->barrier) { 692 conf->nr_waiting++; 693 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 694 conf->resync_lock, 695 ); 696 conf->nr_waiting--; 697 } 698 conf->nr_pending++; 699 spin_unlock_irq(&conf->resync_lock); 700 } 701 702 static void allow_barrier(conf_t *conf) 703 { 704 unsigned long flags; 705 spin_lock_irqsave(&conf->resync_lock, flags); 706 conf->nr_pending--; 707 spin_unlock_irqrestore(&conf->resync_lock, flags); 708 wake_up(&conf->wait_barrier); 709 } 710 711 static void freeze_array(conf_t *conf) 712 { 713 /* stop syncio and normal IO and wait for everything to 714 * go quiet. 715 * We increment barrier and nr_waiting, and then 716 * wait until nr_pending match nr_queued+1 717 * This is called in the context of one normal IO request 718 * that has failed. Thus any sync request that might be pending 719 * will be blocked by nr_pending, and we need to wait for 720 * pending IO requests to complete or be queued for re-try. 721 * Thus the number queued (nr_queued) plus this request (1) 722 * must match the number of pending IOs (nr_pending) before 723 * we continue. 724 */ 725 spin_lock_irq(&conf->resync_lock); 726 conf->barrier++; 727 conf->nr_waiting++; 728 wait_event_lock_irq(conf->wait_barrier, 729 conf->nr_pending == conf->nr_queued+1, 730 conf->resync_lock, 731 flush_pending_writes(conf)); 732 733 spin_unlock_irq(&conf->resync_lock); 734 } 735 736 static void unfreeze_array(conf_t *conf) 737 { 738 /* reverse the effect of the freeze */ 739 spin_lock_irq(&conf->resync_lock); 740 conf->barrier--; 741 conf->nr_waiting--; 742 wake_up(&conf->wait_barrier); 743 spin_unlock_irq(&conf->resync_lock); 744 } 745 746 static int make_request(mddev_t *mddev, struct bio * bio) 747 { 748 conf_t *conf = mddev->private; 749 mirror_info_t *mirror; 750 r10bio_t *r10_bio; 751 struct bio *read_bio; 752 int i; 753 int chunk_sects = conf->chunk_mask + 1; 754 const int rw = bio_data_dir(bio); 755 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 756 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 757 unsigned long flags; 758 mdk_rdev_t *blocked_rdev; 759 int plugged; 760 761 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 762 md_flush_request(mddev, bio); 763 return 0; 764 } 765 766 /* If this request crosses a chunk boundary, we need to 767 * split it. This will only happen for 1 PAGE (or less) requests. 768 */ 769 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 770 > chunk_sects && 771 conf->near_copies < conf->raid_disks)) { 772 struct bio_pair *bp; 773 /* Sanity check -- queue functions should prevent this happening */ 774 if (bio->bi_vcnt != 1 || 775 bio->bi_idx != 0) 776 goto bad_map; 777 /* This is a one page bio that upper layers 778 * refuse to split for us, so we need to split it. 779 */ 780 bp = bio_split(bio, 781 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 782 783 /* Each of these 'make_request' calls will call 'wait_barrier'. 784 * If the first succeeds but the second blocks due to the resync 785 * thread raising the barrier, we will deadlock because the 786 * IO to the underlying device will be queued in generic_make_request 787 * and will never complete, so will never reduce nr_pending. 788 * So increment nr_waiting here so no new raise_barriers will 789 * succeed, and so the second wait_barrier cannot block. 790 */ 791 spin_lock_irq(&conf->resync_lock); 792 conf->nr_waiting++; 793 spin_unlock_irq(&conf->resync_lock); 794 795 if (make_request(mddev, &bp->bio1)) 796 generic_make_request(&bp->bio1); 797 if (make_request(mddev, &bp->bio2)) 798 generic_make_request(&bp->bio2); 799 800 spin_lock_irq(&conf->resync_lock); 801 conf->nr_waiting--; 802 wake_up(&conf->wait_barrier); 803 spin_unlock_irq(&conf->resync_lock); 804 805 bio_pair_release(bp); 806 return 0; 807 bad_map: 808 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 809 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 810 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 811 812 bio_io_error(bio); 813 return 0; 814 } 815 816 md_write_start(mddev, bio); 817 818 /* 819 * Register the new request and wait if the reconstruction 820 * thread has put up a bar for new requests. 821 * Continue immediately if no resync is active currently. 822 */ 823 wait_barrier(conf); 824 825 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 826 827 r10_bio->master_bio = bio; 828 r10_bio->sectors = bio->bi_size >> 9; 829 830 r10_bio->mddev = mddev; 831 r10_bio->sector = bio->bi_sector; 832 r10_bio->state = 0; 833 834 if (rw == READ) { 835 /* 836 * read balancing logic: 837 */ 838 int disk = read_balance(conf, r10_bio); 839 int slot = r10_bio->read_slot; 840 if (disk < 0) { 841 raid_end_bio_io(r10_bio); 842 return 0; 843 } 844 mirror = conf->mirrors + disk; 845 846 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 847 848 r10_bio->devs[slot].bio = read_bio; 849 850 read_bio->bi_sector = r10_bio->devs[slot].addr + 851 mirror->rdev->data_offset; 852 read_bio->bi_bdev = mirror->rdev->bdev; 853 read_bio->bi_end_io = raid10_end_read_request; 854 read_bio->bi_rw = READ | do_sync; 855 read_bio->bi_private = r10_bio; 856 857 generic_make_request(read_bio); 858 return 0; 859 } 860 861 /* 862 * WRITE: 863 */ 864 /* first select target devices under rcu_lock and 865 * inc refcount on their rdev. Record them by setting 866 * bios[x] to bio 867 */ 868 plugged = mddev_check_plugged(mddev); 869 870 raid10_find_phys(conf, r10_bio); 871 retry_write: 872 blocked_rdev = NULL; 873 rcu_read_lock(); 874 for (i = 0; i < conf->copies; i++) { 875 int d = r10_bio->devs[i].devnum; 876 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 877 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 878 atomic_inc(&rdev->nr_pending); 879 blocked_rdev = rdev; 880 break; 881 } 882 if (rdev && !test_bit(Faulty, &rdev->flags)) { 883 atomic_inc(&rdev->nr_pending); 884 r10_bio->devs[i].bio = bio; 885 } else { 886 r10_bio->devs[i].bio = NULL; 887 set_bit(R10BIO_Degraded, &r10_bio->state); 888 } 889 } 890 rcu_read_unlock(); 891 892 if (unlikely(blocked_rdev)) { 893 /* Have to wait for this device to get unblocked, then retry */ 894 int j; 895 int d; 896 897 for (j = 0; j < i; j++) 898 if (r10_bio->devs[j].bio) { 899 d = r10_bio->devs[j].devnum; 900 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 901 } 902 allow_barrier(conf); 903 md_wait_for_blocked_rdev(blocked_rdev, mddev); 904 wait_barrier(conf); 905 goto retry_write; 906 } 907 908 atomic_set(&r10_bio->remaining, 1); 909 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 910 911 for (i = 0; i < conf->copies; i++) { 912 struct bio *mbio; 913 int d = r10_bio->devs[i].devnum; 914 if (!r10_bio->devs[i].bio) 915 continue; 916 917 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 918 r10_bio->devs[i].bio = mbio; 919 920 mbio->bi_sector = r10_bio->devs[i].addr+ 921 conf->mirrors[d].rdev->data_offset; 922 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 923 mbio->bi_end_io = raid10_end_write_request; 924 mbio->bi_rw = WRITE | do_sync | do_fua; 925 mbio->bi_private = r10_bio; 926 927 atomic_inc(&r10_bio->remaining); 928 spin_lock_irqsave(&conf->device_lock, flags); 929 bio_list_add(&conf->pending_bio_list, mbio); 930 spin_unlock_irqrestore(&conf->device_lock, flags); 931 } 932 933 if (atomic_dec_and_test(&r10_bio->remaining)) { 934 /* This matches the end of raid10_end_write_request() */ 935 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 936 r10_bio->sectors, 937 !test_bit(R10BIO_Degraded, &r10_bio->state), 938 0); 939 md_write_end(mddev); 940 raid_end_bio_io(r10_bio); 941 } 942 943 /* In case raid10d snuck in to freeze_array */ 944 wake_up(&conf->wait_barrier); 945 946 if (do_sync || !mddev->bitmap || !plugged) 947 md_wakeup_thread(mddev->thread); 948 return 0; 949 } 950 951 static void status(struct seq_file *seq, mddev_t *mddev) 952 { 953 conf_t *conf = mddev->private; 954 int i; 955 956 if (conf->near_copies < conf->raid_disks) 957 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 958 if (conf->near_copies > 1) 959 seq_printf(seq, " %d near-copies", conf->near_copies); 960 if (conf->far_copies > 1) { 961 if (conf->far_offset) 962 seq_printf(seq, " %d offset-copies", conf->far_copies); 963 else 964 seq_printf(seq, " %d far-copies", conf->far_copies); 965 } 966 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 967 conf->raid_disks - mddev->degraded); 968 for (i = 0; i < conf->raid_disks; i++) 969 seq_printf(seq, "%s", 970 conf->mirrors[i].rdev && 971 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 972 seq_printf(seq, "]"); 973 } 974 975 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 976 { 977 char b[BDEVNAME_SIZE]; 978 conf_t *conf = mddev->private; 979 980 /* 981 * If it is not operational, then we have already marked it as dead 982 * else if it is the last working disks, ignore the error, let the 983 * next level up know. 984 * else mark the drive as failed 985 */ 986 if (test_bit(In_sync, &rdev->flags) 987 && conf->raid_disks-mddev->degraded == 1) 988 /* 989 * Don't fail the drive, just return an IO error. 990 * The test should really be more sophisticated than 991 * "working_disks == 1", but it isn't critical, and 992 * can wait until we do more sophisticated "is the drive 993 * really dead" tests... 994 */ 995 return; 996 if (test_and_clear_bit(In_sync, &rdev->flags)) { 997 unsigned long flags; 998 spin_lock_irqsave(&conf->device_lock, flags); 999 mddev->degraded++; 1000 spin_unlock_irqrestore(&conf->device_lock, flags); 1001 /* 1002 * if recovery is running, make sure it aborts. 1003 */ 1004 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1005 } 1006 set_bit(Faulty, &rdev->flags); 1007 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1008 printk(KERN_ALERT 1009 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1010 "md/raid10:%s: Operation continuing on %d devices.\n", 1011 mdname(mddev), bdevname(rdev->bdev, b), 1012 mdname(mddev), conf->raid_disks - mddev->degraded); 1013 } 1014 1015 static void print_conf(conf_t *conf) 1016 { 1017 int i; 1018 mirror_info_t *tmp; 1019 1020 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1021 if (!conf) { 1022 printk(KERN_DEBUG "(!conf)\n"); 1023 return; 1024 } 1025 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1026 conf->raid_disks); 1027 1028 for (i = 0; i < conf->raid_disks; i++) { 1029 char b[BDEVNAME_SIZE]; 1030 tmp = conf->mirrors + i; 1031 if (tmp->rdev) 1032 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1033 i, !test_bit(In_sync, &tmp->rdev->flags), 1034 !test_bit(Faulty, &tmp->rdev->flags), 1035 bdevname(tmp->rdev->bdev,b)); 1036 } 1037 } 1038 1039 static void close_sync(conf_t *conf) 1040 { 1041 wait_barrier(conf); 1042 allow_barrier(conf); 1043 1044 mempool_destroy(conf->r10buf_pool); 1045 conf->r10buf_pool = NULL; 1046 } 1047 1048 /* check if there are enough drives for 1049 * every block to appear on atleast one 1050 */ 1051 static int enough(conf_t *conf) 1052 { 1053 int first = 0; 1054 1055 do { 1056 int n = conf->copies; 1057 int cnt = 0; 1058 while (n--) { 1059 if (conf->mirrors[first].rdev) 1060 cnt++; 1061 first = (first+1) % conf->raid_disks; 1062 } 1063 if (cnt == 0) 1064 return 0; 1065 } while (first != 0); 1066 return 1; 1067 } 1068 1069 static int raid10_spare_active(mddev_t *mddev) 1070 { 1071 int i; 1072 conf_t *conf = mddev->private; 1073 mirror_info_t *tmp; 1074 int count = 0; 1075 unsigned long flags; 1076 1077 /* 1078 * Find all non-in_sync disks within the RAID10 configuration 1079 * and mark them in_sync 1080 */ 1081 for (i = 0; i < conf->raid_disks; i++) { 1082 tmp = conf->mirrors + i; 1083 if (tmp->rdev 1084 && !test_bit(Faulty, &tmp->rdev->flags) 1085 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1086 count++; 1087 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1088 } 1089 } 1090 spin_lock_irqsave(&conf->device_lock, flags); 1091 mddev->degraded -= count; 1092 spin_unlock_irqrestore(&conf->device_lock, flags); 1093 1094 print_conf(conf); 1095 return count; 1096 } 1097 1098 1099 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1100 { 1101 conf_t *conf = mddev->private; 1102 int err = -EEXIST; 1103 int mirror; 1104 mirror_info_t *p; 1105 int first = 0; 1106 int last = conf->raid_disks - 1; 1107 1108 if (mddev->recovery_cp < MaxSector) 1109 /* only hot-add to in-sync arrays, as recovery is 1110 * very different from resync 1111 */ 1112 return -EBUSY; 1113 if (!enough(conf)) 1114 return -EINVAL; 1115 1116 if (rdev->raid_disk >= 0) 1117 first = last = rdev->raid_disk; 1118 1119 if (rdev->saved_raid_disk >= 0 && 1120 rdev->saved_raid_disk >= first && 1121 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1122 mirror = rdev->saved_raid_disk; 1123 else 1124 mirror = first; 1125 for ( ; mirror <= last ; mirror++) 1126 if ( !(p=conf->mirrors+mirror)->rdev) { 1127 1128 disk_stack_limits(mddev->gendisk, rdev->bdev, 1129 rdev->data_offset << 9); 1130 /* as we don't honour merge_bvec_fn, we must 1131 * never risk violating it, so limit 1132 * ->max_segments to one lying with a single 1133 * page, as a one page request is never in 1134 * violation. 1135 */ 1136 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1137 blk_queue_max_segments(mddev->queue, 1); 1138 blk_queue_segment_boundary(mddev->queue, 1139 PAGE_CACHE_SIZE - 1); 1140 } 1141 1142 p->head_position = 0; 1143 rdev->raid_disk = mirror; 1144 err = 0; 1145 if (rdev->saved_raid_disk != mirror) 1146 conf->fullsync = 1; 1147 rcu_assign_pointer(p->rdev, rdev); 1148 break; 1149 } 1150 1151 md_integrity_add_rdev(rdev, mddev); 1152 print_conf(conf); 1153 return err; 1154 } 1155 1156 static int raid10_remove_disk(mddev_t *mddev, int number) 1157 { 1158 conf_t *conf = mddev->private; 1159 int err = 0; 1160 mdk_rdev_t *rdev; 1161 mirror_info_t *p = conf->mirrors+ number; 1162 1163 print_conf(conf); 1164 rdev = p->rdev; 1165 if (rdev) { 1166 if (test_bit(In_sync, &rdev->flags) || 1167 atomic_read(&rdev->nr_pending)) { 1168 err = -EBUSY; 1169 goto abort; 1170 } 1171 /* Only remove faulty devices in recovery 1172 * is not possible. 1173 */ 1174 if (!test_bit(Faulty, &rdev->flags) && 1175 enough(conf)) { 1176 err = -EBUSY; 1177 goto abort; 1178 } 1179 p->rdev = NULL; 1180 synchronize_rcu(); 1181 if (atomic_read(&rdev->nr_pending)) { 1182 /* lost the race, try later */ 1183 err = -EBUSY; 1184 p->rdev = rdev; 1185 goto abort; 1186 } 1187 err = md_integrity_register(mddev); 1188 } 1189 abort: 1190 1191 print_conf(conf); 1192 return err; 1193 } 1194 1195 1196 static void end_sync_read(struct bio *bio, int error) 1197 { 1198 r10bio_t *r10_bio = bio->bi_private; 1199 conf_t *conf = r10_bio->mddev->private; 1200 int i,d; 1201 1202 for (i=0; i<conf->copies; i++) 1203 if (r10_bio->devs[i].bio == bio) 1204 break; 1205 BUG_ON(i == conf->copies); 1206 update_head_pos(i, r10_bio); 1207 d = r10_bio->devs[i].devnum; 1208 1209 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1210 set_bit(R10BIO_Uptodate, &r10_bio->state); 1211 else { 1212 atomic_add(r10_bio->sectors, 1213 &conf->mirrors[d].rdev->corrected_errors); 1214 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1215 md_error(r10_bio->mddev, 1216 conf->mirrors[d].rdev); 1217 } 1218 1219 /* for reconstruct, we always reschedule after a read. 1220 * for resync, only after all reads 1221 */ 1222 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1223 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1224 atomic_dec_and_test(&r10_bio->remaining)) { 1225 /* we have read all the blocks, 1226 * do the comparison in process context in raid10d 1227 */ 1228 reschedule_retry(r10_bio); 1229 } 1230 } 1231 1232 static void end_sync_write(struct bio *bio, int error) 1233 { 1234 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1235 r10bio_t *r10_bio = bio->bi_private; 1236 mddev_t *mddev = r10_bio->mddev; 1237 conf_t *conf = mddev->private; 1238 int i,d; 1239 1240 for (i = 0; i < conf->copies; i++) 1241 if (r10_bio->devs[i].bio == bio) 1242 break; 1243 d = r10_bio->devs[i].devnum; 1244 1245 if (!uptodate) 1246 md_error(mddev, conf->mirrors[d].rdev); 1247 1248 update_head_pos(i, r10_bio); 1249 1250 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1251 while (atomic_dec_and_test(&r10_bio->remaining)) { 1252 if (r10_bio->master_bio == NULL) { 1253 /* the primary of several recovery bios */ 1254 sector_t s = r10_bio->sectors; 1255 put_buf(r10_bio); 1256 md_done_sync(mddev, s, 1); 1257 break; 1258 } else { 1259 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1260 put_buf(r10_bio); 1261 r10_bio = r10_bio2; 1262 } 1263 } 1264 } 1265 1266 /* 1267 * Note: sync and recover and handled very differently for raid10 1268 * This code is for resync. 1269 * For resync, we read through virtual addresses and read all blocks. 1270 * If there is any error, we schedule a write. The lowest numbered 1271 * drive is authoritative. 1272 * However requests come for physical address, so we need to map. 1273 * For every physical address there are raid_disks/copies virtual addresses, 1274 * which is always are least one, but is not necessarly an integer. 1275 * This means that a physical address can span multiple chunks, so we may 1276 * have to submit multiple io requests for a single sync request. 1277 */ 1278 /* 1279 * We check if all blocks are in-sync and only write to blocks that 1280 * aren't in sync 1281 */ 1282 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1283 { 1284 conf_t *conf = mddev->private; 1285 int i, first; 1286 struct bio *tbio, *fbio; 1287 1288 atomic_set(&r10_bio->remaining, 1); 1289 1290 /* find the first device with a block */ 1291 for (i=0; i<conf->copies; i++) 1292 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1293 break; 1294 1295 if (i == conf->copies) 1296 goto done; 1297 1298 first = i; 1299 fbio = r10_bio->devs[i].bio; 1300 1301 /* now find blocks with errors */ 1302 for (i=0 ; i < conf->copies ; i++) { 1303 int j, d; 1304 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1305 1306 tbio = r10_bio->devs[i].bio; 1307 1308 if (tbio->bi_end_io != end_sync_read) 1309 continue; 1310 if (i == first) 1311 continue; 1312 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1313 /* We know that the bi_io_vec layout is the same for 1314 * both 'first' and 'i', so we just compare them. 1315 * All vec entries are PAGE_SIZE; 1316 */ 1317 for (j = 0; j < vcnt; j++) 1318 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1319 page_address(tbio->bi_io_vec[j].bv_page), 1320 PAGE_SIZE)) 1321 break; 1322 if (j == vcnt) 1323 continue; 1324 mddev->resync_mismatches += r10_bio->sectors; 1325 } 1326 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1327 /* Don't fix anything. */ 1328 continue; 1329 /* Ok, we need to write this bio 1330 * First we need to fixup bv_offset, bv_len and 1331 * bi_vecs, as the read request might have corrupted these 1332 */ 1333 tbio->bi_vcnt = vcnt; 1334 tbio->bi_size = r10_bio->sectors << 9; 1335 tbio->bi_idx = 0; 1336 tbio->bi_phys_segments = 0; 1337 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1338 tbio->bi_flags |= 1 << BIO_UPTODATE; 1339 tbio->bi_next = NULL; 1340 tbio->bi_rw = WRITE; 1341 tbio->bi_private = r10_bio; 1342 tbio->bi_sector = r10_bio->devs[i].addr; 1343 1344 for (j=0; j < vcnt ; j++) { 1345 tbio->bi_io_vec[j].bv_offset = 0; 1346 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1347 1348 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1349 page_address(fbio->bi_io_vec[j].bv_page), 1350 PAGE_SIZE); 1351 } 1352 tbio->bi_end_io = end_sync_write; 1353 1354 d = r10_bio->devs[i].devnum; 1355 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1356 atomic_inc(&r10_bio->remaining); 1357 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1358 1359 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1360 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1361 generic_make_request(tbio); 1362 } 1363 1364 done: 1365 if (atomic_dec_and_test(&r10_bio->remaining)) { 1366 md_done_sync(mddev, r10_bio->sectors, 1); 1367 put_buf(r10_bio); 1368 } 1369 } 1370 1371 /* 1372 * Now for the recovery code. 1373 * Recovery happens across physical sectors. 1374 * We recover all non-is_sync drives by finding the virtual address of 1375 * each, and then choose a working drive that also has that virt address. 1376 * There is a separate r10_bio for each non-in_sync drive. 1377 * Only the first two slots are in use. The first for reading, 1378 * The second for writing. 1379 * 1380 */ 1381 1382 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1383 { 1384 conf_t *conf = mddev->private; 1385 int i, d; 1386 struct bio *bio, *wbio; 1387 1388 1389 /* move the pages across to the second bio 1390 * and submit the write request 1391 */ 1392 bio = r10_bio->devs[0].bio; 1393 wbio = r10_bio->devs[1].bio; 1394 for (i=0; i < wbio->bi_vcnt; i++) { 1395 struct page *p = bio->bi_io_vec[i].bv_page; 1396 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1397 wbio->bi_io_vec[i].bv_page = p; 1398 } 1399 d = r10_bio->devs[1].devnum; 1400 1401 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1402 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1403 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1404 generic_make_request(wbio); 1405 else 1406 bio_endio(wbio, -EIO); 1407 } 1408 1409 1410 /* 1411 * Used by fix_read_error() to decay the per rdev read_errors. 1412 * We halve the read error count for every hour that has elapsed 1413 * since the last recorded read error. 1414 * 1415 */ 1416 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev) 1417 { 1418 struct timespec cur_time_mon; 1419 unsigned long hours_since_last; 1420 unsigned int read_errors = atomic_read(&rdev->read_errors); 1421 1422 ktime_get_ts(&cur_time_mon); 1423 1424 if (rdev->last_read_error.tv_sec == 0 && 1425 rdev->last_read_error.tv_nsec == 0) { 1426 /* first time we've seen a read error */ 1427 rdev->last_read_error = cur_time_mon; 1428 return; 1429 } 1430 1431 hours_since_last = (cur_time_mon.tv_sec - 1432 rdev->last_read_error.tv_sec) / 3600; 1433 1434 rdev->last_read_error = cur_time_mon; 1435 1436 /* 1437 * if hours_since_last is > the number of bits in read_errors 1438 * just set read errors to 0. We do this to avoid 1439 * overflowing the shift of read_errors by hours_since_last. 1440 */ 1441 if (hours_since_last >= 8 * sizeof(read_errors)) 1442 atomic_set(&rdev->read_errors, 0); 1443 else 1444 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 1445 } 1446 1447 /* 1448 * This is a kernel thread which: 1449 * 1450 * 1. Retries failed read operations on working mirrors. 1451 * 2. Updates the raid superblock when problems encounter. 1452 * 3. Performs writes following reads for array synchronising. 1453 */ 1454 1455 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1456 { 1457 int sect = 0; /* Offset from r10_bio->sector */ 1458 int sectors = r10_bio->sectors; 1459 mdk_rdev_t*rdev; 1460 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 1461 int d = r10_bio->devs[r10_bio->read_slot].devnum; 1462 1463 rcu_read_lock(); 1464 rdev = rcu_dereference(conf->mirrors[d].rdev); 1465 if (rdev) { /* If rdev is not NULL */ 1466 char b[BDEVNAME_SIZE]; 1467 int cur_read_error_count = 0; 1468 1469 bdevname(rdev->bdev, b); 1470 1471 if (test_bit(Faulty, &rdev->flags)) { 1472 rcu_read_unlock(); 1473 /* drive has already been failed, just ignore any 1474 more fix_read_error() attempts */ 1475 return; 1476 } 1477 1478 check_decay_read_errors(mddev, rdev); 1479 atomic_inc(&rdev->read_errors); 1480 cur_read_error_count = atomic_read(&rdev->read_errors); 1481 if (cur_read_error_count > max_read_errors) { 1482 rcu_read_unlock(); 1483 printk(KERN_NOTICE 1484 "md/raid10:%s: %s: Raid device exceeded " 1485 "read_error threshold " 1486 "[cur %d:max %d]\n", 1487 mdname(mddev), 1488 b, cur_read_error_count, max_read_errors); 1489 printk(KERN_NOTICE 1490 "md/raid10:%s: %s: Failing raid " 1491 "device\n", mdname(mddev), b); 1492 md_error(mddev, conf->mirrors[d].rdev); 1493 return; 1494 } 1495 } 1496 rcu_read_unlock(); 1497 1498 while(sectors) { 1499 int s = sectors; 1500 int sl = r10_bio->read_slot; 1501 int success = 0; 1502 int start; 1503 1504 if (s > (PAGE_SIZE>>9)) 1505 s = PAGE_SIZE >> 9; 1506 1507 rcu_read_lock(); 1508 do { 1509 d = r10_bio->devs[sl].devnum; 1510 rdev = rcu_dereference(conf->mirrors[d].rdev); 1511 if (rdev && 1512 test_bit(In_sync, &rdev->flags)) { 1513 atomic_inc(&rdev->nr_pending); 1514 rcu_read_unlock(); 1515 success = sync_page_io(rdev, 1516 r10_bio->devs[sl].addr + 1517 sect, 1518 s<<9, 1519 conf->tmppage, READ, false); 1520 rdev_dec_pending(rdev, mddev); 1521 rcu_read_lock(); 1522 if (success) 1523 break; 1524 } 1525 sl++; 1526 if (sl == conf->copies) 1527 sl = 0; 1528 } while (!success && sl != r10_bio->read_slot); 1529 rcu_read_unlock(); 1530 1531 if (!success) { 1532 /* Cannot read from anywhere -- bye bye array */ 1533 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1534 md_error(mddev, conf->mirrors[dn].rdev); 1535 break; 1536 } 1537 1538 start = sl; 1539 /* write it back and re-read */ 1540 rcu_read_lock(); 1541 while (sl != r10_bio->read_slot) { 1542 char b[BDEVNAME_SIZE]; 1543 1544 if (sl==0) 1545 sl = conf->copies; 1546 sl--; 1547 d = r10_bio->devs[sl].devnum; 1548 rdev = rcu_dereference(conf->mirrors[d].rdev); 1549 if (rdev && 1550 test_bit(In_sync, &rdev->flags)) { 1551 atomic_inc(&rdev->nr_pending); 1552 rcu_read_unlock(); 1553 atomic_add(s, &rdev->corrected_errors); 1554 if (sync_page_io(rdev, 1555 r10_bio->devs[sl].addr + 1556 sect, 1557 s<<9, conf->tmppage, WRITE, false) 1558 == 0) { 1559 /* Well, this device is dead */ 1560 printk(KERN_NOTICE 1561 "md/raid10:%s: read correction " 1562 "write failed" 1563 " (%d sectors at %llu on %s)\n", 1564 mdname(mddev), s, 1565 (unsigned long long)(sect+ 1566 rdev->data_offset), 1567 bdevname(rdev->bdev, b)); 1568 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 1569 "drive\n", 1570 mdname(mddev), 1571 bdevname(rdev->bdev, b)); 1572 md_error(mddev, rdev); 1573 } 1574 rdev_dec_pending(rdev, mddev); 1575 rcu_read_lock(); 1576 } 1577 } 1578 sl = start; 1579 while (sl != r10_bio->read_slot) { 1580 1581 if (sl==0) 1582 sl = conf->copies; 1583 sl--; 1584 d = r10_bio->devs[sl].devnum; 1585 rdev = rcu_dereference(conf->mirrors[d].rdev); 1586 if (rdev && 1587 test_bit(In_sync, &rdev->flags)) { 1588 char b[BDEVNAME_SIZE]; 1589 atomic_inc(&rdev->nr_pending); 1590 rcu_read_unlock(); 1591 if (sync_page_io(rdev, 1592 r10_bio->devs[sl].addr + 1593 sect, 1594 s<<9, conf->tmppage, 1595 READ, false) == 0) { 1596 /* Well, this device is dead */ 1597 printk(KERN_NOTICE 1598 "md/raid10:%s: unable to read back " 1599 "corrected sectors" 1600 " (%d sectors at %llu on %s)\n", 1601 mdname(mddev), s, 1602 (unsigned long long)(sect+ 1603 rdev->data_offset), 1604 bdevname(rdev->bdev, b)); 1605 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n", 1606 mdname(mddev), 1607 bdevname(rdev->bdev, b)); 1608 1609 md_error(mddev, rdev); 1610 } else { 1611 printk(KERN_INFO 1612 "md/raid10:%s: read error corrected" 1613 " (%d sectors at %llu on %s)\n", 1614 mdname(mddev), s, 1615 (unsigned long long)(sect+ 1616 rdev->data_offset), 1617 bdevname(rdev->bdev, b)); 1618 } 1619 1620 rdev_dec_pending(rdev, mddev); 1621 rcu_read_lock(); 1622 } 1623 } 1624 rcu_read_unlock(); 1625 1626 sectors -= s; 1627 sect += s; 1628 } 1629 } 1630 1631 static void raid10d(mddev_t *mddev) 1632 { 1633 r10bio_t *r10_bio; 1634 struct bio *bio; 1635 unsigned long flags; 1636 conf_t *conf = mddev->private; 1637 struct list_head *head = &conf->retry_list; 1638 mdk_rdev_t *rdev; 1639 struct blk_plug plug; 1640 1641 md_check_recovery(mddev); 1642 1643 blk_start_plug(&plug); 1644 for (;;) { 1645 char b[BDEVNAME_SIZE]; 1646 1647 flush_pending_writes(conf); 1648 1649 spin_lock_irqsave(&conf->device_lock, flags); 1650 if (list_empty(head)) { 1651 spin_unlock_irqrestore(&conf->device_lock, flags); 1652 break; 1653 } 1654 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1655 list_del(head->prev); 1656 conf->nr_queued--; 1657 spin_unlock_irqrestore(&conf->device_lock, flags); 1658 1659 mddev = r10_bio->mddev; 1660 conf = mddev->private; 1661 if (test_bit(R10BIO_IsSync, &r10_bio->state)) 1662 sync_request_write(mddev, r10_bio); 1663 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 1664 recovery_request_write(mddev, r10_bio); 1665 else { 1666 int mirror; 1667 /* we got a read error. Maybe the drive is bad. Maybe just 1668 * the block and we can fix it. 1669 * We freeze all other IO, and try reading the block from 1670 * other devices. When we find one, we re-write 1671 * and check it that fixes the read error. 1672 * This is all done synchronously while the array is 1673 * frozen. 1674 */ 1675 if (mddev->ro == 0) { 1676 freeze_array(conf); 1677 fix_read_error(conf, mddev, r10_bio); 1678 unfreeze_array(conf); 1679 } 1680 1681 bio = r10_bio->devs[r10_bio->read_slot].bio; 1682 r10_bio->devs[r10_bio->read_slot].bio = 1683 mddev->ro ? IO_BLOCKED : NULL; 1684 mirror = read_balance(conf, r10_bio); 1685 if (mirror == -1) { 1686 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 1687 " read error for block %llu\n", 1688 mdname(mddev), 1689 bdevname(bio->bi_bdev,b), 1690 (unsigned long long)r10_bio->sector); 1691 raid_end_bio_io(r10_bio); 1692 bio_put(bio); 1693 } else { 1694 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 1695 bio_put(bio); 1696 rdev = conf->mirrors[mirror].rdev; 1697 if (printk_ratelimit()) 1698 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to" 1699 " another mirror\n", 1700 mdname(mddev), 1701 bdevname(rdev->bdev,b), 1702 (unsigned long long)r10_bio->sector); 1703 bio = bio_clone_mddev(r10_bio->master_bio, 1704 GFP_NOIO, mddev); 1705 r10_bio->devs[r10_bio->read_slot].bio = bio; 1706 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1707 + rdev->data_offset; 1708 bio->bi_bdev = rdev->bdev; 1709 bio->bi_rw = READ | do_sync; 1710 bio->bi_private = r10_bio; 1711 bio->bi_end_io = raid10_end_read_request; 1712 generic_make_request(bio); 1713 } 1714 } 1715 cond_resched(); 1716 } 1717 blk_finish_plug(&plug); 1718 } 1719 1720 1721 static int init_resync(conf_t *conf) 1722 { 1723 int buffs; 1724 1725 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1726 BUG_ON(conf->r10buf_pool); 1727 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1728 if (!conf->r10buf_pool) 1729 return -ENOMEM; 1730 conf->next_resync = 0; 1731 return 0; 1732 } 1733 1734 /* 1735 * perform a "sync" on one "block" 1736 * 1737 * We need to make sure that no normal I/O request - particularly write 1738 * requests - conflict with active sync requests. 1739 * 1740 * This is achieved by tracking pending requests and a 'barrier' concept 1741 * that can be installed to exclude normal IO requests. 1742 * 1743 * Resync and recovery are handled very differently. 1744 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1745 * 1746 * For resync, we iterate over virtual addresses, read all copies, 1747 * and update if there are differences. If only one copy is live, 1748 * skip it. 1749 * For recovery, we iterate over physical addresses, read a good 1750 * value for each non-in_sync drive, and over-write. 1751 * 1752 * So, for recovery we may have several outstanding complex requests for a 1753 * given address, one for each out-of-sync device. We model this by allocating 1754 * a number of r10_bio structures, one for each out-of-sync device. 1755 * As we setup these structures, we collect all bio's together into a list 1756 * which we then process collectively to add pages, and then process again 1757 * to pass to generic_make_request. 1758 * 1759 * The r10_bio structures are linked using a borrowed master_bio pointer. 1760 * This link is counted in ->remaining. When the r10_bio that points to NULL 1761 * has its remaining count decremented to 0, the whole complex operation 1762 * is complete. 1763 * 1764 */ 1765 1766 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1767 { 1768 conf_t *conf = mddev->private; 1769 r10bio_t *r10_bio; 1770 struct bio *biolist = NULL, *bio; 1771 sector_t max_sector, nr_sectors; 1772 int disk; 1773 int i; 1774 int max_sync; 1775 sector_t sync_blocks; 1776 1777 sector_t sectors_skipped = 0; 1778 int chunks_skipped = 0; 1779 1780 if (!conf->r10buf_pool) 1781 if (init_resync(conf)) 1782 return 0; 1783 1784 skipped: 1785 max_sector = mddev->dev_sectors; 1786 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1787 max_sector = mddev->resync_max_sectors; 1788 if (sector_nr >= max_sector) { 1789 /* If we aborted, we need to abort the 1790 * sync on the 'current' bitmap chucks (there can 1791 * be several when recovering multiple devices). 1792 * as we may have started syncing it but not finished. 1793 * We can find the current address in 1794 * mddev->curr_resync, but for recovery, 1795 * we need to convert that to several 1796 * virtual addresses. 1797 */ 1798 if (mddev->curr_resync < max_sector) { /* aborted */ 1799 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1800 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1801 &sync_blocks, 1); 1802 else for (i=0; i<conf->raid_disks; i++) { 1803 sector_t sect = 1804 raid10_find_virt(conf, mddev->curr_resync, i); 1805 bitmap_end_sync(mddev->bitmap, sect, 1806 &sync_blocks, 1); 1807 } 1808 } else /* completed sync */ 1809 conf->fullsync = 0; 1810 1811 bitmap_close_sync(mddev->bitmap); 1812 close_sync(conf); 1813 *skipped = 1; 1814 return sectors_skipped; 1815 } 1816 if (chunks_skipped >= conf->raid_disks) { 1817 /* if there has been nothing to do on any drive, 1818 * then there is nothing to do at all.. 1819 */ 1820 *skipped = 1; 1821 return (max_sector - sector_nr) + sectors_skipped; 1822 } 1823 1824 if (max_sector > mddev->resync_max) 1825 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1826 1827 /* make sure whole request will fit in a chunk - if chunks 1828 * are meaningful 1829 */ 1830 if (conf->near_copies < conf->raid_disks && 1831 max_sector > (sector_nr | conf->chunk_mask)) 1832 max_sector = (sector_nr | conf->chunk_mask) + 1; 1833 /* 1834 * If there is non-resync activity waiting for us then 1835 * put in a delay to throttle resync. 1836 */ 1837 if (!go_faster && conf->nr_waiting) 1838 msleep_interruptible(1000); 1839 1840 /* Again, very different code for resync and recovery. 1841 * Both must result in an r10bio with a list of bios that 1842 * have bi_end_io, bi_sector, bi_bdev set, 1843 * and bi_private set to the r10bio. 1844 * For recovery, we may actually create several r10bios 1845 * with 2 bios in each, that correspond to the bios in the main one. 1846 * In this case, the subordinate r10bios link back through a 1847 * borrowed master_bio pointer, and the counter in the master 1848 * includes a ref from each subordinate. 1849 */ 1850 /* First, we decide what to do and set ->bi_end_io 1851 * To end_sync_read if we want to read, and 1852 * end_sync_write if we will want to write. 1853 */ 1854 1855 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1856 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1857 /* recovery... the complicated one */ 1858 int j, k; 1859 r10_bio = NULL; 1860 1861 for (i=0 ; i<conf->raid_disks; i++) 1862 if (conf->mirrors[i].rdev && 1863 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1864 int still_degraded = 0; 1865 /* want to reconstruct this device */ 1866 r10bio_t *rb2 = r10_bio; 1867 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1868 int must_sync; 1869 /* Unless we are doing a full sync, we only need 1870 * to recover the block if it is set in the bitmap 1871 */ 1872 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1873 &sync_blocks, 1); 1874 if (sync_blocks < max_sync) 1875 max_sync = sync_blocks; 1876 if (!must_sync && 1877 !conf->fullsync) { 1878 /* yep, skip the sync_blocks here, but don't assume 1879 * that there will never be anything to do here 1880 */ 1881 chunks_skipped = -1; 1882 continue; 1883 } 1884 1885 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1886 raise_barrier(conf, rb2 != NULL); 1887 atomic_set(&r10_bio->remaining, 0); 1888 1889 r10_bio->master_bio = (struct bio*)rb2; 1890 if (rb2) 1891 atomic_inc(&rb2->remaining); 1892 r10_bio->mddev = mddev; 1893 set_bit(R10BIO_IsRecover, &r10_bio->state); 1894 r10_bio->sector = sect; 1895 1896 raid10_find_phys(conf, r10_bio); 1897 1898 /* Need to check if the array will still be 1899 * degraded 1900 */ 1901 for (j=0; j<conf->raid_disks; j++) 1902 if (conf->mirrors[j].rdev == NULL || 1903 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 1904 still_degraded = 1; 1905 break; 1906 } 1907 1908 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1909 &sync_blocks, still_degraded); 1910 1911 for (j=0; j<conf->copies;j++) { 1912 int d = r10_bio->devs[j].devnum; 1913 if (conf->mirrors[d].rdev && 1914 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1915 /* This is where we read from */ 1916 bio = r10_bio->devs[0].bio; 1917 bio->bi_next = biolist; 1918 biolist = bio; 1919 bio->bi_private = r10_bio; 1920 bio->bi_end_io = end_sync_read; 1921 bio->bi_rw = READ; 1922 bio->bi_sector = r10_bio->devs[j].addr + 1923 conf->mirrors[d].rdev->data_offset; 1924 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1925 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1926 atomic_inc(&r10_bio->remaining); 1927 /* and we write to 'i' */ 1928 1929 for (k=0; k<conf->copies; k++) 1930 if (r10_bio->devs[k].devnum == i) 1931 break; 1932 BUG_ON(k == conf->copies); 1933 bio = r10_bio->devs[1].bio; 1934 bio->bi_next = biolist; 1935 biolist = bio; 1936 bio->bi_private = r10_bio; 1937 bio->bi_end_io = end_sync_write; 1938 bio->bi_rw = WRITE; 1939 bio->bi_sector = r10_bio->devs[k].addr + 1940 conf->mirrors[i].rdev->data_offset; 1941 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1942 1943 r10_bio->devs[0].devnum = d; 1944 r10_bio->devs[1].devnum = i; 1945 1946 break; 1947 } 1948 } 1949 if (j == conf->copies) { 1950 /* Cannot recover, so abort the recovery */ 1951 put_buf(r10_bio); 1952 if (rb2) 1953 atomic_dec(&rb2->remaining); 1954 r10_bio = rb2; 1955 if (!test_and_set_bit(MD_RECOVERY_INTR, 1956 &mddev->recovery)) 1957 printk(KERN_INFO "md/raid10:%s: insufficient " 1958 "working devices for recovery.\n", 1959 mdname(mddev)); 1960 break; 1961 } 1962 } 1963 if (biolist == NULL) { 1964 while (r10_bio) { 1965 r10bio_t *rb2 = r10_bio; 1966 r10_bio = (r10bio_t*) rb2->master_bio; 1967 rb2->master_bio = NULL; 1968 put_buf(rb2); 1969 } 1970 goto giveup; 1971 } 1972 } else { 1973 /* resync. Schedule a read for every block at this virt offset */ 1974 int count = 0; 1975 1976 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1977 1978 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1979 &sync_blocks, mddev->degraded) && 1980 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1981 /* We can skip this block */ 1982 *skipped = 1; 1983 return sync_blocks + sectors_skipped; 1984 } 1985 if (sync_blocks < max_sync) 1986 max_sync = sync_blocks; 1987 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1988 1989 r10_bio->mddev = mddev; 1990 atomic_set(&r10_bio->remaining, 0); 1991 raise_barrier(conf, 0); 1992 conf->next_resync = sector_nr; 1993 1994 r10_bio->master_bio = NULL; 1995 r10_bio->sector = sector_nr; 1996 set_bit(R10BIO_IsSync, &r10_bio->state); 1997 raid10_find_phys(conf, r10_bio); 1998 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1999 2000 for (i=0; i<conf->copies; i++) { 2001 int d = r10_bio->devs[i].devnum; 2002 bio = r10_bio->devs[i].bio; 2003 bio->bi_end_io = NULL; 2004 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2005 if (conf->mirrors[d].rdev == NULL || 2006 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 2007 continue; 2008 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2009 atomic_inc(&r10_bio->remaining); 2010 bio->bi_next = biolist; 2011 biolist = bio; 2012 bio->bi_private = r10_bio; 2013 bio->bi_end_io = end_sync_read; 2014 bio->bi_rw = READ; 2015 bio->bi_sector = r10_bio->devs[i].addr + 2016 conf->mirrors[d].rdev->data_offset; 2017 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2018 count++; 2019 } 2020 2021 if (count < 2) { 2022 for (i=0; i<conf->copies; i++) { 2023 int d = r10_bio->devs[i].devnum; 2024 if (r10_bio->devs[i].bio->bi_end_io) 2025 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 2026 } 2027 put_buf(r10_bio); 2028 biolist = NULL; 2029 goto giveup; 2030 } 2031 } 2032 2033 for (bio = biolist; bio ; bio=bio->bi_next) { 2034 2035 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 2036 if (bio->bi_end_io) 2037 bio->bi_flags |= 1 << BIO_UPTODATE; 2038 bio->bi_vcnt = 0; 2039 bio->bi_idx = 0; 2040 bio->bi_phys_segments = 0; 2041 bio->bi_size = 0; 2042 } 2043 2044 nr_sectors = 0; 2045 if (sector_nr + max_sync < max_sector) 2046 max_sector = sector_nr + max_sync; 2047 do { 2048 struct page *page; 2049 int len = PAGE_SIZE; 2050 disk = 0; 2051 if (sector_nr + (len>>9) > max_sector) 2052 len = (max_sector - sector_nr) << 9; 2053 if (len == 0) 2054 break; 2055 for (bio= biolist ; bio ; bio=bio->bi_next) { 2056 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2057 if (bio_add_page(bio, page, len, 0) == 0) { 2058 /* stop here */ 2059 struct bio *bio2; 2060 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2061 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 2062 /* remove last page from this bio */ 2063 bio2->bi_vcnt--; 2064 bio2->bi_size -= len; 2065 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 2066 } 2067 goto bio_full; 2068 } 2069 disk = i; 2070 } 2071 nr_sectors += len>>9; 2072 sector_nr += len>>9; 2073 } while (biolist->bi_vcnt < RESYNC_PAGES); 2074 bio_full: 2075 r10_bio->sectors = nr_sectors; 2076 2077 while (biolist) { 2078 bio = biolist; 2079 biolist = biolist->bi_next; 2080 2081 bio->bi_next = NULL; 2082 r10_bio = bio->bi_private; 2083 r10_bio->sectors = nr_sectors; 2084 2085 if (bio->bi_end_io == end_sync_read) { 2086 md_sync_acct(bio->bi_bdev, nr_sectors); 2087 generic_make_request(bio); 2088 } 2089 } 2090 2091 if (sectors_skipped) 2092 /* pretend they weren't skipped, it makes 2093 * no important difference in this case 2094 */ 2095 md_done_sync(mddev, sectors_skipped, 1); 2096 2097 return sectors_skipped + nr_sectors; 2098 giveup: 2099 /* There is nowhere to write, so all non-sync 2100 * drives must be failed, so try the next chunk... 2101 */ 2102 if (sector_nr + max_sync < max_sector) 2103 max_sector = sector_nr + max_sync; 2104 2105 sectors_skipped += (max_sector - sector_nr); 2106 chunks_skipped ++; 2107 sector_nr = max_sector; 2108 goto skipped; 2109 } 2110 2111 static sector_t 2112 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks) 2113 { 2114 sector_t size; 2115 conf_t *conf = mddev->private; 2116 2117 if (!raid_disks) 2118 raid_disks = conf->raid_disks; 2119 if (!sectors) 2120 sectors = conf->dev_sectors; 2121 2122 size = sectors >> conf->chunk_shift; 2123 sector_div(size, conf->far_copies); 2124 size = size * raid_disks; 2125 sector_div(size, conf->near_copies); 2126 2127 return size << conf->chunk_shift; 2128 } 2129 2130 2131 static conf_t *setup_conf(mddev_t *mddev) 2132 { 2133 conf_t *conf = NULL; 2134 int nc, fc, fo; 2135 sector_t stride, size; 2136 int err = -EINVAL; 2137 2138 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || 2139 !is_power_of_2(mddev->new_chunk_sectors)) { 2140 printk(KERN_ERR "md/raid10:%s: chunk size must be " 2141 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 2142 mdname(mddev), PAGE_SIZE); 2143 goto out; 2144 } 2145 2146 nc = mddev->new_layout & 255; 2147 fc = (mddev->new_layout >> 8) & 255; 2148 fo = mddev->new_layout & (1<<16); 2149 2150 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2151 (mddev->new_layout >> 17)) { 2152 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 2153 mdname(mddev), mddev->new_layout); 2154 goto out; 2155 } 2156 2157 err = -ENOMEM; 2158 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2159 if (!conf) 2160 goto out; 2161 2162 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2163 GFP_KERNEL); 2164 if (!conf->mirrors) 2165 goto out; 2166 2167 conf->tmppage = alloc_page(GFP_KERNEL); 2168 if (!conf->tmppage) 2169 goto out; 2170 2171 2172 conf->raid_disks = mddev->raid_disks; 2173 conf->near_copies = nc; 2174 conf->far_copies = fc; 2175 conf->copies = nc*fc; 2176 conf->far_offset = fo; 2177 conf->chunk_mask = mddev->new_chunk_sectors - 1; 2178 conf->chunk_shift = ffz(~mddev->new_chunk_sectors); 2179 2180 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2181 r10bio_pool_free, conf); 2182 if (!conf->r10bio_pool) 2183 goto out; 2184 2185 size = mddev->dev_sectors >> conf->chunk_shift; 2186 sector_div(size, fc); 2187 size = size * conf->raid_disks; 2188 sector_div(size, nc); 2189 /* 'size' is now the number of chunks in the array */ 2190 /* calculate "used chunks per device" in 'stride' */ 2191 stride = size * conf->copies; 2192 2193 /* We need to round up when dividing by raid_disks to 2194 * get the stride size. 2195 */ 2196 stride += conf->raid_disks - 1; 2197 sector_div(stride, conf->raid_disks); 2198 2199 conf->dev_sectors = stride << conf->chunk_shift; 2200 2201 if (fo) 2202 stride = 1; 2203 else 2204 sector_div(stride, fc); 2205 conf->stride = stride << conf->chunk_shift; 2206 2207 2208 spin_lock_init(&conf->device_lock); 2209 INIT_LIST_HEAD(&conf->retry_list); 2210 2211 spin_lock_init(&conf->resync_lock); 2212 init_waitqueue_head(&conf->wait_barrier); 2213 2214 conf->thread = md_register_thread(raid10d, mddev, NULL); 2215 if (!conf->thread) 2216 goto out; 2217 2218 conf->mddev = mddev; 2219 return conf; 2220 2221 out: 2222 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 2223 mdname(mddev)); 2224 if (conf) { 2225 if (conf->r10bio_pool) 2226 mempool_destroy(conf->r10bio_pool); 2227 kfree(conf->mirrors); 2228 safe_put_page(conf->tmppage); 2229 kfree(conf); 2230 } 2231 return ERR_PTR(err); 2232 } 2233 2234 static int run(mddev_t *mddev) 2235 { 2236 conf_t *conf; 2237 int i, disk_idx, chunk_size; 2238 mirror_info_t *disk; 2239 mdk_rdev_t *rdev; 2240 sector_t size; 2241 2242 /* 2243 * copy the already verified devices into our private RAID10 2244 * bookkeeping area. [whatever we allocate in run(), 2245 * should be freed in stop()] 2246 */ 2247 2248 if (mddev->private == NULL) { 2249 conf = setup_conf(mddev); 2250 if (IS_ERR(conf)) 2251 return PTR_ERR(conf); 2252 mddev->private = conf; 2253 } 2254 conf = mddev->private; 2255 if (!conf) 2256 goto out; 2257 2258 mddev->thread = conf->thread; 2259 conf->thread = NULL; 2260 2261 chunk_size = mddev->chunk_sectors << 9; 2262 blk_queue_io_min(mddev->queue, chunk_size); 2263 if (conf->raid_disks % conf->near_copies) 2264 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 2265 else 2266 blk_queue_io_opt(mddev->queue, chunk_size * 2267 (conf->raid_disks / conf->near_copies)); 2268 2269 list_for_each_entry(rdev, &mddev->disks, same_set) { 2270 disk_idx = rdev->raid_disk; 2271 if (disk_idx >= conf->raid_disks 2272 || disk_idx < 0) 2273 continue; 2274 disk = conf->mirrors + disk_idx; 2275 2276 disk->rdev = rdev; 2277 disk_stack_limits(mddev->gendisk, rdev->bdev, 2278 rdev->data_offset << 9); 2279 /* as we don't honour merge_bvec_fn, we must never risk 2280 * violating it, so limit max_segments to 1 lying 2281 * within a single page. 2282 */ 2283 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2284 blk_queue_max_segments(mddev->queue, 1); 2285 blk_queue_segment_boundary(mddev->queue, 2286 PAGE_CACHE_SIZE - 1); 2287 } 2288 2289 disk->head_position = 0; 2290 } 2291 /* need to check that every block has at least one working mirror */ 2292 if (!enough(conf)) { 2293 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 2294 mdname(mddev)); 2295 goto out_free_conf; 2296 } 2297 2298 mddev->degraded = 0; 2299 for (i = 0; i < conf->raid_disks; i++) { 2300 2301 disk = conf->mirrors + i; 2302 2303 if (!disk->rdev || 2304 !test_bit(In_sync, &disk->rdev->flags)) { 2305 disk->head_position = 0; 2306 mddev->degraded++; 2307 if (disk->rdev) 2308 conf->fullsync = 1; 2309 } 2310 } 2311 2312 if (mddev->recovery_cp != MaxSector) 2313 printk(KERN_NOTICE "md/raid10:%s: not clean" 2314 " -- starting background reconstruction\n", 2315 mdname(mddev)); 2316 printk(KERN_INFO 2317 "md/raid10:%s: active with %d out of %d devices\n", 2318 mdname(mddev), conf->raid_disks - mddev->degraded, 2319 conf->raid_disks); 2320 /* 2321 * Ok, everything is just fine now 2322 */ 2323 mddev->dev_sectors = conf->dev_sectors; 2324 size = raid10_size(mddev, 0, 0); 2325 md_set_array_sectors(mddev, size); 2326 mddev->resync_max_sectors = size; 2327 2328 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2329 mddev->queue->backing_dev_info.congested_data = mddev; 2330 2331 /* Calculate max read-ahead size. 2332 * We need to readahead at least twice a whole stripe.... 2333 * maybe... 2334 */ 2335 { 2336 int stripe = conf->raid_disks * 2337 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 2338 stripe /= conf->near_copies; 2339 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2340 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2341 } 2342 2343 if (conf->near_copies < conf->raid_disks) 2344 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2345 2346 if (md_integrity_register(mddev)) 2347 goto out_free_conf; 2348 2349 return 0; 2350 2351 out_free_conf: 2352 md_unregister_thread(mddev->thread); 2353 if (conf->r10bio_pool) 2354 mempool_destroy(conf->r10bio_pool); 2355 safe_put_page(conf->tmppage); 2356 kfree(conf->mirrors); 2357 kfree(conf); 2358 mddev->private = NULL; 2359 out: 2360 return -EIO; 2361 } 2362 2363 static int stop(mddev_t *mddev) 2364 { 2365 conf_t *conf = mddev->private; 2366 2367 raise_barrier(conf, 0); 2368 lower_barrier(conf); 2369 2370 md_unregister_thread(mddev->thread); 2371 mddev->thread = NULL; 2372 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2373 if (conf->r10bio_pool) 2374 mempool_destroy(conf->r10bio_pool); 2375 kfree(conf->mirrors); 2376 kfree(conf); 2377 mddev->private = NULL; 2378 return 0; 2379 } 2380 2381 static void raid10_quiesce(mddev_t *mddev, int state) 2382 { 2383 conf_t *conf = mddev->private; 2384 2385 switch(state) { 2386 case 1: 2387 raise_barrier(conf, 0); 2388 break; 2389 case 0: 2390 lower_barrier(conf); 2391 break; 2392 } 2393 } 2394 2395 static void *raid10_takeover_raid0(mddev_t *mddev) 2396 { 2397 mdk_rdev_t *rdev; 2398 conf_t *conf; 2399 2400 if (mddev->degraded > 0) { 2401 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 2402 mdname(mddev)); 2403 return ERR_PTR(-EINVAL); 2404 } 2405 2406 /* Set new parameters */ 2407 mddev->new_level = 10; 2408 /* new layout: far_copies = 1, near_copies = 2 */ 2409 mddev->new_layout = (1<<8) + 2; 2410 mddev->new_chunk_sectors = mddev->chunk_sectors; 2411 mddev->delta_disks = mddev->raid_disks; 2412 mddev->raid_disks *= 2; 2413 /* make sure it will be not marked as dirty */ 2414 mddev->recovery_cp = MaxSector; 2415 2416 conf = setup_conf(mddev); 2417 if (!IS_ERR(conf)) { 2418 list_for_each_entry(rdev, &mddev->disks, same_set) 2419 if (rdev->raid_disk >= 0) 2420 rdev->new_raid_disk = rdev->raid_disk * 2; 2421 conf->barrier = 1; 2422 } 2423 2424 return conf; 2425 } 2426 2427 static void *raid10_takeover(mddev_t *mddev) 2428 { 2429 struct raid0_private_data *raid0_priv; 2430 2431 /* raid10 can take over: 2432 * raid0 - providing it has only two drives 2433 */ 2434 if (mddev->level == 0) { 2435 /* for raid0 takeover only one zone is supported */ 2436 raid0_priv = mddev->private; 2437 if (raid0_priv->nr_strip_zones > 1) { 2438 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 2439 " with more than one zone.\n", 2440 mdname(mddev)); 2441 return ERR_PTR(-EINVAL); 2442 } 2443 return raid10_takeover_raid0(mddev); 2444 } 2445 return ERR_PTR(-EINVAL); 2446 } 2447 2448 static struct mdk_personality raid10_personality = 2449 { 2450 .name = "raid10", 2451 .level = 10, 2452 .owner = THIS_MODULE, 2453 .make_request = make_request, 2454 .run = run, 2455 .stop = stop, 2456 .status = status, 2457 .error_handler = error, 2458 .hot_add_disk = raid10_add_disk, 2459 .hot_remove_disk= raid10_remove_disk, 2460 .spare_active = raid10_spare_active, 2461 .sync_request = sync_request, 2462 .quiesce = raid10_quiesce, 2463 .size = raid10_size, 2464 .takeover = raid10_takeover, 2465 }; 2466 2467 static int __init raid_init(void) 2468 { 2469 return register_md_personality(&raid10_personality); 2470 } 2471 2472 static void raid_exit(void) 2473 { 2474 unregister_md_personality(&raid10_personality); 2475 } 2476 2477 module_init(raid_init); 2478 module_exit(raid_exit); 2479 MODULE_LICENSE("GPL"); 2480 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 2481 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2482 MODULE_ALIAS("md-raid10"); 2483 MODULE_ALIAS("md-level-10"); 2484