1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * 43 * The data to be stored is divided into chunks using chunksize. Each device 44 * is divided into far_copies sections. In each section, chunks are laid out 45 * in a style similar to raid0, but near_copies copies of each chunk is stored 46 * (each on a different drive). The starting device for each section is offset 47 * near_copies from the starting device of the previous section. Thus there 48 * are (near_copies * far_copies) of each chunk, and each is on a different 49 * drive. near_copies and far_copies must be at least one, and their product 50 * is at most raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of being very far 54 * apart on disk, there are adjacent stripes. 55 * 56 * The far and offset algorithms are handled slightly differently if 57 * 'use_far_sets' is true. In this case, the array's devices are grouped into 58 * sets that are (near_copies * far_copies) in size. The far copied stripes 59 * are still shifted by 'near_copies' devices, but this shifting stays confined 60 * to the set rather than the entire array. This is done to improve the number 61 * of device combinations that can fail without causing the array to fail. 62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 63 * on a device): 64 * A B C D A B C D E 65 * ... ... 66 * D A B C E A B C D 67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 68 * [A B] [C D] [A B] [C D E] 69 * |...| |...| |...| | ... | 70 * [B A] [D C] [B A] [E C D] 71 */ 72 73 /* 74 * Number of guaranteed r10bios in case of extreme VM load: 75 */ 76 #define NR_RAID10_BIOS 256 77 78 /* when we get a read error on a read-only array, we redirect to another 79 * device without failing the first device, or trying to over-write to 80 * correct the read error. To keep track of bad blocks on a per-bio 81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 82 */ 83 #define IO_BLOCKED ((struct bio *)1) 84 /* When we successfully write to a known bad-block, we need to remove the 85 * bad-block marking which must be done from process context. So we record 86 * the success by setting devs[n].bio to IO_MADE_GOOD 87 */ 88 #define IO_MADE_GOOD ((struct bio *)2) 89 90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 91 92 /* When there are this many requests queued to be written by 93 * the raid10 thread, we become 'congested' to provide back-pressure 94 * for writeback. 95 */ 96 static int max_queued_requests = 1024; 97 98 static void allow_barrier(struct r10conf *conf); 99 static void lower_barrier(struct r10conf *conf); 100 static int enough(struct r10conf *conf, int ignore); 101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 102 int *skipped); 103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 104 static void end_reshape_write(struct bio *bio, int error); 105 static void end_reshape(struct r10conf *conf); 106 107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 108 { 109 struct r10conf *conf = data; 110 int size = offsetof(struct r10bio, devs[conf->copies]); 111 112 /* allocate a r10bio with room for raid_disks entries in the 113 * bios array */ 114 return kzalloc(size, gfp_flags); 115 } 116 117 static void r10bio_pool_free(void *r10_bio, void *data) 118 { 119 kfree(r10_bio); 120 } 121 122 /* Maximum size of each resync request */ 123 #define RESYNC_BLOCK_SIZE (64*1024) 124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 125 /* amount of memory to reserve for resync requests */ 126 #define RESYNC_WINDOW (1024*1024) 127 /* maximum number of concurrent requests, memory permitting */ 128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 129 130 /* 131 * When performing a resync, we need to read and compare, so 132 * we need as many pages are there are copies. 133 * When performing a recovery, we need 2 bios, one for read, 134 * one for write (we recover only one drive per r10buf) 135 * 136 */ 137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 138 { 139 struct r10conf *conf = data; 140 struct page *page; 141 struct r10bio *r10_bio; 142 struct bio *bio; 143 int i, j; 144 int nalloc; 145 146 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 147 if (!r10_bio) 148 return NULL; 149 150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 152 nalloc = conf->copies; /* resync */ 153 else 154 nalloc = 2; /* recovery */ 155 156 /* 157 * Allocate bios. 158 */ 159 for (j = nalloc ; j-- ; ) { 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 161 if (!bio) 162 goto out_free_bio; 163 r10_bio->devs[j].bio = bio; 164 if (!conf->have_replacement) 165 continue; 166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 167 if (!bio) 168 goto out_free_bio; 169 r10_bio->devs[j].repl_bio = bio; 170 } 171 /* 172 * Allocate RESYNC_PAGES data pages and attach them 173 * where needed. 174 */ 175 for (j = 0 ; j < nalloc; j++) { 176 struct bio *rbio = r10_bio->devs[j].repl_bio; 177 bio = r10_bio->devs[j].bio; 178 for (i = 0; i < RESYNC_PAGES; i++) { 179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 180 &conf->mddev->recovery)) { 181 /* we can share bv_page's during recovery 182 * and reshape */ 183 struct bio *rbio = r10_bio->devs[0].bio; 184 page = rbio->bi_io_vec[i].bv_page; 185 get_page(page); 186 } else 187 page = alloc_page(gfp_flags); 188 if (unlikely(!page)) 189 goto out_free_pages; 190 191 bio->bi_io_vec[i].bv_page = page; 192 if (rbio) 193 rbio->bi_io_vec[i].bv_page = page; 194 } 195 } 196 197 return r10_bio; 198 199 out_free_pages: 200 for ( ; i > 0 ; i--) 201 safe_put_page(bio->bi_io_vec[i-1].bv_page); 202 while (j--) 203 for (i = 0; i < RESYNC_PAGES ; i++) 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 205 j = 0; 206 out_free_bio: 207 for ( ; j < nalloc; j++) { 208 if (r10_bio->devs[j].bio) 209 bio_put(r10_bio->devs[j].bio); 210 if (r10_bio->devs[j].repl_bio) 211 bio_put(r10_bio->devs[j].repl_bio); 212 } 213 r10bio_pool_free(r10_bio, conf); 214 return NULL; 215 } 216 217 static void r10buf_pool_free(void *__r10_bio, void *data) 218 { 219 int i; 220 struct r10conf *conf = data; 221 struct r10bio *r10bio = __r10_bio; 222 int j; 223 224 for (j=0; j < conf->copies; j++) { 225 struct bio *bio = r10bio->devs[j].bio; 226 if (bio) { 227 for (i = 0; i < RESYNC_PAGES; i++) { 228 safe_put_page(bio->bi_io_vec[i].bv_page); 229 bio->bi_io_vec[i].bv_page = NULL; 230 } 231 bio_put(bio); 232 } 233 bio = r10bio->devs[j].repl_bio; 234 if (bio) 235 bio_put(bio); 236 } 237 r10bio_pool_free(r10bio, conf); 238 } 239 240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->copies; i++) { 245 struct bio **bio = & r10_bio->devs[i].bio; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 bio = &r10_bio->devs[i].repl_bio; 250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 251 bio_put(*bio); 252 *bio = NULL; 253 } 254 } 255 256 static void free_r10bio(struct r10bio *r10_bio) 257 { 258 struct r10conf *conf = r10_bio->mddev->private; 259 260 put_all_bios(conf, r10_bio); 261 mempool_free(r10_bio, conf->r10bio_pool); 262 } 263 264 static void put_buf(struct r10bio *r10_bio) 265 { 266 struct r10conf *conf = r10_bio->mddev->private; 267 268 mempool_free(r10_bio, conf->r10buf_pool); 269 270 lower_barrier(conf); 271 } 272 273 static void reschedule_retry(struct r10bio *r10_bio) 274 { 275 unsigned long flags; 276 struct mddev *mddev = r10_bio->mddev; 277 struct r10conf *conf = mddev->private; 278 279 spin_lock_irqsave(&conf->device_lock, flags); 280 list_add(&r10_bio->retry_list, &conf->retry_list); 281 conf->nr_queued ++; 282 spin_unlock_irqrestore(&conf->device_lock, flags); 283 284 /* wake up frozen array... */ 285 wake_up(&conf->wait_barrier); 286 287 md_wakeup_thread(mddev->thread); 288 } 289 290 /* 291 * raid_end_bio_io() is called when we have finished servicing a mirrored 292 * operation and are ready to return a success/failure code to the buffer 293 * cache layer. 294 */ 295 static void raid_end_bio_io(struct r10bio *r10_bio) 296 { 297 struct bio *bio = r10_bio->master_bio; 298 int done; 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 if (bio->bi_phys_segments) { 302 unsigned long flags; 303 spin_lock_irqsave(&conf->device_lock, flags); 304 bio->bi_phys_segments--; 305 done = (bio->bi_phys_segments == 0); 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 } else 308 done = 1; 309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 310 clear_bit(BIO_UPTODATE, &bio->bi_flags); 311 if (done) { 312 bio_endio(bio, 0); 313 /* 314 * Wake up any possible resync thread that waits for the device 315 * to go idle. 316 */ 317 allow_barrier(conf); 318 } 319 free_r10bio(r10_bio); 320 } 321 322 /* 323 * Update disk head position estimator based on IRQ completion info. 324 */ 325 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 326 { 327 struct r10conf *conf = r10_bio->mddev->private; 328 329 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 330 r10_bio->devs[slot].addr + (r10_bio->sectors); 331 } 332 333 /* 334 * Find the disk number which triggered given bio 335 */ 336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 337 struct bio *bio, int *slotp, int *replp) 338 { 339 int slot; 340 int repl = 0; 341 342 for (slot = 0; slot < conf->copies; slot++) { 343 if (r10_bio->devs[slot].bio == bio) 344 break; 345 if (r10_bio->devs[slot].repl_bio == bio) { 346 repl = 1; 347 break; 348 } 349 } 350 351 BUG_ON(slot == conf->copies); 352 update_head_pos(slot, r10_bio); 353 354 if (slotp) 355 *slotp = slot; 356 if (replp) 357 *replp = repl; 358 return r10_bio->devs[slot].devnum; 359 } 360 361 static void raid10_end_read_request(struct bio *bio, int error) 362 { 363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 364 struct r10bio *r10_bio = bio->bi_private; 365 int slot, dev; 366 struct md_rdev *rdev; 367 struct r10conf *conf = r10_bio->mddev->private; 368 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 unsigned long flags; 396 spin_lock_irqsave(&conf->device_lock, flags); 397 if (!enough(conf, rdev->raid_disk)) 398 uptodate = 1; 399 spin_unlock_irqrestore(&conf->device_lock, flags); 400 } 401 if (uptodate) { 402 raid_end_bio_io(r10_bio); 403 rdev_dec_pending(rdev, conf->mddev); 404 } else { 405 /* 406 * oops, read error - keep the refcount on the rdev 407 */ 408 char b[BDEVNAME_SIZE]; 409 printk_ratelimited(KERN_ERR 410 "md/raid10:%s: %s: rescheduling sector %llu\n", 411 mdname(conf->mddev), 412 bdevname(rdev->bdev, b), 413 (unsigned long long)r10_bio->sector); 414 set_bit(R10BIO_ReadError, &r10_bio->state); 415 reschedule_retry(r10_bio); 416 } 417 } 418 419 static void close_write(struct r10bio *r10_bio) 420 { 421 /* clear the bitmap if all writes complete successfully */ 422 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 423 r10_bio->sectors, 424 !test_bit(R10BIO_Degraded, &r10_bio->state), 425 0); 426 md_write_end(r10_bio->mddev); 427 } 428 429 static void one_write_done(struct r10bio *r10_bio) 430 { 431 if (atomic_dec_and_test(&r10_bio->remaining)) { 432 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 433 reschedule_retry(r10_bio); 434 else { 435 close_write(r10_bio); 436 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 437 reschedule_retry(r10_bio); 438 else 439 raid_end_bio_io(r10_bio); 440 } 441 } 442 } 443 444 static void raid10_end_write_request(struct bio *bio, int error) 445 { 446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 447 struct r10bio *r10_bio = bio->bi_private; 448 int dev; 449 int dec_rdev = 1; 450 struct r10conf *conf = r10_bio->mddev->private; 451 int slot, repl; 452 struct md_rdev *rdev = NULL; 453 454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 455 456 if (repl) 457 rdev = conf->mirrors[dev].replacement; 458 if (!rdev) { 459 smp_rmb(); 460 repl = 0; 461 rdev = conf->mirrors[dev].rdev; 462 } 463 /* 464 * this branch is our 'one mirror IO has finished' event handler: 465 */ 466 if (!uptodate) { 467 if (repl) 468 /* Never record new bad blocks to replacement, 469 * just fail it. 470 */ 471 md_error(rdev->mddev, rdev); 472 else { 473 set_bit(WriteErrorSeen, &rdev->flags); 474 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 475 set_bit(MD_RECOVERY_NEEDED, 476 &rdev->mddev->recovery); 477 set_bit(R10BIO_WriteError, &r10_bio->state); 478 dec_rdev = 0; 479 } 480 } else { 481 /* 482 * Set R10BIO_Uptodate in our master bio, so that 483 * we will return a good error code for to the higher 484 * levels even if IO on some other mirrored buffer fails. 485 * 486 * The 'master' represents the composite IO operation to 487 * user-side. So if something waits for IO, then it will 488 * wait for the 'master' bio. 489 */ 490 sector_t first_bad; 491 int bad_sectors; 492 493 /* 494 * Do not set R10BIO_Uptodate if the current device is 495 * rebuilding or Faulty. This is because we cannot use 496 * such device for properly reading the data back (we could 497 * potentially use it, if the current write would have felt 498 * before rdev->recovery_offset, but for simplicity we don't 499 * check this here. 500 */ 501 if (test_bit(In_sync, &rdev->flags) && 502 !test_bit(Faulty, &rdev->flags)) 503 set_bit(R10BIO_Uptodate, &r10_bio->state); 504 505 /* Maybe we can clear some bad blocks. */ 506 if (is_badblock(rdev, 507 r10_bio->devs[slot].addr, 508 r10_bio->sectors, 509 &first_bad, &bad_sectors)) { 510 bio_put(bio); 511 if (repl) 512 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 513 else 514 r10_bio->devs[slot].bio = IO_MADE_GOOD; 515 dec_rdev = 0; 516 set_bit(R10BIO_MadeGood, &r10_bio->state); 517 } 518 } 519 520 /* 521 * 522 * Let's see if all mirrored write operations have finished 523 * already. 524 */ 525 one_write_done(r10_bio); 526 if (dec_rdev) 527 rdev_dec_pending(rdev, conf->mddev); 528 } 529 530 /* 531 * RAID10 layout manager 532 * As well as the chunksize and raid_disks count, there are two 533 * parameters: near_copies and far_copies. 534 * near_copies * far_copies must be <= raid_disks. 535 * Normally one of these will be 1. 536 * If both are 1, we get raid0. 537 * If near_copies == raid_disks, we get raid1. 538 * 539 * Chunks are laid out in raid0 style with near_copies copies of the 540 * first chunk, followed by near_copies copies of the next chunk and 541 * so on. 542 * If far_copies > 1, then after 1/far_copies of the array has been assigned 543 * as described above, we start again with a device offset of near_copies. 544 * So we effectively have another copy of the whole array further down all 545 * the drives, but with blocks on different drives. 546 * With this layout, and block is never stored twice on the one device. 547 * 548 * raid10_find_phys finds the sector offset of a given virtual sector 549 * on each device that it is on. 550 * 551 * raid10_find_virt does the reverse mapping, from a device and a 552 * sector offset to a virtual address 553 */ 554 555 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 556 { 557 int n,f; 558 sector_t sector; 559 sector_t chunk; 560 sector_t stripe; 561 int dev; 562 int slot = 0; 563 int last_far_set_start, last_far_set_size; 564 565 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 566 last_far_set_start *= geo->far_set_size; 567 568 last_far_set_size = geo->far_set_size; 569 last_far_set_size += (geo->raid_disks % geo->far_set_size); 570 571 /* now calculate first sector/dev */ 572 chunk = r10bio->sector >> geo->chunk_shift; 573 sector = r10bio->sector & geo->chunk_mask; 574 575 chunk *= geo->near_copies; 576 stripe = chunk; 577 dev = sector_div(stripe, geo->raid_disks); 578 if (geo->far_offset) 579 stripe *= geo->far_copies; 580 581 sector += stripe << geo->chunk_shift; 582 583 /* and calculate all the others */ 584 for (n = 0; n < geo->near_copies; n++) { 585 int d = dev; 586 int set; 587 sector_t s = sector; 588 r10bio->devs[slot].devnum = d; 589 r10bio->devs[slot].addr = s; 590 slot++; 591 592 for (f = 1; f < geo->far_copies; f++) { 593 set = d / geo->far_set_size; 594 d += geo->near_copies; 595 596 if ((geo->raid_disks % geo->far_set_size) && 597 (d > last_far_set_start)) { 598 d -= last_far_set_start; 599 d %= last_far_set_size; 600 d += last_far_set_start; 601 } else { 602 d %= geo->far_set_size; 603 d += geo->far_set_size * set; 604 } 605 s += geo->stride; 606 r10bio->devs[slot].devnum = d; 607 r10bio->devs[slot].addr = s; 608 slot++; 609 } 610 dev++; 611 if (dev >= geo->raid_disks) { 612 dev = 0; 613 sector += (geo->chunk_mask + 1); 614 } 615 } 616 } 617 618 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 619 { 620 struct geom *geo = &conf->geo; 621 622 if (conf->reshape_progress != MaxSector && 623 ((r10bio->sector >= conf->reshape_progress) != 624 conf->mddev->reshape_backwards)) { 625 set_bit(R10BIO_Previous, &r10bio->state); 626 geo = &conf->prev; 627 } else 628 clear_bit(R10BIO_Previous, &r10bio->state); 629 630 __raid10_find_phys(geo, r10bio); 631 } 632 633 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 634 { 635 sector_t offset, chunk, vchunk; 636 /* Never use conf->prev as this is only called during resync 637 * or recovery, so reshape isn't happening 638 */ 639 struct geom *geo = &conf->geo; 640 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 641 int far_set_size = geo->far_set_size; 642 int last_far_set_start; 643 644 if (geo->raid_disks % geo->far_set_size) { 645 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 646 last_far_set_start *= geo->far_set_size; 647 648 if (dev >= last_far_set_start) { 649 far_set_size = geo->far_set_size; 650 far_set_size += (geo->raid_disks % geo->far_set_size); 651 far_set_start = last_far_set_start; 652 } 653 } 654 655 offset = sector & geo->chunk_mask; 656 if (geo->far_offset) { 657 int fc; 658 chunk = sector >> geo->chunk_shift; 659 fc = sector_div(chunk, geo->far_copies); 660 dev -= fc * geo->near_copies; 661 if (dev < far_set_start) 662 dev += far_set_size; 663 } else { 664 while (sector >= geo->stride) { 665 sector -= geo->stride; 666 if (dev < (geo->near_copies + far_set_start)) 667 dev += far_set_size - geo->near_copies; 668 else 669 dev -= geo->near_copies; 670 } 671 chunk = sector >> geo->chunk_shift; 672 } 673 vchunk = chunk * geo->raid_disks + dev; 674 sector_div(vchunk, geo->near_copies); 675 return (vchunk << geo->chunk_shift) + offset; 676 } 677 678 /** 679 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 680 * @q: request queue 681 * @bvm: properties of new bio 682 * @biovec: the request that could be merged to it. 683 * 684 * Return amount of bytes we can accept at this offset 685 * This requires checking for end-of-chunk if near_copies != raid_disks, 686 * and for subordinate merge_bvec_fns if merge_check_needed. 687 */ 688 static int raid10_mergeable_bvec(struct request_queue *q, 689 struct bvec_merge_data *bvm, 690 struct bio_vec *biovec) 691 { 692 struct mddev *mddev = q->queuedata; 693 struct r10conf *conf = mddev->private; 694 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 695 int max; 696 unsigned int chunk_sectors; 697 unsigned int bio_sectors = bvm->bi_size >> 9; 698 struct geom *geo = &conf->geo; 699 700 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 701 if (conf->reshape_progress != MaxSector && 702 ((sector >= conf->reshape_progress) != 703 conf->mddev->reshape_backwards)) 704 geo = &conf->prev; 705 706 if (geo->near_copies < geo->raid_disks) { 707 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 708 + bio_sectors)) << 9; 709 if (max < 0) 710 /* bio_add cannot handle a negative return */ 711 max = 0; 712 if (max <= biovec->bv_len && bio_sectors == 0) 713 return biovec->bv_len; 714 } else 715 max = biovec->bv_len; 716 717 if (mddev->merge_check_needed) { 718 struct { 719 struct r10bio r10_bio; 720 struct r10dev devs[conf->copies]; 721 } on_stack; 722 struct r10bio *r10_bio = &on_stack.r10_bio; 723 int s; 724 if (conf->reshape_progress != MaxSector) { 725 /* Cannot give any guidance during reshape */ 726 if (max <= biovec->bv_len && bio_sectors == 0) 727 return biovec->bv_len; 728 return 0; 729 } 730 r10_bio->sector = sector; 731 raid10_find_phys(conf, r10_bio); 732 rcu_read_lock(); 733 for (s = 0; s < conf->copies; s++) { 734 int disk = r10_bio->devs[s].devnum; 735 struct md_rdev *rdev = rcu_dereference( 736 conf->mirrors[disk].rdev); 737 if (rdev && !test_bit(Faulty, &rdev->flags)) { 738 struct request_queue *q = 739 bdev_get_queue(rdev->bdev); 740 if (q->merge_bvec_fn) { 741 bvm->bi_sector = r10_bio->devs[s].addr 742 + rdev->data_offset; 743 bvm->bi_bdev = rdev->bdev; 744 max = min(max, q->merge_bvec_fn( 745 q, bvm, biovec)); 746 } 747 } 748 rdev = rcu_dereference(conf->mirrors[disk].replacement); 749 if (rdev && !test_bit(Faulty, &rdev->flags)) { 750 struct request_queue *q = 751 bdev_get_queue(rdev->bdev); 752 if (q->merge_bvec_fn) { 753 bvm->bi_sector = r10_bio->devs[s].addr 754 + rdev->data_offset; 755 bvm->bi_bdev = rdev->bdev; 756 max = min(max, q->merge_bvec_fn( 757 q, bvm, biovec)); 758 } 759 } 760 } 761 rcu_read_unlock(); 762 } 763 return max; 764 } 765 766 /* 767 * This routine returns the disk from which the requested read should 768 * be done. There is a per-array 'next expected sequential IO' sector 769 * number - if this matches on the next IO then we use the last disk. 770 * There is also a per-disk 'last know head position' sector that is 771 * maintained from IRQ contexts, both the normal and the resync IO 772 * completion handlers update this position correctly. If there is no 773 * perfect sequential match then we pick the disk whose head is closest. 774 * 775 * If there are 2 mirrors in the same 2 devices, performance degrades 776 * because position is mirror, not device based. 777 * 778 * The rdev for the device selected will have nr_pending incremented. 779 */ 780 781 /* 782 * FIXME: possibly should rethink readbalancing and do it differently 783 * depending on near_copies / far_copies geometry. 784 */ 785 static struct md_rdev *read_balance(struct r10conf *conf, 786 struct r10bio *r10_bio, 787 int *max_sectors) 788 { 789 const sector_t this_sector = r10_bio->sector; 790 int disk, slot; 791 int sectors = r10_bio->sectors; 792 int best_good_sectors; 793 sector_t new_distance, best_dist; 794 struct md_rdev *best_rdev, *rdev = NULL; 795 int do_balance; 796 int best_slot; 797 struct geom *geo = &conf->geo; 798 799 raid10_find_phys(conf, r10_bio); 800 rcu_read_lock(); 801 retry: 802 sectors = r10_bio->sectors; 803 best_slot = -1; 804 best_rdev = NULL; 805 best_dist = MaxSector; 806 best_good_sectors = 0; 807 do_balance = 1; 808 /* 809 * Check if we can balance. We can balance on the whole 810 * device if no resync is going on (recovery is ok), or below 811 * the resync window. We take the first readable disk when 812 * above the resync window. 813 */ 814 if (conf->mddev->recovery_cp < MaxSector 815 && (this_sector + sectors >= conf->next_resync)) 816 do_balance = 0; 817 818 for (slot = 0; slot < conf->copies ; slot++) { 819 sector_t first_bad; 820 int bad_sectors; 821 sector_t dev_sector; 822 823 if (r10_bio->devs[slot].bio == IO_BLOCKED) 824 continue; 825 disk = r10_bio->devs[slot].devnum; 826 rdev = rcu_dereference(conf->mirrors[disk].replacement); 827 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 828 test_bit(Unmerged, &rdev->flags) || 829 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 830 rdev = rcu_dereference(conf->mirrors[disk].rdev); 831 if (rdev == NULL || 832 test_bit(Faulty, &rdev->flags) || 833 test_bit(Unmerged, &rdev->flags)) 834 continue; 835 if (!test_bit(In_sync, &rdev->flags) && 836 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 837 continue; 838 839 dev_sector = r10_bio->devs[slot].addr; 840 if (is_badblock(rdev, dev_sector, sectors, 841 &first_bad, &bad_sectors)) { 842 if (best_dist < MaxSector) 843 /* Already have a better slot */ 844 continue; 845 if (first_bad <= dev_sector) { 846 /* Cannot read here. If this is the 847 * 'primary' device, then we must not read 848 * beyond 'bad_sectors' from another device. 849 */ 850 bad_sectors -= (dev_sector - first_bad); 851 if (!do_balance && sectors > bad_sectors) 852 sectors = bad_sectors; 853 if (best_good_sectors > sectors) 854 best_good_sectors = sectors; 855 } else { 856 sector_t good_sectors = 857 first_bad - dev_sector; 858 if (good_sectors > best_good_sectors) { 859 best_good_sectors = good_sectors; 860 best_slot = slot; 861 best_rdev = rdev; 862 } 863 if (!do_balance) 864 /* Must read from here */ 865 break; 866 } 867 continue; 868 } else 869 best_good_sectors = sectors; 870 871 if (!do_balance) 872 break; 873 874 /* This optimisation is debatable, and completely destroys 875 * sequential read speed for 'far copies' arrays. So only 876 * keep it for 'near' arrays, and review those later. 877 */ 878 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 879 break; 880 881 /* for far > 1 always use the lowest address */ 882 if (geo->far_copies > 1) 883 new_distance = r10_bio->devs[slot].addr; 884 else 885 new_distance = abs(r10_bio->devs[slot].addr - 886 conf->mirrors[disk].head_position); 887 if (new_distance < best_dist) { 888 best_dist = new_distance; 889 best_slot = slot; 890 best_rdev = rdev; 891 } 892 } 893 if (slot >= conf->copies) { 894 slot = best_slot; 895 rdev = best_rdev; 896 } 897 898 if (slot >= 0) { 899 atomic_inc(&rdev->nr_pending); 900 if (test_bit(Faulty, &rdev->flags)) { 901 /* Cannot risk returning a device that failed 902 * before we inc'ed nr_pending 903 */ 904 rdev_dec_pending(rdev, conf->mddev); 905 goto retry; 906 } 907 r10_bio->read_slot = slot; 908 } else 909 rdev = NULL; 910 rcu_read_unlock(); 911 *max_sectors = best_good_sectors; 912 913 return rdev; 914 } 915 916 int md_raid10_congested(struct mddev *mddev, int bits) 917 { 918 struct r10conf *conf = mddev->private; 919 int i, ret = 0; 920 921 if ((bits & (1 << BDI_async_congested)) && 922 conf->pending_count >= max_queued_requests) 923 return 1; 924 925 rcu_read_lock(); 926 for (i = 0; 927 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 928 && ret == 0; 929 i++) { 930 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 931 if (rdev && !test_bit(Faulty, &rdev->flags)) { 932 struct request_queue *q = bdev_get_queue(rdev->bdev); 933 934 ret |= bdi_congested(&q->backing_dev_info, bits); 935 } 936 } 937 rcu_read_unlock(); 938 return ret; 939 } 940 EXPORT_SYMBOL_GPL(md_raid10_congested); 941 942 static int raid10_congested(void *data, int bits) 943 { 944 struct mddev *mddev = data; 945 946 return mddev_congested(mddev, bits) || 947 md_raid10_congested(mddev, bits); 948 } 949 950 static void flush_pending_writes(struct r10conf *conf) 951 { 952 /* Any writes that have been queued but are awaiting 953 * bitmap updates get flushed here. 954 */ 955 spin_lock_irq(&conf->device_lock); 956 957 if (conf->pending_bio_list.head) { 958 struct bio *bio; 959 bio = bio_list_get(&conf->pending_bio_list); 960 conf->pending_count = 0; 961 spin_unlock_irq(&conf->device_lock); 962 /* flush any pending bitmap writes to disk 963 * before proceeding w/ I/O */ 964 bitmap_unplug(conf->mddev->bitmap); 965 wake_up(&conf->wait_barrier); 966 967 while (bio) { /* submit pending writes */ 968 struct bio *next = bio->bi_next; 969 bio->bi_next = NULL; 970 if (unlikely((bio->bi_rw & REQ_DISCARD) && 971 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 972 /* Just ignore it */ 973 bio_endio(bio, 0); 974 else 975 generic_make_request(bio); 976 bio = next; 977 } 978 } else 979 spin_unlock_irq(&conf->device_lock); 980 } 981 982 /* Barriers.... 983 * Sometimes we need to suspend IO while we do something else, 984 * either some resync/recovery, or reconfigure the array. 985 * To do this we raise a 'barrier'. 986 * The 'barrier' is a counter that can be raised multiple times 987 * to count how many activities are happening which preclude 988 * normal IO. 989 * We can only raise the barrier if there is no pending IO. 990 * i.e. if nr_pending == 0. 991 * We choose only to raise the barrier if no-one is waiting for the 992 * barrier to go down. This means that as soon as an IO request 993 * is ready, no other operations which require a barrier will start 994 * until the IO request has had a chance. 995 * 996 * So: regular IO calls 'wait_barrier'. When that returns there 997 * is no backgroup IO happening, It must arrange to call 998 * allow_barrier when it has finished its IO. 999 * backgroup IO calls must call raise_barrier. Once that returns 1000 * there is no normal IO happeing. It must arrange to call 1001 * lower_barrier when the particular background IO completes. 1002 */ 1003 1004 static void raise_barrier(struct r10conf *conf, int force) 1005 { 1006 BUG_ON(force && !conf->barrier); 1007 spin_lock_irq(&conf->resync_lock); 1008 1009 /* Wait until no block IO is waiting (unless 'force') */ 1010 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 1011 conf->resync_lock); 1012 1013 /* block any new IO from starting */ 1014 conf->barrier++; 1015 1016 /* Now wait for all pending IO to complete */ 1017 wait_event_lock_irq(conf->wait_barrier, 1018 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 1019 conf->resync_lock); 1020 1021 spin_unlock_irq(&conf->resync_lock); 1022 } 1023 1024 static void lower_barrier(struct r10conf *conf) 1025 { 1026 unsigned long flags; 1027 spin_lock_irqsave(&conf->resync_lock, flags); 1028 conf->barrier--; 1029 spin_unlock_irqrestore(&conf->resync_lock, flags); 1030 wake_up(&conf->wait_barrier); 1031 } 1032 1033 static void wait_barrier(struct r10conf *conf) 1034 { 1035 spin_lock_irq(&conf->resync_lock); 1036 if (conf->barrier) { 1037 conf->nr_waiting++; 1038 /* Wait for the barrier to drop. 1039 * However if there are already pending 1040 * requests (preventing the barrier from 1041 * rising completely), and the 1042 * pre-process bio queue isn't empty, 1043 * then don't wait, as we need to empty 1044 * that queue to get the nr_pending 1045 * count down. 1046 */ 1047 wait_event_lock_irq(conf->wait_barrier, 1048 !conf->barrier || 1049 (conf->nr_pending && 1050 current->bio_list && 1051 !bio_list_empty(current->bio_list)), 1052 conf->resync_lock); 1053 conf->nr_waiting--; 1054 } 1055 conf->nr_pending++; 1056 spin_unlock_irq(&conf->resync_lock); 1057 } 1058 1059 static void allow_barrier(struct r10conf *conf) 1060 { 1061 unsigned long flags; 1062 spin_lock_irqsave(&conf->resync_lock, flags); 1063 conf->nr_pending--; 1064 spin_unlock_irqrestore(&conf->resync_lock, flags); 1065 wake_up(&conf->wait_barrier); 1066 } 1067 1068 static void freeze_array(struct r10conf *conf, int extra) 1069 { 1070 /* stop syncio and normal IO and wait for everything to 1071 * go quiet. 1072 * We increment barrier and nr_waiting, and then 1073 * wait until nr_pending match nr_queued+extra 1074 * This is called in the context of one normal IO request 1075 * that has failed. Thus any sync request that might be pending 1076 * will be blocked by nr_pending, and we need to wait for 1077 * pending IO requests to complete or be queued for re-try. 1078 * Thus the number queued (nr_queued) plus this request (extra) 1079 * must match the number of pending IOs (nr_pending) before 1080 * we continue. 1081 */ 1082 spin_lock_irq(&conf->resync_lock); 1083 conf->barrier++; 1084 conf->nr_waiting++; 1085 wait_event_lock_irq_cmd(conf->wait_barrier, 1086 conf->nr_pending == conf->nr_queued+extra, 1087 conf->resync_lock, 1088 flush_pending_writes(conf)); 1089 1090 spin_unlock_irq(&conf->resync_lock); 1091 } 1092 1093 static void unfreeze_array(struct r10conf *conf) 1094 { 1095 /* reverse the effect of the freeze */ 1096 spin_lock_irq(&conf->resync_lock); 1097 conf->barrier--; 1098 conf->nr_waiting--; 1099 wake_up(&conf->wait_barrier); 1100 spin_unlock_irq(&conf->resync_lock); 1101 } 1102 1103 static sector_t choose_data_offset(struct r10bio *r10_bio, 1104 struct md_rdev *rdev) 1105 { 1106 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1107 test_bit(R10BIO_Previous, &r10_bio->state)) 1108 return rdev->data_offset; 1109 else 1110 return rdev->new_data_offset; 1111 } 1112 1113 struct raid10_plug_cb { 1114 struct blk_plug_cb cb; 1115 struct bio_list pending; 1116 int pending_cnt; 1117 }; 1118 1119 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1120 { 1121 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1122 cb); 1123 struct mddev *mddev = plug->cb.data; 1124 struct r10conf *conf = mddev->private; 1125 struct bio *bio; 1126 1127 if (from_schedule || current->bio_list) { 1128 spin_lock_irq(&conf->device_lock); 1129 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1130 conf->pending_count += plug->pending_cnt; 1131 spin_unlock_irq(&conf->device_lock); 1132 wake_up(&conf->wait_barrier); 1133 md_wakeup_thread(mddev->thread); 1134 kfree(plug); 1135 return; 1136 } 1137 1138 /* we aren't scheduling, so we can do the write-out directly. */ 1139 bio = bio_list_get(&plug->pending); 1140 bitmap_unplug(mddev->bitmap); 1141 wake_up(&conf->wait_barrier); 1142 1143 while (bio) { /* submit pending writes */ 1144 struct bio *next = bio->bi_next; 1145 bio->bi_next = NULL; 1146 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1147 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1148 /* Just ignore it */ 1149 bio_endio(bio, 0); 1150 else 1151 generic_make_request(bio); 1152 bio = next; 1153 } 1154 kfree(plug); 1155 } 1156 1157 static void make_request(struct mddev *mddev, struct bio * bio) 1158 { 1159 struct r10conf *conf = mddev->private; 1160 struct r10bio *r10_bio; 1161 struct bio *read_bio; 1162 int i; 1163 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1164 int chunk_sects = chunk_mask + 1; 1165 const int rw = bio_data_dir(bio); 1166 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1167 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1168 const unsigned long do_discard = (bio->bi_rw 1169 & (REQ_DISCARD | REQ_SECURE)); 1170 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1171 unsigned long flags; 1172 struct md_rdev *blocked_rdev; 1173 struct blk_plug_cb *cb; 1174 struct raid10_plug_cb *plug = NULL; 1175 int sectors_handled; 1176 int max_sectors; 1177 int sectors; 1178 1179 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1180 md_flush_request(mddev, bio); 1181 return; 1182 } 1183 1184 /* If this request crosses a chunk boundary, we need to 1185 * split it. This will only happen for 1 PAGE (or less) requests. 1186 */ 1187 if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio) 1188 > chunk_sects 1189 && (conf->geo.near_copies < conf->geo.raid_disks 1190 || conf->prev.near_copies < conf->prev.raid_disks))) { 1191 struct bio_pair *bp; 1192 /* Sanity check -- queue functions should prevent this happening */ 1193 if (bio_segments(bio) > 1) 1194 goto bad_map; 1195 /* This is a one page bio that upper layers 1196 * refuse to split for us, so we need to split it. 1197 */ 1198 bp = bio_split(bio, 1199 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1200 1201 /* Each of these 'make_request' calls will call 'wait_barrier'. 1202 * If the first succeeds but the second blocks due to the resync 1203 * thread raising the barrier, we will deadlock because the 1204 * IO to the underlying device will be queued in generic_make_request 1205 * and will never complete, so will never reduce nr_pending. 1206 * So increment nr_waiting here so no new raise_barriers will 1207 * succeed, and so the second wait_barrier cannot block. 1208 */ 1209 spin_lock_irq(&conf->resync_lock); 1210 conf->nr_waiting++; 1211 spin_unlock_irq(&conf->resync_lock); 1212 1213 make_request(mddev, &bp->bio1); 1214 make_request(mddev, &bp->bio2); 1215 1216 spin_lock_irq(&conf->resync_lock); 1217 conf->nr_waiting--; 1218 wake_up(&conf->wait_barrier); 1219 spin_unlock_irq(&conf->resync_lock); 1220 1221 bio_pair_release(bp); 1222 return; 1223 bad_map: 1224 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1225 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1226 (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2); 1227 1228 bio_io_error(bio); 1229 return; 1230 } 1231 1232 md_write_start(mddev, bio); 1233 1234 /* 1235 * Register the new request and wait if the reconstruction 1236 * thread has put up a bar for new requests. 1237 * Continue immediately if no resync is active currently. 1238 */ 1239 wait_barrier(conf); 1240 1241 sectors = bio_sectors(bio); 1242 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1243 bio->bi_sector < conf->reshape_progress && 1244 bio->bi_sector + sectors > conf->reshape_progress) { 1245 /* IO spans the reshape position. Need to wait for 1246 * reshape to pass 1247 */ 1248 allow_barrier(conf); 1249 wait_event(conf->wait_barrier, 1250 conf->reshape_progress <= bio->bi_sector || 1251 conf->reshape_progress >= bio->bi_sector + sectors); 1252 wait_barrier(conf); 1253 } 1254 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1255 bio_data_dir(bio) == WRITE && 1256 (mddev->reshape_backwards 1257 ? (bio->bi_sector < conf->reshape_safe && 1258 bio->bi_sector + sectors > conf->reshape_progress) 1259 : (bio->bi_sector + sectors > conf->reshape_safe && 1260 bio->bi_sector < conf->reshape_progress))) { 1261 /* Need to update reshape_position in metadata */ 1262 mddev->reshape_position = conf->reshape_progress; 1263 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1264 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1265 md_wakeup_thread(mddev->thread); 1266 wait_event(mddev->sb_wait, 1267 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1268 1269 conf->reshape_safe = mddev->reshape_position; 1270 } 1271 1272 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1273 1274 r10_bio->master_bio = bio; 1275 r10_bio->sectors = sectors; 1276 1277 r10_bio->mddev = mddev; 1278 r10_bio->sector = bio->bi_sector; 1279 r10_bio->state = 0; 1280 1281 /* We might need to issue multiple reads to different 1282 * devices if there are bad blocks around, so we keep 1283 * track of the number of reads in bio->bi_phys_segments. 1284 * If this is 0, there is only one r10_bio and no locking 1285 * will be needed when the request completes. If it is 1286 * non-zero, then it is the number of not-completed requests. 1287 */ 1288 bio->bi_phys_segments = 0; 1289 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1290 1291 if (rw == READ) { 1292 /* 1293 * read balancing logic: 1294 */ 1295 struct md_rdev *rdev; 1296 int slot; 1297 1298 read_again: 1299 rdev = read_balance(conf, r10_bio, &max_sectors); 1300 if (!rdev) { 1301 raid_end_bio_io(r10_bio); 1302 return; 1303 } 1304 slot = r10_bio->read_slot; 1305 1306 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1307 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1308 max_sectors); 1309 1310 r10_bio->devs[slot].bio = read_bio; 1311 r10_bio->devs[slot].rdev = rdev; 1312 1313 read_bio->bi_sector = r10_bio->devs[slot].addr + 1314 choose_data_offset(r10_bio, rdev); 1315 read_bio->bi_bdev = rdev->bdev; 1316 read_bio->bi_end_io = raid10_end_read_request; 1317 read_bio->bi_rw = READ | do_sync; 1318 read_bio->bi_private = r10_bio; 1319 1320 if (max_sectors < r10_bio->sectors) { 1321 /* Could not read all from this device, so we will 1322 * need another r10_bio. 1323 */ 1324 sectors_handled = (r10_bio->sectors + max_sectors 1325 - bio->bi_sector); 1326 r10_bio->sectors = max_sectors; 1327 spin_lock_irq(&conf->device_lock); 1328 if (bio->bi_phys_segments == 0) 1329 bio->bi_phys_segments = 2; 1330 else 1331 bio->bi_phys_segments++; 1332 spin_unlock(&conf->device_lock); 1333 /* Cannot call generic_make_request directly 1334 * as that will be queued in __generic_make_request 1335 * and subsequent mempool_alloc might block 1336 * waiting for it. so hand bio over to raid10d. 1337 */ 1338 reschedule_retry(r10_bio); 1339 1340 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1341 1342 r10_bio->master_bio = bio; 1343 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1344 r10_bio->state = 0; 1345 r10_bio->mddev = mddev; 1346 r10_bio->sector = bio->bi_sector + sectors_handled; 1347 goto read_again; 1348 } else 1349 generic_make_request(read_bio); 1350 return; 1351 } 1352 1353 /* 1354 * WRITE: 1355 */ 1356 if (conf->pending_count >= max_queued_requests) { 1357 md_wakeup_thread(mddev->thread); 1358 wait_event(conf->wait_barrier, 1359 conf->pending_count < max_queued_requests); 1360 } 1361 /* first select target devices under rcu_lock and 1362 * inc refcount on their rdev. Record them by setting 1363 * bios[x] to bio 1364 * If there are known/acknowledged bad blocks on any device 1365 * on which we have seen a write error, we want to avoid 1366 * writing to those blocks. This potentially requires several 1367 * writes to write around the bad blocks. Each set of writes 1368 * gets its own r10_bio with a set of bios attached. The number 1369 * of r10_bios is recored in bio->bi_phys_segments just as with 1370 * the read case. 1371 */ 1372 1373 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1374 raid10_find_phys(conf, r10_bio); 1375 retry_write: 1376 blocked_rdev = NULL; 1377 rcu_read_lock(); 1378 max_sectors = r10_bio->sectors; 1379 1380 for (i = 0; i < conf->copies; i++) { 1381 int d = r10_bio->devs[i].devnum; 1382 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1383 struct md_rdev *rrdev = rcu_dereference( 1384 conf->mirrors[d].replacement); 1385 if (rdev == rrdev) 1386 rrdev = NULL; 1387 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1388 atomic_inc(&rdev->nr_pending); 1389 blocked_rdev = rdev; 1390 break; 1391 } 1392 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1393 atomic_inc(&rrdev->nr_pending); 1394 blocked_rdev = rrdev; 1395 break; 1396 } 1397 if (rdev && (test_bit(Faulty, &rdev->flags) 1398 || test_bit(Unmerged, &rdev->flags))) 1399 rdev = NULL; 1400 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1401 || test_bit(Unmerged, &rrdev->flags))) 1402 rrdev = NULL; 1403 1404 r10_bio->devs[i].bio = NULL; 1405 r10_bio->devs[i].repl_bio = NULL; 1406 1407 if (!rdev && !rrdev) { 1408 set_bit(R10BIO_Degraded, &r10_bio->state); 1409 continue; 1410 } 1411 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1412 sector_t first_bad; 1413 sector_t dev_sector = r10_bio->devs[i].addr; 1414 int bad_sectors; 1415 int is_bad; 1416 1417 is_bad = is_badblock(rdev, dev_sector, 1418 max_sectors, 1419 &first_bad, &bad_sectors); 1420 if (is_bad < 0) { 1421 /* Mustn't write here until the bad block 1422 * is acknowledged 1423 */ 1424 atomic_inc(&rdev->nr_pending); 1425 set_bit(BlockedBadBlocks, &rdev->flags); 1426 blocked_rdev = rdev; 1427 break; 1428 } 1429 if (is_bad && first_bad <= dev_sector) { 1430 /* Cannot write here at all */ 1431 bad_sectors -= (dev_sector - first_bad); 1432 if (bad_sectors < max_sectors) 1433 /* Mustn't write more than bad_sectors 1434 * to other devices yet 1435 */ 1436 max_sectors = bad_sectors; 1437 /* We don't set R10BIO_Degraded as that 1438 * only applies if the disk is missing, 1439 * so it might be re-added, and we want to 1440 * know to recover this chunk. 1441 * In this case the device is here, and the 1442 * fact that this chunk is not in-sync is 1443 * recorded in the bad block log. 1444 */ 1445 continue; 1446 } 1447 if (is_bad) { 1448 int good_sectors = first_bad - dev_sector; 1449 if (good_sectors < max_sectors) 1450 max_sectors = good_sectors; 1451 } 1452 } 1453 if (rdev) { 1454 r10_bio->devs[i].bio = bio; 1455 atomic_inc(&rdev->nr_pending); 1456 } 1457 if (rrdev) { 1458 r10_bio->devs[i].repl_bio = bio; 1459 atomic_inc(&rrdev->nr_pending); 1460 } 1461 } 1462 rcu_read_unlock(); 1463 1464 if (unlikely(blocked_rdev)) { 1465 /* Have to wait for this device to get unblocked, then retry */ 1466 int j; 1467 int d; 1468 1469 for (j = 0; j < i; j++) { 1470 if (r10_bio->devs[j].bio) { 1471 d = r10_bio->devs[j].devnum; 1472 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1473 } 1474 if (r10_bio->devs[j].repl_bio) { 1475 struct md_rdev *rdev; 1476 d = r10_bio->devs[j].devnum; 1477 rdev = conf->mirrors[d].replacement; 1478 if (!rdev) { 1479 /* Race with remove_disk */ 1480 smp_mb(); 1481 rdev = conf->mirrors[d].rdev; 1482 } 1483 rdev_dec_pending(rdev, mddev); 1484 } 1485 } 1486 allow_barrier(conf); 1487 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1488 wait_barrier(conf); 1489 goto retry_write; 1490 } 1491 1492 if (max_sectors < r10_bio->sectors) { 1493 /* We are splitting this into multiple parts, so 1494 * we need to prepare for allocating another r10_bio. 1495 */ 1496 r10_bio->sectors = max_sectors; 1497 spin_lock_irq(&conf->device_lock); 1498 if (bio->bi_phys_segments == 0) 1499 bio->bi_phys_segments = 2; 1500 else 1501 bio->bi_phys_segments++; 1502 spin_unlock_irq(&conf->device_lock); 1503 } 1504 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1505 1506 atomic_set(&r10_bio->remaining, 1); 1507 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1508 1509 for (i = 0; i < conf->copies; i++) { 1510 struct bio *mbio; 1511 int d = r10_bio->devs[i].devnum; 1512 if (r10_bio->devs[i].bio) { 1513 struct md_rdev *rdev = conf->mirrors[d].rdev; 1514 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1515 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1516 max_sectors); 1517 r10_bio->devs[i].bio = mbio; 1518 1519 mbio->bi_sector = (r10_bio->devs[i].addr+ 1520 choose_data_offset(r10_bio, 1521 rdev)); 1522 mbio->bi_bdev = rdev->bdev; 1523 mbio->bi_end_io = raid10_end_write_request; 1524 mbio->bi_rw = 1525 WRITE | do_sync | do_fua | do_discard | do_same; 1526 mbio->bi_private = r10_bio; 1527 1528 atomic_inc(&r10_bio->remaining); 1529 1530 cb = blk_check_plugged(raid10_unplug, mddev, 1531 sizeof(*plug)); 1532 if (cb) 1533 plug = container_of(cb, struct raid10_plug_cb, 1534 cb); 1535 else 1536 plug = NULL; 1537 spin_lock_irqsave(&conf->device_lock, flags); 1538 if (plug) { 1539 bio_list_add(&plug->pending, mbio); 1540 plug->pending_cnt++; 1541 } else { 1542 bio_list_add(&conf->pending_bio_list, mbio); 1543 conf->pending_count++; 1544 } 1545 spin_unlock_irqrestore(&conf->device_lock, flags); 1546 if (!plug) 1547 md_wakeup_thread(mddev->thread); 1548 } 1549 1550 if (r10_bio->devs[i].repl_bio) { 1551 struct md_rdev *rdev = conf->mirrors[d].replacement; 1552 if (rdev == NULL) { 1553 /* Replacement just got moved to main 'rdev' */ 1554 smp_mb(); 1555 rdev = conf->mirrors[d].rdev; 1556 } 1557 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1558 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1559 max_sectors); 1560 r10_bio->devs[i].repl_bio = mbio; 1561 1562 mbio->bi_sector = (r10_bio->devs[i].addr + 1563 choose_data_offset( 1564 r10_bio, rdev)); 1565 mbio->bi_bdev = rdev->bdev; 1566 mbio->bi_end_io = raid10_end_write_request; 1567 mbio->bi_rw = 1568 WRITE | do_sync | do_fua | do_discard | do_same; 1569 mbio->bi_private = r10_bio; 1570 1571 atomic_inc(&r10_bio->remaining); 1572 spin_lock_irqsave(&conf->device_lock, flags); 1573 bio_list_add(&conf->pending_bio_list, mbio); 1574 conf->pending_count++; 1575 spin_unlock_irqrestore(&conf->device_lock, flags); 1576 if (!mddev_check_plugged(mddev)) 1577 md_wakeup_thread(mddev->thread); 1578 } 1579 } 1580 1581 /* Don't remove the bias on 'remaining' (one_write_done) until 1582 * after checking if we need to go around again. 1583 */ 1584 1585 if (sectors_handled < bio_sectors(bio)) { 1586 one_write_done(r10_bio); 1587 /* We need another r10_bio. It has already been counted 1588 * in bio->bi_phys_segments. 1589 */ 1590 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1591 1592 r10_bio->master_bio = bio; 1593 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1594 1595 r10_bio->mddev = mddev; 1596 r10_bio->sector = bio->bi_sector + sectors_handled; 1597 r10_bio->state = 0; 1598 goto retry_write; 1599 } 1600 one_write_done(r10_bio); 1601 1602 /* In case raid10d snuck in to freeze_array */ 1603 wake_up(&conf->wait_barrier); 1604 } 1605 1606 static void status(struct seq_file *seq, struct mddev *mddev) 1607 { 1608 struct r10conf *conf = mddev->private; 1609 int i; 1610 1611 if (conf->geo.near_copies < conf->geo.raid_disks) 1612 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1613 if (conf->geo.near_copies > 1) 1614 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1615 if (conf->geo.far_copies > 1) { 1616 if (conf->geo.far_offset) 1617 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1618 else 1619 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1620 } 1621 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1622 conf->geo.raid_disks - mddev->degraded); 1623 for (i = 0; i < conf->geo.raid_disks; i++) 1624 seq_printf(seq, "%s", 1625 conf->mirrors[i].rdev && 1626 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1627 seq_printf(seq, "]"); 1628 } 1629 1630 /* check if there are enough drives for 1631 * every block to appear on atleast one. 1632 * Don't consider the device numbered 'ignore' 1633 * as we might be about to remove it. 1634 */ 1635 static int _enough(struct r10conf *conf, struct geom *geo, int ignore) 1636 { 1637 int first = 0; 1638 1639 do { 1640 int n = conf->copies; 1641 int cnt = 0; 1642 int this = first; 1643 while (n--) { 1644 if (conf->mirrors[this].rdev && 1645 this != ignore) 1646 cnt++; 1647 this = (this+1) % geo->raid_disks; 1648 } 1649 if (cnt == 0) 1650 return 0; 1651 first = (first + geo->near_copies) % geo->raid_disks; 1652 } while (first != 0); 1653 return 1; 1654 } 1655 1656 static int enough(struct r10conf *conf, int ignore) 1657 { 1658 return _enough(conf, &conf->geo, ignore) && 1659 _enough(conf, &conf->prev, ignore); 1660 } 1661 1662 static void error(struct mddev *mddev, struct md_rdev *rdev) 1663 { 1664 char b[BDEVNAME_SIZE]; 1665 struct r10conf *conf = mddev->private; 1666 1667 /* 1668 * If it is not operational, then we have already marked it as dead 1669 * else if it is the last working disks, ignore the error, let the 1670 * next level up know. 1671 * else mark the drive as failed 1672 */ 1673 if (test_bit(In_sync, &rdev->flags) 1674 && !enough(conf, rdev->raid_disk)) 1675 /* 1676 * Don't fail the drive, just return an IO error. 1677 */ 1678 return; 1679 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1680 unsigned long flags; 1681 spin_lock_irqsave(&conf->device_lock, flags); 1682 mddev->degraded++; 1683 spin_unlock_irqrestore(&conf->device_lock, flags); 1684 /* 1685 * if recovery is running, make sure it aborts. 1686 */ 1687 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1688 } 1689 set_bit(Blocked, &rdev->flags); 1690 set_bit(Faulty, &rdev->flags); 1691 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1692 printk(KERN_ALERT 1693 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1694 "md/raid10:%s: Operation continuing on %d devices.\n", 1695 mdname(mddev), bdevname(rdev->bdev, b), 1696 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1697 } 1698 1699 static void print_conf(struct r10conf *conf) 1700 { 1701 int i; 1702 struct raid10_info *tmp; 1703 1704 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1705 if (!conf) { 1706 printk(KERN_DEBUG "(!conf)\n"); 1707 return; 1708 } 1709 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1710 conf->geo.raid_disks); 1711 1712 for (i = 0; i < conf->geo.raid_disks; i++) { 1713 char b[BDEVNAME_SIZE]; 1714 tmp = conf->mirrors + i; 1715 if (tmp->rdev) 1716 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1717 i, !test_bit(In_sync, &tmp->rdev->flags), 1718 !test_bit(Faulty, &tmp->rdev->flags), 1719 bdevname(tmp->rdev->bdev,b)); 1720 } 1721 } 1722 1723 static void close_sync(struct r10conf *conf) 1724 { 1725 wait_barrier(conf); 1726 allow_barrier(conf); 1727 1728 mempool_destroy(conf->r10buf_pool); 1729 conf->r10buf_pool = NULL; 1730 } 1731 1732 static int raid10_spare_active(struct mddev *mddev) 1733 { 1734 int i; 1735 struct r10conf *conf = mddev->private; 1736 struct raid10_info *tmp; 1737 int count = 0; 1738 unsigned long flags; 1739 1740 /* 1741 * Find all non-in_sync disks within the RAID10 configuration 1742 * and mark them in_sync 1743 */ 1744 for (i = 0; i < conf->geo.raid_disks; i++) { 1745 tmp = conf->mirrors + i; 1746 if (tmp->replacement 1747 && tmp->replacement->recovery_offset == MaxSector 1748 && !test_bit(Faulty, &tmp->replacement->flags) 1749 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1750 /* Replacement has just become active */ 1751 if (!tmp->rdev 1752 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1753 count++; 1754 if (tmp->rdev) { 1755 /* Replaced device not technically faulty, 1756 * but we need to be sure it gets removed 1757 * and never re-added. 1758 */ 1759 set_bit(Faulty, &tmp->rdev->flags); 1760 sysfs_notify_dirent_safe( 1761 tmp->rdev->sysfs_state); 1762 } 1763 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1764 } else if (tmp->rdev 1765 && !test_bit(Faulty, &tmp->rdev->flags) 1766 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1767 count++; 1768 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1769 } 1770 } 1771 spin_lock_irqsave(&conf->device_lock, flags); 1772 mddev->degraded -= count; 1773 spin_unlock_irqrestore(&conf->device_lock, flags); 1774 1775 print_conf(conf); 1776 return count; 1777 } 1778 1779 1780 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1781 { 1782 struct r10conf *conf = mddev->private; 1783 int err = -EEXIST; 1784 int mirror; 1785 int first = 0; 1786 int last = conf->geo.raid_disks - 1; 1787 struct request_queue *q = bdev_get_queue(rdev->bdev); 1788 1789 if (mddev->recovery_cp < MaxSector) 1790 /* only hot-add to in-sync arrays, as recovery is 1791 * very different from resync 1792 */ 1793 return -EBUSY; 1794 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) 1795 return -EINVAL; 1796 1797 if (rdev->raid_disk >= 0) 1798 first = last = rdev->raid_disk; 1799 1800 if (q->merge_bvec_fn) { 1801 set_bit(Unmerged, &rdev->flags); 1802 mddev->merge_check_needed = 1; 1803 } 1804 1805 if (rdev->saved_raid_disk >= first && 1806 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1807 mirror = rdev->saved_raid_disk; 1808 else 1809 mirror = first; 1810 for ( ; mirror <= last ; mirror++) { 1811 struct raid10_info *p = &conf->mirrors[mirror]; 1812 if (p->recovery_disabled == mddev->recovery_disabled) 1813 continue; 1814 if (p->rdev) { 1815 if (!test_bit(WantReplacement, &p->rdev->flags) || 1816 p->replacement != NULL) 1817 continue; 1818 clear_bit(In_sync, &rdev->flags); 1819 set_bit(Replacement, &rdev->flags); 1820 rdev->raid_disk = mirror; 1821 err = 0; 1822 disk_stack_limits(mddev->gendisk, rdev->bdev, 1823 rdev->data_offset << 9); 1824 conf->fullsync = 1; 1825 rcu_assign_pointer(p->replacement, rdev); 1826 break; 1827 } 1828 1829 disk_stack_limits(mddev->gendisk, rdev->bdev, 1830 rdev->data_offset << 9); 1831 1832 p->head_position = 0; 1833 p->recovery_disabled = mddev->recovery_disabled - 1; 1834 rdev->raid_disk = mirror; 1835 err = 0; 1836 if (rdev->saved_raid_disk != mirror) 1837 conf->fullsync = 1; 1838 rcu_assign_pointer(p->rdev, rdev); 1839 break; 1840 } 1841 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1842 /* Some requests might not have seen this new 1843 * merge_bvec_fn. We must wait for them to complete 1844 * before merging the device fully. 1845 * First we make sure any code which has tested 1846 * our function has submitted the request, then 1847 * we wait for all outstanding requests to complete. 1848 */ 1849 synchronize_sched(); 1850 freeze_array(conf, 0); 1851 unfreeze_array(conf); 1852 clear_bit(Unmerged, &rdev->flags); 1853 } 1854 md_integrity_add_rdev(rdev, mddev); 1855 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1856 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1857 1858 print_conf(conf); 1859 return err; 1860 } 1861 1862 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1863 { 1864 struct r10conf *conf = mddev->private; 1865 int err = 0; 1866 int number = rdev->raid_disk; 1867 struct md_rdev **rdevp; 1868 struct raid10_info *p = conf->mirrors + number; 1869 1870 print_conf(conf); 1871 if (rdev == p->rdev) 1872 rdevp = &p->rdev; 1873 else if (rdev == p->replacement) 1874 rdevp = &p->replacement; 1875 else 1876 return 0; 1877 1878 if (test_bit(In_sync, &rdev->flags) || 1879 atomic_read(&rdev->nr_pending)) { 1880 err = -EBUSY; 1881 goto abort; 1882 } 1883 /* Only remove faulty devices if recovery 1884 * is not possible. 1885 */ 1886 if (!test_bit(Faulty, &rdev->flags) && 1887 mddev->recovery_disabled != p->recovery_disabled && 1888 (!p->replacement || p->replacement == rdev) && 1889 number < conf->geo.raid_disks && 1890 enough(conf, -1)) { 1891 err = -EBUSY; 1892 goto abort; 1893 } 1894 *rdevp = NULL; 1895 synchronize_rcu(); 1896 if (atomic_read(&rdev->nr_pending)) { 1897 /* lost the race, try later */ 1898 err = -EBUSY; 1899 *rdevp = rdev; 1900 goto abort; 1901 } else if (p->replacement) { 1902 /* We must have just cleared 'rdev' */ 1903 p->rdev = p->replacement; 1904 clear_bit(Replacement, &p->replacement->flags); 1905 smp_mb(); /* Make sure other CPUs may see both as identical 1906 * but will never see neither -- if they are careful. 1907 */ 1908 p->replacement = NULL; 1909 clear_bit(WantReplacement, &rdev->flags); 1910 } else 1911 /* We might have just remove the Replacement as faulty 1912 * Clear the flag just in case 1913 */ 1914 clear_bit(WantReplacement, &rdev->flags); 1915 1916 err = md_integrity_register(mddev); 1917 1918 abort: 1919 1920 print_conf(conf); 1921 return err; 1922 } 1923 1924 1925 static void end_sync_read(struct bio *bio, int error) 1926 { 1927 struct r10bio *r10_bio = bio->bi_private; 1928 struct r10conf *conf = r10_bio->mddev->private; 1929 int d; 1930 1931 if (bio == r10_bio->master_bio) { 1932 /* this is a reshape read */ 1933 d = r10_bio->read_slot; /* really the read dev */ 1934 } else 1935 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1936 1937 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1938 set_bit(R10BIO_Uptodate, &r10_bio->state); 1939 else 1940 /* The write handler will notice the lack of 1941 * R10BIO_Uptodate and record any errors etc 1942 */ 1943 atomic_add(r10_bio->sectors, 1944 &conf->mirrors[d].rdev->corrected_errors); 1945 1946 /* for reconstruct, we always reschedule after a read. 1947 * for resync, only after all reads 1948 */ 1949 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1950 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1951 atomic_dec_and_test(&r10_bio->remaining)) { 1952 /* we have read all the blocks, 1953 * do the comparison in process context in raid10d 1954 */ 1955 reschedule_retry(r10_bio); 1956 } 1957 } 1958 1959 static void end_sync_request(struct r10bio *r10_bio) 1960 { 1961 struct mddev *mddev = r10_bio->mddev; 1962 1963 while (atomic_dec_and_test(&r10_bio->remaining)) { 1964 if (r10_bio->master_bio == NULL) { 1965 /* the primary of several recovery bios */ 1966 sector_t s = r10_bio->sectors; 1967 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1968 test_bit(R10BIO_WriteError, &r10_bio->state)) 1969 reschedule_retry(r10_bio); 1970 else 1971 put_buf(r10_bio); 1972 md_done_sync(mddev, s, 1); 1973 break; 1974 } else { 1975 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1976 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1977 test_bit(R10BIO_WriteError, &r10_bio->state)) 1978 reschedule_retry(r10_bio); 1979 else 1980 put_buf(r10_bio); 1981 r10_bio = r10_bio2; 1982 } 1983 } 1984 } 1985 1986 static void end_sync_write(struct bio *bio, int error) 1987 { 1988 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1989 struct r10bio *r10_bio = bio->bi_private; 1990 struct mddev *mddev = r10_bio->mddev; 1991 struct r10conf *conf = mddev->private; 1992 int d; 1993 sector_t first_bad; 1994 int bad_sectors; 1995 int slot; 1996 int repl; 1997 struct md_rdev *rdev = NULL; 1998 1999 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2000 if (repl) 2001 rdev = conf->mirrors[d].replacement; 2002 else 2003 rdev = conf->mirrors[d].rdev; 2004 2005 if (!uptodate) { 2006 if (repl) 2007 md_error(mddev, rdev); 2008 else { 2009 set_bit(WriteErrorSeen, &rdev->flags); 2010 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2011 set_bit(MD_RECOVERY_NEEDED, 2012 &rdev->mddev->recovery); 2013 set_bit(R10BIO_WriteError, &r10_bio->state); 2014 } 2015 } else if (is_badblock(rdev, 2016 r10_bio->devs[slot].addr, 2017 r10_bio->sectors, 2018 &first_bad, &bad_sectors)) 2019 set_bit(R10BIO_MadeGood, &r10_bio->state); 2020 2021 rdev_dec_pending(rdev, mddev); 2022 2023 end_sync_request(r10_bio); 2024 } 2025 2026 /* 2027 * Note: sync and recover and handled very differently for raid10 2028 * This code is for resync. 2029 * For resync, we read through virtual addresses and read all blocks. 2030 * If there is any error, we schedule a write. The lowest numbered 2031 * drive is authoritative. 2032 * However requests come for physical address, so we need to map. 2033 * For every physical address there are raid_disks/copies virtual addresses, 2034 * which is always are least one, but is not necessarly an integer. 2035 * This means that a physical address can span multiple chunks, so we may 2036 * have to submit multiple io requests for a single sync request. 2037 */ 2038 /* 2039 * We check if all blocks are in-sync and only write to blocks that 2040 * aren't in sync 2041 */ 2042 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2043 { 2044 struct r10conf *conf = mddev->private; 2045 int i, first; 2046 struct bio *tbio, *fbio; 2047 int vcnt; 2048 2049 atomic_set(&r10_bio->remaining, 1); 2050 2051 /* find the first device with a block */ 2052 for (i=0; i<conf->copies; i++) 2053 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 2054 break; 2055 2056 if (i == conf->copies) 2057 goto done; 2058 2059 first = i; 2060 fbio = r10_bio->devs[i].bio; 2061 2062 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2063 /* now find blocks with errors */ 2064 for (i=0 ; i < conf->copies ; i++) { 2065 int j, d; 2066 2067 tbio = r10_bio->devs[i].bio; 2068 2069 if (tbio->bi_end_io != end_sync_read) 2070 continue; 2071 if (i == first) 2072 continue; 2073 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2074 /* We know that the bi_io_vec layout is the same for 2075 * both 'first' and 'i', so we just compare them. 2076 * All vec entries are PAGE_SIZE; 2077 */ 2078 for (j = 0; j < vcnt; j++) 2079 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2080 page_address(tbio->bi_io_vec[j].bv_page), 2081 fbio->bi_io_vec[j].bv_len)) 2082 break; 2083 if (j == vcnt) 2084 continue; 2085 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2086 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2087 /* Don't fix anything. */ 2088 continue; 2089 } 2090 /* Ok, we need to write this bio, either to correct an 2091 * inconsistency or to correct an unreadable block. 2092 * First we need to fixup bv_offset, bv_len and 2093 * bi_vecs, as the read request might have corrupted these 2094 */ 2095 bio_reset(tbio); 2096 2097 tbio->bi_vcnt = vcnt; 2098 tbio->bi_size = r10_bio->sectors << 9; 2099 tbio->bi_rw = WRITE; 2100 tbio->bi_private = r10_bio; 2101 tbio->bi_sector = r10_bio->devs[i].addr; 2102 2103 for (j=0; j < vcnt ; j++) { 2104 tbio->bi_io_vec[j].bv_offset = 0; 2105 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 2106 2107 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2108 page_address(fbio->bi_io_vec[j].bv_page), 2109 PAGE_SIZE); 2110 } 2111 tbio->bi_end_io = end_sync_write; 2112 2113 d = r10_bio->devs[i].devnum; 2114 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2115 atomic_inc(&r10_bio->remaining); 2116 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2117 2118 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 2119 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2120 generic_make_request(tbio); 2121 } 2122 2123 /* Now write out to any replacement devices 2124 * that are active 2125 */ 2126 for (i = 0; i < conf->copies; i++) { 2127 int j, d; 2128 2129 tbio = r10_bio->devs[i].repl_bio; 2130 if (!tbio || !tbio->bi_end_io) 2131 continue; 2132 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2133 && r10_bio->devs[i].bio != fbio) 2134 for (j = 0; j < vcnt; j++) 2135 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2136 page_address(fbio->bi_io_vec[j].bv_page), 2137 PAGE_SIZE); 2138 d = r10_bio->devs[i].devnum; 2139 atomic_inc(&r10_bio->remaining); 2140 md_sync_acct(conf->mirrors[d].replacement->bdev, 2141 bio_sectors(tbio)); 2142 generic_make_request(tbio); 2143 } 2144 2145 done: 2146 if (atomic_dec_and_test(&r10_bio->remaining)) { 2147 md_done_sync(mddev, r10_bio->sectors, 1); 2148 put_buf(r10_bio); 2149 } 2150 } 2151 2152 /* 2153 * Now for the recovery code. 2154 * Recovery happens across physical sectors. 2155 * We recover all non-is_sync drives by finding the virtual address of 2156 * each, and then choose a working drive that also has that virt address. 2157 * There is a separate r10_bio for each non-in_sync drive. 2158 * Only the first two slots are in use. The first for reading, 2159 * The second for writing. 2160 * 2161 */ 2162 static void fix_recovery_read_error(struct r10bio *r10_bio) 2163 { 2164 /* We got a read error during recovery. 2165 * We repeat the read in smaller page-sized sections. 2166 * If a read succeeds, write it to the new device or record 2167 * a bad block if we cannot. 2168 * If a read fails, record a bad block on both old and 2169 * new devices. 2170 */ 2171 struct mddev *mddev = r10_bio->mddev; 2172 struct r10conf *conf = mddev->private; 2173 struct bio *bio = r10_bio->devs[0].bio; 2174 sector_t sect = 0; 2175 int sectors = r10_bio->sectors; 2176 int idx = 0; 2177 int dr = r10_bio->devs[0].devnum; 2178 int dw = r10_bio->devs[1].devnum; 2179 2180 while (sectors) { 2181 int s = sectors; 2182 struct md_rdev *rdev; 2183 sector_t addr; 2184 int ok; 2185 2186 if (s > (PAGE_SIZE>>9)) 2187 s = PAGE_SIZE >> 9; 2188 2189 rdev = conf->mirrors[dr].rdev; 2190 addr = r10_bio->devs[0].addr + sect, 2191 ok = sync_page_io(rdev, 2192 addr, 2193 s << 9, 2194 bio->bi_io_vec[idx].bv_page, 2195 READ, false); 2196 if (ok) { 2197 rdev = conf->mirrors[dw].rdev; 2198 addr = r10_bio->devs[1].addr + sect; 2199 ok = sync_page_io(rdev, 2200 addr, 2201 s << 9, 2202 bio->bi_io_vec[idx].bv_page, 2203 WRITE, false); 2204 if (!ok) { 2205 set_bit(WriteErrorSeen, &rdev->flags); 2206 if (!test_and_set_bit(WantReplacement, 2207 &rdev->flags)) 2208 set_bit(MD_RECOVERY_NEEDED, 2209 &rdev->mddev->recovery); 2210 } 2211 } 2212 if (!ok) { 2213 /* We don't worry if we cannot set a bad block - 2214 * it really is bad so there is no loss in not 2215 * recording it yet 2216 */ 2217 rdev_set_badblocks(rdev, addr, s, 0); 2218 2219 if (rdev != conf->mirrors[dw].rdev) { 2220 /* need bad block on destination too */ 2221 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2222 addr = r10_bio->devs[1].addr + sect; 2223 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2224 if (!ok) { 2225 /* just abort the recovery */ 2226 printk(KERN_NOTICE 2227 "md/raid10:%s: recovery aborted" 2228 " due to read error\n", 2229 mdname(mddev)); 2230 2231 conf->mirrors[dw].recovery_disabled 2232 = mddev->recovery_disabled; 2233 set_bit(MD_RECOVERY_INTR, 2234 &mddev->recovery); 2235 break; 2236 } 2237 } 2238 } 2239 2240 sectors -= s; 2241 sect += s; 2242 idx++; 2243 } 2244 } 2245 2246 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2247 { 2248 struct r10conf *conf = mddev->private; 2249 int d; 2250 struct bio *wbio, *wbio2; 2251 2252 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2253 fix_recovery_read_error(r10_bio); 2254 end_sync_request(r10_bio); 2255 return; 2256 } 2257 2258 /* 2259 * share the pages with the first bio 2260 * and submit the write request 2261 */ 2262 d = r10_bio->devs[1].devnum; 2263 wbio = r10_bio->devs[1].bio; 2264 wbio2 = r10_bio->devs[1].repl_bio; 2265 if (wbio->bi_end_io) { 2266 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2267 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2268 generic_make_request(wbio); 2269 } 2270 if (wbio2 && wbio2->bi_end_io) { 2271 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2272 md_sync_acct(conf->mirrors[d].replacement->bdev, 2273 bio_sectors(wbio2)); 2274 generic_make_request(wbio2); 2275 } 2276 } 2277 2278 2279 /* 2280 * Used by fix_read_error() to decay the per rdev read_errors. 2281 * We halve the read error count for every hour that has elapsed 2282 * since the last recorded read error. 2283 * 2284 */ 2285 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2286 { 2287 struct timespec cur_time_mon; 2288 unsigned long hours_since_last; 2289 unsigned int read_errors = atomic_read(&rdev->read_errors); 2290 2291 ktime_get_ts(&cur_time_mon); 2292 2293 if (rdev->last_read_error.tv_sec == 0 && 2294 rdev->last_read_error.tv_nsec == 0) { 2295 /* first time we've seen a read error */ 2296 rdev->last_read_error = cur_time_mon; 2297 return; 2298 } 2299 2300 hours_since_last = (cur_time_mon.tv_sec - 2301 rdev->last_read_error.tv_sec) / 3600; 2302 2303 rdev->last_read_error = cur_time_mon; 2304 2305 /* 2306 * if hours_since_last is > the number of bits in read_errors 2307 * just set read errors to 0. We do this to avoid 2308 * overflowing the shift of read_errors by hours_since_last. 2309 */ 2310 if (hours_since_last >= 8 * sizeof(read_errors)) 2311 atomic_set(&rdev->read_errors, 0); 2312 else 2313 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2314 } 2315 2316 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2317 int sectors, struct page *page, int rw) 2318 { 2319 sector_t first_bad; 2320 int bad_sectors; 2321 2322 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2323 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2324 return -1; 2325 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2326 /* success */ 2327 return 1; 2328 if (rw == WRITE) { 2329 set_bit(WriteErrorSeen, &rdev->flags); 2330 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2331 set_bit(MD_RECOVERY_NEEDED, 2332 &rdev->mddev->recovery); 2333 } 2334 /* need to record an error - either for the block or the device */ 2335 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2336 md_error(rdev->mddev, rdev); 2337 return 0; 2338 } 2339 2340 /* 2341 * This is a kernel thread which: 2342 * 2343 * 1. Retries failed read operations on working mirrors. 2344 * 2. Updates the raid superblock when problems encounter. 2345 * 3. Performs writes following reads for array synchronising. 2346 */ 2347 2348 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2349 { 2350 int sect = 0; /* Offset from r10_bio->sector */ 2351 int sectors = r10_bio->sectors; 2352 struct md_rdev*rdev; 2353 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2354 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2355 2356 /* still own a reference to this rdev, so it cannot 2357 * have been cleared recently. 2358 */ 2359 rdev = conf->mirrors[d].rdev; 2360 2361 if (test_bit(Faulty, &rdev->flags)) 2362 /* drive has already been failed, just ignore any 2363 more fix_read_error() attempts */ 2364 return; 2365 2366 check_decay_read_errors(mddev, rdev); 2367 atomic_inc(&rdev->read_errors); 2368 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2369 char b[BDEVNAME_SIZE]; 2370 bdevname(rdev->bdev, b); 2371 2372 printk(KERN_NOTICE 2373 "md/raid10:%s: %s: Raid device exceeded " 2374 "read_error threshold [cur %d:max %d]\n", 2375 mdname(mddev), b, 2376 atomic_read(&rdev->read_errors), max_read_errors); 2377 printk(KERN_NOTICE 2378 "md/raid10:%s: %s: Failing raid device\n", 2379 mdname(mddev), b); 2380 md_error(mddev, conf->mirrors[d].rdev); 2381 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2382 return; 2383 } 2384 2385 while(sectors) { 2386 int s = sectors; 2387 int sl = r10_bio->read_slot; 2388 int success = 0; 2389 int start; 2390 2391 if (s > (PAGE_SIZE>>9)) 2392 s = PAGE_SIZE >> 9; 2393 2394 rcu_read_lock(); 2395 do { 2396 sector_t first_bad; 2397 int bad_sectors; 2398 2399 d = r10_bio->devs[sl].devnum; 2400 rdev = rcu_dereference(conf->mirrors[d].rdev); 2401 if (rdev && 2402 !test_bit(Unmerged, &rdev->flags) && 2403 test_bit(In_sync, &rdev->flags) && 2404 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2405 &first_bad, &bad_sectors) == 0) { 2406 atomic_inc(&rdev->nr_pending); 2407 rcu_read_unlock(); 2408 success = sync_page_io(rdev, 2409 r10_bio->devs[sl].addr + 2410 sect, 2411 s<<9, 2412 conf->tmppage, READ, false); 2413 rdev_dec_pending(rdev, mddev); 2414 rcu_read_lock(); 2415 if (success) 2416 break; 2417 } 2418 sl++; 2419 if (sl == conf->copies) 2420 sl = 0; 2421 } while (!success && sl != r10_bio->read_slot); 2422 rcu_read_unlock(); 2423 2424 if (!success) { 2425 /* Cannot read from anywhere, just mark the block 2426 * as bad on the first device to discourage future 2427 * reads. 2428 */ 2429 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2430 rdev = conf->mirrors[dn].rdev; 2431 2432 if (!rdev_set_badblocks( 2433 rdev, 2434 r10_bio->devs[r10_bio->read_slot].addr 2435 + sect, 2436 s, 0)) { 2437 md_error(mddev, rdev); 2438 r10_bio->devs[r10_bio->read_slot].bio 2439 = IO_BLOCKED; 2440 } 2441 break; 2442 } 2443 2444 start = sl; 2445 /* write it back and re-read */ 2446 rcu_read_lock(); 2447 while (sl != r10_bio->read_slot) { 2448 char b[BDEVNAME_SIZE]; 2449 2450 if (sl==0) 2451 sl = conf->copies; 2452 sl--; 2453 d = r10_bio->devs[sl].devnum; 2454 rdev = rcu_dereference(conf->mirrors[d].rdev); 2455 if (!rdev || 2456 test_bit(Unmerged, &rdev->flags) || 2457 !test_bit(In_sync, &rdev->flags)) 2458 continue; 2459 2460 atomic_inc(&rdev->nr_pending); 2461 rcu_read_unlock(); 2462 if (r10_sync_page_io(rdev, 2463 r10_bio->devs[sl].addr + 2464 sect, 2465 s, conf->tmppage, WRITE) 2466 == 0) { 2467 /* Well, this device is dead */ 2468 printk(KERN_NOTICE 2469 "md/raid10:%s: read correction " 2470 "write failed" 2471 " (%d sectors at %llu on %s)\n", 2472 mdname(mddev), s, 2473 (unsigned long long)( 2474 sect + 2475 choose_data_offset(r10_bio, 2476 rdev)), 2477 bdevname(rdev->bdev, b)); 2478 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2479 "drive\n", 2480 mdname(mddev), 2481 bdevname(rdev->bdev, b)); 2482 } 2483 rdev_dec_pending(rdev, mddev); 2484 rcu_read_lock(); 2485 } 2486 sl = start; 2487 while (sl != r10_bio->read_slot) { 2488 char b[BDEVNAME_SIZE]; 2489 2490 if (sl==0) 2491 sl = conf->copies; 2492 sl--; 2493 d = r10_bio->devs[sl].devnum; 2494 rdev = rcu_dereference(conf->mirrors[d].rdev); 2495 if (!rdev || 2496 !test_bit(In_sync, &rdev->flags)) 2497 continue; 2498 2499 atomic_inc(&rdev->nr_pending); 2500 rcu_read_unlock(); 2501 switch (r10_sync_page_io(rdev, 2502 r10_bio->devs[sl].addr + 2503 sect, 2504 s, conf->tmppage, 2505 READ)) { 2506 case 0: 2507 /* Well, this device is dead */ 2508 printk(KERN_NOTICE 2509 "md/raid10:%s: unable to read back " 2510 "corrected sectors" 2511 " (%d sectors at %llu on %s)\n", 2512 mdname(mddev), s, 2513 (unsigned long long)( 2514 sect + 2515 choose_data_offset(r10_bio, rdev)), 2516 bdevname(rdev->bdev, b)); 2517 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2518 "drive\n", 2519 mdname(mddev), 2520 bdevname(rdev->bdev, b)); 2521 break; 2522 case 1: 2523 printk(KERN_INFO 2524 "md/raid10:%s: read error corrected" 2525 " (%d sectors at %llu on %s)\n", 2526 mdname(mddev), s, 2527 (unsigned long long)( 2528 sect + 2529 choose_data_offset(r10_bio, rdev)), 2530 bdevname(rdev->bdev, b)); 2531 atomic_add(s, &rdev->corrected_errors); 2532 } 2533 2534 rdev_dec_pending(rdev, mddev); 2535 rcu_read_lock(); 2536 } 2537 rcu_read_unlock(); 2538 2539 sectors -= s; 2540 sect += s; 2541 } 2542 } 2543 2544 static int narrow_write_error(struct r10bio *r10_bio, int i) 2545 { 2546 struct bio *bio = r10_bio->master_bio; 2547 struct mddev *mddev = r10_bio->mddev; 2548 struct r10conf *conf = mddev->private; 2549 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2550 /* bio has the data to be written to slot 'i' where 2551 * we just recently had a write error. 2552 * We repeatedly clone the bio and trim down to one block, 2553 * then try the write. Where the write fails we record 2554 * a bad block. 2555 * It is conceivable that the bio doesn't exactly align with 2556 * blocks. We must handle this. 2557 * 2558 * We currently own a reference to the rdev. 2559 */ 2560 2561 int block_sectors; 2562 sector_t sector; 2563 int sectors; 2564 int sect_to_write = r10_bio->sectors; 2565 int ok = 1; 2566 2567 if (rdev->badblocks.shift < 0) 2568 return 0; 2569 2570 block_sectors = 1 << rdev->badblocks.shift; 2571 sector = r10_bio->sector; 2572 sectors = ((r10_bio->sector + block_sectors) 2573 & ~(sector_t)(block_sectors - 1)) 2574 - sector; 2575 2576 while (sect_to_write) { 2577 struct bio *wbio; 2578 if (sectors > sect_to_write) 2579 sectors = sect_to_write; 2580 /* Write at 'sector' for 'sectors' */ 2581 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2582 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2583 wbio->bi_sector = (r10_bio->devs[i].addr+ 2584 choose_data_offset(r10_bio, rdev) + 2585 (sector - r10_bio->sector)); 2586 wbio->bi_bdev = rdev->bdev; 2587 if (submit_bio_wait(WRITE, wbio) == 0) 2588 /* Failure! */ 2589 ok = rdev_set_badblocks(rdev, sector, 2590 sectors, 0) 2591 && ok; 2592 2593 bio_put(wbio); 2594 sect_to_write -= sectors; 2595 sector += sectors; 2596 sectors = block_sectors; 2597 } 2598 return ok; 2599 } 2600 2601 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2602 { 2603 int slot = r10_bio->read_slot; 2604 struct bio *bio; 2605 struct r10conf *conf = mddev->private; 2606 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2607 char b[BDEVNAME_SIZE]; 2608 unsigned long do_sync; 2609 int max_sectors; 2610 2611 /* we got a read error. Maybe the drive is bad. Maybe just 2612 * the block and we can fix it. 2613 * We freeze all other IO, and try reading the block from 2614 * other devices. When we find one, we re-write 2615 * and check it that fixes the read error. 2616 * This is all done synchronously while the array is 2617 * frozen. 2618 */ 2619 bio = r10_bio->devs[slot].bio; 2620 bdevname(bio->bi_bdev, b); 2621 bio_put(bio); 2622 r10_bio->devs[slot].bio = NULL; 2623 2624 if (mddev->ro == 0) { 2625 freeze_array(conf, 1); 2626 fix_read_error(conf, mddev, r10_bio); 2627 unfreeze_array(conf); 2628 } else 2629 r10_bio->devs[slot].bio = IO_BLOCKED; 2630 2631 rdev_dec_pending(rdev, mddev); 2632 2633 read_more: 2634 rdev = read_balance(conf, r10_bio, &max_sectors); 2635 if (rdev == NULL) { 2636 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2637 " read error for block %llu\n", 2638 mdname(mddev), b, 2639 (unsigned long long)r10_bio->sector); 2640 raid_end_bio_io(r10_bio); 2641 return; 2642 } 2643 2644 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2645 slot = r10_bio->read_slot; 2646 printk_ratelimited( 2647 KERN_ERR 2648 "md/raid10:%s: %s: redirecting " 2649 "sector %llu to another mirror\n", 2650 mdname(mddev), 2651 bdevname(rdev->bdev, b), 2652 (unsigned long long)r10_bio->sector); 2653 bio = bio_clone_mddev(r10_bio->master_bio, 2654 GFP_NOIO, mddev); 2655 md_trim_bio(bio, 2656 r10_bio->sector - bio->bi_sector, 2657 max_sectors); 2658 r10_bio->devs[slot].bio = bio; 2659 r10_bio->devs[slot].rdev = rdev; 2660 bio->bi_sector = r10_bio->devs[slot].addr 2661 + choose_data_offset(r10_bio, rdev); 2662 bio->bi_bdev = rdev->bdev; 2663 bio->bi_rw = READ | do_sync; 2664 bio->bi_private = r10_bio; 2665 bio->bi_end_io = raid10_end_read_request; 2666 if (max_sectors < r10_bio->sectors) { 2667 /* Drat - have to split this up more */ 2668 struct bio *mbio = r10_bio->master_bio; 2669 int sectors_handled = 2670 r10_bio->sector + max_sectors 2671 - mbio->bi_sector; 2672 r10_bio->sectors = max_sectors; 2673 spin_lock_irq(&conf->device_lock); 2674 if (mbio->bi_phys_segments == 0) 2675 mbio->bi_phys_segments = 2; 2676 else 2677 mbio->bi_phys_segments++; 2678 spin_unlock_irq(&conf->device_lock); 2679 generic_make_request(bio); 2680 2681 r10_bio = mempool_alloc(conf->r10bio_pool, 2682 GFP_NOIO); 2683 r10_bio->master_bio = mbio; 2684 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2685 r10_bio->state = 0; 2686 set_bit(R10BIO_ReadError, 2687 &r10_bio->state); 2688 r10_bio->mddev = mddev; 2689 r10_bio->sector = mbio->bi_sector 2690 + sectors_handled; 2691 2692 goto read_more; 2693 } else 2694 generic_make_request(bio); 2695 } 2696 2697 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2698 { 2699 /* Some sort of write request has finished and it 2700 * succeeded in writing where we thought there was a 2701 * bad block. So forget the bad block. 2702 * Or possibly if failed and we need to record 2703 * a bad block. 2704 */ 2705 int m; 2706 struct md_rdev *rdev; 2707 2708 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2709 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2710 for (m = 0; m < conf->copies; m++) { 2711 int dev = r10_bio->devs[m].devnum; 2712 rdev = conf->mirrors[dev].rdev; 2713 if (r10_bio->devs[m].bio == NULL) 2714 continue; 2715 if (test_bit(BIO_UPTODATE, 2716 &r10_bio->devs[m].bio->bi_flags)) { 2717 rdev_clear_badblocks( 2718 rdev, 2719 r10_bio->devs[m].addr, 2720 r10_bio->sectors, 0); 2721 } else { 2722 if (!rdev_set_badblocks( 2723 rdev, 2724 r10_bio->devs[m].addr, 2725 r10_bio->sectors, 0)) 2726 md_error(conf->mddev, rdev); 2727 } 2728 rdev = conf->mirrors[dev].replacement; 2729 if (r10_bio->devs[m].repl_bio == NULL) 2730 continue; 2731 if (test_bit(BIO_UPTODATE, 2732 &r10_bio->devs[m].repl_bio->bi_flags)) { 2733 rdev_clear_badblocks( 2734 rdev, 2735 r10_bio->devs[m].addr, 2736 r10_bio->sectors, 0); 2737 } else { 2738 if (!rdev_set_badblocks( 2739 rdev, 2740 r10_bio->devs[m].addr, 2741 r10_bio->sectors, 0)) 2742 md_error(conf->mddev, rdev); 2743 } 2744 } 2745 put_buf(r10_bio); 2746 } else { 2747 for (m = 0; m < conf->copies; m++) { 2748 int dev = r10_bio->devs[m].devnum; 2749 struct bio *bio = r10_bio->devs[m].bio; 2750 rdev = conf->mirrors[dev].rdev; 2751 if (bio == IO_MADE_GOOD) { 2752 rdev_clear_badblocks( 2753 rdev, 2754 r10_bio->devs[m].addr, 2755 r10_bio->sectors, 0); 2756 rdev_dec_pending(rdev, conf->mddev); 2757 } else if (bio != NULL && 2758 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2759 if (!narrow_write_error(r10_bio, m)) { 2760 md_error(conf->mddev, rdev); 2761 set_bit(R10BIO_Degraded, 2762 &r10_bio->state); 2763 } 2764 rdev_dec_pending(rdev, conf->mddev); 2765 } 2766 bio = r10_bio->devs[m].repl_bio; 2767 rdev = conf->mirrors[dev].replacement; 2768 if (rdev && bio == IO_MADE_GOOD) { 2769 rdev_clear_badblocks( 2770 rdev, 2771 r10_bio->devs[m].addr, 2772 r10_bio->sectors, 0); 2773 rdev_dec_pending(rdev, conf->mddev); 2774 } 2775 } 2776 if (test_bit(R10BIO_WriteError, 2777 &r10_bio->state)) 2778 close_write(r10_bio); 2779 raid_end_bio_io(r10_bio); 2780 } 2781 } 2782 2783 static void raid10d(struct md_thread *thread) 2784 { 2785 struct mddev *mddev = thread->mddev; 2786 struct r10bio *r10_bio; 2787 unsigned long flags; 2788 struct r10conf *conf = mddev->private; 2789 struct list_head *head = &conf->retry_list; 2790 struct blk_plug plug; 2791 2792 md_check_recovery(mddev); 2793 2794 blk_start_plug(&plug); 2795 for (;;) { 2796 2797 flush_pending_writes(conf); 2798 2799 spin_lock_irqsave(&conf->device_lock, flags); 2800 if (list_empty(head)) { 2801 spin_unlock_irqrestore(&conf->device_lock, flags); 2802 break; 2803 } 2804 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2805 list_del(head->prev); 2806 conf->nr_queued--; 2807 spin_unlock_irqrestore(&conf->device_lock, flags); 2808 2809 mddev = r10_bio->mddev; 2810 conf = mddev->private; 2811 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2812 test_bit(R10BIO_WriteError, &r10_bio->state)) 2813 handle_write_completed(conf, r10_bio); 2814 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2815 reshape_request_write(mddev, r10_bio); 2816 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2817 sync_request_write(mddev, r10_bio); 2818 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2819 recovery_request_write(mddev, r10_bio); 2820 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2821 handle_read_error(mddev, r10_bio); 2822 else { 2823 /* just a partial read to be scheduled from a 2824 * separate context 2825 */ 2826 int slot = r10_bio->read_slot; 2827 generic_make_request(r10_bio->devs[slot].bio); 2828 } 2829 2830 cond_resched(); 2831 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2832 md_check_recovery(mddev); 2833 } 2834 blk_finish_plug(&plug); 2835 } 2836 2837 2838 static int init_resync(struct r10conf *conf) 2839 { 2840 int buffs; 2841 int i; 2842 2843 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2844 BUG_ON(conf->r10buf_pool); 2845 conf->have_replacement = 0; 2846 for (i = 0; i < conf->geo.raid_disks; i++) 2847 if (conf->mirrors[i].replacement) 2848 conf->have_replacement = 1; 2849 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2850 if (!conf->r10buf_pool) 2851 return -ENOMEM; 2852 conf->next_resync = 0; 2853 return 0; 2854 } 2855 2856 /* 2857 * perform a "sync" on one "block" 2858 * 2859 * We need to make sure that no normal I/O request - particularly write 2860 * requests - conflict with active sync requests. 2861 * 2862 * This is achieved by tracking pending requests and a 'barrier' concept 2863 * that can be installed to exclude normal IO requests. 2864 * 2865 * Resync and recovery are handled very differently. 2866 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2867 * 2868 * For resync, we iterate over virtual addresses, read all copies, 2869 * and update if there are differences. If only one copy is live, 2870 * skip it. 2871 * For recovery, we iterate over physical addresses, read a good 2872 * value for each non-in_sync drive, and over-write. 2873 * 2874 * So, for recovery we may have several outstanding complex requests for a 2875 * given address, one for each out-of-sync device. We model this by allocating 2876 * a number of r10_bio structures, one for each out-of-sync device. 2877 * As we setup these structures, we collect all bio's together into a list 2878 * which we then process collectively to add pages, and then process again 2879 * to pass to generic_make_request. 2880 * 2881 * The r10_bio structures are linked using a borrowed master_bio pointer. 2882 * This link is counted in ->remaining. When the r10_bio that points to NULL 2883 * has its remaining count decremented to 0, the whole complex operation 2884 * is complete. 2885 * 2886 */ 2887 2888 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2889 int *skipped, int go_faster) 2890 { 2891 struct r10conf *conf = mddev->private; 2892 struct r10bio *r10_bio; 2893 struct bio *biolist = NULL, *bio; 2894 sector_t max_sector, nr_sectors; 2895 int i; 2896 int max_sync; 2897 sector_t sync_blocks; 2898 sector_t sectors_skipped = 0; 2899 int chunks_skipped = 0; 2900 sector_t chunk_mask = conf->geo.chunk_mask; 2901 2902 if (!conf->r10buf_pool) 2903 if (init_resync(conf)) 2904 return 0; 2905 2906 /* 2907 * Allow skipping a full rebuild for incremental assembly 2908 * of a clean array, like RAID1 does. 2909 */ 2910 if (mddev->bitmap == NULL && 2911 mddev->recovery_cp == MaxSector && 2912 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2913 conf->fullsync == 0) { 2914 *skipped = 1; 2915 max_sector = mddev->dev_sectors; 2916 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2917 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2918 max_sector = mddev->resync_max_sectors; 2919 return max_sector - sector_nr; 2920 } 2921 2922 skipped: 2923 max_sector = mddev->dev_sectors; 2924 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2925 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2926 max_sector = mddev->resync_max_sectors; 2927 if (sector_nr >= max_sector) { 2928 /* If we aborted, we need to abort the 2929 * sync on the 'current' bitmap chucks (there can 2930 * be several when recovering multiple devices). 2931 * as we may have started syncing it but not finished. 2932 * We can find the current address in 2933 * mddev->curr_resync, but for recovery, 2934 * we need to convert that to several 2935 * virtual addresses. 2936 */ 2937 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2938 end_reshape(conf); 2939 return 0; 2940 } 2941 2942 if (mddev->curr_resync < max_sector) { /* aborted */ 2943 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2944 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2945 &sync_blocks, 1); 2946 else for (i = 0; i < conf->geo.raid_disks; i++) { 2947 sector_t sect = 2948 raid10_find_virt(conf, mddev->curr_resync, i); 2949 bitmap_end_sync(mddev->bitmap, sect, 2950 &sync_blocks, 1); 2951 } 2952 } else { 2953 /* completed sync */ 2954 if ((!mddev->bitmap || conf->fullsync) 2955 && conf->have_replacement 2956 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2957 /* Completed a full sync so the replacements 2958 * are now fully recovered. 2959 */ 2960 for (i = 0; i < conf->geo.raid_disks; i++) 2961 if (conf->mirrors[i].replacement) 2962 conf->mirrors[i].replacement 2963 ->recovery_offset 2964 = MaxSector; 2965 } 2966 conf->fullsync = 0; 2967 } 2968 bitmap_close_sync(mddev->bitmap); 2969 close_sync(conf); 2970 *skipped = 1; 2971 return sectors_skipped; 2972 } 2973 2974 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2975 return reshape_request(mddev, sector_nr, skipped); 2976 2977 if (chunks_skipped >= conf->geo.raid_disks) { 2978 /* if there has been nothing to do on any drive, 2979 * then there is nothing to do at all.. 2980 */ 2981 *skipped = 1; 2982 return (max_sector - sector_nr) + sectors_skipped; 2983 } 2984 2985 if (max_sector > mddev->resync_max) 2986 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2987 2988 /* make sure whole request will fit in a chunk - if chunks 2989 * are meaningful 2990 */ 2991 if (conf->geo.near_copies < conf->geo.raid_disks && 2992 max_sector > (sector_nr | chunk_mask)) 2993 max_sector = (sector_nr | chunk_mask) + 1; 2994 /* 2995 * If there is non-resync activity waiting for us then 2996 * put in a delay to throttle resync. 2997 */ 2998 if (!go_faster && conf->nr_waiting) 2999 msleep_interruptible(1000); 3000 3001 /* Again, very different code for resync and recovery. 3002 * Both must result in an r10bio with a list of bios that 3003 * have bi_end_io, bi_sector, bi_bdev set, 3004 * and bi_private set to the r10bio. 3005 * For recovery, we may actually create several r10bios 3006 * with 2 bios in each, that correspond to the bios in the main one. 3007 * In this case, the subordinate r10bios link back through a 3008 * borrowed master_bio pointer, and the counter in the master 3009 * includes a ref from each subordinate. 3010 */ 3011 /* First, we decide what to do and set ->bi_end_io 3012 * To end_sync_read if we want to read, and 3013 * end_sync_write if we will want to write. 3014 */ 3015 3016 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3017 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3018 /* recovery... the complicated one */ 3019 int j; 3020 r10_bio = NULL; 3021 3022 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3023 int still_degraded; 3024 struct r10bio *rb2; 3025 sector_t sect; 3026 int must_sync; 3027 int any_working; 3028 struct raid10_info *mirror = &conf->mirrors[i]; 3029 3030 if ((mirror->rdev == NULL || 3031 test_bit(In_sync, &mirror->rdev->flags)) 3032 && 3033 (mirror->replacement == NULL || 3034 test_bit(Faulty, 3035 &mirror->replacement->flags))) 3036 continue; 3037 3038 still_degraded = 0; 3039 /* want to reconstruct this device */ 3040 rb2 = r10_bio; 3041 sect = raid10_find_virt(conf, sector_nr, i); 3042 if (sect >= mddev->resync_max_sectors) { 3043 /* last stripe is not complete - don't 3044 * try to recover this sector. 3045 */ 3046 continue; 3047 } 3048 /* Unless we are doing a full sync, or a replacement 3049 * we only need to recover the block if it is set in 3050 * the bitmap 3051 */ 3052 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3053 &sync_blocks, 1); 3054 if (sync_blocks < max_sync) 3055 max_sync = sync_blocks; 3056 if (!must_sync && 3057 mirror->replacement == NULL && 3058 !conf->fullsync) { 3059 /* yep, skip the sync_blocks here, but don't assume 3060 * that there will never be anything to do here 3061 */ 3062 chunks_skipped = -1; 3063 continue; 3064 } 3065 3066 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3067 raise_barrier(conf, rb2 != NULL); 3068 atomic_set(&r10_bio->remaining, 0); 3069 3070 r10_bio->master_bio = (struct bio*)rb2; 3071 if (rb2) 3072 atomic_inc(&rb2->remaining); 3073 r10_bio->mddev = mddev; 3074 set_bit(R10BIO_IsRecover, &r10_bio->state); 3075 r10_bio->sector = sect; 3076 3077 raid10_find_phys(conf, r10_bio); 3078 3079 /* Need to check if the array will still be 3080 * degraded 3081 */ 3082 for (j = 0; j < conf->geo.raid_disks; j++) 3083 if (conf->mirrors[j].rdev == NULL || 3084 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3085 still_degraded = 1; 3086 break; 3087 } 3088 3089 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3090 &sync_blocks, still_degraded); 3091 3092 any_working = 0; 3093 for (j=0; j<conf->copies;j++) { 3094 int k; 3095 int d = r10_bio->devs[j].devnum; 3096 sector_t from_addr, to_addr; 3097 struct md_rdev *rdev; 3098 sector_t sector, first_bad; 3099 int bad_sectors; 3100 if (!conf->mirrors[d].rdev || 3101 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3102 continue; 3103 /* This is where we read from */ 3104 any_working = 1; 3105 rdev = conf->mirrors[d].rdev; 3106 sector = r10_bio->devs[j].addr; 3107 3108 if (is_badblock(rdev, sector, max_sync, 3109 &first_bad, &bad_sectors)) { 3110 if (first_bad > sector) 3111 max_sync = first_bad - sector; 3112 else { 3113 bad_sectors -= (sector 3114 - first_bad); 3115 if (max_sync > bad_sectors) 3116 max_sync = bad_sectors; 3117 continue; 3118 } 3119 } 3120 bio = r10_bio->devs[0].bio; 3121 bio_reset(bio); 3122 bio->bi_next = biolist; 3123 biolist = bio; 3124 bio->bi_private = r10_bio; 3125 bio->bi_end_io = end_sync_read; 3126 bio->bi_rw = READ; 3127 from_addr = r10_bio->devs[j].addr; 3128 bio->bi_sector = from_addr + rdev->data_offset; 3129 bio->bi_bdev = rdev->bdev; 3130 atomic_inc(&rdev->nr_pending); 3131 /* and we write to 'i' (if not in_sync) */ 3132 3133 for (k=0; k<conf->copies; k++) 3134 if (r10_bio->devs[k].devnum == i) 3135 break; 3136 BUG_ON(k == conf->copies); 3137 to_addr = r10_bio->devs[k].addr; 3138 r10_bio->devs[0].devnum = d; 3139 r10_bio->devs[0].addr = from_addr; 3140 r10_bio->devs[1].devnum = i; 3141 r10_bio->devs[1].addr = to_addr; 3142 3143 rdev = mirror->rdev; 3144 if (!test_bit(In_sync, &rdev->flags)) { 3145 bio = r10_bio->devs[1].bio; 3146 bio_reset(bio); 3147 bio->bi_next = biolist; 3148 biolist = bio; 3149 bio->bi_private = r10_bio; 3150 bio->bi_end_io = end_sync_write; 3151 bio->bi_rw = WRITE; 3152 bio->bi_sector = to_addr 3153 + rdev->data_offset; 3154 bio->bi_bdev = rdev->bdev; 3155 atomic_inc(&r10_bio->remaining); 3156 } else 3157 r10_bio->devs[1].bio->bi_end_io = NULL; 3158 3159 /* and maybe write to replacement */ 3160 bio = r10_bio->devs[1].repl_bio; 3161 if (bio) 3162 bio->bi_end_io = NULL; 3163 rdev = mirror->replacement; 3164 /* Note: if rdev != NULL, then bio 3165 * cannot be NULL as r10buf_pool_alloc will 3166 * have allocated it. 3167 * So the second test here is pointless. 3168 * But it keeps semantic-checkers happy, and 3169 * this comment keeps human reviewers 3170 * happy. 3171 */ 3172 if (rdev == NULL || bio == NULL || 3173 test_bit(Faulty, &rdev->flags)) 3174 break; 3175 bio_reset(bio); 3176 bio->bi_next = biolist; 3177 biolist = bio; 3178 bio->bi_private = r10_bio; 3179 bio->bi_end_io = end_sync_write; 3180 bio->bi_rw = WRITE; 3181 bio->bi_sector = to_addr + rdev->data_offset; 3182 bio->bi_bdev = rdev->bdev; 3183 atomic_inc(&r10_bio->remaining); 3184 break; 3185 } 3186 if (j == conf->copies) { 3187 /* Cannot recover, so abort the recovery or 3188 * record a bad block */ 3189 put_buf(r10_bio); 3190 if (rb2) 3191 atomic_dec(&rb2->remaining); 3192 r10_bio = rb2; 3193 if (any_working) { 3194 /* problem is that there are bad blocks 3195 * on other device(s) 3196 */ 3197 int k; 3198 for (k = 0; k < conf->copies; k++) 3199 if (r10_bio->devs[k].devnum == i) 3200 break; 3201 if (!test_bit(In_sync, 3202 &mirror->rdev->flags) 3203 && !rdev_set_badblocks( 3204 mirror->rdev, 3205 r10_bio->devs[k].addr, 3206 max_sync, 0)) 3207 any_working = 0; 3208 if (mirror->replacement && 3209 !rdev_set_badblocks( 3210 mirror->replacement, 3211 r10_bio->devs[k].addr, 3212 max_sync, 0)) 3213 any_working = 0; 3214 } 3215 if (!any_working) { 3216 if (!test_and_set_bit(MD_RECOVERY_INTR, 3217 &mddev->recovery)) 3218 printk(KERN_INFO "md/raid10:%s: insufficient " 3219 "working devices for recovery.\n", 3220 mdname(mddev)); 3221 mirror->recovery_disabled 3222 = mddev->recovery_disabled; 3223 } 3224 break; 3225 } 3226 } 3227 if (biolist == NULL) { 3228 while (r10_bio) { 3229 struct r10bio *rb2 = r10_bio; 3230 r10_bio = (struct r10bio*) rb2->master_bio; 3231 rb2->master_bio = NULL; 3232 put_buf(rb2); 3233 } 3234 goto giveup; 3235 } 3236 } else { 3237 /* resync. Schedule a read for every block at this virt offset */ 3238 int count = 0; 3239 3240 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3241 3242 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3243 &sync_blocks, mddev->degraded) && 3244 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3245 &mddev->recovery)) { 3246 /* We can skip this block */ 3247 *skipped = 1; 3248 return sync_blocks + sectors_skipped; 3249 } 3250 if (sync_blocks < max_sync) 3251 max_sync = sync_blocks; 3252 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3253 3254 r10_bio->mddev = mddev; 3255 atomic_set(&r10_bio->remaining, 0); 3256 raise_barrier(conf, 0); 3257 conf->next_resync = sector_nr; 3258 3259 r10_bio->master_bio = NULL; 3260 r10_bio->sector = sector_nr; 3261 set_bit(R10BIO_IsSync, &r10_bio->state); 3262 raid10_find_phys(conf, r10_bio); 3263 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3264 3265 for (i = 0; i < conf->copies; i++) { 3266 int d = r10_bio->devs[i].devnum; 3267 sector_t first_bad, sector; 3268 int bad_sectors; 3269 3270 if (r10_bio->devs[i].repl_bio) 3271 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3272 3273 bio = r10_bio->devs[i].bio; 3274 bio_reset(bio); 3275 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3276 if (conf->mirrors[d].rdev == NULL || 3277 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3278 continue; 3279 sector = r10_bio->devs[i].addr; 3280 if (is_badblock(conf->mirrors[d].rdev, 3281 sector, max_sync, 3282 &first_bad, &bad_sectors)) { 3283 if (first_bad > sector) 3284 max_sync = first_bad - sector; 3285 else { 3286 bad_sectors -= (sector - first_bad); 3287 if (max_sync > bad_sectors) 3288 max_sync = bad_sectors; 3289 continue; 3290 } 3291 } 3292 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3293 atomic_inc(&r10_bio->remaining); 3294 bio->bi_next = biolist; 3295 biolist = bio; 3296 bio->bi_private = r10_bio; 3297 bio->bi_end_io = end_sync_read; 3298 bio->bi_rw = READ; 3299 bio->bi_sector = sector + 3300 conf->mirrors[d].rdev->data_offset; 3301 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3302 count++; 3303 3304 if (conf->mirrors[d].replacement == NULL || 3305 test_bit(Faulty, 3306 &conf->mirrors[d].replacement->flags)) 3307 continue; 3308 3309 /* Need to set up for writing to the replacement */ 3310 bio = r10_bio->devs[i].repl_bio; 3311 bio_reset(bio); 3312 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3313 3314 sector = r10_bio->devs[i].addr; 3315 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3316 bio->bi_next = biolist; 3317 biolist = bio; 3318 bio->bi_private = r10_bio; 3319 bio->bi_end_io = end_sync_write; 3320 bio->bi_rw = WRITE; 3321 bio->bi_sector = sector + 3322 conf->mirrors[d].replacement->data_offset; 3323 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3324 count++; 3325 } 3326 3327 if (count < 2) { 3328 for (i=0; i<conf->copies; i++) { 3329 int d = r10_bio->devs[i].devnum; 3330 if (r10_bio->devs[i].bio->bi_end_io) 3331 rdev_dec_pending(conf->mirrors[d].rdev, 3332 mddev); 3333 if (r10_bio->devs[i].repl_bio && 3334 r10_bio->devs[i].repl_bio->bi_end_io) 3335 rdev_dec_pending( 3336 conf->mirrors[d].replacement, 3337 mddev); 3338 } 3339 put_buf(r10_bio); 3340 biolist = NULL; 3341 goto giveup; 3342 } 3343 } 3344 3345 nr_sectors = 0; 3346 if (sector_nr + max_sync < max_sector) 3347 max_sector = sector_nr + max_sync; 3348 do { 3349 struct page *page; 3350 int len = PAGE_SIZE; 3351 if (sector_nr + (len>>9) > max_sector) 3352 len = (max_sector - sector_nr) << 9; 3353 if (len == 0) 3354 break; 3355 for (bio= biolist ; bio ; bio=bio->bi_next) { 3356 struct bio *bio2; 3357 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3358 if (bio_add_page(bio, page, len, 0)) 3359 continue; 3360 3361 /* stop here */ 3362 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3363 for (bio2 = biolist; 3364 bio2 && bio2 != bio; 3365 bio2 = bio2->bi_next) { 3366 /* remove last page from this bio */ 3367 bio2->bi_vcnt--; 3368 bio2->bi_size -= len; 3369 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3370 } 3371 goto bio_full; 3372 } 3373 nr_sectors += len>>9; 3374 sector_nr += len>>9; 3375 } while (biolist->bi_vcnt < RESYNC_PAGES); 3376 bio_full: 3377 r10_bio->sectors = nr_sectors; 3378 3379 while (biolist) { 3380 bio = biolist; 3381 biolist = biolist->bi_next; 3382 3383 bio->bi_next = NULL; 3384 r10_bio = bio->bi_private; 3385 r10_bio->sectors = nr_sectors; 3386 3387 if (bio->bi_end_io == end_sync_read) { 3388 md_sync_acct(bio->bi_bdev, nr_sectors); 3389 generic_make_request(bio); 3390 } 3391 } 3392 3393 if (sectors_skipped) 3394 /* pretend they weren't skipped, it makes 3395 * no important difference in this case 3396 */ 3397 md_done_sync(mddev, sectors_skipped, 1); 3398 3399 return sectors_skipped + nr_sectors; 3400 giveup: 3401 /* There is nowhere to write, so all non-sync 3402 * drives must be failed or in resync, all drives 3403 * have a bad block, so try the next chunk... 3404 */ 3405 if (sector_nr + max_sync < max_sector) 3406 max_sector = sector_nr + max_sync; 3407 3408 sectors_skipped += (max_sector - sector_nr); 3409 chunks_skipped ++; 3410 sector_nr = max_sector; 3411 goto skipped; 3412 } 3413 3414 static sector_t 3415 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3416 { 3417 sector_t size; 3418 struct r10conf *conf = mddev->private; 3419 3420 if (!raid_disks) 3421 raid_disks = min(conf->geo.raid_disks, 3422 conf->prev.raid_disks); 3423 if (!sectors) 3424 sectors = conf->dev_sectors; 3425 3426 size = sectors >> conf->geo.chunk_shift; 3427 sector_div(size, conf->geo.far_copies); 3428 size = size * raid_disks; 3429 sector_div(size, conf->geo.near_copies); 3430 3431 return size << conf->geo.chunk_shift; 3432 } 3433 3434 static void calc_sectors(struct r10conf *conf, sector_t size) 3435 { 3436 /* Calculate the number of sectors-per-device that will 3437 * actually be used, and set conf->dev_sectors and 3438 * conf->stride 3439 */ 3440 3441 size = size >> conf->geo.chunk_shift; 3442 sector_div(size, conf->geo.far_copies); 3443 size = size * conf->geo.raid_disks; 3444 sector_div(size, conf->geo.near_copies); 3445 /* 'size' is now the number of chunks in the array */ 3446 /* calculate "used chunks per device" */ 3447 size = size * conf->copies; 3448 3449 /* We need to round up when dividing by raid_disks to 3450 * get the stride size. 3451 */ 3452 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3453 3454 conf->dev_sectors = size << conf->geo.chunk_shift; 3455 3456 if (conf->geo.far_offset) 3457 conf->geo.stride = 1 << conf->geo.chunk_shift; 3458 else { 3459 sector_div(size, conf->geo.far_copies); 3460 conf->geo.stride = size << conf->geo.chunk_shift; 3461 } 3462 } 3463 3464 enum geo_type {geo_new, geo_old, geo_start}; 3465 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3466 { 3467 int nc, fc, fo; 3468 int layout, chunk, disks; 3469 switch (new) { 3470 case geo_old: 3471 layout = mddev->layout; 3472 chunk = mddev->chunk_sectors; 3473 disks = mddev->raid_disks - mddev->delta_disks; 3474 break; 3475 case geo_new: 3476 layout = mddev->new_layout; 3477 chunk = mddev->new_chunk_sectors; 3478 disks = mddev->raid_disks; 3479 break; 3480 default: /* avoid 'may be unused' warnings */ 3481 case geo_start: /* new when starting reshape - raid_disks not 3482 * updated yet. */ 3483 layout = mddev->new_layout; 3484 chunk = mddev->new_chunk_sectors; 3485 disks = mddev->raid_disks + mddev->delta_disks; 3486 break; 3487 } 3488 if (layout >> 18) 3489 return -1; 3490 if (chunk < (PAGE_SIZE >> 9) || 3491 !is_power_of_2(chunk)) 3492 return -2; 3493 nc = layout & 255; 3494 fc = (layout >> 8) & 255; 3495 fo = layout & (1<<16); 3496 geo->raid_disks = disks; 3497 geo->near_copies = nc; 3498 geo->far_copies = fc; 3499 geo->far_offset = fo; 3500 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; 3501 geo->chunk_mask = chunk - 1; 3502 geo->chunk_shift = ffz(~chunk); 3503 return nc*fc; 3504 } 3505 3506 static struct r10conf *setup_conf(struct mddev *mddev) 3507 { 3508 struct r10conf *conf = NULL; 3509 int err = -EINVAL; 3510 struct geom geo; 3511 int copies; 3512 3513 copies = setup_geo(&geo, mddev, geo_new); 3514 3515 if (copies == -2) { 3516 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3517 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3518 mdname(mddev), PAGE_SIZE); 3519 goto out; 3520 } 3521 3522 if (copies < 2 || copies > mddev->raid_disks) { 3523 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3524 mdname(mddev), mddev->new_layout); 3525 goto out; 3526 } 3527 3528 err = -ENOMEM; 3529 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3530 if (!conf) 3531 goto out; 3532 3533 /* FIXME calc properly */ 3534 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3535 max(0,mddev->delta_disks)), 3536 GFP_KERNEL); 3537 if (!conf->mirrors) 3538 goto out; 3539 3540 conf->tmppage = alloc_page(GFP_KERNEL); 3541 if (!conf->tmppage) 3542 goto out; 3543 3544 conf->geo = geo; 3545 conf->copies = copies; 3546 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3547 r10bio_pool_free, conf); 3548 if (!conf->r10bio_pool) 3549 goto out; 3550 3551 calc_sectors(conf, mddev->dev_sectors); 3552 if (mddev->reshape_position == MaxSector) { 3553 conf->prev = conf->geo; 3554 conf->reshape_progress = MaxSector; 3555 } else { 3556 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3557 err = -EINVAL; 3558 goto out; 3559 } 3560 conf->reshape_progress = mddev->reshape_position; 3561 if (conf->prev.far_offset) 3562 conf->prev.stride = 1 << conf->prev.chunk_shift; 3563 else 3564 /* far_copies must be 1 */ 3565 conf->prev.stride = conf->dev_sectors; 3566 } 3567 spin_lock_init(&conf->device_lock); 3568 INIT_LIST_HEAD(&conf->retry_list); 3569 3570 spin_lock_init(&conf->resync_lock); 3571 init_waitqueue_head(&conf->wait_barrier); 3572 3573 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3574 if (!conf->thread) 3575 goto out; 3576 3577 conf->mddev = mddev; 3578 return conf; 3579 3580 out: 3581 if (err == -ENOMEM) 3582 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3583 mdname(mddev)); 3584 if (conf) { 3585 if (conf->r10bio_pool) 3586 mempool_destroy(conf->r10bio_pool); 3587 kfree(conf->mirrors); 3588 safe_put_page(conf->tmppage); 3589 kfree(conf); 3590 } 3591 return ERR_PTR(err); 3592 } 3593 3594 static int run(struct mddev *mddev) 3595 { 3596 struct r10conf *conf; 3597 int i, disk_idx, chunk_size; 3598 struct raid10_info *disk; 3599 struct md_rdev *rdev; 3600 sector_t size; 3601 sector_t min_offset_diff = 0; 3602 int first = 1; 3603 bool discard_supported = false; 3604 3605 if (mddev->private == NULL) { 3606 conf = setup_conf(mddev); 3607 if (IS_ERR(conf)) 3608 return PTR_ERR(conf); 3609 mddev->private = conf; 3610 } 3611 conf = mddev->private; 3612 if (!conf) 3613 goto out; 3614 3615 mddev->thread = conf->thread; 3616 conf->thread = NULL; 3617 3618 chunk_size = mddev->chunk_sectors << 9; 3619 if (mddev->queue) { 3620 blk_queue_max_discard_sectors(mddev->queue, 3621 mddev->chunk_sectors); 3622 blk_queue_max_write_same_sectors(mddev->queue, 0); 3623 blk_queue_io_min(mddev->queue, chunk_size); 3624 if (conf->geo.raid_disks % conf->geo.near_copies) 3625 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3626 else 3627 blk_queue_io_opt(mddev->queue, chunk_size * 3628 (conf->geo.raid_disks / conf->geo.near_copies)); 3629 } 3630 3631 rdev_for_each(rdev, mddev) { 3632 long long diff; 3633 struct request_queue *q; 3634 3635 disk_idx = rdev->raid_disk; 3636 if (disk_idx < 0) 3637 continue; 3638 if (disk_idx >= conf->geo.raid_disks && 3639 disk_idx >= conf->prev.raid_disks) 3640 continue; 3641 disk = conf->mirrors + disk_idx; 3642 3643 if (test_bit(Replacement, &rdev->flags)) { 3644 if (disk->replacement) 3645 goto out_free_conf; 3646 disk->replacement = rdev; 3647 } else { 3648 if (disk->rdev) 3649 goto out_free_conf; 3650 disk->rdev = rdev; 3651 } 3652 q = bdev_get_queue(rdev->bdev); 3653 if (q->merge_bvec_fn) 3654 mddev->merge_check_needed = 1; 3655 diff = (rdev->new_data_offset - rdev->data_offset); 3656 if (!mddev->reshape_backwards) 3657 diff = -diff; 3658 if (diff < 0) 3659 diff = 0; 3660 if (first || diff < min_offset_diff) 3661 min_offset_diff = diff; 3662 3663 if (mddev->gendisk) 3664 disk_stack_limits(mddev->gendisk, rdev->bdev, 3665 rdev->data_offset << 9); 3666 3667 disk->head_position = 0; 3668 3669 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3670 discard_supported = true; 3671 } 3672 3673 if (mddev->queue) { 3674 if (discard_supported) 3675 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3676 mddev->queue); 3677 else 3678 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3679 mddev->queue); 3680 } 3681 /* need to check that every block has at least one working mirror */ 3682 if (!enough(conf, -1)) { 3683 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3684 mdname(mddev)); 3685 goto out_free_conf; 3686 } 3687 3688 if (conf->reshape_progress != MaxSector) { 3689 /* must ensure that shape change is supported */ 3690 if (conf->geo.far_copies != 1 && 3691 conf->geo.far_offset == 0) 3692 goto out_free_conf; 3693 if (conf->prev.far_copies != 1 && 3694 conf->geo.far_offset == 0) 3695 goto out_free_conf; 3696 } 3697 3698 mddev->degraded = 0; 3699 for (i = 0; 3700 i < conf->geo.raid_disks 3701 || i < conf->prev.raid_disks; 3702 i++) { 3703 3704 disk = conf->mirrors + i; 3705 3706 if (!disk->rdev && disk->replacement) { 3707 /* The replacement is all we have - use it */ 3708 disk->rdev = disk->replacement; 3709 disk->replacement = NULL; 3710 clear_bit(Replacement, &disk->rdev->flags); 3711 } 3712 3713 if (!disk->rdev || 3714 !test_bit(In_sync, &disk->rdev->flags)) { 3715 disk->head_position = 0; 3716 mddev->degraded++; 3717 if (disk->rdev) 3718 conf->fullsync = 1; 3719 } 3720 disk->recovery_disabled = mddev->recovery_disabled - 1; 3721 } 3722 3723 if (mddev->recovery_cp != MaxSector) 3724 printk(KERN_NOTICE "md/raid10:%s: not clean" 3725 " -- starting background reconstruction\n", 3726 mdname(mddev)); 3727 printk(KERN_INFO 3728 "md/raid10:%s: active with %d out of %d devices\n", 3729 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3730 conf->geo.raid_disks); 3731 /* 3732 * Ok, everything is just fine now 3733 */ 3734 mddev->dev_sectors = conf->dev_sectors; 3735 size = raid10_size(mddev, 0, 0); 3736 md_set_array_sectors(mddev, size); 3737 mddev->resync_max_sectors = size; 3738 3739 if (mddev->queue) { 3740 int stripe = conf->geo.raid_disks * 3741 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3742 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3743 mddev->queue->backing_dev_info.congested_data = mddev; 3744 3745 /* Calculate max read-ahead size. 3746 * We need to readahead at least twice a whole stripe.... 3747 * maybe... 3748 */ 3749 stripe /= conf->geo.near_copies; 3750 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3751 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3752 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3753 } 3754 3755 3756 if (md_integrity_register(mddev)) 3757 goto out_free_conf; 3758 3759 if (conf->reshape_progress != MaxSector) { 3760 unsigned long before_length, after_length; 3761 3762 before_length = ((1 << conf->prev.chunk_shift) * 3763 conf->prev.far_copies); 3764 after_length = ((1 << conf->geo.chunk_shift) * 3765 conf->geo.far_copies); 3766 3767 if (max(before_length, after_length) > min_offset_diff) { 3768 /* This cannot work */ 3769 printk("md/raid10: offset difference not enough to continue reshape\n"); 3770 goto out_free_conf; 3771 } 3772 conf->offset_diff = min_offset_diff; 3773 3774 conf->reshape_safe = conf->reshape_progress; 3775 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3776 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3777 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3778 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3779 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3780 "reshape"); 3781 } 3782 3783 return 0; 3784 3785 out_free_conf: 3786 md_unregister_thread(&mddev->thread); 3787 if (conf->r10bio_pool) 3788 mempool_destroy(conf->r10bio_pool); 3789 safe_put_page(conf->tmppage); 3790 kfree(conf->mirrors); 3791 kfree(conf); 3792 mddev->private = NULL; 3793 out: 3794 return -EIO; 3795 } 3796 3797 static int stop(struct mddev *mddev) 3798 { 3799 struct r10conf *conf = mddev->private; 3800 3801 raise_barrier(conf, 0); 3802 lower_barrier(conf); 3803 3804 md_unregister_thread(&mddev->thread); 3805 if (mddev->queue) 3806 /* the unplug fn references 'conf'*/ 3807 blk_sync_queue(mddev->queue); 3808 3809 if (conf->r10bio_pool) 3810 mempool_destroy(conf->r10bio_pool); 3811 safe_put_page(conf->tmppage); 3812 kfree(conf->mirrors); 3813 kfree(conf); 3814 mddev->private = NULL; 3815 return 0; 3816 } 3817 3818 static void raid10_quiesce(struct mddev *mddev, int state) 3819 { 3820 struct r10conf *conf = mddev->private; 3821 3822 switch(state) { 3823 case 1: 3824 raise_barrier(conf, 0); 3825 break; 3826 case 0: 3827 lower_barrier(conf); 3828 break; 3829 } 3830 } 3831 3832 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3833 { 3834 /* Resize of 'far' arrays is not supported. 3835 * For 'near' and 'offset' arrays we can set the 3836 * number of sectors used to be an appropriate multiple 3837 * of the chunk size. 3838 * For 'offset', this is far_copies*chunksize. 3839 * For 'near' the multiplier is the LCM of 3840 * near_copies and raid_disks. 3841 * So if far_copies > 1 && !far_offset, fail. 3842 * Else find LCM(raid_disks, near_copy)*far_copies and 3843 * multiply by chunk_size. Then round to this number. 3844 * This is mostly done by raid10_size() 3845 */ 3846 struct r10conf *conf = mddev->private; 3847 sector_t oldsize, size; 3848 3849 if (mddev->reshape_position != MaxSector) 3850 return -EBUSY; 3851 3852 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3853 return -EINVAL; 3854 3855 oldsize = raid10_size(mddev, 0, 0); 3856 size = raid10_size(mddev, sectors, 0); 3857 if (mddev->external_size && 3858 mddev->array_sectors > size) 3859 return -EINVAL; 3860 if (mddev->bitmap) { 3861 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3862 if (ret) 3863 return ret; 3864 } 3865 md_set_array_sectors(mddev, size); 3866 set_capacity(mddev->gendisk, mddev->array_sectors); 3867 revalidate_disk(mddev->gendisk); 3868 if (sectors > mddev->dev_sectors && 3869 mddev->recovery_cp > oldsize) { 3870 mddev->recovery_cp = oldsize; 3871 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3872 } 3873 calc_sectors(conf, sectors); 3874 mddev->dev_sectors = conf->dev_sectors; 3875 mddev->resync_max_sectors = size; 3876 return 0; 3877 } 3878 3879 static void *raid10_takeover_raid0(struct mddev *mddev) 3880 { 3881 struct md_rdev *rdev; 3882 struct r10conf *conf; 3883 3884 if (mddev->degraded > 0) { 3885 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3886 mdname(mddev)); 3887 return ERR_PTR(-EINVAL); 3888 } 3889 3890 /* Set new parameters */ 3891 mddev->new_level = 10; 3892 /* new layout: far_copies = 1, near_copies = 2 */ 3893 mddev->new_layout = (1<<8) + 2; 3894 mddev->new_chunk_sectors = mddev->chunk_sectors; 3895 mddev->delta_disks = mddev->raid_disks; 3896 mddev->raid_disks *= 2; 3897 /* make sure it will be not marked as dirty */ 3898 mddev->recovery_cp = MaxSector; 3899 3900 conf = setup_conf(mddev); 3901 if (!IS_ERR(conf)) { 3902 rdev_for_each(rdev, mddev) 3903 if (rdev->raid_disk >= 0) 3904 rdev->new_raid_disk = rdev->raid_disk * 2; 3905 conf->barrier = 1; 3906 } 3907 3908 return conf; 3909 } 3910 3911 static void *raid10_takeover(struct mddev *mddev) 3912 { 3913 struct r0conf *raid0_conf; 3914 3915 /* raid10 can take over: 3916 * raid0 - providing it has only two drives 3917 */ 3918 if (mddev->level == 0) { 3919 /* for raid0 takeover only one zone is supported */ 3920 raid0_conf = mddev->private; 3921 if (raid0_conf->nr_strip_zones > 1) { 3922 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3923 " with more than one zone.\n", 3924 mdname(mddev)); 3925 return ERR_PTR(-EINVAL); 3926 } 3927 return raid10_takeover_raid0(mddev); 3928 } 3929 return ERR_PTR(-EINVAL); 3930 } 3931 3932 static int raid10_check_reshape(struct mddev *mddev) 3933 { 3934 /* Called when there is a request to change 3935 * - layout (to ->new_layout) 3936 * - chunk size (to ->new_chunk_sectors) 3937 * - raid_disks (by delta_disks) 3938 * or when trying to restart a reshape that was ongoing. 3939 * 3940 * We need to validate the request and possibly allocate 3941 * space if that might be an issue later. 3942 * 3943 * Currently we reject any reshape of a 'far' mode array, 3944 * allow chunk size to change if new is generally acceptable, 3945 * allow raid_disks to increase, and allow 3946 * a switch between 'near' mode and 'offset' mode. 3947 */ 3948 struct r10conf *conf = mddev->private; 3949 struct geom geo; 3950 3951 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3952 return -EINVAL; 3953 3954 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3955 /* mustn't change number of copies */ 3956 return -EINVAL; 3957 if (geo.far_copies > 1 && !geo.far_offset) 3958 /* Cannot switch to 'far' mode */ 3959 return -EINVAL; 3960 3961 if (mddev->array_sectors & geo.chunk_mask) 3962 /* not factor of array size */ 3963 return -EINVAL; 3964 3965 if (!enough(conf, -1)) 3966 return -EINVAL; 3967 3968 kfree(conf->mirrors_new); 3969 conf->mirrors_new = NULL; 3970 if (mddev->delta_disks > 0) { 3971 /* allocate new 'mirrors' list */ 3972 conf->mirrors_new = kzalloc( 3973 sizeof(struct raid10_info) 3974 *(mddev->raid_disks + 3975 mddev->delta_disks), 3976 GFP_KERNEL); 3977 if (!conf->mirrors_new) 3978 return -ENOMEM; 3979 } 3980 return 0; 3981 } 3982 3983 /* 3984 * Need to check if array has failed when deciding whether to: 3985 * - start an array 3986 * - remove non-faulty devices 3987 * - add a spare 3988 * - allow a reshape 3989 * This determination is simple when no reshape is happening. 3990 * However if there is a reshape, we need to carefully check 3991 * both the before and after sections. 3992 * This is because some failed devices may only affect one 3993 * of the two sections, and some non-in_sync devices may 3994 * be insync in the section most affected by failed devices. 3995 */ 3996 static int calc_degraded(struct r10conf *conf) 3997 { 3998 int degraded, degraded2; 3999 int i; 4000 4001 rcu_read_lock(); 4002 degraded = 0; 4003 /* 'prev' section first */ 4004 for (i = 0; i < conf->prev.raid_disks; i++) { 4005 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4006 if (!rdev || test_bit(Faulty, &rdev->flags)) 4007 degraded++; 4008 else if (!test_bit(In_sync, &rdev->flags)) 4009 /* When we can reduce the number of devices in 4010 * an array, this might not contribute to 4011 * 'degraded'. It does now. 4012 */ 4013 degraded++; 4014 } 4015 rcu_read_unlock(); 4016 if (conf->geo.raid_disks == conf->prev.raid_disks) 4017 return degraded; 4018 rcu_read_lock(); 4019 degraded2 = 0; 4020 for (i = 0; i < conf->geo.raid_disks; i++) { 4021 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4022 if (!rdev || test_bit(Faulty, &rdev->flags)) 4023 degraded2++; 4024 else if (!test_bit(In_sync, &rdev->flags)) { 4025 /* If reshape is increasing the number of devices, 4026 * this section has already been recovered, so 4027 * it doesn't contribute to degraded. 4028 * else it does. 4029 */ 4030 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4031 degraded2++; 4032 } 4033 } 4034 rcu_read_unlock(); 4035 if (degraded2 > degraded) 4036 return degraded2; 4037 return degraded; 4038 } 4039 4040 static int raid10_start_reshape(struct mddev *mddev) 4041 { 4042 /* A 'reshape' has been requested. This commits 4043 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4044 * This also checks if there are enough spares and adds them 4045 * to the array. 4046 * We currently require enough spares to make the final 4047 * array non-degraded. We also require that the difference 4048 * between old and new data_offset - on each device - is 4049 * enough that we never risk over-writing. 4050 */ 4051 4052 unsigned long before_length, after_length; 4053 sector_t min_offset_diff = 0; 4054 int first = 1; 4055 struct geom new; 4056 struct r10conf *conf = mddev->private; 4057 struct md_rdev *rdev; 4058 int spares = 0; 4059 int ret; 4060 4061 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4062 return -EBUSY; 4063 4064 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4065 return -EINVAL; 4066 4067 before_length = ((1 << conf->prev.chunk_shift) * 4068 conf->prev.far_copies); 4069 after_length = ((1 << conf->geo.chunk_shift) * 4070 conf->geo.far_copies); 4071 4072 rdev_for_each(rdev, mddev) { 4073 if (!test_bit(In_sync, &rdev->flags) 4074 && !test_bit(Faulty, &rdev->flags)) 4075 spares++; 4076 if (rdev->raid_disk >= 0) { 4077 long long diff = (rdev->new_data_offset 4078 - rdev->data_offset); 4079 if (!mddev->reshape_backwards) 4080 diff = -diff; 4081 if (diff < 0) 4082 diff = 0; 4083 if (first || diff < min_offset_diff) 4084 min_offset_diff = diff; 4085 } 4086 } 4087 4088 if (max(before_length, after_length) > min_offset_diff) 4089 return -EINVAL; 4090 4091 if (spares < mddev->delta_disks) 4092 return -EINVAL; 4093 4094 conf->offset_diff = min_offset_diff; 4095 spin_lock_irq(&conf->device_lock); 4096 if (conf->mirrors_new) { 4097 memcpy(conf->mirrors_new, conf->mirrors, 4098 sizeof(struct raid10_info)*conf->prev.raid_disks); 4099 smp_mb(); 4100 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 4101 conf->mirrors_old = conf->mirrors; 4102 conf->mirrors = conf->mirrors_new; 4103 conf->mirrors_new = NULL; 4104 } 4105 setup_geo(&conf->geo, mddev, geo_start); 4106 smp_mb(); 4107 if (mddev->reshape_backwards) { 4108 sector_t size = raid10_size(mddev, 0, 0); 4109 if (size < mddev->array_sectors) { 4110 spin_unlock_irq(&conf->device_lock); 4111 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4112 mdname(mddev)); 4113 return -EINVAL; 4114 } 4115 mddev->resync_max_sectors = size; 4116 conf->reshape_progress = size; 4117 } else 4118 conf->reshape_progress = 0; 4119 spin_unlock_irq(&conf->device_lock); 4120 4121 if (mddev->delta_disks && mddev->bitmap) { 4122 ret = bitmap_resize(mddev->bitmap, 4123 raid10_size(mddev, 0, 4124 conf->geo.raid_disks), 4125 0, 0); 4126 if (ret) 4127 goto abort; 4128 } 4129 if (mddev->delta_disks > 0) { 4130 rdev_for_each(rdev, mddev) 4131 if (rdev->raid_disk < 0 && 4132 !test_bit(Faulty, &rdev->flags)) { 4133 if (raid10_add_disk(mddev, rdev) == 0) { 4134 if (rdev->raid_disk >= 4135 conf->prev.raid_disks) 4136 set_bit(In_sync, &rdev->flags); 4137 else 4138 rdev->recovery_offset = 0; 4139 4140 if (sysfs_link_rdev(mddev, rdev)) 4141 /* Failure here is OK */; 4142 } 4143 } else if (rdev->raid_disk >= conf->prev.raid_disks 4144 && !test_bit(Faulty, &rdev->flags)) { 4145 /* This is a spare that was manually added */ 4146 set_bit(In_sync, &rdev->flags); 4147 } 4148 } 4149 /* When a reshape changes the number of devices, 4150 * ->degraded is measured against the larger of the 4151 * pre and post numbers. 4152 */ 4153 spin_lock_irq(&conf->device_lock); 4154 mddev->degraded = calc_degraded(conf); 4155 spin_unlock_irq(&conf->device_lock); 4156 mddev->raid_disks = conf->geo.raid_disks; 4157 mddev->reshape_position = conf->reshape_progress; 4158 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4159 4160 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4161 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4162 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4163 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4164 4165 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4166 "reshape"); 4167 if (!mddev->sync_thread) { 4168 ret = -EAGAIN; 4169 goto abort; 4170 } 4171 conf->reshape_checkpoint = jiffies; 4172 md_wakeup_thread(mddev->sync_thread); 4173 md_new_event(mddev); 4174 return 0; 4175 4176 abort: 4177 mddev->recovery = 0; 4178 spin_lock_irq(&conf->device_lock); 4179 conf->geo = conf->prev; 4180 mddev->raid_disks = conf->geo.raid_disks; 4181 rdev_for_each(rdev, mddev) 4182 rdev->new_data_offset = rdev->data_offset; 4183 smp_wmb(); 4184 conf->reshape_progress = MaxSector; 4185 mddev->reshape_position = MaxSector; 4186 spin_unlock_irq(&conf->device_lock); 4187 return ret; 4188 } 4189 4190 /* Calculate the last device-address that could contain 4191 * any block from the chunk that includes the array-address 's' 4192 * and report the next address. 4193 * i.e. the address returned will be chunk-aligned and after 4194 * any data that is in the chunk containing 's'. 4195 */ 4196 static sector_t last_dev_address(sector_t s, struct geom *geo) 4197 { 4198 s = (s | geo->chunk_mask) + 1; 4199 s >>= geo->chunk_shift; 4200 s *= geo->near_copies; 4201 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4202 s *= geo->far_copies; 4203 s <<= geo->chunk_shift; 4204 return s; 4205 } 4206 4207 /* Calculate the first device-address that could contain 4208 * any block from the chunk that includes the array-address 's'. 4209 * This too will be the start of a chunk 4210 */ 4211 static sector_t first_dev_address(sector_t s, struct geom *geo) 4212 { 4213 s >>= geo->chunk_shift; 4214 s *= geo->near_copies; 4215 sector_div(s, geo->raid_disks); 4216 s *= geo->far_copies; 4217 s <<= geo->chunk_shift; 4218 return s; 4219 } 4220 4221 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4222 int *skipped) 4223 { 4224 /* We simply copy at most one chunk (smallest of old and new) 4225 * at a time, possibly less if that exceeds RESYNC_PAGES, 4226 * or we hit a bad block or something. 4227 * This might mean we pause for normal IO in the middle of 4228 * a chunk, but that is not a problem was mddev->reshape_position 4229 * can record any location. 4230 * 4231 * If we will want to write to a location that isn't 4232 * yet recorded as 'safe' (i.e. in metadata on disk) then 4233 * we need to flush all reshape requests and update the metadata. 4234 * 4235 * When reshaping forwards (e.g. to more devices), we interpret 4236 * 'safe' as the earliest block which might not have been copied 4237 * down yet. We divide this by previous stripe size and multiply 4238 * by previous stripe length to get lowest device offset that we 4239 * cannot write to yet. 4240 * We interpret 'sector_nr' as an address that we want to write to. 4241 * From this we use last_device_address() to find where we might 4242 * write to, and first_device_address on the 'safe' position. 4243 * If this 'next' write position is after the 'safe' position, 4244 * we must update the metadata to increase the 'safe' position. 4245 * 4246 * When reshaping backwards, we round in the opposite direction 4247 * and perform the reverse test: next write position must not be 4248 * less than current safe position. 4249 * 4250 * In all this the minimum difference in data offsets 4251 * (conf->offset_diff - always positive) allows a bit of slack, 4252 * so next can be after 'safe', but not by more than offset_disk 4253 * 4254 * We need to prepare all the bios here before we start any IO 4255 * to ensure the size we choose is acceptable to all devices. 4256 * The means one for each copy for write-out and an extra one for 4257 * read-in. 4258 * We store the read-in bio in ->master_bio and the others in 4259 * ->devs[x].bio and ->devs[x].repl_bio. 4260 */ 4261 struct r10conf *conf = mddev->private; 4262 struct r10bio *r10_bio; 4263 sector_t next, safe, last; 4264 int max_sectors; 4265 int nr_sectors; 4266 int s; 4267 struct md_rdev *rdev; 4268 int need_flush = 0; 4269 struct bio *blist; 4270 struct bio *bio, *read_bio; 4271 int sectors_done = 0; 4272 4273 if (sector_nr == 0) { 4274 /* If restarting in the middle, skip the initial sectors */ 4275 if (mddev->reshape_backwards && 4276 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4277 sector_nr = (raid10_size(mddev, 0, 0) 4278 - conf->reshape_progress); 4279 } else if (!mddev->reshape_backwards && 4280 conf->reshape_progress > 0) 4281 sector_nr = conf->reshape_progress; 4282 if (sector_nr) { 4283 mddev->curr_resync_completed = sector_nr; 4284 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4285 *skipped = 1; 4286 return sector_nr; 4287 } 4288 } 4289 4290 /* We don't use sector_nr to track where we are up to 4291 * as that doesn't work well for ->reshape_backwards. 4292 * So just use ->reshape_progress. 4293 */ 4294 if (mddev->reshape_backwards) { 4295 /* 'next' is the earliest device address that we might 4296 * write to for this chunk in the new layout 4297 */ 4298 next = first_dev_address(conf->reshape_progress - 1, 4299 &conf->geo); 4300 4301 /* 'safe' is the last device address that we might read from 4302 * in the old layout after a restart 4303 */ 4304 safe = last_dev_address(conf->reshape_safe - 1, 4305 &conf->prev); 4306 4307 if (next + conf->offset_diff < safe) 4308 need_flush = 1; 4309 4310 last = conf->reshape_progress - 1; 4311 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4312 & conf->prev.chunk_mask); 4313 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4314 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4315 } else { 4316 /* 'next' is after the last device address that we 4317 * might write to for this chunk in the new layout 4318 */ 4319 next = last_dev_address(conf->reshape_progress, &conf->geo); 4320 4321 /* 'safe' is the earliest device address that we might 4322 * read from in the old layout after a restart 4323 */ 4324 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4325 4326 /* Need to update metadata if 'next' might be beyond 'safe' 4327 * as that would possibly corrupt data 4328 */ 4329 if (next > safe + conf->offset_diff) 4330 need_flush = 1; 4331 4332 sector_nr = conf->reshape_progress; 4333 last = sector_nr | (conf->geo.chunk_mask 4334 & conf->prev.chunk_mask); 4335 4336 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4337 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4338 } 4339 4340 if (need_flush || 4341 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4342 /* Need to update reshape_position in metadata */ 4343 wait_barrier(conf); 4344 mddev->reshape_position = conf->reshape_progress; 4345 if (mddev->reshape_backwards) 4346 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4347 - conf->reshape_progress; 4348 else 4349 mddev->curr_resync_completed = conf->reshape_progress; 4350 conf->reshape_checkpoint = jiffies; 4351 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4352 md_wakeup_thread(mddev->thread); 4353 wait_event(mddev->sb_wait, mddev->flags == 0 || 4354 kthread_should_stop()); 4355 conf->reshape_safe = mddev->reshape_position; 4356 allow_barrier(conf); 4357 } 4358 4359 read_more: 4360 /* Now schedule reads for blocks from sector_nr to last */ 4361 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4362 raise_barrier(conf, sectors_done != 0); 4363 atomic_set(&r10_bio->remaining, 0); 4364 r10_bio->mddev = mddev; 4365 r10_bio->sector = sector_nr; 4366 set_bit(R10BIO_IsReshape, &r10_bio->state); 4367 r10_bio->sectors = last - sector_nr + 1; 4368 rdev = read_balance(conf, r10_bio, &max_sectors); 4369 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4370 4371 if (!rdev) { 4372 /* Cannot read from here, so need to record bad blocks 4373 * on all the target devices. 4374 */ 4375 // FIXME 4376 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4377 return sectors_done; 4378 } 4379 4380 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4381 4382 read_bio->bi_bdev = rdev->bdev; 4383 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4384 + rdev->data_offset); 4385 read_bio->bi_private = r10_bio; 4386 read_bio->bi_end_io = end_sync_read; 4387 read_bio->bi_rw = READ; 4388 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4389 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4390 read_bio->bi_vcnt = 0; 4391 read_bio->bi_size = 0; 4392 r10_bio->master_bio = read_bio; 4393 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4394 4395 /* Now find the locations in the new layout */ 4396 __raid10_find_phys(&conf->geo, r10_bio); 4397 4398 blist = read_bio; 4399 read_bio->bi_next = NULL; 4400 4401 for (s = 0; s < conf->copies*2; s++) { 4402 struct bio *b; 4403 int d = r10_bio->devs[s/2].devnum; 4404 struct md_rdev *rdev2; 4405 if (s&1) { 4406 rdev2 = conf->mirrors[d].replacement; 4407 b = r10_bio->devs[s/2].repl_bio; 4408 } else { 4409 rdev2 = conf->mirrors[d].rdev; 4410 b = r10_bio->devs[s/2].bio; 4411 } 4412 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4413 continue; 4414 4415 bio_reset(b); 4416 b->bi_bdev = rdev2->bdev; 4417 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4418 b->bi_private = r10_bio; 4419 b->bi_end_io = end_reshape_write; 4420 b->bi_rw = WRITE; 4421 b->bi_next = blist; 4422 blist = b; 4423 } 4424 4425 /* Now add as many pages as possible to all of these bios. */ 4426 4427 nr_sectors = 0; 4428 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4429 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4430 int len = (max_sectors - s) << 9; 4431 if (len > PAGE_SIZE) 4432 len = PAGE_SIZE; 4433 for (bio = blist; bio ; bio = bio->bi_next) { 4434 struct bio *bio2; 4435 if (bio_add_page(bio, page, len, 0)) 4436 continue; 4437 4438 /* Didn't fit, must stop */ 4439 for (bio2 = blist; 4440 bio2 && bio2 != bio; 4441 bio2 = bio2->bi_next) { 4442 /* Remove last page from this bio */ 4443 bio2->bi_vcnt--; 4444 bio2->bi_size -= len; 4445 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4446 } 4447 goto bio_full; 4448 } 4449 sector_nr += len >> 9; 4450 nr_sectors += len >> 9; 4451 } 4452 bio_full: 4453 r10_bio->sectors = nr_sectors; 4454 4455 /* Now submit the read */ 4456 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4457 atomic_inc(&r10_bio->remaining); 4458 read_bio->bi_next = NULL; 4459 generic_make_request(read_bio); 4460 sector_nr += nr_sectors; 4461 sectors_done += nr_sectors; 4462 if (sector_nr <= last) 4463 goto read_more; 4464 4465 /* Now that we have done the whole section we can 4466 * update reshape_progress 4467 */ 4468 if (mddev->reshape_backwards) 4469 conf->reshape_progress -= sectors_done; 4470 else 4471 conf->reshape_progress += sectors_done; 4472 4473 return sectors_done; 4474 } 4475 4476 static void end_reshape_request(struct r10bio *r10_bio); 4477 static int handle_reshape_read_error(struct mddev *mddev, 4478 struct r10bio *r10_bio); 4479 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4480 { 4481 /* Reshape read completed. Hopefully we have a block 4482 * to write out. 4483 * If we got a read error then we do sync 1-page reads from 4484 * elsewhere until we find the data - or give up. 4485 */ 4486 struct r10conf *conf = mddev->private; 4487 int s; 4488 4489 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4490 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4491 /* Reshape has been aborted */ 4492 md_done_sync(mddev, r10_bio->sectors, 0); 4493 return; 4494 } 4495 4496 /* We definitely have the data in the pages, schedule the 4497 * writes. 4498 */ 4499 atomic_set(&r10_bio->remaining, 1); 4500 for (s = 0; s < conf->copies*2; s++) { 4501 struct bio *b; 4502 int d = r10_bio->devs[s/2].devnum; 4503 struct md_rdev *rdev; 4504 if (s&1) { 4505 rdev = conf->mirrors[d].replacement; 4506 b = r10_bio->devs[s/2].repl_bio; 4507 } else { 4508 rdev = conf->mirrors[d].rdev; 4509 b = r10_bio->devs[s/2].bio; 4510 } 4511 if (!rdev || test_bit(Faulty, &rdev->flags)) 4512 continue; 4513 atomic_inc(&rdev->nr_pending); 4514 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4515 atomic_inc(&r10_bio->remaining); 4516 b->bi_next = NULL; 4517 generic_make_request(b); 4518 } 4519 end_reshape_request(r10_bio); 4520 } 4521 4522 static void end_reshape(struct r10conf *conf) 4523 { 4524 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4525 return; 4526 4527 spin_lock_irq(&conf->device_lock); 4528 conf->prev = conf->geo; 4529 md_finish_reshape(conf->mddev); 4530 smp_wmb(); 4531 conf->reshape_progress = MaxSector; 4532 spin_unlock_irq(&conf->device_lock); 4533 4534 /* read-ahead size must cover two whole stripes, which is 4535 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4536 */ 4537 if (conf->mddev->queue) { 4538 int stripe = conf->geo.raid_disks * 4539 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4540 stripe /= conf->geo.near_copies; 4541 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4542 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4543 } 4544 conf->fullsync = 0; 4545 } 4546 4547 4548 static int handle_reshape_read_error(struct mddev *mddev, 4549 struct r10bio *r10_bio) 4550 { 4551 /* Use sync reads to get the blocks from somewhere else */ 4552 int sectors = r10_bio->sectors; 4553 struct r10conf *conf = mddev->private; 4554 struct { 4555 struct r10bio r10_bio; 4556 struct r10dev devs[conf->copies]; 4557 } on_stack; 4558 struct r10bio *r10b = &on_stack.r10_bio; 4559 int slot = 0; 4560 int idx = 0; 4561 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4562 4563 r10b->sector = r10_bio->sector; 4564 __raid10_find_phys(&conf->prev, r10b); 4565 4566 while (sectors) { 4567 int s = sectors; 4568 int success = 0; 4569 int first_slot = slot; 4570 4571 if (s > (PAGE_SIZE >> 9)) 4572 s = PAGE_SIZE >> 9; 4573 4574 while (!success) { 4575 int d = r10b->devs[slot].devnum; 4576 struct md_rdev *rdev = conf->mirrors[d].rdev; 4577 sector_t addr; 4578 if (rdev == NULL || 4579 test_bit(Faulty, &rdev->flags) || 4580 !test_bit(In_sync, &rdev->flags)) 4581 goto failed; 4582 4583 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4584 success = sync_page_io(rdev, 4585 addr, 4586 s << 9, 4587 bvec[idx].bv_page, 4588 READ, false); 4589 if (success) 4590 break; 4591 failed: 4592 slot++; 4593 if (slot >= conf->copies) 4594 slot = 0; 4595 if (slot == first_slot) 4596 break; 4597 } 4598 if (!success) { 4599 /* couldn't read this block, must give up */ 4600 set_bit(MD_RECOVERY_INTR, 4601 &mddev->recovery); 4602 return -EIO; 4603 } 4604 sectors -= s; 4605 idx++; 4606 } 4607 return 0; 4608 } 4609 4610 static void end_reshape_write(struct bio *bio, int error) 4611 { 4612 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4613 struct r10bio *r10_bio = bio->bi_private; 4614 struct mddev *mddev = r10_bio->mddev; 4615 struct r10conf *conf = mddev->private; 4616 int d; 4617 int slot; 4618 int repl; 4619 struct md_rdev *rdev = NULL; 4620 4621 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4622 if (repl) 4623 rdev = conf->mirrors[d].replacement; 4624 if (!rdev) { 4625 smp_mb(); 4626 rdev = conf->mirrors[d].rdev; 4627 } 4628 4629 if (!uptodate) { 4630 /* FIXME should record badblock */ 4631 md_error(mddev, rdev); 4632 } 4633 4634 rdev_dec_pending(rdev, mddev); 4635 end_reshape_request(r10_bio); 4636 } 4637 4638 static void end_reshape_request(struct r10bio *r10_bio) 4639 { 4640 if (!atomic_dec_and_test(&r10_bio->remaining)) 4641 return; 4642 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4643 bio_put(r10_bio->master_bio); 4644 put_buf(r10_bio); 4645 } 4646 4647 static void raid10_finish_reshape(struct mddev *mddev) 4648 { 4649 struct r10conf *conf = mddev->private; 4650 4651 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4652 return; 4653 4654 if (mddev->delta_disks > 0) { 4655 sector_t size = raid10_size(mddev, 0, 0); 4656 md_set_array_sectors(mddev, size); 4657 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4658 mddev->recovery_cp = mddev->resync_max_sectors; 4659 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4660 } 4661 mddev->resync_max_sectors = size; 4662 set_capacity(mddev->gendisk, mddev->array_sectors); 4663 revalidate_disk(mddev->gendisk); 4664 } else { 4665 int d; 4666 for (d = conf->geo.raid_disks ; 4667 d < conf->geo.raid_disks - mddev->delta_disks; 4668 d++) { 4669 struct md_rdev *rdev = conf->mirrors[d].rdev; 4670 if (rdev) 4671 clear_bit(In_sync, &rdev->flags); 4672 rdev = conf->mirrors[d].replacement; 4673 if (rdev) 4674 clear_bit(In_sync, &rdev->flags); 4675 } 4676 } 4677 mddev->layout = mddev->new_layout; 4678 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4679 mddev->reshape_position = MaxSector; 4680 mddev->delta_disks = 0; 4681 mddev->reshape_backwards = 0; 4682 } 4683 4684 static struct md_personality raid10_personality = 4685 { 4686 .name = "raid10", 4687 .level = 10, 4688 .owner = THIS_MODULE, 4689 .make_request = make_request, 4690 .run = run, 4691 .stop = stop, 4692 .status = status, 4693 .error_handler = error, 4694 .hot_add_disk = raid10_add_disk, 4695 .hot_remove_disk= raid10_remove_disk, 4696 .spare_active = raid10_spare_active, 4697 .sync_request = sync_request, 4698 .quiesce = raid10_quiesce, 4699 .size = raid10_size, 4700 .resize = raid10_resize, 4701 .takeover = raid10_takeover, 4702 .check_reshape = raid10_check_reshape, 4703 .start_reshape = raid10_start_reshape, 4704 .finish_reshape = raid10_finish_reshape, 4705 }; 4706 4707 static int __init raid_init(void) 4708 { 4709 return register_md_personality(&raid10_personality); 4710 } 4711 4712 static void raid_exit(void) 4713 { 4714 unregister_md_personality(&raid10_personality); 4715 } 4716 4717 module_init(raid_init); 4718 module_exit(raid_exit); 4719 MODULE_LICENSE("GPL"); 4720 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4721 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4722 MODULE_ALIAS("md-raid10"); 4723 MODULE_ALIAS("md-level-10"); 4724 4725 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4726