xref: /linux/drivers/md/raid10.c (revision 7c43185138cf523b0810ffd2c9e18e2ecb356730)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
26 #include "md.h"
27 #include "raid10.h"
28 #include "raid0.h"
29 #include "bitmap.h"
30 
31 /*
32  * RAID10 provides a combination of RAID0 and RAID1 functionality.
33  * The layout of data is defined by
34  *    chunk_size
35  *    raid_disks
36  *    near_copies (stored in low byte of layout)
37  *    far_copies (stored in second byte of layout)
38  *    far_offset (stored in bit 16 of layout )
39  *
40  * The data to be stored is divided into chunks using chunksize.
41  * Each device is divided into far_copies sections.
42  * In each section, chunks are laid out in a style similar to raid0, but
43  * near_copies copies of each chunk is stored (each on a different drive).
44  * The starting device for each section is offset near_copies from the starting
45  * device of the previous section.
46  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47  * drive.
48  * near_copies and far_copies must be at least one, and their product is at most
49  * raid_disks.
50  *
51  * If far_offset is true, then the far_copies are handled a bit differently.
52  * The copies are still in different stripes, but instead of be very far apart
53  * on disk, there are adjacent stripes.
54  */
55 
56 /*
57  * Number of guaranteed r10bios in case of extreme VM load:
58  */
59 #define	NR_RAID10_BIOS 256
60 
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
63 
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
65 {
66 	conf_t *conf = data;
67 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
68 
69 	/* allocate a r10bio with room for raid_disks entries in the bios array */
70 	return kzalloc(size, gfp_flags);
71 }
72 
73 static void r10bio_pool_free(void *r10_bio, void *data)
74 {
75 	kfree(r10_bio);
76 }
77 
78 /* Maximum size of each resync request */
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
81 /* amount of memory to reserve for resync requests */
82 #define RESYNC_WINDOW (1024*1024)
83 /* maximum number of concurrent requests, memory permitting */
84 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
85 
86 /*
87  * When performing a resync, we need to read and compare, so
88  * we need as many pages are there are copies.
89  * When performing a recovery, we need 2 bios, one for read,
90  * one for write (we recover only one drive per r10buf)
91  *
92  */
93 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
94 {
95 	conf_t *conf = data;
96 	struct page *page;
97 	r10bio_t *r10_bio;
98 	struct bio *bio;
99 	int i, j;
100 	int nalloc;
101 
102 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
103 	if (!r10_bio)
104 		return NULL;
105 
106 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
107 		nalloc = conf->copies; /* resync */
108 	else
109 		nalloc = 2; /* recovery */
110 
111 	/*
112 	 * Allocate bios.
113 	 */
114 	for (j = nalloc ; j-- ; ) {
115 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
116 		if (!bio)
117 			goto out_free_bio;
118 		r10_bio->devs[j].bio = bio;
119 	}
120 	/*
121 	 * Allocate RESYNC_PAGES data pages and attach them
122 	 * where needed.
123 	 */
124 	for (j = 0 ; j < nalloc; j++) {
125 		bio = r10_bio->devs[j].bio;
126 		for (i = 0; i < RESYNC_PAGES; i++) {
127 			if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
128 						&conf->mddev->recovery)) {
129 				/* we can share bv_page's during recovery */
130 				struct bio *rbio = r10_bio->devs[0].bio;
131 				page = rbio->bi_io_vec[i].bv_page;
132 				get_page(page);
133 			} else
134 				page = alloc_page(gfp_flags);
135 			if (unlikely(!page))
136 				goto out_free_pages;
137 
138 			bio->bi_io_vec[i].bv_page = page;
139 		}
140 	}
141 
142 	return r10_bio;
143 
144 out_free_pages:
145 	for ( ; i > 0 ; i--)
146 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
147 	while (j--)
148 		for (i = 0; i < RESYNC_PAGES ; i++)
149 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150 	j = -1;
151 out_free_bio:
152 	while ( ++j < nalloc )
153 		bio_put(r10_bio->devs[j].bio);
154 	r10bio_pool_free(r10_bio, conf);
155 	return NULL;
156 }
157 
158 static void r10buf_pool_free(void *__r10_bio, void *data)
159 {
160 	int i;
161 	conf_t *conf = data;
162 	r10bio_t *r10bio = __r10_bio;
163 	int j;
164 
165 	for (j=0; j < conf->copies; j++) {
166 		struct bio *bio = r10bio->devs[j].bio;
167 		if (bio) {
168 			for (i = 0; i < RESYNC_PAGES; i++) {
169 				safe_put_page(bio->bi_io_vec[i].bv_page);
170 				bio->bi_io_vec[i].bv_page = NULL;
171 			}
172 			bio_put(bio);
173 		}
174 	}
175 	r10bio_pool_free(r10bio, conf);
176 }
177 
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
179 {
180 	int i;
181 
182 	for (i = 0; i < conf->copies; i++) {
183 		struct bio **bio = & r10_bio->devs[i].bio;
184 		if (!BIO_SPECIAL(*bio))
185 			bio_put(*bio);
186 		*bio = NULL;
187 	}
188 }
189 
190 static void free_r10bio(r10bio_t *r10_bio)
191 {
192 	conf_t *conf = r10_bio->mddev->private;
193 
194 	put_all_bios(conf, r10_bio);
195 	mempool_free(r10_bio, conf->r10bio_pool);
196 }
197 
198 static void put_buf(r10bio_t *r10_bio)
199 {
200 	conf_t *conf = r10_bio->mddev->private;
201 
202 	mempool_free(r10_bio, conf->r10buf_pool);
203 
204 	lower_barrier(conf);
205 }
206 
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209 	unsigned long flags;
210 	mddev_t *mddev = r10_bio->mddev;
211 	conf_t *conf = mddev->private;
212 
213 	spin_lock_irqsave(&conf->device_lock, flags);
214 	list_add(&r10_bio->retry_list, &conf->retry_list);
215 	conf->nr_queued ++;
216 	spin_unlock_irqrestore(&conf->device_lock, flags);
217 
218 	/* wake up frozen array... */
219 	wake_up(&conf->wait_barrier);
220 
221 	md_wakeup_thread(mddev->thread);
222 }
223 
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r10bio_t *r10_bio)
230 {
231 	struct bio *bio = r10_bio->master_bio;
232 	int done;
233 	conf_t *conf = r10_bio->mddev->private;
234 
235 	if (bio->bi_phys_segments) {
236 		unsigned long flags;
237 		spin_lock_irqsave(&conf->device_lock, flags);
238 		bio->bi_phys_segments--;
239 		done = (bio->bi_phys_segments == 0);
240 		spin_unlock_irqrestore(&conf->device_lock, flags);
241 	} else
242 		done = 1;
243 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
244 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
245 	if (done) {
246 		bio_endio(bio, 0);
247 		/*
248 		 * Wake up any possible resync thread that waits for the device
249 		 * to go idle.
250 		 */
251 		allow_barrier(conf);
252 	}
253 	free_r10bio(r10_bio);
254 }
255 
256 /*
257  * Update disk head position estimator based on IRQ completion info.
258  */
259 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
260 {
261 	conf_t *conf = r10_bio->mddev->private;
262 
263 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
264 		r10_bio->devs[slot].addr + (r10_bio->sectors);
265 }
266 
267 /*
268  * Find the disk number which triggered given bio
269  */
270 static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio,
271 			 struct bio *bio, int *slotp)
272 {
273 	int slot;
274 
275 	for (slot = 0; slot < conf->copies; slot++)
276 		if (r10_bio->devs[slot].bio == bio)
277 			break;
278 
279 	BUG_ON(slot == conf->copies);
280 	update_head_pos(slot, r10_bio);
281 
282 	if (slotp)
283 		*slotp = slot;
284 	return r10_bio->devs[slot].devnum;
285 }
286 
287 static void raid10_end_read_request(struct bio *bio, int error)
288 {
289 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 	r10bio_t *r10_bio = bio->bi_private;
291 	int slot, dev;
292 	conf_t *conf = r10_bio->mddev->private;
293 
294 
295 	slot = r10_bio->read_slot;
296 	dev = r10_bio->devs[slot].devnum;
297 	/*
298 	 * this branch is our 'one mirror IO has finished' event handler:
299 	 */
300 	update_head_pos(slot, r10_bio);
301 
302 	if (uptodate) {
303 		/*
304 		 * Set R10BIO_Uptodate in our master bio, so that
305 		 * we will return a good error code to the higher
306 		 * levels even if IO on some other mirrored buffer fails.
307 		 *
308 		 * The 'master' represents the composite IO operation to
309 		 * user-side. So if something waits for IO, then it will
310 		 * wait for the 'master' bio.
311 		 */
312 		set_bit(R10BIO_Uptodate, &r10_bio->state);
313 		raid_end_bio_io(r10_bio);
314 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
315 	} else {
316 		/*
317 		 * oops, read error - keep the refcount on the rdev
318 		 */
319 		char b[BDEVNAME_SIZE];
320 		printk_ratelimited(KERN_ERR
321 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
322 				   mdname(conf->mddev),
323 				   bdevname(conf->mirrors[dev].rdev->bdev, b),
324 				   (unsigned long long)r10_bio->sector);
325 		set_bit(R10BIO_ReadError, &r10_bio->state);
326 		reschedule_retry(r10_bio);
327 	}
328 }
329 
330 static void close_write(r10bio_t *r10_bio)
331 {
332 	/* clear the bitmap if all writes complete successfully */
333 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334 			r10_bio->sectors,
335 			!test_bit(R10BIO_Degraded, &r10_bio->state),
336 			0);
337 	md_write_end(r10_bio->mddev);
338 }
339 
340 static void raid10_end_write_request(struct bio *bio, int error)
341 {
342 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
343 	r10bio_t *r10_bio = bio->bi_private;
344 	int dev;
345 	int dec_rdev = 1;
346 	conf_t *conf = r10_bio->mddev->private;
347 	int slot;
348 
349 	dev = find_bio_disk(conf, r10_bio, bio, &slot);
350 
351 	/*
352 	 * this branch is our 'one mirror IO has finished' event handler:
353 	 */
354 	if (!uptodate) {
355 		set_bit(WriteErrorSeen,	&conf->mirrors[dev].rdev->flags);
356 		set_bit(R10BIO_WriteError, &r10_bio->state);
357 		dec_rdev = 0;
358 	} else {
359 		/*
360 		 * Set R10BIO_Uptodate in our master bio, so that
361 		 * we will return a good error code for to the higher
362 		 * levels even if IO on some other mirrored buffer fails.
363 		 *
364 		 * The 'master' represents the composite IO operation to
365 		 * user-side. So if something waits for IO, then it will
366 		 * wait for the 'master' bio.
367 		 */
368 		sector_t first_bad;
369 		int bad_sectors;
370 
371 		set_bit(R10BIO_Uptodate, &r10_bio->state);
372 
373 		/* Maybe we can clear some bad blocks. */
374 		if (is_badblock(conf->mirrors[dev].rdev,
375 				r10_bio->devs[slot].addr,
376 				r10_bio->sectors,
377 				&first_bad, &bad_sectors)) {
378 			bio_put(bio);
379 			r10_bio->devs[slot].bio = IO_MADE_GOOD;
380 			dec_rdev = 0;
381 			set_bit(R10BIO_MadeGood, &r10_bio->state);
382 		}
383 	}
384 
385 	/*
386 	 *
387 	 * Let's see if all mirrored write operations have finished
388 	 * already.
389 	 */
390 	if (atomic_dec_and_test(&r10_bio->remaining)) {
391 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
392 			reschedule_retry(r10_bio);
393 		else {
394 			close_write(r10_bio);
395 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
396 				reschedule_retry(r10_bio);
397 			else
398 				raid_end_bio_io(r10_bio);
399 		}
400 	}
401 	if (dec_rdev)
402 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
403 }
404 
405 
406 /*
407  * RAID10 layout manager
408  * As well as the chunksize and raid_disks count, there are two
409  * parameters: near_copies and far_copies.
410  * near_copies * far_copies must be <= raid_disks.
411  * Normally one of these will be 1.
412  * If both are 1, we get raid0.
413  * If near_copies == raid_disks, we get raid1.
414  *
415  * Chunks are laid out in raid0 style with near_copies copies of the
416  * first chunk, followed by near_copies copies of the next chunk and
417  * so on.
418  * If far_copies > 1, then after 1/far_copies of the array has been assigned
419  * as described above, we start again with a device offset of near_copies.
420  * So we effectively have another copy of the whole array further down all
421  * the drives, but with blocks on different drives.
422  * With this layout, and block is never stored twice on the one device.
423  *
424  * raid10_find_phys finds the sector offset of a given virtual sector
425  * on each device that it is on.
426  *
427  * raid10_find_virt does the reverse mapping, from a device and a
428  * sector offset to a virtual address
429  */
430 
431 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
432 {
433 	int n,f;
434 	sector_t sector;
435 	sector_t chunk;
436 	sector_t stripe;
437 	int dev;
438 
439 	int slot = 0;
440 
441 	/* now calculate first sector/dev */
442 	chunk = r10bio->sector >> conf->chunk_shift;
443 	sector = r10bio->sector & conf->chunk_mask;
444 
445 	chunk *= conf->near_copies;
446 	stripe = chunk;
447 	dev = sector_div(stripe, conf->raid_disks);
448 	if (conf->far_offset)
449 		stripe *= conf->far_copies;
450 
451 	sector += stripe << conf->chunk_shift;
452 
453 	/* and calculate all the others */
454 	for (n=0; n < conf->near_copies; n++) {
455 		int d = dev;
456 		sector_t s = sector;
457 		r10bio->devs[slot].addr = sector;
458 		r10bio->devs[slot].devnum = d;
459 		slot++;
460 
461 		for (f = 1; f < conf->far_copies; f++) {
462 			d += conf->near_copies;
463 			if (d >= conf->raid_disks)
464 				d -= conf->raid_disks;
465 			s += conf->stride;
466 			r10bio->devs[slot].devnum = d;
467 			r10bio->devs[slot].addr = s;
468 			slot++;
469 		}
470 		dev++;
471 		if (dev >= conf->raid_disks) {
472 			dev = 0;
473 			sector += (conf->chunk_mask + 1);
474 		}
475 	}
476 	BUG_ON(slot != conf->copies);
477 }
478 
479 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
480 {
481 	sector_t offset, chunk, vchunk;
482 
483 	offset = sector & conf->chunk_mask;
484 	if (conf->far_offset) {
485 		int fc;
486 		chunk = sector >> conf->chunk_shift;
487 		fc = sector_div(chunk, conf->far_copies);
488 		dev -= fc * conf->near_copies;
489 		if (dev < 0)
490 			dev += conf->raid_disks;
491 	} else {
492 		while (sector >= conf->stride) {
493 			sector -= conf->stride;
494 			if (dev < conf->near_copies)
495 				dev += conf->raid_disks - conf->near_copies;
496 			else
497 				dev -= conf->near_copies;
498 		}
499 		chunk = sector >> conf->chunk_shift;
500 	}
501 	vchunk = chunk * conf->raid_disks + dev;
502 	sector_div(vchunk, conf->near_copies);
503 	return (vchunk << conf->chunk_shift) + offset;
504 }
505 
506 /**
507  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
508  *	@q: request queue
509  *	@bvm: properties of new bio
510  *	@biovec: the request that could be merged to it.
511  *
512  *	Return amount of bytes we can accept at this offset
513  *      If near_copies == raid_disk, there are no striping issues,
514  *      but in that case, the function isn't called at all.
515  */
516 static int raid10_mergeable_bvec(struct request_queue *q,
517 				 struct bvec_merge_data *bvm,
518 				 struct bio_vec *biovec)
519 {
520 	mddev_t *mddev = q->queuedata;
521 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
522 	int max;
523 	unsigned int chunk_sectors = mddev->chunk_sectors;
524 	unsigned int bio_sectors = bvm->bi_size >> 9;
525 
526 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
527 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
528 	if (max <= biovec->bv_len && bio_sectors == 0)
529 		return biovec->bv_len;
530 	else
531 		return max;
532 }
533 
534 /*
535  * This routine returns the disk from which the requested read should
536  * be done. There is a per-array 'next expected sequential IO' sector
537  * number - if this matches on the next IO then we use the last disk.
538  * There is also a per-disk 'last know head position' sector that is
539  * maintained from IRQ contexts, both the normal and the resync IO
540  * completion handlers update this position correctly. If there is no
541  * perfect sequential match then we pick the disk whose head is closest.
542  *
543  * If there are 2 mirrors in the same 2 devices, performance degrades
544  * because position is mirror, not device based.
545  *
546  * The rdev for the device selected will have nr_pending incremented.
547  */
548 
549 /*
550  * FIXME: possibly should rethink readbalancing and do it differently
551  * depending on near_copies / far_copies geometry.
552  */
553 static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
554 {
555 	const sector_t this_sector = r10_bio->sector;
556 	int disk, slot;
557 	int sectors = r10_bio->sectors;
558 	int best_good_sectors;
559 	sector_t new_distance, best_dist;
560 	mdk_rdev_t *rdev;
561 	int do_balance;
562 	int best_slot;
563 
564 	raid10_find_phys(conf, r10_bio);
565 	rcu_read_lock();
566 retry:
567 	sectors = r10_bio->sectors;
568 	best_slot = -1;
569 	best_dist = MaxSector;
570 	best_good_sectors = 0;
571 	do_balance = 1;
572 	/*
573 	 * Check if we can balance. We can balance on the whole
574 	 * device if no resync is going on (recovery is ok), or below
575 	 * the resync window. We take the first readable disk when
576 	 * above the resync window.
577 	 */
578 	if (conf->mddev->recovery_cp < MaxSector
579 	    && (this_sector + sectors >= conf->next_resync))
580 		do_balance = 0;
581 
582 	for (slot = 0; slot < conf->copies ; slot++) {
583 		sector_t first_bad;
584 		int bad_sectors;
585 		sector_t dev_sector;
586 
587 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
588 			continue;
589 		disk = r10_bio->devs[slot].devnum;
590 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
591 		if (rdev == NULL)
592 			continue;
593 		if (!test_bit(In_sync, &rdev->flags))
594 			continue;
595 
596 		dev_sector = r10_bio->devs[slot].addr;
597 		if (is_badblock(rdev, dev_sector, sectors,
598 				&first_bad, &bad_sectors)) {
599 			if (best_dist < MaxSector)
600 				/* Already have a better slot */
601 				continue;
602 			if (first_bad <= dev_sector) {
603 				/* Cannot read here.  If this is the
604 				 * 'primary' device, then we must not read
605 				 * beyond 'bad_sectors' from another device.
606 				 */
607 				bad_sectors -= (dev_sector - first_bad);
608 				if (!do_balance && sectors > bad_sectors)
609 					sectors = bad_sectors;
610 				if (best_good_sectors > sectors)
611 					best_good_sectors = sectors;
612 			} else {
613 				sector_t good_sectors =
614 					first_bad - dev_sector;
615 				if (good_sectors > best_good_sectors) {
616 					best_good_sectors = good_sectors;
617 					best_slot = slot;
618 				}
619 				if (!do_balance)
620 					/* Must read from here */
621 					break;
622 			}
623 			continue;
624 		} else
625 			best_good_sectors = sectors;
626 
627 		if (!do_balance)
628 			break;
629 
630 		/* This optimisation is debatable, and completely destroys
631 		 * sequential read speed for 'far copies' arrays.  So only
632 		 * keep it for 'near' arrays, and review those later.
633 		 */
634 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
635 			break;
636 
637 		/* for far > 1 always use the lowest address */
638 		if (conf->far_copies > 1)
639 			new_distance = r10_bio->devs[slot].addr;
640 		else
641 			new_distance = abs(r10_bio->devs[slot].addr -
642 					   conf->mirrors[disk].head_position);
643 		if (new_distance < best_dist) {
644 			best_dist = new_distance;
645 			best_slot = slot;
646 		}
647 	}
648 	if (slot == conf->copies)
649 		slot = best_slot;
650 
651 	if (slot >= 0) {
652 		disk = r10_bio->devs[slot].devnum;
653 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
654 		if (!rdev)
655 			goto retry;
656 		atomic_inc(&rdev->nr_pending);
657 		if (test_bit(Faulty, &rdev->flags)) {
658 			/* Cannot risk returning a device that failed
659 			 * before we inc'ed nr_pending
660 			 */
661 			rdev_dec_pending(rdev, conf->mddev);
662 			goto retry;
663 		}
664 		r10_bio->read_slot = slot;
665 	} else
666 		disk = -1;
667 	rcu_read_unlock();
668 	*max_sectors = best_good_sectors;
669 
670 	return disk;
671 }
672 
673 static int raid10_congested(void *data, int bits)
674 {
675 	mddev_t *mddev = data;
676 	conf_t *conf = mddev->private;
677 	int i, ret = 0;
678 
679 	if (mddev_congested(mddev, bits))
680 		return 1;
681 	rcu_read_lock();
682 	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
683 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
684 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
685 			struct request_queue *q = bdev_get_queue(rdev->bdev);
686 
687 			ret |= bdi_congested(&q->backing_dev_info, bits);
688 		}
689 	}
690 	rcu_read_unlock();
691 	return ret;
692 }
693 
694 static void flush_pending_writes(conf_t *conf)
695 {
696 	/* Any writes that have been queued but are awaiting
697 	 * bitmap updates get flushed here.
698 	 */
699 	spin_lock_irq(&conf->device_lock);
700 
701 	if (conf->pending_bio_list.head) {
702 		struct bio *bio;
703 		bio = bio_list_get(&conf->pending_bio_list);
704 		spin_unlock_irq(&conf->device_lock);
705 		/* flush any pending bitmap writes to disk
706 		 * before proceeding w/ I/O */
707 		bitmap_unplug(conf->mddev->bitmap);
708 
709 		while (bio) { /* submit pending writes */
710 			struct bio *next = bio->bi_next;
711 			bio->bi_next = NULL;
712 			generic_make_request(bio);
713 			bio = next;
714 		}
715 	} else
716 		spin_unlock_irq(&conf->device_lock);
717 }
718 
719 /* Barriers....
720  * Sometimes we need to suspend IO while we do something else,
721  * either some resync/recovery, or reconfigure the array.
722  * To do this we raise a 'barrier'.
723  * The 'barrier' is a counter that can be raised multiple times
724  * to count how many activities are happening which preclude
725  * normal IO.
726  * We can only raise the barrier if there is no pending IO.
727  * i.e. if nr_pending == 0.
728  * We choose only to raise the barrier if no-one is waiting for the
729  * barrier to go down.  This means that as soon as an IO request
730  * is ready, no other operations which require a barrier will start
731  * until the IO request has had a chance.
732  *
733  * So: regular IO calls 'wait_barrier'.  When that returns there
734  *    is no backgroup IO happening,  It must arrange to call
735  *    allow_barrier when it has finished its IO.
736  * backgroup IO calls must call raise_barrier.  Once that returns
737  *    there is no normal IO happeing.  It must arrange to call
738  *    lower_barrier when the particular background IO completes.
739  */
740 
741 static void raise_barrier(conf_t *conf, int force)
742 {
743 	BUG_ON(force && !conf->barrier);
744 	spin_lock_irq(&conf->resync_lock);
745 
746 	/* Wait until no block IO is waiting (unless 'force') */
747 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
748 			    conf->resync_lock, );
749 
750 	/* block any new IO from starting */
751 	conf->barrier++;
752 
753 	/* Now wait for all pending IO to complete */
754 	wait_event_lock_irq(conf->wait_barrier,
755 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
756 			    conf->resync_lock, );
757 
758 	spin_unlock_irq(&conf->resync_lock);
759 }
760 
761 static void lower_barrier(conf_t *conf)
762 {
763 	unsigned long flags;
764 	spin_lock_irqsave(&conf->resync_lock, flags);
765 	conf->barrier--;
766 	spin_unlock_irqrestore(&conf->resync_lock, flags);
767 	wake_up(&conf->wait_barrier);
768 }
769 
770 static void wait_barrier(conf_t *conf)
771 {
772 	spin_lock_irq(&conf->resync_lock);
773 	if (conf->barrier) {
774 		conf->nr_waiting++;
775 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
776 				    conf->resync_lock,
777 				    );
778 		conf->nr_waiting--;
779 	}
780 	conf->nr_pending++;
781 	spin_unlock_irq(&conf->resync_lock);
782 }
783 
784 static void allow_barrier(conf_t *conf)
785 {
786 	unsigned long flags;
787 	spin_lock_irqsave(&conf->resync_lock, flags);
788 	conf->nr_pending--;
789 	spin_unlock_irqrestore(&conf->resync_lock, flags);
790 	wake_up(&conf->wait_barrier);
791 }
792 
793 static void freeze_array(conf_t *conf)
794 {
795 	/* stop syncio and normal IO and wait for everything to
796 	 * go quiet.
797 	 * We increment barrier and nr_waiting, and then
798 	 * wait until nr_pending match nr_queued+1
799 	 * This is called in the context of one normal IO request
800 	 * that has failed. Thus any sync request that might be pending
801 	 * will be blocked by nr_pending, and we need to wait for
802 	 * pending IO requests to complete or be queued for re-try.
803 	 * Thus the number queued (nr_queued) plus this request (1)
804 	 * must match the number of pending IOs (nr_pending) before
805 	 * we continue.
806 	 */
807 	spin_lock_irq(&conf->resync_lock);
808 	conf->barrier++;
809 	conf->nr_waiting++;
810 	wait_event_lock_irq(conf->wait_barrier,
811 			    conf->nr_pending == conf->nr_queued+1,
812 			    conf->resync_lock,
813 			    flush_pending_writes(conf));
814 
815 	spin_unlock_irq(&conf->resync_lock);
816 }
817 
818 static void unfreeze_array(conf_t *conf)
819 {
820 	/* reverse the effect of the freeze */
821 	spin_lock_irq(&conf->resync_lock);
822 	conf->barrier--;
823 	conf->nr_waiting--;
824 	wake_up(&conf->wait_barrier);
825 	spin_unlock_irq(&conf->resync_lock);
826 }
827 
828 static int make_request(mddev_t *mddev, struct bio * bio)
829 {
830 	conf_t *conf = mddev->private;
831 	mirror_info_t *mirror;
832 	r10bio_t *r10_bio;
833 	struct bio *read_bio;
834 	int i;
835 	int chunk_sects = conf->chunk_mask + 1;
836 	const int rw = bio_data_dir(bio);
837 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
838 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
839 	unsigned long flags;
840 	mdk_rdev_t *blocked_rdev;
841 	int plugged;
842 	int sectors_handled;
843 	int max_sectors;
844 
845 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
846 		md_flush_request(mddev, bio);
847 		return 0;
848 	}
849 
850 	/* If this request crosses a chunk boundary, we need to
851 	 * split it.  This will only happen for 1 PAGE (or less) requests.
852 	 */
853 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
854 		      > chunk_sects &&
855 		    conf->near_copies < conf->raid_disks)) {
856 		struct bio_pair *bp;
857 		/* Sanity check -- queue functions should prevent this happening */
858 		if (bio->bi_vcnt != 1 ||
859 		    bio->bi_idx != 0)
860 			goto bad_map;
861 		/* This is a one page bio that upper layers
862 		 * refuse to split for us, so we need to split it.
863 		 */
864 		bp = bio_split(bio,
865 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
866 
867 		/* Each of these 'make_request' calls will call 'wait_barrier'.
868 		 * If the first succeeds but the second blocks due to the resync
869 		 * thread raising the barrier, we will deadlock because the
870 		 * IO to the underlying device will be queued in generic_make_request
871 		 * and will never complete, so will never reduce nr_pending.
872 		 * So increment nr_waiting here so no new raise_barriers will
873 		 * succeed, and so the second wait_barrier cannot block.
874 		 */
875 		spin_lock_irq(&conf->resync_lock);
876 		conf->nr_waiting++;
877 		spin_unlock_irq(&conf->resync_lock);
878 
879 		if (make_request(mddev, &bp->bio1))
880 			generic_make_request(&bp->bio1);
881 		if (make_request(mddev, &bp->bio2))
882 			generic_make_request(&bp->bio2);
883 
884 		spin_lock_irq(&conf->resync_lock);
885 		conf->nr_waiting--;
886 		wake_up(&conf->wait_barrier);
887 		spin_unlock_irq(&conf->resync_lock);
888 
889 		bio_pair_release(bp);
890 		return 0;
891 	bad_map:
892 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
893 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
894 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
895 
896 		bio_io_error(bio);
897 		return 0;
898 	}
899 
900 	md_write_start(mddev, bio);
901 
902 	/*
903 	 * Register the new request and wait if the reconstruction
904 	 * thread has put up a bar for new requests.
905 	 * Continue immediately if no resync is active currently.
906 	 */
907 	wait_barrier(conf);
908 
909 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
910 
911 	r10_bio->master_bio = bio;
912 	r10_bio->sectors = bio->bi_size >> 9;
913 
914 	r10_bio->mddev = mddev;
915 	r10_bio->sector = bio->bi_sector;
916 	r10_bio->state = 0;
917 
918 	/* We might need to issue multiple reads to different
919 	 * devices if there are bad blocks around, so we keep
920 	 * track of the number of reads in bio->bi_phys_segments.
921 	 * If this is 0, there is only one r10_bio and no locking
922 	 * will be needed when the request completes.  If it is
923 	 * non-zero, then it is the number of not-completed requests.
924 	 */
925 	bio->bi_phys_segments = 0;
926 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
927 
928 	if (rw == READ) {
929 		/*
930 		 * read balancing logic:
931 		 */
932 		int disk;
933 		int slot;
934 
935 read_again:
936 		disk = read_balance(conf, r10_bio, &max_sectors);
937 		slot = r10_bio->read_slot;
938 		if (disk < 0) {
939 			raid_end_bio_io(r10_bio);
940 			return 0;
941 		}
942 		mirror = conf->mirrors + disk;
943 
944 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
945 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
946 			    max_sectors);
947 
948 		r10_bio->devs[slot].bio = read_bio;
949 
950 		read_bio->bi_sector = r10_bio->devs[slot].addr +
951 			mirror->rdev->data_offset;
952 		read_bio->bi_bdev = mirror->rdev->bdev;
953 		read_bio->bi_end_io = raid10_end_read_request;
954 		read_bio->bi_rw = READ | do_sync;
955 		read_bio->bi_private = r10_bio;
956 
957 		if (max_sectors < r10_bio->sectors) {
958 			/* Could not read all from this device, so we will
959 			 * need another r10_bio.
960 			 */
961 			sectors_handled = (r10_bio->sectors + max_sectors
962 					   - bio->bi_sector);
963 			r10_bio->sectors = max_sectors;
964 			spin_lock_irq(&conf->device_lock);
965 			if (bio->bi_phys_segments == 0)
966 				bio->bi_phys_segments = 2;
967 			else
968 				bio->bi_phys_segments++;
969 			spin_unlock(&conf->device_lock);
970 			/* Cannot call generic_make_request directly
971 			 * as that will be queued in __generic_make_request
972 			 * and subsequent mempool_alloc might block
973 			 * waiting for it.  so hand bio over to raid10d.
974 			 */
975 			reschedule_retry(r10_bio);
976 
977 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
978 
979 			r10_bio->master_bio = bio;
980 			r10_bio->sectors = ((bio->bi_size >> 9)
981 					    - sectors_handled);
982 			r10_bio->state = 0;
983 			r10_bio->mddev = mddev;
984 			r10_bio->sector = bio->bi_sector + sectors_handled;
985 			goto read_again;
986 		} else
987 			generic_make_request(read_bio);
988 		return 0;
989 	}
990 
991 	/*
992 	 * WRITE:
993 	 */
994 	/* first select target devices under rcu_lock and
995 	 * inc refcount on their rdev.  Record them by setting
996 	 * bios[x] to bio
997 	 * If there are known/acknowledged bad blocks on any device
998 	 * on which we have seen a write error, we want to avoid
999 	 * writing to those blocks.  This potentially requires several
1000 	 * writes to write around the bad blocks.  Each set of writes
1001 	 * gets its own r10_bio with a set of bios attached.  The number
1002 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1003 	 * the read case.
1004 	 */
1005 	plugged = mddev_check_plugged(mddev);
1006 
1007 	raid10_find_phys(conf, r10_bio);
1008 retry_write:
1009 	blocked_rdev = NULL;
1010 	rcu_read_lock();
1011 	max_sectors = r10_bio->sectors;
1012 
1013 	for (i = 0;  i < conf->copies; i++) {
1014 		int d = r10_bio->devs[i].devnum;
1015 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
1016 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1017 			atomic_inc(&rdev->nr_pending);
1018 			blocked_rdev = rdev;
1019 			break;
1020 		}
1021 		r10_bio->devs[i].bio = NULL;
1022 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1023 			set_bit(R10BIO_Degraded, &r10_bio->state);
1024 			continue;
1025 		}
1026 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1027 			sector_t first_bad;
1028 			sector_t dev_sector = r10_bio->devs[i].addr;
1029 			int bad_sectors;
1030 			int is_bad;
1031 
1032 			is_bad = is_badblock(rdev, dev_sector,
1033 					     max_sectors,
1034 					     &first_bad, &bad_sectors);
1035 			if (is_bad < 0) {
1036 				/* Mustn't write here until the bad block
1037 				 * is acknowledged
1038 				 */
1039 				atomic_inc(&rdev->nr_pending);
1040 				set_bit(BlockedBadBlocks, &rdev->flags);
1041 				blocked_rdev = rdev;
1042 				break;
1043 			}
1044 			if (is_bad && first_bad <= dev_sector) {
1045 				/* Cannot write here at all */
1046 				bad_sectors -= (dev_sector - first_bad);
1047 				if (bad_sectors < max_sectors)
1048 					/* Mustn't write more than bad_sectors
1049 					 * to other devices yet
1050 					 */
1051 					max_sectors = bad_sectors;
1052 				/* We don't set R10BIO_Degraded as that
1053 				 * only applies if the disk is missing,
1054 				 * so it might be re-added, and we want to
1055 				 * know to recover this chunk.
1056 				 * In this case the device is here, and the
1057 				 * fact that this chunk is not in-sync is
1058 				 * recorded in the bad block log.
1059 				 */
1060 				continue;
1061 			}
1062 			if (is_bad) {
1063 				int good_sectors = first_bad - dev_sector;
1064 				if (good_sectors < max_sectors)
1065 					max_sectors = good_sectors;
1066 			}
1067 		}
1068 		r10_bio->devs[i].bio = bio;
1069 		atomic_inc(&rdev->nr_pending);
1070 	}
1071 	rcu_read_unlock();
1072 
1073 	if (unlikely(blocked_rdev)) {
1074 		/* Have to wait for this device to get unblocked, then retry */
1075 		int j;
1076 		int d;
1077 
1078 		for (j = 0; j < i; j++)
1079 			if (r10_bio->devs[j].bio) {
1080 				d = r10_bio->devs[j].devnum;
1081 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1082 			}
1083 		allow_barrier(conf);
1084 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1085 		wait_barrier(conf);
1086 		goto retry_write;
1087 	}
1088 
1089 	if (max_sectors < r10_bio->sectors) {
1090 		/* We are splitting this into multiple parts, so
1091 		 * we need to prepare for allocating another r10_bio.
1092 		 */
1093 		r10_bio->sectors = max_sectors;
1094 		spin_lock_irq(&conf->device_lock);
1095 		if (bio->bi_phys_segments == 0)
1096 			bio->bi_phys_segments = 2;
1097 		else
1098 			bio->bi_phys_segments++;
1099 		spin_unlock_irq(&conf->device_lock);
1100 	}
1101 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1102 
1103 	atomic_set(&r10_bio->remaining, 1);
1104 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1105 
1106 	for (i = 0; i < conf->copies; i++) {
1107 		struct bio *mbio;
1108 		int d = r10_bio->devs[i].devnum;
1109 		if (!r10_bio->devs[i].bio)
1110 			continue;
1111 
1112 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1113 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1114 			    max_sectors);
1115 		r10_bio->devs[i].bio = mbio;
1116 
1117 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1118 				   conf->mirrors[d].rdev->data_offset);
1119 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1120 		mbio->bi_end_io	= raid10_end_write_request;
1121 		mbio->bi_rw = WRITE | do_sync | do_fua;
1122 		mbio->bi_private = r10_bio;
1123 
1124 		atomic_inc(&r10_bio->remaining);
1125 		spin_lock_irqsave(&conf->device_lock, flags);
1126 		bio_list_add(&conf->pending_bio_list, mbio);
1127 		spin_unlock_irqrestore(&conf->device_lock, flags);
1128 	}
1129 
1130 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1131 		/* This matches the end of raid10_end_write_request() */
1132 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
1133 				r10_bio->sectors,
1134 				!test_bit(R10BIO_Degraded, &r10_bio->state),
1135 				0);
1136 		md_write_end(mddev);
1137 		raid_end_bio_io(r10_bio);
1138 	}
1139 
1140 	/* In case raid10d snuck in to freeze_array */
1141 	wake_up(&conf->wait_barrier);
1142 
1143 	if (sectors_handled < (bio->bi_size >> 9)) {
1144 		/* We need another r10_bio.  It has already been counted
1145 		 * in bio->bi_phys_segments.
1146 		 */
1147 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1148 
1149 		r10_bio->master_bio = bio;
1150 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1151 
1152 		r10_bio->mddev = mddev;
1153 		r10_bio->sector = bio->bi_sector + sectors_handled;
1154 		r10_bio->state = 0;
1155 		goto retry_write;
1156 	}
1157 
1158 	if (do_sync || !mddev->bitmap || !plugged)
1159 		md_wakeup_thread(mddev->thread);
1160 	return 0;
1161 }
1162 
1163 static void status(struct seq_file *seq, mddev_t *mddev)
1164 {
1165 	conf_t *conf = mddev->private;
1166 	int i;
1167 
1168 	if (conf->near_copies < conf->raid_disks)
1169 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1170 	if (conf->near_copies > 1)
1171 		seq_printf(seq, " %d near-copies", conf->near_copies);
1172 	if (conf->far_copies > 1) {
1173 		if (conf->far_offset)
1174 			seq_printf(seq, " %d offset-copies", conf->far_copies);
1175 		else
1176 			seq_printf(seq, " %d far-copies", conf->far_copies);
1177 	}
1178 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1179 					conf->raid_disks - mddev->degraded);
1180 	for (i = 0; i < conf->raid_disks; i++)
1181 		seq_printf(seq, "%s",
1182 			      conf->mirrors[i].rdev &&
1183 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1184 	seq_printf(seq, "]");
1185 }
1186 
1187 /* check if there are enough drives for
1188  * every block to appear on atleast one.
1189  * Don't consider the device numbered 'ignore'
1190  * as we might be about to remove it.
1191  */
1192 static int enough(conf_t *conf, int ignore)
1193 {
1194 	int first = 0;
1195 
1196 	do {
1197 		int n = conf->copies;
1198 		int cnt = 0;
1199 		while (n--) {
1200 			if (conf->mirrors[first].rdev &&
1201 			    first != ignore)
1202 				cnt++;
1203 			first = (first+1) % conf->raid_disks;
1204 		}
1205 		if (cnt == 0)
1206 			return 0;
1207 	} while (first != 0);
1208 	return 1;
1209 }
1210 
1211 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1212 {
1213 	char b[BDEVNAME_SIZE];
1214 	conf_t *conf = mddev->private;
1215 
1216 	/*
1217 	 * If it is not operational, then we have already marked it as dead
1218 	 * else if it is the last working disks, ignore the error, let the
1219 	 * next level up know.
1220 	 * else mark the drive as failed
1221 	 */
1222 	if (test_bit(In_sync, &rdev->flags)
1223 	    && !enough(conf, rdev->raid_disk))
1224 		/*
1225 		 * Don't fail the drive, just return an IO error.
1226 		 */
1227 		return;
1228 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1229 		unsigned long flags;
1230 		spin_lock_irqsave(&conf->device_lock, flags);
1231 		mddev->degraded++;
1232 		spin_unlock_irqrestore(&conf->device_lock, flags);
1233 		/*
1234 		 * if recovery is running, make sure it aborts.
1235 		 */
1236 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1237 	}
1238 	set_bit(Blocked, &rdev->flags);
1239 	set_bit(Faulty, &rdev->flags);
1240 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1241 	printk(KERN_ALERT
1242 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1243 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1244 	       mdname(mddev), bdevname(rdev->bdev, b),
1245 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1246 }
1247 
1248 static void print_conf(conf_t *conf)
1249 {
1250 	int i;
1251 	mirror_info_t *tmp;
1252 
1253 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1254 	if (!conf) {
1255 		printk(KERN_DEBUG "(!conf)\n");
1256 		return;
1257 	}
1258 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1259 		conf->raid_disks);
1260 
1261 	for (i = 0; i < conf->raid_disks; i++) {
1262 		char b[BDEVNAME_SIZE];
1263 		tmp = conf->mirrors + i;
1264 		if (tmp->rdev)
1265 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1266 				i, !test_bit(In_sync, &tmp->rdev->flags),
1267 			        !test_bit(Faulty, &tmp->rdev->flags),
1268 				bdevname(tmp->rdev->bdev,b));
1269 	}
1270 }
1271 
1272 static void close_sync(conf_t *conf)
1273 {
1274 	wait_barrier(conf);
1275 	allow_barrier(conf);
1276 
1277 	mempool_destroy(conf->r10buf_pool);
1278 	conf->r10buf_pool = NULL;
1279 }
1280 
1281 static int raid10_spare_active(mddev_t *mddev)
1282 {
1283 	int i;
1284 	conf_t *conf = mddev->private;
1285 	mirror_info_t *tmp;
1286 	int count = 0;
1287 	unsigned long flags;
1288 
1289 	/*
1290 	 * Find all non-in_sync disks within the RAID10 configuration
1291 	 * and mark them in_sync
1292 	 */
1293 	for (i = 0; i < conf->raid_disks; i++) {
1294 		tmp = conf->mirrors + i;
1295 		if (tmp->rdev
1296 		    && !test_bit(Faulty, &tmp->rdev->flags)
1297 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1298 			count++;
1299 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1300 		}
1301 	}
1302 	spin_lock_irqsave(&conf->device_lock, flags);
1303 	mddev->degraded -= count;
1304 	spin_unlock_irqrestore(&conf->device_lock, flags);
1305 
1306 	print_conf(conf);
1307 	return count;
1308 }
1309 
1310 
1311 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1312 {
1313 	conf_t *conf = mddev->private;
1314 	int err = -EEXIST;
1315 	int mirror;
1316 	int first = 0;
1317 	int last = conf->raid_disks - 1;
1318 
1319 	if (mddev->recovery_cp < MaxSector)
1320 		/* only hot-add to in-sync arrays, as recovery is
1321 		 * very different from resync
1322 		 */
1323 		return -EBUSY;
1324 	if (!enough(conf, -1))
1325 		return -EINVAL;
1326 
1327 	if (rdev->raid_disk >= 0)
1328 		first = last = rdev->raid_disk;
1329 
1330 	if (rdev->saved_raid_disk >= first &&
1331 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1332 		mirror = rdev->saved_raid_disk;
1333 	else
1334 		mirror = first;
1335 	for ( ; mirror <= last ; mirror++) {
1336 		mirror_info_t *p = &conf->mirrors[mirror];
1337 		if (p->recovery_disabled == mddev->recovery_disabled)
1338 			continue;
1339 		if (!p->rdev)
1340 			continue;
1341 
1342 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1343 				  rdev->data_offset << 9);
1344 		/* as we don't honour merge_bvec_fn, we must
1345 		 * never risk violating it, so limit
1346 		 * ->max_segments to one lying with a single
1347 		 * page, as a one page request is never in
1348 		 * violation.
1349 		 */
1350 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1351 			blk_queue_max_segments(mddev->queue, 1);
1352 			blk_queue_segment_boundary(mddev->queue,
1353 						   PAGE_CACHE_SIZE - 1);
1354 		}
1355 
1356 		p->head_position = 0;
1357 		rdev->raid_disk = mirror;
1358 		err = 0;
1359 		if (rdev->saved_raid_disk != mirror)
1360 			conf->fullsync = 1;
1361 		rcu_assign_pointer(p->rdev, rdev);
1362 		break;
1363 	}
1364 
1365 	md_integrity_add_rdev(rdev, mddev);
1366 	print_conf(conf);
1367 	return err;
1368 }
1369 
1370 static int raid10_remove_disk(mddev_t *mddev, int number)
1371 {
1372 	conf_t *conf = mddev->private;
1373 	int err = 0;
1374 	mdk_rdev_t *rdev;
1375 	mirror_info_t *p = conf->mirrors+ number;
1376 
1377 	print_conf(conf);
1378 	rdev = p->rdev;
1379 	if (rdev) {
1380 		if (test_bit(In_sync, &rdev->flags) ||
1381 		    atomic_read(&rdev->nr_pending)) {
1382 			err = -EBUSY;
1383 			goto abort;
1384 		}
1385 		/* Only remove faulty devices in recovery
1386 		 * is not possible.
1387 		 */
1388 		if (!test_bit(Faulty, &rdev->flags) &&
1389 		    mddev->recovery_disabled != p->recovery_disabled &&
1390 		    enough(conf, -1)) {
1391 			err = -EBUSY;
1392 			goto abort;
1393 		}
1394 		p->rdev = NULL;
1395 		synchronize_rcu();
1396 		if (atomic_read(&rdev->nr_pending)) {
1397 			/* lost the race, try later */
1398 			err = -EBUSY;
1399 			p->rdev = rdev;
1400 			goto abort;
1401 		}
1402 		err = md_integrity_register(mddev);
1403 	}
1404 abort:
1405 
1406 	print_conf(conf);
1407 	return err;
1408 }
1409 
1410 
1411 static void end_sync_read(struct bio *bio, int error)
1412 {
1413 	r10bio_t *r10_bio = bio->bi_private;
1414 	conf_t *conf = r10_bio->mddev->private;
1415 	int d;
1416 
1417 	d = find_bio_disk(conf, r10_bio, bio, NULL);
1418 
1419 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1420 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1421 	else
1422 		/* The write handler will notice the lack of
1423 		 * R10BIO_Uptodate and record any errors etc
1424 		 */
1425 		atomic_add(r10_bio->sectors,
1426 			   &conf->mirrors[d].rdev->corrected_errors);
1427 
1428 	/* for reconstruct, we always reschedule after a read.
1429 	 * for resync, only after all reads
1430 	 */
1431 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1432 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1433 	    atomic_dec_and_test(&r10_bio->remaining)) {
1434 		/* we have read all the blocks,
1435 		 * do the comparison in process context in raid10d
1436 		 */
1437 		reschedule_retry(r10_bio);
1438 	}
1439 }
1440 
1441 static void end_sync_request(r10bio_t *r10_bio)
1442 {
1443 	mddev_t *mddev = r10_bio->mddev;
1444 
1445 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1446 		if (r10_bio->master_bio == NULL) {
1447 			/* the primary of several recovery bios */
1448 			sector_t s = r10_bio->sectors;
1449 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1450 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1451 				reschedule_retry(r10_bio);
1452 			else
1453 				put_buf(r10_bio);
1454 			md_done_sync(mddev, s, 1);
1455 			break;
1456 		} else {
1457 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1458 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1459 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1460 				reschedule_retry(r10_bio);
1461 			else
1462 				put_buf(r10_bio);
1463 			r10_bio = r10_bio2;
1464 		}
1465 	}
1466 }
1467 
1468 static void end_sync_write(struct bio *bio, int error)
1469 {
1470 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1471 	r10bio_t *r10_bio = bio->bi_private;
1472 	mddev_t *mddev = r10_bio->mddev;
1473 	conf_t *conf = mddev->private;
1474 	int d;
1475 	sector_t first_bad;
1476 	int bad_sectors;
1477 	int slot;
1478 
1479 	d = find_bio_disk(conf, r10_bio, bio, &slot);
1480 
1481 	if (!uptodate) {
1482 		set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1483 		set_bit(R10BIO_WriteError, &r10_bio->state);
1484 	} else if (is_badblock(conf->mirrors[d].rdev,
1485 			     r10_bio->devs[slot].addr,
1486 			     r10_bio->sectors,
1487 			     &first_bad, &bad_sectors))
1488 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1489 
1490 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1491 
1492 	end_sync_request(r10_bio);
1493 }
1494 
1495 /*
1496  * Note: sync and recover and handled very differently for raid10
1497  * This code is for resync.
1498  * For resync, we read through virtual addresses and read all blocks.
1499  * If there is any error, we schedule a write.  The lowest numbered
1500  * drive is authoritative.
1501  * However requests come for physical address, so we need to map.
1502  * For every physical address there are raid_disks/copies virtual addresses,
1503  * which is always are least one, but is not necessarly an integer.
1504  * This means that a physical address can span multiple chunks, so we may
1505  * have to submit multiple io requests for a single sync request.
1506  */
1507 /*
1508  * We check if all blocks are in-sync and only write to blocks that
1509  * aren't in sync
1510  */
1511 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1512 {
1513 	conf_t *conf = mddev->private;
1514 	int i, first;
1515 	struct bio *tbio, *fbio;
1516 
1517 	atomic_set(&r10_bio->remaining, 1);
1518 
1519 	/* find the first device with a block */
1520 	for (i=0; i<conf->copies; i++)
1521 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1522 			break;
1523 
1524 	if (i == conf->copies)
1525 		goto done;
1526 
1527 	first = i;
1528 	fbio = r10_bio->devs[i].bio;
1529 
1530 	/* now find blocks with errors */
1531 	for (i=0 ; i < conf->copies ; i++) {
1532 		int  j, d;
1533 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1534 
1535 		tbio = r10_bio->devs[i].bio;
1536 
1537 		if (tbio->bi_end_io != end_sync_read)
1538 			continue;
1539 		if (i == first)
1540 			continue;
1541 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1542 			/* We know that the bi_io_vec layout is the same for
1543 			 * both 'first' and 'i', so we just compare them.
1544 			 * All vec entries are PAGE_SIZE;
1545 			 */
1546 			for (j = 0; j < vcnt; j++)
1547 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1548 					   page_address(tbio->bi_io_vec[j].bv_page),
1549 					   PAGE_SIZE))
1550 					break;
1551 			if (j == vcnt)
1552 				continue;
1553 			mddev->resync_mismatches += r10_bio->sectors;
1554 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1555 				/* Don't fix anything. */
1556 				continue;
1557 		}
1558 		/* Ok, we need to write this bio, either to correct an
1559 		 * inconsistency or to correct an unreadable block.
1560 		 * First we need to fixup bv_offset, bv_len and
1561 		 * bi_vecs, as the read request might have corrupted these
1562 		 */
1563 		tbio->bi_vcnt = vcnt;
1564 		tbio->bi_size = r10_bio->sectors << 9;
1565 		tbio->bi_idx = 0;
1566 		tbio->bi_phys_segments = 0;
1567 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1568 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1569 		tbio->bi_next = NULL;
1570 		tbio->bi_rw = WRITE;
1571 		tbio->bi_private = r10_bio;
1572 		tbio->bi_sector = r10_bio->devs[i].addr;
1573 
1574 		for (j=0; j < vcnt ; j++) {
1575 			tbio->bi_io_vec[j].bv_offset = 0;
1576 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1577 
1578 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1579 			       page_address(fbio->bi_io_vec[j].bv_page),
1580 			       PAGE_SIZE);
1581 		}
1582 		tbio->bi_end_io = end_sync_write;
1583 
1584 		d = r10_bio->devs[i].devnum;
1585 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1586 		atomic_inc(&r10_bio->remaining);
1587 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1588 
1589 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1590 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1591 		generic_make_request(tbio);
1592 	}
1593 
1594 done:
1595 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1596 		md_done_sync(mddev, r10_bio->sectors, 1);
1597 		put_buf(r10_bio);
1598 	}
1599 }
1600 
1601 /*
1602  * Now for the recovery code.
1603  * Recovery happens across physical sectors.
1604  * We recover all non-is_sync drives by finding the virtual address of
1605  * each, and then choose a working drive that also has that virt address.
1606  * There is a separate r10_bio for each non-in_sync drive.
1607  * Only the first two slots are in use. The first for reading,
1608  * The second for writing.
1609  *
1610  */
1611 static void fix_recovery_read_error(r10bio_t *r10_bio)
1612 {
1613 	/* We got a read error during recovery.
1614 	 * We repeat the read in smaller page-sized sections.
1615 	 * If a read succeeds, write it to the new device or record
1616 	 * a bad block if we cannot.
1617 	 * If a read fails, record a bad block on both old and
1618 	 * new devices.
1619 	 */
1620 	mddev_t *mddev = r10_bio->mddev;
1621 	conf_t *conf = mddev->private;
1622 	struct bio *bio = r10_bio->devs[0].bio;
1623 	sector_t sect = 0;
1624 	int sectors = r10_bio->sectors;
1625 	int idx = 0;
1626 	int dr = r10_bio->devs[0].devnum;
1627 	int dw = r10_bio->devs[1].devnum;
1628 
1629 	while (sectors) {
1630 		int s = sectors;
1631 		mdk_rdev_t *rdev;
1632 		sector_t addr;
1633 		int ok;
1634 
1635 		if (s > (PAGE_SIZE>>9))
1636 			s = PAGE_SIZE >> 9;
1637 
1638 		rdev = conf->mirrors[dr].rdev;
1639 		addr = r10_bio->devs[0].addr + sect,
1640 		ok = sync_page_io(rdev,
1641 				  addr,
1642 				  s << 9,
1643 				  bio->bi_io_vec[idx].bv_page,
1644 				  READ, false);
1645 		if (ok) {
1646 			rdev = conf->mirrors[dw].rdev;
1647 			addr = r10_bio->devs[1].addr + sect;
1648 			ok = sync_page_io(rdev,
1649 					  addr,
1650 					  s << 9,
1651 					  bio->bi_io_vec[idx].bv_page,
1652 					  WRITE, false);
1653 			if (!ok)
1654 				set_bit(WriteErrorSeen, &rdev->flags);
1655 		}
1656 		if (!ok) {
1657 			/* We don't worry if we cannot set a bad block -
1658 			 * it really is bad so there is no loss in not
1659 			 * recording it yet
1660 			 */
1661 			rdev_set_badblocks(rdev, addr, s, 0);
1662 
1663 			if (rdev != conf->mirrors[dw].rdev) {
1664 				/* need bad block on destination too */
1665 				mdk_rdev_t *rdev2 = conf->mirrors[dw].rdev;
1666 				addr = r10_bio->devs[1].addr + sect;
1667 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
1668 				if (!ok) {
1669 					/* just abort the recovery */
1670 					printk(KERN_NOTICE
1671 					       "md/raid10:%s: recovery aborted"
1672 					       " due to read error\n",
1673 					       mdname(mddev));
1674 
1675 					conf->mirrors[dw].recovery_disabled
1676 						= mddev->recovery_disabled;
1677 					set_bit(MD_RECOVERY_INTR,
1678 						&mddev->recovery);
1679 					break;
1680 				}
1681 			}
1682 		}
1683 
1684 		sectors -= s;
1685 		sect += s;
1686 		idx++;
1687 	}
1688 }
1689 
1690 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1691 {
1692 	conf_t *conf = mddev->private;
1693 	int d;
1694 	struct bio *wbio;
1695 
1696 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1697 		fix_recovery_read_error(r10_bio);
1698 		end_sync_request(r10_bio);
1699 		return;
1700 	}
1701 
1702 	/*
1703 	 * share the pages with the first bio
1704 	 * and submit the write request
1705 	 */
1706 	wbio = r10_bio->devs[1].bio;
1707 	d = r10_bio->devs[1].devnum;
1708 
1709 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1710 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1711 	generic_make_request(wbio);
1712 }
1713 
1714 
1715 /*
1716  * Used by fix_read_error() to decay the per rdev read_errors.
1717  * We halve the read error count for every hour that has elapsed
1718  * since the last recorded read error.
1719  *
1720  */
1721 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1722 {
1723 	struct timespec cur_time_mon;
1724 	unsigned long hours_since_last;
1725 	unsigned int read_errors = atomic_read(&rdev->read_errors);
1726 
1727 	ktime_get_ts(&cur_time_mon);
1728 
1729 	if (rdev->last_read_error.tv_sec == 0 &&
1730 	    rdev->last_read_error.tv_nsec == 0) {
1731 		/* first time we've seen a read error */
1732 		rdev->last_read_error = cur_time_mon;
1733 		return;
1734 	}
1735 
1736 	hours_since_last = (cur_time_mon.tv_sec -
1737 			    rdev->last_read_error.tv_sec) / 3600;
1738 
1739 	rdev->last_read_error = cur_time_mon;
1740 
1741 	/*
1742 	 * if hours_since_last is > the number of bits in read_errors
1743 	 * just set read errors to 0. We do this to avoid
1744 	 * overflowing the shift of read_errors by hours_since_last.
1745 	 */
1746 	if (hours_since_last >= 8 * sizeof(read_errors))
1747 		atomic_set(&rdev->read_errors, 0);
1748 	else
1749 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1750 }
1751 
1752 static int r10_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1753 			    int sectors, struct page *page, int rw)
1754 {
1755 	sector_t first_bad;
1756 	int bad_sectors;
1757 
1758 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1759 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1760 		return -1;
1761 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1762 		/* success */
1763 		return 1;
1764 	if (rw == WRITE)
1765 		set_bit(WriteErrorSeen, &rdev->flags);
1766 	/* need to record an error - either for the block or the device */
1767 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1768 		md_error(rdev->mddev, rdev);
1769 	return 0;
1770 }
1771 
1772 /*
1773  * This is a kernel thread which:
1774  *
1775  *	1.	Retries failed read operations on working mirrors.
1776  *	2.	Updates the raid superblock when problems encounter.
1777  *	3.	Performs writes following reads for array synchronising.
1778  */
1779 
1780 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1781 {
1782 	int sect = 0; /* Offset from r10_bio->sector */
1783 	int sectors = r10_bio->sectors;
1784 	mdk_rdev_t*rdev;
1785 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1786 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
1787 
1788 	/* still own a reference to this rdev, so it cannot
1789 	 * have been cleared recently.
1790 	 */
1791 	rdev = conf->mirrors[d].rdev;
1792 
1793 	if (test_bit(Faulty, &rdev->flags))
1794 		/* drive has already been failed, just ignore any
1795 		   more fix_read_error() attempts */
1796 		return;
1797 
1798 	check_decay_read_errors(mddev, rdev);
1799 	atomic_inc(&rdev->read_errors);
1800 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
1801 		char b[BDEVNAME_SIZE];
1802 		bdevname(rdev->bdev, b);
1803 
1804 		printk(KERN_NOTICE
1805 		       "md/raid10:%s: %s: Raid device exceeded "
1806 		       "read_error threshold [cur %d:max %d]\n",
1807 		       mdname(mddev), b,
1808 		       atomic_read(&rdev->read_errors), max_read_errors);
1809 		printk(KERN_NOTICE
1810 		       "md/raid10:%s: %s: Failing raid device\n",
1811 		       mdname(mddev), b);
1812 		md_error(mddev, conf->mirrors[d].rdev);
1813 		return;
1814 	}
1815 
1816 	while(sectors) {
1817 		int s = sectors;
1818 		int sl = r10_bio->read_slot;
1819 		int success = 0;
1820 		int start;
1821 
1822 		if (s > (PAGE_SIZE>>9))
1823 			s = PAGE_SIZE >> 9;
1824 
1825 		rcu_read_lock();
1826 		do {
1827 			sector_t first_bad;
1828 			int bad_sectors;
1829 
1830 			d = r10_bio->devs[sl].devnum;
1831 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1832 			if (rdev &&
1833 			    test_bit(In_sync, &rdev->flags) &&
1834 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1835 					&first_bad, &bad_sectors) == 0) {
1836 				atomic_inc(&rdev->nr_pending);
1837 				rcu_read_unlock();
1838 				success = sync_page_io(rdev,
1839 						       r10_bio->devs[sl].addr +
1840 						       sect,
1841 						       s<<9,
1842 						       conf->tmppage, READ, false);
1843 				rdev_dec_pending(rdev, mddev);
1844 				rcu_read_lock();
1845 				if (success)
1846 					break;
1847 			}
1848 			sl++;
1849 			if (sl == conf->copies)
1850 				sl = 0;
1851 		} while (!success && sl != r10_bio->read_slot);
1852 		rcu_read_unlock();
1853 
1854 		if (!success) {
1855 			/* Cannot read from anywhere, just mark the block
1856 			 * as bad on the first device to discourage future
1857 			 * reads.
1858 			 */
1859 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1860 			rdev = conf->mirrors[dn].rdev;
1861 
1862 			if (!rdev_set_badblocks(
1863 				    rdev,
1864 				    r10_bio->devs[r10_bio->read_slot].addr
1865 				    + sect,
1866 				    s, 0))
1867 				md_error(mddev, rdev);
1868 			break;
1869 		}
1870 
1871 		start = sl;
1872 		/* write it back and re-read */
1873 		rcu_read_lock();
1874 		while (sl != r10_bio->read_slot) {
1875 			char b[BDEVNAME_SIZE];
1876 
1877 			if (sl==0)
1878 				sl = conf->copies;
1879 			sl--;
1880 			d = r10_bio->devs[sl].devnum;
1881 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1882 			if (!rdev ||
1883 			    !test_bit(In_sync, &rdev->flags))
1884 				continue;
1885 
1886 			atomic_inc(&rdev->nr_pending);
1887 			rcu_read_unlock();
1888 			if (r10_sync_page_io(rdev,
1889 					     r10_bio->devs[sl].addr +
1890 					     sect,
1891 					     s<<9, conf->tmppage, WRITE)
1892 			    == 0) {
1893 				/* Well, this device is dead */
1894 				printk(KERN_NOTICE
1895 				       "md/raid10:%s: read correction "
1896 				       "write failed"
1897 				       " (%d sectors at %llu on %s)\n",
1898 				       mdname(mddev), s,
1899 				       (unsigned long long)(
1900 					       sect + rdev->data_offset),
1901 				       bdevname(rdev->bdev, b));
1902 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1903 				       "drive\n",
1904 				       mdname(mddev),
1905 				       bdevname(rdev->bdev, b));
1906 			}
1907 			rdev_dec_pending(rdev, mddev);
1908 			rcu_read_lock();
1909 		}
1910 		sl = start;
1911 		while (sl != r10_bio->read_slot) {
1912 			char b[BDEVNAME_SIZE];
1913 
1914 			if (sl==0)
1915 				sl = conf->copies;
1916 			sl--;
1917 			d = r10_bio->devs[sl].devnum;
1918 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1919 			if (!rdev ||
1920 			    !test_bit(In_sync, &rdev->flags))
1921 				continue;
1922 
1923 			atomic_inc(&rdev->nr_pending);
1924 			rcu_read_unlock();
1925 			switch (r10_sync_page_io(rdev,
1926 					     r10_bio->devs[sl].addr +
1927 					     sect,
1928 					     s<<9, conf->tmppage,
1929 						 READ)) {
1930 			case 0:
1931 				/* Well, this device is dead */
1932 				printk(KERN_NOTICE
1933 				       "md/raid10:%s: unable to read back "
1934 				       "corrected sectors"
1935 				       " (%d sectors at %llu on %s)\n",
1936 				       mdname(mddev), s,
1937 				       (unsigned long long)(
1938 					       sect + rdev->data_offset),
1939 				       bdevname(rdev->bdev, b));
1940 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1941 				       "drive\n",
1942 				       mdname(mddev),
1943 				       bdevname(rdev->bdev, b));
1944 				break;
1945 			case 1:
1946 				printk(KERN_INFO
1947 				       "md/raid10:%s: read error corrected"
1948 				       " (%d sectors at %llu on %s)\n",
1949 				       mdname(mddev), s,
1950 				       (unsigned long long)(
1951 					       sect + rdev->data_offset),
1952 				       bdevname(rdev->bdev, b));
1953 				atomic_add(s, &rdev->corrected_errors);
1954 			}
1955 
1956 			rdev_dec_pending(rdev, mddev);
1957 			rcu_read_lock();
1958 		}
1959 		rcu_read_unlock();
1960 
1961 		sectors -= s;
1962 		sect += s;
1963 	}
1964 }
1965 
1966 static void bi_complete(struct bio *bio, int error)
1967 {
1968 	complete((struct completion *)bio->bi_private);
1969 }
1970 
1971 static int submit_bio_wait(int rw, struct bio *bio)
1972 {
1973 	struct completion event;
1974 	rw |= REQ_SYNC;
1975 
1976 	init_completion(&event);
1977 	bio->bi_private = &event;
1978 	bio->bi_end_io = bi_complete;
1979 	submit_bio(rw, bio);
1980 	wait_for_completion(&event);
1981 
1982 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1983 }
1984 
1985 static int narrow_write_error(r10bio_t *r10_bio, int i)
1986 {
1987 	struct bio *bio = r10_bio->master_bio;
1988 	mddev_t *mddev = r10_bio->mddev;
1989 	conf_t *conf = mddev->private;
1990 	mdk_rdev_t *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
1991 	/* bio has the data to be written to slot 'i' where
1992 	 * we just recently had a write error.
1993 	 * We repeatedly clone the bio and trim down to one block,
1994 	 * then try the write.  Where the write fails we record
1995 	 * a bad block.
1996 	 * It is conceivable that the bio doesn't exactly align with
1997 	 * blocks.  We must handle this.
1998 	 *
1999 	 * We currently own a reference to the rdev.
2000 	 */
2001 
2002 	int block_sectors;
2003 	sector_t sector;
2004 	int sectors;
2005 	int sect_to_write = r10_bio->sectors;
2006 	int ok = 1;
2007 
2008 	if (rdev->badblocks.shift < 0)
2009 		return 0;
2010 
2011 	block_sectors = 1 << rdev->badblocks.shift;
2012 	sector = r10_bio->sector;
2013 	sectors = ((r10_bio->sector + block_sectors)
2014 		   & ~(sector_t)(block_sectors - 1))
2015 		- sector;
2016 
2017 	while (sect_to_write) {
2018 		struct bio *wbio;
2019 		if (sectors > sect_to_write)
2020 			sectors = sect_to_write;
2021 		/* Write at 'sector' for 'sectors' */
2022 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2023 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2024 		wbio->bi_sector = (r10_bio->devs[i].addr+
2025 				   rdev->data_offset+
2026 				   (sector - r10_bio->sector));
2027 		wbio->bi_bdev = rdev->bdev;
2028 		if (submit_bio_wait(WRITE, wbio) == 0)
2029 			/* Failure! */
2030 			ok = rdev_set_badblocks(rdev, sector,
2031 						sectors, 0)
2032 				&& ok;
2033 
2034 		bio_put(wbio);
2035 		sect_to_write -= sectors;
2036 		sector += sectors;
2037 		sectors = block_sectors;
2038 	}
2039 	return ok;
2040 }
2041 
2042 static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
2043 {
2044 	int slot = r10_bio->read_slot;
2045 	int mirror = r10_bio->devs[slot].devnum;
2046 	struct bio *bio;
2047 	conf_t *conf = mddev->private;
2048 	mdk_rdev_t *rdev;
2049 	char b[BDEVNAME_SIZE];
2050 	unsigned long do_sync;
2051 	int max_sectors;
2052 
2053 	/* we got a read error. Maybe the drive is bad.  Maybe just
2054 	 * the block and we can fix it.
2055 	 * We freeze all other IO, and try reading the block from
2056 	 * other devices.  When we find one, we re-write
2057 	 * and check it that fixes the read error.
2058 	 * This is all done synchronously while the array is
2059 	 * frozen.
2060 	 */
2061 	if (mddev->ro == 0) {
2062 		freeze_array(conf);
2063 		fix_read_error(conf, mddev, r10_bio);
2064 		unfreeze_array(conf);
2065 	}
2066 	rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2067 
2068 	bio = r10_bio->devs[slot].bio;
2069 	bdevname(bio->bi_bdev, b);
2070 	r10_bio->devs[slot].bio =
2071 		mddev->ro ? IO_BLOCKED : NULL;
2072 read_more:
2073 	mirror = read_balance(conf, r10_bio, &max_sectors);
2074 	if (mirror == -1) {
2075 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2076 		       " read error for block %llu\n",
2077 		       mdname(mddev), b,
2078 		       (unsigned long long)r10_bio->sector);
2079 		raid_end_bio_io(r10_bio);
2080 		bio_put(bio);
2081 		return;
2082 	}
2083 
2084 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2085 	if (bio)
2086 		bio_put(bio);
2087 	slot = r10_bio->read_slot;
2088 	rdev = conf->mirrors[mirror].rdev;
2089 	printk_ratelimited(
2090 		KERN_ERR
2091 		"md/raid10:%s: %s: redirecting"
2092 		"sector %llu to another mirror\n",
2093 		mdname(mddev),
2094 		bdevname(rdev->bdev, b),
2095 		(unsigned long long)r10_bio->sector);
2096 	bio = bio_clone_mddev(r10_bio->master_bio,
2097 			      GFP_NOIO, mddev);
2098 	md_trim_bio(bio,
2099 		    r10_bio->sector - bio->bi_sector,
2100 		    max_sectors);
2101 	r10_bio->devs[slot].bio = bio;
2102 	bio->bi_sector = r10_bio->devs[slot].addr
2103 		+ rdev->data_offset;
2104 	bio->bi_bdev = rdev->bdev;
2105 	bio->bi_rw = READ | do_sync;
2106 	bio->bi_private = r10_bio;
2107 	bio->bi_end_io = raid10_end_read_request;
2108 	if (max_sectors < r10_bio->sectors) {
2109 		/* Drat - have to split this up more */
2110 		struct bio *mbio = r10_bio->master_bio;
2111 		int sectors_handled =
2112 			r10_bio->sector + max_sectors
2113 			- mbio->bi_sector;
2114 		r10_bio->sectors = max_sectors;
2115 		spin_lock_irq(&conf->device_lock);
2116 		if (mbio->bi_phys_segments == 0)
2117 			mbio->bi_phys_segments = 2;
2118 		else
2119 			mbio->bi_phys_segments++;
2120 		spin_unlock_irq(&conf->device_lock);
2121 		generic_make_request(bio);
2122 		bio = NULL;
2123 
2124 		r10_bio = mempool_alloc(conf->r10bio_pool,
2125 					GFP_NOIO);
2126 		r10_bio->master_bio = mbio;
2127 		r10_bio->sectors = (mbio->bi_size >> 9)
2128 			- sectors_handled;
2129 		r10_bio->state = 0;
2130 		set_bit(R10BIO_ReadError,
2131 			&r10_bio->state);
2132 		r10_bio->mddev = mddev;
2133 		r10_bio->sector = mbio->bi_sector
2134 			+ sectors_handled;
2135 
2136 		goto read_more;
2137 	} else
2138 		generic_make_request(bio);
2139 }
2140 
2141 static void handle_write_completed(conf_t *conf, r10bio_t *r10_bio)
2142 {
2143 	/* Some sort of write request has finished and it
2144 	 * succeeded in writing where we thought there was a
2145 	 * bad block.  So forget the bad block.
2146 	 * Or possibly if failed and we need to record
2147 	 * a bad block.
2148 	 */
2149 	int m;
2150 	mdk_rdev_t *rdev;
2151 
2152 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2153 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2154 		for (m = 0; m < conf->copies; m++) {
2155 			int dev = r10_bio->devs[m].devnum;
2156 			rdev = conf->mirrors[dev].rdev;
2157 			if (r10_bio->devs[m].bio == NULL)
2158 				continue;
2159 			if (test_bit(BIO_UPTODATE,
2160 				     &r10_bio->devs[m].bio->bi_flags)) {
2161 				rdev_clear_badblocks(
2162 					rdev,
2163 					r10_bio->devs[m].addr,
2164 					r10_bio->sectors);
2165 			} else {
2166 				if (!rdev_set_badblocks(
2167 					    rdev,
2168 					    r10_bio->devs[m].addr,
2169 					    r10_bio->sectors, 0))
2170 					md_error(conf->mddev, rdev);
2171 			}
2172 		}
2173 		put_buf(r10_bio);
2174 	} else {
2175 		for (m = 0; m < conf->copies; m++) {
2176 			int dev = r10_bio->devs[m].devnum;
2177 			struct bio *bio = r10_bio->devs[m].bio;
2178 			rdev = conf->mirrors[dev].rdev;
2179 			if (bio == IO_MADE_GOOD) {
2180 				rdev_clear_badblocks(
2181 					rdev,
2182 					r10_bio->devs[m].addr,
2183 					r10_bio->sectors);
2184 				rdev_dec_pending(rdev, conf->mddev);
2185 			} else if (bio != NULL &&
2186 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2187 				if (!narrow_write_error(r10_bio, m)) {
2188 					md_error(conf->mddev, rdev);
2189 					set_bit(R10BIO_Degraded,
2190 						&r10_bio->state);
2191 				}
2192 				rdev_dec_pending(rdev, conf->mddev);
2193 			}
2194 		}
2195 		if (test_bit(R10BIO_WriteError,
2196 			     &r10_bio->state))
2197 			close_write(r10_bio);
2198 		raid_end_bio_io(r10_bio);
2199 	}
2200 }
2201 
2202 static void raid10d(mddev_t *mddev)
2203 {
2204 	r10bio_t *r10_bio;
2205 	unsigned long flags;
2206 	conf_t *conf = mddev->private;
2207 	struct list_head *head = &conf->retry_list;
2208 	struct blk_plug plug;
2209 
2210 	md_check_recovery(mddev);
2211 
2212 	blk_start_plug(&plug);
2213 	for (;;) {
2214 
2215 		flush_pending_writes(conf);
2216 
2217 		spin_lock_irqsave(&conf->device_lock, flags);
2218 		if (list_empty(head)) {
2219 			spin_unlock_irqrestore(&conf->device_lock, flags);
2220 			break;
2221 		}
2222 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
2223 		list_del(head->prev);
2224 		conf->nr_queued--;
2225 		spin_unlock_irqrestore(&conf->device_lock, flags);
2226 
2227 		mddev = r10_bio->mddev;
2228 		conf = mddev->private;
2229 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2230 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2231 			handle_write_completed(conf, r10_bio);
2232 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2233 			sync_request_write(mddev, r10_bio);
2234 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2235 			recovery_request_write(mddev, r10_bio);
2236 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2237 			handle_read_error(mddev, r10_bio);
2238 		else {
2239 			/* just a partial read to be scheduled from a
2240 			 * separate context
2241 			 */
2242 			int slot = r10_bio->read_slot;
2243 			generic_make_request(r10_bio->devs[slot].bio);
2244 		}
2245 
2246 		cond_resched();
2247 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2248 			md_check_recovery(mddev);
2249 	}
2250 	blk_finish_plug(&plug);
2251 }
2252 
2253 
2254 static int init_resync(conf_t *conf)
2255 {
2256 	int buffs;
2257 
2258 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2259 	BUG_ON(conf->r10buf_pool);
2260 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2261 	if (!conf->r10buf_pool)
2262 		return -ENOMEM;
2263 	conf->next_resync = 0;
2264 	return 0;
2265 }
2266 
2267 /*
2268  * perform a "sync" on one "block"
2269  *
2270  * We need to make sure that no normal I/O request - particularly write
2271  * requests - conflict with active sync requests.
2272  *
2273  * This is achieved by tracking pending requests and a 'barrier' concept
2274  * that can be installed to exclude normal IO requests.
2275  *
2276  * Resync and recovery are handled very differently.
2277  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2278  *
2279  * For resync, we iterate over virtual addresses, read all copies,
2280  * and update if there are differences.  If only one copy is live,
2281  * skip it.
2282  * For recovery, we iterate over physical addresses, read a good
2283  * value for each non-in_sync drive, and over-write.
2284  *
2285  * So, for recovery we may have several outstanding complex requests for a
2286  * given address, one for each out-of-sync device.  We model this by allocating
2287  * a number of r10_bio structures, one for each out-of-sync device.
2288  * As we setup these structures, we collect all bio's together into a list
2289  * which we then process collectively to add pages, and then process again
2290  * to pass to generic_make_request.
2291  *
2292  * The r10_bio structures are linked using a borrowed master_bio pointer.
2293  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2294  * has its remaining count decremented to 0, the whole complex operation
2295  * is complete.
2296  *
2297  */
2298 
2299 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
2300 			     int *skipped, int go_faster)
2301 {
2302 	conf_t *conf = mddev->private;
2303 	r10bio_t *r10_bio;
2304 	struct bio *biolist = NULL, *bio;
2305 	sector_t max_sector, nr_sectors;
2306 	int i;
2307 	int max_sync;
2308 	sector_t sync_blocks;
2309 	sector_t sectors_skipped = 0;
2310 	int chunks_skipped = 0;
2311 
2312 	if (!conf->r10buf_pool)
2313 		if (init_resync(conf))
2314 			return 0;
2315 
2316  skipped:
2317 	max_sector = mddev->dev_sectors;
2318 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2319 		max_sector = mddev->resync_max_sectors;
2320 	if (sector_nr >= max_sector) {
2321 		/* If we aborted, we need to abort the
2322 		 * sync on the 'current' bitmap chucks (there can
2323 		 * be several when recovering multiple devices).
2324 		 * as we may have started syncing it but not finished.
2325 		 * We can find the current address in
2326 		 * mddev->curr_resync, but for recovery,
2327 		 * we need to convert that to several
2328 		 * virtual addresses.
2329 		 */
2330 		if (mddev->curr_resync < max_sector) { /* aborted */
2331 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2332 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2333 						&sync_blocks, 1);
2334 			else for (i=0; i<conf->raid_disks; i++) {
2335 				sector_t sect =
2336 					raid10_find_virt(conf, mddev->curr_resync, i);
2337 				bitmap_end_sync(mddev->bitmap, sect,
2338 						&sync_blocks, 1);
2339 			}
2340 		} else /* completed sync */
2341 			conf->fullsync = 0;
2342 
2343 		bitmap_close_sync(mddev->bitmap);
2344 		close_sync(conf);
2345 		*skipped = 1;
2346 		return sectors_skipped;
2347 	}
2348 	if (chunks_skipped >= conf->raid_disks) {
2349 		/* if there has been nothing to do on any drive,
2350 		 * then there is nothing to do at all..
2351 		 */
2352 		*skipped = 1;
2353 		return (max_sector - sector_nr) + sectors_skipped;
2354 	}
2355 
2356 	if (max_sector > mddev->resync_max)
2357 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2358 
2359 	/* make sure whole request will fit in a chunk - if chunks
2360 	 * are meaningful
2361 	 */
2362 	if (conf->near_copies < conf->raid_disks &&
2363 	    max_sector > (sector_nr | conf->chunk_mask))
2364 		max_sector = (sector_nr | conf->chunk_mask) + 1;
2365 	/*
2366 	 * If there is non-resync activity waiting for us then
2367 	 * put in a delay to throttle resync.
2368 	 */
2369 	if (!go_faster && conf->nr_waiting)
2370 		msleep_interruptible(1000);
2371 
2372 	/* Again, very different code for resync and recovery.
2373 	 * Both must result in an r10bio with a list of bios that
2374 	 * have bi_end_io, bi_sector, bi_bdev set,
2375 	 * and bi_private set to the r10bio.
2376 	 * For recovery, we may actually create several r10bios
2377 	 * with 2 bios in each, that correspond to the bios in the main one.
2378 	 * In this case, the subordinate r10bios link back through a
2379 	 * borrowed master_bio pointer, and the counter in the master
2380 	 * includes a ref from each subordinate.
2381 	 */
2382 	/* First, we decide what to do and set ->bi_end_io
2383 	 * To end_sync_read if we want to read, and
2384 	 * end_sync_write if we will want to write.
2385 	 */
2386 
2387 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2388 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2389 		/* recovery... the complicated one */
2390 		int j;
2391 		r10_bio = NULL;
2392 
2393 		for (i=0 ; i<conf->raid_disks; i++) {
2394 			int still_degraded;
2395 			r10bio_t *rb2;
2396 			sector_t sect;
2397 			int must_sync;
2398 			int any_working;
2399 
2400 			if (conf->mirrors[i].rdev == NULL ||
2401 			    test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2402 				continue;
2403 
2404 			still_degraded = 0;
2405 			/* want to reconstruct this device */
2406 			rb2 = r10_bio;
2407 			sect = raid10_find_virt(conf, sector_nr, i);
2408 			/* Unless we are doing a full sync, we only need
2409 			 * to recover the block if it is set in the bitmap
2410 			 */
2411 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2412 						      &sync_blocks, 1);
2413 			if (sync_blocks < max_sync)
2414 				max_sync = sync_blocks;
2415 			if (!must_sync &&
2416 			    !conf->fullsync) {
2417 				/* yep, skip the sync_blocks here, but don't assume
2418 				 * that there will never be anything to do here
2419 				 */
2420 				chunks_skipped = -1;
2421 				continue;
2422 			}
2423 
2424 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2425 			raise_barrier(conf, rb2 != NULL);
2426 			atomic_set(&r10_bio->remaining, 0);
2427 
2428 			r10_bio->master_bio = (struct bio*)rb2;
2429 			if (rb2)
2430 				atomic_inc(&rb2->remaining);
2431 			r10_bio->mddev = mddev;
2432 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2433 			r10_bio->sector = sect;
2434 
2435 			raid10_find_phys(conf, r10_bio);
2436 
2437 			/* Need to check if the array will still be
2438 			 * degraded
2439 			 */
2440 			for (j=0; j<conf->raid_disks; j++)
2441 				if (conf->mirrors[j].rdev == NULL ||
2442 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2443 					still_degraded = 1;
2444 					break;
2445 				}
2446 
2447 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2448 						      &sync_blocks, still_degraded);
2449 
2450 			any_working = 0;
2451 			for (j=0; j<conf->copies;j++) {
2452 				int k;
2453 				int d = r10_bio->devs[j].devnum;
2454 				sector_t from_addr, to_addr;
2455 				mdk_rdev_t *rdev;
2456 				sector_t sector, first_bad;
2457 				int bad_sectors;
2458 				if (!conf->mirrors[d].rdev ||
2459 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2460 					continue;
2461 				/* This is where we read from */
2462 				any_working = 1;
2463 				rdev = conf->mirrors[d].rdev;
2464 				sector = r10_bio->devs[j].addr;
2465 
2466 				if (is_badblock(rdev, sector, max_sync,
2467 						&first_bad, &bad_sectors)) {
2468 					if (first_bad > sector)
2469 						max_sync = first_bad - sector;
2470 					else {
2471 						bad_sectors -= (sector
2472 								- first_bad);
2473 						if (max_sync > bad_sectors)
2474 							max_sync = bad_sectors;
2475 						continue;
2476 					}
2477 				}
2478 				bio = r10_bio->devs[0].bio;
2479 				bio->bi_next = biolist;
2480 				biolist = bio;
2481 				bio->bi_private = r10_bio;
2482 				bio->bi_end_io = end_sync_read;
2483 				bio->bi_rw = READ;
2484 				from_addr = r10_bio->devs[j].addr;
2485 				bio->bi_sector = from_addr +
2486 					conf->mirrors[d].rdev->data_offset;
2487 				bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2488 				atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2489 				atomic_inc(&r10_bio->remaining);
2490 				/* and we write to 'i' */
2491 
2492 				for (k=0; k<conf->copies; k++)
2493 					if (r10_bio->devs[k].devnum == i)
2494 						break;
2495 				BUG_ON(k == conf->copies);
2496 				bio = r10_bio->devs[1].bio;
2497 				bio->bi_next = biolist;
2498 				biolist = bio;
2499 				bio->bi_private = r10_bio;
2500 				bio->bi_end_io = end_sync_write;
2501 				bio->bi_rw = WRITE;
2502 				to_addr = r10_bio->devs[k].addr;
2503 				bio->bi_sector = to_addr +
2504 					conf->mirrors[i].rdev->data_offset;
2505 				bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2506 
2507 				r10_bio->devs[0].devnum = d;
2508 				r10_bio->devs[0].addr = from_addr;
2509 				r10_bio->devs[1].devnum = i;
2510 				r10_bio->devs[1].addr = to_addr;
2511 
2512 				break;
2513 			}
2514 			if (j == conf->copies) {
2515 				/* Cannot recover, so abort the recovery or
2516 				 * record a bad block */
2517 				put_buf(r10_bio);
2518 				if (rb2)
2519 					atomic_dec(&rb2->remaining);
2520 				r10_bio = rb2;
2521 				if (any_working) {
2522 					/* problem is that there are bad blocks
2523 					 * on other device(s)
2524 					 */
2525 					int k;
2526 					for (k = 0; k < conf->copies; k++)
2527 						if (r10_bio->devs[k].devnum == i)
2528 							break;
2529 					if (!rdev_set_badblocks(
2530 						    conf->mirrors[i].rdev,
2531 						    r10_bio->devs[k].addr,
2532 						    max_sync, 0))
2533 						any_working = 0;
2534 				}
2535 				if (!any_working)  {
2536 					if (!test_and_set_bit(MD_RECOVERY_INTR,
2537 							      &mddev->recovery))
2538 						printk(KERN_INFO "md/raid10:%s: insufficient "
2539 						       "working devices for recovery.\n",
2540 						       mdname(mddev));
2541 					conf->mirrors[i].recovery_disabled
2542 						= mddev->recovery_disabled;
2543 				}
2544 				break;
2545 			}
2546 		}
2547 		if (biolist == NULL) {
2548 			while (r10_bio) {
2549 				r10bio_t *rb2 = r10_bio;
2550 				r10_bio = (r10bio_t*) rb2->master_bio;
2551 				rb2->master_bio = NULL;
2552 				put_buf(rb2);
2553 			}
2554 			goto giveup;
2555 		}
2556 	} else {
2557 		/* resync. Schedule a read for every block at this virt offset */
2558 		int count = 0;
2559 
2560 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2561 
2562 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2563 				       &sync_blocks, mddev->degraded) &&
2564 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2565 						 &mddev->recovery)) {
2566 			/* We can skip this block */
2567 			*skipped = 1;
2568 			return sync_blocks + sectors_skipped;
2569 		}
2570 		if (sync_blocks < max_sync)
2571 			max_sync = sync_blocks;
2572 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2573 
2574 		r10_bio->mddev = mddev;
2575 		atomic_set(&r10_bio->remaining, 0);
2576 		raise_barrier(conf, 0);
2577 		conf->next_resync = sector_nr;
2578 
2579 		r10_bio->master_bio = NULL;
2580 		r10_bio->sector = sector_nr;
2581 		set_bit(R10BIO_IsSync, &r10_bio->state);
2582 		raid10_find_phys(conf, r10_bio);
2583 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2584 
2585 		for (i=0; i<conf->copies; i++) {
2586 			int d = r10_bio->devs[i].devnum;
2587 			sector_t first_bad, sector;
2588 			int bad_sectors;
2589 
2590 			bio = r10_bio->devs[i].bio;
2591 			bio->bi_end_io = NULL;
2592 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2593 			if (conf->mirrors[d].rdev == NULL ||
2594 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2595 				continue;
2596 			sector = r10_bio->devs[i].addr;
2597 			if (is_badblock(conf->mirrors[d].rdev,
2598 					sector, max_sync,
2599 					&first_bad, &bad_sectors)) {
2600 				if (first_bad > sector)
2601 					max_sync = first_bad - sector;
2602 				else {
2603 					bad_sectors -= (sector - first_bad);
2604 					if (max_sync > bad_sectors)
2605 						max_sync = max_sync;
2606 					continue;
2607 				}
2608 			}
2609 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2610 			atomic_inc(&r10_bio->remaining);
2611 			bio->bi_next = biolist;
2612 			biolist = bio;
2613 			bio->bi_private = r10_bio;
2614 			bio->bi_end_io = end_sync_read;
2615 			bio->bi_rw = READ;
2616 			bio->bi_sector = sector +
2617 				conf->mirrors[d].rdev->data_offset;
2618 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2619 			count++;
2620 		}
2621 
2622 		if (count < 2) {
2623 			for (i=0; i<conf->copies; i++) {
2624 				int d = r10_bio->devs[i].devnum;
2625 				if (r10_bio->devs[i].bio->bi_end_io)
2626 					rdev_dec_pending(conf->mirrors[d].rdev,
2627 							 mddev);
2628 			}
2629 			put_buf(r10_bio);
2630 			biolist = NULL;
2631 			goto giveup;
2632 		}
2633 	}
2634 
2635 	for (bio = biolist; bio ; bio=bio->bi_next) {
2636 
2637 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2638 		if (bio->bi_end_io)
2639 			bio->bi_flags |= 1 << BIO_UPTODATE;
2640 		bio->bi_vcnt = 0;
2641 		bio->bi_idx = 0;
2642 		bio->bi_phys_segments = 0;
2643 		bio->bi_size = 0;
2644 	}
2645 
2646 	nr_sectors = 0;
2647 	if (sector_nr + max_sync < max_sector)
2648 		max_sector = sector_nr + max_sync;
2649 	do {
2650 		struct page *page;
2651 		int len = PAGE_SIZE;
2652 		if (sector_nr + (len>>9) > max_sector)
2653 			len = (max_sector - sector_nr) << 9;
2654 		if (len == 0)
2655 			break;
2656 		for (bio= biolist ; bio ; bio=bio->bi_next) {
2657 			struct bio *bio2;
2658 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2659 			if (bio_add_page(bio, page, len, 0))
2660 				continue;
2661 
2662 			/* stop here */
2663 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2664 			for (bio2 = biolist;
2665 			     bio2 && bio2 != bio;
2666 			     bio2 = bio2->bi_next) {
2667 				/* remove last page from this bio */
2668 				bio2->bi_vcnt--;
2669 				bio2->bi_size -= len;
2670 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2671 			}
2672 			goto bio_full;
2673 		}
2674 		nr_sectors += len>>9;
2675 		sector_nr += len>>9;
2676 	} while (biolist->bi_vcnt < RESYNC_PAGES);
2677  bio_full:
2678 	r10_bio->sectors = nr_sectors;
2679 
2680 	while (biolist) {
2681 		bio = biolist;
2682 		biolist = biolist->bi_next;
2683 
2684 		bio->bi_next = NULL;
2685 		r10_bio = bio->bi_private;
2686 		r10_bio->sectors = nr_sectors;
2687 
2688 		if (bio->bi_end_io == end_sync_read) {
2689 			md_sync_acct(bio->bi_bdev, nr_sectors);
2690 			generic_make_request(bio);
2691 		}
2692 	}
2693 
2694 	if (sectors_skipped)
2695 		/* pretend they weren't skipped, it makes
2696 		 * no important difference in this case
2697 		 */
2698 		md_done_sync(mddev, sectors_skipped, 1);
2699 
2700 	return sectors_skipped + nr_sectors;
2701  giveup:
2702 	/* There is nowhere to write, so all non-sync
2703 	 * drives must be failed or in resync, all drives
2704 	 * have a bad block, so try the next chunk...
2705 	 */
2706 	if (sector_nr + max_sync < max_sector)
2707 		max_sector = sector_nr + max_sync;
2708 
2709 	sectors_skipped += (max_sector - sector_nr);
2710 	chunks_skipped ++;
2711 	sector_nr = max_sector;
2712 	goto skipped;
2713 }
2714 
2715 static sector_t
2716 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2717 {
2718 	sector_t size;
2719 	conf_t *conf = mddev->private;
2720 
2721 	if (!raid_disks)
2722 		raid_disks = conf->raid_disks;
2723 	if (!sectors)
2724 		sectors = conf->dev_sectors;
2725 
2726 	size = sectors >> conf->chunk_shift;
2727 	sector_div(size, conf->far_copies);
2728 	size = size * raid_disks;
2729 	sector_div(size, conf->near_copies);
2730 
2731 	return size << conf->chunk_shift;
2732 }
2733 
2734 
2735 static conf_t *setup_conf(mddev_t *mddev)
2736 {
2737 	conf_t *conf = NULL;
2738 	int nc, fc, fo;
2739 	sector_t stride, size;
2740 	int err = -EINVAL;
2741 
2742 	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2743 	    !is_power_of_2(mddev->new_chunk_sectors)) {
2744 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
2745 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2746 		       mdname(mddev), PAGE_SIZE);
2747 		goto out;
2748 	}
2749 
2750 	nc = mddev->new_layout & 255;
2751 	fc = (mddev->new_layout >> 8) & 255;
2752 	fo = mddev->new_layout & (1<<16);
2753 
2754 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2755 	    (mddev->new_layout >> 17)) {
2756 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2757 		       mdname(mddev), mddev->new_layout);
2758 		goto out;
2759 	}
2760 
2761 	err = -ENOMEM;
2762 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2763 	if (!conf)
2764 		goto out;
2765 
2766 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2767 				GFP_KERNEL);
2768 	if (!conf->mirrors)
2769 		goto out;
2770 
2771 	conf->tmppage = alloc_page(GFP_KERNEL);
2772 	if (!conf->tmppage)
2773 		goto out;
2774 
2775 
2776 	conf->raid_disks = mddev->raid_disks;
2777 	conf->near_copies = nc;
2778 	conf->far_copies = fc;
2779 	conf->copies = nc*fc;
2780 	conf->far_offset = fo;
2781 	conf->chunk_mask = mddev->new_chunk_sectors - 1;
2782 	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2783 
2784 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2785 					   r10bio_pool_free, conf);
2786 	if (!conf->r10bio_pool)
2787 		goto out;
2788 
2789 	size = mddev->dev_sectors >> conf->chunk_shift;
2790 	sector_div(size, fc);
2791 	size = size * conf->raid_disks;
2792 	sector_div(size, nc);
2793 	/* 'size' is now the number of chunks in the array */
2794 	/* calculate "used chunks per device" in 'stride' */
2795 	stride = size * conf->copies;
2796 
2797 	/* We need to round up when dividing by raid_disks to
2798 	 * get the stride size.
2799 	 */
2800 	stride += conf->raid_disks - 1;
2801 	sector_div(stride, conf->raid_disks);
2802 
2803 	conf->dev_sectors = stride << conf->chunk_shift;
2804 
2805 	if (fo)
2806 		stride = 1;
2807 	else
2808 		sector_div(stride, fc);
2809 	conf->stride = stride << conf->chunk_shift;
2810 
2811 
2812 	spin_lock_init(&conf->device_lock);
2813 	INIT_LIST_HEAD(&conf->retry_list);
2814 
2815 	spin_lock_init(&conf->resync_lock);
2816 	init_waitqueue_head(&conf->wait_barrier);
2817 
2818 	conf->thread = md_register_thread(raid10d, mddev, NULL);
2819 	if (!conf->thread)
2820 		goto out;
2821 
2822 	conf->mddev = mddev;
2823 	return conf;
2824 
2825  out:
2826 	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2827 	       mdname(mddev));
2828 	if (conf) {
2829 		if (conf->r10bio_pool)
2830 			mempool_destroy(conf->r10bio_pool);
2831 		kfree(conf->mirrors);
2832 		safe_put_page(conf->tmppage);
2833 		kfree(conf);
2834 	}
2835 	return ERR_PTR(err);
2836 }
2837 
2838 static int run(mddev_t *mddev)
2839 {
2840 	conf_t *conf;
2841 	int i, disk_idx, chunk_size;
2842 	mirror_info_t *disk;
2843 	mdk_rdev_t *rdev;
2844 	sector_t size;
2845 
2846 	/*
2847 	 * copy the already verified devices into our private RAID10
2848 	 * bookkeeping area. [whatever we allocate in run(),
2849 	 * should be freed in stop()]
2850 	 */
2851 
2852 	if (mddev->private == NULL) {
2853 		conf = setup_conf(mddev);
2854 		if (IS_ERR(conf))
2855 			return PTR_ERR(conf);
2856 		mddev->private = conf;
2857 	}
2858 	conf = mddev->private;
2859 	if (!conf)
2860 		goto out;
2861 
2862 	mddev->thread = conf->thread;
2863 	conf->thread = NULL;
2864 
2865 	chunk_size = mddev->chunk_sectors << 9;
2866 	blk_queue_io_min(mddev->queue, chunk_size);
2867 	if (conf->raid_disks % conf->near_copies)
2868 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2869 	else
2870 		blk_queue_io_opt(mddev->queue, chunk_size *
2871 				 (conf->raid_disks / conf->near_copies));
2872 
2873 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2874 
2875 		disk_idx = rdev->raid_disk;
2876 		if (disk_idx >= conf->raid_disks
2877 		    || disk_idx < 0)
2878 			continue;
2879 		disk = conf->mirrors + disk_idx;
2880 
2881 		disk->rdev = rdev;
2882 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2883 				  rdev->data_offset << 9);
2884 		/* as we don't honour merge_bvec_fn, we must never risk
2885 		 * violating it, so limit max_segments to 1 lying
2886 		 * within a single page.
2887 		 */
2888 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2889 			blk_queue_max_segments(mddev->queue, 1);
2890 			blk_queue_segment_boundary(mddev->queue,
2891 						   PAGE_CACHE_SIZE - 1);
2892 		}
2893 
2894 		disk->head_position = 0;
2895 	}
2896 	/* need to check that every block has at least one working mirror */
2897 	if (!enough(conf, -1)) {
2898 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2899 		       mdname(mddev));
2900 		goto out_free_conf;
2901 	}
2902 
2903 	mddev->degraded = 0;
2904 	for (i = 0; i < conf->raid_disks; i++) {
2905 
2906 		disk = conf->mirrors + i;
2907 
2908 		if (!disk->rdev ||
2909 		    !test_bit(In_sync, &disk->rdev->flags)) {
2910 			disk->head_position = 0;
2911 			mddev->degraded++;
2912 			if (disk->rdev)
2913 				conf->fullsync = 1;
2914 		}
2915 	}
2916 
2917 	if (mddev->recovery_cp != MaxSector)
2918 		printk(KERN_NOTICE "md/raid10:%s: not clean"
2919 		       " -- starting background reconstruction\n",
2920 		       mdname(mddev));
2921 	printk(KERN_INFO
2922 		"md/raid10:%s: active with %d out of %d devices\n",
2923 		mdname(mddev), conf->raid_disks - mddev->degraded,
2924 		conf->raid_disks);
2925 	/*
2926 	 * Ok, everything is just fine now
2927 	 */
2928 	mddev->dev_sectors = conf->dev_sectors;
2929 	size = raid10_size(mddev, 0, 0);
2930 	md_set_array_sectors(mddev, size);
2931 	mddev->resync_max_sectors = size;
2932 
2933 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2934 	mddev->queue->backing_dev_info.congested_data = mddev;
2935 
2936 	/* Calculate max read-ahead size.
2937 	 * We need to readahead at least twice a whole stripe....
2938 	 * maybe...
2939 	 */
2940 	{
2941 		int stripe = conf->raid_disks *
2942 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2943 		stripe /= conf->near_copies;
2944 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2945 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2946 	}
2947 
2948 	if (conf->near_copies < conf->raid_disks)
2949 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2950 
2951 	if (md_integrity_register(mddev))
2952 		goto out_free_conf;
2953 
2954 	return 0;
2955 
2956 out_free_conf:
2957 	md_unregister_thread(mddev->thread);
2958 	if (conf->r10bio_pool)
2959 		mempool_destroy(conf->r10bio_pool);
2960 	safe_put_page(conf->tmppage);
2961 	kfree(conf->mirrors);
2962 	kfree(conf);
2963 	mddev->private = NULL;
2964 out:
2965 	return -EIO;
2966 }
2967 
2968 static int stop(mddev_t *mddev)
2969 {
2970 	conf_t *conf = mddev->private;
2971 
2972 	raise_barrier(conf, 0);
2973 	lower_barrier(conf);
2974 
2975 	md_unregister_thread(mddev->thread);
2976 	mddev->thread = NULL;
2977 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2978 	if (conf->r10bio_pool)
2979 		mempool_destroy(conf->r10bio_pool);
2980 	kfree(conf->mirrors);
2981 	kfree(conf);
2982 	mddev->private = NULL;
2983 	return 0;
2984 }
2985 
2986 static void raid10_quiesce(mddev_t *mddev, int state)
2987 {
2988 	conf_t *conf = mddev->private;
2989 
2990 	switch(state) {
2991 	case 1:
2992 		raise_barrier(conf, 0);
2993 		break;
2994 	case 0:
2995 		lower_barrier(conf);
2996 		break;
2997 	}
2998 }
2999 
3000 static void *raid10_takeover_raid0(mddev_t *mddev)
3001 {
3002 	mdk_rdev_t *rdev;
3003 	conf_t *conf;
3004 
3005 	if (mddev->degraded > 0) {
3006 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3007 		       mdname(mddev));
3008 		return ERR_PTR(-EINVAL);
3009 	}
3010 
3011 	/* Set new parameters */
3012 	mddev->new_level = 10;
3013 	/* new layout: far_copies = 1, near_copies = 2 */
3014 	mddev->new_layout = (1<<8) + 2;
3015 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3016 	mddev->delta_disks = mddev->raid_disks;
3017 	mddev->raid_disks *= 2;
3018 	/* make sure it will be not marked as dirty */
3019 	mddev->recovery_cp = MaxSector;
3020 
3021 	conf = setup_conf(mddev);
3022 	if (!IS_ERR(conf)) {
3023 		list_for_each_entry(rdev, &mddev->disks, same_set)
3024 			if (rdev->raid_disk >= 0)
3025 				rdev->new_raid_disk = rdev->raid_disk * 2;
3026 		conf->barrier = 1;
3027 	}
3028 
3029 	return conf;
3030 }
3031 
3032 static void *raid10_takeover(mddev_t *mddev)
3033 {
3034 	struct raid0_private_data *raid0_priv;
3035 
3036 	/* raid10 can take over:
3037 	 *  raid0 - providing it has only two drives
3038 	 */
3039 	if (mddev->level == 0) {
3040 		/* for raid0 takeover only one zone is supported */
3041 		raid0_priv = mddev->private;
3042 		if (raid0_priv->nr_strip_zones > 1) {
3043 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3044 			       " with more than one zone.\n",
3045 			       mdname(mddev));
3046 			return ERR_PTR(-EINVAL);
3047 		}
3048 		return raid10_takeover_raid0(mddev);
3049 	}
3050 	return ERR_PTR(-EINVAL);
3051 }
3052 
3053 static struct mdk_personality raid10_personality =
3054 {
3055 	.name		= "raid10",
3056 	.level		= 10,
3057 	.owner		= THIS_MODULE,
3058 	.make_request	= make_request,
3059 	.run		= run,
3060 	.stop		= stop,
3061 	.status		= status,
3062 	.error_handler	= error,
3063 	.hot_add_disk	= raid10_add_disk,
3064 	.hot_remove_disk= raid10_remove_disk,
3065 	.spare_active	= raid10_spare_active,
3066 	.sync_request	= sync_request,
3067 	.quiesce	= raid10_quiesce,
3068 	.size		= raid10_size,
3069 	.takeover	= raid10_takeover,
3070 };
3071 
3072 static int __init raid_init(void)
3073 {
3074 	return register_md_personality(&raid10_personality);
3075 }
3076 
3077 static void raid_exit(void)
3078 {
3079 	unregister_md_personality(&raid10_personality);
3080 }
3081 
3082 module_init(raid_init);
3083 module_exit(raid_exit);
3084 MODULE_LICENSE("GPL");
3085 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3086 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3087 MODULE_ALIAS("md-raid10");
3088 MODULE_ALIAS("md-level-10");
3089