xref: /linux/drivers/md/raid10.c (revision 7c94fe4a012e6d0858b9a80cbc18b7ee788f572d)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *
42  * The data to be stored is divided into chunks using chunksize.
43  * Each device is divided into far_copies sections.
44  * In each section, chunks are laid out in a style similar to raid0, but
45  * near_copies copies of each chunk is stored (each on a different drive).
46  * The starting device for each section is offset near_copies from the starting
47  * device of the previous section.
48  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49  * drive.
50  * near_copies and far_copies must be at least one, and their product is at most
51  * raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of be very far apart
55  * on disk, there are adjacent stripes.
56  */
57 
58 /*
59  * Number of guaranteed r10bios in case of extreme VM load:
60  */
61 #define	NR_RAID10_BIOS 256
62 
63 /* when we get a read error on a read-only array, we redirect to another
64  * device without failing the first device, or trying to over-write to
65  * correct the read error.  To keep track of bad blocks on a per-bio
66  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67  */
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70  * bad-block marking which must be done from process context.  So we record
71  * the success by setting devs[n].bio to IO_MADE_GOOD
72  */
73 #define IO_MADE_GOOD ((struct bio *)2)
74 
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76 
77 /* When there are this many requests queued to be written by
78  * the raid10 thread, we become 'congested' to provide back-pressure
79  * for writeback.
80  */
81 static int max_queued_requests = 1024;
82 
83 static void allow_barrier(struct r10conf *conf);
84 static void lower_barrier(struct r10conf *conf);
85 static int enough(struct r10conf *conf, int ignore);
86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87 				int *skipped);
88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89 static void end_reshape_write(struct bio *bio, int error);
90 static void end_reshape(struct r10conf *conf);
91 
92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	struct r10conf *conf = data;
95 	int size = offsetof(struct r10bio, devs[conf->copies]);
96 
97 	/* allocate a r10bio with room for raid_disks entries in the
98 	 * bios array */
99 	return kzalloc(size, gfp_flags);
100 }
101 
102 static void r10bio_pool_free(void *r10_bio, void *data)
103 {
104 	kfree(r10_bio);
105 }
106 
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114 
115 /*
116  * When performing a resync, we need to read and compare, so
117  * we need as many pages are there are copies.
118  * When performing a recovery, we need 2 bios, one for read,
119  * one for write (we recover only one drive per r10buf)
120  *
121  */
122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123 {
124 	struct r10conf *conf = data;
125 	struct page *page;
126 	struct r10bio *r10_bio;
127 	struct bio *bio;
128 	int i, j;
129 	int nalloc;
130 
131 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132 	if (!r10_bio)
133 		return NULL;
134 
135 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137 		nalloc = conf->copies; /* resync */
138 	else
139 		nalloc = 2; /* recovery */
140 
141 	/*
142 	 * Allocate bios.
143 	 */
144 	for (j = nalloc ; j-- ; ) {
145 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 		if (!bio)
147 			goto out_free_bio;
148 		r10_bio->devs[j].bio = bio;
149 		if (!conf->have_replacement)
150 			continue;
151 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 		if (!bio)
153 			goto out_free_bio;
154 		r10_bio->devs[j].repl_bio = bio;
155 	}
156 	/*
157 	 * Allocate RESYNC_PAGES data pages and attach them
158 	 * where needed.
159 	 */
160 	for (j = 0 ; j < nalloc; j++) {
161 		struct bio *rbio = r10_bio->devs[j].repl_bio;
162 		bio = r10_bio->devs[j].bio;
163 		for (i = 0; i < RESYNC_PAGES; i++) {
164 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 					       &conf->mddev->recovery)) {
166 				/* we can share bv_page's during recovery
167 				 * and reshape */
168 				struct bio *rbio = r10_bio->devs[0].bio;
169 				page = rbio->bi_io_vec[i].bv_page;
170 				get_page(page);
171 			} else
172 				page = alloc_page(gfp_flags);
173 			if (unlikely(!page))
174 				goto out_free_pages;
175 
176 			bio->bi_io_vec[i].bv_page = page;
177 			if (rbio)
178 				rbio->bi_io_vec[i].bv_page = page;
179 		}
180 	}
181 
182 	return r10_bio;
183 
184 out_free_pages:
185 	for ( ; i > 0 ; i--)
186 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
187 	while (j--)
188 		for (i = 0; i < RESYNC_PAGES ; i++)
189 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190 	j = 0;
191 out_free_bio:
192 	for ( ; j < nalloc; j++) {
193 		if (r10_bio->devs[j].bio)
194 			bio_put(r10_bio->devs[j].bio);
195 		if (r10_bio->devs[j].repl_bio)
196 			bio_put(r10_bio->devs[j].repl_bio);
197 	}
198 	r10bio_pool_free(r10_bio, conf);
199 	return NULL;
200 }
201 
202 static void r10buf_pool_free(void *__r10_bio, void *data)
203 {
204 	int i;
205 	struct r10conf *conf = data;
206 	struct r10bio *r10bio = __r10_bio;
207 	int j;
208 
209 	for (j=0; j < conf->copies; j++) {
210 		struct bio *bio = r10bio->devs[j].bio;
211 		if (bio) {
212 			for (i = 0; i < RESYNC_PAGES; i++) {
213 				safe_put_page(bio->bi_io_vec[i].bv_page);
214 				bio->bi_io_vec[i].bv_page = NULL;
215 			}
216 			bio_put(bio);
217 		}
218 		bio = r10bio->devs[j].repl_bio;
219 		if (bio)
220 			bio_put(bio);
221 	}
222 	r10bio_pool_free(r10bio, conf);
223 }
224 
225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226 {
227 	int i;
228 
229 	for (i = 0; i < conf->copies; i++) {
230 		struct bio **bio = & r10_bio->devs[i].bio;
231 		if (!BIO_SPECIAL(*bio))
232 			bio_put(*bio);
233 		*bio = NULL;
234 		bio = &r10_bio->devs[i].repl_bio;
235 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236 			bio_put(*bio);
237 		*bio = NULL;
238 	}
239 }
240 
241 static void free_r10bio(struct r10bio *r10_bio)
242 {
243 	struct r10conf *conf = r10_bio->mddev->private;
244 
245 	put_all_bios(conf, r10_bio);
246 	mempool_free(r10_bio, conf->r10bio_pool);
247 }
248 
249 static void put_buf(struct r10bio *r10_bio)
250 {
251 	struct r10conf *conf = r10_bio->mddev->private;
252 
253 	mempool_free(r10_bio, conf->r10buf_pool);
254 
255 	lower_barrier(conf);
256 }
257 
258 static void reschedule_retry(struct r10bio *r10_bio)
259 {
260 	unsigned long flags;
261 	struct mddev *mddev = r10_bio->mddev;
262 	struct r10conf *conf = mddev->private;
263 
264 	spin_lock_irqsave(&conf->device_lock, flags);
265 	list_add(&r10_bio->retry_list, &conf->retry_list);
266 	conf->nr_queued ++;
267 	spin_unlock_irqrestore(&conf->device_lock, flags);
268 
269 	/* wake up frozen array... */
270 	wake_up(&conf->wait_barrier);
271 
272 	md_wakeup_thread(mddev->thread);
273 }
274 
275 /*
276  * raid_end_bio_io() is called when we have finished servicing a mirrored
277  * operation and are ready to return a success/failure code to the buffer
278  * cache layer.
279  */
280 static void raid_end_bio_io(struct r10bio *r10_bio)
281 {
282 	struct bio *bio = r10_bio->master_bio;
283 	int done;
284 	struct r10conf *conf = r10_bio->mddev->private;
285 
286 	if (bio->bi_phys_segments) {
287 		unsigned long flags;
288 		spin_lock_irqsave(&conf->device_lock, flags);
289 		bio->bi_phys_segments--;
290 		done = (bio->bi_phys_segments == 0);
291 		spin_unlock_irqrestore(&conf->device_lock, flags);
292 	} else
293 		done = 1;
294 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 	if (done) {
297 		bio_endio(bio, 0);
298 		/*
299 		 * Wake up any possible resync thread that waits for the device
300 		 * to go idle.
301 		 */
302 		allow_barrier(conf);
303 	}
304 	free_r10bio(r10_bio);
305 }
306 
307 /*
308  * Update disk head position estimator based on IRQ completion info.
309  */
310 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311 {
312 	struct r10conf *conf = r10_bio->mddev->private;
313 
314 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 		r10_bio->devs[slot].addr + (r10_bio->sectors);
316 }
317 
318 /*
319  * Find the disk number which triggered given bio
320  */
321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322 			 struct bio *bio, int *slotp, int *replp)
323 {
324 	int slot;
325 	int repl = 0;
326 
327 	for (slot = 0; slot < conf->copies; slot++) {
328 		if (r10_bio->devs[slot].bio == bio)
329 			break;
330 		if (r10_bio->devs[slot].repl_bio == bio) {
331 			repl = 1;
332 			break;
333 		}
334 	}
335 
336 	BUG_ON(slot == conf->copies);
337 	update_head_pos(slot, r10_bio);
338 
339 	if (slotp)
340 		*slotp = slot;
341 	if (replp)
342 		*replp = repl;
343 	return r10_bio->devs[slot].devnum;
344 }
345 
346 static void raid10_end_read_request(struct bio *bio, int error)
347 {
348 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349 	struct r10bio *r10_bio = bio->bi_private;
350 	int slot, dev;
351 	struct md_rdev *rdev;
352 	struct r10conf *conf = r10_bio->mddev->private;
353 
354 
355 	slot = r10_bio->read_slot;
356 	dev = r10_bio->devs[slot].devnum;
357 	rdev = r10_bio->devs[slot].rdev;
358 	/*
359 	 * this branch is our 'one mirror IO has finished' event handler:
360 	 */
361 	update_head_pos(slot, r10_bio);
362 
363 	if (uptodate) {
364 		/*
365 		 * Set R10BIO_Uptodate in our master bio, so that
366 		 * we will return a good error code to the higher
367 		 * levels even if IO on some other mirrored buffer fails.
368 		 *
369 		 * The 'master' represents the composite IO operation to
370 		 * user-side. So if something waits for IO, then it will
371 		 * wait for the 'master' bio.
372 		 */
373 		set_bit(R10BIO_Uptodate, &r10_bio->state);
374 	} else {
375 		/* If all other devices that store this block have
376 		 * failed, we want to return the error upwards rather
377 		 * than fail the last device.  Here we redefine
378 		 * "uptodate" to mean "Don't want to retry"
379 		 */
380 		unsigned long flags;
381 		spin_lock_irqsave(&conf->device_lock, flags);
382 		if (!enough(conf, rdev->raid_disk))
383 			uptodate = 1;
384 		spin_unlock_irqrestore(&conf->device_lock, flags);
385 	}
386 	if (uptodate) {
387 		raid_end_bio_io(r10_bio);
388 		rdev_dec_pending(rdev, conf->mddev);
389 	} else {
390 		/*
391 		 * oops, read error - keep the refcount on the rdev
392 		 */
393 		char b[BDEVNAME_SIZE];
394 		printk_ratelimited(KERN_ERR
395 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
396 				   mdname(conf->mddev),
397 				   bdevname(rdev->bdev, b),
398 				   (unsigned long long)r10_bio->sector);
399 		set_bit(R10BIO_ReadError, &r10_bio->state);
400 		reschedule_retry(r10_bio);
401 	}
402 }
403 
404 static void close_write(struct r10bio *r10_bio)
405 {
406 	/* clear the bitmap if all writes complete successfully */
407 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 			r10_bio->sectors,
409 			!test_bit(R10BIO_Degraded, &r10_bio->state),
410 			0);
411 	md_write_end(r10_bio->mddev);
412 }
413 
414 static void one_write_done(struct r10bio *r10_bio)
415 {
416 	if (atomic_dec_and_test(&r10_bio->remaining)) {
417 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 			reschedule_retry(r10_bio);
419 		else {
420 			close_write(r10_bio);
421 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 				reschedule_retry(r10_bio);
423 			else
424 				raid_end_bio_io(r10_bio);
425 		}
426 	}
427 }
428 
429 static void raid10_end_write_request(struct bio *bio, int error)
430 {
431 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432 	struct r10bio *r10_bio = bio->bi_private;
433 	int dev;
434 	int dec_rdev = 1;
435 	struct r10conf *conf = r10_bio->mddev->private;
436 	int slot, repl;
437 	struct md_rdev *rdev = NULL;
438 
439 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440 
441 	if (repl)
442 		rdev = conf->mirrors[dev].replacement;
443 	if (!rdev) {
444 		smp_rmb();
445 		repl = 0;
446 		rdev = conf->mirrors[dev].rdev;
447 	}
448 	/*
449 	 * this branch is our 'one mirror IO has finished' event handler:
450 	 */
451 	if (!uptodate) {
452 		if (repl)
453 			/* Never record new bad blocks to replacement,
454 			 * just fail it.
455 			 */
456 			md_error(rdev->mddev, rdev);
457 		else {
458 			set_bit(WriteErrorSeen,	&rdev->flags);
459 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 				set_bit(MD_RECOVERY_NEEDED,
461 					&rdev->mddev->recovery);
462 			set_bit(R10BIO_WriteError, &r10_bio->state);
463 			dec_rdev = 0;
464 		}
465 	} else {
466 		/*
467 		 * Set R10BIO_Uptodate in our master bio, so that
468 		 * we will return a good error code for to the higher
469 		 * levels even if IO on some other mirrored buffer fails.
470 		 *
471 		 * The 'master' represents the composite IO operation to
472 		 * user-side. So if something waits for IO, then it will
473 		 * wait for the 'master' bio.
474 		 */
475 		sector_t first_bad;
476 		int bad_sectors;
477 
478 		set_bit(R10BIO_Uptodate, &r10_bio->state);
479 
480 		/* Maybe we can clear some bad blocks. */
481 		if (is_badblock(rdev,
482 				r10_bio->devs[slot].addr,
483 				r10_bio->sectors,
484 				&first_bad, &bad_sectors)) {
485 			bio_put(bio);
486 			if (repl)
487 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488 			else
489 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
490 			dec_rdev = 0;
491 			set_bit(R10BIO_MadeGood, &r10_bio->state);
492 		}
493 	}
494 
495 	/*
496 	 *
497 	 * Let's see if all mirrored write operations have finished
498 	 * already.
499 	 */
500 	one_write_done(r10_bio);
501 	if (dec_rdev)
502 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
503 }
504 
505 /*
506  * RAID10 layout manager
507  * As well as the chunksize and raid_disks count, there are two
508  * parameters: near_copies and far_copies.
509  * near_copies * far_copies must be <= raid_disks.
510  * Normally one of these will be 1.
511  * If both are 1, we get raid0.
512  * If near_copies == raid_disks, we get raid1.
513  *
514  * Chunks are laid out in raid0 style with near_copies copies of the
515  * first chunk, followed by near_copies copies of the next chunk and
516  * so on.
517  * If far_copies > 1, then after 1/far_copies of the array has been assigned
518  * as described above, we start again with a device offset of near_copies.
519  * So we effectively have another copy of the whole array further down all
520  * the drives, but with blocks on different drives.
521  * With this layout, and block is never stored twice on the one device.
522  *
523  * raid10_find_phys finds the sector offset of a given virtual sector
524  * on each device that it is on.
525  *
526  * raid10_find_virt does the reverse mapping, from a device and a
527  * sector offset to a virtual address
528  */
529 
530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531 {
532 	int n,f;
533 	sector_t sector;
534 	sector_t chunk;
535 	sector_t stripe;
536 	int dev;
537 	int slot = 0;
538 
539 	/* now calculate first sector/dev */
540 	chunk = r10bio->sector >> geo->chunk_shift;
541 	sector = r10bio->sector & geo->chunk_mask;
542 
543 	chunk *= geo->near_copies;
544 	stripe = chunk;
545 	dev = sector_div(stripe, geo->raid_disks);
546 	if (geo->far_offset)
547 		stripe *= geo->far_copies;
548 
549 	sector += stripe << geo->chunk_shift;
550 
551 	/* and calculate all the others */
552 	for (n = 0; n < geo->near_copies; n++) {
553 		int d = dev;
554 		sector_t s = sector;
555 		r10bio->devs[slot].addr = sector;
556 		r10bio->devs[slot].devnum = d;
557 		slot++;
558 
559 		for (f = 1; f < geo->far_copies; f++) {
560 			d += geo->near_copies;
561 			if (d >= geo->raid_disks)
562 				d -= geo->raid_disks;
563 			s += geo->stride;
564 			r10bio->devs[slot].devnum = d;
565 			r10bio->devs[slot].addr = s;
566 			slot++;
567 		}
568 		dev++;
569 		if (dev >= geo->raid_disks) {
570 			dev = 0;
571 			sector += (geo->chunk_mask + 1);
572 		}
573 	}
574 }
575 
576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577 {
578 	struct geom *geo = &conf->geo;
579 
580 	if (conf->reshape_progress != MaxSector &&
581 	    ((r10bio->sector >= conf->reshape_progress) !=
582 	     conf->mddev->reshape_backwards)) {
583 		set_bit(R10BIO_Previous, &r10bio->state);
584 		geo = &conf->prev;
585 	} else
586 		clear_bit(R10BIO_Previous, &r10bio->state);
587 
588 	__raid10_find_phys(geo, r10bio);
589 }
590 
591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592 {
593 	sector_t offset, chunk, vchunk;
594 	/* Never use conf->prev as this is only called during resync
595 	 * or recovery, so reshape isn't happening
596 	 */
597 	struct geom *geo = &conf->geo;
598 
599 	offset = sector & geo->chunk_mask;
600 	if (geo->far_offset) {
601 		int fc;
602 		chunk = sector >> geo->chunk_shift;
603 		fc = sector_div(chunk, geo->far_copies);
604 		dev -= fc * geo->near_copies;
605 		if (dev < 0)
606 			dev += geo->raid_disks;
607 	} else {
608 		while (sector >= geo->stride) {
609 			sector -= geo->stride;
610 			if (dev < geo->near_copies)
611 				dev += geo->raid_disks - geo->near_copies;
612 			else
613 				dev -= geo->near_copies;
614 		}
615 		chunk = sector >> geo->chunk_shift;
616 	}
617 	vchunk = chunk * geo->raid_disks + dev;
618 	sector_div(vchunk, geo->near_copies);
619 	return (vchunk << geo->chunk_shift) + offset;
620 }
621 
622 /**
623  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624  *	@q: request queue
625  *	@bvm: properties of new bio
626  *	@biovec: the request that could be merged to it.
627  *
628  *	Return amount of bytes we can accept at this offset
629  *	This requires checking for end-of-chunk if near_copies != raid_disks,
630  *	and for subordinate merge_bvec_fns if merge_check_needed.
631  */
632 static int raid10_mergeable_bvec(struct request_queue *q,
633 				 struct bvec_merge_data *bvm,
634 				 struct bio_vec *biovec)
635 {
636 	struct mddev *mddev = q->queuedata;
637 	struct r10conf *conf = mddev->private;
638 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639 	int max;
640 	unsigned int chunk_sectors;
641 	unsigned int bio_sectors = bvm->bi_size >> 9;
642 	struct geom *geo = &conf->geo;
643 
644 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645 	if (conf->reshape_progress != MaxSector &&
646 	    ((sector >= conf->reshape_progress) !=
647 	     conf->mddev->reshape_backwards))
648 		geo = &conf->prev;
649 
650 	if (geo->near_copies < geo->raid_disks) {
651 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 					+ bio_sectors)) << 9;
653 		if (max < 0)
654 			/* bio_add cannot handle a negative return */
655 			max = 0;
656 		if (max <= biovec->bv_len && bio_sectors == 0)
657 			return biovec->bv_len;
658 	} else
659 		max = biovec->bv_len;
660 
661 	if (mddev->merge_check_needed) {
662 		struct {
663 			struct r10bio r10_bio;
664 			struct r10dev devs[conf->copies];
665 		} on_stack;
666 		struct r10bio *r10_bio = &on_stack.r10_bio;
667 		int s;
668 		if (conf->reshape_progress != MaxSector) {
669 			/* Cannot give any guidance during reshape */
670 			if (max <= biovec->bv_len && bio_sectors == 0)
671 				return biovec->bv_len;
672 			return 0;
673 		}
674 		r10_bio->sector = sector;
675 		raid10_find_phys(conf, r10_bio);
676 		rcu_read_lock();
677 		for (s = 0; s < conf->copies; s++) {
678 			int disk = r10_bio->devs[s].devnum;
679 			struct md_rdev *rdev = rcu_dereference(
680 				conf->mirrors[disk].rdev);
681 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
682 				struct request_queue *q =
683 					bdev_get_queue(rdev->bdev);
684 				if (q->merge_bvec_fn) {
685 					bvm->bi_sector = r10_bio->devs[s].addr
686 						+ rdev->data_offset;
687 					bvm->bi_bdev = rdev->bdev;
688 					max = min(max, q->merge_bvec_fn(
689 							  q, bvm, biovec));
690 				}
691 			}
692 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
693 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
694 				struct request_queue *q =
695 					bdev_get_queue(rdev->bdev);
696 				if (q->merge_bvec_fn) {
697 					bvm->bi_sector = r10_bio->devs[s].addr
698 						+ rdev->data_offset;
699 					bvm->bi_bdev = rdev->bdev;
700 					max = min(max, q->merge_bvec_fn(
701 							  q, bvm, biovec));
702 				}
703 			}
704 		}
705 		rcu_read_unlock();
706 	}
707 	return max;
708 }
709 
710 /*
711  * This routine returns the disk from which the requested read should
712  * be done. There is a per-array 'next expected sequential IO' sector
713  * number - if this matches on the next IO then we use the last disk.
714  * There is also a per-disk 'last know head position' sector that is
715  * maintained from IRQ contexts, both the normal and the resync IO
716  * completion handlers update this position correctly. If there is no
717  * perfect sequential match then we pick the disk whose head is closest.
718  *
719  * If there are 2 mirrors in the same 2 devices, performance degrades
720  * because position is mirror, not device based.
721  *
722  * The rdev for the device selected will have nr_pending incremented.
723  */
724 
725 /*
726  * FIXME: possibly should rethink readbalancing and do it differently
727  * depending on near_copies / far_copies geometry.
728  */
729 static struct md_rdev *read_balance(struct r10conf *conf,
730 				    struct r10bio *r10_bio,
731 				    int *max_sectors)
732 {
733 	const sector_t this_sector = r10_bio->sector;
734 	int disk, slot;
735 	int sectors = r10_bio->sectors;
736 	int best_good_sectors;
737 	sector_t new_distance, best_dist;
738 	struct md_rdev *best_rdev, *rdev = NULL;
739 	int do_balance;
740 	int best_slot;
741 	struct geom *geo = &conf->geo;
742 
743 	raid10_find_phys(conf, r10_bio);
744 	rcu_read_lock();
745 retry:
746 	sectors = r10_bio->sectors;
747 	best_slot = -1;
748 	best_rdev = NULL;
749 	best_dist = MaxSector;
750 	best_good_sectors = 0;
751 	do_balance = 1;
752 	/*
753 	 * Check if we can balance. We can balance on the whole
754 	 * device if no resync is going on (recovery is ok), or below
755 	 * the resync window. We take the first readable disk when
756 	 * above the resync window.
757 	 */
758 	if (conf->mddev->recovery_cp < MaxSector
759 	    && (this_sector + sectors >= conf->next_resync))
760 		do_balance = 0;
761 
762 	for (slot = 0; slot < conf->copies ; slot++) {
763 		sector_t first_bad;
764 		int bad_sectors;
765 		sector_t dev_sector;
766 
767 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
768 			continue;
769 		disk = r10_bio->devs[slot].devnum;
770 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
771 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
772 		    test_bit(Unmerged, &rdev->flags) ||
773 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
775 		if (rdev == NULL ||
776 		    test_bit(Faulty, &rdev->flags) ||
777 		    test_bit(Unmerged, &rdev->flags))
778 			continue;
779 		if (!test_bit(In_sync, &rdev->flags) &&
780 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
781 			continue;
782 
783 		dev_sector = r10_bio->devs[slot].addr;
784 		if (is_badblock(rdev, dev_sector, sectors,
785 				&first_bad, &bad_sectors)) {
786 			if (best_dist < MaxSector)
787 				/* Already have a better slot */
788 				continue;
789 			if (first_bad <= dev_sector) {
790 				/* Cannot read here.  If this is the
791 				 * 'primary' device, then we must not read
792 				 * beyond 'bad_sectors' from another device.
793 				 */
794 				bad_sectors -= (dev_sector - first_bad);
795 				if (!do_balance && sectors > bad_sectors)
796 					sectors = bad_sectors;
797 				if (best_good_sectors > sectors)
798 					best_good_sectors = sectors;
799 			} else {
800 				sector_t good_sectors =
801 					first_bad - dev_sector;
802 				if (good_sectors > best_good_sectors) {
803 					best_good_sectors = good_sectors;
804 					best_slot = slot;
805 					best_rdev = rdev;
806 				}
807 				if (!do_balance)
808 					/* Must read from here */
809 					break;
810 			}
811 			continue;
812 		} else
813 			best_good_sectors = sectors;
814 
815 		if (!do_balance)
816 			break;
817 
818 		/* This optimisation is debatable, and completely destroys
819 		 * sequential read speed for 'far copies' arrays.  So only
820 		 * keep it for 'near' arrays, and review those later.
821 		 */
822 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
823 			break;
824 
825 		/* for far > 1 always use the lowest address */
826 		if (geo->far_copies > 1)
827 			new_distance = r10_bio->devs[slot].addr;
828 		else
829 			new_distance = abs(r10_bio->devs[slot].addr -
830 					   conf->mirrors[disk].head_position);
831 		if (new_distance < best_dist) {
832 			best_dist = new_distance;
833 			best_slot = slot;
834 			best_rdev = rdev;
835 		}
836 	}
837 	if (slot >= conf->copies) {
838 		slot = best_slot;
839 		rdev = best_rdev;
840 	}
841 
842 	if (slot >= 0) {
843 		atomic_inc(&rdev->nr_pending);
844 		if (test_bit(Faulty, &rdev->flags)) {
845 			/* Cannot risk returning a device that failed
846 			 * before we inc'ed nr_pending
847 			 */
848 			rdev_dec_pending(rdev, conf->mddev);
849 			goto retry;
850 		}
851 		r10_bio->read_slot = slot;
852 	} else
853 		rdev = NULL;
854 	rcu_read_unlock();
855 	*max_sectors = best_good_sectors;
856 
857 	return rdev;
858 }
859 
860 int md_raid10_congested(struct mddev *mddev, int bits)
861 {
862 	struct r10conf *conf = mddev->private;
863 	int i, ret = 0;
864 
865 	if ((bits & (1 << BDI_async_congested)) &&
866 	    conf->pending_count >= max_queued_requests)
867 		return 1;
868 
869 	rcu_read_lock();
870 	for (i = 0;
871 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872 		     && ret == 0;
873 	     i++) {
874 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
876 			struct request_queue *q = bdev_get_queue(rdev->bdev);
877 
878 			ret |= bdi_congested(&q->backing_dev_info, bits);
879 		}
880 	}
881 	rcu_read_unlock();
882 	return ret;
883 }
884 EXPORT_SYMBOL_GPL(md_raid10_congested);
885 
886 static int raid10_congested(void *data, int bits)
887 {
888 	struct mddev *mddev = data;
889 
890 	return mddev_congested(mddev, bits) ||
891 		md_raid10_congested(mddev, bits);
892 }
893 
894 static void flush_pending_writes(struct r10conf *conf)
895 {
896 	/* Any writes that have been queued but are awaiting
897 	 * bitmap updates get flushed here.
898 	 */
899 	spin_lock_irq(&conf->device_lock);
900 
901 	if (conf->pending_bio_list.head) {
902 		struct bio *bio;
903 		bio = bio_list_get(&conf->pending_bio_list);
904 		conf->pending_count = 0;
905 		spin_unlock_irq(&conf->device_lock);
906 		/* flush any pending bitmap writes to disk
907 		 * before proceeding w/ I/O */
908 		bitmap_unplug(conf->mddev->bitmap);
909 		wake_up(&conf->wait_barrier);
910 
911 		while (bio) { /* submit pending writes */
912 			struct bio *next = bio->bi_next;
913 			bio->bi_next = NULL;
914 			generic_make_request(bio);
915 			bio = next;
916 		}
917 	} else
918 		spin_unlock_irq(&conf->device_lock);
919 }
920 
921 /* Barriers....
922  * Sometimes we need to suspend IO while we do something else,
923  * either some resync/recovery, or reconfigure the array.
924  * To do this we raise a 'barrier'.
925  * The 'barrier' is a counter that can be raised multiple times
926  * to count how many activities are happening which preclude
927  * normal IO.
928  * We can only raise the barrier if there is no pending IO.
929  * i.e. if nr_pending == 0.
930  * We choose only to raise the barrier if no-one is waiting for the
931  * barrier to go down.  This means that as soon as an IO request
932  * is ready, no other operations which require a barrier will start
933  * until the IO request has had a chance.
934  *
935  * So: regular IO calls 'wait_barrier'.  When that returns there
936  *    is no backgroup IO happening,  It must arrange to call
937  *    allow_barrier when it has finished its IO.
938  * backgroup IO calls must call raise_barrier.  Once that returns
939  *    there is no normal IO happeing.  It must arrange to call
940  *    lower_barrier when the particular background IO completes.
941  */
942 
943 static void raise_barrier(struct r10conf *conf, int force)
944 {
945 	BUG_ON(force && !conf->barrier);
946 	spin_lock_irq(&conf->resync_lock);
947 
948 	/* Wait until no block IO is waiting (unless 'force') */
949 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
950 			    conf->resync_lock, );
951 
952 	/* block any new IO from starting */
953 	conf->barrier++;
954 
955 	/* Now wait for all pending IO to complete */
956 	wait_event_lock_irq(conf->wait_barrier,
957 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
958 			    conf->resync_lock, );
959 
960 	spin_unlock_irq(&conf->resync_lock);
961 }
962 
963 static void lower_barrier(struct r10conf *conf)
964 {
965 	unsigned long flags;
966 	spin_lock_irqsave(&conf->resync_lock, flags);
967 	conf->barrier--;
968 	spin_unlock_irqrestore(&conf->resync_lock, flags);
969 	wake_up(&conf->wait_barrier);
970 }
971 
972 static void wait_barrier(struct r10conf *conf)
973 {
974 	spin_lock_irq(&conf->resync_lock);
975 	if (conf->barrier) {
976 		conf->nr_waiting++;
977 		/* Wait for the barrier to drop.
978 		 * However if there are already pending
979 		 * requests (preventing the barrier from
980 		 * rising completely), and the
981 		 * pre-process bio queue isn't empty,
982 		 * then don't wait, as we need to empty
983 		 * that queue to get the nr_pending
984 		 * count down.
985 		 */
986 		wait_event_lock_irq(conf->wait_barrier,
987 				    !conf->barrier ||
988 				    (conf->nr_pending &&
989 				     current->bio_list &&
990 				     !bio_list_empty(current->bio_list)),
991 				    conf->resync_lock,
992 			);
993 		conf->nr_waiting--;
994 	}
995 	conf->nr_pending++;
996 	spin_unlock_irq(&conf->resync_lock);
997 }
998 
999 static void allow_barrier(struct r10conf *conf)
1000 {
1001 	unsigned long flags;
1002 	spin_lock_irqsave(&conf->resync_lock, flags);
1003 	conf->nr_pending--;
1004 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1005 	wake_up(&conf->wait_barrier);
1006 }
1007 
1008 static void freeze_array(struct r10conf *conf)
1009 {
1010 	/* stop syncio and normal IO and wait for everything to
1011 	 * go quiet.
1012 	 * We increment barrier and nr_waiting, and then
1013 	 * wait until nr_pending match nr_queued+1
1014 	 * This is called in the context of one normal IO request
1015 	 * that has failed. Thus any sync request that might be pending
1016 	 * will be blocked by nr_pending, and we need to wait for
1017 	 * pending IO requests to complete or be queued for re-try.
1018 	 * Thus the number queued (nr_queued) plus this request (1)
1019 	 * must match the number of pending IOs (nr_pending) before
1020 	 * we continue.
1021 	 */
1022 	spin_lock_irq(&conf->resync_lock);
1023 	conf->barrier++;
1024 	conf->nr_waiting++;
1025 	wait_event_lock_irq(conf->wait_barrier,
1026 			    conf->nr_pending == conf->nr_queued+1,
1027 			    conf->resync_lock,
1028 			    flush_pending_writes(conf));
1029 
1030 	spin_unlock_irq(&conf->resync_lock);
1031 }
1032 
1033 static void unfreeze_array(struct r10conf *conf)
1034 {
1035 	/* reverse the effect of the freeze */
1036 	spin_lock_irq(&conf->resync_lock);
1037 	conf->barrier--;
1038 	conf->nr_waiting--;
1039 	wake_up(&conf->wait_barrier);
1040 	spin_unlock_irq(&conf->resync_lock);
1041 }
1042 
1043 static sector_t choose_data_offset(struct r10bio *r10_bio,
1044 				   struct md_rdev *rdev)
1045 {
1046 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1047 	    test_bit(R10BIO_Previous, &r10_bio->state))
1048 		return rdev->data_offset;
1049 	else
1050 		return rdev->new_data_offset;
1051 }
1052 
1053 static void make_request(struct mddev *mddev, struct bio * bio)
1054 {
1055 	struct r10conf *conf = mddev->private;
1056 	struct r10bio *r10_bio;
1057 	struct bio *read_bio;
1058 	int i;
1059 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1060 	int chunk_sects = chunk_mask + 1;
1061 	const int rw = bio_data_dir(bio);
1062 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064 	unsigned long flags;
1065 	struct md_rdev *blocked_rdev;
1066 	int sectors_handled;
1067 	int max_sectors;
1068 	int sectors;
1069 
1070 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1071 		md_flush_request(mddev, bio);
1072 		return;
1073 	}
1074 
1075 	/* If this request crosses a chunk boundary, we need to
1076 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1077 	 */
1078 	if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1079 		     > chunk_sects
1080 		     && (conf->geo.near_copies < conf->geo.raid_disks
1081 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1082 		struct bio_pair *bp;
1083 		/* Sanity check -- queue functions should prevent this happening */
1084 		if (bio->bi_vcnt != 1 ||
1085 		    bio->bi_idx != 0)
1086 			goto bad_map;
1087 		/* This is a one page bio that upper layers
1088 		 * refuse to split for us, so we need to split it.
1089 		 */
1090 		bp = bio_split(bio,
1091 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1092 
1093 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1094 		 * If the first succeeds but the second blocks due to the resync
1095 		 * thread raising the barrier, we will deadlock because the
1096 		 * IO to the underlying device will be queued in generic_make_request
1097 		 * and will never complete, so will never reduce nr_pending.
1098 		 * So increment nr_waiting here so no new raise_barriers will
1099 		 * succeed, and so the second wait_barrier cannot block.
1100 		 */
1101 		spin_lock_irq(&conf->resync_lock);
1102 		conf->nr_waiting++;
1103 		spin_unlock_irq(&conf->resync_lock);
1104 
1105 		make_request(mddev, &bp->bio1);
1106 		make_request(mddev, &bp->bio2);
1107 
1108 		spin_lock_irq(&conf->resync_lock);
1109 		conf->nr_waiting--;
1110 		wake_up(&conf->wait_barrier);
1111 		spin_unlock_irq(&conf->resync_lock);
1112 
1113 		bio_pair_release(bp);
1114 		return;
1115 	bad_map:
1116 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1117 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1118 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1119 
1120 		bio_io_error(bio);
1121 		return;
1122 	}
1123 
1124 	md_write_start(mddev, bio);
1125 
1126 	/*
1127 	 * Register the new request and wait if the reconstruction
1128 	 * thread has put up a bar for new requests.
1129 	 * Continue immediately if no resync is active currently.
1130 	 */
1131 	wait_barrier(conf);
1132 
1133 	sectors = bio->bi_size >> 9;
1134 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1135 	    bio->bi_sector < conf->reshape_progress &&
1136 	    bio->bi_sector + sectors > conf->reshape_progress) {
1137 		/* IO spans the reshape position.  Need to wait for
1138 		 * reshape to pass
1139 		 */
1140 		allow_barrier(conf);
1141 		wait_event(conf->wait_barrier,
1142 			   conf->reshape_progress <= bio->bi_sector ||
1143 			   conf->reshape_progress >= bio->bi_sector + sectors);
1144 		wait_barrier(conf);
1145 	}
1146 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1147 	    bio_data_dir(bio) == WRITE &&
1148 	    (mddev->reshape_backwards
1149 	     ? (bio->bi_sector < conf->reshape_safe &&
1150 		bio->bi_sector + sectors > conf->reshape_progress)
1151 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1152 		bio->bi_sector < conf->reshape_progress))) {
1153 		/* Need to update reshape_position in metadata */
1154 		mddev->reshape_position = conf->reshape_progress;
1155 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1156 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1157 		md_wakeup_thread(mddev->thread);
1158 		wait_event(mddev->sb_wait,
1159 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1160 
1161 		conf->reshape_safe = mddev->reshape_position;
1162 	}
1163 
1164 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1165 
1166 	r10_bio->master_bio = bio;
1167 	r10_bio->sectors = sectors;
1168 
1169 	r10_bio->mddev = mddev;
1170 	r10_bio->sector = bio->bi_sector;
1171 	r10_bio->state = 0;
1172 
1173 	/* We might need to issue multiple reads to different
1174 	 * devices if there are bad blocks around, so we keep
1175 	 * track of the number of reads in bio->bi_phys_segments.
1176 	 * If this is 0, there is only one r10_bio and no locking
1177 	 * will be needed when the request completes.  If it is
1178 	 * non-zero, then it is the number of not-completed requests.
1179 	 */
1180 	bio->bi_phys_segments = 0;
1181 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1182 
1183 	if (rw == READ) {
1184 		/*
1185 		 * read balancing logic:
1186 		 */
1187 		struct md_rdev *rdev;
1188 		int slot;
1189 
1190 read_again:
1191 		rdev = read_balance(conf, r10_bio, &max_sectors);
1192 		if (!rdev) {
1193 			raid_end_bio_io(r10_bio);
1194 			return;
1195 		}
1196 		slot = r10_bio->read_slot;
1197 
1198 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1199 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1200 			    max_sectors);
1201 
1202 		r10_bio->devs[slot].bio = read_bio;
1203 		r10_bio->devs[slot].rdev = rdev;
1204 
1205 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1206 			choose_data_offset(r10_bio, rdev);
1207 		read_bio->bi_bdev = rdev->bdev;
1208 		read_bio->bi_end_io = raid10_end_read_request;
1209 		read_bio->bi_rw = READ | do_sync;
1210 		read_bio->bi_private = r10_bio;
1211 
1212 		if (max_sectors < r10_bio->sectors) {
1213 			/* Could not read all from this device, so we will
1214 			 * need another r10_bio.
1215 			 */
1216 			sectors_handled = (r10_bio->sectors + max_sectors
1217 					   - bio->bi_sector);
1218 			r10_bio->sectors = max_sectors;
1219 			spin_lock_irq(&conf->device_lock);
1220 			if (bio->bi_phys_segments == 0)
1221 				bio->bi_phys_segments = 2;
1222 			else
1223 				bio->bi_phys_segments++;
1224 			spin_unlock(&conf->device_lock);
1225 			/* Cannot call generic_make_request directly
1226 			 * as that will be queued in __generic_make_request
1227 			 * and subsequent mempool_alloc might block
1228 			 * waiting for it.  so hand bio over to raid10d.
1229 			 */
1230 			reschedule_retry(r10_bio);
1231 
1232 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1233 
1234 			r10_bio->master_bio = bio;
1235 			r10_bio->sectors = ((bio->bi_size >> 9)
1236 					    - sectors_handled);
1237 			r10_bio->state = 0;
1238 			r10_bio->mddev = mddev;
1239 			r10_bio->sector = bio->bi_sector + sectors_handled;
1240 			goto read_again;
1241 		} else
1242 			generic_make_request(read_bio);
1243 		return;
1244 	}
1245 
1246 	/*
1247 	 * WRITE:
1248 	 */
1249 	if (conf->pending_count >= max_queued_requests) {
1250 		md_wakeup_thread(mddev->thread);
1251 		wait_event(conf->wait_barrier,
1252 			   conf->pending_count < max_queued_requests);
1253 	}
1254 	/* first select target devices under rcu_lock and
1255 	 * inc refcount on their rdev.  Record them by setting
1256 	 * bios[x] to bio
1257 	 * If there are known/acknowledged bad blocks on any device
1258 	 * on which we have seen a write error, we want to avoid
1259 	 * writing to those blocks.  This potentially requires several
1260 	 * writes to write around the bad blocks.  Each set of writes
1261 	 * gets its own r10_bio with a set of bios attached.  The number
1262 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1263 	 * the read case.
1264 	 */
1265 
1266 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1267 	raid10_find_phys(conf, r10_bio);
1268 retry_write:
1269 	blocked_rdev = NULL;
1270 	rcu_read_lock();
1271 	max_sectors = r10_bio->sectors;
1272 
1273 	for (i = 0;  i < conf->copies; i++) {
1274 		int d = r10_bio->devs[i].devnum;
1275 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1276 		struct md_rdev *rrdev = rcu_dereference(
1277 			conf->mirrors[d].replacement);
1278 		if (rdev == rrdev)
1279 			rrdev = NULL;
1280 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1281 			atomic_inc(&rdev->nr_pending);
1282 			blocked_rdev = rdev;
1283 			break;
1284 		}
1285 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1286 			atomic_inc(&rrdev->nr_pending);
1287 			blocked_rdev = rrdev;
1288 			break;
1289 		}
1290 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1291 			      || test_bit(Unmerged, &rrdev->flags)))
1292 			rrdev = NULL;
1293 
1294 		r10_bio->devs[i].bio = NULL;
1295 		r10_bio->devs[i].repl_bio = NULL;
1296 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
1297 		    test_bit(Unmerged, &rdev->flags)) {
1298 			set_bit(R10BIO_Degraded, &r10_bio->state);
1299 			continue;
1300 		}
1301 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1302 			sector_t first_bad;
1303 			sector_t dev_sector = r10_bio->devs[i].addr;
1304 			int bad_sectors;
1305 			int is_bad;
1306 
1307 			is_bad = is_badblock(rdev, dev_sector,
1308 					     max_sectors,
1309 					     &first_bad, &bad_sectors);
1310 			if (is_bad < 0) {
1311 				/* Mustn't write here until the bad block
1312 				 * is acknowledged
1313 				 */
1314 				atomic_inc(&rdev->nr_pending);
1315 				set_bit(BlockedBadBlocks, &rdev->flags);
1316 				blocked_rdev = rdev;
1317 				break;
1318 			}
1319 			if (is_bad && first_bad <= dev_sector) {
1320 				/* Cannot write here at all */
1321 				bad_sectors -= (dev_sector - first_bad);
1322 				if (bad_sectors < max_sectors)
1323 					/* Mustn't write more than bad_sectors
1324 					 * to other devices yet
1325 					 */
1326 					max_sectors = bad_sectors;
1327 				/* We don't set R10BIO_Degraded as that
1328 				 * only applies if the disk is missing,
1329 				 * so it might be re-added, and we want to
1330 				 * know to recover this chunk.
1331 				 * In this case the device is here, and the
1332 				 * fact that this chunk is not in-sync is
1333 				 * recorded in the bad block log.
1334 				 */
1335 				continue;
1336 			}
1337 			if (is_bad) {
1338 				int good_sectors = first_bad - dev_sector;
1339 				if (good_sectors < max_sectors)
1340 					max_sectors = good_sectors;
1341 			}
1342 		}
1343 		r10_bio->devs[i].bio = bio;
1344 		atomic_inc(&rdev->nr_pending);
1345 		if (rrdev) {
1346 			r10_bio->devs[i].repl_bio = bio;
1347 			atomic_inc(&rrdev->nr_pending);
1348 		}
1349 	}
1350 	rcu_read_unlock();
1351 
1352 	if (unlikely(blocked_rdev)) {
1353 		/* Have to wait for this device to get unblocked, then retry */
1354 		int j;
1355 		int d;
1356 
1357 		for (j = 0; j < i; j++) {
1358 			if (r10_bio->devs[j].bio) {
1359 				d = r10_bio->devs[j].devnum;
1360 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1361 			}
1362 			if (r10_bio->devs[j].repl_bio) {
1363 				struct md_rdev *rdev;
1364 				d = r10_bio->devs[j].devnum;
1365 				rdev = conf->mirrors[d].replacement;
1366 				if (!rdev) {
1367 					/* Race with remove_disk */
1368 					smp_mb();
1369 					rdev = conf->mirrors[d].rdev;
1370 				}
1371 				rdev_dec_pending(rdev, mddev);
1372 			}
1373 		}
1374 		allow_barrier(conf);
1375 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1376 		wait_barrier(conf);
1377 		goto retry_write;
1378 	}
1379 
1380 	if (max_sectors < r10_bio->sectors) {
1381 		/* We are splitting this into multiple parts, so
1382 		 * we need to prepare for allocating another r10_bio.
1383 		 */
1384 		r10_bio->sectors = max_sectors;
1385 		spin_lock_irq(&conf->device_lock);
1386 		if (bio->bi_phys_segments == 0)
1387 			bio->bi_phys_segments = 2;
1388 		else
1389 			bio->bi_phys_segments++;
1390 		spin_unlock_irq(&conf->device_lock);
1391 	}
1392 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1393 
1394 	atomic_set(&r10_bio->remaining, 1);
1395 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1396 
1397 	for (i = 0; i < conf->copies; i++) {
1398 		struct bio *mbio;
1399 		int d = r10_bio->devs[i].devnum;
1400 		if (!r10_bio->devs[i].bio)
1401 			continue;
1402 
1403 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1404 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1405 			    max_sectors);
1406 		r10_bio->devs[i].bio = mbio;
1407 
1408 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1409 				   choose_data_offset(r10_bio,
1410 						      conf->mirrors[d].rdev));
1411 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1412 		mbio->bi_end_io	= raid10_end_write_request;
1413 		mbio->bi_rw = WRITE | do_sync | do_fua;
1414 		mbio->bi_private = r10_bio;
1415 
1416 		atomic_inc(&r10_bio->remaining);
1417 		spin_lock_irqsave(&conf->device_lock, flags);
1418 		bio_list_add(&conf->pending_bio_list, mbio);
1419 		conf->pending_count++;
1420 		spin_unlock_irqrestore(&conf->device_lock, flags);
1421 		if (!mddev_check_plugged(mddev))
1422 			md_wakeup_thread(mddev->thread);
1423 
1424 		if (!r10_bio->devs[i].repl_bio)
1425 			continue;
1426 
1427 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1428 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1429 			    max_sectors);
1430 		r10_bio->devs[i].repl_bio = mbio;
1431 
1432 		/* We are actively writing to the original device
1433 		 * so it cannot disappear, so the replacement cannot
1434 		 * become NULL here
1435 		 */
1436 		mbio->bi_sector	= (r10_bio->devs[i].addr +
1437 				   choose_data_offset(
1438 					   r10_bio,
1439 					   conf->mirrors[d].replacement));
1440 		mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1441 		mbio->bi_end_io	= raid10_end_write_request;
1442 		mbio->bi_rw = WRITE | do_sync | do_fua;
1443 		mbio->bi_private = r10_bio;
1444 
1445 		atomic_inc(&r10_bio->remaining);
1446 		spin_lock_irqsave(&conf->device_lock, flags);
1447 		bio_list_add(&conf->pending_bio_list, mbio);
1448 		conf->pending_count++;
1449 		spin_unlock_irqrestore(&conf->device_lock, flags);
1450 		if (!mddev_check_plugged(mddev))
1451 			md_wakeup_thread(mddev->thread);
1452 	}
1453 
1454 	/* Don't remove the bias on 'remaining' (one_write_done) until
1455 	 * after checking if we need to go around again.
1456 	 */
1457 
1458 	if (sectors_handled < (bio->bi_size >> 9)) {
1459 		one_write_done(r10_bio);
1460 		/* We need another r10_bio.  It has already been counted
1461 		 * in bio->bi_phys_segments.
1462 		 */
1463 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1464 
1465 		r10_bio->master_bio = bio;
1466 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1467 
1468 		r10_bio->mddev = mddev;
1469 		r10_bio->sector = bio->bi_sector + sectors_handled;
1470 		r10_bio->state = 0;
1471 		goto retry_write;
1472 	}
1473 	one_write_done(r10_bio);
1474 
1475 	/* In case raid10d snuck in to freeze_array */
1476 	wake_up(&conf->wait_barrier);
1477 }
1478 
1479 static void status(struct seq_file *seq, struct mddev *mddev)
1480 {
1481 	struct r10conf *conf = mddev->private;
1482 	int i;
1483 
1484 	if (conf->geo.near_copies < conf->geo.raid_disks)
1485 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1486 	if (conf->geo.near_copies > 1)
1487 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1488 	if (conf->geo.far_copies > 1) {
1489 		if (conf->geo.far_offset)
1490 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1491 		else
1492 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1493 	}
1494 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1495 					conf->geo.raid_disks - mddev->degraded);
1496 	for (i = 0; i < conf->geo.raid_disks; i++)
1497 		seq_printf(seq, "%s",
1498 			      conf->mirrors[i].rdev &&
1499 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1500 	seq_printf(seq, "]");
1501 }
1502 
1503 /* check if there are enough drives for
1504  * every block to appear on atleast one.
1505  * Don't consider the device numbered 'ignore'
1506  * as we might be about to remove it.
1507  */
1508 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1509 {
1510 	int first = 0;
1511 
1512 	do {
1513 		int n = conf->copies;
1514 		int cnt = 0;
1515 		int this = first;
1516 		while (n--) {
1517 			if (conf->mirrors[this].rdev &&
1518 			    this != ignore)
1519 				cnt++;
1520 			this = (this+1) % geo->raid_disks;
1521 		}
1522 		if (cnt == 0)
1523 			return 0;
1524 		first = (first + geo->near_copies) % geo->raid_disks;
1525 	} while (first != 0);
1526 	return 1;
1527 }
1528 
1529 static int enough(struct r10conf *conf, int ignore)
1530 {
1531 	return _enough(conf, &conf->geo, ignore) &&
1532 		_enough(conf, &conf->prev, ignore);
1533 }
1534 
1535 static void error(struct mddev *mddev, struct md_rdev *rdev)
1536 {
1537 	char b[BDEVNAME_SIZE];
1538 	struct r10conf *conf = mddev->private;
1539 
1540 	/*
1541 	 * If it is not operational, then we have already marked it as dead
1542 	 * else if it is the last working disks, ignore the error, let the
1543 	 * next level up know.
1544 	 * else mark the drive as failed
1545 	 */
1546 	if (test_bit(In_sync, &rdev->flags)
1547 	    && !enough(conf, rdev->raid_disk))
1548 		/*
1549 		 * Don't fail the drive, just return an IO error.
1550 		 */
1551 		return;
1552 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1553 		unsigned long flags;
1554 		spin_lock_irqsave(&conf->device_lock, flags);
1555 		mddev->degraded++;
1556 		spin_unlock_irqrestore(&conf->device_lock, flags);
1557 		/*
1558 		 * if recovery is running, make sure it aborts.
1559 		 */
1560 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1561 	}
1562 	set_bit(Blocked, &rdev->flags);
1563 	set_bit(Faulty, &rdev->flags);
1564 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1565 	printk(KERN_ALERT
1566 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1567 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1568 	       mdname(mddev), bdevname(rdev->bdev, b),
1569 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1570 }
1571 
1572 static void print_conf(struct r10conf *conf)
1573 {
1574 	int i;
1575 	struct raid10_info *tmp;
1576 
1577 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1578 	if (!conf) {
1579 		printk(KERN_DEBUG "(!conf)\n");
1580 		return;
1581 	}
1582 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1583 		conf->geo.raid_disks);
1584 
1585 	for (i = 0; i < conf->geo.raid_disks; i++) {
1586 		char b[BDEVNAME_SIZE];
1587 		tmp = conf->mirrors + i;
1588 		if (tmp->rdev)
1589 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1590 				i, !test_bit(In_sync, &tmp->rdev->flags),
1591 			        !test_bit(Faulty, &tmp->rdev->flags),
1592 				bdevname(tmp->rdev->bdev,b));
1593 	}
1594 }
1595 
1596 static void close_sync(struct r10conf *conf)
1597 {
1598 	wait_barrier(conf);
1599 	allow_barrier(conf);
1600 
1601 	mempool_destroy(conf->r10buf_pool);
1602 	conf->r10buf_pool = NULL;
1603 }
1604 
1605 static int raid10_spare_active(struct mddev *mddev)
1606 {
1607 	int i;
1608 	struct r10conf *conf = mddev->private;
1609 	struct raid10_info *tmp;
1610 	int count = 0;
1611 	unsigned long flags;
1612 
1613 	/*
1614 	 * Find all non-in_sync disks within the RAID10 configuration
1615 	 * and mark them in_sync
1616 	 */
1617 	for (i = 0; i < conf->geo.raid_disks; i++) {
1618 		tmp = conf->mirrors + i;
1619 		if (tmp->replacement
1620 		    && tmp->replacement->recovery_offset == MaxSector
1621 		    && !test_bit(Faulty, &tmp->replacement->flags)
1622 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1623 			/* Replacement has just become active */
1624 			if (!tmp->rdev
1625 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1626 				count++;
1627 			if (tmp->rdev) {
1628 				/* Replaced device not technically faulty,
1629 				 * but we need to be sure it gets removed
1630 				 * and never re-added.
1631 				 */
1632 				set_bit(Faulty, &tmp->rdev->flags);
1633 				sysfs_notify_dirent_safe(
1634 					tmp->rdev->sysfs_state);
1635 			}
1636 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1637 		} else if (tmp->rdev
1638 			   && !test_bit(Faulty, &tmp->rdev->flags)
1639 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1640 			count++;
1641 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1642 		}
1643 	}
1644 	spin_lock_irqsave(&conf->device_lock, flags);
1645 	mddev->degraded -= count;
1646 	spin_unlock_irqrestore(&conf->device_lock, flags);
1647 
1648 	print_conf(conf);
1649 	return count;
1650 }
1651 
1652 
1653 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1654 {
1655 	struct r10conf *conf = mddev->private;
1656 	int err = -EEXIST;
1657 	int mirror;
1658 	int first = 0;
1659 	int last = conf->geo.raid_disks - 1;
1660 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1661 
1662 	if (mddev->recovery_cp < MaxSector)
1663 		/* only hot-add to in-sync arrays, as recovery is
1664 		 * very different from resync
1665 		 */
1666 		return -EBUSY;
1667 	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1668 		return -EINVAL;
1669 
1670 	if (rdev->raid_disk >= 0)
1671 		first = last = rdev->raid_disk;
1672 
1673 	if (q->merge_bvec_fn) {
1674 		set_bit(Unmerged, &rdev->flags);
1675 		mddev->merge_check_needed = 1;
1676 	}
1677 
1678 	if (rdev->saved_raid_disk >= first &&
1679 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1680 		mirror = rdev->saved_raid_disk;
1681 	else
1682 		mirror = first;
1683 	for ( ; mirror <= last ; mirror++) {
1684 		struct raid10_info *p = &conf->mirrors[mirror];
1685 		if (p->recovery_disabled == mddev->recovery_disabled)
1686 			continue;
1687 		if (p->rdev) {
1688 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1689 			    p->replacement != NULL)
1690 				continue;
1691 			clear_bit(In_sync, &rdev->flags);
1692 			set_bit(Replacement, &rdev->flags);
1693 			rdev->raid_disk = mirror;
1694 			err = 0;
1695 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1696 					  rdev->data_offset << 9);
1697 			conf->fullsync = 1;
1698 			rcu_assign_pointer(p->replacement, rdev);
1699 			break;
1700 		}
1701 
1702 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1703 				  rdev->data_offset << 9);
1704 
1705 		p->head_position = 0;
1706 		p->recovery_disabled = mddev->recovery_disabled - 1;
1707 		rdev->raid_disk = mirror;
1708 		err = 0;
1709 		if (rdev->saved_raid_disk != mirror)
1710 			conf->fullsync = 1;
1711 		rcu_assign_pointer(p->rdev, rdev);
1712 		break;
1713 	}
1714 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1715 		/* Some requests might not have seen this new
1716 		 * merge_bvec_fn.  We must wait for them to complete
1717 		 * before merging the device fully.
1718 		 * First we make sure any code which has tested
1719 		 * our function has submitted the request, then
1720 		 * we wait for all outstanding requests to complete.
1721 		 */
1722 		synchronize_sched();
1723 		raise_barrier(conf, 0);
1724 		lower_barrier(conf);
1725 		clear_bit(Unmerged, &rdev->flags);
1726 	}
1727 	md_integrity_add_rdev(rdev, mddev);
1728 	print_conf(conf);
1729 	return err;
1730 }
1731 
1732 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1733 {
1734 	struct r10conf *conf = mddev->private;
1735 	int err = 0;
1736 	int number = rdev->raid_disk;
1737 	struct md_rdev **rdevp;
1738 	struct raid10_info *p = conf->mirrors + number;
1739 
1740 	print_conf(conf);
1741 	if (rdev == p->rdev)
1742 		rdevp = &p->rdev;
1743 	else if (rdev == p->replacement)
1744 		rdevp = &p->replacement;
1745 	else
1746 		return 0;
1747 
1748 	if (test_bit(In_sync, &rdev->flags) ||
1749 	    atomic_read(&rdev->nr_pending)) {
1750 		err = -EBUSY;
1751 		goto abort;
1752 	}
1753 	/* Only remove faulty devices if recovery
1754 	 * is not possible.
1755 	 */
1756 	if (!test_bit(Faulty, &rdev->flags) &&
1757 	    mddev->recovery_disabled != p->recovery_disabled &&
1758 	    (!p->replacement || p->replacement == rdev) &&
1759 	    number < conf->geo.raid_disks &&
1760 	    enough(conf, -1)) {
1761 		err = -EBUSY;
1762 		goto abort;
1763 	}
1764 	*rdevp = NULL;
1765 	synchronize_rcu();
1766 	if (atomic_read(&rdev->nr_pending)) {
1767 		/* lost the race, try later */
1768 		err = -EBUSY;
1769 		*rdevp = rdev;
1770 		goto abort;
1771 	} else if (p->replacement) {
1772 		/* We must have just cleared 'rdev' */
1773 		p->rdev = p->replacement;
1774 		clear_bit(Replacement, &p->replacement->flags);
1775 		smp_mb(); /* Make sure other CPUs may see both as identical
1776 			   * but will never see neither -- if they are careful.
1777 			   */
1778 		p->replacement = NULL;
1779 		clear_bit(WantReplacement, &rdev->flags);
1780 	} else
1781 		/* We might have just remove the Replacement as faulty
1782 		 * Clear the flag just in case
1783 		 */
1784 		clear_bit(WantReplacement, &rdev->flags);
1785 
1786 	err = md_integrity_register(mddev);
1787 
1788 abort:
1789 
1790 	print_conf(conf);
1791 	return err;
1792 }
1793 
1794 
1795 static void end_sync_read(struct bio *bio, int error)
1796 {
1797 	struct r10bio *r10_bio = bio->bi_private;
1798 	struct r10conf *conf = r10_bio->mddev->private;
1799 	int d;
1800 
1801 	if (bio == r10_bio->master_bio) {
1802 		/* this is a reshape read */
1803 		d = r10_bio->read_slot; /* really the read dev */
1804 	} else
1805 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1806 
1807 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1808 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1809 	else
1810 		/* The write handler will notice the lack of
1811 		 * R10BIO_Uptodate and record any errors etc
1812 		 */
1813 		atomic_add(r10_bio->sectors,
1814 			   &conf->mirrors[d].rdev->corrected_errors);
1815 
1816 	/* for reconstruct, we always reschedule after a read.
1817 	 * for resync, only after all reads
1818 	 */
1819 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1820 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1821 	    atomic_dec_and_test(&r10_bio->remaining)) {
1822 		/* we have read all the blocks,
1823 		 * do the comparison in process context in raid10d
1824 		 */
1825 		reschedule_retry(r10_bio);
1826 	}
1827 }
1828 
1829 static void end_sync_request(struct r10bio *r10_bio)
1830 {
1831 	struct mddev *mddev = r10_bio->mddev;
1832 
1833 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1834 		if (r10_bio->master_bio == NULL) {
1835 			/* the primary of several recovery bios */
1836 			sector_t s = r10_bio->sectors;
1837 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1838 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1839 				reschedule_retry(r10_bio);
1840 			else
1841 				put_buf(r10_bio);
1842 			md_done_sync(mddev, s, 1);
1843 			break;
1844 		} else {
1845 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1846 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1847 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1848 				reschedule_retry(r10_bio);
1849 			else
1850 				put_buf(r10_bio);
1851 			r10_bio = r10_bio2;
1852 		}
1853 	}
1854 }
1855 
1856 static void end_sync_write(struct bio *bio, int error)
1857 {
1858 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1859 	struct r10bio *r10_bio = bio->bi_private;
1860 	struct mddev *mddev = r10_bio->mddev;
1861 	struct r10conf *conf = mddev->private;
1862 	int d;
1863 	sector_t first_bad;
1864 	int bad_sectors;
1865 	int slot;
1866 	int repl;
1867 	struct md_rdev *rdev = NULL;
1868 
1869 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1870 	if (repl)
1871 		rdev = conf->mirrors[d].replacement;
1872 	else
1873 		rdev = conf->mirrors[d].rdev;
1874 
1875 	if (!uptodate) {
1876 		if (repl)
1877 			md_error(mddev, rdev);
1878 		else {
1879 			set_bit(WriteErrorSeen, &rdev->flags);
1880 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1881 				set_bit(MD_RECOVERY_NEEDED,
1882 					&rdev->mddev->recovery);
1883 			set_bit(R10BIO_WriteError, &r10_bio->state);
1884 		}
1885 	} else if (is_badblock(rdev,
1886 			     r10_bio->devs[slot].addr,
1887 			     r10_bio->sectors,
1888 			     &first_bad, &bad_sectors))
1889 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1890 
1891 	rdev_dec_pending(rdev, mddev);
1892 
1893 	end_sync_request(r10_bio);
1894 }
1895 
1896 /*
1897  * Note: sync and recover and handled very differently for raid10
1898  * This code is for resync.
1899  * For resync, we read through virtual addresses and read all blocks.
1900  * If there is any error, we schedule a write.  The lowest numbered
1901  * drive is authoritative.
1902  * However requests come for physical address, so we need to map.
1903  * For every physical address there are raid_disks/copies virtual addresses,
1904  * which is always are least one, but is not necessarly an integer.
1905  * This means that a physical address can span multiple chunks, so we may
1906  * have to submit multiple io requests for a single sync request.
1907  */
1908 /*
1909  * We check if all blocks are in-sync and only write to blocks that
1910  * aren't in sync
1911  */
1912 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1913 {
1914 	struct r10conf *conf = mddev->private;
1915 	int i, first;
1916 	struct bio *tbio, *fbio;
1917 	int vcnt;
1918 
1919 	atomic_set(&r10_bio->remaining, 1);
1920 
1921 	/* find the first device with a block */
1922 	for (i=0; i<conf->copies; i++)
1923 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1924 			break;
1925 
1926 	if (i == conf->copies)
1927 		goto done;
1928 
1929 	first = i;
1930 	fbio = r10_bio->devs[i].bio;
1931 
1932 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1933 	/* now find blocks with errors */
1934 	for (i=0 ; i < conf->copies ; i++) {
1935 		int  j, d;
1936 
1937 		tbio = r10_bio->devs[i].bio;
1938 
1939 		if (tbio->bi_end_io != end_sync_read)
1940 			continue;
1941 		if (i == first)
1942 			continue;
1943 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1944 			/* We know that the bi_io_vec layout is the same for
1945 			 * both 'first' and 'i', so we just compare them.
1946 			 * All vec entries are PAGE_SIZE;
1947 			 */
1948 			for (j = 0; j < vcnt; j++)
1949 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1950 					   page_address(tbio->bi_io_vec[j].bv_page),
1951 					   fbio->bi_io_vec[j].bv_len))
1952 					break;
1953 			if (j == vcnt)
1954 				continue;
1955 			mddev->resync_mismatches += r10_bio->sectors;
1956 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1957 				/* Don't fix anything. */
1958 				continue;
1959 		}
1960 		/* Ok, we need to write this bio, either to correct an
1961 		 * inconsistency or to correct an unreadable block.
1962 		 * First we need to fixup bv_offset, bv_len and
1963 		 * bi_vecs, as the read request might have corrupted these
1964 		 */
1965 		tbio->bi_vcnt = vcnt;
1966 		tbio->bi_size = r10_bio->sectors << 9;
1967 		tbio->bi_idx = 0;
1968 		tbio->bi_phys_segments = 0;
1969 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1970 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1971 		tbio->bi_next = NULL;
1972 		tbio->bi_rw = WRITE;
1973 		tbio->bi_private = r10_bio;
1974 		tbio->bi_sector = r10_bio->devs[i].addr;
1975 
1976 		for (j=0; j < vcnt ; j++) {
1977 			tbio->bi_io_vec[j].bv_offset = 0;
1978 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1979 
1980 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1981 			       page_address(fbio->bi_io_vec[j].bv_page),
1982 			       PAGE_SIZE);
1983 		}
1984 		tbio->bi_end_io = end_sync_write;
1985 
1986 		d = r10_bio->devs[i].devnum;
1987 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1988 		atomic_inc(&r10_bio->remaining);
1989 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1990 
1991 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1992 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1993 		generic_make_request(tbio);
1994 	}
1995 
1996 	/* Now write out to any replacement devices
1997 	 * that are active
1998 	 */
1999 	for (i = 0; i < conf->copies; i++) {
2000 		int j, d;
2001 
2002 		tbio = r10_bio->devs[i].repl_bio;
2003 		if (!tbio || !tbio->bi_end_io)
2004 			continue;
2005 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2006 		    && r10_bio->devs[i].bio != fbio)
2007 			for (j = 0; j < vcnt; j++)
2008 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2009 				       page_address(fbio->bi_io_vec[j].bv_page),
2010 				       PAGE_SIZE);
2011 		d = r10_bio->devs[i].devnum;
2012 		atomic_inc(&r10_bio->remaining);
2013 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2014 			     tbio->bi_size >> 9);
2015 		generic_make_request(tbio);
2016 	}
2017 
2018 done:
2019 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2020 		md_done_sync(mddev, r10_bio->sectors, 1);
2021 		put_buf(r10_bio);
2022 	}
2023 }
2024 
2025 /*
2026  * Now for the recovery code.
2027  * Recovery happens across physical sectors.
2028  * We recover all non-is_sync drives by finding the virtual address of
2029  * each, and then choose a working drive that also has that virt address.
2030  * There is a separate r10_bio for each non-in_sync drive.
2031  * Only the first two slots are in use. The first for reading,
2032  * The second for writing.
2033  *
2034  */
2035 static void fix_recovery_read_error(struct r10bio *r10_bio)
2036 {
2037 	/* We got a read error during recovery.
2038 	 * We repeat the read in smaller page-sized sections.
2039 	 * If a read succeeds, write it to the new device or record
2040 	 * a bad block if we cannot.
2041 	 * If a read fails, record a bad block on both old and
2042 	 * new devices.
2043 	 */
2044 	struct mddev *mddev = r10_bio->mddev;
2045 	struct r10conf *conf = mddev->private;
2046 	struct bio *bio = r10_bio->devs[0].bio;
2047 	sector_t sect = 0;
2048 	int sectors = r10_bio->sectors;
2049 	int idx = 0;
2050 	int dr = r10_bio->devs[0].devnum;
2051 	int dw = r10_bio->devs[1].devnum;
2052 
2053 	while (sectors) {
2054 		int s = sectors;
2055 		struct md_rdev *rdev;
2056 		sector_t addr;
2057 		int ok;
2058 
2059 		if (s > (PAGE_SIZE>>9))
2060 			s = PAGE_SIZE >> 9;
2061 
2062 		rdev = conf->mirrors[dr].rdev;
2063 		addr = r10_bio->devs[0].addr + sect,
2064 		ok = sync_page_io(rdev,
2065 				  addr,
2066 				  s << 9,
2067 				  bio->bi_io_vec[idx].bv_page,
2068 				  READ, false);
2069 		if (ok) {
2070 			rdev = conf->mirrors[dw].rdev;
2071 			addr = r10_bio->devs[1].addr + sect;
2072 			ok = sync_page_io(rdev,
2073 					  addr,
2074 					  s << 9,
2075 					  bio->bi_io_vec[idx].bv_page,
2076 					  WRITE, false);
2077 			if (!ok) {
2078 				set_bit(WriteErrorSeen, &rdev->flags);
2079 				if (!test_and_set_bit(WantReplacement,
2080 						      &rdev->flags))
2081 					set_bit(MD_RECOVERY_NEEDED,
2082 						&rdev->mddev->recovery);
2083 			}
2084 		}
2085 		if (!ok) {
2086 			/* We don't worry if we cannot set a bad block -
2087 			 * it really is bad so there is no loss in not
2088 			 * recording it yet
2089 			 */
2090 			rdev_set_badblocks(rdev, addr, s, 0);
2091 
2092 			if (rdev != conf->mirrors[dw].rdev) {
2093 				/* need bad block on destination too */
2094 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2095 				addr = r10_bio->devs[1].addr + sect;
2096 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2097 				if (!ok) {
2098 					/* just abort the recovery */
2099 					printk(KERN_NOTICE
2100 					       "md/raid10:%s: recovery aborted"
2101 					       " due to read error\n",
2102 					       mdname(mddev));
2103 
2104 					conf->mirrors[dw].recovery_disabled
2105 						= mddev->recovery_disabled;
2106 					set_bit(MD_RECOVERY_INTR,
2107 						&mddev->recovery);
2108 					break;
2109 				}
2110 			}
2111 		}
2112 
2113 		sectors -= s;
2114 		sect += s;
2115 		idx++;
2116 	}
2117 }
2118 
2119 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2120 {
2121 	struct r10conf *conf = mddev->private;
2122 	int d;
2123 	struct bio *wbio, *wbio2;
2124 
2125 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2126 		fix_recovery_read_error(r10_bio);
2127 		end_sync_request(r10_bio);
2128 		return;
2129 	}
2130 
2131 	/*
2132 	 * share the pages with the first bio
2133 	 * and submit the write request
2134 	 */
2135 	d = r10_bio->devs[1].devnum;
2136 	wbio = r10_bio->devs[1].bio;
2137 	wbio2 = r10_bio->devs[1].repl_bio;
2138 	if (wbio->bi_end_io) {
2139 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2140 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2141 		generic_make_request(wbio);
2142 	}
2143 	if (wbio2 && wbio2->bi_end_io) {
2144 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2145 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2146 			     wbio2->bi_size >> 9);
2147 		generic_make_request(wbio2);
2148 	}
2149 }
2150 
2151 
2152 /*
2153  * Used by fix_read_error() to decay the per rdev read_errors.
2154  * We halve the read error count for every hour that has elapsed
2155  * since the last recorded read error.
2156  *
2157  */
2158 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2159 {
2160 	struct timespec cur_time_mon;
2161 	unsigned long hours_since_last;
2162 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2163 
2164 	ktime_get_ts(&cur_time_mon);
2165 
2166 	if (rdev->last_read_error.tv_sec == 0 &&
2167 	    rdev->last_read_error.tv_nsec == 0) {
2168 		/* first time we've seen a read error */
2169 		rdev->last_read_error = cur_time_mon;
2170 		return;
2171 	}
2172 
2173 	hours_since_last = (cur_time_mon.tv_sec -
2174 			    rdev->last_read_error.tv_sec) / 3600;
2175 
2176 	rdev->last_read_error = cur_time_mon;
2177 
2178 	/*
2179 	 * if hours_since_last is > the number of bits in read_errors
2180 	 * just set read errors to 0. We do this to avoid
2181 	 * overflowing the shift of read_errors by hours_since_last.
2182 	 */
2183 	if (hours_since_last >= 8 * sizeof(read_errors))
2184 		atomic_set(&rdev->read_errors, 0);
2185 	else
2186 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2187 }
2188 
2189 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2190 			    int sectors, struct page *page, int rw)
2191 {
2192 	sector_t first_bad;
2193 	int bad_sectors;
2194 
2195 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2196 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2197 		return -1;
2198 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2199 		/* success */
2200 		return 1;
2201 	if (rw == WRITE) {
2202 		set_bit(WriteErrorSeen, &rdev->flags);
2203 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2204 			set_bit(MD_RECOVERY_NEEDED,
2205 				&rdev->mddev->recovery);
2206 	}
2207 	/* need to record an error - either for the block or the device */
2208 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2209 		md_error(rdev->mddev, rdev);
2210 	return 0;
2211 }
2212 
2213 /*
2214  * This is a kernel thread which:
2215  *
2216  *	1.	Retries failed read operations on working mirrors.
2217  *	2.	Updates the raid superblock when problems encounter.
2218  *	3.	Performs writes following reads for array synchronising.
2219  */
2220 
2221 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2222 {
2223 	int sect = 0; /* Offset from r10_bio->sector */
2224 	int sectors = r10_bio->sectors;
2225 	struct md_rdev*rdev;
2226 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2227 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2228 
2229 	/* still own a reference to this rdev, so it cannot
2230 	 * have been cleared recently.
2231 	 */
2232 	rdev = conf->mirrors[d].rdev;
2233 
2234 	if (test_bit(Faulty, &rdev->flags))
2235 		/* drive has already been failed, just ignore any
2236 		   more fix_read_error() attempts */
2237 		return;
2238 
2239 	check_decay_read_errors(mddev, rdev);
2240 	atomic_inc(&rdev->read_errors);
2241 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2242 		char b[BDEVNAME_SIZE];
2243 		bdevname(rdev->bdev, b);
2244 
2245 		printk(KERN_NOTICE
2246 		       "md/raid10:%s: %s: Raid device exceeded "
2247 		       "read_error threshold [cur %d:max %d]\n",
2248 		       mdname(mddev), b,
2249 		       atomic_read(&rdev->read_errors), max_read_errors);
2250 		printk(KERN_NOTICE
2251 		       "md/raid10:%s: %s: Failing raid device\n",
2252 		       mdname(mddev), b);
2253 		md_error(mddev, conf->mirrors[d].rdev);
2254 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2255 		return;
2256 	}
2257 
2258 	while(sectors) {
2259 		int s = sectors;
2260 		int sl = r10_bio->read_slot;
2261 		int success = 0;
2262 		int start;
2263 
2264 		if (s > (PAGE_SIZE>>9))
2265 			s = PAGE_SIZE >> 9;
2266 
2267 		rcu_read_lock();
2268 		do {
2269 			sector_t first_bad;
2270 			int bad_sectors;
2271 
2272 			d = r10_bio->devs[sl].devnum;
2273 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2274 			if (rdev &&
2275 			    !test_bit(Unmerged, &rdev->flags) &&
2276 			    test_bit(In_sync, &rdev->flags) &&
2277 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2278 					&first_bad, &bad_sectors) == 0) {
2279 				atomic_inc(&rdev->nr_pending);
2280 				rcu_read_unlock();
2281 				success = sync_page_io(rdev,
2282 						       r10_bio->devs[sl].addr +
2283 						       sect,
2284 						       s<<9,
2285 						       conf->tmppage, READ, false);
2286 				rdev_dec_pending(rdev, mddev);
2287 				rcu_read_lock();
2288 				if (success)
2289 					break;
2290 			}
2291 			sl++;
2292 			if (sl == conf->copies)
2293 				sl = 0;
2294 		} while (!success && sl != r10_bio->read_slot);
2295 		rcu_read_unlock();
2296 
2297 		if (!success) {
2298 			/* Cannot read from anywhere, just mark the block
2299 			 * as bad on the first device to discourage future
2300 			 * reads.
2301 			 */
2302 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2303 			rdev = conf->mirrors[dn].rdev;
2304 
2305 			if (!rdev_set_badblocks(
2306 				    rdev,
2307 				    r10_bio->devs[r10_bio->read_slot].addr
2308 				    + sect,
2309 				    s, 0)) {
2310 				md_error(mddev, rdev);
2311 				r10_bio->devs[r10_bio->read_slot].bio
2312 					= IO_BLOCKED;
2313 			}
2314 			break;
2315 		}
2316 
2317 		start = sl;
2318 		/* write it back and re-read */
2319 		rcu_read_lock();
2320 		while (sl != r10_bio->read_slot) {
2321 			char b[BDEVNAME_SIZE];
2322 
2323 			if (sl==0)
2324 				sl = conf->copies;
2325 			sl--;
2326 			d = r10_bio->devs[sl].devnum;
2327 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2328 			if (!rdev ||
2329 			    test_bit(Unmerged, &rdev->flags) ||
2330 			    !test_bit(In_sync, &rdev->flags))
2331 				continue;
2332 
2333 			atomic_inc(&rdev->nr_pending);
2334 			rcu_read_unlock();
2335 			if (r10_sync_page_io(rdev,
2336 					     r10_bio->devs[sl].addr +
2337 					     sect,
2338 					     s, conf->tmppage, WRITE)
2339 			    == 0) {
2340 				/* Well, this device is dead */
2341 				printk(KERN_NOTICE
2342 				       "md/raid10:%s: read correction "
2343 				       "write failed"
2344 				       " (%d sectors at %llu on %s)\n",
2345 				       mdname(mddev), s,
2346 				       (unsigned long long)(
2347 					       sect +
2348 					       choose_data_offset(r10_bio,
2349 								  rdev)),
2350 				       bdevname(rdev->bdev, b));
2351 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2352 				       "drive\n",
2353 				       mdname(mddev),
2354 				       bdevname(rdev->bdev, b));
2355 			}
2356 			rdev_dec_pending(rdev, mddev);
2357 			rcu_read_lock();
2358 		}
2359 		sl = start;
2360 		while (sl != r10_bio->read_slot) {
2361 			char b[BDEVNAME_SIZE];
2362 
2363 			if (sl==0)
2364 				sl = conf->copies;
2365 			sl--;
2366 			d = r10_bio->devs[sl].devnum;
2367 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2368 			if (!rdev ||
2369 			    !test_bit(In_sync, &rdev->flags))
2370 				continue;
2371 
2372 			atomic_inc(&rdev->nr_pending);
2373 			rcu_read_unlock();
2374 			switch (r10_sync_page_io(rdev,
2375 					     r10_bio->devs[sl].addr +
2376 					     sect,
2377 					     s, conf->tmppage,
2378 						 READ)) {
2379 			case 0:
2380 				/* Well, this device is dead */
2381 				printk(KERN_NOTICE
2382 				       "md/raid10:%s: unable to read back "
2383 				       "corrected sectors"
2384 				       " (%d sectors at %llu on %s)\n",
2385 				       mdname(mddev), s,
2386 				       (unsigned long long)(
2387 					       sect +
2388 					       choose_data_offset(r10_bio, rdev)),
2389 				       bdevname(rdev->bdev, b));
2390 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2391 				       "drive\n",
2392 				       mdname(mddev),
2393 				       bdevname(rdev->bdev, b));
2394 				break;
2395 			case 1:
2396 				printk(KERN_INFO
2397 				       "md/raid10:%s: read error corrected"
2398 				       " (%d sectors at %llu on %s)\n",
2399 				       mdname(mddev), s,
2400 				       (unsigned long long)(
2401 					       sect +
2402 					       choose_data_offset(r10_bio, rdev)),
2403 				       bdevname(rdev->bdev, b));
2404 				atomic_add(s, &rdev->corrected_errors);
2405 			}
2406 
2407 			rdev_dec_pending(rdev, mddev);
2408 			rcu_read_lock();
2409 		}
2410 		rcu_read_unlock();
2411 
2412 		sectors -= s;
2413 		sect += s;
2414 	}
2415 }
2416 
2417 static void bi_complete(struct bio *bio, int error)
2418 {
2419 	complete((struct completion *)bio->bi_private);
2420 }
2421 
2422 static int submit_bio_wait(int rw, struct bio *bio)
2423 {
2424 	struct completion event;
2425 	rw |= REQ_SYNC;
2426 
2427 	init_completion(&event);
2428 	bio->bi_private = &event;
2429 	bio->bi_end_io = bi_complete;
2430 	submit_bio(rw, bio);
2431 	wait_for_completion(&event);
2432 
2433 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2434 }
2435 
2436 static int narrow_write_error(struct r10bio *r10_bio, int i)
2437 {
2438 	struct bio *bio = r10_bio->master_bio;
2439 	struct mddev *mddev = r10_bio->mddev;
2440 	struct r10conf *conf = mddev->private;
2441 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2442 	/* bio has the data to be written to slot 'i' where
2443 	 * we just recently had a write error.
2444 	 * We repeatedly clone the bio and trim down to one block,
2445 	 * then try the write.  Where the write fails we record
2446 	 * a bad block.
2447 	 * It is conceivable that the bio doesn't exactly align with
2448 	 * blocks.  We must handle this.
2449 	 *
2450 	 * We currently own a reference to the rdev.
2451 	 */
2452 
2453 	int block_sectors;
2454 	sector_t sector;
2455 	int sectors;
2456 	int sect_to_write = r10_bio->sectors;
2457 	int ok = 1;
2458 
2459 	if (rdev->badblocks.shift < 0)
2460 		return 0;
2461 
2462 	block_sectors = 1 << rdev->badblocks.shift;
2463 	sector = r10_bio->sector;
2464 	sectors = ((r10_bio->sector + block_sectors)
2465 		   & ~(sector_t)(block_sectors - 1))
2466 		- sector;
2467 
2468 	while (sect_to_write) {
2469 		struct bio *wbio;
2470 		if (sectors > sect_to_write)
2471 			sectors = sect_to_write;
2472 		/* Write at 'sector' for 'sectors' */
2473 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2474 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2475 		wbio->bi_sector = (r10_bio->devs[i].addr+
2476 				   choose_data_offset(r10_bio, rdev) +
2477 				   (sector - r10_bio->sector));
2478 		wbio->bi_bdev = rdev->bdev;
2479 		if (submit_bio_wait(WRITE, wbio) == 0)
2480 			/* Failure! */
2481 			ok = rdev_set_badblocks(rdev, sector,
2482 						sectors, 0)
2483 				&& ok;
2484 
2485 		bio_put(wbio);
2486 		sect_to_write -= sectors;
2487 		sector += sectors;
2488 		sectors = block_sectors;
2489 	}
2490 	return ok;
2491 }
2492 
2493 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2494 {
2495 	int slot = r10_bio->read_slot;
2496 	struct bio *bio;
2497 	struct r10conf *conf = mddev->private;
2498 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2499 	char b[BDEVNAME_SIZE];
2500 	unsigned long do_sync;
2501 	int max_sectors;
2502 
2503 	/* we got a read error. Maybe the drive is bad.  Maybe just
2504 	 * the block and we can fix it.
2505 	 * We freeze all other IO, and try reading the block from
2506 	 * other devices.  When we find one, we re-write
2507 	 * and check it that fixes the read error.
2508 	 * This is all done synchronously while the array is
2509 	 * frozen.
2510 	 */
2511 	bio = r10_bio->devs[slot].bio;
2512 	bdevname(bio->bi_bdev, b);
2513 	bio_put(bio);
2514 	r10_bio->devs[slot].bio = NULL;
2515 
2516 	if (mddev->ro == 0) {
2517 		freeze_array(conf);
2518 		fix_read_error(conf, mddev, r10_bio);
2519 		unfreeze_array(conf);
2520 	} else
2521 		r10_bio->devs[slot].bio = IO_BLOCKED;
2522 
2523 	rdev_dec_pending(rdev, mddev);
2524 
2525 read_more:
2526 	rdev = read_balance(conf, r10_bio, &max_sectors);
2527 	if (rdev == NULL) {
2528 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2529 		       " read error for block %llu\n",
2530 		       mdname(mddev), b,
2531 		       (unsigned long long)r10_bio->sector);
2532 		raid_end_bio_io(r10_bio);
2533 		return;
2534 	}
2535 
2536 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2537 	slot = r10_bio->read_slot;
2538 	printk_ratelimited(
2539 		KERN_ERR
2540 		"md/raid10:%s: %s: redirecting "
2541 		"sector %llu to another mirror\n",
2542 		mdname(mddev),
2543 		bdevname(rdev->bdev, b),
2544 		(unsigned long long)r10_bio->sector);
2545 	bio = bio_clone_mddev(r10_bio->master_bio,
2546 			      GFP_NOIO, mddev);
2547 	md_trim_bio(bio,
2548 		    r10_bio->sector - bio->bi_sector,
2549 		    max_sectors);
2550 	r10_bio->devs[slot].bio = bio;
2551 	r10_bio->devs[slot].rdev = rdev;
2552 	bio->bi_sector = r10_bio->devs[slot].addr
2553 		+ choose_data_offset(r10_bio, rdev);
2554 	bio->bi_bdev = rdev->bdev;
2555 	bio->bi_rw = READ | do_sync;
2556 	bio->bi_private = r10_bio;
2557 	bio->bi_end_io = raid10_end_read_request;
2558 	if (max_sectors < r10_bio->sectors) {
2559 		/* Drat - have to split this up more */
2560 		struct bio *mbio = r10_bio->master_bio;
2561 		int sectors_handled =
2562 			r10_bio->sector + max_sectors
2563 			- mbio->bi_sector;
2564 		r10_bio->sectors = max_sectors;
2565 		spin_lock_irq(&conf->device_lock);
2566 		if (mbio->bi_phys_segments == 0)
2567 			mbio->bi_phys_segments = 2;
2568 		else
2569 			mbio->bi_phys_segments++;
2570 		spin_unlock_irq(&conf->device_lock);
2571 		generic_make_request(bio);
2572 
2573 		r10_bio = mempool_alloc(conf->r10bio_pool,
2574 					GFP_NOIO);
2575 		r10_bio->master_bio = mbio;
2576 		r10_bio->sectors = (mbio->bi_size >> 9)
2577 			- sectors_handled;
2578 		r10_bio->state = 0;
2579 		set_bit(R10BIO_ReadError,
2580 			&r10_bio->state);
2581 		r10_bio->mddev = mddev;
2582 		r10_bio->sector = mbio->bi_sector
2583 			+ sectors_handled;
2584 
2585 		goto read_more;
2586 	} else
2587 		generic_make_request(bio);
2588 }
2589 
2590 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2591 {
2592 	/* Some sort of write request has finished and it
2593 	 * succeeded in writing where we thought there was a
2594 	 * bad block.  So forget the bad block.
2595 	 * Or possibly if failed and we need to record
2596 	 * a bad block.
2597 	 */
2598 	int m;
2599 	struct md_rdev *rdev;
2600 
2601 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2602 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2603 		for (m = 0; m < conf->copies; m++) {
2604 			int dev = r10_bio->devs[m].devnum;
2605 			rdev = conf->mirrors[dev].rdev;
2606 			if (r10_bio->devs[m].bio == NULL)
2607 				continue;
2608 			if (test_bit(BIO_UPTODATE,
2609 				     &r10_bio->devs[m].bio->bi_flags)) {
2610 				rdev_clear_badblocks(
2611 					rdev,
2612 					r10_bio->devs[m].addr,
2613 					r10_bio->sectors, 0);
2614 			} else {
2615 				if (!rdev_set_badblocks(
2616 					    rdev,
2617 					    r10_bio->devs[m].addr,
2618 					    r10_bio->sectors, 0))
2619 					md_error(conf->mddev, rdev);
2620 			}
2621 			rdev = conf->mirrors[dev].replacement;
2622 			if (r10_bio->devs[m].repl_bio == NULL)
2623 				continue;
2624 			if (test_bit(BIO_UPTODATE,
2625 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2626 				rdev_clear_badblocks(
2627 					rdev,
2628 					r10_bio->devs[m].addr,
2629 					r10_bio->sectors, 0);
2630 			} else {
2631 				if (!rdev_set_badblocks(
2632 					    rdev,
2633 					    r10_bio->devs[m].addr,
2634 					    r10_bio->sectors, 0))
2635 					md_error(conf->mddev, rdev);
2636 			}
2637 		}
2638 		put_buf(r10_bio);
2639 	} else {
2640 		for (m = 0; m < conf->copies; m++) {
2641 			int dev = r10_bio->devs[m].devnum;
2642 			struct bio *bio = r10_bio->devs[m].bio;
2643 			rdev = conf->mirrors[dev].rdev;
2644 			if (bio == IO_MADE_GOOD) {
2645 				rdev_clear_badblocks(
2646 					rdev,
2647 					r10_bio->devs[m].addr,
2648 					r10_bio->sectors, 0);
2649 				rdev_dec_pending(rdev, conf->mddev);
2650 			} else if (bio != NULL &&
2651 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2652 				if (!narrow_write_error(r10_bio, m)) {
2653 					md_error(conf->mddev, rdev);
2654 					set_bit(R10BIO_Degraded,
2655 						&r10_bio->state);
2656 				}
2657 				rdev_dec_pending(rdev, conf->mddev);
2658 			}
2659 			bio = r10_bio->devs[m].repl_bio;
2660 			rdev = conf->mirrors[dev].replacement;
2661 			if (rdev && bio == IO_MADE_GOOD) {
2662 				rdev_clear_badblocks(
2663 					rdev,
2664 					r10_bio->devs[m].addr,
2665 					r10_bio->sectors, 0);
2666 				rdev_dec_pending(rdev, conf->mddev);
2667 			}
2668 		}
2669 		if (test_bit(R10BIO_WriteError,
2670 			     &r10_bio->state))
2671 			close_write(r10_bio);
2672 		raid_end_bio_io(r10_bio);
2673 	}
2674 }
2675 
2676 static void raid10d(struct mddev *mddev)
2677 {
2678 	struct r10bio *r10_bio;
2679 	unsigned long flags;
2680 	struct r10conf *conf = mddev->private;
2681 	struct list_head *head = &conf->retry_list;
2682 	struct blk_plug plug;
2683 
2684 	md_check_recovery(mddev);
2685 
2686 	blk_start_plug(&plug);
2687 	for (;;) {
2688 
2689 		flush_pending_writes(conf);
2690 
2691 		spin_lock_irqsave(&conf->device_lock, flags);
2692 		if (list_empty(head)) {
2693 			spin_unlock_irqrestore(&conf->device_lock, flags);
2694 			break;
2695 		}
2696 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2697 		list_del(head->prev);
2698 		conf->nr_queued--;
2699 		spin_unlock_irqrestore(&conf->device_lock, flags);
2700 
2701 		mddev = r10_bio->mddev;
2702 		conf = mddev->private;
2703 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2704 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2705 			handle_write_completed(conf, r10_bio);
2706 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2707 			reshape_request_write(mddev, r10_bio);
2708 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2709 			sync_request_write(mddev, r10_bio);
2710 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2711 			recovery_request_write(mddev, r10_bio);
2712 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2713 			handle_read_error(mddev, r10_bio);
2714 		else {
2715 			/* just a partial read to be scheduled from a
2716 			 * separate context
2717 			 */
2718 			int slot = r10_bio->read_slot;
2719 			generic_make_request(r10_bio->devs[slot].bio);
2720 		}
2721 
2722 		cond_resched();
2723 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2724 			md_check_recovery(mddev);
2725 	}
2726 	blk_finish_plug(&plug);
2727 }
2728 
2729 
2730 static int init_resync(struct r10conf *conf)
2731 {
2732 	int buffs;
2733 	int i;
2734 
2735 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2736 	BUG_ON(conf->r10buf_pool);
2737 	conf->have_replacement = 0;
2738 	for (i = 0; i < conf->geo.raid_disks; i++)
2739 		if (conf->mirrors[i].replacement)
2740 			conf->have_replacement = 1;
2741 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2742 	if (!conf->r10buf_pool)
2743 		return -ENOMEM;
2744 	conf->next_resync = 0;
2745 	return 0;
2746 }
2747 
2748 /*
2749  * perform a "sync" on one "block"
2750  *
2751  * We need to make sure that no normal I/O request - particularly write
2752  * requests - conflict with active sync requests.
2753  *
2754  * This is achieved by tracking pending requests and a 'barrier' concept
2755  * that can be installed to exclude normal IO requests.
2756  *
2757  * Resync and recovery are handled very differently.
2758  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2759  *
2760  * For resync, we iterate over virtual addresses, read all copies,
2761  * and update if there are differences.  If only one copy is live,
2762  * skip it.
2763  * For recovery, we iterate over physical addresses, read a good
2764  * value for each non-in_sync drive, and over-write.
2765  *
2766  * So, for recovery we may have several outstanding complex requests for a
2767  * given address, one for each out-of-sync device.  We model this by allocating
2768  * a number of r10_bio structures, one for each out-of-sync device.
2769  * As we setup these structures, we collect all bio's together into a list
2770  * which we then process collectively to add pages, and then process again
2771  * to pass to generic_make_request.
2772  *
2773  * The r10_bio structures are linked using a borrowed master_bio pointer.
2774  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2775  * has its remaining count decremented to 0, the whole complex operation
2776  * is complete.
2777  *
2778  */
2779 
2780 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2781 			     int *skipped, int go_faster)
2782 {
2783 	struct r10conf *conf = mddev->private;
2784 	struct r10bio *r10_bio;
2785 	struct bio *biolist = NULL, *bio;
2786 	sector_t max_sector, nr_sectors;
2787 	int i;
2788 	int max_sync;
2789 	sector_t sync_blocks;
2790 	sector_t sectors_skipped = 0;
2791 	int chunks_skipped = 0;
2792 	sector_t chunk_mask = conf->geo.chunk_mask;
2793 
2794 	if (!conf->r10buf_pool)
2795 		if (init_resync(conf))
2796 			return 0;
2797 
2798  skipped:
2799 	max_sector = mddev->dev_sectors;
2800 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2801 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2802 		max_sector = mddev->resync_max_sectors;
2803 	if (sector_nr >= max_sector) {
2804 		/* If we aborted, we need to abort the
2805 		 * sync on the 'current' bitmap chucks (there can
2806 		 * be several when recovering multiple devices).
2807 		 * as we may have started syncing it but not finished.
2808 		 * We can find the current address in
2809 		 * mddev->curr_resync, but for recovery,
2810 		 * we need to convert that to several
2811 		 * virtual addresses.
2812 		 */
2813 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2814 			end_reshape(conf);
2815 			return 0;
2816 		}
2817 
2818 		if (mddev->curr_resync < max_sector) { /* aborted */
2819 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2820 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2821 						&sync_blocks, 1);
2822 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2823 				sector_t sect =
2824 					raid10_find_virt(conf, mddev->curr_resync, i);
2825 				bitmap_end_sync(mddev->bitmap, sect,
2826 						&sync_blocks, 1);
2827 			}
2828 		} else {
2829 			/* completed sync */
2830 			if ((!mddev->bitmap || conf->fullsync)
2831 			    && conf->have_replacement
2832 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2833 				/* Completed a full sync so the replacements
2834 				 * are now fully recovered.
2835 				 */
2836 				for (i = 0; i < conf->geo.raid_disks; i++)
2837 					if (conf->mirrors[i].replacement)
2838 						conf->mirrors[i].replacement
2839 							->recovery_offset
2840 							= MaxSector;
2841 			}
2842 			conf->fullsync = 0;
2843 		}
2844 		bitmap_close_sync(mddev->bitmap);
2845 		close_sync(conf);
2846 		*skipped = 1;
2847 		return sectors_skipped;
2848 	}
2849 
2850 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2851 		return reshape_request(mddev, sector_nr, skipped);
2852 
2853 	if (chunks_skipped >= conf->geo.raid_disks) {
2854 		/* if there has been nothing to do on any drive,
2855 		 * then there is nothing to do at all..
2856 		 */
2857 		*skipped = 1;
2858 		return (max_sector - sector_nr) + sectors_skipped;
2859 	}
2860 
2861 	if (max_sector > mddev->resync_max)
2862 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2863 
2864 	/* make sure whole request will fit in a chunk - if chunks
2865 	 * are meaningful
2866 	 */
2867 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2868 	    max_sector > (sector_nr | chunk_mask))
2869 		max_sector = (sector_nr | chunk_mask) + 1;
2870 	/*
2871 	 * If there is non-resync activity waiting for us then
2872 	 * put in a delay to throttle resync.
2873 	 */
2874 	if (!go_faster && conf->nr_waiting)
2875 		msleep_interruptible(1000);
2876 
2877 	/* Again, very different code for resync and recovery.
2878 	 * Both must result in an r10bio with a list of bios that
2879 	 * have bi_end_io, bi_sector, bi_bdev set,
2880 	 * and bi_private set to the r10bio.
2881 	 * For recovery, we may actually create several r10bios
2882 	 * with 2 bios in each, that correspond to the bios in the main one.
2883 	 * In this case, the subordinate r10bios link back through a
2884 	 * borrowed master_bio pointer, and the counter in the master
2885 	 * includes a ref from each subordinate.
2886 	 */
2887 	/* First, we decide what to do and set ->bi_end_io
2888 	 * To end_sync_read if we want to read, and
2889 	 * end_sync_write if we will want to write.
2890 	 */
2891 
2892 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2893 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2894 		/* recovery... the complicated one */
2895 		int j;
2896 		r10_bio = NULL;
2897 
2898 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2899 			int still_degraded;
2900 			struct r10bio *rb2;
2901 			sector_t sect;
2902 			int must_sync;
2903 			int any_working;
2904 			struct raid10_info *mirror = &conf->mirrors[i];
2905 
2906 			if ((mirror->rdev == NULL ||
2907 			     test_bit(In_sync, &mirror->rdev->flags))
2908 			    &&
2909 			    (mirror->replacement == NULL ||
2910 			     test_bit(Faulty,
2911 				      &mirror->replacement->flags)))
2912 				continue;
2913 
2914 			still_degraded = 0;
2915 			/* want to reconstruct this device */
2916 			rb2 = r10_bio;
2917 			sect = raid10_find_virt(conf, sector_nr, i);
2918 			if (sect >= mddev->resync_max_sectors) {
2919 				/* last stripe is not complete - don't
2920 				 * try to recover this sector.
2921 				 */
2922 				continue;
2923 			}
2924 			/* Unless we are doing a full sync, or a replacement
2925 			 * we only need to recover the block if it is set in
2926 			 * the bitmap
2927 			 */
2928 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2929 						      &sync_blocks, 1);
2930 			if (sync_blocks < max_sync)
2931 				max_sync = sync_blocks;
2932 			if (!must_sync &&
2933 			    mirror->replacement == NULL &&
2934 			    !conf->fullsync) {
2935 				/* yep, skip the sync_blocks here, but don't assume
2936 				 * that there will never be anything to do here
2937 				 */
2938 				chunks_skipped = -1;
2939 				continue;
2940 			}
2941 
2942 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2943 			raise_barrier(conf, rb2 != NULL);
2944 			atomic_set(&r10_bio->remaining, 0);
2945 
2946 			r10_bio->master_bio = (struct bio*)rb2;
2947 			if (rb2)
2948 				atomic_inc(&rb2->remaining);
2949 			r10_bio->mddev = mddev;
2950 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2951 			r10_bio->sector = sect;
2952 
2953 			raid10_find_phys(conf, r10_bio);
2954 
2955 			/* Need to check if the array will still be
2956 			 * degraded
2957 			 */
2958 			for (j = 0; j < conf->geo.raid_disks; j++)
2959 				if (conf->mirrors[j].rdev == NULL ||
2960 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2961 					still_degraded = 1;
2962 					break;
2963 				}
2964 
2965 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2966 						      &sync_blocks, still_degraded);
2967 
2968 			any_working = 0;
2969 			for (j=0; j<conf->copies;j++) {
2970 				int k;
2971 				int d = r10_bio->devs[j].devnum;
2972 				sector_t from_addr, to_addr;
2973 				struct md_rdev *rdev;
2974 				sector_t sector, first_bad;
2975 				int bad_sectors;
2976 				if (!conf->mirrors[d].rdev ||
2977 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2978 					continue;
2979 				/* This is where we read from */
2980 				any_working = 1;
2981 				rdev = conf->mirrors[d].rdev;
2982 				sector = r10_bio->devs[j].addr;
2983 
2984 				if (is_badblock(rdev, sector, max_sync,
2985 						&first_bad, &bad_sectors)) {
2986 					if (first_bad > sector)
2987 						max_sync = first_bad - sector;
2988 					else {
2989 						bad_sectors -= (sector
2990 								- first_bad);
2991 						if (max_sync > bad_sectors)
2992 							max_sync = bad_sectors;
2993 						continue;
2994 					}
2995 				}
2996 				bio = r10_bio->devs[0].bio;
2997 				bio->bi_next = biolist;
2998 				biolist = bio;
2999 				bio->bi_private = r10_bio;
3000 				bio->bi_end_io = end_sync_read;
3001 				bio->bi_rw = READ;
3002 				from_addr = r10_bio->devs[j].addr;
3003 				bio->bi_sector = from_addr + rdev->data_offset;
3004 				bio->bi_bdev = rdev->bdev;
3005 				atomic_inc(&rdev->nr_pending);
3006 				/* and we write to 'i' (if not in_sync) */
3007 
3008 				for (k=0; k<conf->copies; k++)
3009 					if (r10_bio->devs[k].devnum == i)
3010 						break;
3011 				BUG_ON(k == conf->copies);
3012 				to_addr = r10_bio->devs[k].addr;
3013 				r10_bio->devs[0].devnum = d;
3014 				r10_bio->devs[0].addr = from_addr;
3015 				r10_bio->devs[1].devnum = i;
3016 				r10_bio->devs[1].addr = to_addr;
3017 
3018 				rdev = mirror->rdev;
3019 				if (!test_bit(In_sync, &rdev->flags)) {
3020 					bio = r10_bio->devs[1].bio;
3021 					bio->bi_next = biolist;
3022 					biolist = bio;
3023 					bio->bi_private = r10_bio;
3024 					bio->bi_end_io = end_sync_write;
3025 					bio->bi_rw = WRITE;
3026 					bio->bi_sector = to_addr
3027 						+ rdev->data_offset;
3028 					bio->bi_bdev = rdev->bdev;
3029 					atomic_inc(&r10_bio->remaining);
3030 				} else
3031 					r10_bio->devs[1].bio->bi_end_io = NULL;
3032 
3033 				/* and maybe write to replacement */
3034 				bio = r10_bio->devs[1].repl_bio;
3035 				if (bio)
3036 					bio->bi_end_io = NULL;
3037 				rdev = mirror->replacement;
3038 				/* Note: if rdev != NULL, then bio
3039 				 * cannot be NULL as r10buf_pool_alloc will
3040 				 * have allocated it.
3041 				 * So the second test here is pointless.
3042 				 * But it keeps semantic-checkers happy, and
3043 				 * this comment keeps human reviewers
3044 				 * happy.
3045 				 */
3046 				if (rdev == NULL || bio == NULL ||
3047 				    test_bit(Faulty, &rdev->flags))
3048 					break;
3049 				bio->bi_next = biolist;
3050 				biolist = bio;
3051 				bio->bi_private = r10_bio;
3052 				bio->bi_end_io = end_sync_write;
3053 				bio->bi_rw = WRITE;
3054 				bio->bi_sector = to_addr + rdev->data_offset;
3055 				bio->bi_bdev = rdev->bdev;
3056 				atomic_inc(&r10_bio->remaining);
3057 				break;
3058 			}
3059 			if (j == conf->copies) {
3060 				/* Cannot recover, so abort the recovery or
3061 				 * record a bad block */
3062 				put_buf(r10_bio);
3063 				if (rb2)
3064 					atomic_dec(&rb2->remaining);
3065 				r10_bio = rb2;
3066 				if (any_working) {
3067 					/* problem is that there are bad blocks
3068 					 * on other device(s)
3069 					 */
3070 					int k;
3071 					for (k = 0; k < conf->copies; k++)
3072 						if (r10_bio->devs[k].devnum == i)
3073 							break;
3074 					if (!test_bit(In_sync,
3075 						      &mirror->rdev->flags)
3076 					    && !rdev_set_badblocks(
3077 						    mirror->rdev,
3078 						    r10_bio->devs[k].addr,
3079 						    max_sync, 0))
3080 						any_working = 0;
3081 					if (mirror->replacement &&
3082 					    !rdev_set_badblocks(
3083 						    mirror->replacement,
3084 						    r10_bio->devs[k].addr,
3085 						    max_sync, 0))
3086 						any_working = 0;
3087 				}
3088 				if (!any_working)  {
3089 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3090 							      &mddev->recovery))
3091 						printk(KERN_INFO "md/raid10:%s: insufficient "
3092 						       "working devices for recovery.\n",
3093 						       mdname(mddev));
3094 					mirror->recovery_disabled
3095 						= mddev->recovery_disabled;
3096 				}
3097 				break;
3098 			}
3099 		}
3100 		if (biolist == NULL) {
3101 			while (r10_bio) {
3102 				struct r10bio *rb2 = r10_bio;
3103 				r10_bio = (struct r10bio*) rb2->master_bio;
3104 				rb2->master_bio = NULL;
3105 				put_buf(rb2);
3106 			}
3107 			goto giveup;
3108 		}
3109 	} else {
3110 		/* resync. Schedule a read for every block at this virt offset */
3111 		int count = 0;
3112 
3113 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3114 
3115 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3116 				       &sync_blocks, mddev->degraded) &&
3117 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3118 						 &mddev->recovery)) {
3119 			/* We can skip this block */
3120 			*skipped = 1;
3121 			return sync_blocks + sectors_skipped;
3122 		}
3123 		if (sync_blocks < max_sync)
3124 			max_sync = sync_blocks;
3125 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3126 
3127 		r10_bio->mddev = mddev;
3128 		atomic_set(&r10_bio->remaining, 0);
3129 		raise_barrier(conf, 0);
3130 		conf->next_resync = sector_nr;
3131 
3132 		r10_bio->master_bio = NULL;
3133 		r10_bio->sector = sector_nr;
3134 		set_bit(R10BIO_IsSync, &r10_bio->state);
3135 		raid10_find_phys(conf, r10_bio);
3136 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3137 
3138 		for (i = 0; i < conf->copies; i++) {
3139 			int d = r10_bio->devs[i].devnum;
3140 			sector_t first_bad, sector;
3141 			int bad_sectors;
3142 
3143 			if (r10_bio->devs[i].repl_bio)
3144 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3145 
3146 			bio = r10_bio->devs[i].bio;
3147 			bio->bi_end_io = NULL;
3148 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3149 			if (conf->mirrors[d].rdev == NULL ||
3150 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3151 				continue;
3152 			sector = r10_bio->devs[i].addr;
3153 			if (is_badblock(conf->mirrors[d].rdev,
3154 					sector, max_sync,
3155 					&first_bad, &bad_sectors)) {
3156 				if (first_bad > sector)
3157 					max_sync = first_bad - sector;
3158 				else {
3159 					bad_sectors -= (sector - first_bad);
3160 					if (max_sync > bad_sectors)
3161 						max_sync = max_sync;
3162 					continue;
3163 				}
3164 			}
3165 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3166 			atomic_inc(&r10_bio->remaining);
3167 			bio->bi_next = biolist;
3168 			biolist = bio;
3169 			bio->bi_private = r10_bio;
3170 			bio->bi_end_io = end_sync_read;
3171 			bio->bi_rw = READ;
3172 			bio->bi_sector = sector +
3173 				conf->mirrors[d].rdev->data_offset;
3174 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3175 			count++;
3176 
3177 			if (conf->mirrors[d].replacement == NULL ||
3178 			    test_bit(Faulty,
3179 				     &conf->mirrors[d].replacement->flags))
3180 				continue;
3181 
3182 			/* Need to set up for writing to the replacement */
3183 			bio = r10_bio->devs[i].repl_bio;
3184 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3185 
3186 			sector = r10_bio->devs[i].addr;
3187 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3188 			bio->bi_next = biolist;
3189 			biolist = bio;
3190 			bio->bi_private = r10_bio;
3191 			bio->bi_end_io = end_sync_write;
3192 			bio->bi_rw = WRITE;
3193 			bio->bi_sector = sector +
3194 				conf->mirrors[d].replacement->data_offset;
3195 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3196 			count++;
3197 		}
3198 
3199 		if (count < 2) {
3200 			for (i=0; i<conf->copies; i++) {
3201 				int d = r10_bio->devs[i].devnum;
3202 				if (r10_bio->devs[i].bio->bi_end_io)
3203 					rdev_dec_pending(conf->mirrors[d].rdev,
3204 							 mddev);
3205 				if (r10_bio->devs[i].repl_bio &&
3206 				    r10_bio->devs[i].repl_bio->bi_end_io)
3207 					rdev_dec_pending(
3208 						conf->mirrors[d].replacement,
3209 						mddev);
3210 			}
3211 			put_buf(r10_bio);
3212 			biolist = NULL;
3213 			goto giveup;
3214 		}
3215 	}
3216 
3217 	for (bio = biolist; bio ; bio=bio->bi_next) {
3218 
3219 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3220 		if (bio->bi_end_io)
3221 			bio->bi_flags |= 1 << BIO_UPTODATE;
3222 		bio->bi_vcnt = 0;
3223 		bio->bi_idx = 0;
3224 		bio->bi_phys_segments = 0;
3225 		bio->bi_size = 0;
3226 	}
3227 
3228 	nr_sectors = 0;
3229 	if (sector_nr + max_sync < max_sector)
3230 		max_sector = sector_nr + max_sync;
3231 	do {
3232 		struct page *page;
3233 		int len = PAGE_SIZE;
3234 		if (sector_nr + (len>>9) > max_sector)
3235 			len = (max_sector - sector_nr) << 9;
3236 		if (len == 0)
3237 			break;
3238 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3239 			struct bio *bio2;
3240 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3241 			if (bio_add_page(bio, page, len, 0))
3242 				continue;
3243 
3244 			/* stop here */
3245 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3246 			for (bio2 = biolist;
3247 			     bio2 && bio2 != bio;
3248 			     bio2 = bio2->bi_next) {
3249 				/* remove last page from this bio */
3250 				bio2->bi_vcnt--;
3251 				bio2->bi_size -= len;
3252 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3253 			}
3254 			goto bio_full;
3255 		}
3256 		nr_sectors += len>>9;
3257 		sector_nr += len>>9;
3258 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3259  bio_full:
3260 	r10_bio->sectors = nr_sectors;
3261 
3262 	while (biolist) {
3263 		bio = biolist;
3264 		biolist = biolist->bi_next;
3265 
3266 		bio->bi_next = NULL;
3267 		r10_bio = bio->bi_private;
3268 		r10_bio->sectors = nr_sectors;
3269 
3270 		if (bio->bi_end_io == end_sync_read) {
3271 			md_sync_acct(bio->bi_bdev, nr_sectors);
3272 			generic_make_request(bio);
3273 		}
3274 	}
3275 
3276 	if (sectors_skipped)
3277 		/* pretend they weren't skipped, it makes
3278 		 * no important difference in this case
3279 		 */
3280 		md_done_sync(mddev, sectors_skipped, 1);
3281 
3282 	return sectors_skipped + nr_sectors;
3283  giveup:
3284 	/* There is nowhere to write, so all non-sync
3285 	 * drives must be failed or in resync, all drives
3286 	 * have a bad block, so try the next chunk...
3287 	 */
3288 	if (sector_nr + max_sync < max_sector)
3289 		max_sector = sector_nr + max_sync;
3290 
3291 	sectors_skipped += (max_sector - sector_nr);
3292 	chunks_skipped ++;
3293 	sector_nr = max_sector;
3294 	goto skipped;
3295 }
3296 
3297 static sector_t
3298 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3299 {
3300 	sector_t size;
3301 	struct r10conf *conf = mddev->private;
3302 
3303 	if (!raid_disks)
3304 		raid_disks = min(conf->geo.raid_disks,
3305 				 conf->prev.raid_disks);
3306 	if (!sectors)
3307 		sectors = conf->dev_sectors;
3308 
3309 	size = sectors >> conf->geo.chunk_shift;
3310 	sector_div(size, conf->geo.far_copies);
3311 	size = size * raid_disks;
3312 	sector_div(size, conf->geo.near_copies);
3313 
3314 	return size << conf->geo.chunk_shift;
3315 }
3316 
3317 static void calc_sectors(struct r10conf *conf, sector_t size)
3318 {
3319 	/* Calculate the number of sectors-per-device that will
3320 	 * actually be used, and set conf->dev_sectors and
3321 	 * conf->stride
3322 	 */
3323 
3324 	size = size >> conf->geo.chunk_shift;
3325 	sector_div(size, conf->geo.far_copies);
3326 	size = size * conf->geo.raid_disks;
3327 	sector_div(size, conf->geo.near_copies);
3328 	/* 'size' is now the number of chunks in the array */
3329 	/* calculate "used chunks per device" */
3330 	size = size * conf->copies;
3331 
3332 	/* We need to round up when dividing by raid_disks to
3333 	 * get the stride size.
3334 	 */
3335 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3336 
3337 	conf->dev_sectors = size << conf->geo.chunk_shift;
3338 
3339 	if (conf->geo.far_offset)
3340 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3341 	else {
3342 		sector_div(size, conf->geo.far_copies);
3343 		conf->geo.stride = size << conf->geo.chunk_shift;
3344 	}
3345 }
3346 
3347 enum geo_type {geo_new, geo_old, geo_start};
3348 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3349 {
3350 	int nc, fc, fo;
3351 	int layout, chunk, disks;
3352 	switch (new) {
3353 	case geo_old:
3354 		layout = mddev->layout;
3355 		chunk = mddev->chunk_sectors;
3356 		disks = mddev->raid_disks - mddev->delta_disks;
3357 		break;
3358 	case geo_new:
3359 		layout = mddev->new_layout;
3360 		chunk = mddev->new_chunk_sectors;
3361 		disks = mddev->raid_disks;
3362 		break;
3363 	default: /* avoid 'may be unused' warnings */
3364 	case geo_start: /* new when starting reshape - raid_disks not
3365 			 * updated yet. */
3366 		layout = mddev->new_layout;
3367 		chunk = mddev->new_chunk_sectors;
3368 		disks = mddev->raid_disks + mddev->delta_disks;
3369 		break;
3370 	}
3371 	if (layout >> 17)
3372 		return -1;
3373 	if (chunk < (PAGE_SIZE >> 9) ||
3374 	    !is_power_of_2(chunk))
3375 		return -2;
3376 	nc = layout & 255;
3377 	fc = (layout >> 8) & 255;
3378 	fo = layout & (1<<16);
3379 	geo->raid_disks = disks;
3380 	geo->near_copies = nc;
3381 	geo->far_copies = fc;
3382 	geo->far_offset = fo;
3383 	geo->chunk_mask = chunk - 1;
3384 	geo->chunk_shift = ffz(~chunk);
3385 	return nc*fc;
3386 }
3387 
3388 static struct r10conf *setup_conf(struct mddev *mddev)
3389 {
3390 	struct r10conf *conf = NULL;
3391 	int err = -EINVAL;
3392 	struct geom geo;
3393 	int copies;
3394 
3395 	copies = setup_geo(&geo, mddev, geo_new);
3396 
3397 	if (copies == -2) {
3398 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3399 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3400 		       mdname(mddev), PAGE_SIZE);
3401 		goto out;
3402 	}
3403 
3404 	if (copies < 2 || copies > mddev->raid_disks) {
3405 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3406 		       mdname(mddev), mddev->new_layout);
3407 		goto out;
3408 	}
3409 
3410 	err = -ENOMEM;
3411 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3412 	if (!conf)
3413 		goto out;
3414 
3415 	/* FIXME calc properly */
3416 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3417 							    max(0,mddev->delta_disks)),
3418 				GFP_KERNEL);
3419 	if (!conf->mirrors)
3420 		goto out;
3421 
3422 	conf->tmppage = alloc_page(GFP_KERNEL);
3423 	if (!conf->tmppage)
3424 		goto out;
3425 
3426 	conf->geo = geo;
3427 	conf->copies = copies;
3428 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3429 					   r10bio_pool_free, conf);
3430 	if (!conf->r10bio_pool)
3431 		goto out;
3432 
3433 	calc_sectors(conf, mddev->dev_sectors);
3434 	if (mddev->reshape_position == MaxSector) {
3435 		conf->prev = conf->geo;
3436 		conf->reshape_progress = MaxSector;
3437 	} else {
3438 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3439 			err = -EINVAL;
3440 			goto out;
3441 		}
3442 		conf->reshape_progress = mddev->reshape_position;
3443 		if (conf->prev.far_offset)
3444 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3445 		else
3446 			/* far_copies must be 1 */
3447 			conf->prev.stride = conf->dev_sectors;
3448 	}
3449 	spin_lock_init(&conf->device_lock);
3450 	INIT_LIST_HEAD(&conf->retry_list);
3451 
3452 	spin_lock_init(&conf->resync_lock);
3453 	init_waitqueue_head(&conf->wait_barrier);
3454 
3455 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3456 	if (!conf->thread)
3457 		goto out;
3458 
3459 	conf->mddev = mddev;
3460 	return conf;
3461 
3462  out:
3463 	if (err == -ENOMEM)
3464 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3465 		       mdname(mddev));
3466 	if (conf) {
3467 		if (conf->r10bio_pool)
3468 			mempool_destroy(conf->r10bio_pool);
3469 		kfree(conf->mirrors);
3470 		safe_put_page(conf->tmppage);
3471 		kfree(conf);
3472 	}
3473 	return ERR_PTR(err);
3474 }
3475 
3476 static int run(struct mddev *mddev)
3477 {
3478 	struct r10conf *conf;
3479 	int i, disk_idx, chunk_size;
3480 	struct raid10_info *disk;
3481 	struct md_rdev *rdev;
3482 	sector_t size;
3483 	sector_t min_offset_diff = 0;
3484 	int first = 1;
3485 
3486 	if (mddev->private == NULL) {
3487 		conf = setup_conf(mddev);
3488 		if (IS_ERR(conf))
3489 			return PTR_ERR(conf);
3490 		mddev->private = conf;
3491 	}
3492 	conf = mddev->private;
3493 	if (!conf)
3494 		goto out;
3495 
3496 	mddev->thread = conf->thread;
3497 	conf->thread = NULL;
3498 
3499 	chunk_size = mddev->chunk_sectors << 9;
3500 	if (mddev->queue) {
3501 		blk_queue_io_min(mddev->queue, chunk_size);
3502 		if (conf->geo.raid_disks % conf->geo.near_copies)
3503 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3504 		else
3505 			blk_queue_io_opt(mddev->queue, chunk_size *
3506 					 (conf->geo.raid_disks / conf->geo.near_copies));
3507 	}
3508 
3509 	rdev_for_each(rdev, mddev) {
3510 		long long diff;
3511 		struct request_queue *q;
3512 
3513 		disk_idx = rdev->raid_disk;
3514 		if (disk_idx < 0)
3515 			continue;
3516 		if (disk_idx >= conf->geo.raid_disks &&
3517 		    disk_idx >= conf->prev.raid_disks)
3518 			continue;
3519 		disk = conf->mirrors + disk_idx;
3520 
3521 		if (test_bit(Replacement, &rdev->flags)) {
3522 			if (disk->replacement)
3523 				goto out_free_conf;
3524 			disk->replacement = rdev;
3525 		} else {
3526 			if (disk->rdev)
3527 				goto out_free_conf;
3528 			disk->rdev = rdev;
3529 		}
3530 		q = bdev_get_queue(rdev->bdev);
3531 		if (q->merge_bvec_fn)
3532 			mddev->merge_check_needed = 1;
3533 		diff = (rdev->new_data_offset - rdev->data_offset);
3534 		if (!mddev->reshape_backwards)
3535 			diff = -diff;
3536 		if (diff < 0)
3537 			diff = 0;
3538 		if (first || diff < min_offset_diff)
3539 			min_offset_diff = diff;
3540 
3541 		if (mddev->gendisk)
3542 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3543 					  rdev->data_offset << 9);
3544 
3545 		disk->head_position = 0;
3546 	}
3547 
3548 	/* need to check that every block has at least one working mirror */
3549 	if (!enough(conf, -1)) {
3550 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3551 		       mdname(mddev));
3552 		goto out_free_conf;
3553 	}
3554 
3555 	if (conf->reshape_progress != MaxSector) {
3556 		/* must ensure that shape change is supported */
3557 		if (conf->geo.far_copies != 1 &&
3558 		    conf->geo.far_offset == 0)
3559 			goto out_free_conf;
3560 		if (conf->prev.far_copies != 1 &&
3561 		    conf->geo.far_offset == 0)
3562 			goto out_free_conf;
3563 	}
3564 
3565 	mddev->degraded = 0;
3566 	for (i = 0;
3567 	     i < conf->geo.raid_disks
3568 		     || i < conf->prev.raid_disks;
3569 	     i++) {
3570 
3571 		disk = conf->mirrors + i;
3572 
3573 		if (!disk->rdev && disk->replacement) {
3574 			/* The replacement is all we have - use it */
3575 			disk->rdev = disk->replacement;
3576 			disk->replacement = NULL;
3577 			clear_bit(Replacement, &disk->rdev->flags);
3578 		}
3579 
3580 		if (!disk->rdev ||
3581 		    !test_bit(In_sync, &disk->rdev->flags)) {
3582 			disk->head_position = 0;
3583 			mddev->degraded++;
3584 			if (disk->rdev)
3585 				conf->fullsync = 1;
3586 		}
3587 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3588 	}
3589 
3590 	if (mddev->recovery_cp != MaxSector)
3591 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3592 		       " -- starting background reconstruction\n",
3593 		       mdname(mddev));
3594 	printk(KERN_INFO
3595 		"md/raid10:%s: active with %d out of %d devices\n",
3596 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3597 		conf->geo.raid_disks);
3598 	/*
3599 	 * Ok, everything is just fine now
3600 	 */
3601 	mddev->dev_sectors = conf->dev_sectors;
3602 	size = raid10_size(mddev, 0, 0);
3603 	md_set_array_sectors(mddev, size);
3604 	mddev->resync_max_sectors = size;
3605 
3606 	if (mddev->queue) {
3607 		int stripe = conf->geo.raid_disks *
3608 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3609 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3610 		mddev->queue->backing_dev_info.congested_data = mddev;
3611 
3612 		/* Calculate max read-ahead size.
3613 		 * We need to readahead at least twice a whole stripe....
3614 		 * maybe...
3615 		 */
3616 		stripe /= conf->geo.near_copies;
3617 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3618 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3619 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3620 	}
3621 
3622 
3623 	if (md_integrity_register(mddev))
3624 		goto out_free_conf;
3625 
3626 	if (conf->reshape_progress != MaxSector) {
3627 		unsigned long before_length, after_length;
3628 
3629 		before_length = ((1 << conf->prev.chunk_shift) *
3630 				 conf->prev.far_copies);
3631 		after_length = ((1 << conf->geo.chunk_shift) *
3632 				conf->geo.far_copies);
3633 
3634 		if (max(before_length, after_length) > min_offset_diff) {
3635 			/* This cannot work */
3636 			printk("md/raid10: offset difference not enough to continue reshape\n");
3637 			goto out_free_conf;
3638 		}
3639 		conf->offset_diff = min_offset_diff;
3640 
3641 		conf->reshape_safe = conf->reshape_progress;
3642 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3643 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3644 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3645 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3646 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3647 							"reshape");
3648 	}
3649 
3650 	return 0;
3651 
3652 out_free_conf:
3653 	md_unregister_thread(&mddev->thread);
3654 	if (conf->r10bio_pool)
3655 		mempool_destroy(conf->r10bio_pool);
3656 	safe_put_page(conf->tmppage);
3657 	kfree(conf->mirrors);
3658 	kfree(conf);
3659 	mddev->private = NULL;
3660 out:
3661 	return -EIO;
3662 }
3663 
3664 static int stop(struct mddev *mddev)
3665 {
3666 	struct r10conf *conf = mddev->private;
3667 
3668 	raise_barrier(conf, 0);
3669 	lower_barrier(conf);
3670 
3671 	md_unregister_thread(&mddev->thread);
3672 	if (mddev->queue)
3673 		/* the unplug fn references 'conf'*/
3674 		blk_sync_queue(mddev->queue);
3675 
3676 	if (conf->r10bio_pool)
3677 		mempool_destroy(conf->r10bio_pool);
3678 	kfree(conf->mirrors);
3679 	kfree(conf);
3680 	mddev->private = NULL;
3681 	return 0;
3682 }
3683 
3684 static void raid10_quiesce(struct mddev *mddev, int state)
3685 {
3686 	struct r10conf *conf = mddev->private;
3687 
3688 	switch(state) {
3689 	case 1:
3690 		raise_barrier(conf, 0);
3691 		break;
3692 	case 0:
3693 		lower_barrier(conf);
3694 		break;
3695 	}
3696 }
3697 
3698 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3699 {
3700 	/* Resize of 'far' arrays is not supported.
3701 	 * For 'near' and 'offset' arrays we can set the
3702 	 * number of sectors used to be an appropriate multiple
3703 	 * of the chunk size.
3704 	 * For 'offset', this is far_copies*chunksize.
3705 	 * For 'near' the multiplier is the LCM of
3706 	 * near_copies and raid_disks.
3707 	 * So if far_copies > 1 && !far_offset, fail.
3708 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3709 	 * multiply by chunk_size.  Then round to this number.
3710 	 * This is mostly done by raid10_size()
3711 	 */
3712 	struct r10conf *conf = mddev->private;
3713 	sector_t oldsize, size;
3714 
3715 	if (mddev->reshape_position != MaxSector)
3716 		return -EBUSY;
3717 
3718 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3719 		return -EINVAL;
3720 
3721 	oldsize = raid10_size(mddev, 0, 0);
3722 	size = raid10_size(mddev, sectors, 0);
3723 	if (mddev->external_size &&
3724 	    mddev->array_sectors > size)
3725 		return -EINVAL;
3726 	if (mddev->bitmap) {
3727 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3728 		if (ret)
3729 			return ret;
3730 	}
3731 	md_set_array_sectors(mddev, size);
3732 	set_capacity(mddev->gendisk, mddev->array_sectors);
3733 	revalidate_disk(mddev->gendisk);
3734 	if (sectors > mddev->dev_sectors &&
3735 	    mddev->recovery_cp > oldsize) {
3736 		mddev->recovery_cp = oldsize;
3737 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3738 	}
3739 	calc_sectors(conf, sectors);
3740 	mddev->dev_sectors = conf->dev_sectors;
3741 	mddev->resync_max_sectors = size;
3742 	return 0;
3743 }
3744 
3745 static void *raid10_takeover_raid0(struct mddev *mddev)
3746 {
3747 	struct md_rdev *rdev;
3748 	struct r10conf *conf;
3749 
3750 	if (mddev->degraded > 0) {
3751 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3752 		       mdname(mddev));
3753 		return ERR_PTR(-EINVAL);
3754 	}
3755 
3756 	/* Set new parameters */
3757 	mddev->new_level = 10;
3758 	/* new layout: far_copies = 1, near_copies = 2 */
3759 	mddev->new_layout = (1<<8) + 2;
3760 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3761 	mddev->delta_disks = mddev->raid_disks;
3762 	mddev->raid_disks *= 2;
3763 	/* make sure it will be not marked as dirty */
3764 	mddev->recovery_cp = MaxSector;
3765 
3766 	conf = setup_conf(mddev);
3767 	if (!IS_ERR(conf)) {
3768 		rdev_for_each(rdev, mddev)
3769 			if (rdev->raid_disk >= 0)
3770 				rdev->new_raid_disk = rdev->raid_disk * 2;
3771 		conf->barrier = 1;
3772 	}
3773 
3774 	return conf;
3775 }
3776 
3777 static void *raid10_takeover(struct mddev *mddev)
3778 {
3779 	struct r0conf *raid0_conf;
3780 
3781 	/* raid10 can take over:
3782 	 *  raid0 - providing it has only two drives
3783 	 */
3784 	if (mddev->level == 0) {
3785 		/* for raid0 takeover only one zone is supported */
3786 		raid0_conf = mddev->private;
3787 		if (raid0_conf->nr_strip_zones > 1) {
3788 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3789 			       " with more than one zone.\n",
3790 			       mdname(mddev));
3791 			return ERR_PTR(-EINVAL);
3792 		}
3793 		return raid10_takeover_raid0(mddev);
3794 	}
3795 	return ERR_PTR(-EINVAL);
3796 }
3797 
3798 static int raid10_check_reshape(struct mddev *mddev)
3799 {
3800 	/* Called when there is a request to change
3801 	 * - layout (to ->new_layout)
3802 	 * - chunk size (to ->new_chunk_sectors)
3803 	 * - raid_disks (by delta_disks)
3804 	 * or when trying to restart a reshape that was ongoing.
3805 	 *
3806 	 * We need to validate the request and possibly allocate
3807 	 * space if that might be an issue later.
3808 	 *
3809 	 * Currently we reject any reshape of a 'far' mode array,
3810 	 * allow chunk size to change if new is generally acceptable,
3811 	 * allow raid_disks to increase, and allow
3812 	 * a switch between 'near' mode and 'offset' mode.
3813 	 */
3814 	struct r10conf *conf = mddev->private;
3815 	struct geom geo;
3816 
3817 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3818 		return -EINVAL;
3819 
3820 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3821 		/* mustn't change number of copies */
3822 		return -EINVAL;
3823 	if (geo.far_copies > 1 && !geo.far_offset)
3824 		/* Cannot switch to 'far' mode */
3825 		return -EINVAL;
3826 
3827 	if (mddev->array_sectors & geo.chunk_mask)
3828 			/* not factor of array size */
3829 			return -EINVAL;
3830 
3831 	if (!enough(conf, -1))
3832 		return -EINVAL;
3833 
3834 	kfree(conf->mirrors_new);
3835 	conf->mirrors_new = NULL;
3836 	if (mddev->delta_disks > 0) {
3837 		/* allocate new 'mirrors' list */
3838 		conf->mirrors_new = kzalloc(
3839 			sizeof(struct raid10_info)
3840 			*(mddev->raid_disks +
3841 			  mddev->delta_disks),
3842 			GFP_KERNEL);
3843 		if (!conf->mirrors_new)
3844 			return -ENOMEM;
3845 	}
3846 	return 0;
3847 }
3848 
3849 /*
3850  * Need to check if array has failed when deciding whether to:
3851  *  - start an array
3852  *  - remove non-faulty devices
3853  *  - add a spare
3854  *  - allow a reshape
3855  * This determination is simple when no reshape is happening.
3856  * However if there is a reshape, we need to carefully check
3857  * both the before and after sections.
3858  * This is because some failed devices may only affect one
3859  * of the two sections, and some non-in_sync devices may
3860  * be insync in the section most affected by failed devices.
3861  */
3862 static int calc_degraded(struct r10conf *conf)
3863 {
3864 	int degraded, degraded2;
3865 	int i;
3866 
3867 	rcu_read_lock();
3868 	degraded = 0;
3869 	/* 'prev' section first */
3870 	for (i = 0; i < conf->prev.raid_disks; i++) {
3871 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3872 		if (!rdev || test_bit(Faulty, &rdev->flags))
3873 			degraded++;
3874 		else if (!test_bit(In_sync, &rdev->flags))
3875 			/* When we can reduce the number of devices in
3876 			 * an array, this might not contribute to
3877 			 * 'degraded'.  It does now.
3878 			 */
3879 			degraded++;
3880 	}
3881 	rcu_read_unlock();
3882 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3883 		return degraded;
3884 	rcu_read_lock();
3885 	degraded2 = 0;
3886 	for (i = 0; i < conf->geo.raid_disks; i++) {
3887 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3888 		if (!rdev || test_bit(Faulty, &rdev->flags))
3889 			degraded2++;
3890 		else if (!test_bit(In_sync, &rdev->flags)) {
3891 			/* If reshape is increasing the number of devices,
3892 			 * this section has already been recovered, so
3893 			 * it doesn't contribute to degraded.
3894 			 * else it does.
3895 			 */
3896 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3897 				degraded2++;
3898 		}
3899 	}
3900 	rcu_read_unlock();
3901 	if (degraded2 > degraded)
3902 		return degraded2;
3903 	return degraded;
3904 }
3905 
3906 static int raid10_start_reshape(struct mddev *mddev)
3907 {
3908 	/* A 'reshape' has been requested. This commits
3909 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3910 	 * This also checks if there are enough spares and adds them
3911 	 * to the array.
3912 	 * We currently require enough spares to make the final
3913 	 * array non-degraded.  We also require that the difference
3914 	 * between old and new data_offset - on each device - is
3915 	 * enough that we never risk over-writing.
3916 	 */
3917 
3918 	unsigned long before_length, after_length;
3919 	sector_t min_offset_diff = 0;
3920 	int first = 1;
3921 	struct geom new;
3922 	struct r10conf *conf = mddev->private;
3923 	struct md_rdev *rdev;
3924 	int spares = 0;
3925 	int ret;
3926 
3927 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3928 		return -EBUSY;
3929 
3930 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3931 		return -EINVAL;
3932 
3933 	before_length = ((1 << conf->prev.chunk_shift) *
3934 			 conf->prev.far_copies);
3935 	after_length = ((1 << conf->geo.chunk_shift) *
3936 			conf->geo.far_copies);
3937 
3938 	rdev_for_each(rdev, mddev) {
3939 		if (!test_bit(In_sync, &rdev->flags)
3940 		    && !test_bit(Faulty, &rdev->flags))
3941 			spares++;
3942 		if (rdev->raid_disk >= 0) {
3943 			long long diff = (rdev->new_data_offset
3944 					  - rdev->data_offset);
3945 			if (!mddev->reshape_backwards)
3946 				diff = -diff;
3947 			if (diff < 0)
3948 				diff = 0;
3949 			if (first || diff < min_offset_diff)
3950 				min_offset_diff = diff;
3951 		}
3952 	}
3953 
3954 	if (max(before_length, after_length) > min_offset_diff)
3955 		return -EINVAL;
3956 
3957 	if (spares < mddev->delta_disks)
3958 		return -EINVAL;
3959 
3960 	conf->offset_diff = min_offset_diff;
3961 	spin_lock_irq(&conf->device_lock);
3962 	if (conf->mirrors_new) {
3963 		memcpy(conf->mirrors_new, conf->mirrors,
3964 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
3965 		smp_mb();
3966 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
3967 		conf->mirrors_old = conf->mirrors;
3968 		conf->mirrors = conf->mirrors_new;
3969 		conf->mirrors_new = NULL;
3970 	}
3971 	setup_geo(&conf->geo, mddev, geo_start);
3972 	smp_mb();
3973 	if (mddev->reshape_backwards) {
3974 		sector_t size = raid10_size(mddev, 0, 0);
3975 		if (size < mddev->array_sectors) {
3976 			spin_unlock_irq(&conf->device_lock);
3977 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3978 			       mdname(mddev));
3979 			return -EINVAL;
3980 		}
3981 		mddev->resync_max_sectors = size;
3982 		conf->reshape_progress = size;
3983 	} else
3984 		conf->reshape_progress = 0;
3985 	spin_unlock_irq(&conf->device_lock);
3986 
3987 	if (mddev->delta_disks && mddev->bitmap) {
3988 		ret = bitmap_resize(mddev->bitmap,
3989 				    raid10_size(mddev, 0,
3990 						conf->geo.raid_disks),
3991 				    0, 0);
3992 		if (ret)
3993 			goto abort;
3994 	}
3995 	if (mddev->delta_disks > 0) {
3996 		rdev_for_each(rdev, mddev)
3997 			if (rdev->raid_disk < 0 &&
3998 			    !test_bit(Faulty, &rdev->flags)) {
3999 				if (raid10_add_disk(mddev, rdev) == 0) {
4000 					if (rdev->raid_disk >=
4001 					    conf->prev.raid_disks)
4002 						set_bit(In_sync, &rdev->flags);
4003 					else
4004 						rdev->recovery_offset = 0;
4005 
4006 					if (sysfs_link_rdev(mddev, rdev))
4007 						/* Failure here  is OK */;
4008 				}
4009 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4010 				   && !test_bit(Faulty, &rdev->flags)) {
4011 				/* This is a spare that was manually added */
4012 				set_bit(In_sync, &rdev->flags);
4013 			}
4014 	}
4015 	/* When a reshape changes the number of devices,
4016 	 * ->degraded is measured against the larger of the
4017 	 * pre and  post numbers.
4018 	 */
4019 	spin_lock_irq(&conf->device_lock);
4020 	mddev->degraded = calc_degraded(conf);
4021 	spin_unlock_irq(&conf->device_lock);
4022 	mddev->raid_disks = conf->geo.raid_disks;
4023 	mddev->reshape_position = conf->reshape_progress;
4024 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4025 
4026 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4027 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4028 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4029 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4030 
4031 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4032 						"reshape");
4033 	if (!mddev->sync_thread) {
4034 		ret = -EAGAIN;
4035 		goto abort;
4036 	}
4037 	conf->reshape_checkpoint = jiffies;
4038 	md_wakeup_thread(mddev->sync_thread);
4039 	md_new_event(mddev);
4040 	return 0;
4041 
4042 abort:
4043 	mddev->recovery = 0;
4044 	spin_lock_irq(&conf->device_lock);
4045 	conf->geo = conf->prev;
4046 	mddev->raid_disks = conf->geo.raid_disks;
4047 	rdev_for_each(rdev, mddev)
4048 		rdev->new_data_offset = rdev->data_offset;
4049 	smp_wmb();
4050 	conf->reshape_progress = MaxSector;
4051 	mddev->reshape_position = MaxSector;
4052 	spin_unlock_irq(&conf->device_lock);
4053 	return ret;
4054 }
4055 
4056 /* Calculate the last device-address that could contain
4057  * any block from the chunk that includes the array-address 's'
4058  * and report the next address.
4059  * i.e. the address returned will be chunk-aligned and after
4060  * any data that is in the chunk containing 's'.
4061  */
4062 static sector_t last_dev_address(sector_t s, struct geom *geo)
4063 {
4064 	s = (s | geo->chunk_mask) + 1;
4065 	s >>= geo->chunk_shift;
4066 	s *= geo->near_copies;
4067 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4068 	s *= geo->far_copies;
4069 	s <<= geo->chunk_shift;
4070 	return s;
4071 }
4072 
4073 /* Calculate the first device-address that could contain
4074  * any block from the chunk that includes the array-address 's'.
4075  * This too will be the start of a chunk
4076  */
4077 static sector_t first_dev_address(sector_t s, struct geom *geo)
4078 {
4079 	s >>= geo->chunk_shift;
4080 	s *= geo->near_copies;
4081 	sector_div(s, geo->raid_disks);
4082 	s *= geo->far_copies;
4083 	s <<= geo->chunk_shift;
4084 	return s;
4085 }
4086 
4087 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4088 				int *skipped)
4089 {
4090 	/* We simply copy at most one chunk (smallest of old and new)
4091 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4092 	 * or we hit a bad block or something.
4093 	 * This might mean we pause for normal IO in the middle of
4094 	 * a chunk, but that is not a problem was mddev->reshape_position
4095 	 * can record any location.
4096 	 *
4097 	 * If we will want to write to a location that isn't
4098 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4099 	 * we need to flush all reshape requests and update the metadata.
4100 	 *
4101 	 * When reshaping forwards (e.g. to more devices), we interpret
4102 	 * 'safe' as the earliest block which might not have been copied
4103 	 * down yet.  We divide this by previous stripe size and multiply
4104 	 * by previous stripe length to get lowest device offset that we
4105 	 * cannot write to yet.
4106 	 * We interpret 'sector_nr' as an address that we want to write to.
4107 	 * From this we use last_device_address() to find where we might
4108 	 * write to, and first_device_address on the  'safe' position.
4109 	 * If this 'next' write position is after the 'safe' position,
4110 	 * we must update the metadata to increase the 'safe' position.
4111 	 *
4112 	 * When reshaping backwards, we round in the opposite direction
4113 	 * and perform the reverse test:  next write position must not be
4114 	 * less than current safe position.
4115 	 *
4116 	 * In all this the minimum difference in data offsets
4117 	 * (conf->offset_diff - always positive) allows a bit of slack,
4118 	 * so next can be after 'safe', but not by more than offset_disk
4119 	 *
4120 	 * We need to prepare all the bios here before we start any IO
4121 	 * to ensure the size we choose is acceptable to all devices.
4122 	 * The means one for each copy for write-out and an extra one for
4123 	 * read-in.
4124 	 * We store the read-in bio in ->master_bio and the others in
4125 	 * ->devs[x].bio and ->devs[x].repl_bio.
4126 	 */
4127 	struct r10conf *conf = mddev->private;
4128 	struct r10bio *r10_bio;
4129 	sector_t next, safe, last;
4130 	int max_sectors;
4131 	int nr_sectors;
4132 	int s;
4133 	struct md_rdev *rdev;
4134 	int need_flush = 0;
4135 	struct bio *blist;
4136 	struct bio *bio, *read_bio;
4137 	int sectors_done = 0;
4138 
4139 	if (sector_nr == 0) {
4140 		/* If restarting in the middle, skip the initial sectors */
4141 		if (mddev->reshape_backwards &&
4142 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4143 			sector_nr = (raid10_size(mddev, 0, 0)
4144 				     - conf->reshape_progress);
4145 		} else if (!mddev->reshape_backwards &&
4146 			   conf->reshape_progress > 0)
4147 			sector_nr = conf->reshape_progress;
4148 		if (sector_nr) {
4149 			mddev->curr_resync_completed = sector_nr;
4150 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4151 			*skipped = 1;
4152 			return sector_nr;
4153 		}
4154 	}
4155 
4156 	/* We don't use sector_nr to track where we are up to
4157 	 * as that doesn't work well for ->reshape_backwards.
4158 	 * So just use ->reshape_progress.
4159 	 */
4160 	if (mddev->reshape_backwards) {
4161 		/* 'next' is the earliest device address that we might
4162 		 * write to for this chunk in the new layout
4163 		 */
4164 		next = first_dev_address(conf->reshape_progress - 1,
4165 					 &conf->geo);
4166 
4167 		/* 'safe' is the last device address that we might read from
4168 		 * in the old layout after a restart
4169 		 */
4170 		safe = last_dev_address(conf->reshape_safe - 1,
4171 					&conf->prev);
4172 
4173 		if (next + conf->offset_diff < safe)
4174 			need_flush = 1;
4175 
4176 		last = conf->reshape_progress - 1;
4177 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4178 					       & conf->prev.chunk_mask);
4179 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4180 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4181 	} else {
4182 		/* 'next' is after the last device address that we
4183 		 * might write to for this chunk in the new layout
4184 		 */
4185 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4186 
4187 		/* 'safe' is the earliest device address that we might
4188 		 * read from in the old layout after a restart
4189 		 */
4190 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4191 
4192 		/* Need to update metadata if 'next' might be beyond 'safe'
4193 		 * as that would possibly corrupt data
4194 		 */
4195 		if (next > safe + conf->offset_diff)
4196 			need_flush = 1;
4197 
4198 		sector_nr = conf->reshape_progress;
4199 		last  = sector_nr | (conf->geo.chunk_mask
4200 				     & conf->prev.chunk_mask);
4201 
4202 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4203 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4204 	}
4205 
4206 	if (need_flush ||
4207 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4208 		/* Need to update reshape_position in metadata */
4209 		wait_barrier(conf);
4210 		mddev->reshape_position = conf->reshape_progress;
4211 		if (mddev->reshape_backwards)
4212 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4213 				- conf->reshape_progress;
4214 		else
4215 			mddev->curr_resync_completed = conf->reshape_progress;
4216 		conf->reshape_checkpoint = jiffies;
4217 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4218 		md_wakeup_thread(mddev->thread);
4219 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4220 			   kthread_should_stop());
4221 		conf->reshape_safe = mddev->reshape_position;
4222 		allow_barrier(conf);
4223 	}
4224 
4225 read_more:
4226 	/* Now schedule reads for blocks from sector_nr to last */
4227 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4228 	raise_barrier(conf, sectors_done != 0);
4229 	atomic_set(&r10_bio->remaining, 0);
4230 	r10_bio->mddev = mddev;
4231 	r10_bio->sector = sector_nr;
4232 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4233 	r10_bio->sectors = last - sector_nr + 1;
4234 	rdev = read_balance(conf, r10_bio, &max_sectors);
4235 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4236 
4237 	if (!rdev) {
4238 		/* Cannot read from here, so need to record bad blocks
4239 		 * on all the target devices.
4240 		 */
4241 		// FIXME
4242 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4243 		return sectors_done;
4244 	}
4245 
4246 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4247 
4248 	read_bio->bi_bdev = rdev->bdev;
4249 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4250 			       + rdev->data_offset);
4251 	read_bio->bi_private = r10_bio;
4252 	read_bio->bi_end_io = end_sync_read;
4253 	read_bio->bi_rw = READ;
4254 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4255 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4256 	read_bio->bi_vcnt = 0;
4257 	read_bio->bi_idx = 0;
4258 	read_bio->bi_size = 0;
4259 	r10_bio->master_bio = read_bio;
4260 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4261 
4262 	/* Now find the locations in the new layout */
4263 	__raid10_find_phys(&conf->geo, r10_bio);
4264 
4265 	blist = read_bio;
4266 	read_bio->bi_next = NULL;
4267 
4268 	for (s = 0; s < conf->copies*2; s++) {
4269 		struct bio *b;
4270 		int d = r10_bio->devs[s/2].devnum;
4271 		struct md_rdev *rdev2;
4272 		if (s&1) {
4273 			rdev2 = conf->mirrors[d].replacement;
4274 			b = r10_bio->devs[s/2].repl_bio;
4275 		} else {
4276 			rdev2 = conf->mirrors[d].rdev;
4277 			b = r10_bio->devs[s/2].bio;
4278 		}
4279 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4280 			continue;
4281 		b->bi_bdev = rdev2->bdev;
4282 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4283 		b->bi_private = r10_bio;
4284 		b->bi_end_io = end_reshape_write;
4285 		b->bi_rw = WRITE;
4286 		b->bi_flags &= ~(BIO_POOL_MASK - 1);
4287 		b->bi_flags |= 1 << BIO_UPTODATE;
4288 		b->bi_next = blist;
4289 		b->bi_vcnt = 0;
4290 		b->bi_idx = 0;
4291 		b->bi_size = 0;
4292 		blist = b;
4293 	}
4294 
4295 	/* Now add as many pages as possible to all of these bios. */
4296 
4297 	nr_sectors = 0;
4298 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4299 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4300 		int len = (max_sectors - s) << 9;
4301 		if (len > PAGE_SIZE)
4302 			len = PAGE_SIZE;
4303 		for (bio = blist; bio ; bio = bio->bi_next) {
4304 			struct bio *bio2;
4305 			if (bio_add_page(bio, page, len, 0))
4306 				continue;
4307 
4308 			/* Didn't fit, must stop */
4309 			for (bio2 = blist;
4310 			     bio2 && bio2 != bio;
4311 			     bio2 = bio2->bi_next) {
4312 				/* Remove last page from this bio */
4313 				bio2->bi_vcnt--;
4314 				bio2->bi_size -= len;
4315 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4316 			}
4317 			goto bio_full;
4318 		}
4319 		sector_nr += len >> 9;
4320 		nr_sectors += len >> 9;
4321 	}
4322 bio_full:
4323 	r10_bio->sectors = nr_sectors;
4324 
4325 	/* Now submit the read */
4326 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4327 	atomic_inc(&r10_bio->remaining);
4328 	read_bio->bi_next = NULL;
4329 	generic_make_request(read_bio);
4330 	sector_nr += nr_sectors;
4331 	sectors_done += nr_sectors;
4332 	if (sector_nr <= last)
4333 		goto read_more;
4334 
4335 	/* Now that we have done the whole section we can
4336 	 * update reshape_progress
4337 	 */
4338 	if (mddev->reshape_backwards)
4339 		conf->reshape_progress -= sectors_done;
4340 	else
4341 		conf->reshape_progress += sectors_done;
4342 
4343 	return sectors_done;
4344 }
4345 
4346 static void end_reshape_request(struct r10bio *r10_bio);
4347 static int handle_reshape_read_error(struct mddev *mddev,
4348 				     struct r10bio *r10_bio);
4349 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4350 {
4351 	/* Reshape read completed.  Hopefully we have a block
4352 	 * to write out.
4353 	 * If we got a read error then we do sync 1-page reads from
4354 	 * elsewhere until we find the data - or give up.
4355 	 */
4356 	struct r10conf *conf = mddev->private;
4357 	int s;
4358 
4359 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4360 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4361 			/* Reshape has been aborted */
4362 			md_done_sync(mddev, r10_bio->sectors, 0);
4363 			return;
4364 		}
4365 
4366 	/* We definitely have the data in the pages, schedule the
4367 	 * writes.
4368 	 */
4369 	atomic_set(&r10_bio->remaining, 1);
4370 	for (s = 0; s < conf->copies*2; s++) {
4371 		struct bio *b;
4372 		int d = r10_bio->devs[s/2].devnum;
4373 		struct md_rdev *rdev;
4374 		if (s&1) {
4375 			rdev = conf->mirrors[d].replacement;
4376 			b = r10_bio->devs[s/2].repl_bio;
4377 		} else {
4378 			rdev = conf->mirrors[d].rdev;
4379 			b = r10_bio->devs[s/2].bio;
4380 		}
4381 		if (!rdev || test_bit(Faulty, &rdev->flags))
4382 			continue;
4383 		atomic_inc(&rdev->nr_pending);
4384 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4385 		atomic_inc(&r10_bio->remaining);
4386 		b->bi_next = NULL;
4387 		generic_make_request(b);
4388 	}
4389 	end_reshape_request(r10_bio);
4390 }
4391 
4392 static void end_reshape(struct r10conf *conf)
4393 {
4394 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4395 		return;
4396 
4397 	spin_lock_irq(&conf->device_lock);
4398 	conf->prev = conf->geo;
4399 	md_finish_reshape(conf->mddev);
4400 	smp_wmb();
4401 	conf->reshape_progress = MaxSector;
4402 	spin_unlock_irq(&conf->device_lock);
4403 
4404 	/* read-ahead size must cover two whole stripes, which is
4405 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4406 	 */
4407 	if (conf->mddev->queue) {
4408 		int stripe = conf->geo.raid_disks *
4409 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4410 		stripe /= conf->geo.near_copies;
4411 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4412 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4413 	}
4414 	conf->fullsync = 0;
4415 }
4416 
4417 
4418 static int handle_reshape_read_error(struct mddev *mddev,
4419 				     struct r10bio *r10_bio)
4420 {
4421 	/* Use sync reads to get the blocks from somewhere else */
4422 	int sectors = r10_bio->sectors;
4423 	struct r10conf *conf = mddev->private;
4424 	struct {
4425 		struct r10bio r10_bio;
4426 		struct r10dev devs[conf->copies];
4427 	} on_stack;
4428 	struct r10bio *r10b = &on_stack.r10_bio;
4429 	int slot = 0;
4430 	int idx = 0;
4431 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4432 
4433 	r10b->sector = r10_bio->sector;
4434 	__raid10_find_phys(&conf->prev, r10b);
4435 
4436 	while (sectors) {
4437 		int s = sectors;
4438 		int success = 0;
4439 		int first_slot = slot;
4440 
4441 		if (s > (PAGE_SIZE >> 9))
4442 			s = PAGE_SIZE >> 9;
4443 
4444 		while (!success) {
4445 			int d = r10b->devs[slot].devnum;
4446 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4447 			sector_t addr;
4448 			if (rdev == NULL ||
4449 			    test_bit(Faulty, &rdev->flags) ||
4450 			    !test_bit(In_sync, &rdev->flags))
4451 				goto failed;
4452 
4453 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4454 			success = sync_page_io(rdev,
4455 					       addr,
4456 					       s << 9,
4457 					       bvec[idx].bv_page,
4458 					       READ, false);
4459 			if (success)
4460 				break;
4461 		failed:
4462 			slot++;
4463 			if (slot >= conf->copies)
4464 				slot = 0;
4465 			if (slot == first_slot)
4466 				break;
4467 		}
4468 		if (!success) {
4469 			/* couldn't read this block, must give up */
4470 			set_bit(MD_RECOVERY_INTR,
4471 				&mddev->recovery);
4472 			return -EIO;
4473 		}
4474 		sectors -= s;
4475 		idx++;
4476 	}
4477 	return 0;
4478 }
4479 
4480 static void end_reshape_write(struct bio *bio, int error)
4481 {
4482 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4483 	struct r10bio *r10_bio = bio->bi_private;
4484 	struct mddev *mddev = r10_bio->mddev;
4485 	struct r10conf *conf = mddev->private;
4486 	int d;
4487 	int slot;
4488 	int repl;
4489 	struct md_rdev *rdev = NULL;
4490 
4491 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4492 	if (repl)
4493 		rdev = conf->mirrors[d].replacement;
4494 	if (!rdev) {
4495 		smp_mb();
4496 		rdev = conf->mirrors[d].rdev;
4497 	}
4498 
4499 	if (!uptodate) {
4500 		/* FIXME should record badblock */
4501 		md_error(mddev, rdev);
4502 	}
4503 
4504 	rdev_dec_pending(rdev, mddev);
4505 	end_reshape_request(r10_bio);
4506 }
4507 
4508 static void end_reshape_request(struct r10bio *r10_bio)
4509 {
4510 	if (!atomic_dec_and_test(&r10_bio->remaining))
4511 		return;
4512 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4513 	bio_put(r10_bio->master_bio);
4514 	put_buf(r10_bio);
4515 }
4516 
4517 static void raid10_finish_reshape(struct mddev *mddev)
4518 {
4519 	struct r10conf *conf = mddev->private;
4520 
4521 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4522 		return;
4523 
4524 	if (mddev->delta_disks > 0) {
4525 		sector_t size = raid10_size(mddev, 0, 0);
4526 		md_set_array_sectors(mddev, size);
4527 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4528 			mddev->recovery_cp = mddev->resync_max_sectors;
4529 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4530 		}
4531 		mddev->resync_max_sectors = size;
4532 		set_capacity(mddev->gendisk, mddev->array_sectors);
4533 		revalidate_disk(mddev->gendisk);
4534 	} else {
4535 		int d;
4536 		for (d = conf->geo.raid_disks ;
4537 		     d < conf->geo.raid_disks - mddev->delta_disks;
4538 		     d++) {
4539 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4540 			if (rdev)
4541 				clear_bit(In_sync, &rdev->flags);
4542 			rdev = conf->mirrors[d].replacement;
4543 			if (rdev)
4544 				clear_bit(In_sync, &rdev->flags);
4545 		}
4546 	}
4547 	mddev->layout = mddev->new_layout;
4548 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4549 	mddev->reshape_position = MaxSector;
4550 	mddev->delta_disks = 0;
4551 	mddev->reshape_backwards = 0;
4552 }
4553 
4554 static struct md_personality raid10_personality =
4555 {
4556 	.name		= "raid10",
4557 	.level		= 10,
4558 	.owner		= THIS_MODULE,
4559 	.make_request	= make_request,
4560 	.run		= run,
4561 	.stop		= stop,
4562 	.status		= status,
4563 	.error_handler	= error,
4564 	.hot_add_disk	= raid10_add_disk,
4565 	.hot_remove_disk= raid10_remove_disk,
4566 	.spare_active	= raid10_spare_active,
4567 	.sync_request	= sync_request,
4568 	.quiesce	= raid10_quiesce,
4569 	.size		= raid10_size,
4570 	.resize		= raid10_resize,
4571 	.takeover	= raid10_takeover,
4572 	.check_reshape	= raid10_check_reshape,
4573 	.start_reshape	= raid10_start_reshape,
4574 	.finish_reshape	= raid10_finish_reshape,
4575 };
4576 
4577 static int __init raid_init(void)
4578 {
4579 	return register_md_personality(&raid10_personality);
4580 }
4581 
4582 static void raid_exit(void)
4583 {
4584 	unregister_md_personality(&raid10_personality);
4585 }
4586 
4587 module_init(raid_init);
4588 module_exit(raid_exit);
4589 MODULE_LICENSE("GPL");
4590 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4591 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4592 MODULE_ALIAS("md-raid10");
4593 MODULE_ALIAS("md-level-10");
4594 
4595 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4596