1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/seq_file.h> 25 #include <linux/ratelimit.h> 26 #include "md.h" 27 #include "raid10.h" 28 #include "raid0.h" 29 #include "bitmap.h" 30 31 /* 32 * RAID10 provides a combination of RAID0 and RAID1 functionality. 33 * The layout of data is defined by 34 * chunk_size 35 * raid_disks 36 * near_copies (stored in low byte of layout) 37 * far_copies (stored in second byte of layout) 38 * far_offset (stored in bit 16 of layout ) 39 * 40 * The data to be stored is divided into chunks using chunksize. 41 * Each device is divided into far_copies sections. 42 * In each section, chunks are laid out in a style similar to raid0, but 43 * near_copies copies of each chunk is stored (each on a different drive). 44 * The starting device for each section is offset near_copies from the starting 45 * device of the previous section. 46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 47 * drive. 48 * near_copies and far_copies must be at least one, and their product is at most 49 * raid_disks. 50 * 51 * If far_offset is true, then the far_copies are handled a bit differently. 52 * The copies are still in different stripes, but instead of be very far apart 53 * on disk, there are adjacent stripes. 54 */ 55 56 /* 57 * Number of guaranteed r10bios in case of extreme VM load: 58 */ 59 #define NR_RAID10_BIOS 256 60 61 static void allow_barrier(conf_t *conf); 62 static void lower_barrier(conf_t *conf); 63 64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 65 { 66 conf_t *conf = data; 67 int size = offsetof(struct r10bio_s, devs[conf->copies]); 68 69 /* allocate a r10bio with room for raid_disks entries in the bios array */ 70 return kzalloc(size, gfp_flags); 71 } 72 73 static void r10bio_pool_free(void *r10_bio, void *data) 74 { 75 kfree(r10_bio); 76 } 77 78 /* Maximum size of each resync request */ 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 81 /* amount of memory to reserve for resync requests */ 82 #define RESYNC_WINDOW (1024*1024) 83 /* maximum number of concurrent requests, memory permitting */ 84 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 85 86 /* 87 * When performing a resync, we need to read and compare, so 88 * we need as many pages are there are copies. 89 * When performing a recovery, we need 2 bios, one for read, 90 * one for write (we recover only one drive per r10buf) 91 * 92 */ 93 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 94 { 95 conf_t *conf = data; 96 struct page *page; 97 r10bio_t *r10_bio; 98 struct bio *bio; 99 int i, j; 100 int nalloc; 101 102 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 103 if (!r10_bio) 104 return NULL; 105 106 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 107 nalloc = conf->copies; /* resync */ 108 else 109 nalloc = 2; /* recovery */ 110 111 /* 112 * Allocate bios. 113 */ 114 for (j = nalloc ; j-- ; ) { 115 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 116 if (!bio) 117 goto out_free_bio; 118 r10_bio->devs[j].bio = bio; 119 } 120 /* 121 * Allocate RESYNC_PAGES data pages and attach them 122 * where needed. 123 */ 124 for (j = 0 ; j < nalloc; j++) { 125 bio = r10_bio->devs[j].bio; 126 for (i = 0; i < RESYNC_PAGES; i++) { 127 if (j == 1 && !test_bit(MD_RECOVERY_SYNC, 128 &conf->mddev->recovery)) { 129 /* we can share bv_page's during recovery */ 130 struct bio *rbio = r10_bio->devs[0].bio; 131 page = rbio->bi_io_vec[i].bv_page; 132 get_page(page); 133 } else 134 page = alloc_page(gfp_flags); 135 if (unlikely(!page)) 136 goto out_free_pages; 137 138 bio->bi_io_vec[i].bv_page = page; 139 } 140 } 141 142 return r10_bio; 143 144 out_free_pages: 145 for ( ; i > 0 ; i--) 146 safe_put_page(bio->bi_io_vec[i-1].bv_page); 147 while (j--) 148 for (i = 0; i < RESYNC_PAGES ; i++) 149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 150 j = -1; 151 out_free_bio: 152 while ( ++j < nalloc ) 153 bio_put(r10_bio->devs[j].bio); 154 r10bio_pool_free(r10_bio, conf); 155 return NULL; 156 } 157 158 static void r10buf_pool_free(void *__r10_bio, void *data) 159 { 160 int i; 161 conf_t *conf = data; 162 r10bio_t *r10bio = __r10_bio; 163 int j; 164 165 for (j=0; j < conf->copies; j++) { 166 struct bio *bio = r10bio->devs[j].bio; 167 if (bio) { 168 for (i = 0; i < RESYNC_PAGES; i++) { 169 safe_put_page(bio->bi_io_vec[i].bv_page); 170 bio->bi_io_vec[i].bv_page = NULL; 171 } 172 bio_put(bio); 173 } 174 } 175 r10bio_pool_free(r10bio, conf); 176 } 177 178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 179 { 180 int i; 181 182 for (i = 0; i < conf->copies; i++) { 183 struct bio **bio = & r10_bio->devs[i].bio; 184 if (!BIO_SPECIAL(*bio)) 185 bio_put(*bio); 186 *bio = NULL; 187 } 188 } 189 190 static void free_r10bio(r10bio_t *r10_bio) 191 { 192 conf_t *conf = r10_bio->mddev->private; 193 194 put_all_bios(conf, r10_bio); 195 mempool_free(r10_bio, conf->r10bio_pool); 196 } 197 198 static void put_buf(r10bio_t *r10_bio) 199 { 200 conf_t *conf = r10_bio->mddev->private; 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 lower_barrier(conf); 205 } 206 207 static void reschedule_retry(r10bio_t *r10_bio) 208 { 209 unsigned long flags; 210 mddev_t *mddev = r10_bio->mddev; 211 conf_t *conf = mddev->private; 212 213 spin_lock_irqsave(&conf->device_lock, flags); 214 list_add(&r10_bio->retry_list, &conf->retry_list); 215 conf->nr_queued ++; 216 spin_unlock_irqrestore(&conf->device_lock, flags); 217 218 /* wake up frozen array... */ 219 wake_up(&conf->wait_barrier); 220 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r10bio_t *r10_bio) 230 { 231 struct bio *bio = r10_bio->master_bio; 232 int done; 233 conf_t *conf = r10_bio->mddev->private; 234 235 if (bio->bi_phys_segments) { 236 unsigned long flags; 237 spin_lock_irqsave(&conf->device_lock, flags); 238 bio->bi_phys_segments--; 239 done = (bio->bi_phys_segments == 0); 240 spin_unlock_irqrestore(&conf->device_lock, flags); 241 } else 242 done = 1; 243 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 244 clear_bit(BIO_UPTODATE, &bio->bi_flags); 245 if (done) { 246 bio_endio(bio, 0); 247 /* 248 * Wake up any possible resync thread that waits for the device 249 * to go idle. 250 */ 251 allow_barrier(conf); 252 } 253 free_r10bio(r10_bio); 254 } 255 256 /* 257 * Update disk head position estimator based on IRQ completion info. 258 */ 259 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 260 { 261 conf_t *conf = r10_bio->mddev->private; 262 263 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 264 r10_bio->devs[slot].addr + (r10_bio->sectors); 265 } 266 267 /* 268 * Find the disk number which triggered given bio 269 */ 270 static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio, 271 struct bio *bio, int *slotp) 272 { 273 int slot; 274 275 for (slot = 0; slot < conf->copies; slot++) 276 if (r10_bio->devs[slot].bio == bio) 277 break; 278 279 BUG_ON(slot == conf->copies); 280 update_head_pos(slot, r10_bio); 281 282 if (slotp) 283 *slotp = slot; 284 return r10_bio->devs[slot].devnum; 285 } 286 287 static void raid10_end_read_request(struct bio *bio, int error) 288 { 289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 290 r10bio_t *r10_bio = bio->bi_private; 291 int slot, dev; 292 conf_t *conf = r10_bio->mddev->private; 293 294 295 slot = r10_bio->read_slot; 296 dev = r10_bio->devs[slot].devnum; 297 /* 298 * this branch is our 'one mirror IO has finished' event handler: 299 */ 300 update_head_pos(slot, r10_bio); 301 302 if (uptodate) { 303 /* 304 * Set R10BIO_Uptodate in our master bio, so that 305 * we will return a good error code to the higher 306 * levels even if IO on some other mirrored buffer fails. 307 * 308 * The 'master' represents the composite IO operation to 309 * user-side. So if something waits for IO, then it will 310 * wait for the 'master' bio. 311 */ 312 set_bit(R10BIO_Uptodate, &r10_bio->state); 313 raid_end_bio_io(r10_bio); 314 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 315 } else { 316 /* 317 * oops, read error - keep the refcount on the rdev 318 */ 319 char b[BDEVNAME_SIZE]; 320 printk_ratelimited(KERN_ERR 321 "md/raid10:%s: %s: rescheduling sector %llu\n", 322 mdname(conf->mddev), 323 bdevname(conf->mirrors[dev].rdev->bdev, b), 324 (unsigned long long)r10_bio->sector); 325 set_bit(R10BIO_ReadError, &r10_bio->state); 326 reschedule_retry(r10_bio); 327 } 328 } 329 330 static void close_write(r10bio_t *r10_bio) 331 { 332 /* clear the bitmap if all writes complete successfully */ 333 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 334 r10_bio->sectors, 335 !test_bit(R10BIO_Degraded, &r10_bio->state), 336 0); 337 md_write_end(r10_bio->mddev); 338 } 339 340 static void raid10_end_write_request(struct bio *bio, int error) 341 { 342 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 343 r10bio_t *r10_bio = bio->bi_private; 344 int dev; 345 int dec_rdev = 1; 346 conf_t *conf = r10_bio->mddev->private; 347 int slot; 348 349 dev = find_bio_disk(conf, r10_bio, bio, &slot); 350 351 /* 352 * this branch is our 'one mirror IO has finished' event handler: 353 */ 354 if (!uptodate) { 355 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags); 356 set_bit(R10BIO_WriteError, &r10_bio->state); 357 dec_rdev = 0; 358 } else { 359 /* 360 * Set R10BIO_Uptodate in our master bio, so that 361 * we will return a good error code for to the higher 362 * levels even if IO on some other mirrored buffer fails. 363 * 364 * The 'master' represents the composite IO operation to 365 * user-side. So if something waits for IO, then it will 366 * wait for the 'master' bio. 367 */ 368 sector_t first_bad; 369 int bad_sectors; 370 371 set_bit(R10BIO_Uptodate, &r10_bio->state); 372 373 /* Maybe we can clear some bad blocks. */ 374 if (is_badblock(conf->mirrors[dev].rdev, 375 r10_bio->devs[slot].addr, 376 r10_bio->sectors, 377 &first_bad, &bad_sectors)) { 378 bio_put(bio); 379 r10_bio->devs[slot].bio = IO_MADE_GOOD; 380 dec_rdev = 0; 381 set_bit(R10BIO_MadeGood, &r10_bio->state); 382 } 383 } 384 385 /* 386 * 387 * Let's see if all mirrored write operations have finished 388 * already. 389 */ 390 if (atomic_dec_and_test(&r10_bio->remaining)) { 391 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 392 reschedule_retry(r10_bio); 393 else { 394 close_write(r10_bio); 395 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 396 reschedule_retry(r10_bio); 397 else 398 raid_end_bio_io(r10_bio); 399 } 400 } 401 if (dec_rdev) 402 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 403 } 404 405 406 /* 407 * RAID10 layout manager 408 * As well as the chunksize and raid_disks count, there are two 409 * parameters: near_copies and far_copies. 410 * near_copies * far_copies must be <= raid_disks. 411 * Normally one of these will be 1. 412 * If both are 1, we get raid0. 413 * If near_copies == raid_disks, we get raid1. 414 * 415 * Chunks are laid out in raid0 style with near_copies copies of the 416 * first chunk, followed by near_copies copies of the next chunk and 417 * so on. 418 * If far_copies > 1, then after 1/far_copies of the array has been assigned 419 * as described above, we start again with a device offset of near_copies. 420 * So we effectively have another copy of the whole array further down all 421 * the drives, but with blocks on different drives. 422 * With this layout, and block is never stored twice on the one device. 423 * 424 * raid10_find_phys finds the sector offset of a given virtual sector 425 * on each device that it is on. 426 * 427 * raid10_find_virt does the reverse mapping, from a device and a 428 * sector offset to a virtual address 429 */ 430 431 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 432 { 433 int n,f; 434 sector_t sector; 435 sector_t chunk; 436 sector_t stripe; 437 int dev; 438 439 int slot = 0; 440 441 /* now calculate first sector/dev */ 442 chunk = r10bio->sector >> conf->chunk_shift; 443 sector = r10bio->sector & conf->chunk_mask; 444 445 chunk *= conf->near_copies; 446 stripe = chunk; 447 dev = sector_div(stripe, conf->raid_disks); 448 if (conf->far_offset) 449 stripe *= conf->far_copies; 450 451 sector += stripe << conf->chunk_shift; 452 453 /* and calculate all the others */ 454 for (n=0; n < conf->near_copies; n++) { 455 int d = dev; 456 sector_t s = sector; 457 r10bio->devs[slot].addr = sector; 458 r10bio->devs[slot].devnum = d; 459 slot++; 460 461 for (f = 1; f < conf->far_copies; f++) { 462 d += conf->near_copies; 463 if (d >= conf->raid_disks) 464 d -= conf->raid_disks; 465 s += conf->stride; 466 r10bio->devs[slot].devnum = d; 467 r10bio->devs[slot].addr = s; 468 slot++; 469 } 470 dev++; 471 if (dev >= conf->raid_disks) { 472 dev = 0; 473 sector += (conf->chunk_mask + 1); 474 } 475 } 476 BUG_ON(slot != conf->copies); 477 } 478 479 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 480 { 481 sector_t offset, chunk, vchunk; 482 483 offset = sector & conf->chunk_mask; 484 if (conf->far_offset) { 485 int fc; 486 chunk = sector >> conf->chunk_shift; 487 fc = sector_div(chunk, conf->far_copies); 488 dev -= fc * conf->near_copies; 489 if (dev < 0) 490 dev += conf->raid_disks; 491 } else { 492 while (sector >= conf->stride) { 493 sector -= conf->stride; 494 if (dev < conf->near_copies) 495 dev += conf->raid_disks - conf->near_copies; 496 else 497 dev -= conf->near_copies; 498 } 499 chunk = sector >> conf->chunk_shift; 500 } 501 vchunk = chunk * conf->raid_disks + dev; 502 sector_div(vchunk, conf->near_copies); 503 return (vchunk << conf->chunk_shift) + offset; 504 } 505 506 /** 507 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 508 * @q: request queue 509 * @bvm: properties of new bio 510 * @biovec: the request that could be merged to it. 511 * 512 * Return amount of bytes we can accept at this offset 513 * If near_copies == raid_disk, there are no striping issues, 514 * but in that case, the function isn't called at all. 515 */ 516 static int raid10_mergeable_bvec(struct request_queue *q, 517 struct bvec_merge_data *bvm, 518 struct bio_vec *biovec) 519 { 520 mddev_t *mddev = q->queuedata; 521 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 522 int max; 523 unsigned int chunk_sectors = mddev->chunk_sectors; 524 unsigned int bio_sectors = bvm->bi_size >> 9; 525 526 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 527 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 528 if (max <= biovec->bv_len && bio_sectors == 0) 529 return biovec->bv_len; 530 else 531 return max; 532 } 533 534 /* 535 * This routine returns the disk from which the requested read should 536 * be done. There is a per-array 'next expected sequential IO' sector 537 * number - if this matches on the next IO then we use the last disk. 538 * There is also a per-disk 'last know head position' sector that is 539 * maintained from IRQ contexts, both the normal and the resync IO 540 * completion handlers update this position correctly. If there is no 541 * perfect sequential match then we pick the disk whose head is closest. 542 * 543 * If there are 2 mirrors in the same 2 devices, performance degrades 544 * because position is mirror, not device based. 545 * 546 * The rdev for the device selected will have nr_pending incremented. 547 */ 548 549 /* 550 * FIXME: possibly should rethink readbalancing and do it differently 551 * depending on near_copies / far_copies geometry. 552 */ 553 static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors) 554 { 555 const sector_t this_sector = r10_bio->sector; 556 int disk, slot; 557 int sectors = r10_bio->sectors; 558 int best_good_sectors; 559 sector_t new_distance, best_dist; 560 mdk_rdev_t *rdev; 561 int do_balance; 562 int best_slot; 563 564 raid10_find_phys(conf, r10_bio); 565 rcu_read_lock(); 566 retry: 567 sectors = r10_bio->sectors; 568 best_slot = -1; 569 best_dist = MaxSector; 570 best_good_sectors = 0; 571 do_balance = 1; 572 /* 573 * Check if we can balance. We can balance on the whole 574 * device if no resync is going on (recovery is ok), or below 575 * the resync window. We take the first readable disk when 576 * above the resync window. 577 */ 578 if (conf->mddev->recovery_cp < MaxSector 579 && (this_sector + sectors >= conf->next_resync)) 580 do_balance = 0; 581 582 for (slot = 0; slot < conf->copies ; slot++) { 583 sector_t first_bad; 584 int bad_sectors; 585 sector_t dev_sector; 586 587 if (r10_bio->devs[slot].bio == IO_BLOCKED) 588 continue; 589 disk = r10_bio->devs[slot].devnum; 590 rdev = rcu_dereference(conf->mirrors[disk].rdev); 591 if (rdev == NULL) 592 continue; 593 if (!test_bit(In_sync, &rdev->flags)) 594 continue; 595 596 dev_sector = r10_bio->devs[slot].addr; 597 if (is_badblock(rdev, dev_sector, sectors, 598 &first_bad, &bad_sectors)) { 599 if (best_dist < MaxSector) 600 /* Already have a better slot */ 601 continue; 602 if (first_bad <= dev_sector) { 603 /* Cannot read here. If this is the 604 * 'primary' device, then we must not read 605 * beyond 'bad_sectors' from another device. 606 */ 607 bad_sectors -= (dev_sector - first_bad); 608 if (!do_balance && sectors > bad_sectors) 609 sectors = bad_sectors; 610 if (best_good_sectors > sectors) 611 best_good_sectors = sectors; 612 } else { 613 sector_t good_sectors = 614 first_bad - dev_sector; 615 if (good_sectors > best_good_sectors) { 616 best_good_sectors = good_sectors; 617 best_slot = slot; 618 } 619 if (!do_balance) 620 /* Must read from here */ 621 break; 622 } 623 continue; 624 } else 625 best_good_sectors = sectors; 626 627 if (!do_balance) 628 break; 629 630 /* This optimisation is debatable, and completely destroys 631 * sequential read speed for 'far copies' arrays. So only 632 * keep it for 'near' arrays, and review those later. 633 */ 634 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 635 break; 636 637 /* for far > 1 always use the lowest address */ 638 if (conf->far_copies > 1) 639 new_distance = r10_bio->devs[slot].addr; 640 else 641 new_distance = abs(r10_bio->devs[slot].addr - 642 conf->mirrors[disk].head_position); 643 if (new_distance < best_dist) { 644 best_dist = new_distance; 645 best_slot = slot; 646 } 647 } 648 if (slot == conf->copies) 649 slot = best_slot; 650 651 if (slot >= 0) { 652 disk = r10_bio->devs[slot].devnum; 653 rdev = rcu_dereference(conf->mirrors[disk].rdev); 654 if (!rdev) 655 goto retry; 656 atomic_inc(&rdev->nr_pending); 657 if (test_bit(Faulty, &rdev->flags)) { 658 /* Cannot risk returning a device that failed 659 * before we inc'ed nr_pending 660 */ 661 rdev_dec_pending(rdev, conf->mddev); 662 goto retry; 663 } 664 r10_bio->read_slot = slot; 665 } else 666 disk = -1; 667 rcu_read_unlock(); 668 *max_sectors = best_good_sectors; 669 670 return disk; 671 } 672 673 static int raid10_congested(void *data, int bits) 674 { 675 mddev_t *mddev = data; 676 conf_t *conf = mddev->private; 677 int i, ret = 0; 678 679 if (mddev_congested(mddev, bits)) 680 return 1; 681 rcu_read_lock(); 682 for (i = 0; i < conf->raid_disks && ret == 0; i++) { 683 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 684 if (rdev && !test_bit(Faulty, &rdev->flags)) { 685 struct request_queue *q = bdev_get_queue(rdev->bdev); 686 687 ret |= bdi_congested(&q->backing_dev_info, bits); 688 } 689 } 690 rcu_read_unlock(); 691 return ret; 692 } 693 694 static void flush_pending_writes(conf_t *conf) 695 { 696 /* Any writes that have been queued but are awaiting 697 * bitmap updates get flushed here. 698 */ 699 spin_lock_irq(&conf->device_lock); 700 701 if (conf->pending_bio_list.head) { 702 struct bio *bio; 703 bio = bio_list_get(&conf->pending_bio_list); 704 spin_unlock_irq(&conf->device_lock); 705 /* flush any pending bitmap writes to disk 706 * before proceeding w/ I/O */ 707 bitmap_unplug(conf->mddev->bitmap); 708 709 while (bio) { /* submit pending writes */ 710 struct bio *next = bio->bi_next; 711 bio->bi_next = NULL; 712 generic_make_request(bio); 713 bio = next; 714 } 715 } else 716 spin_unlock_irq(&conf->device_lock); 717 } 718 719 /* Barriers.... 720 * Sometimes we need to suspend IO while we do something else, 721 * either some resync/recovery, or reconfigure the array. 722 * To do this we raise a 'barrier'. 723 * The 'barrier' is a counter that can be raised multiple times 724 * to count how many activities are happening which preclude 725 * normal IO. 726 * We can only raise the barrier if there is no pending IO. 727 * i.e. if nr_pending == 0. 728 * We choose only to raise the barrier if no-one is waiting for the 729 * barrier to go down. This means that as soon as an IO request 730 * is ready, no other operations which require a barrier will start 731 * until the IO request has had a chance. 732 * 733 * So: regular IO calls 'wait_barrier'. When that returns there 734 * is no backgroup IO happening, It must arrange to call 735 * allow_barrier when it has finished its IO. 736 * backgroup IO calls must call raise_barrier. Once that returns 737 * there is no normal IO happeing. It must arrange to call 738 * lower_barrier when the particular background IO completes. 739 */ 740 741 static void raise_barrier(conf_t *conf, int force) 742 { 743 BUG_ON(force && !conf->barrier); 744 spin_lock_irq(&conf->resync_lock); 745 746 /* Wait until no block IO is waiting (unless 'force') */ 747 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 748 conf->resync_lock, ); 749 750 /* block any new IO from starting */ 751 conf->barrier++; 752 753 /* Now wait for all pending IO to complete */ 754 wait_event_lock_irq(conf->wait_barrier, 755 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 756 conf->resync_lock, ); 757 758 spin_unlock_irq(&conf->resync_lock); 759 } 760 761 static void lower_barrier(conf_t *conf) 762 { 763 unsigned long flags; 764 spin_lock_irqsave(&conf->resync_lock, flags); 765 conf->barrier--; 766 spin_unlock_irqrestore(&conf->resync_lock, flags); 767 wake_up(&conf->wait_barrier); 768 } 769 770 static void wait_barrier(conf_t *conf) 771 { 772 spin_lock_irq(&conf->resync_lock); 773 if (conf->barrier) { 774 conf->nr_waiting++; 775 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 776 conf->resync_lock, 777 ); 778 conf->nr_waiting--; 779 } 780 conf->nr_pending++; 781 spin_unlock_irq(&conf->resync_lock); 782 } 783 784 static void allow_barrier(conf_t *conf) 785 { 786 unsigned long flags; 787 spin_lock_irqsave(&conf->resync_lock, flags); 788 conf->nr_pending--; 789 spin_unlock_irqrestore(&conf->resync_lock, flags); 790 wake_up(&conf->wait_barrier); 791 } 792 793 static void freeze_array(conf_t *conf) 794 { 795 /* stop syncio and normal IO and wait for everything to 796 * go quiet. 797 * We increment barrier and nr_waiting, and then 798 * wait until nr_pending match nr_queued+1 799 * This is called in the context of one normal IO request 800 * that has failed. Thus any sync request that might be pending 801 * will be blocked by nr_pending, and we need to wait for 802 * pending IO requests to complete or be queued for re-try. 803 * Thus the number queued (nr_queued) plus this request (1) 804 * must match the number of pending IOs (nr_pending) before 805 * we continue. 806 */ 807 spin_lock_irq(&conf->resync_lock); 808 conf->barrier++; 809 conf->nr_waiting++; 810 wait_event_lock_irq(conf->wait_barrier, 811 conf->nr_pending == conf->nr_queued+1, 812 conf->resync_lock, 813 flush_pending_writes(conf)); 814 815 spin_unlock_irq(&conf->resync_lock); 816 } 817 818 static void unfreeze_array(conf_t *conf) 819 { 820 /* reverse the effect of the freeze */ 821 spin_lock_irq(&conf->resync_lock); 822 conf->barrier--; 823 conf->nr_waiting--; 824 wake_up(&conf->wait_barrier); 825 spin_unlock_irq(&conf->resync_lock); 826 } 827 828 static int make_request(mddev_t *mddev, struct bio * bio) 829 { 830 conf_t *conf = mddev->private; 831 mirror_info_t *mirror; 832 r10bio_t *r10_bio; 833 struct bio *read_bio; 834 int i; 835 int chunk_sects = conf->chunk_mask + 1; 836 const int rw = bio_data_dir(bio); 837 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 838 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 839 unsigned long flags; 840 mdk_rdev_t *blocked_rdev; 841 int plugged; 842 int sectors_handled; 843 int max_sectors; 844 845 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 846 md_flush_request(mddev, bio); 847 return 0; 848 } 849 850 /* If this request crosses a chunk boundary, we need to 851 * split it. This will only happen for 1 PAGE (or less) requests. 852 */ 853 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 854 > chunk_sects && 855 conf->near_copies < conf->raid_disks)) { 856 struct bio_pair *bp; 857 /* Sanity check -- queue functions should prevent this happening */ 858 if (bio->bi_vcnt != 1 || 859 bio->bi_idx != 0) 860 goto bad_map; 861 /* This is a one page bio that upper layers 862 * refuse to split for us, so we need to split it. 863 */ 864 bp = bio_split(bio, 865 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 866 867 /* Each of these 'make_request' calls will call 'wait_barrier'. 868 * If the first succeeds but the second blocks due to the resync 869 * thread raising the barrier, we will deadlock because the 870 * IO to the underlying device will be queued in generic_make_request 871 * and will never complete, so will never reduce nr_pending. 872 * So increment nr_waiting here so no new raise_barriers will 873 * succeed, and so the second wait_barrier cannot block. 874 */ 875 spin_lock_irq(&conf->resync_lock); 876 conf->nr_waiting++; 877 spin_unlock_irq(&conf->resync_lock); 878 879 if (make_request(mddev, &bp->bio1)) 880 generic_make_request(&bp->bio1); 881 if (make_request(mddev, &bp->bio2)) 882 generic_make_request(&bp->bio2); 883 884 spin_lock_irq(&conf->resync_lock); 885 conf->nr_waiting--; 886 wake_up(&conf->wait_barrier); 887 spin_unlock_irq(&conf->resync_lock); 888 889 bio_pair_release(bp); 890 return 0; 891 bad_map: 892 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 893 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 894 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 895 896 bio_io_error(bio); 897 return 0; 898 } 899 900 md_write_start(mddev, bio); 901 902 /* 903 * Register the new request and wait if the reconstruction 904 * thread has put up a bar for new requests. 905 * Continue immediately if no resync is active currently. 906 */ 907 wait_barrier(conf); 908 909 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 910 911 r10_bio->master_bio = bio; 912 r10_bio->sectors = bio->bi_size >> 9; 913 914 r10_bio->mddev = mddev; 915 r10_bio->sector = bio->bi_sector; 916 r10_bio->state = 0; 917 918 /* We might need to issue multiple reads to different 919 * devices if there are bad blocks around, so we keep 920 * track of the number of reads in bio->bi_phys_segments. 921 * If this is 0, there is only one r10_bio and no locking 922 * will be needed when the request completes. If it is 923 * non-zero, then it is the number of not-completed requests. 924 */ 925 bio->bi_phys_segments = 0; 926 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 927 928 if (rw == READ) { 929 /* 930 * read balancing logic: 931 */ 932 int disk; 933 int slot; 934 935 read_again: 936 disk = read_balance(conf, r10_bio, &max_sectors); 937 slot = r10_bio->read_slot; 938 if (disk < 0) { 939 raid_end_bio_io(r10_bio); 940 return 0; 941 } 942 mirror = conf->mirrors + disk; 943 944 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 945 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 946 max_sectors); 947 948 r10_bio->devs[slot].bio = read_bio; 949 950 read_bio->bi_sector = r10_bio->devs[slot].addr + 951 mirror->rdev->data_offset; 952 read_bio->bi_bdev = mirror->rdev->bdev; 953 read_bio->bi_end_io = raid10_end_read_request; 954 read_bio->bi_rw = READ | do_sync; 955 read_bio->bi_private = r10_bio; 956 957 if (max_sectors < r10_bio->sectors) { 958 /* Could not read all from this device, so we will 959 * need another r10_bio. 960 */ 961 sectors_handled = (r10_bio->sectors + max_sectors 962 - bio->bi_sector); 963 r10_bio->sectors = max_sectors; 964 spin_lock_irq(&conf->device_lock); 965 if (bio->bi_phys_segments == 0) 966 bio->bi_phys_segments = 2; 967 else 968 bio->bi_phys_segments++; 969 spin_unlock(&conf->device_lock); 970 /* Cannot call generic_make_request directly 971 * as that will be queued in __generic_make_request 972 * and subsequent mempool_alloc might block 973 * waiting for it. so hand bio over to raid10d. 974 */ 975 reschedule_retry(r10_bio); 976 977 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 978 979 r10_bio->master_bio = bio; 980 r10_bio->sectors = ((bio->bi_size >> 9) 981 - sectors_handled); 982 r10_bio->state = 0; 983 r10_bio->mddev = mddev; 984 r10_bio->sector = bio->bi_sector + sectors_handled; 985 goto read_again; 986 } else 987 generic_make_request(read_bio); 988 return 0; 989 } 990 991 /* 992 * WRITE: 993 */ 994 /* first select target devices under rcu_lock and 995 * inc refcount on their rdev. Record them by setting 996 * bios[x] to bio 997 * If there are known/acknowledged bad blocks on any device 998 * on which we have seen a write error, we want to avoid 999 * writing to those blocks. This potentially requires several 1000 * writes to write around the bad blocks. Each set of writes 1001 * gets its own r10_bio with a set of bios attached. The number 1002 * of r10_bios is recored in bio->bi_phys_segments just as with 1003 * the read case. 1004 */ 1005 plugged = mddev_check_plugged(mddev); 1006 1007 raid10_find_phys(conf, r10_bio); 1008 retry_write: 1009 blocked_rdev = NULL; 1010 rcu_read_lock(); 1011 max_sectors = r10_bio->sectors; 1012 1013 for (i = 0; i < conf->copies; i++) { 1014 int d = r10_bio->devs[i].devnum; 1015 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 1016 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1017 atomic_inc(&rdev->nr_pending); 1018 blocked_rdev = rdev; 1019 break; 1020 } 1021 r10_bio->devs[i].bio = NULL; 1022 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1023 set_bit(R10BIO_Degraded, &r10_bio->state); 1024 continue; 1025 } 1026 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1027 sector_t first_bad; 1028 sector_t dev_sector = r10_bio->devs[i].addr; 1029 int bad_sectors; 1030 int is_bad; 1031 1032 is_bad = is_badblock(rdev, dev_sector, 1033 max_sectors, 1034 &first_bad, &bad_sectors); 1035 if (is_bad < 0) { 1036 /* Mustn't write here until the bad block 1037 * is acknowledged 1038 */ 1039 atomic_inc(&rdev->nr_pending); 1040 set_bit(BlockedBadBlocks, &rdev->flags); 1041 blocked_rdev = rdev; 1042 break; 1043 } 1044 if (is_bad && first_bad <= dev_sector) { 1045 /* Cannot write here at all */ 1046 bad_sectors -= (dev_sector - first_bad); 1047 if (bad_sectors < max_sectors) 1048 /* Mustn't write more than bad_sectors 1049 * to other devices yet 1050 */ 1051 max_sectors = bad_sectors; 1052 /* We don't set R10BIO_Degraded as that 1053 * only applies if the disk is missing, 1054 * so it might be re-added, and we want to 1055 * know to recover this chunk. 1056 * In this case the device is here, and the 1057 * fact that this chunk is not in-sync is 1058 * recorded in the bad block log. 1059 */ 1060 continue; 1061 } 1062 if (is_bad) { 1063 int good_sectors = first_bad - dev_sector; 1064 if (good_sectors < max_sectors) 1065 max_sectors = good_sectors; 1066 } 1067 } 1068 r10_bio->devs[i].bio = bio; 1069 atomic_inc(&rdev->nr_pending); 1070 } 1071 rcu_read_unlock(); 1072 1073 if (unlikely(blocked_rdev)) { 1074 /* Have to wait for this device to get unblocked, then retry */ 1075 int j; 1076 int d; 1077 1078 for (j = 0; j < i; j++) 1079 if (r10_bio->devs[j].bio) { 1080 d = r10_bio->devs[j].devnum; 1081 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1082 } 1083 allow_barrier(conf); 1084 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1085 wait_barrier(conf); 1086 goto retry_write; 1087 } 1088 1089 if (max_sectors < r10_bio->sectors) { 1090 /* We are splitting this into multiple parts, so 1091 * we need to prepare for allocating another r10_bio. 1092 */ 1093 r10_bio->sectors = max_sectors; 1094 spin_lock_irq(&conf->device_lock); 1095 if (bio->bi_phys_segments == 0) 1096 bio->bi_phys_segments = 2; 1097 else 1098 bio->bi_phys_segments++; 1099 spin_unlock_irq(&conf->device_lock); 1100 } 1101 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1102 1103 atomic_set(&r10_bio->remaining, 1); 1104 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1105 1106 for (i = 0; i < conf->copies; i++) { 1107 struct bio *mbio; 1108 int d = r10_bio->devs[i].devnum; 1109 if (!r10_bio->devs[i].bio) 1110 continue; 1111 1112 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1113 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1114 max_sectors); 1115 r10_bio->devs[i].bio = mbio; 1116 1117 mbio->bi_sector = (r10_bio->devs[i].addr+ 1118 conf->mirrors[d].rdev->data_offset); 1119 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1120 mbio->bi_end_io = raid10_end_write_request; 1121 mbio->bi_rw = WRITE | do_sync | do_fua; 1122 mbio->bi_private = r10_bio; 1123 1124 atomic_inc(&r10_bio->remaining); 1125 spin_lock_irqsave(&conf->device_lock, flags); 1126 bio_list_add(&conf->pending_bio_list, mbio); 1127 spin_unlock_irqrestore(&conf->device_lock, flags); 1128 } 1129 1130 if (atomic_dec_and_test(&r10_bio->remaining)) { 1131 /* This matches the end of raid10_end_write_request() */ 1132 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 1133 r10_bio->sectors, 1134 !test_bit(R10BIO_Degraded, &r10_bio->state), 1135 0); 1136 md_write_end(mddev); 1137 raid_end_bio_io(r10_bio); 1138 } 1139 1140 /* In case raid10d snuck in to freeze_array */ 1141 wake_up(&conf->wait_barrier); 1142 1143 if (sectors_handled < (bio->bi_size >> 9)) { 1144 /* We need another r10_bio. It has already been counted 1145 * in bio->bi_phys_segments. 1146 */ 1147 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1148 1149 r10_bio->master_bio = bio; 1150 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1151 1152 r10_bio->mddev = mddev; 1153 r10_bio->sector = bio->bi_sector + sectors_handled; 1154 r10_bio->state = 0; 1155 goto retry_write; 1156 } 1157 1158 if (do_sync || !mddev->bitmap || !plugged) 1159 md_wakeup_thread(mddev->thread); 1160 return 0; 1161 } 1162 1163 static void status(struct seq_file *seq, mddev_t *mddev) 1164 { 1165 conf_t *conf = mddev->private; 1166 int i; 1167 1168 if (conf->near_copies < conf->raid_disks) 1169 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1170 if (conf->near_copies > 1) 1171 seq_printf(seq, " %d near-copies", conf->near_copies); 1172 if (conf->far_copies > 1) { 1173 if (conf->far_offset) 1174 seq_printf(seq, " %d offset-copies", conf->far_copies); 1175 else 1176 seq_printf(seq, " %d far-copies", conf->far_copies); 1177 } 1178 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1179 conf->raid_disks - mddev->degraded); 1180 for (i = 0; i < conf->raid_disks; i++) 1181 seq_printf(seq, "%s", 1182 conf->mirrors[i].rdev && 1183 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1184 seq_printf(seq, "]"); 1185 } 1186 1187 /* check if there are enough drives for 1188 * every block to appear on atleast one. 1189 * Don't consider the device numbered 'ignore' 1190 * as we might be about to remove it. 1191 */ 1192 static int enough(conf_t *conf, int ignore) 1193 { 1194 int first = 0; 1195 1196 do { 1197 int n = conf->copies; 1198 int cnt = 0; 1199 while (n--) { 1200 if (conf->mirrors[first].rdev && 1201 first != ignore) 1202 cnt++; 1203 first = (first+1) % conf->raid_disks; 1204 } 1205 if (cnt == 0) 1206 return 0; 1207 } while (first != 0); 1208 return 1; 1209 } 1210 1211 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1212 { 1213 char b[BDEVNAME_SIZE]; 1214 conf_t *conf = mddev->private; 1215 1216 /* 1217 * If it is not operational, then we have already marked it as dead 1218 * else if it is the last working disks, ignore the error, let the 1219 * next level up know. 1220 * else mark the drive as failed 1221 */ 1222 if (test_bit(In_sync, &rdev->flags) 1223 && !enough(conf, rdev->raid_disk)) 1224 /* 1225 * Don't fail the drive, just return an IO error. 1226 */ 1227 return; 1228 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1229 unsigned long flags; 1230 spin_lock_irqsave(&conf->device_lock, flags); 1231 mddev->degraded++; 1232 spin_unlock_irqrestore(&conf->device_lock, flags); 1233 /* 1234 * if recovery is running, make sure it aborts. 1235 */ 1236 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1237 } 1238 set_bit(Blocked, &rdev->flags); 1239 set_bit(Faulty, &rdev->flags); 1240 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1241 printk(KERN_ALERT 1242 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1243 "md/raid10:%s: Operation continuing on %d devices.\n", 1244 mdname(mddev), bdevname(rdev->bdev, b), 1245 mdname(mddev), conf->raid_disks - mddev->degraded); 1246 } 1247 1248 static void print_conf(conf_t *conf) 1249 { 1250 int i; 1251 mirror_info_t *tmp; 1252 1253 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1254 if (!conf) { 1255 printk(KERN_DEBUG "(!conf)\n"); 1256 return; 1257 } 1258 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1259 conf->raid_disks); 1260 1261 for (i = 0; i < conf->raid_disks; i++) { 1262 char b[BDEVNAME_SIZE]; 1263 tmp = conf->mirrors + i; 1264 if (tmp->rdev) 1265 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1266 i, !test_bit(In_sync, &tmp->rdev->flags), 1267 !test_bit(Faulty, &tmp->rdev->flags), 1268 bdevname(tmp->rdev->bdev,b)); 1269 } 1270 } 1271 1272 static void close_sync(conf_t *conf) 1273 { 1274 wait_barrier(conf); 1275 allow_barrier(conf); 1276 1277 mempool_destroy(conf->r10buf_pool); 1278 conf->r10buf_pool = NULL; 1279 } 1280 1281 static int raid10_spare_active(mddev_t *mddev) 1282 { 1283 int i; 1284 conf_t *conf = mddev->private; 1285 mirror_info_t *tmp; 1286 int count = 0; 1287 unsigned long flags; 1288 1289 /* 1290 * Find all non-in_sync disks within the RAID10 configuration 1291 * and mark them in_sync 1292 */ 1293 for (i = 0; i < conf->raid_disks; i++) { 1294 tmp = conf->mirrors + i; 1295 if (tmp->rdev 1296 && !test_bit(Faulty, &tmp->rdev->flags) 1297 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1298 count++; 1299 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1300 } 1301 } 1302 spin_lock_irqsave(&conf->device_lock, flags); 1303 mddev->degraded -= count; 1304 spin_unlock_irqrestore(&conf->device_lock, flags); 1305 1306 print_conf(conf); 1307 return count; 1308 } 1309 1310 1311 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1312 { 1313 conf_t *conf = mddev->private; 1314 int err = -EEXIST; 1315 int mirror; 1316 int first = 0; 1317 int last = conf->raid_disks - 1; 1318 1319 if (mddev->recovery_cp < MaxSector) 1320 /* only hot-add to in-sync arrays, as recovery is 1321 * very different from resync 1322 */ 1323 return -EBUSY; 1324 if (!enough(conf, -1)) 1325 return -EINVAL; 1326 1327 if (rdev->raid_disk >= 0) 1328 first = last = rdev->raid_disk; 1329 1330 if (rdev->saved_raid_disk >= first && 1331 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1332 mirror = rdev->saved_raid_disk; 1333 else 1334 mirror = first; 1335 for ( ; mirror <= last ; mirror++) { 1336 mirror_info_t *p = &conf->mirrors[mirror]; 1337 if (p->recovery_disabled == mddev->recovery_disabled) 1338 continue; 1339 if (!p->rdev) 1340 continue; 1341 1342 disk_stack_limits(mddev->gendisk, rdev->bdev, 1343 rdev->data_offset << 9); 1344 /* as we don't honour merge_bvec_fn, we must 1345 * never risk violating it, so limit 1346 * ->max_segments to one lying with a single 1347 * page, as a one page request is never in 1348 * violation. 1349 */ 1350 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1351 blk_queue_max_segments(mddev->queue, 1); 1352 blk_queue_segment_boundary(mddev->queue, 1353 PAGE_CACHE_SIZE - 1); 1354 } 1355 1356 p->head_position = 0; 1357 rdev->raid_disk = mirror; 1358 err = 0; 1359 if (rdev->saved_raid_disk != mirror) 1360 conf->fullsync = 1; 1361 rcu_assign_pointer(p->rdev, rdev); 1362 break; 1363 } 1364 1365 md_integrity_add_rdev(rdev, mddev); 1366 print_conf(conf); 1367 return err; 1368 } 1369 1370 static int raid10_remove_disk(mddev_t *mddev, int number) 1371 { 1372 conf_t *conf = mddev->private; 1373 int err = 0; 1374 mdk_rdev_t *rdev; 1375 mirror_info_t *p = conf->mirrors+ number; 1376 1377 print_conf(conf); 1378 rdev = p->rdev; 1379 if (rdev) { 1380 if (test_bit(In_sync, &rdev->flags) || 1381 atomic_read(&rdev->nr_pending)) { 1382 err = -EBUSY; 1383 goto abort; 1384 } 1385 /* Only remove faulty devices in recovery 1386 * is not possible. 1387 */ 1388 if (!test_bit(Faulty, &rdev->flags) && 1389 mddev->recovery_disabled != p->recovery_disabled && 1390 enough(conf, -1)) { 1391 err = -EBUSY; 1392 goto abort; 1393 } 1394 p->rdev = NULL; 1395 synchronize_rcu(); 1396 if (atomic_read(&rdev->nr_pending)) { 1397 /* lost the race, try later */ 1398 err = -EBUSY; 1399 p->rdev = rdev; 1400 goto abort; 1401 } 1402 err = md_integrity_register(mddev); 1403 } 1404 abort: 1405 1406 print_conf(conf); 1407 return err; 1408 } 1409 1410 1411 static void end_sync_read(struct bio *bio, int error) 1412 { 1413 r10bio_t *r10_bio = bio->bi_private; 1414 conf_t *conf = r10_bio->mddev->private; 1415 int d; 1416 1417 d = find_bio_disk(conf, r10_bio, bio, NULL); 1418 1419 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1420 set_bit(R10BIO_Uptodate, &r10_bio->state); 1421 else 1422 /* The write handler will notice the lack of 1423 * R10BIO_Uptodate and record any errors etc 1424 */ 1425 atomic_add(r10_bio->sectors, 1426 &conf->mirrors[d].rdev->corrected_errors); 1427 1428 /* for reconstruct, we always reschedule after a read. 1429 * for resync, only after all reads 1430 */ 1431 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1432 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1433 atomic_dec_and_test(&r10_bio->remaining)) { 1434 /* we have read all the blocks, 1435 * do the comparison in process context in raid10d 1436 */ 1437 reschedule_retry(r10_bio); 1438 } 1439 } 1440 1441 static void end_sync_request(r10bio_t *r10_bio) 1442 { 1443 mddev_t *mddev = r10_bio->mddev; 1444 1445 while (atomic_dec_and_test(&r10_bio->remaining)) { 1446 if (r10_bio->master_bio == NULL) { 1447 /* the primary of several recovery bios */ 1448 sector_t s = r10_bio->sectors; 1449 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1450 test_bit(R10BIO_WriteError, &r10_bio->state)) 1451 reschedule_retry(r10_bio); 1452 else 1453 put_buf(r10_bio); 1454 md_done_sync(mddev, s, 1); 1455 break; 1456 } else { 1457 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1458 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1459 test_bit(R10BIO_WriteError, &r10_bio->state)) 1460 reschedule_retry(r10_bio); 1461 else 1462 put_buf(r10_bio); 1463 r10_bio = r10_bio2; 1464 } 1465 } 1466 } 1467 1468 static void end_sync_write(struct bio *bio, int error) 1469 { 1470 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1471 r10bio_t *r10_bio = bio->bi_private; 1472 mddev_t *mddev = r10_bio->mddev; 1473 conf_t *conf = mddev->private; 1474 int d; 1475 sector_t first_bad; 1476 int bad_sectors; 1477 int slot; 1478 1479 d = find_bio_disk(conf, r10_bio, bio, &slot); 1480 1481 if (!uptodate) { 1482 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags); 1483 set_bit(R10BIO_WriteError, &r10_bio->state); 1484 } else if (is_badblock(conf->mirrors[d].rdev, 1485 r10_bio->devs[slot].addr, 1486 r10_bio->sectors, 1487 &first_bad, &bad_sectors)) 1488 set_bit(R10BIO_MadeGood, &r10_bio->state); 1489 1490 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1491 1492 end_sync_request(r10_bio); 1493 } 1494 1495 /* 1496 * Note: sync and recover and handled very differently for raid10 1497 * This code is for resync. 1498 * For resync, we read through virtual addresses and read all blocks. 1499 * If there is any error, we schedule a write. The lowest numbered 1500 * drive is authoritative. 1501 * However requests come for physical address, so we need to map. 1502 * For every physical address there are raid_disks/copies virtual addresses, 1503 * which is always are least one, but is not necessarly an integer. 1504 * This means that a physical address can span multiple chunks, so we may 1505 * have to submit multiple io requests for a single sync request. 1506 */ 1507 /* 1508 * We check if all blocks are in-sync and only write to blocks that 1509 * aren't in sync 1510 */ 1511 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1512 { 1513 conf_t *conf = mddev->private; 1514 int i, first; 1515 struct bio *tbio, *fbio; 1516 1517 atomic_set(&r10_bio->remaining, 1); 1518 1519 /* find the first device with a block */ 1520 for (i=0; i<conf->copies; i++) 1521 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1522 break; 1523 1524 if (i == conf->copies) 1525 goto done; 1526 1527 first = i; 1528 fbio = r10_bio->devs[i].bio; 1529 1530 /* now find blocks with errors */ 1531 for (i=0 ; i < conf->copies ; i++) { 1532 int j, d; 1533 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1534 1535 tbio = r10_bio->devs[i].bio; 1536 1537 if (tbio->bi_end_io != end_sync_read) 1538 continue; 1539 if (i == first) 1540 continue; 1541 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1542 /* We know that the bi_io_vec layout is the same for 1543 * both 'first' and 'i', so we just compare them. 1544 * All vec entries are PAGE_SIZE; 1545 */ 1546 for (j = 0; j < vcnt; j++) 1547 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1548 page_address(tbio->bi_io_vec[j].bv_page), 1549 PAGE_SIZE)) 1550 break; 1551 if (j == vcnt) 1552 continue; 1553 mddev->resync_mismatches += r10_bio->sectors; 1554 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1555 /* Don't fix anything. */ 1556 continue; 1557 } 1558 /* Ok, we need to write this bio, either to correct an 1559 * inconsistency or to correct an unreadable block. 1560 * First we need to fixup bv_offset, bv_len and 1561 * bi_vecs, as the read request might have corrupted these 1562 */ 1563 tbio->bi_vcnt = vcnt; 1564 tbio->bi_size = r10_bio->sectors << 9; 1565 tbio->bi_idx = 0; 1566 tbio->bi_phys_segments = 0; 1567 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1568 tbio->bi_flags |= 1 << BIO_UPTODATE; 1569 tbio->bi_next = NULL; 1570 tbio->bi_rw = WRITE; 1571 tbio->bi_private = r10_bio; 1572 tbio->bi_sector = r10_bio->devs[i].addr; 1573 1574 for (j=0; j < vcnt ; j++) { 1575 tbio->bi_io_vec[j].bv_offset = 0; 1576 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1577 1578 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1579 page_address(fbio->bi_io_vec[j].bv_page), 1580 PAGE_SIZE); 1581 } 1582 tbio->bi_end_io = end_sync_write; 1583 1584 d = r10_bio->devs[i].devnum; 1585 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1586 atomic_inc(&r10_bio->remaining); 1587 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1588 1589 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1590 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1591 generic_make_request(tbio); 1592 } 1593 1594 done: 1595 if (atomic_dec_and_test(&r10_bio->remaining)) { 1596 md_done_sync(mddev, r10_bio->sectors, 1); 1597 put_buf(r10_bio); 1598 } 1599 } 1600 1601 /* 1602 * Now for the recovery code. 1603 * Recovery happens across physical sectors. 1604 * We recover all non-is_sync drives by finding the virtual address of 1605 * each, and then choose a working drive that also has that virt address. 1606 * There is a separate r10_bio for each non-in_sync drive. 1607 * Only the first two slots are in use. The first for reading, 1608 * The second for writing. 1609 * 1610 */ 1611 static void fix_recovery_read_error(r10bio_t *r10_bio) 1612 { 1613 /* We got a read error during recovery. 1614 * We repeat the read in smaller page-sized sections. 1615 * If a read succeeds, write it to the new device or record 1616 * a bad block if we cannot. 1617 * If a read fails, record a bad block on both old and 1618 * new devices. 1619 */ 1620 mddev_t *mddev = r10_bio->mddev; 1621 conf_t *conf = mddev->private; 1622 struct bio *bio = r10_bio->devs[0].bio; 1623 sector_t sect = 0; 1624 int sectors = r10_bio->sectors; 1625 int idx = 0; 1626 int dr = r10_bio->devs[0].devnum; 1627 int dw = r10_bio->devs[1].devnum; 1628 1629 while (sectors) { 1630 int s = sectors; 1631 mdk_rdev_t *rdev; 1632 sector_t addr; 1633 int ok; 1634 1635 if (s > (PAGE_SIZE>>9)) 1636 s = PAGE_SIZE >> 9; 1637 1638 rdev = conf->mirrors[dr].rdev; 1639 addr = r10_bio->devs[0].addr + sect, 1640 ok = sync_page_io(rdev, 1641 addr, 1642 s << 9, 1643 bio->bi_io_vec[idx].bv_page, 1644 READ, false); 1645 if (ok) { 1646 rdev = conf->mirrors[dw].rdev; 1647 addr = r10_bio->devs[1].addr + sect; 1648 ok = sync_page_io(rdev, 1649 addr, 1650 s << 9, 1651 bio->bi_io_vec[idx].bv_page, 1652 WRITE, false); 1653 if (!ok) 1654 set_bit(WriteErrorSeen, &rdev->flags); 1655 } 1656 if (!ok) { 1657 /* We don't worry if we cannot set a bad block - 1658 * it really is bad so there is no loss in not 1659 * recording it yet 1660 */ 1661 rdev_set_badblocks(rdev, addr, s, 0); 1662 1663 if (rdev != conf->mirrors[dw].rdev) { 1664 /* need bad block on destination too */ 1665 mdk_rdev_t *rdev2 = conf->mirrors[dw].rdev; 1666 addr = r10_bio->devs[1].addr + sect; 1667 ok = rdev_set_badblocks(rdev2, addr, s, 0); 1668 if (!ok) { 1669 /* just abort the recovery */ 1670 printk(KERN_NOTICE 1671 "md/raid10:%s: recovery aborted" 1672 " due to read error\n", 1673 mdname(mddev)); 1674 1675 conf->mirrors[dw].recovery_disabled 1676 = mddev->recovery_disabled; 1677 set_bit(MD_RECOVERY_INTR, 1678 &mddev->recovery); 1679 break; 1680 } 1681 } 1682 } 1683 1684 sectors -= s; 1685 sect += s; 1686 idx++; 1687 } 1688 } 1689 1690 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1691 { 1692 conf_t *conf = mddev->private; 1693 int d; 1694 struct bio *wbio; 1695 1696 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 1697 fix_recovery_read_error(r10_bio); 1698 end_sync_request(r10_bio); 1699 return; 1700 } 1701 1702 /* 1703 * share the pages with the first bio 1704 * and submit the write request 1705 */ 1706 wbio = r10_bio->devs[1].bio; 1707 d = r10_bio->devs[1].devnum; 1708 1709 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1710 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1711 generic_make_request(wbio); 1712 } 1713 1714 1715 /* 1716 * Used by fix_read_error() to decay the per rdev read_errors. 1717 * We halve the read error count for every hour that has elapsed 1718 * since the last recorded read error. 1719 * 1720 */ 1721 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev) 1722 { 1723 struct timespec cur_time_mon; 1724 unsigned long hours_since_last; 1725 unsigned int read_errors = atomic_read(&rdev->read_errors); 1726 1727 ktime_get_ts(&cur_time_mon); 1728 1729 if (rdev->last_read_error.tv_sec == 0 && 1730 rdev->last_read_error.tv_nsec == 0) { 1731 /* first time we've seen a read error */ 1732 rdev->last_read_error = cur_time_mon; 1733 return; 1734 } 1735 1736 hours_since_last = (cur_time_mon.tv_sec - 1737 rdev->last_read_error.tv_sec) / 3600; 1738 1739 rdev->last_read_error = cur_time_mon; 1740 1741 /* 1742 * if hours_since_last is > the number of bits in read_errors 1743 * just set read errors to 0. We do this to avoid 1744 * overflowing the shift of read_errors by hours_since_last. 1745 */ 1746 if (hours_since_last >= 8 * sizeof(read_errors)) 1747 atomic_set(&rdev->read_errors, 0); 1748 else 1749 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 1750 } 1751 1752 static int r10_sync_page_io(mdk_rdev_t *rdev, sector_t sector, 1753 int sectors, struct page *page, int rw) 1754 { 1755 sector_t first_bad; 1756 int bad_sectors; 1757 1758 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 1759 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 1760 return -1; 1761 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1762 /* success */ 1763 return 1; 1764 if (rw == WRITE) 1765 set_bit(WriteErrorSeen, &rdev->flags); 1766 /* need to record an error - either for the block or the device */ 1767 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1768 md_error(rdev->mddev, rdev); 1769 return 0; 1770 } 1771 1772 /* 1773 * This is a kernel thread which: 1774 * 1775 * 1. Retries failed read operations on working mirrors. 1776 * 2. Updates the raid superblock when problems encounter. 1777 * 3. Performs writes following reads for array synchronising. 1778 */ 1779 1780 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1781 { 1782 int sect = 0; /* Offset from r10_bio->sector */ 1783 int sectors = r10_bio->sectors; 1784 mdk_rdev_t*rdev; 1785 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 1786 int d = r10_bio->devs[r10_bio->read_slot].devnum; 1787 1788 /* still own a reference to this rdev, so it cannot 1789 * have been cleared recently. 1790 */ 1791 rdev = conf->mirrors[d].rdev; 1792 1793 if (test_bit(Faulty, &rdev->flags)) 1794 /* drive has already been failed, just ignore any 1795 more fix_read_error() attempts */ 1796 return; 1797 1798 check_decay_read_errors(mddev, rdev); 1799 atomic_inc(&rdev->read_errors); 1800 if (atomic_read(&rdev->read_errors) > max_read_errors) { 1801 char b[BDEVNAME_SIZE]; 1802 bdevname(rdev->bdev, b); 1803 1804 printk(KERN_NOTICE 1805 "md/raid10:%s: %s: Raid device exceeded " 1806 "read_error threshold [cur %d:max %d]\n", 1807 mdname(mddev), b, 1808 atomic_read(&rdev->read_errors), max_read_errors); 1809 printk(KERN_NOTICE 1810 "md/raid10:%s: %s: Failing raid device\n", 1811 mdname(mddev), b); 1812 md_error(mddev, conf->mirrors[d].rdev); 1813 return; 1814 } 1815 1816 while(sectors) { 1817 int s = sectors; 1818 int sl = r10_bio->read_slot; 1819 int success = 0; 1820 int start; 1821 1822 if (s > (PAGE_SIZE>>9)) 1823 s = PAGE_SIZE >> 9; 1824 1825 rcu_read_lock(); 1826 do { 1827 sector_t first_bad; 1828 int bad_sectors; 1829 1830 d = r10_bio->devs[sl].devnum; 1831 rdev = rcu_dereference(conf->mirrors[d].rdev); 1832 if (rdev && 1833 test_bit(In_sync, &rdev->flags) && 1834 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 1835 &first_bad, &bad_sectors) == 0) { 1836 atomic_inc(&rdev->nr_pending); 1837 rcu_read_unlock(); 1838 success = sync_page_io(rdev, 1839 r10_bio->devs[sl].addr + 1840 sect, 1841 s<<9, 1842 conf->tmppage, READ, false); 1843 rdev_dec_pending(rdev, mddev); 1844 rcu_read_lock(); 1845 if (success) 1846 break; 1847 } 1848 sl++; 1849 if (sl == conf->copies) 1850 sl = 0; 1851 } while (!success && sl != r10_bio->read_slot); 1852 rcu_read_unlock(); 1853 1854 if (!success) { 1855 /* Cannot read from anywhere, just mark the block 1856 * as bad on the first device to discourage future 1857 * reads. 1858 */ 1859 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1860 rdev = conf->mirrors[dn].rdev; 1861 1862 if (!rdev_set_badblocks( 1863 rdev, 1864 r10_bio->devs[r10_bio->read_slot].addr 1865 + sect, 1866 s, 0)) 1867 md_error(mddev, rdev); 1868 break; 1869 } 1870 1871 start = sl; 1872 /* write it back and re-read */ 1873 rcu_read_lock(); 1874 while (sl != r10_bio->read_slot) { 1875 char b[BDEVNAME_SIZE]; 1876 1877 if (sl==0) 1878 sl = conf->copies; 1879 sl--; 1880 d = r10_bio->devs[sl].devnum; 1881 rdev = rcu_dereference(conf->mirrors[d].rdev); 1882 if (!rdev || 1883 !test_bit(In_sync, &rdev->flags)) 1884 continue; 1885 1886 atomic_inc(&rdev->nr_pending); 1887 rcu_read_unlock(); 1888 if (r10_sync_page_io(rdev, 1889 r10_bio->devs[sl].addr + 1890 sect, 1891 s<<9, conf->tmppage, WRITE) 1892 == 0) { 1893 /* Well, this device is dead */ 1894 printk(KERN_NOTICE 1895 "md/raid10:%s: read correction " 1896 "write failed" 1897 " (%d sectors at %llu on %s)\n", 1898 mdname(mddev), s, 1899 (unsigned long long)( 1900 sect + rdev->data_offset), 1901 bdevname(rdev->bdev, b)); 1902 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 1903 "drive\n", 1904 mdname(mddev), 1905 bdevname(rdev->bdev, b)); 1906 } 1907 rdev_dec_pending(rdev, mddev); 1908 rcu_read_lock(); 1909 } 1910 sl = start; 1911 while (sl != r10_bio->read_slot) { 1912 char b[BDEVNAME_SIZE]; 1913 1914 if (sl==0) 1915 sl = conf->copies; 1916 sl--; 1917 d = r10_bio->devs[sl].devnum; 1918 rdev = rcu_dereference(conf->mirrors[d].rdev); 1919 if (!rdev || 1920 !test_bit(In_sync, &rdev->flags)) 1921 continue; 1922 1923 atomic_inc(&rdev->nr_pending); 1924 rcu_read_unlock(); 1925 switch (r10_sync_page_io(rdev, 1926 r10_bio->devs[sl].addr + 1927 sect, 1928 s<<9, conf->tmppage, 1929 READ)) { 1930 case 0: 1931 /* Well, this device is dead */ 1932 printk(KERN_NOTICE 1933 "md/raid10:%s: unable to read back " 1934 "corrected sectors" 1935 " (%d sectors at %llu on %s)\n", 1936 mdname(mddev), s, 1937 (unsigned long long)( 1938 sect + rdev->data_offset), 1939 bdevname(rdev->bdev, b)); 1940 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 1941 "drive\n", 1942 mdname(mddev), 1943 bdevname(rdev->bdev, b)); 1944 break; 1945 case 1: 1946 printk(KERN_INFO 1947 "md/raid10:%s: read error corrected" 1948 " (%d sectors at %llu on %s)\n", 1949 mdname(mddev), s, 1950 (unsigned long long)( 1951 sect + rdev->data_offset), 1952 bdevname(rdev->bdev, b)); 1953 atomic_add(s, &rdev->corrected_errors); 1954 } 1955 1956 rdev_dec_pending(rdev, mddev); 1957 rcu_read_lock(); 1958 } 1959 rcu_read_unlock(); 1960 1961 sectors -= s; 1962 sect += s; 1963 } 1964 } 1965 1966 static void bi_complete(struct bio *bio, int error) 1967 { 1968 complete((struct completion *)bio->bi_private); 1969 } 1970 1971 static int submit_bio_wait(int rw, struct bio *bio) 1972 { 1973 struct completion event; 1974 rw |= REQ_SYNC; 1975 1976 init_completion(&event); 1977 bio->bi_private = &event; 1978 bio->bi_end_io = bi_complete; 1979 submit_bio(rw, bio); 1980 wait_for_completion(&event); 1981 1982 return test_bit(BIO_UPTODATE, &bio->bi_flags); 1983 } 1984 1985 static int narrow_write_error(r10bio_t *r10_bio, int i) 1986 { 1987 struct bio *bio = r10_bio->master_bio; 1988 mddev_t *mddev = r10_bio->mddev; 1989 conf_t *conf = mddev->private; 1990 mdk_rdev_t *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 1991 /* bio has the data to be written to slot 'i' where 1992 * we just recently had a write error. 1993 * We repeatedly clone the bio and trim down to one block, 1994 * then try the write. Where the write fails we record 1995 * a bad block. 1996 * It is conceivable that the bio doesn't exactly align with 1997 * blocks. We must handle this. 1998 * 1999 * We currently own a reference to the rdev. 2000 */ 2001 2002 int block_sectors; 2003 sector_t sector; 2004 int sectors; 2005 int sect_to_write = r10_bio->sectors; 2006 int ok = 1; 2007 2008 if (rdev->badblocks.shift < 0) 2009 return 0; 2010 2011 block_sectors = 1 << rdev->badblocks.shift; 2012 sector = r10_bio->sector; 2013 sectors = ((r10_bio->sector + block_sectors) 2014 & ~(sector_t)(block_sectors - 1)) 2015 - sector; 2016 2017 while (sect_to_write) { 2018 struct bio *wbio; 2019 if (sectors > sect_to_write) 2020 sectors = sect_to_write; 2021 /* Write at 'sector' for 'sectors' */ 2022 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2023 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2024 wbio->bi_sector = (r10_bio->devs[i].addr+ 2025 rdev->data_offset+ 2026 (sector - r10_bio->sector)); 2027 wbio->bi_bdev = rdev->bdev; 2028 if (submit_bio_wait(WRITE, wbio) == 0) 2029 /* Failure! */ 2030 ok = rdev_set_badblocks(rdev, sector, 2031 sectors, 0) 2032 && ok; 2033 2034 bio_put(wbio); 2035 sect_to_write -= sectors; 2036 sector += sectors; 2037 sectors = block_sectors; 2038 } 2039 return ok; 2040 } 2041 2042 static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio) 2043 { 2044 int slot = r10_bio->read_slot; 2045 int mirror = r10_bio->devs[slot].devnum; 2046 struct bio *bio; 2047 conf_t *conf = mddev->private; 2048 mdk_rdev_t *rdev; 2049 char b[BDEVNAME_SIZE]; 2050 unsigned long do_sync; 2051 int max_sectors; 2052 2053 /* we got a read error. Maybe the drive is bad. Maybe just 2054 * the block and we can fix it. 2055 * We freeze all other IO, and try reading the block from 2056 * other devices. When we find one, we re-write 2057 * and check it that fixes the read error. 2058 * This is all done synchronously while the array is 2059 * frozen. 2060 */ 2061 if (mddev->ro == 0) { 2062 freeze_array(conf); 2063 fix_read_error(conf, mddev, r10_bio); 2064 unfreeze_array(conf); 2065 } 2066 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev); 2067 2068 bio = r10_bio->devs[slot].bio; 2069 bdevname(bio->bi_bdev, b); 2070 r10_bio->devs[slot].bio = 2071 mddev->ro ? IO_BLOCKED : NULL; 2072 read_more: 2073 mirror = read_balance(conf, r10_bio, &max_sectors); 2074 if (mirror == -1) { 2075 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2076 " read error for block %llu\n", 2077 mdname(mddev), b, 2078 (unsigned long long)r10_bio->sector); 2079 raid_end_bio_io(r10_bio); 2080 bio_put(bio); 2081 return; 2082 } 2083 2084 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2085 if (bio) 2086 bio_put(bio); 2087 slot = r10_bio->read_slot; 2088 rdev = conf->mirrors[mirror].rdev; 2089 printk_ratelimited( 2090 KERN_ERR 2091 "md/raid10:%s: %s: redirecting" 2092 "sector %llu to another mirror\n", 2093 mdname(mddev), 2094 bdevname(rdev->bdev, b), 2095 (unsigned long long)r10_bio->sector); 2096 bio = bio_clone_mddev(r10_bio->master_bio, 2097 GFP_NOIO, mddev); 2098 md_trim_bio(bio, 2099 r10_bio->sector - bio->bi_sector, 2100 max_sectors); 2101 r10_bio->devs[slot].bio = bio; 2102 bio->bi_sector = r10_bio->devs[slot].addr 2103 + rdev->data_offset; 2104 bio->bi_bdev = rdev->bdev; 2105 bio->bi_rw = READ | do_sync; 2106 bio->bi_private = r10_bio; 2107 bio->bi_end_io = raid10_end_read_request; 2108 if (max_sectors < r10_bio->sectors) { 2109 /* Drat - have to split this up more */ 2110 struct bio *mbio = r10_bio->master_bio; 2111 int sectors_handled = 2112 r10_bio->sector + max_sectors 2113 - mbio->bi_sector; 2114 r10_bio->sectors = max_sectors; 2115 spin_lock_irq(&conf->device_lock); 2116 if (mbio->bi_phys_segments == 0) 2117 mbio->bi_phys_segments = 2; 2118 else 2119 mbio->bi_phys_segments++; 2120 spin_unlock_irq(&conf->device_lock); 2121 generic_make_request(bio); 2122 bio = NULL; 2123 2124 r10_bio = mempool_alloc(conf->r10bio_pool, 2125 GFP_NOIO); 2126 r10_bio->master_bio = mbio; 2127 r10_bio->sectors = (mbio->bi_size >> 9) 2128 - sectors_handled; 2129 r10_bio->state = 0; 2130 set_bit(R10BIO_ReadError, 2131 &r10_bio->state); 2132 r10_bio->mddev = mddev; 2133 r10_bio->sector = mbio->bi_sector 2134 + sectors_handled; 2135 2136 goto read_more; 2137 } else 2138 generic_make_request(bio); 2139 } 2140 2141 static void handle_write_completed(conf_t *conf, r10bio_t *r10_bio) 2142 { 2143 /* Some sort of write request has finished and it 2144 * succeeded in writing where we thought there was a 2145 * bad block. So forget the bad block. 2146 * Or possibly if failed and we need to record 2147 * a bad block. 2148 */ 2149 int m; 2150 mdk_rdev_t *rdev; 2151 2152 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2153 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2154 for (m = 0; m < conf->copies; m++) { 2155 int dev = r10_bio->devs[m].devnum; 2156 rdev = conf->mirrors[dev].rdev; 2157 if (r10_bio->devs[m].bio == NULL) 2158 continue; 2159 if (test_bit(BIO_UPTODATE, 2160 &r10_bio->devs[m].bio->bi_flags)) { 2161 rdev_clear_badblocks( 2162 rdev, 2163 r10_bio->devs[m].addr, 2164 r10_bio->sectors); 2165 } else { 2166 if (!rdev_set_badblocks( 2167 rdev, 2168 r10_bio->devs[m].addr, 2169 r10_bio->sectors, 0)) 2170 md_error(conf->mddev, rdev); 2171 } 2172 } 2173 put_buf(r10_bio); 2174 } else { 2175 for (m = 0; m < conf->copies; m++) { 2176 int dev = r10_bio->devs[m].devnum; 2177 struct bio *bio = r10_bio->devs[m].bio; 2178 rdev = conf->mirrors[dev].rdev; 2179 if (bio == IO_MADE_GOOD) { 2180 rdev_clear_badblocks( 2181 rdev, 2182 r10_bio->devs[m].addr, 2183 r10_bio->sectors); 2184 rdev_dec_pending(rdev, conf->mddev); 2185 } else if (bio != NULL && 2186 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2187 if (!narrow_write_error(r10_bio, m)) { 2188 md_error(conf->mddev, rdev); 2189 set_bit(R10BIO_Degraded, 2190 &r10_bio->state); 2191 } 2192 rdev_dec_pending(rdev, conf->mddev); 2193 } 2194 } 2195 if (test_bit(R10BIO_WriteError, 2196 &r10_bio->state)) 2197 close_write(r10_bio); 2198 raid_end_bio_io(r10_bio); 2199 } 2200 } 2201 2202 static void raid10d(mddev_t *mddev) 2203 { 2204 r10bio_t *r10_bio; 2205 unsigned long flags; 2206 conf_t *conf = mddev->private; 2207 struct list_head *head = &conf->retry_list; 2208 struct blk_plug plug; 2209 2210 md_check_recovery(mddev); 2211 2212 blk_start_plug(&plug); 2213 for (;;) { 2214 2215 flush_pending_writes(conf); 2216 2217 spin_lock_irqsave(&conf->device_lock, flags); 2218 if (list_empty(head)) { 2219 spin_unlock_irqrestore(&conf->device_lock, flags); 2220 break; 2221 } 2222 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 2223 list_del(head->prev); 2224 conf->nr_queued--; 2225 spin_unlock_irqrestore(&conf->device_lock, flags); 2226 2227 mddev = r10_bio->mddev; 2228 conf = mddev->private; 2229 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2230 test_bit(R10BIO_WriteError, &r10_bio->state)) 2231 handle_write_completed(conf, r10_bio); 2232 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2233 sync_request_write(mddev, r10_bio); 2234 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2235 recovery_request_write(mddev, r10_bio); 2236 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2237 handle_read_error(mddev, r10_bio); 2238 else { 2239 /* just a partial read to be scheduled from a 2240 * separate context 2241 */ 2242 int slot = r10_bio->read_slot; 2243 generic_make_request(r10_bio->devs[slot].bio); 2244 } 2245 2246 cond_resched(); 2247 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2248 md_check_recovery(mddev); 2249 } 2250 blk_finish_plug(&plug); 2251 } 2252 2253 2254 static int init_resync(conf_t *conf) 2255 { 2256 int buffs; 2257 2258 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2259 BUG_ON(conf->r10buf_pool); 2260 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2261 if (!conf->r10buf_pool) 2262 return -ENOMEM; 2263 conf->next_resync = 0; 2264 return 0; 2265 } 2266 2267 /* 2268 * perform a "sync" on one "block" 2269 * 2270 * We need to make sure that no normal I/O request - particularly write 2271 * requests - conflict with active sync requests. 2272 * 2273 * This is achieved by tracking pending requests and a 'barrier' concept 2274 * that can be installed to exclude normal IO requests. 2275 * 2276 * Resync and recovery are handled very differently. 2277 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2278 * 2279 * For resync, we iterate over virtual addresses, read all copies, 2280 * and update if there are differences. If only one copy is live, 2281 * skip it. 2282 * For recovery, we iterate over physical addresses, read a good 2283 * value for each non-in_sync drive, and over-write. 2284 * 2285 * So, for recovery we may have several outstanding complex requests for a 2286 * given address, one for each out-of-sync device. We model this by allocating 2287 * a number of r10_bio structures, one for each out-of-sync device. 2288 * As we setup these structures, we collect all bio's together into a list 2289 * which we then process collectively to add pages, and then process again 2290 * to pass to generic_make_request. 2291 * 2292 * The r10_bio structures are linked using a borrowed master_bio pointer. 2293 * This link is counted in ->remaining. When the r10_bio that points to NULL 2294 * has its remaining count decremented to 0, the whole complex operation 2295 * is complete. 2296 * 2297 */ 2298 2299 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, 2300 int *skipped, int go_faster) 2301 { 2302 conf_t *conf = mddev->private; 2303 r10bio_t *r10_bio; 2304 struct bio *biolist = NULL, *bio; 2305 sector_t max_sector, nr_sectors; 2306 int i; 2307 int max_sync; 2308 sector_t sync_blocks; 2309 sector_t sectors_skipped = 0; 2310 int chunks_skipped = 0; 2311 2312 if (!conf->r10buf_pool) 2313 if (init_resync(conf)) 2314 return 0; 2315 2316 skipped: 2317 max_sector = mddev->dev_sectors; 2318 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2319 max_sector = mddev->resync_max_sectors; 2320 if (sector_nr >= max_sector) { 2321 /* If we aborted, we need to abort the 2322 * sync on the 'current' bitmap chucks (there can 2323 * be several when recovering multiple devices). 2324 * as we may have started syncing it but not finished. 2325 * We can find the current address in 2326 * mddev->curr_resync, but for recovery, 2327 * we need to convert that to several 2328 * virtual addresses. 2329 */ 2330 if (mddev->curr_resync < max_sector) { /* aborted */ 2331 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2332 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2333 &sync_blocks, 1); 2334 else for (i=0; i<conf->raid_disks; i++) { 2335 sector_t sect = 2336 raid10_find_virt(conf, mddev->curr_resync, i); 2337 bitmap_end_sync(mddev->bitmap, sect, 2338 &sync_blocks, 1); 2339 } 2340 } else /* completed sync */ 2341 conf->fullsync = 0; 2342 2343 bitmap_close_sync(mddev->bitmap); 2344 close_sync(conf); 2345 *skipped = 1; 2346 return sectors_skipped; 2347 } 2348 if (chunks_skipped >= conf->raid_disks) { 2349 /* if there has been nothing to do on any drive, 2350 * then there is nothing to do at all.. 2351 */ 2352 *skipped = 1; 2353 return (max_sector - sector_nr) + sectors_skipped; 2354 } 2355 2356 if (max_sector > mddev->resync_max) 2357 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2358 2359 /* make sure whole request will fit in a chunk - if chunks 2360 * are meaningful 2361 */ 2362 if (conf->near_copies < conf->raid_disks && 2363 max_sector > (sector_nr | conf->chunk_mask)) 2364 max_sector = (sector_nr | conf->chunk_mask) + 1; 2365 /* 2366 * If there is non-resync activity waiting for us then 2367 * put in a delay to throttle resync. 2368 */ 2369 if (!go_faster && conf->nr_waiting) 2370 msleep_interruptible(1000); 2371 2372 /* Again, very different code for resync and recovery. 2373 * Both must result in an r10bio with a list of bios that 2374 * have bi_end_io, bi_sector, bi_bdev set, 2375 * and bi_private set to the r10bio. 2376 * For recovery, we may actually create several r10bios 2377 * with 2 bios in each, that correspond to the bios in the main one. 2378 * In this case, the subordinate r10bios link back through a 2379 * borrowed master_bio pointer, and the counter in the master 2380 * includes a ref from each subordinate. 2381 */ 2382 /* First, we decide what to do and set ->bi_end_io 2383 * To end_sync_read if we want to read, and 2384 * end_sync_write if we will want to write. 2385 */ 2386 2387 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2388 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2389 /* recovery... the complicated one */ 2390 int j; 2391 r10_bio = NULL; 2392 2393 for (i=0 ; i<conf->raid_disks; i++) { 2394 int still_degraded; 2395 r10bio_t *rb2; 2396 sector_t sect; 2397 int must_sync; 2398 int any_working; 2399 2400 if (conf->mirrors[i].rdev == NULL || 2401 test_bit(In_sync, &conf->mirrors[i].rdev->flags)) 2402 continue; 2403 2404 still_degraded = 0; 2405 /* want to reconstruct this device */ 2406 rb2 = r10_bio; 2407 sect = raid10_find_virt(conf, sector_nr, i); 2408 /* Unless we are doing a full sync, we only need 2409 * to recover the block if it is set in the bitmap 2410 */ 2411 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2412 &sync_blocks, 1); 2413 if (sync_blocks < max_sync) 2414 max_sync = sync_blocks; 2415 if (!must_sync && 2416 !conf->fullsync) { 2417 /* yep, skip the sync_blocks here, but don't assume 2418 * that there will never be anything to do here 2419 */ 2420 chunks_skipped = -1; 2421 continue; 2422 } 2423 2424 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2425 raise_barrier(conf, rb2 != NULL); 2426 atomic_set(&r10_bio->remaining, 0); 2427 2428 r10_bio->master_bio = (struct bio*)rb2; 2429 if (rb2) 2430 atomic_inc(&rb2->remaining); 2431 r10_bio->mddev = mddev; 2432 set_bit(R10BIO_IsRecover, &r10_bio->state); 2433 r10_bio->sector = sect; 2434 2435 raid10_find_phys(conf, r10_bio); 2436 2437 /* Need to check if the array will still be 2438 * degraded 2439 */ 2440 for (j=0; j<conf->raid_disks; j++) 2441 if (conf->mirrors[j].rdev == NULL || 2442 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2443 still_degraded = 1; 2444 break; 2445 } 2446 2447 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2448 &sync_blocks, still_degraded); 2449 2450 any_working = 0; 2451 for (j=0; j<conf->copies;j++) { 2452 int k; 2453 int d = r10_bio->devs[j].devnum; 2454 sector_t from_addr, to_addr; 2455 mdk_rdev_t *rdev; 2456 sector_t sector, first_bad; 2457 int bad_sectors; 2458 if (!conf->mirrors[d].rdev || 2459 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 2460 continue; 2461 /* This is where we read from */ 2462 any_working = 1; 2463 rdev = conf->mirrors[d].rdev; 2464 sector = r10_bio->devs[j].addr; 2465 2466 if (is_badblock(rdev, sector, max_sync, 2467 &first_bad, &bad_sectors)) { 2468 if (first_bad > sector) 2469 max_sync = first_bad - sector; 2470 else { 2471 bad_sectors -= (sector 2472 - first_bad); 2473 if (max_sync > bad_sectors) 2474 max_sync = bad_sectors; 2475 continue; 2476 } 2477 } 2478 bio = r10_bio->devs[0].bio; 2479 bio->bi_next = biolist; 2480 biolist = bio; 2481 bio->bi_private = r10_bio; 2482 bio->bi_end_io = end_sync_read; 2483 bio->bi_rw = READ; 2484 from_addr = r10_bio->devs[j].addr; 2485 bio->bi_sector = from_addr + 2486 conf->mirrors[d].rdev->data_offset; 2487 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2488 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2489 atomic_inc(&r10_bio->remaining); 2490 /* and we write to 'i' */ 2491 2492 for (k=0; k<conf->copies; k++) 2493 if (r10_bio->devs[k].devnum == i) 2494 break; 2495 BUG_ON(k == conf->copies); 2496 bio = r10_bio->devs[1].bio; 2497 bio->bi_next = biolist; 2498 biolist = bio; 2499 bio->bi_private = r10_bio; 2500 bio->bi_end_io = end_sync_write; 2501 bio->bi_rw = WRITE; 2502 to_addr = r10_bio->devs[k].addr; 2503 bio->bi_sector = to_addr + 2504 conf->mirrors[i].rdev->data_offset; 2505 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 2506 2507 r10_bio->devs[0].devnum = d; 2508 r10_bio->devs[0].addr = from_addr; 2509 r10_bio->devs[1].devnum = i; 2510 r10_bio->devs[1].addr = to_addr; 2511 2512 break; 2513 } 2514 if (j == conf->copies) { 2515 /* Cannot recover, so abort the recovery or 2516 * record a bad block */ 2517 put_buf(r10_bio); 2518 if (rb2) 2519 atomic_dec(&rb2->remaining); 2520 r10_bio = rb2; 2521 if (any_working) { 2522 /* problem is that there are bad blocks 2523 * on other device(s) 2524 */ 2525 int k; 2526 for (k = 0; k < conf->copies; k++) 2527 if (r10_bio->devs[k].devnum == i) 2528 break; 2529 if (!rdev_set_badblocks( 2530 conf->mirrors[i].rdev, 2531 r10_bio->devs[k].addr, 2532 max_sync, 0)) 2533 any_working = 0; 2534 } 2535 if (!any_working) { 2536 if (!test_and_set_bit(MD_RECOVERY_INTR, 2537 &mddev->recovery)) 2538 printk(KERN_INFO "md/raid10:%s: insufficient " 2539 "working devices for recovery.\n", 2540 mdname(mddev)); 2541 conf->mirrors[i].recovery_disabled 2542 = mddev->recovery_disabled; 2543 } 2544 break; 2545 } 2546 } 2547 if (biolist == NULL) { 2548 while (r10_bio) { 2549 r10bio_t *rb2 = r10_bio; 2550 r10_bio = (r10bio_t*) rb2->master_bio; 2551 rb2->master_bio = NULL; 2552 put_buf(rb2); 2553 } 2554 goto giveup; 2555 } 2556 } else { 2557 /* resync. Schedule a read for every block at this virt offset */ 2558 int count = 0; 2559 2560 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2561 2562 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2563 &sync_blocks, mddev->degraded) && 2564 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 2565 &mddev->recovery)) { 2566 /* We can skip this block */ 2567 *skipped = 1; 2568 return sync_blocks + sectors_skipped; 2569 } 2570 if (sync_blocks < max_sync) 2571 max_sync = sync_blocks; 2572 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2573 2574 r10_bio->mddev = mddev; 2575 atomic_set(&r10_bio->remaining, 0); 2576 raise_barrier(conf, 0); 2577 conf->next_resync = sector_nr; 2578 2579 r10_bio->master_bio = NULL; 2580 r10_bio->sector = sector_nr; 2581 set_bit(R10BIO_IsSync, &r10_bio->state); 2582 raid10_find_phys(conf, r10_bio); 2583 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 2584 2585 for (i=0; i<conf->copies; i++) { 2586 int d = r10_bio->devs[i].devnum; 2587 sector_t first_bad, sector; 2588 int bad_sectors; 2589 2590 bio = r10_bio->devs[i].bio; 2591 bio->bi_end_io = NULL; 2592 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2593 if (conf->mirrors[d].rdev == NULL || 2594 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 2595 continue; 2596 sector = r10_bio->devs[i].addr; 2597 if (is_badblock(conf->mirrors[d].rdev, 2598 sector, max_sync, 2599 &first_bad, &bad_sectors)) { 2600 if (first_bad > sector) 2601 max_sync = first_bad - sector; 2602 else { 2603 bad_sectors -= (sector - first_bad); 2604 if (max_sync > bad_sectors) 2605 max_sync = max_sync; 2606 continue; 2607 } 2608 } 2609 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2610 atomic_inc(&r10_bio->remaining); 2611 bio->bi_next = biolist; 2612 biolist = bio; 2613 bio->bi_private = r10_bio; 2614 bio->bi_end_io = end_sync_read; 2615 bio->bi_rw = READ; 2616 bio->bi_sector = sector + 2617 conf->mirrors[d].rdev->data_offset; 2618 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2619 count++; 2620 } 2621 2622 if (count < 2) { 2623 for (i=0; i<conf->copies; i++) { 2624 int d = r10_bio->devs[i].devnum; 2625 if (r10_bio->devs[i].bio->bi_end_io) 2626 rdev_dec_pending(conf->mirrors[d].rdev, 2627 mddev); 2628 } 2629 put_buf(r10_bio); 2630 biolist = NULL; 2631 goto giveup; 2632 } 2633 } 2634 2635 for (bio = biolist; bio ; bio=bio->bi_next) { 2636 2637 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 2638 if (bio->bi_end_io) 2639 bio->bi_flags |= 1 << BIO_UPTODATE; 2640 bio->bi_vcnt = 0; 2641 bio->bi_idx = 0; 2642 bio->bi_phys_segments = 0; 2643 bio->bi_size = 0; 2644 } 2645 2646 nr_sectors = 0; 2647 if (sector_nr + max_sync < max_sector) 2648 max_sector = sector_nr + max_sync; 2649 do { 2650 struct page *page; 2651 int len = PAGE_SIZE; 2652 if (sector_nr + (len>>9) > max_sector) 2653 len = (max_sector - sector_nr) << 9; 2654 if (len == 0) 2655 break; 2656 for (bio= biolist ; bio ; bio=bio->bi_next) { 2657 struct bio *bio2; 2658 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2659 if (bio_add_page(bio, page, len, 0)) 2660 continue; 2661 2662 /* stop here */ 2663 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2664 for (bio2 = biolist; 2665 bio2 && bio2 != bio; 2666 bio2 = bio2->bi_next) { 2667 /* remove last page from this bio */ 2668 bio2->bi_vcnt--; 2669 bio2->bi_size -= len; 2670 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 2671 } 2672 goto bio_full; 2673 } 2674 nr_sectors += len>>9; 2675 sector_nr += len>>9; 2676 } while (biolist->bi_vcnt < RESYNC_PAGES); 2677 bio_full: 2678 r10_bio->sectors = nr_sectors; 2679 2680 while (biolist) { 2681 bio = biolist; 2682 biolist = biolist->bi_next; 2683 2684 bio->bi_next = NULL; 2685 r10_bio = bio->bi_private; 2686 r10_bio->sectors = nr_sectors; 2687 2688 if (bio->bi_end_io == end_sync_read) { 2689 md_sync_acct(bio->bi_bdev, nr_sectors); 2690 generic_make_request(bio); 2691 } 2692 } 2693 2694 if (sectors_skipped) 2695 /* pretend they weren't skipped, it makes 2696 * no important difference in this case 2697 */ 2698 md_done_sync(mddev, sectors_skipped, 1); 2699 2700 return sectors_skipped + nr_sectors; 2701 giveup: 2702 /* There is nowhere to write, so all non-sync 2703 * drives must be failed or in resync, all drives 2704 * have a bad block, so try the next chunk... 2705 */ 2706 if (sector_nr + max_sync < max_sector) 2707 max_sector = sector_nr + max_sync; 2708 2709 sectors_skipped += (max_sector - sector_nr); 2710 chunks_skipped ++; 2711 sector_nr = max_sector; 2712 goto skipped; 2713 } 2714 2715 static sector_t 2716 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks) 2717 { 2718 sector_t size; 2719 conf_t *conf = mddev->private; 2720 2721 if (!raid_disks) 2722 raid_disks = conf->raid_disks; 2723 if (!sectors) 2724 sectors = conf->dev_sectors; 2725 2726 size = sectors >> conf->chunk_shift; 2727 sector_div(size, conf->far_copies); 2728 size = size * raid_disks; 2729 sector_div(size, conf->near_copies); 2730 2731 return size << conf->chunk_shift; 2732 } 2733 2734 2735 static conf_t *setup_conf(mddev_t *mddev) 2736 { 2737 conf_t *conf = NULL; 2738 int nc, fc, fo; 2739 sector_t stride, size; 2740 int err = -EINVAL; 2741 2742 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || 2743 !is_power_of_2(mddev->new_chunk_sectors)) { 2744 printk(KERN_ERR "md/raid10:%s: chunk size must be " 2745 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 2746 mdname(mddev), PAGE_SIZE); 2747 goto out; 2748 } 2749 2750 nc = mddev->new_layout & 255; 2751 fc = (mddev->new_layout >> 8) & 255; 2752 fo = mddev->new_layout & (1<<16); 2753 2754 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2755 (mddev->new_layout >> 17)) { 2756 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 2757 mdname(mddev), mddev->new_layout); 2758 goto out; 2759 } 2760 2761 err = -ENOMEM; 2762 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2763 if (!conf) 2764 goto out; 2765 2766 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2767 GFP_KERNEL); 2768 if (!conf->mirrors) 2769 goto out; 2770 2771 conf->tmppage = alloc_page(GFP_KERNEL); 2772 if (!conf->tmppage) 2773 goto out; 2774 2775 2776 conf->raid_disks = mddev->raid_disks; 2777 conf->near_copies = nc; 2778 conf->far_copies = fc; 2779 conf->copies = nc*fc; 2780 conf->far_offset = fo; 2781 conf->chunk_mask = mddev->new_chunk_sectors - 1; 2782 conf->chunk_shift = ffz(~mddev->new_chunk_sectors); 2783 2784 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2785 r10bio_pool_free, conf); 2786 if (!conf->r10bio_pool) 2787 goto out; 2788 2789 size = mddev->dev_sectors >> conf->chunk_shift; 2790 sector_div(size, fc); 2791 size = size * conf->raid_disks; 2792 sector_div(size, nc); 2793 /* 'size' is now the number of chunks in the array */ 2794 /* calculate "used chunks per device" in 'stride' */ 2795 stride = size * conf->copies; 2796 2797 /* We need to round up when dividing by raid_disks to 2798 * get the stride size. 2799 */ 2800 stride += conf->raid_disks - 1; 2801 sector_div(stride, conf->raid_disks); 2802 2803 conf->dev_sectors = stride << conf->chunk_shift; 2804 2805 if (fo) 2806 stride = 1; 2807 else 2808 sector_div(stride, fc); 2809 conf->stride = stride << conf->chunk_shift; 2810 2811 2812 spin_lock_init(&conf->device_lock); 2813 INIT_LIST_HEAD(&conf->retry_list); 2814 2815 spin_lock_init(&conf->resync_lock); 2816 init_waitqueue_head(&conf->wait_barrier); 2817 2818 conf->thread = md_register_thread(raid10d, mddev, NULL); 2819 if (!conf->thread) 2820 goto out; 2821 2822 conf->mddev = mddev; 2823 return conf; 2824 2825 out: 2826 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 2827 mdname(mddev)); 2828 if (conf) { 2829 if (conf->r10bio_pool) 2830 mempool_destroy(conf->r10bio_pool); 2831 kfree(conf->mirrors); 2832 safe_put_page(conf->tmppage); 2833 kfree(conf); 2834 } 2835 return ERR_PTR(err); 2836 } 2837 2838 static int run(mddev_t *mddev) 2839 { 2840 conf_t *conf; 2841 int i, disk_idx, chunk_size; 2842 mirror_info_t *disk; 2843 mdk_rdev_t *rdev; 2844 sector_t size; 2845 2846 /* 2847 * copy the already verified devices into our private RAID10 2848 * bookkeeping area. [whatever we allocate in run(), 2849 * should be freed in stop()] 2850 */ 2851 2852 if (mddev->private == NULL) { 2853 conf = setup_conf(mddev); 2854 if (IS_ERR(conf)) 2855 return PTR_ERR(conf); 2856 mddev->private = conf; 2857 } 2858 conf = mddev->private; 2859 if (!conf) 2860 goto out; 2861 2862 mddev->thread = conf->thread; 2863 conf->thread = NULL; 2864 2865 chunk_size = mddev->chunk_sectors << 9; 2866 blk_queue_io_min(mddev->queue, chunk_size); 2867 if (conf->raid_disks % conf->near_copies) 2868 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 2869 else 2870 blk_queue_io_opt(mddev->queue, chunk_size * 2871 (conf->raid_disks / conf->near_copies)); 2872 2873 list_for_each_entry(rdev, &mddev->disks, same_set) { 2874 2875 disk_idx = rdev->raid_disk; 2876 if (disk_idx >= conf->raid_disks 2877 || disk_idx < 0) 2878 continue; 2879 disk = conf->mirrors + disk_idx; 2880 2881 disk->rdev = rdev; 2882 disk_stack_limits(mddev->gendisk, rdev->bdev, 2883 rdev->data_offset << 9); 2884 /* as we don't honour merge_bvec_fn, we must never risk 2885 * violating it, so limit max_segments to 1 lying 2886 * within a single page. 2887 */ 2888 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2889 blk_queue_max_segments(mddev->queue, 1); 2890 blk_queue_segment_boundary(mddev->queue, 2891 PAGE_CACHE_SIZE - 1); 2892 } 2893 2894 disk->head_position = 0; 2895 } 2896 /* need to check that every block has at least one working mirror */ 2897 if (!enough(conf, -1)) { 2898 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 2899 mdname(mddev)); 2900 goto out_free_conf; 2901 } 2902 2903 mddev->degraded = 0; 2904 for (i = 0; i < conf->raid_disks; i++) { 2905 2906 disk = conf->mirrors + i; 2907 2908 if (!disk->rdev || 2909 !test_bit(In_sync, &disk->rdev->flags)) { 2910 disk->head_position = 0; 2911 mddev->degraded++; 2912 if (disk->rdev) 2913 conf->fullsync = 1; 2914 } 2915 } 2916 2917 if (mddev->recovery_cp != MaxSector) 2918 printk(KERN_NOTICE "md/raid10:%s: not clean" 2919 " -- starting background reconstruction\n", 2920 mdname(mddev)); 2921 printk(KERN_INFO 2922 "md/raid10:%s: active with %d out of %d devices\n", 2923 mdname(mddev), conf->raid_disks - mddev->degraded, 2924 conf->raid_disks); 2925 /* 2926 * Ok, everything is just fine now 2927 */ 2928 mddev->dev_sectors = conf->dev_sectors; 2929 size = raid10_size(mddev, 0, 0); 2930 md_set_array_sectors(mddev, size); 2931 mddev->resync_max_sectors = size; 2932 2933 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2934 mddev->queue->backing_dev_info.congested_data = mddev; 2935 2936 /* Calculate max read-ahead size. 2937 * We need to readahead at least twice a whole stripe.... 2938 * maybe... 2939 */ 2940 { 2941 int stripe = conf->raid_disks * 2942 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 2943 stripe /= conf->near_copies; 2944 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2945 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2946 } 2947 2948 if (conf->near_copies < conf->raid_disks) 2949 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2950 2951 if (md_integrity_register(mddev)) 2952 goto out_free_conf; 2953 2954 return 0; 2955 2956 out_free_conf: 2957 md_unregister_thread(mddev->thread); 2958 if (conf->r10bio_pool) 2959 mempool_destroy(conf->r10bio_pool); 2960 safe_put_page(conf->tmppage); 2961 kfree(conf->mirrors); 2962 kfree(conf); 2963 mddev->private = NULL; 2964 out: 2965 return -EIO; 2966 } 2967 2968 static int stop(mddev_t *mddev) 2969 { 2970 conf_t *conf = mddev->private; 2971 2972 raise_barrier(conf, 0); 2973 lower_barrier(conf); 2974 2975 md_unregister_thread(mddev->thread); 2976 mddev->thread = NULL; 2977 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2978 if (conf->r10bio_pool) 2979 mempool_destroy(conf->r10bio_pool); 2980 kfree(conf->mirrors); 2981 kfree(conf); 2982 mddev->private = NULL; 2983 return 0; 2984 } 2985 2986 static void raid10_quiesce(mddev_t *mddev, int state) 2987 { 2988 conf_t *conf = mddev->private; 2989 2990 switch(state) { 2991 case 1: 2992 raise_barrier(conf, 0); 2993 break; 2994 case 0: 2995 lower_barrier(conf); 2996 break; 2997 } 2998 } 2999 3000 static void *raid10_takeover_raid0(mddev_t *mddev) 3001 { 3002 mdk_rdev_t *rdev; 3003 conf_t *conf; 3004 3005 if (mddev->degraded > 0) { 3006 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3007 mdname(mddev)); 3008 return ERR_PTR(-EINVAL); 3009 } 3010 3011 /* Set new parameters */ 3012 mddev->new_level = 10; 3013 /* new layout: far_copies = 1, near_copies = 2 */ 3014 mddev->new_layout = (1<<8) + 2; 3015 mddev->new_chunk_sectors = mddev->chunk_sectors; 3016 mddev->delta_disks = mddev->raid_disks; 3017 mddev->raid_disks *= 2; 3018 /* make sure it will be not marked as dirty */ 3019 mddev->recovery_cp = MaxSector; 3020 3021 conf = setup_conf(mddev); 3022 if (!IS_ERR(conf)) { 3023 list_for_each_entry(rdev, &mddev->disks, same_set) 3024 if (rdev->raid_disk >= 0) 3025 rdev->new_raid_disk = rdev->raid_disk * 2; 3026 conf->barrier = 1; 3027 } 3028 3029 return conf; 3030 } 3031 3032 static void *raid10_takeover(mddev_t *mddev) 3033 { 3034 struct raid0_private_data *raid0_priv; 3035 3036 /* raid10 can take over: 3037 * raid0 - providing it has only two drives 3038 */ 3039 if (mddev->level == 0) { 3040 /* for raid0 takeover only one zone is supported */ 3041 raid0_priv = mddev->private; 3042 if (raid0_priv->nr_strip_zones > 1) { 3043 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3044 " with more than one zone.\n", 3045 mdname(mddev)); 3046 return ERR_PTR(-EINVAL); 3047 } 3048 return raid10_takeover_raid0(mddev); 3049 } 3050 return ERR_PTR(-EINVAL); 3051 } 3052 3053 static struct mdk_personality raid10_personality = 3054 { 3055 .name = "raid10", 3056 .level = 10, 3057 .owner = THIS_MODULE, 3058 .make_request = make_request, 3059 .run = run, 3060 .stop = stop, 3061 .status = status, 3062 .error_handler = error, 3063 .hot_add_disk = raid10_add_disk, 3064 .hot_remove_disk= raid10_remove_disk, 3065 .spare_active = raid10_spare_active, 3066 .sync_request = sync_request, 3067 .quiesce = raid10_quiesce, 3068 .size = raid10_size, 3069 .takeover = raid10_takeover, 3070 }; 3071 3072 static int __init raid_init(void) 3073 { 3074 return register_md_personality(&raid10_personality); 3075 } 3076 3077 static void raid_exit(void) 3078 { 3079 unregister_md_personality(&raid10_personality); 3080 } 3081 3082 module_init(raid_init); 3083 module_exit(raid_exit); 3084 MODULE_LICENSE("GPL"); 3085 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 3086 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 3087 MODULE_ALIAS("md-raid10"); 3088 MODULE_ALIAS("md-level-10"); 3089