xref: /linux/drivers/md/raid10.c (revision 779b96d20ca97cfa19162b340bff0c27b405b4b2)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include "md.h"
28 #include "raid10.h"
29 #include "raid0.h"
30 #include "bitmap.h"
31 
32 /*
33  * RAID10 provides a combination of RAID0 and RAID1 functionality.
34  * The layout of data is defined by
35  *    chunk_size
36  *    raid_disks
37  *    near_copies (stored in low byte of layout)
38  *    far_copies (stored in second byte of layout)
39  *    far_offset (stored in bit 16 of layout )
40  *
41  * The data to be stored is divided into chunks using chunksize.
42  * Each device is divided into far_copies sections.
43  * In each section, chunks are laid out in a style similar to raid0, but
44  * near_copies copies of each chunk is stored (each on a different drive).
45  * The starting device for each section is offset near_copies from the starting
46  * device of the previous section.
47  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
48  * drive.
49  * near_copies and far_copies must be at least one, and their product is at most
50  * raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of be very far apart
54  * on disk, there are adjacent stripes.
55  */
56 
57 /*
58  * Number of guaranteed r10bios in case of extreme VM load:
59  */
60 #define	NR_RAID10_BIOS 256
61 
62 /* When there are this many requests queue to be written by
63  * the raid10 thread, we become 'congested' to provide back-pressure
64  * for writeback.
65  */
66 static int max_queued_requests = 1024;
67 
68 static void allow_barrier(struct r10conf *conf);
69 static void lower_barrier(struct r10conf *conf);
70 
71 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
72 {
73 	struct r10conf *conf = data;
74 	int size = offsetof(struct r10bio, devs[conf->copies]);
75 
76 	/* allocate a r10bio with room for raid_disks entries in the
77 	 * bios array */
78 	return kzalloc(size, gfp_flags);
79 }
80 
81 static void r10bio_pool_free(void *r10_bio, void *data)
82 {
83 	kfree(r10_bio);
84 }
85 
86 /* Maximum size of each resync request */
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
89 /* amount of memory to reserve for resync requests */
90 #define RESYNC_WINDOW (1024*1024)
91 /* maximum number of concurrent requests, memory permitting */
92 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
93 
94 /*
95  * When performing a resync, we need to read and compare, so
96  * we need as many pages are there are copies.
97  * When performing a recovery, we need 2 bios, one for read,
98  * one for write (we recover only one drive per r10buf)
99  *
100  */
101 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
102 {
103 	struct r10conf *conf = data;
104 	struct page *page;
105 	struct r10bio *r10_bio;
106 	struct bio *bio;
107 	int i, j;
108 	int nalloc;
109 
110 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
111 	if (!r10_bio)
112 		return NULL;
113 
114 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115 		nalloc = conf->copies; /* resync */
116 	else
117 		nalloc = 2; /* recovery */
118 
119 	/*
120 	 * Allocate bios.
121 	 */
122 	for (j = nalloc ; j-- ; ) {
123 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
124 		if (!bio)
125 			goto out_free_bio;
126 		r10_bio->devs[j].bio = bio;
127 		if (!conf->have_replacement)
128 			continue;
129 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
130 		if (!bio)
131 			goto out_free_bio;
132 		r10_bio->devs[j].repl_bio = bio;
133 	}
134 	/*
135 	 * Allocate RESYNC_PAGES data pages and attach them
136 	 * where needed.
137 	 */
138 	for (j = 0 ; j < nalloc; j++) {
139 		struct bio *rbio = r10_bio->devs[j].repl_bio;
140 		bio = r10_bio->devs[j].bio;
141 		for (i = 0; i < RESYNC_PAGES; i++) {
142 			if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
143 						&conf->mddev->recovery)) {
144 				/* we can share bv_page's during recovery */
145 				struct bio *rbio = r10_bio->devs[0].bio;
146 				page = rbio->bi_io_vec[i].bv_page;
147 				get_page(page);
148 			} else
149 				page = alloc_page(gfp_flags);
150 			if (unlikely(!page))
151 				goto out_free_pages;
152 
153 			bio->bi_io_vec[i].bv_page = page;
154 			if (rbio)
155 				rbio->bi_io_vec[i].bv_page = page;
156 		}
157 	}
158 
159 	return r10_bio;
160 
161 out_free_pages:
162 	for ( ; i > 0 ; i--)
163 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
164 	while (j--)
165 		for (i = 0; i < RESYNC_PAGES ; i++)
166 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
167 	j = -1;
168 out_free_bio:
169 	while (++j < nalloc) {
170 		bio_put(r10_bio->devs[j].bio);
171 		if (r10_bio->devs[j].repl_bio)
172 			bio_put(r10_bio->devs[j].repl_bio);
173 	}
174 	r10bio_pool_free(r10_bio, conf);
175 	return NULL;
176 }
177 
178 static void r10buf_pool_free(void *__r10_bio, void *data)
179 {
180 	int i;
181 	struct r10conf *conf = data;
182 	struct r10bio *r10bio = __r10_bio;
183 	int j;
184 
185 	for (j=0; j < conf->copies; j++) {
186 		struct bio *bio = r10bio->devs[j].bio;
187 		if (bio) {
188 			for (i = 0; i < RESYNC_PAGES; i++) {
189 				safe_put_page(bio->bi_io_vec[i].bv_page);
190 				bio->bi_io_vec[i].bv_page = NULL;
191 			}
192 			bio_put(bio);
193 		}
194 		bio = r10bio->devs[j].repl_bio;
195 		if (bio)
196 			bio_put(bio);
197 	}
198 	r10bio_pool_free(r10bio, conf);
199 }
200 
201 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
202 {
203 	int i;
204 
205 	for (i = 0; i < conf->copies; i++) {
206 		struct bio **bio = & r10_bio->devs[i].bio;
207 		if (!BIO_SPECIAL(*bio))
208 			bio_put(*bio);
209 		*bio = NULL;
210 		bio = &r10_bio->devs[i].repl_bio;
211 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
212 			bio_put(*bio);
213 		*bio = NULL;
214 	}
215 }
216 
217 static void free_r10bio(struct r10bio *r10_bio)
218 {
219 	struct r10conf *conf = r10_bio->mddev->private;
220 
221 	put_all_bios(conf, r10_bio);
222 	mempool_free(r10_bio, conf->r10bio_pool);
223 }
224 
225 static void put_buf(struct r10bio *r10_bio)
226 {
227 	struct r10conf *conf = r10_bio->mddev->private;
228 
229 	mempool_free(r10_bio, conf->r10buf_pool);
230 
231 	lower_barrier(conf);
232 }
233 
234 static void reschedule_retry(struct r10bio *r10_bio)
235 {
236 	unsigned long flags;
237 	struct mddev *mddev = r10_bio->mddev;
238 	struct r10conf *conf = mddev->private;
239 
240 	spin_lock_irqsave(&conf->device_lock, flags);
241 	list_add(&r10_bio->retry_list, &conf->retry_list);
242 	conf->nr_queued ++;
243 	spin_unlock_irqrestore(&conf->device_lock, flags);
244 
245 	/* wake up frozen array... */
246 	wake_up(&conf->wait_barrier);
247 
248 	md_wakeup_thread(mddev->thread);
249 }
250 
251 /*
252  * raid_end_bio_io() is called when we have finished servicing a mirrored
253  * operation and are ready to return a success/failure code to the buffer
254  * cache layer.
255  */
256 static void raid_end_bio_io(struct r10bio *r10_bio)
257 {
258 	struct bio *bio = r10_bio->master_bio;
259 	int done;
260 	struct r10conf *conf = r10_bio->mddev->private;
261 
262 	if (bio->bi_phys_segments) {
263 		unsigned long flags;
264 		spin_lock_irqsave(&conf->device_lock, flags);
265 		bio->bi_phys_segments--;
266 		done = (bio->bi_phys_segments == 0);
267 		spin_unlock_irqrestore(&conf->device_lock, flags);
268 	} else
269 		done = 1;
270 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
271 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
272 	if (done) {
273 		bio_endio(bio, 0);
274 		/*
275 		 * Wake up any possible resync thread that waits for the device
276 		 * to go idle.
277 		 */
278 		allow_barrier(conf);
279 	}
280 	free_r10bio(r10_bio);
281 }
282 
283 /*
284  * Update disk head position estimator based on IRQ completion info.
285  */
286 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
287 {
288 	struct r10conf *conf = r10_bio->mddev->private;
289 
290 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
291 		r10_bio->devs[slot].addr + (r10_bio->sectors);
292 }
293 
294 /*
295  * Find the disk number which triggered given bio
296  */
297 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
298 			 struct bio *bio, int *slotp, int *replp)
299 {
300 	int slot;
301 	int repl = 0;
302 
303 	for (slot = 0; slot < conf->copies; slot++) {
304 		if (r10_bio->devs[slot].bio == bio)
305 			break;
306 		if (r10_bio->devs[slot].repl_bio == bio) {
307 			repl = 1;
308 			break;
309 		}
310 	}
311 
312 	BUG_ON(slot == conf->copies);
313 	update_head_pos(slot, r10_bio);
314 
315 	if (slotp)
316 		*slotp = slot;
317 	if (replp)
318 		*replp = repl;
319 	return r10_bio->devs[slot].devnum;
320 }
321 
322 static void raid10_end_read_request(struct bio *bio, int error)
323 {
324 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
325 	struct r10bio *r10_bio = bio->bi_private;
326 	int slot, dev;
327 	struct md_rdev *rdev;
328 	struct r10conf *conf = r10_bio->mddev->private;
329 
330 
331 	slot = r10_bio->read_slot;
332 	dev = r10_bio->devs[slot].devnum;
333 	rdev = r10_bio->devs[slot].rdev;
334 	/*
335 	 * this branch is our 'one mirror IO has finished' event handler:
336 	 */
337 	update_head_pos(slot, r10_bio);
338 
339 	if (uptodate) {
340 		/*
341 		 * Set R10BIO_Uptodate in our master bio, so that
342 		 * we will return a good error code to the higher
343 		 * levels even if IO on some other mirrored buffer fails.
344 		 *
345 		 * The 'master' represents the composite IO operation to
346 		 * user-side. So if something waits for IO, then it will
347 		 * wait for the 'master' bio.
348 		 */
349 		set_bit(R10BIO_Uptodate, &r10_bio->state);
350 		raid_end_bio_io(r10_bio);
351 		rdev_dec_pending(rdev, conf->mddev);
352 	} else {
353 		/*
354 		 * oops, read error - keep the refcount on the rdev
355 		 */
356 		char b[BDEVNAME_SIZE];
357 		printk_ratelimited(KERN_ERR
358 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
359 				   mdname(conf->mddev),
360 				   bdevname(rdev->bdev, b),
361 				   (unsigned long long)r10_bio->sector);
362 		set_bit(R10BIO_ReadError, &r10_bio->state);
363 		reschedule_retry(r10_bio);
364 	}
365 }
366 
367 static void close_write(struct r10bio *r10_bio)
368 {
369 	/* clear the bitmap if all writes complete successfully */
370 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
371 			r10_bio->sectors,
372 			!test_bit(R10BIO_Degraded, &r10_bio->state),
373 			0);
374 	md_write_end(r10_bio->mddev);
375 }
376 
377 static void one_write_done(struct r10bio *r10_bio)
378 {
379 	if (atomic_dec_and_test(&r10_bio->remaining)) {
380 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
381 			reschedule_retry(r10_bio);
382 		else {
383 			close_write(r10_bio);
384 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
385 				reschedule_retry(r10_bio);
386 			else
387 				raid_end_bio_io(r10_bio);
388 		}
389 	}
390 }
391 
392 static void raid10_end_write_request(struct bio *bio, int error)
393 {
394 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 	struct r10bio *r10_bio = bio->bi_private;
396 	int dev;
397 	int dec_rdev = 1;
398 	struct r10conf *conf = r10_bio->mddev->private;
399 	int slot, repl;
400 	struct md_rdev *rdev = NULL;
401 
402 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
403 
404 	if (repl)
405 		rdev = conf->mirrors[dev].replacement;
406 	if (!rdev) {
407 		smp_rmb();
408 		repl = 0;
409 		rdev = conf->mirrors[dev].rdev;
410 	}
411 	/*
412 	 * this branch is our 'one mirror IO has finished' event handler:
413 	 */
414 	if (!uptodate) {
415 		if (repl)
416 			/* Never record new bad blocks to replacement,
417 			 * just fail it.
418 			 */
419 			md_error(rdev->mddev, rdev);
420 		else {
421 			set_bit(WriteErrorSeen,	&rdev->flags);
422 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
423 				set_bit(MD_RECOVERY_NEEDED,
424 					&rdev->mddev->recovery);
425 			set_bit(R10BIO_WriteError, &r10_bio->state);
426 			dec_rdev = 0;
427 		}
428 	} else {
429 		/*
430 		 * Set R10BIO_Uptodate in our master bio, so that
431 		 * we will return a good error code for to the higher
432 		 * levels even if IO on some other mirrored buffer fails.
433 		 *
434 		 * The 'master' represents the composite IO operation to
435 		 * user-side. So if something waits for IO, then it will
436 		 * wait for the 'master' bio.
437 		 */
438 		sector_t first_bad;
439 		int bad_sectors;
440 
441 		set_bit(R10BIO_Uptodate, &r10_bio->state);
442 
443 		/* Maybe we can clear some bad blocks. */
444 		if (is_badblock(rdev,
445 				r10_bio->devs[slot].addr,
446 				r10_bio->sectors,
447 				&first_bad, &bad_sectors)) {
448 			bio_put(bio);
449 			if (repl)
450 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
451 			else
452 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
453 			dec_rdev = 0;
454 			set_bit(R10BIO_MadeGood, &r10_bio->state);
455 		}
456 	}
457 
458 	/*
459 	 *
460 	 * Let's see if all mirrored write operations have finished
461 	 * already.
462 	 */
463 	one_write_done(r10_bio);
464 	if (dec_rdev)
465 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
466 }
467 
468 /*
469  * RAID10 layout manager
470  * As well as the chunksize and raid_disks count, there are two
471  * parameters: near_copies and far_copies.
472  * near_copies * far_copies must be <= raid_disks.
473  * Normally one of these will be 1.
474  * If both are 1, we get raid0.
475  * If near_copies == raid_disks, we get raid1.
476  *
477  * Chunks are laid out in raid0 style with near_copies copies of the
478  * first chunk, followed by near_copies copies of the next chunk and
479  * so on.
480  * If far_copies > 1, then after 1/far_copies of the array has been assigned
481  * as described above, we start again with a device offset of near_copies.
482  * So we effectively have another copy of the whole array further down all
483  * the drives, but with blocks on different drives.
484  * With this layout, and block is never stored twice on the one device.
485  *
486  * raid10_find_phys finds the sector offset of a given virtual sector
487  * on each device that it is on.
488  *
489  * raid10_find_virt does the reverse mapping, from a device and a
490  * sector offset to a virtual address
491  */
492 
493 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
494 {
495 	int n,f;
496 	sector_t sector;
497 	sector_t chunk;
498 	sector_t stripe;
499 	int dev;
500 
501 	int slot = 0;
502 
503 	/* now calculate first sector/dev */
504 	chunk = r10bio->sector >> conf->chunk_shift;
505 	sector = r10bio->sector & conf->chunk_mask;
506 
507 	chunk *= conf->near_copies;
508 	stripe = chunk;
509 	dev = sector_div(stripe, conf->raid_disks);
510 	if (conf->far_offset)
511 		stripe *= conf->far_copies;
512 
513 	sector += stripe << conf->chunk_shift;
514 
515 	/* and calculate all the others */
516 	for (n=0; n < conf->near_copies; n++) {
517 		int d = dev;
518 		sector_t s = sector;
519 		r10bio->devs[slot].addr = sector;
520 		r10bio->devs[slot].devnum = d;
521 		slot++;
522 
523 		for (f = 1; f < conf->far_copies; f++) {
524 			d += conf->near_copies;
525 			if (d >= conf->raid_disks)
526 				d -= conf->raid_disks;
527 			s += conf->stride;
528 			r10bio->devs[slot].devnum = d;
529 			r10bio->devs[slot].addr = s;
530 			slot++;
531 		}
532 		dev++;
533 		if (dev >= conf->raid_disks) {
534 			dev = 0;
535 			sector += (conf->chunk_mask + 1);
536 		}
537 	}
538 	BUG_ON(slot != conf->copies);
539 }
540 
541 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
542 {
543 	sector_t offset, chunk, vchunk;
544 
545 	offset = sector & conf->chunk_mask;
546 	if (conf->far_offset) {
547 		int fc;
548 		chunk = sector >> conf->chunk_shift;
549 		fc = sector_div(chunk, conf->far_copies);
550 		dev -= fc * conf->near_copies;
551 		if (dev < 0)
552 			dev += conf->raid_disks;
553 	} else {
554 		while (sector >= conf->stride) {
555 			sector -= conf->stride;
556 			if (dev < conf->near_copies)
557 				dev += conf->raid_disks - conf->near_copies;
558 			else
559 				dev -= conf->near_copies;
560 		}
561 		chunk = sector >> conf->chunk_shift;
562 	}
563 	vchunk = chunk * conf->raid_disks + dev;
564 	sector_div(vchunk, conf->near_copies);
565 	return (vchunk << conf->chunk_shift) + offset;
566 }
567 
568 /**
569  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
570  *	@q: request queue
571  *	@bvm: properties of new bio
572  *	@biovec: the request that could be merged to it.
573  *
574  *	Return amount of bytes we can accept at this offset
575  *      If near_copies == raid_disk, there are no striping issues,
576  *      but in that case, the function isn't called at all.
577  */
578 static int raid10_mergeable_bvec(struct request_queue *q,
579 				 struct bvec_merge_data *bvm,
580 				 struct bio_vec *biovec)
581 {
582 	struct mddev *mddev = q->queuedata;
583 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
584 	int max;
585 	unsigned int chunk_sectors = mddev->chunk_sectors;
586 	unsigned int bio_sectors = bvm->bi_size >> 9;
587 
588 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
589 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
590 	if (max <= biovec->bv_len && bio_sectors == 0)
591 		return biovec->bv_len;
592 	else
593 		return max;
594 }
595 
596 /*
597  * This routine returns the disk from which the requested read should
598  * be done. There is a per-array 'next expected sequential IO' sector
599  * number - if this matches on the next IO then we use the last disk.
600  * There is also a per-disk 'last know head position' sector that is
601  * maintained from IRQ contexts, both the normal and the resync IO
602  * completion handlers update this position correctly. If there is no
603  * perfect sequential match then we pick the disk whose head is closest.
604  *
605  * If there are 2 mirrors in the same 2 devices, performance degrades
606  * because position is mirror, not device based.
607  *
608  * The rdev for the device selected will have nr_pending incremented.
609  */
610 
611 /*
612  * FIXME: possibly should rethink readbalancing and do it differently
613  * depending on near_copies / far_copies geometry.
614  */
615 static struct md_rdev *read_balance(struct r10conf *conf,
616 				    struct r10bio *r10_bio,
617 				    int *max_sectors)
618 {
619 	const sector_t this_sector = r10_bio->sector;
620 	int disk, slot;
621 	int sectors = r10_bio->sectors;
622 	int best_good_sectors;
623 	sector_t new_distance, best_dist;
624 	struct md_rdev *rdev, *best_rdev;
625 	int do_balance;
626 	int best_slot;
627 
628 	raid10_find_phys(conf, r10_bio);
629 	rcu_read_lock();
630 retry:
631 	sectors = r10_bio->sectors;
632 	best_slot = -1;
633 	best_rdev = NULL;
634 	best_dist = MaxSector;
635 	best_good_sectors = 0;
636 	do_balance = 1;
637 	/*
638 	 * Check if we can balance. We can balance on the whole
639 	 * device if no resync is going on (recovery is ok), or below
640 	 * the resync window. We take the first readable disk when
641 	 * above the resync window.
642 	 */
643 	if (conf->mddev->recovery_cp < MaxSector
644 	    && (this_sector + sectors >= conf->next_resync))
645 		do_balance = 0;
646 
647 	for (slot = 0; slot < conf->copies ; slot++) {
648 		sector_t first_bad;
649 		int bad_sectors;
650 		sector_t dev_sector;
651 
652 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
653 			continue;
654 		disk = r10_bio->devs[slot].devnum;
655 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
656 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
657 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
658 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
659 		if (rdev == NULL)
660 			continue;
661 		if (test_bit(Faulty, &rdev->flags))
662 			continue;
663 		if (!test_bit(In_sync, &rdev->flags) &&
664 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
665 			continue;
666 
667 		dev_sector = r10_bio->devs[slot].addr;
668 		if (is_badblock(rdev, dev_sector, sectors,
669 				&first_bad, &bad_sectors)) {
670 			if (best_dist < MaxSector)
671 				/* Already have a better slot */
672 				continue;
673 			if (first_bad <= dev_sector) {
674 				/* Cannot read here.  If this is the
675 				 * 'primary' device, then we must not read
676 				 * beyond 'bad_sectors' from another device.
677 				 */
678 				bad_sectors -= (dev_sector - first_bad);
679 				if (!do_balance && sectors > bad_sectors)
680 					sectors = bad_sectors;
681 				if (best_good_sectors > sectors)
682 					best_good_sectors = sectors;
683 			} else {
684 				sector_t good_sectors =
685 					first_bad - dev_sector;
686 				if (good_sectors > best_good_sectors) {
687 					best_good_sectors = good_sectors;
688 					best_slot = slot;
689 					best_rdev = rdev;
690 				}
691 				if (!do_balance)
692 					/* Must read from here */
693 					break;
694 			}
695 			continue;
696 		} else
697 			best_good_sectors = sectors;
698 
699 		if (!do_balance)
700 			break;
701 
702 		/* This optimisation is debatable, and completely destroys
703 		 * sequential read speed for 'far copies' arrays.  So only
704 		 * keep it for 'near' arrays, and review those later.
705 		 */
706 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
707 			break;
708 
709 		/* for far > 1 always use the lowest address */
710 		if (conf->far_copies > 1)
711 			new_distance = r10_bio->devs[slot].addr;
712 		else
713 			new_distance = abs(r10_bio->devs[slot].addr -
714 					   conf->mirrors[disk].head_position);
715 		if (new_distance < best_dist) {
716 			best_dist = new_distance;
717 			best_slot = slot;
718 			best_rdev = rdev;
719 		}
720 	}
721 	if (slot >= conf->copies) {
722 		slot = best_slot;
723 		rdev = best_rdev;
724 	}
725 
726 	if (slot >= 0) {
727 		atomic_inc(&rdev->nr_pending);
728 		if (test_bit(Faulty, &rdev->flags)) {
729 			/* Cannot risk returning a device that failed
730 			 * before we inc'ed nr_pending
731 			 */
732 			rdev_dec_pending(rdev, conf->mddev);
733 			goto retry;
734 		}
735 		r10_bio->read_slot = slot;
736 	} else
737 		rdev = NULL;
738 	rcu_read_unlock();
739 	*max_sectors = best_good_sectors;
740 
741 	return rdev;
742 }
743 
744 static int raid10_congested(void *data, int bits)
745 {
746 	struct mddev *mddev = data;
747 	struct r10conf *conf = mddev->private;
748 	int i, ret = 0;
749 
750 	if ((bits & (1 << BDI_async_congested)) &&
751 	    conf->pending_count >= max_queued_requests)
752 		return 1;
753 
754 	if (mddev_congested(mddev, bits))
755 		return 1;
756 	rcu_read_lock();
757 	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
758 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
759 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
760 			struct request_queue *q = bdev_get_queue(rdev->bdev);
761 
762 			ret |= bdi_congested(&q->backing_dev_info, bits);
763 		}
764 	}
765 	rcu_read_unlock();
766 	return ret;
767 }
768 
769 static void flush_pending_writes(struct r10conf *conf)
770 {
771 	/* Any writes that have been queued but are awaiting
772 	 * bitmap updates get flushed here.
773 	 */
774 	spin_lock_irq(&conf->device_lock);
775 
776 	if (conf->pending_bio_list.head) {
777 		struct bio *bio;
778 		bio = bio_list_get(&conf->pending_bio_list);
779 		conf->pending_count = 0;
780 		spin_unlock_irq(&conf->device_lock);
781 		/* flush any pending bitmap writes to disk
782 		 * before proceeding w/ I/O */
783 		bitmap_unplug(conf->mddev->bitmap);
784 		wake_up(&conf->wait_barrier);
785 
786 		while (bio) { /* submit pending writes */
787 			struct bio *next = bio->bi_next;
788 			bio->bi_next = NULL;
789 			generic_make_request(bio);
790 			bio = next;
791 		}
792 	} else
793 		spin_unlock_irq(&conf->device_lock);
794 }
795 
796 /* Barriers....
797  * Sometimes we need to suspend IO while we do something else,
798  * either some resync/recovery, or reconfigure the array.
799  * To do this we raise a 'barrier'.
800  * The 'barrier' is a counter that can be raised multiple times
801  * to count how many activities are happening which preclude
802  * normal IO.
803  * We can only raise the barrier if there is no pending IO.
804  * i.e. if nr_pending == 0.
805  * We choose only to raise the barrier if no-one is waiting for the
806  * barrier to go down.  This means that as soon as an IO request
807  * is ready, no other operations which require a barrier will start
808  * until the IO request has had a chance.
809  *
810  * So: regular IO calls 'wait_barrier'.  When that returns there
811  *    is no backgroup IO happening,  It must arrange to call
812  *    allow_barrier when it has finished its IO.
813  * backgroup IO calls must call raise_barrier.  Once that returns
814  *    there is no normal IO happeing.  It must arrange to call
815  *    lower_barrier when the particular background IO completes.
816  */
817 
818 static void raise_barrier(struct r10conf *conf, int force)
819 {
820 	BUG_ON(force && !conf->barrier);
821 	spin_lock_irq(&conf->resync_lock);
822 
823 	/* Wait until no block IO is waiting (unless 'force') */
824 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
825 			    conf->resync_lock, );
826 
827 	/* block any new IO from starting */
828 	conf->barrier++;
829 
830 	/* Now wait for all pending IO to complete */
831 	wait_event_lock_irq(conf->wait_barrier,
832 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
833 			    conf->resync_lock, );
834 
835 	spin_unlock_irq(&conf->resync_lock);
836 }
837 
838 static void lower_barrier(struct r10conf *conf)
839 {
840 	unsigned long flags;
841 	spin_lock_irqsave(&conf->resync_lock, flags);
842 	conf->barrier--;
843 	spin_unlock_irqrestore(&conf->resync_lock, flags);
844 	wake_up(&conf->wait_barrier);
845 }
846 
847 static void wait_barrier(struct r10conf *conf)
848 {
849 	spin_lock_irq(&conf->resync_lock);
850 	if (conf->barrier) {
851 		conf->nr_waiting++;
852 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
853 				    conf->resync_lock,
854 				    );
855 		conf->nr_waiting--;
856 	}
857 	conf->nr_pending++;
858 	spin_unlock_irq(&conf->resync_lock);
859 }
860 
861 static void allow_barrier(struct r10conf *conf)
862 {
863 	unsigned long flags;
864 	spin_lock_irqsave(&conf->resync_lock, flags);
865 	conf->nr_pending--;
866 	spin_unlock_irqrestore(&conf->resync_lock, flags);
867 	wake_up(&conf->wait_barrier);
868 }
869 
870 static void freeze_array(struct r10conf *conf)
871 {
872 	/* stop syncio and normal IO and wait for everything to
873 	 * go quiet.
874 	 * We increment barrier and nr_waiting, and then
875 	 * wait until nr_pending match nr_queued+1
876 	 * This is called in the context of one normal IO request
877 	 * that has failed. Thus any sync request that might be pending
878 	 * will be blocked by nr_pending, and we need to wait for
879 	 * pending IO requests to complete or be queued for re-try.
880 	 * Thus the number queued (nr_queued) plus this request (1)
881 	 * must match the number of pending IOs (nr_pending) before
882 	 * we continue.
883 	 */
884 	spin_lock_irq(&conf->resync_lock);
885 	conf->barrier++;
886 	conf->nr_waiting++;
887 	wait_event_lock_irq(conf->wait_barrier,
888 			    conf->nr_pending == conf->nr_queued+1,
889 			    conf->resync_lock,
890 			    flush_pending_writes(conf));
891 
892 	spin_unlock_irq(&conf->resync_lock);
893 }
894 
895 static void unfreeze_array(struct r10conf *conf)
896 {
897 	/* reverse the effect of the freeze */
898 	spin_lock_irq(&conf->resync_lock);
899 	conf->barrier--;
900 	conf->nr_waiting--;
901 	wake_up(&conf->wait_barrier);
902 	spin_unlock_irq(&conf->resync_lock);
903 }
904 
905 static void make_request(struct mddev *mddev, struct bio * bio)
906 {
907 	struct r10conf *conf = mddev->private;
908 	struct r10bio *r10_bio;
909 	struct bio *read_bio;
910 	int i;
911 	int chunk_sects = conf->chunk_mask + 1;
912 	const int rw = bio_data_dir(bio);
913 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
914 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
915 	unsigned long flags;
916 	struct md_rdev *blocked_rdev;
917 	int plugged;
918 	int sectors_handled;
919 	int max_sectors;
920 
921 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
922 		md_flush_request(mddev, bio);
923 		return;
924 	}
925 
926 	/* If this request crosses a chunk boundary, we need to
927 	 * split it.  This will only happen for 1 PAGE (or less) requests.
928 	 */
929 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
930 		      > chunk_sects &&
931 		    conf->near_copies < conf->raid_disks)) {
932 		struct bio_pair *bp;
933 		/* Sanity check -- queue functions should prevent this happening */
934 		if (bio->bi_vcnt != 1 ||
935 		    bio->bi_idx != 0)
936 			goto bad_map;
937 		/* This is a one page bio that upper layers
938 		 * refuse to split for us, so we need to split it.
939 		 */
940 		bp = bio_split(bio,
941 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
942 
943 		/* Each of these 'make_request' calls will call 'wait_barrier'.
944 		 * If the first succeeds but the second blocks due to the resync
945 		 * thread raising the barrier, we will deadlock because the
946 		 * IO to the underlying device will be queued in generic_make_request
947 		 * and will never complete, so will never reduce nr_pending.
948 		 * So increment nr_waiting here so no new raise_barriers will
949 		 * succeed, and so the second wait_barrier cannot block.
950 		 */
951 		spin_lock_irq(&conf->resync_lock);
952 		conf->nr_waiting++;
953 		spin_unlock_irq(&conf->resync_lock);
954 
955 		make_request(mddev, &bp->bio1);
956 		make_request(mddev, &bp->bio2);
957 
958 		spin_lock_irq(&conf->resync_lock);
959 		conf->nr_waiting--;
960 		wake_up(&conf->wait_barrier);
961 		spin_unlock_irq(&conf->resync_lock);
962 
963 		bio_pair_release(bp);
964 		return;
965 	bad_map:
966 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
967 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
968 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
969 
970 		bio_io_error(bio);
971 		return;
972 	}
973 
974 	md_write_start(mddev, bio);
975 
976 	/*
977 	 * Register the new request and wait if the reconstruction
978 	 * thread has put up a bar for new requests.
979 	 * Continue immediately if no resync is active currently.
980 	 */
981 	wait_barrier(conf);
982 
983 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
984 
985 	r10_bio->master_bio = bio;
986 	r10_bio->sectors = bio->bi_size >> 9;
987 
988 	r10_bio->mddev = mddev;
989 	r10_bio->sector = bio->bi_sector;
990 	r10_bio->state = 0;
991 
992 	/* We might need to issue multiple reads to different
993 	 * devices if there are bad blocks around, so we keep
994 	 * track of the number of reads in bio->bi_phys_segments.
995 	 * If this is 0, there is only one r10_bio and no locking
996 	 * will be needed when the request completes.  If it is
997 	 * non-zero, then it is the number of not-completed requests.
998 	 */
999 	bio->bi_phys_segments = 0;
1000 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1001 
1002 	if (rw == READ) {
1003 		/*
1004 		 * read balancing logic:
1005 		 */
1006 		struct md_rdev *rdev;
1007 		int slot;
1008 
1009 read_again:
1010 		rdev = read_balance(conf, r10_bio, &max_sectors);
1011 		if (!rdev) {
1012 			raid_end_bio_io(r10_bio);
1013 			return;
1014 		}
1015 		slot = r10_bio->read_slot;
1016 
1017 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1018 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1019 			    max_sectors);
1020 
1021 		r10_bio->devs[slot].bio = read_bio;
1022 		r10_bio->devs[slot].rdev = rdev;
1023 
1024 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1025 			rdev->data_offset;
1026 		read_bio->bi_bdev = rdev->bdev;
1027 		read_bio->bi_end_io = raid10_end_read_request;
1028 		read_bio->bi_rw = READ | do_sync;
1029 		read_bio->bi_private = r10_bio;
1030 
1031 		if (max_sectors < r10_bio->sectors) {
1032 			/* Could not read all from this device, so we will
1033 			 * need another r10_bio.
1034 			 */
1035 			sectors_handled = (r10_bio->sectors + max_sectors
1036 					   - bio->bi_sector);
1037 			r10_bio->sectors = max_sectors;
1038 			spin_lock_irq(&conf->device_lock);
1039 			if (bio->bi_phys_segments == 0)
1040 				bio->bi_phys_segments = 2;
1041 			else
1042 				bio->bi_phys_segments++;
1043 			spin_unlock(&conf->device_lock);
1044 			/* Cannot call generic_make_request directly
1045 			 * as that will be queued in __generic_make_request
1046 			 * and subsequent mempool_alloc might block
1047 			 * waiting for it.  so hand bio over to raid10d.
1048 			 */
1049 			reschedule_retry(r10_bio);
1050 
1051 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1052 
1053 			r10_bio->master_bio = bio;
1054 			r10_bio->sectors = ((bio->bi_size >> 9)
1055 					    - sectors_handled);
1056 			r10_bio->state = 0;
1057 			r10_bio->mddev = mddev;
1058 			r10_bio->sector = bio->bi_sector + sectors_handled;
1059 			goto read_again;
1060 		} else
1061 			generic_make_request(read_bio);
1062 		return;
1063 	}
1064 
1065 	/*
1066 	 * WRITE:
1067 	 */
1068 	if (conf->pending_count >= max_queued_requests) {
1069 		md_wakeup_thread(mddev->thread);
1070 		wait_event(conf->wait_barrier,
1071 			   conf->pending_count < max_queued_requests);
1072 	}
1073 	/* first select target devices under rcu_lock and
1074 	 * inc refcount on their rdev.  Record them by setting
1075 	 * bios[x] to bio
1076 	 * If there are known/acknowledged bad blocks on any device
1077 	 * on which we have seen a write error, we want to avoid
1078 	 * writing to those blocks.  This potentially requires several
1079 	 * writes to write around the bad blocks.  Each set of writes
1080 	 * gets its own r10_bio with a set of bios attached.  The number
1081 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1082 	 * the read case.
1083 	 */
1084 	plugged = mddev_check_plugged(mddev);
1085 
1086 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1087 	raid10_find_phys(conf, r10_bio);
1088 retry_write:
1089 	blocked_rdev = NULL;
1090 	rcu_read_lock();
1091 	max_sectors = r10_bio->sectors;
1092 
1093 	for (i = 0;  i < conf->copies; i++) {
1094 		int d = r10_bio->devs[i].devnum;
1095 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1096 		struct md_rdev *rrdev = rcu_dereference(
1097 			conf->mirrors[d].replacement);
1098 		if (rdev == rrdev)
1099 			rrdev = NULL;
1100 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1101 			atomic_inc(&rdev->nr_pending);
1102 			blocked_rdev = rdev;
1103 			break;
1104 		}
1105 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1106 			atomic_inc(&rrdev->nr_pending);
1107 			blocked_rdev = rrdev;
1108 			break;
1109 		}
1110 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1111 			rrdev = NULL;
1112 
1113 		r10_bio->devs[i].bio = NULL;
1114 		r10_bio->devs[i].repl_bio = NULL;
1115 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1116 			set_bit(R10BIO_Degraded, &r10_bio->state);
1117 			continue;
1118 		}
1119 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1120 			sector_t first_bad;
1121 			sector_t dev_sector = r10_bio->devs[i].addr;
1122 			int bad_sectors;
1123 			int is_bad;
1124 
1125 			is_bad = is_badblock(rdev, dev_sector,
1126 					     max_sectors,
1127 					     &first_bad, &bad_sectors);
1128 			if (is_bad < 0) {
1129 				/* Mustn't write here until the bad block
1130 				 * is acknowledged
1131 				 */
1132 				atomic_inc(&rdev->nr_pending);
1133 				set_bit(BlockedBadBlocks, &rdev->flags);
1134 				blocked_rdev = rdev;
1135 				break;
1136 			}
1137 			if (is_bad && first_bad <= dev_sector) {
1138 				/* Cannot write here at all */
1139 				bad_sectors -= (dev_sector - first_bad);
1140 				if (bad_sectors < max_sectors)
1141 					/* Mustn't write more than bad_sectors
1142 					 * to other devices yet
1143 					 */
1144 					max_sectors = bad_sectors;
1145 				/* We don't set R10BIO_Degraded as that
1146 				 * only applies if the disk is missing,
1147 				 * so it might be re-added, and we want to
1148 				 * know to recover this chunk.
1149 				 * In this case the device is here, and the
1150 				 * fact that this chunk is not in-sync is
1151 				 * recorded in the bad block log.
1152 				 */
1153 				continue;
1154 			}
1155 			if (is_bad) {
1156 				int good_sectors = first_bad - dev_sector;
1157 				if (good_sectors < max_sectors)
1158 					max_sectors = good_sectors;
1159 			}
1160 		}
1161 		r10_bio->devs[i].bio = bio;
1162 		atomic_inc(&rdev->nr_pending);
1163 		if (rrdev) {
1164 			r10_bio->devs[i].repl_bio = bio;
1165 			atomic_inc(&rrdev->nr_pending);
1166 		}
1167 	}
1168 	rcu_read_unlock();
1169 
1170 	if (unlikely(blocked_rdev)) {
1171 		/* Have to wait for this device to get unblocked, then retry */
1172 		int j;
1173 		int d;
1174 
1175 		for (j = 0; j < i; j++) {
1176 			if (r10_bio->devs[j].bio) {
1177 				d = r10_bio->devs[j].devnum;
1178 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1179 			}
1180 			if (r10_bio->devs[j].repl_bio) {
1181 				struct md_rdev *rdev;
1182 				d = r10_bio->devs[j].devnum;
1183 				rdev = conf->mirrors[d].replacement;
1184 				if (!rdev) {
1185 					/* Race with remove_disk */
1186 					smp_mb();
1187 					rdev = conf->mirrors[d].rdev;
1188 				}
1189 				rdev_dec_pending(rdev, mddev);
1190 			}
1191 		}
1192 		allow_barrier(conf);
1193 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1194 		wait_barrier(conf);
1195 		goto retry_write;
1196 	}
1197 
1198 	if (max_sectors < r10_bio->sectors) {
1199 		/* We are splitting this into multiple parts, so
1200 		 * we need to prepare for allocating another r10_bio.
1201 		 */
1202 		r10_bio->sectors = max_sectors;
1203 		spin_lock_irq(&conf->device_lock);
1204 		if (bio->bi_phys_segments == 0)
1205 			bio->bi_phys_segments = 2;
1206 		else
1207 			bio->bi_phys_segments++;
1208 		spin_unlock_irq(&conf->device_lock);
1209 	}
1210 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1211 
1212 	atomic_set(&r10_bio->remaining, 1);
1213 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1214 
1215 	for (i = 0; i < conf->copies; i++) {
1216 		struct bio *mbio;
1217 		int d = r10_bio->devs[i].devnum;
1218 		if (!r10_bio->devs[i].bio)
1219 			continue;
1220 
1221 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1222 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1223 			    max_sectors);
1224 		r10_bio->devs[i].bio = mbio;
1225 
1226 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1227 				   conf->mirrors[d].rdev->data_offset);
1228 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1229 		mbio->bi_end_io	= raid10_end_write_request;
1230 		mbio->bi_rw = WRITE | do_sync | do_fua;
1231 		mbio->bi_private = r10_bio;
1232 
1233 		atomic_inc(&r10_bio->remaining);
1234 		spin_lock_irqsave(&conf->device_lock, flags);
1235 		bio_list_add(&conf->pending_bio_list, mbio);
1236 		conf->pending_count++;
1237 		spin_unlock_irqrestore(&conf->device_lock, flags);
1238 
1239 		if (!r10_bio->devs[i].repl_bio)
1240 			continue;
1241 
1242 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1243 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1244 			    max_sectors);
1245 		r10_bio->devs[i].repl_bio = mbio;
1246 
1247 		/* We are actively writing to the original device
1248 		 * so it cannot disappear, so the replacement cannot
1249 		 * become NULL here
1250 		 */
1251 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1252 				   conf->mirrors[d].replacement->data_offset);
1253 		mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1254 		mbio->bi_end_io	= raid10_end_write_request;
1255 		mbio->bi_rw = WRITE | do_sync | do_fua;
1256 		mbio->bi_private = r10_bio;
1257 
1258 		atomic_inc(&r10_bio->remaining);
1259 		spin_lock_irqsave(&conf->device_lock, flags);
1260 		bio_list_add(&conf->pending_bio_list, mbio);
1261 		conf->pending_count++;
1262 		spin_unlock_irqrestore(&conf->device_lock, flags);
1263 	}
1264 
1265 	/* Don't remove the bias on 'remaining' (one_write_done) until
1266 	 * after checking if we need to go around again.
1267 	 */
1268 
1269 	if (sectors_handled < (bio->bi_size >> 9)) {
1270 		one_write_done(r10_bio);
1271 		/* We need another r10_bio.  It has already been counted
1272 		 * in bio->bi_phys_segments.
1273 		 */
1274 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1275 
1276 		r10_bio->master_bio = bio;
1277 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1278 
1279 		r10_bio->mddev = mddev;
1280 		r10_bio->sector = bio->bi_sector + sectors_handled;
1281 		r10_bio->state = 0;
1282 		goto retry_write;
1283 	}
1284 	one_write_done(r10_bio);
1285 
1286 	/* In case raid10d snuck in to freeze_array */
1287 	wake_up(&conf->wait_barrier);
1288 
1289 	if (do_sync || !mddev->bitmap || !plugged)
1290 		md_wakeup_thread(mddev->thread);
1291 }
1292 
1293 static void status(struct seq_file *seq, struct mddev *mddev)
1294 {
1295 	struct r10conf *conf = mddev->private;
1296 	int i;
1297 
1298 	if (conf->near_copies < conf->raid_disks)
1299 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1300 	if (conf->near_copies > 1)
1301 		seq_printf(seq, " %d near-copies", conf->near_copies);
1302 	if (conf->far_copies > 1) {
1303 		if (conf->far_offset)
1304 			seq_printf(seq, " %d offset-copies", conf->far_copies);
1305 		else
1306 			seq_printf(seq, " %d far-copies", conf->far_copies);
1307 	}
1308 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1309 					conf->raid_disks - mddev->degraded);
1310 	for (i = 0; i < conf->raid_disks; i++)
1311 		seq_printf(seq, "%s",
1312 			      conf->mirrors[i].rdev &&
1313 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1314 	seq_printf(seq, "]");
1315 }
1316 
1317 /* check if there are enough drives for
1318  * every block to appear on atleast one.
1319  * Don't consider the device numbered 'ignore'
1320  * as we might be about to remove it.
1321  */
1322 static int enough(struct r10conf *conf, int ignore)
1323 {
1324 	int first = 0;
1325 
1326 	do {
1327 		int n = conf->copies;
1328 		int cnt = 0;
1329 		while (n--) {
1330 			if (conf->mirrors[first].rdev &&
1331 			    first != ignore)
1332 				cnt++;
1333 			first = (first+1) % conf->raid_disks;
1334 		}
1335 		if (cnt == 0)
1336 			return 0;
1337 	} while (first != 0);
1338 	return 1;
1339 }
1340 
1341 static void error(struct mddev *mddev, struct md_rdev *rdev)
1342 {
1343 	char b[BDEVNAME_SIZE];
1344 	struct r10conf *conf = mddev->private;
1345 
1346 	/*
1347 	 * If it is not operational, then we have already marked it as dead
1348 	 * else if it is the last working disks, ignore the error, let the
1349 	 * next level up know.
1350 	 * else mark the drive as failed
1351 	 */
1352 	if (test_bit(In_sync, &rdev->flags)
1353 	    && !enough(conf, rdev->raid_disk))
1354 		/*
1355 		 * Don't fail the drive, just return an IO error.
1356 		 */
1357 		return;
1358 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1359 		unsigned long flags;
1360 		spin_lock_irqsave(&conf->device_lock, flags);
1361 		mddev->degraded++;
1362 		spin_unlock_irqrestore(&conf->device_lock, flags);
1363 		/*
1364 		 * if recovery is running, make sure it aborts.
1365 		 */
1366 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1367 	}
1368 	set_bit(Blocked, &rdev->flags);
1369 	set_bit(Faulty, &rdev->flags);
1370 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1371 	printk(KERN_ALERT
1372 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1373 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1374 	       mdname(mddev), bdevname(rdev->bdev, b),
1375 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1376 }
1377 
1378 static void print_conf(struct r10conf *conf)
1379 {
1380 	int i;
1381 	struct mirror_info *tmp;
1382 
1383 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1384 	if (!conf) {
1385 		printk(KERN_DEBUG "(!conf)\n");
1386 		return;
1387 	}
1388 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1389 		conf->raid_disks);
1390 
1391 	for (i = 0; i < conf->raid_disks; i++) {
1392 		char b[BDEVNAME_SIZE];
1393 		tmp = conf->mirrors + i;
1394 		if (tmp->rdev)
1395 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1396 				i, !test_bit(In_sync, &tmp->rdev->flags),
1397 			        !test_bit(Faulty, &tmp->rdev->flags),
1398 				bdevname(tmp->rdev->bdev,b));
1399 	}
1400 }
1401 
1402 static void close_sync(struct r10conf *conf)
1403 {
1404 	wait_barrier(conf);
1405 	allow_barrier(conf);
1406 
1407 	mempool_destroy(conf->r10buf_pool);
1408 	conf->r10buf_pool = NULL;
1409 }
1410 
1411 static int raid10_spare_active(struct mddev *mddev)
1412 {
1413 	int i;
1414 	struct r10conf *conf = mddev->private;
1415 	struct mirror_info *tmp;
1416 	int count = 0;
1417 	unsigned long flags;
1418 
1419 	/*
1420 	 * Find all non-in_sync disks within the RAID10 configuration
1421 	 * and mark them in_sync
1422 	 */
1423 	for (i = 0; i < conf->raid_disks; i++) {
1424 		tmp = conf->mirrors + i;
1425 		if (tmp->replacement
1426 		    && tmp->replacement->recovery_offset == MaxSector
1427 		    && !test_bit(Faulty, &tmp->replacement->flags)
1428 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1429 			/* Replacement has just become active */
1430 			if (!tmp->rdev
1431 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1432 				count++;
1433 			if (tmp->rdev) {
1434 				/* Replaced device not technically faulty,
1435 				 * but we need to be sure it gets removed
1436 				 * and never re-added.
1437 				 */
1438 				set_bit(Faulty, &tmp->rdev->flags);
1439 				sysfs_notify_dirent_safe(
1440 					tmp->rdev->sysfs_state);
1441 			}
1442 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1443 		} else if (tmp->rdev
1444 			   && !test_bit(Faulty, &tmp->rdev->flags)
1445 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1446 			count++;
1447 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1448 		}
1449 	}
1450 	spin_lock_irqsave(&conf->device_lock, flags);
1451 	mddev->degraded -= count;
1452 	spin_unlock_irqrestore(&conf->device_lock, flags);
1453 
1454 	print_conf(conf);
1455 	return count;
1456 }
1457 
1458 
1459 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1460 {
1461 	struct r10conf *conf = mddev->private;
1462 	int err = -EEXIST;
1463 	int mirror;
1464 	int first = 0;
1465 	int last = conf->raid_disks - 1;
1466 
1467 	if (mddev->recovery_cp < MaxSector)
1468 		/* only hot-add to in-sync arrays, as recovery is
1469 		 * very different from resync
1470 		 */
1471 		return -EBUSY;
1472 	if (!enough(conf, -1))
1473 		return -EINVAL;
1474 
1475 	if (rdev->raid_disk >= 0)
1476 		first = last = rdev->raid_disk;
1477 
1478 	if (rdev->saved_raid_disk >= first &&
1479 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1480 		mirror = rdev->saved_raid_disk;
1481 	else
1482 		mirror = first;
1483 	for ( ; mirror <= last ; mirror++) {
1484 		struct mirror_info *p = &conf->mirrors[mirror];
1485 		if (p->recovery_disabled == mddev->recovery_disabled)
1486 			continue;
1487 		if (p->rdev) {
1488 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1489 			    p->replacement != NULL)
1490 				continue;
1491 			clear_bit(In_sync, &rdev->flags);
1492 			set_bit(Replacement, &rdev->flags);
1493 			rdev->raid_disk = mirror;
1494 			err = 0;
1495 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1496 					  rdev->data_offset << 9);
1497 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1498 				blk_queue_max_segments(mddev->queue, 1);
1499 				blk_queue_segment_boundary(mddev->queue,
1500 							   PAGE_CACHE_SIZE - 1);
1501 			}
1502 			conf->fullsync = 1;
1503 			rcu_assign_pointer(p->replacement, rdev);
1504 			break;
1505 		}
1506 
1507 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1508 				  rdev->data_offset << 9);
1509 		/* as we don't honour merge_bvec_fn, we must
1510 		 * never risk violating it, so limit
1511 		 * ->max_segments to one lying with a single
1512 		 * page, as a one page request is never in
1513 		 * violation.
1514 		 */
1515 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1516 			blk_queue_max_segments(mddev->queue, 1);
1517 			blk_queue_segment_boundary(mddev->queue,
1518 						   PAGE_CACHE_SIZE - 1);
1519 		}
1520 
1521 		p->head_position = 0;
1522 		p->recovery_disabled = mddev->recovery_disabled - 1;
1523 		rdev->raid_disk = mirror;
1524 		err = 0;
1525 		if (rdev->saved_raid_disk != mirror)
1526 			conf->fullsync = 1;
1527 		rcu_assign_pointer(p->rdev, rdev);
1528 		break;
1529 	}
1530 
1531 	md_integrity_add_rdev(rdev, mddev);
1532 	print_conf(conf);
1533 	return err;
1534 }
1535 
1536 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1537 {
1538 	struct r10conf *conf = mddev->private;
1539 	int err = 0;
1540 	int number = rdev->raid_disk;
1541 	struct md_rdev **rdevp;
1542 	struct mirror_info *p = conf->mirrors + number;
1543 
1544 	print_conf(conf);
1545 	if (rdev == p->rdev)
1546 		rdevp = &p->rdev;
1547 	else if (rdev == p->replacement)
1548 		rdevp = &p->replacement;
1549 	else
1550 		return 0;
1551 
1552 	if (test_bit(In_sync, &rdev->flags) ||
1553 	    atomic_read(&rdev->nr_pending)) {
1554 		err = -EBUSY;
1555 		goto abort;
1556 	}
1557 	/* Only remove faulty devices if recovery
1558 	 * is not possible.
1559 	 */
1560 	if (!test_bit(Faulty, &rdev->flags) &&
1561 	    mddev->recovery_disabled != p->recovery_disabled &&
1562 	    (!p->replacement || p->replacement == rdev) &&
1563 	    enough(conf, -1)) {
1564 		err = -EBUSY;
1565 		goto abort;
1566 	}
1567 	*rdevp = NULL;
1568 	synchronize_rcu();
1569 	if (atomic_read(&rdev->nr_pending)) {
1570 		/* lost the race, try later */
1571 		err = -EBUSY;
1572 		*rdevp = rdev;
1573 		goto abort;
1574 	} else if (p->replacement) {
1575 		/* We must have just cleared 'rdev' */
1576 		p->rdev = p->replacement;
1577 		clear_bit(Replacement, &p->replacement->flags);
1578 		smp_mb(); /* Make sure other CPUs may see both as identical
1579 			   * but will never see neither -- if they are careful.
1580 			   */
1581 		p->replacement = NULL;
1582 		clear_bit(WantReplacement, &rdev->flags);
1583 	} else
1584 		/* We might have just remove the Replacement as faulty
1585 		 * Clear the flag just in case
1586 		 */
1587 		clear_bit(WantReplacement, &rdev->flags);
1588 
1589 	err = md_integrity_register(mddev);
1590 
1591 abort:
1592 
1593 	print_conf(conf);
1594 	return err;
1595 }
1596 
1597 
1598 static void end_sync_read(struct bio *bio, int error)
1599 {
1600 	struct r10bio *r10_bio = bio->bi_private;
1601 	struct r10conf *conf = r10_bio->mddev->private;
1602 	int d;
1603 
1604 	d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1605 
1606 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1607 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1608 	else
1609 		/* The write handler will notice the lack of
1610 		 * R10BIO_Uptodate and record any errors etc
1611 		 */
1612 		atomic_add(r10_bio->sectors,
1613 			   &conf->mirrors[d].rdev->corrected_errors);
1614 
1615 	/* for reconstruct, we always reschedule after a read.
1616 	 * for resync, only after all reads
1617 	 */
1618 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1619 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1620 	    atomic_dec_and_test(&r10_bio->remaining)) {
1621 		/* we have read all the blocks,
1622 		 * do the comparison in process context in raid10d
1623 		 */
1624 		reschedule_retry(r10_bio);
1625 	}
1626 }
1627 
1628 static void end_sync_request(struct r10bio *r10_bio)
1629 {
1630 	struct mddev *mddev = r10_bio->mddev;
1631 
1632 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1633 		if (r10_bio->master_bio == NULL) {
1634 			/* the primary of several recovery bios */
1635 			sector_t s = r10_bio->sectors;
1636 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1637 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1638 				reschedule_retry(r10_bio);
1639 			else
1640 				put_buf(r10_bio);
1641 			md_done_sync(mddev, s, 1);
1642 			break;
1643 		} else {
1644 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1645 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1646 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1647 				reschedule_retry(r10_bio);
1648 			else
1649 				put_buf(r10_bio);
1650 			r10_bio = r10_bio2;
1651 		}
1652 	}
1653 }
1654 
1655 static void end_sync_write(struct bio *bio, int error)
1656 {
1657 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1658 	struct r10bio *r10_bio = bio->bi_private;
1659 	struct mddev *mddev = r10_bio->mddev;
1660 	struct r10conf *conf = mddev->private;
1661 	int d;
1662 	sector_t first_bad;
1663 	int bad_sectors;
1664 	int slot;
1665 	int repl;
1666 	struct md_rdev *rdev = NULL;
1667 
1668 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1669 	if (repl)
1670 		rdev = conf->mirrors[d].replacement;
1671 	if (!rdev) {
1672 		smp_mb();
1673 		rdev = conf->mirrors[d].rdev;
1674 	}
1675 
1676 	if (!uptodate) {
1677 		if (repl)
1678 			md_error(mddev, rdev);
1679 		else {
1680 			set_bit(WriteErrorSeen, &rdev->flags);
1681 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1682 				set_bit(MD_RECOVERY_NEEDED,
1683 					&rdev->mddev->recovery);
1684 			set_bit(R10BIO_WriteError, &r10_bio->state);
1685 		}
1686 	} else if (is_badblock(rdev,
1687 			     r10_bio->devs[slot].addr,
1688 			     r10_bio->sectors,
1689 			     &first_bad, &bad_sectors))
1690 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1691 
1692 	rdev_dec_pending(rdev, mddev);
1693 
1694 	end_sync_request(r10_bio);
1695 }
1696 
1697 /*
1698  * Note: sync and recover and handled very differently for raid10
1699  * This code is for resync.
1700  * For resync, we read through virtual addresses and read all blocks.
1701  * If there is any error, we schedule a write.  The lowest numbered
1702  * drive is authoritative.
1703  * However requests come for physical address, so we need to map.
1704  * For every physical address there are raid_disks/copies virtual addresses,
1705  * which is always are least one, but is not necessarly an integer.
1706  * This means that a physical address can span multiple chunks, so we may
1707  * have to submit multiple io requests for a single sync request.
1708  */
1709 /*
1710  * We check if all blocks are in-sync and only write to blocks that
1711  * aren't in sync
1712  */
1713 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1714 {
1715 	struct r10conf *conf = mddev->private;
1716 	int i, first;
1717 	struct bio *tbio, *fbio;
1718 
1719 	atomic_set(&r10_bio->remaining, 1);
1720 
1721 	/* find the first device with a block */
1722 	for (i=0; i<conf->copies; i++)
1723 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1724 			break;
1725 
1726 	if (i == conf->copies)
1727 		goto done;
1728 
1729 	first = i;
1730 	fbio = r10_bio->devs[i].bio;
1731 
1732 	/* now find blocks with errors */
1733 	for (i=0 ; i < conf->copies ; i++) {
1734 		int  j, d;
1735 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1736 
1737 		tbio = r10_bio->devs[i].bio;
1738 
1739 		if (tbio->bi_end_io != end_sync_read)
1740 			continue;
1741 		if (i == first)
1742 			continue;
1743 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1744 			/* We know that the bi_io_vec layout is the same for
1745 			 * both 'first' and 'i', so we just compare them.
1746 			 * All vec entries are PAGE_SIZE;
1747 			 */
1748 			for (j = 0; j < vcnt; j++)
1749 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1750 					   page_address(tbio->bi_io_vec[j].bv_page),
1751 					   PAGE_SIZE))
1752 					break;
1753 			if (j == vcnt)
1754 				continue;
1755 			mddev->resync_mismatches += r10_bio->sectors;
1756 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1757 				/* Don't fix anything. */
1758 				continue;
1759 		}
1760 		/* Ok, we need to write this bio, either to correct an
1761 		 * inconsistency or to correct an unreadable block.
1762 		 * First we need to fixup bv_offset, bv_len and
1763 		 * bi_vecs, as the read request might have corrupted these
1764 		 */
1765 		tbio->bi_vcnt = vcnt;
1766 		tbio->bi_size = r10_bio->sectors << 9;
1767 		tbio->bi_idx = 0;
1768 		tbio->bi_phys_segments = 0;
1769 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1770 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1771 		tbio->bi_next = NULL;
1772 		tbio->bi_rw = WRITE;
1773 		tbio->bi_private = r10_bio;
1774 		tbio->bi_sector = r10_bio->devs[i].addr;
1775 
1776 		for (j=0; j < vcnt ; j++) {
1777 			tbio->bi_io_vec[j].bv_offset = 0;
1778 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1779 
1780 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1781 			       page_address(fbio->bi_io_vec[j].bv_page),
1782 			       PAGE_SIZE);
1783 		}
1784 		tbio->bi_end_io = end_sync_write;
1785 
1786 		d = r10_bio->devs[i].devnum;
1787 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1788 		atomic_inc(&r10_bio->remaining);
1789 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1790 
1791 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1792 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1793 		generic_make_request(tbio);
1794 	}
1795 
1796 	/* Now write out to any replacement devices
1797 	 * that are active
1798 	 */
1799 	for (i = 0; i < conf->copies; i++) {
1800 		int j, d;
1801 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1802 
1803 		tbio = r10_bio->devs[i].repl_bio;
1804 		if (!tbio || !tbio->bi_end_io)
1805 			continue;
1806 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1807 		    && r10_bio->devs[i].bio != fbio)
1808 			for (j = 0; j < vcnt; j++)
1809 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1810 				       page_address(fbio->bi_io_vec[j].bv_page),
1811 				       PAGE_SIZE);
1812 		d = r10_bio->devs[i].devnum;
1813 		atomic_inc(&r10_bio->remaining);
1814 		md_sync_acct(conf->mirrors[d].replacement->bdev,
1815 			     tbio->bi_size >> 9);
1816 		generic_make_request(tbio);
1817 	}
1818 
1819 done:
1820 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1821 		md_done_sync(mddev, r10_bio->sectors, 1);
1822 		put_buf(r10_bio);
1823 	}
1824 }
1825 
1826 /*
1827  * Now for the recovery code.
1828  * Recovery happens across physical sectors.
1829  * We recover all non-is_sync drives by finding the virtual address of
1830  * each, and then choose a working drive that also has that virt address.
1831  * There is a separate r10_bio for each non-in_sync drive.
1832  * Only the first two slots are in use. The first for reading,
1833  * The second for writing.
1834  *
1835  */
1836 static void fix_recovery_read_error(struct r10bio *r10_bio)
1837 {
1838 	/* We got a read error during recovery.
1839 	 * We repeat the read in smaller page-sized sections.
1840 	 * If a read succeeds, write it to the new device or record
1841 	 * a bad block if we cannot.
1842 	 * If a read fails, record a bad block on both old and
1843 	 * new devices.
1844 	 */
1845 	struct mddev *mddev = r10_bio->mddev;
1846 	struct r10conf *conf = mddev->private;
1847 	struct bio *bio = r10_bio->devs[0].bio;
1848 	sector_t sect = 0;
1849 	int sectors = r10_bio->sectors;
1850 	int idx = 0;
1851 	int dr = r10_bio->devs[0].devnum;
1852 	int dw = r10_bio->devs[1].devnum;
1853 
1854 	while (sectors) {
1855 		int s = sectors;
1856 		struct md_rdev *rdev;
1857 		sector_t addr;
1858 		int ok;
1859 
1860 		if (s > (PAGE_SIZE>>9))
1861 			s = PAGE_SIZE >> 9;
1862 
1863 		rdev = conf->mirrors[dr].rdev;
1864 		addr = r10_bio->devs[0].addr + sect,
1865 		ok = sync_page_io(rdev,
1866 				  addr,
1867 				  s << 9,
1868 				  bio->bi_io_vec[idx].bv_page,
1869 				  READ, false);
1870 		if (ok) {
1871 			rdev = conf->mirrors[dw].rdev;
1872 			addr = r10_bio->devs[1].addr + sect;
1873 			ok = sync_page_io(rdev,
1874 					  addr,
1875 					  s << 9,
1876 					  bio->bi_io_vec[idx].bv_page,
1877 					  WRITE, false);
1878 			if (!ok) {
1879 				set_bit(WriteErrorSeen, &rdev->flags);
1880 				if (!test_and_set_bit(WantReplacement,
1881 						      &rdev->flags))
1882 					set_bit(MD_RECOVERY_NEEDED,
1883 						&rdev->mddev->recovery);
1884 			}
1885 		}
1886 		if (!ok) {
1887 			/* We don't worry if we cannot set a bad block -
1888 			 * it really is bad so there is no loss in not
1889 			 * recording it yet
1890 			 */
1891 			rdev_set_badblocks(rdev, addr, s, 0);
1892 
1893 			if (rdev != conf->mirrors[dw].rdev) {
1894 				/* need bad block on destination too */
1895 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1896 				addr = r10_bio->devs[1].addr + sect;
1897 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
1898 				if (!ok) {
1899 					/* just abort the recovery */
1900 					printk(KERN_NOTICE
1901 					       "md/raid10:%s: recovery aborted"
1902 					       " due to read error\n",
1903 					       mdname(mddev));
1904 
1905 					conf->mirrors[dw].recovery_disabled
1906 						= mddev->recovery_disabled;
1907 					set_bit(MD_RECOVERY_INTR,
1908 						&mddev->recovery);
1909 					break;
1910 				}
1911 			}
1912 		}
1913 
1914 		sectors -= s;
1915 		sect += s;
1916 		idx++;
1917 	}
1918 }
1919 
1920 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1921 {
1922 	struct r10conf *conf = mddev->private;
1923 	int d;
1924 	struct bio *wbio, *wbio2;
1925 
1926 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1927 		fix_recovery_read_error(r10_bio);
1928 		end_sync_request(r10_bio);
1929 		return;
1930 	}
1931 
1932 	/*
1933 	 * share the pages with the first bio
1934 	 * and submit the write request
1935 	 */
1936 	d = r10_bio->devs[1].devnum;
1937 	wbio = r10_bio->devs[1].bio;
1938 	wbio2 = r10_bio->devs[1].repl_bio;
1939 	if (wbio->bi_end_io) {
1940 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1941 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1942 		generic_make_request(wbio);
1943 	}
1944 	if (wbio2 && wbio2->bi_end_io) {
1945 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
1946 		md_sync_acct(conf->mirrors[d].replacement->bdev,
1947 			     wbio2->bi_size >> 9);
1948 		generic_make_request(wbio2);
1949 	}
1950 }
1951 
1952 
1953 /*
1954  * Used by fix_read_error() to decay the per rdev read_errors.
1955  * We halve the read error count for every hour that has elapsed
1956  * since the last recorded read error.
1957  *
1958  */
1959 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1960 {
1961 	struct timespec cur_time_mon;
1962 	unsigned long hours_since_last;
1963 	unsigned int read_errors = atomic_read(&rdev->read_errors);
1964 
1965 	ktime_get_ts(&cur_time_mon);
1966 
1967 	if (rdev->last_read_error.tv_sec == 0 &&
1968 	    rdev->last_read_error.tv_nsec == 0) {
1969 		/* first time we've seen a read error */
1970 		rdev->last_read_error = cur_time_mon;
1971 		return;
1972 	}
1973 
1974 	hours_since_last = (cur_time_mon.tv_sec -
1975 			    rdev->last_read_error.tv_sec) / 3600;
1976 
1977 	rdev->last_read_error = cur_time_mon;
1978 
1979 	/*
1980 	 * if hours_since_last is > the number of bits in read_errors
1981 	 * just set read errors to 0. We do this to avoid
1982 	 * overflowing the shift of read_errors by hours_since_last.
1983 	 */
1984 	if (hours_since_last >= 8 * sizeof(read_errors))
1985 		atomic_set(&rdev->read_errors, 0);
1986 	else
1987 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1988 }
1989 
1990 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
1991 			    int sectors, struct page *page, int rw)
1992 {
1993 	sector_t first_bad;
1994 	int bad_sectors;
1995 
1996 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1997 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1998 		return -1;
1999 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2000 		/* success */
2001 		return 1;
2002 	if (rw == WRITE) {
2003 		set_bit(WriteErrorSeen, &rdev->flags);
2004 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2005 			set_bit(MD_RECOVERY_NEEDED,
2006 				&rdev->mddev->recovery);
2007 	}
2008 	/* need to record an error - either for the block or the device */
2009 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2010 		md_error(rdev->mddev, rdev);
2011 	return 0;
2012 }
2013 
2014 /*
2015  * This is a kernel thread which:
2016  *
2017  *	1.	Retries failed read operations on working mirrors.
2018  *	2.	Updates the raid superblock when problems encounter.
2019  *	3.	Performs writes following reads for array synchronising.
2020  */
2021 
2022 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2023 {
2024 	int sect = 0; /* Offset from r10_bio->sector */
2025 	int sectors = r10_bio->sectors;
2026 	struct md_rdev*rdev;
2027 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2028 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2029 
2030 	/* still own a reference to this rdev, so it cannot
2031 	 * have been cleared recently.
2032 	 */
2033 	rdev = conf->mirrors[d].rdev;
2034 
2035 	if (test_bit(Faulty, &rdev->flags))
2036 		/* drive has already been failed, just ignore any
2037 		   more fix_read_error() attempts */
2038 		return;
2039 
2040 	check_decay_read_errors(mddev, rdev);
2041 	atomic_inc(&rdev->read_errors);
2042 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2043 		char b[BDEVNAME_SIZE];
2044 		bdevname(rdev->bdev, b);
2045 
2046 		printk(KERN_NOTICE
2047 		       "md/raid10:%s: %s: Raid device exceeded "
2048 		       "read_error threshold [cur %d:max %d]\n",
2049 		       mdname(mddev), b,
2050 		       atomic_read(&rdev->read_errors), max_read_errors);
2051 		printk(KERN_NOTICE
2052 		       "md/raid10:%s: %s: Failing raid device\n",
2053 		       mdname(mddev), b);
2054 		md_error(mddev, conf->mirrors[d].rdev);
2055 		return;
2056 	}
2057 
2058 	while(sectors) {
2059 		int s = sectors;
2060 		int sl = r10_bio->read_slot;
2061 		int success = 0;
2062 		int start;
2063 
2064 		if (s > (PAGE_SIZE>>9))
2065 			s = PAGE_SIZE >> 9;
2066 
2067 		rcu_read_lock();
2068 		do {
2069 			sector_t first_bad;
2070 			int bad_sectors;
2071 
2072 			d = r10_bio->devs[sl].devnum;
2073 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2074 			if (rdev &&
2075 			    test_bit(In_sync, &rdev->flags) &&
2076 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2077 					&first_bad, &bad_sectors) == 0) {
2078 				atomic_inc(&rdev->nr_pending);
2079 				rcu_read_unlock();
2080 				success = sync_page_io(rdev,
2081 						       r10_bio->devs[sl].addr +
2082 						       sect,
2083 						       s<<9,
2084 						       conf->tmppage, READ, false);
2085 				rdev_dec_pending(rdev, mddev);
2086 				rcu_read_lock();
2087 				if (success)
2088 					break;
2089 			}
2090 			sl++;
2091 			if (sl == conf->copies)
2092 				sl = 0;
2093 		} while (!success && sl != r10_bio->read_slot);
2094 		rcu_read_unlock();
2095 
2096 		if (!success) {
2097 			/* Cannot read from anywhere, just mark the block
2098 			 * as bad on the first device to discourage future
2099 			 * reads.
2100 			 */
2101 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2102 			rdev = conf->mirrors[dn].rdev;
2103 
2104 			if (!rdev_set_badblocks(
2105 				    rdev,
2106 				    r10_bio->devs[r10_bio->read_slot].addr
2107 				    + sect,
2108 				    s, 0))
2109 				md_error(mddev, rdev);
2110 			break;
2111 		}
2112 
2113 		start = sl;
2114 		/* write it back and re-read */
2115 		rcu_read_lock();
2116 		while (sl != r10_bio->read_slot) {
2117 			char b[BDEVNAME_SIZE];
2118 
2119 			if (sl==0)
2120 				sl = conf->copies;
2121 			sl--;
2122 			d = r10_bio->devs[sl].devnum;
2123 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2124 			if (!rdev ||
2125 			    !test_bit(In_sync, &rdev->flags))
2126 				continue;
2127 
2128 			atomic_inc(&rdev->nr_pending);
2129 			rcu_read_unlock();
2130 			if (r10_sync_page_io(rdev,
2131 					     r10_bio->devs[sl].addr +
2132 					     sect,
2133 					     s<<9, conf->tmppage, WRITE)
2134 			    == 0) {
2135 				/* Well, this device is dead */
2136 				printk(KERN_NOTICE
2137 				       "md/raid10:%s: read correction "
2138 				       "write failed"
2139 				       " (%d sectors at %llu on %s)\n",
2140 				       mdname(mddev), s,
2141 				       (unsigned long long)(
2142 					       sect + rdev->data_offset),
2143 				       bdevname(rdev->bdev, b));
2144 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2145 				       "drive\n",
2146 				       mdname(mddev),
2147 				       bdevname(rdev->bdev, b));
2148 			}
2149 			rdev_dec_pending(rdev, mddev);
2150 			rcu_read_lock();
2151 		}
2152 		sl = start;
2153 		while (sl != r10_bio->read_slot) {
2154 			char b[BDEVNAME_SIZE];
2155 
2156 			if (sl==0)
2157 				sl = conf->copies;
2158 			sl--;
2159 			d = r10_bio->devs[sl].devnum;
2160 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2161 			if (!rdev ||
2162 			    !test_bit(In_sync, &rdev->flags))
2163 				continue;
2164 
2165 			atomic_inc(&rdev->nr_pending);
2166 			rcu_read_unlock();
2167 			switch (r10_sync_page_io(rdev,
2168 					     r10_bio->devs[sl].addr +
2169 					     sect,
2170 					     s<<9, conf->tmppage,
2171 						 READ)) {
2172 			case 0:
2173 				/* Well, this device is dead */
2174 				printk(KERN_NOTICE
2175 				       "md/raid10:%s: unable to read back "
2176 				       "corrected sectors"
2177 				       " (%d sectors at %llu on %s)\n",
2178 				       mdname(mddev), s,
2179 				       (unsigned long long)(
2180 					       sect + rdev->data_offset),
2181 				       bdevname(rdev->bdev, b));
2182 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2183 				       "drive\n",
2184 				       mdname(mddev),
2185 				       bdevname(rdev->bdev, b));
2186 				break;
2187 			case 1:
2188 				printk(KERN_INFO
2189 				       "md/raid10:%s: read error corrected"
2190 				       " (%d sectors at %llu on %s)\n",
2191 				       mdname(mddev), s,
2192 				       (unsigned long long)(
2193 					       sect + rdev->data_offset),
2194 				       bdevname(rdev->bdev, b));
2195 				atomic_add(s, &rdev->corrected_errors);
2196 			}
2197 
2198 			rdev_dec_pending(rdev, mddev);
2199 			rcu_read_lock();
2200 		}
2201 		rcu_read_unlock();
2202 
2203 		sectors -= s;
2204 		sect += s;
2205 	}
2206 }
2207 
2208 static void bi_complete(struct bio *bio, int error)
2209 {
2210 	complete((struct completion *)bio->bi_private);
2211 }
2212 
2213 static int submit_bio_wait(int rw, struct bio *bio)
2214 {
2215 	struct completion event;
2216 	rw |= REQ_SYNC;
2217 
2218 	init_completion(&event);
2219 	bio->bi_private = &event;
2220 	bio->bi_end_io = bi_complete;
2221 	submit_bio(rw, bio);
2222 	wait_for_completion(&event);
2223 
2224 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2225 }
2226 
2227 static int narrow_write_error(struct r10bio *r10_bio, int i)
2228 {
2229 	struct bio *bio = r10_bio->master_bio;
2230 	struct mddev *mddev = r10_bio->mddev;
2231 	struct r10conf *conf = mddev->private;
2232 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2233 	/* bio has the data to be written to slot 'i' where
2234 	 * we just recently had a write error.
2235 	 * We repeatedly clone the bio and trim down to one block,
2236 	 * then try the write.  Where the write fails we record
2237 	 * a bad block.
2238 	 * It is conceivable that the bio doesn't exactly align with
2239 	 * blocks.  We must handle this.
2240 	 *
2241 	 * We currently own a reference to the rdev.
2242 	 */
2243 
2244 	int block_sectors;
2245 	sector_t sector;
2246 	int sectors;
2247 	int sect_to_write = r10_bio->sectors;
2248 	int ok = 1;
2249 
2250 	if (rdev->badblocks.shift < 0)
2251 		return 0;
2252 
2253 	block_sectors = 1 << rdev->badblocks.shift;
2254 	sector = r10_bio->sector;
2255 	sectors = ((r10_bio->sector + block_sectors)
2256 		   & ~(sector_t)(block_sectors - 1))
2257 		- sector;
2258 
2259 	while (sect_to_write) {
2260 		struct bio *wbio;
2261 		if (sectors > sect_to_write)
2262 			sectors = sect_to_write;
2263 		/* Write at 'sector' for 'sectors' */
2264 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2265 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2266 		wbio->bi_sector = (r10_bio->devs[i].addr+
2267 				   rdev->data_offset+
2268 				   (sector - r10_bio->sector));
2269 		wbio->bi_bdev = rdev->bdev;
2270 		if (submit_bio_wait(WRITE, wbio) == 0)
2271 			/* Failure! */
2272 			ok = rdev_set_badblocks(rdev, sector,
2273 						sectors, 0)
2274 				&& ok;
2275 
2276 		bio_put(wbio);
2277 		sect_to_write -= sectors;
2278 		sector += sectors;
2279 		sectors = block_sectors;
2280 	}
2281 	return ok;
2282 }
2283 
2284 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2285 {
2286 	int slot = r10_bio->read_slot;
2287 	struct bio *bio;
2288 	struct r10conf *conf = mddev->private;
2289 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2290 	char b[BDEVNAME_SIZE];
2291 	unsigned long do_sync;
2292 	int max_sectors;
2293 
2294 	/* we got a read error. Maybe the drive is bad.  Maybe just
2295 	 * the block and we can fix it.
2296 	 * We freeze all other IO, and try reading the block from
2297 	 * other devices.  When we find one, we re-write
2298 	 * and check it that fixes the read error.
2299 	 * This is all done synchronously while the array is
2300 	 * frozen.
2301 	 */
2302 	if (mddev->ro == 0) {
2303 		freeze_array(conf);
2304 		fix_read_error(conf, mddev, r10_bio);
2305 		unfreeze_array(conf);
2306 	}
2307 	rdev_dec_pending(rdev, mddev);
2308 
2309 	bio = r10_bio->devs[slot].bio;
2310 	bdevname(bio->bi_bdev, b);
2311 	r10_bio->devs[slot].bio =
2312 		mddev->ro ? IO_BLOCKED : NULL;
2313 read_more:
2314 	rdev = read_balance(conf, r10_bio, &max_sectors);
2315 	if (rdev == NULL) {
2316 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2317 		       " read error for block %llu\n",
2318 		       mdname(mddev), b,
2319 		       (unsigned long long)r10_bio->sector);
2320 		raid_end_bio_io(r10_bio);
2321 		bio_put(bio);
2322 		return;
2323 	}
2324 
2325 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2326 	if (bio)
2327 		bio_put(bio);
2328 	slot = r10_bio->read_slot;
2329 	printk_ratelimited(
2330 		KERN_ERR
2331 		"md/raid10:%s: %s: redirecting"
2332 		"sector %llu to another mirror\n",
2333 		mdname(mddev),
2334 		bdevname(rdev->bdev, b),
2335 		(unsigned long long)r10_bio->sector);
2336 	bio = bio_clone_mddev(r10_bio->master_bio,
2337 			      GFP_NOIO, mddev);
2338 	md_trim_bio(bio,
2339 		    r10_bio->sector - bio->bi_sector,
2340 		    max_sectors);
2341 	r10_bio->devs[slot].bio = bio;
2342 	r10_bio->devs[slot].rdev = rdev;
2343 	bio->bi_sector = r10_bio->devs[slot].addr
2344 		+ rdev->data_offset;
2345 	bio->bi_bdev = rdev->bdev;
2346 	bio->bi_rw = READ | do_sync;
2347 	bio->bi_private = r10_bio;
2348 	bio->bi_end_io = raid10_end_read_request;
2349 	if (max_sectors < r10_bio->sectors) {
2350 		/* Drat - have to split this up more */
2351 		struct bio *mbio = r10_bio->master_bio;
2352 		int sectors_handled =
2353 			r10_bio->sector + max_sectors
2354 			- mbio->bi_sector;
2355 		r10_bio->sectors = max_sectors;
2356 		spin_lock_irq(&conf->device_lock);
2357 		if (mbio->bi_phys_segments == 0)
2358 			mbio->bi_phys_segments = 2;
2359 		else
2360 			mbio->bi_phys_segments++;
2361 		spin_unlock_irq(&conf->device_lock);
2362 		generic_make_request(bio);
2363 		bio = NULL;
2364 
2365 		r10_bio = mempool_alloc(conf->r10bio_pool,
2366 					GFP_NOIO);
2367 		r10_bio->master_bio = mbio;
2368 		r10_bio->sectors = (mbio->bi_size >> 9)
2369 			- sectors_handled;
2370 		r10_bio->state = 0;
2371 		set_bit(R10BIO_ReadError,
2372 			&r10_bio->state);
2373 		r10_bio->mddev = mddev;
2374 		r10_bio->sector = mbio->bi_sector
2375 			+ sectors_handled;
2376 
2377 		goto read_more;
2378 	} else
2379 		generic_make_request(bio);
2380 }
2381 
2382 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2383 {
2384 	/* Some sort of write request has finished and it
2385 	 * succeeded in writing where we thought there was a
2386 	 * bad block.  So forget the bad block.
2387 	 * Or possibly if failed and we need to record
2388 	 * a bad block.
2389 	 */
2390 	int m;
2391 	struct md_rdev *rdev;
2392 
2393 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2394 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2395 		for (m = 0; m < conf->copies; m++) {
2396 			int dev = r10_bio->devs[m].devnum;
2397 			rdev = conf->mirrors[dev].rdev;
2398 			if (r10_bio->devs[m].bio == NULL)
2399 				continue;
2400 			if (test_bit(BIO_UPTODATE,
2401 				     &r10_bio->devs[m].bio->bi_flags)) {
2402 				rdev_clear_badblocks(
2403 					rdev,
2404 					r10_bio->devs[m].addr,
2405 					r10_bio->sectors);
2406 			} else {
2407 				if (!rdev_set_badblocks(
2408 					    rdev,
2409 					    r10_bio->devs[m].addr,
2410 					    r10_bio->sectors, 0))
2411 					md_error(conf->mddev, rdev);
2412 			}
2413 			rdev = conf->mirrors[dev].replacement;
2414 			if (r10_bio->devs[m].repl_bio == NULL)
2415 				continue;
2416 			if (test_bit(BIO_UPTODATE,
2417 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2418 				rdev_clear_badblocks(
2419 					rdev,
2420 					r10_bio->devs[m].addr,
2421 					r10_bio->sectors);
2422 			} else {
2423 				if (!rdev_set_badblocks(
2424 					    rdev,
2425 					    r10_bio->devs[m].addr,
2426 					    r10_bio->sectors, 0))
2427 					md_error(conf->mddev, rdev);
2428 			}
2429 		}
2430 		put_buf(r10_bio);
2431 	} else {
2432 		for (m = 0; m < conf->copies; m++) {
2433 			int dev = r10_bio->devs[m].devnum;
2434 			struct bio *bio = r10_bio->devs[m].bio;
2435 			rdev = conf->mirrors[dev].rdev;
2436 			if (bio == IO_MADE_GOOD) {
2437 				rdev_clear_badblocks(
2438 					rdev,
2439 					r10_bio->devs[m].addr,
2440 					r10_bio->sectors);
2441 				rdev_dec_pending(rdev, conf->mddev);
2442 			} else if (bio != NULL &&
2443 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2444 				if (!narrow_write_error(r10_bio, m)) {
2445 					md_error(conf->mddev, rdev);
2446 					set_bit(R10BIO_Degraded,
2447 						&r10_bio->state);
2448 				}
2449 				rdev_dec_pending(rdev, conf->mddev);
2450 			}
2451 			bio = r10_bio->devs[m].repl_bio;
2452 			rdev = conf->mirrors[dev].replacement;
2453 			if (rdev && bio == IO_MADE_GOOD) {
2454 				rdev_clear_badblocks(
2455 					rdev,
2456 					r10_bio->devs[m].addr,
2457 					r10_bio->sectors);
2458 				rdev_dec_pending(rdev, conf->mddev);
2459 			}
2460 		}
2461 		if (test_bit(R10BIO_WriteError,
2462 			     &r10_bio->state))
2463 			close_write(r10_bio);
2464 		raid_end_bio_io(r10_bio);
2465 	}
2466 }
2467 
2468 static void raid10d(struct mddev *mddev)
2469 {
2470 	struct r10bio *r10_bio;
2471 	unsigned long flags;
2472 	struct r10conf *conf = mddev->private;
2473 	struct list_head *head = &conf->retry_list;
2474 	struct blk_plug plug;
2475 
2476 	md_check_recovery(mddev);
2477 
2478 	blk_start_plug(&plug);
2479 	for (;;) {
2480 
2481 		flush_pending_writes(conf);
2482 
2483 		spin_lock_irqsave(&conf->device_lock, flags);
2484 		if (list_empty(head)) {
2485 			spin_unlock_irqrestore(&conf->device_lock, flags);
2486 			break;
2487 		}
2488 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2489 		list_del(head->prev);
2490 		conf->nr_queued--;
2491 		spin_unlock_irqrestore(&conf->device_lock, flags);
2492 
2493 		mddev = r10_bio->mddev;
2494 		conf = mddev->private;
2495 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2496 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2497 			handle_write_completed(conf, r10_bio);
2498 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2499 			sync_request_write(mddev, r10_bio);
2500 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2501 			recovery_request_write(mddev, r10_bio);
2502 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2503 			handle_read_error(mddev, r10_bio);
2504 		else {
2505 			/* just a partial read to be scheduled from a
2506 			 * separate context
2507 			 */
2508 			int slot = r10_bio->read_slot;
2509 			generic_make_request(r10_bio->devs[slot].bio);
2510 		}
2511 
2512 		cond_resched();
2513 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2514 			md_check_recovery(mddev);
2515 	}
2516 	blk_finish_plug(&plug);
2517 }
2518 
2519 
2520 static int init_resync(struct r10conf *conf)
2521 {
2522 	int buffs;
2523 	int i;
2524 
2525 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2526 	BUG_ON(conf->r10buf_pool);
2527 	conf->have_replacement = 0;
2528 	for (i = 0; i < conf->raid_disks; i++)
2529 		if (conf->mirrors[i].replacement)
2530 			conf->have_replacement = 1;
2531 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2532 	if (!conf->r10buf_pool)
2533 		return -ENOMEM;
2534 	conf->next_resync = 0;
2535 	return 0;
2536 }
2537 
2538 /*
2539  * perform a "sync" on one "block"
2540  *
2541  * We need to make sure that no normal I/O request - particularly write
2542  * requests - conflict with active sync requests.
2543  *
2544  * This is achieved by tracking pending requests and a 'barrier' concept
2545  * that can be installed to exclude normal IO requests.
2546  *
2547  * Resync and recovery are handled very differently.
2548  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2549  *
2550  * For resync, we iterate over virtual addresses, read all copies,
2551  * and update if there are differences.  If only one copy is live,
2552  * skip it.
2553  * For recovery, we iterate over physical addresses, read a good
2554  * value for each non-in_sync drive, and over-write.
2555  *
2556  * So, for recovery we may have several outstanding complex requests for a
2557  * given address, one for each out-of-sync device.  We model this by allocating
2558  * a number of r10_bio structures, one for each out-of-sync device.
2559  * As we setup these structures, we collect all bio's together into a list
2560  * which we then process collectively to add pages, and then process again
2561  * to pass to generic_make_request.
2562  *
2563  * The r10_bio structures are linked using a borrowed master_bio pointer.
2564  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2565  * has its remaining count decremented to 0, the whole complex operation
2566  * is complete.
2567  *
2568  */
2569 
2570 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2571 			     int *skipped, int go_faster)
2572 {
2573 	struct r10conf *conf = mddev->private;
2574 	struct r10bio *r10_bio;
2575 	struct bio *biolist = NULL, *bio;
2576 	sector_t max_sector, nr_sectors;
2577 	int i;
2578 	int max_sync;
2579 	sector_t sync_blocks;
2580 	sector_t sectors_skipped = 0;
2581 	int chunks_skipped = 0;
2582 
2583 	if (!conf->r10buf_pool)
2584 		if (init_resync(conf))
2585 			return 0;
2586 
2587  skipped:
2588 	max_sector = mddev->dev_sectors;
2589 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2590 		max_sector = mddev->resync_max_sectors;
2591 	if (sector_nr >= max_sector) {
2592 		/* If we aborted, we need to abort the
2593 		 * sync on the 'current' bitmap chucks (there can
2594 		 * be several when recovering multiple devices).
2595 		 * as we may have started syncing it but not finished.
2596 		 * We can find the current address in
2597 		 * mddev->curr_resync, but for recovery,
2598 		 * we need to convert that to several
2599 		 * virtual addresses.
2600 		 */
2601 		if (mddev->curr_resync < max_sector) { /* aborted */
2602 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2603 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2604 						&sync_blocks, 1);
2605 			else for (i=0; i<conf->raid_disks; i++) {
2606 				sector_t sect =
2607 					raid10_find_virt(conf, mddev->curr_resync, i);
2608 				bitmap_end_sync(mddev->bitmap, sect,
2609 						&sync_blocks, 1);
2610 			}
2611 		} else {
2612 			/* completed sync */
2613 			if ((!mddev->bitmap || conf->fullsync)
2614 			    && conf->have_replacement
2615 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2616 				/* Completed a full sync so the replacements
2617 				 * are now fully recovered.
2618 				 */
2619 				for (i = 0; i < conf->raid_disks; i++)
2620 					if (conf->mirrors[i].replacement)
2621 						conf->mirrors[i].replacement
2622 							->recovery_offset
2623 							= MaxSector;
2624 			}
2625 			conf->fullsync = 0;
2626 		}
2627 		bitmap_close_sync(mddev->bitmap);
2628 		close_sync(conf);
2629 		*skipped = 1;
2630 		return sectors_skipped;
2631 	}
2632 	if (chunks_skipped >= conf->raid_disks) {
2633 		/* if there has been nothing to do on any drive,
2634 		 * then there is nothing to do at all..
2635 		 */
2636 		*skipped = 1;
2637 		return (max_sector - sector_nr) + sectors_skipped;
2638 	}
2639 
2640 	if (max_sector > mddev->resync_max)
2641 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2642 
2643 	/* make sure whole request will fit in a chunk - if chunks
2644 	 * are meaningful
2645 	 */
2646 	if (conf->near_copies < conf->raid_disks &&
2647 	    max_sector > (sector_nr | conf->chunk_mask))
2648 		max_sector = (sector_nr | conf->chunk_mask) + 1;
2649 	/*
2650 	 * If there is non-resync activity waiting for us then
2651 	 * put in a delay to throttle resync.
2652 	 */
2653 	if (!go_faster && conf->nr_waiting)
2654 		msleep_interruptible(1000);
2655 
2656 	/* Again, very different code for resync and recovery.
2657 	 * Both must result in an r10bio with a list of bios that
2658 	 * have bi_end_io, bi_sector, bi_bdev set,
2659 	 * and bi_private set to the r10bio.
2660 	 * For recovery, we may actually create several r10bios
2661 	 * with 2 bios in each, that correspond to the bios in the main one.
2662 	 * In this case, the subordinate r10bios link back through a
2663 	 * borrowed master_bio pointer, and the counter in the master
2664 	 * includes a ref from each subordinate.
2665 	 */
2666 	/* First, we decide what to do and set ->bi_end_io
2667 	 * To end_sync_read if we want to read, and
2668 	 * end_sync_write if we will want to write.
2669 	 */
2670 
2671 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2672 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2673 		/* recovery... the complicated one */
2674 		int j;
2675 		r10_bio = NULL;
2676 
2677 		for (i=0 ; i<conf->raid_disks; i++) {
2678 			int still_degraded;
2679 			struct r10bio *rb2;
2680 			sector_t sect;
2681 			int must_sync;
2682 			int any_working;
2683 			struct mirror_info *mirror = &conf->mirrors[i];
2684 
2685 			if ((mirror->rdev == NULL ||
2686 			     test_bit(In_sync, &mirror->rdev->flags))
2687 			    &&
2688 			    (mirror->replacement == NULL ||
2689 			     test_bit(Faulty,
2690 				      &mirror->replacement->flags)))
2691 				continue;
2692 
2693 			still_degraded = 0;
2694 			/* want to reconstruct this device */
2695 			rb2 = r10_bio;
2696 			sect = raid10_find_virt(conf, sector_nr, i);
2697 			/* Unless we are doing a full sync, or a replacement
2698 			 * we only need to recover the block if it is set in
2699 			 * the bitmap
2700 			 */
2701 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2702 						      &sync_blocks, 1);
2703 			if (sync_blocks < max_sync)
2704 				max_sync = sync_blocks;
2705 			if (!must_sync &&
2706 			    mirror->replacement == NULL &&
2707 			    !conf->fullsync) {
2708 				/* yep, skip the sync_blocks here, but don't assume
2709 				 * that there will never be anything to do here
2710 				 */
2711 				chunks_skipped = -1;
2712 				continue;
2713 			}
2714 
2715 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2716 			raise_barrier(conf, rb2 != NULL);
2717 			atomic_set(&r10_bio->remaining, 0);
2718 
2719 			r10_bio->master_bio = (struct bio*)rb2;
2720 			if (rb2)
2721 				atomic_inc(&rb2->remaining);
2722 			r10_bio->mddev = mddev;
2723 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2724 			r10_bio->sector = sect;
2725 
2726 			raid10_find_phys(conf, r10_bio);
2727 
2728 			/* Need to check if the array will still be
2729 			 * degraded
2730 			 */
2731 			for (j=0; j<conf->raid_disks; j++)
2732 				if (conf->mirrors[j].rdev == NULL ||
2733 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2734 					still_degraded = 1;
2735 					break;
2736 				}
2737 
2738 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2739 						      &sync_blocks, still_degraded);
2740 
2741 			any_working = 0;
2742 			for (j=0; j<conf->copies;j++) {
2743 				int k;
2744 				int d = r10_bio->devs[j].devnum;
2745 				sector_t from_addr, to_addr;
2746 				struct md_rdev *rdev;
2747 				sector_t sector, first_bad;
2748 				int bad_sectors;
2749 				if (!conf->mirrors[d].rdev ||
2750 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2751 					continue;
2752 				/* This is where we read from */
2753 				any_working = 1;
2754 				rdev = conf->mirrors[d].rdev;
2755 				sector = r10_bio->devs[j].addr;
2756 
2757 				if (is_badblock(rdev, sector, max_sync,
2758 						&first_bad, &bad_sectors)) {
2759 					if (first_bad > sector)
2760 						max_sync = first_bad - sector;
2761 					else {
2762 						bad_sectors -= (sector
2763 								- first_bad);
2764 						if (max_sync > bad_sectors)
2765 							max_sync = bad_sectors;
2766 						continue;
2767 					}
2768 				}
2769 				bio = r10_bio->devs[0].bio;
2770 				bio->bi_next = biolist;
2771 				biolist = bio;
2772 				bio->bi_private = r10_bio;
2773 				bio->bi_end_io = end_sync_read;
2774 				bio->bi_rw = READ;
2775 				from_addr = r10_bio->devs[j].addr;
2776 				bio->bi_sector = from_addr + rdev->data_offset;
2777 				bio->bi_bdev = rdev->bdev;
2778 				atomic_inc(&rdev->nr_pending);
2779 				/* and we write to 'i' (if not in_sync) */
2780 
2781 				for (k=0; k<conf->copies; k++)
2782 					if (r10_bio->devs[k].devnum == i)
2783 						break;
2784 				BUG_ON(k == conf->copies);
2785 				to_addr = r10_bio->devs[k].addr;
2786 				r10_bio->devs[0].devnum = d;
2787 				r10_bio->devs[0].addr = from_addr;
2788 				r10_bio->devs[1].devnum = i;
2789 				r10_bio->devs[1].addr = to_addr;
2790 
2791 				rdev = mirror->rdev;
2792 				if (!test_bit(In_sync, &rdev->flags)) {
2793 					bio = r10_bio->devs[1].bio;
2794 					bio->bi_next = biolist;
2795 					biolist = bio;
2796 					bio->bi_private = r10_bio;
2797 					bio->bi_end_io = end_sync_write;
2798 					bio->bi_rw = WRITE;
2799 					bio->bi_sector = to_addr
2800 						+ rdev->data_offset;
2801 					bio->bi_bdev = rdev->bdev;
2802 					atomic_inc(&r10_bio->remaining);
2803 				} else
2804 					r10_bio->devs[1].bio->bi_end_io = NULL;
2805 
2806 				/* and maybe write to replacement */
2807 				bio = r10_bio->devs[1].repl_bio;
2808 				if (bio)
2809 					bio->bi_end_io = NULL;
2810 				rdev = mirror->replacement;
2811 				/* Note: if rdev != NULL, then bio
2812 				 * cannot be NULL as r10buf_pool_alloc will
2813 				 * have allocated it.
2814 				 * So the second test here is pointless.
2815 				 * But it keeps semantic-checkers happy, and
2816 				 * this comment keeps human reviewers
2817 				 * happy.
2818 				 */
2819 				if (rdev == NULL || bio == NULL ||
2820 				    test_bit(Faulty, &rdev->flags))
2821 					break;
2822 				bio->bi_next = biolist;
2823 				biolist = bio;
2824 				bio->bi_private = r10_bio;
2825 				bio->bi_end_io = end_sync_write;
2826 				bio->bi_rw = WRITE;
2827 				bio->bi_sector = to_addr + rdev->data_offset;
2828 				bio->bi_bdev = rdev->bdev;
2829 				atomic_inc(&r10_bio->remaining);
2830 				break;
2831 			}
2832 			if (j == conf->copies) {
2833 				/* Cannot recover, so abort the recovery or
2834 				 * record a bad block */
2835 				put_buf(r10_bio);
2836 				if (rb2)
2837 					atomic_dec(&rb2->remaining);
2838 				r10_bio = rb2;
2839 				if (any_working) {
2840 					/* problem is that there are bad blocks
2841 					 * on other device(s)
2842 					 */
2843 					int k;
2844 					for (k = 0; k < conf->copies; k++)
2845 						if (r10_bio->devs[k].devnum == i)
2846 							break;
2847 					if (!test_bit(In_sync,
2848 						      &mirror->rdev->flags)
2849 					    && !rdev_set_badblocks(
2850 						    mirror->rdev,
2851 						    r10_bio->devs[k].addr,
2852 						    max_sync, 0))
2853 						any_working = 0;
2854 					if (mirror->replacement &&
2855 					    !rdev_set_badblocks(
2856 						    mirror->replacement,
2857 						    r10_bio->devs[k].addr,
2858 						    max_sync, 0))
2859 						any_working = 0;
2860 				}
2861 				if (!any_working)  {
2862 					if (!test_and_set_bit(MD_RECOVERY_INTR,
2863 							      &mddev->recovery))
2864 						printk(KERN_INFO "md/raid10:%s: insufficient "
2865 						       "working devices for recovery.\n",
2866 						       mdname(mddev));
2867 					mirror->recovery_disabled
2868 						= mddev->recovery_disabled;
2869 				}
2870 				break;
2871 			}
2872 		}
2873 		if (biolist == NULL) {
2874 			while (r10_bio) {
2875 				struct r10bio *rb2 = r10_bio;
2876 				r10_bio = (struct r10bio*) rb2->master_bio;
2877 				rb2->master_bio = NULL;
2878 				put_buf(rb2);
2879 			}
2880 			goto giveup;
2881 		}
2882 	} else {
2883 		/* resync. Schedule a read for every block at this virt offset */
2884 		int count = 0;
2885 
2886 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2887 
2888 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2889 				       &sync_blocks, mddev->degraded) &&
2890 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2891 						 &mddev->recovery)) {
2892 			/* We can skip this block */
2893 			*skipped = 1;
2894 			return sync_blocks + sectors_skipped;
2895 		}
2896 		if (sync_blocks < max_sync)
2897 			max_sync = sync_blocks;
2898 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2899 
2900 		r10_bio->mddev = mddev;
2901 		atomic_set(&r10_bio->remaining, 0);
2902 		raise_barrier(conf, 0);
2903 		conf->next_resync = sector_nr;
2904 
2905 		r10_bio->master_bio = NULL;
2906 		r10_bio->sector = sector_nr;
2907 		set_bit(R10BIO_IsSync, &r10_bio->state);
2908 		raid10_find_phys(conf, r10_bio);
2909 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2910 
2911 		for (i=0; i<conf->copies; i++) {
2912 			int d = r10_bio->devs[i].devnum;
2913 			sector_t first_bad, sector;
2914 			int bad_sectors;
2915 
2916 			if (r10_bio->devs[i].repl_bio)
2917 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
2918 
2919 			bio = r10_bio->devs[i].bio;
2920 			bio->bi_end_io = NULL;
2921 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2922 			if (conf->mirrors[d].rdev == NULL ||
2923 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2924 				continue;
2925 			sector = r10_bio->devs[i].addr;
2926 			if (is_badblock(conf->mirrors[d].rdev,
2927 					sector, max_sync,
2928 					&first_bad, &bad_sectors)) {
2929 				if (first_bad > sector)
2930 					max_sync = first_bad - sector;
2931 				else {
2932 					bad_sectors -= (sector - first_bad);
2933 					if (max_sync > bad_sectors)
2934 						max_sync = max_sync;
2935 					continue;
2936 				}
2937 			}
2938 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2939 			atomic_inc(&r10_bio->remaining);
2940 			bio->bi_next = biolist;
2941 			biolist = bio;
2942 			bio->bi_private = r10_bio;
2943 			bio->bi_end_io = end_sync_read;
2944 			bio->bi_rw = READ;
2945 			bio->bi_sector = sector +
2946 				conf->mirrors[d].rdev->data_offset;
2947 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2948 			count++;
2949 
2950 			if (conf->mirrors[d].replacement == NULL ||
2951 			    test_bit(Faulty,
2952 				     &conf->mirrors[d].replacement->flags))
2953 				continue;
2954 
2955 			/* Need to set up for writing to the replacement */
2956 			bio = r10_bio->devs[i].repl_bio;
2957 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2958 
2959 			sector = r10_bio->devs[i].addr;
2960 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2961 			bio->bi_next = biolist;
2962 			biolist = bio;
2963 			bio->bi_private = r10_bio;
2964 			bio->bi_end_io = end_sync_write;
2965 			bio->bi_rw = WRITE;
2966 			bio->bi_sector = sector +
2967 				conf->mirrors[d].replacement->data_offset;
2968 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
2969 			count++;
2970 		}
2971 
2972 		if (count < 2) {
2973 			for (i=0; i<conf->copies; i++) {
2974 				int d = r10_bio->devs[i].devnum;
2975 				if (r10_bio->devs[i].bio->bi_end_io)
2976 					rdev_dec_pending(conf->mirrors[d].rdev,
2977 							 mddev);
2978 				if (r10_bio->devs[i].repl_bio &&
2979 				    r10_bio->devs[i].repl_bio->bi_end_io)
2980 					rdev_dec_pending(
2981 						conf->mirrors[d].replacement,
2982 						mddev);
2983 			}
2984 			put_buf(r10_bio);
2985 			biolist = NULL;
2986 			goto giveup;
2987 		}
2988 	}
2989 
2990 	for (bio = biolist; bio ; bio=bio->bi_next) {
2991 
2992 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2993 		if (bio->bi_end_io)
2994 			bio->bi_flags |= 1 << BIO_UPTODATE;
2995 		bio->bi_vcnt = 0;
2996 		bio->bi_idx = 0;
2997 		bio->bi_phys_segments = 0;
2998 		bio->bi_size = 0;
2999 	}
3000 
3001 	nr_sectors = 0;
3002 	if (sector_nr + max_sync < max_sector)
3003 		max_sector = sector_nr + max_sync;
3004 	do {
3005 		struct page *page;
3006 		int len = PAGE_SIZE;
3007 		if (sector_nr + (len>>9) > max_sector)
3008 			len = (max_sector - sector_nr) << 9;
3009 		if (len == 0)
3010 			break;
3011 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3012 			struct bio *bio2;
3013 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3014 			if (bio_add_page(bio, page, len, 0))
3015 				continue;
3016 
3017 			/* stop here */
3018 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3019 			for (bio2 = biolist;
3020 			     bio2 && bio2 != bio;
3021 			     bio2 = bio2->bi_next) {
3022 				/* remove last page from this bio */
3023 				bio2->bi_vcnt--;
3024 				bio2->bi_size -= len;
3025 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3026 			}
3027 			goto bio_full;
3028 		}
3029 		nr_sectors += len>>9;
3030 		sector_nr += len>>9;
3031 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3032  bio_full:
3033 	r10_bio->sectors = nr_sectors;
3034 
3035 	while (biolist) {
3036 		bio = biolist;
3037 		biolist = biolist->bi_next;
3038 
3039 		bio->bi_next = NULL;
3040 		r10_bio = bio->bi_private;
3041 		r10_bio->sectors = nr_sectors;
3042 
3043 		if (bio->bi_end_io == end_sync_read) {
3044 			md_sync_acct(bio->bi_bdev, nr_sectors);
3045 			generic_make_request(bio);
3046 		}
3047 	}
3048 
3049 	if (sectors_skipped)
3050 		/* pretend they weren't skipped, it makes
3051 		 * no important difference in this case
3052 		 */
3053 		md_done_sync(mddev, sectors_skipped, 1);
3054 
3055 	return sectors_skipped + nr_sectors;
3056  giveup:
3057 	/* There is nowhere to write, so all non-sync
3058 	 * drives must be failed or in resync, all drives
3059 	 * have a bad block, so try the next chunk...
3060 	 */
3061 	if (sector_nr + max_sync < max_sector)
3062 		max_sector = sector_nr + max_sync;
3063 
3064 	sectors_skipped += (max_sector - sector_nr);
3065 	chunks_skipped ++;
3066 	sector_nr = max_sector;
3067 	goto skipped;
3068 }
3069 
3070 static sector_t
3071 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3072 {
3073 	sector_t size;
3074 	struct r10conf *conf = mddev->private;
3075 
3076 	if (!raid_disks)
3077 		raid_disks = conf->raid_disks;
3078 	if (!sectors)
3079 		sectors = conf->dev_sectors;
3080 
3081 	size = sectors >> conf->chunk_shift;
3082 	sector_div(size, conf->far_copies);
3083 	size = size * raid_disks;
3084 	sector_div(size, conf->near_copies);
3085 
3086 	return size << conf->chunk_shift;
3087 }
3088 
3089 
3090 static struct r10conf *setup_conf(struct mddev *mddev)
3091 {
3092 	struct r10conf *conf = NULL;
3093 	int nc, fc, fo;
3094 	sector_t stride, size;
3095 	int err = -EINVAL;
3096 
3097 	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
3098 	    !is_power_of_2(mddev->new_chunk_sectors)) {
3099 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3100 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3101 		       mdname(mddev), PAGE_SIZE);
3102 		goto out;
3103 	}
3104 
3105 	nc = mddev->new_layout & 255;
3106 	fc = (mddev->new_layout >> 8) & 255;
3107 	fo = mddev->new_layout & (1<<16);
3108 
3109 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
3110 	    (mddev->new_layout >> 17)) {
3111 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3112 		       mdname(mddev), mddev->new_layout);
3113 		goto out;
3114 	}
3115 
3116 	err = -ENOMEM;
3117 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3118 	if (!conf)
3119 		goto out;
3120 
3121 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
3122 				GFP_KERNEL);
3123 	if (!conf->mirrors)
3124 		goto out;
3125 
3126 	conf->tmppage = alloc_page(GFP_KERNEL);
3127 	if (!conf->tmppage)
3128 		goto out;
3129 
3130 
3131 	conf->raid_disks = mddev->raid_disks;
3132 	conf->near_copies = nc;
3133 	conf->far_copies = fc;
3134 	conf->copies = nc*fc;
3135 	conf->far_offset = fo;
3136 	conf->chunk_mask = mddev->new_chunk_sectors - 1;
3137 	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
3138 
3139 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3140 					   r10bio_pool_free, conf);
3141 	if (!conf->r10bio_pool)
3142 		goto out;
3143 
3144 	size = mddev->dev_sectors >> conf->chunk_shift;
3145 	sector_div(size, fc);
3146 	size = size * conf->raid_disks;
3147 	sector_div(size, nc);
3148 	/* 'size' is now the number of chunks in the array */
3149 	/* calculate "used chunks per device" in 'stride' */
3150 	stride = size * conf->copies;
3151 
3152 	/* We need to round up when dividing by raid_disks to
3153 	 * get the stride size.
3154 	 */
3155 	stride += conf->raid_disks - 1;
3156 	sector_div(stride, conf->raid_disks);
3157 
3158 	conf->dev_sectors = stride << conf->chunk_shift;
3159 
3160 	if (fo)
3161 		stride = 1;
3162 	else
3163 		sector_div(stride, fc);
3164 	conf->stride = stride << conf->chunk_shift;
3165 
3166 
3167 	spin_lock_init(&conf->device_lock);
3168 	INIT_LIST_HEAD(&conf->retry_list);
3169 
3170 	spin_lock_init(&conf->resync_lock);
3171 	init_waitqueue_head(&conf->wait_barrier);
3172 
3173 	conf->thread = md_register_thread(raid10d, mddev, NULL);
3174 	if (!conf->thread)
3175 		goto out;
3176 
3177 	conf->mddev = mddev;
3178 	return conf;
3179 
3180  out:
3181 	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3182 	       mdname(mddev));
3183 	if (conf) {
3184 		if (conf->r10bio_pool)
3185 			mempool_destroy(conf->r10bio_pool);
3186 		kfree(conf->mirrors);
3187 		safe_put_page(conf->tmppage);
3188 		kfree(conf);
3189 	}
3190 	return ERR_PTR(err);
3191 }
3192 
3193 static int run(struct mddev *mddev)
3194 {
3195 	struct r10conf *conf;
3196 	int i, disk_idx, chunk_size;
3197 	struct mirror_info *disk;
3198 	struct md_rdev *rdev;
3199 	sector_t size;
3200 
3201 	/*
3202 	 * copy the already verified devices into our private RAID10
3203 	 * bookkeeping area. [whatever we allocate in run(),
3204 	 * should be freed in stop()]
3205 	 */
3206 
3207 	if (mddev->private == NULL) {
3208 		conf = setup_conf(mddev);
3209 		if (IS_ERR(conf))
3210 			return PTR_ERR(conf);
3211 		mddev->private = conf;
3212 	}
3213 	conf = mddev->private;
3214 	if (!conf)
3215 		goto out;
3216 
3217 	mddev->thread = conf->thread;
3218 	conf->thread = NULL;
3219 
3220 	chunk_size = mddev->chunk_sectors << 9;
3221 	blk_queue_io_min(mddev->queue, chunk_size);
3222 	if (conf->raid_disks % conf->near_copies)
3223 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
3224 	else
3225 		blk_queue_io_opt(mddev->queue, chunk_size *
3226 				 (conf->raid_disks / conf->near_copies));
3227 
3228 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3229 
3230 		disk_idx = rdev->raid_disk;
3231 		if (disk_idx >= conf->raid_disks
3232 		    || disk_idx < 0)
3233 			continue;
3234 		disk = conf->mirrors + disk_idx;
3235 
3236 		if (test_bit(Replacement, &rdev->flags)) {
3237 			if (disk->replacement)
3238 				goto out_free_conf;
3239 			disk->replacement = rdev;
3240 		} else {
3241 			if (disk->rdev)
3242 				goto out_free_conf;
3243 			disk->rdev = rdev;
3244 		}
3245 
3246 		disk->rdev = rdev;
3247 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3248 				  rdev->data_offset << 9);
3249 		/* as we don't honour merge_bvec_fn, we must never risk
3250 		 * violating it, so limit max_segments to 1 lying
3251 		 * within a single page.
3252 		 */
3253 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
3254 			blk_queue_max_segments(mddev->queue, 1);
3255 			blk_queue_segment_boundary(mddev->queue,
3256 						   PAGE_CACHE_SIZE - 1);
3257 		}
3258 
3259 		disk->head_position = 0;
3260 	}
3261 	/* need to check that every block has at least one working mirror */
3262 	if (!enough(conf, -1)) {
3263 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3264 		       mdname(mddev));
3265 		goto out_free_conf;
3266 	}
3267 
3268 	mddev->degraded = 0;
3269 	for (i = 0; i < conf->raid_disks; i++) {
3270 
3271 		disk = conf->mirrors + i;
3272 
3273 		if (!disk->rdev && disk->replacement) {
3274 			/* The replacement is all we have - use it */
3275 			disk->rdev = disk->replacement;
3276 			disk->replacement = NULL;
3277 			clear_bit(Replacement, &disk->rdev->flags);
3278 		}
3279 
3280 		if (!disk->rdev ||
3281 		    !test_bit(In_sync, &disk->rdev->flags)) {
3282 			disk->head_position = 0;
3283 			mddev->degraded++;
3284 			if (disk->rdev)
3285 				conf->fullsync = 1;
3286 		}
3287 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3288 	}
3289 
3290 	if (mddev->recovery_cp != MaxSector)
3291 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3292 		       " -- starting background reconstruction\n",
3293 		       mdname(mddev));
3294 	printk(KERN_INFO
3295 		"md/raid10:%s: active with %d out of %d devices\n",
3296 		mdname(mddev), conf->raid_disks - mddev->degraded,
3297 		conf->raid_disks);
3298 	/*
3299 	 * Ok, everything is just fine now
3300 	 */
3301 	mddev->dev_sectors = conf->dev_sectors;
3302 	size = raid10_size(mddev, 0, 0);
3303 	md_set_array_sectors(mddev, size);
3304 	mddev->resync_max_sectors = size;
3305 
3306 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3307 	mddev->queue->backing_dev_info.congested_data = mddev;
3308 
3309 	/* Calculate max read-ahead size.
3310 	 * We need to readahead at least twice a whole stripe....
3311 	 * maybe...
3312 	 */
3313 	{
3314 		int stripe = conf->raid_disks *
3315 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3316 		stripe /= conf->near_copies;
3317 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3318 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3319 	}
3320 
3321 	if (conf->near_copies < conf->raid_disks)
3322 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3323 
3324 	if (md_integrity_register(mddev))
3325 		goto out_free_conf;
3326 
3327 	return 0;
3328 
3329 out_free_conf:
3330 	md_unregister_thread(&mddev->thread);
3331 	if (conf->r10bio_pool)
3332 		mempool_destroy(conf->r10bio_pool);
3333 	safe_put_page(conf->tmppage);
3334 	kfree(conf->mirrors);
3335 	kfree(conf);
3336 	mddev->private = NULL;
3337 out:
3338 	return -EIO;
3339 }
3340 
3341 static int stop(struct mddev *mddev)
3342 {
3343 	struct r10conf *conf = mddev->private;
3344 
3345 	raise_barrier(conf, 0);
3346 	lower_barrier(conf);
3347 
3348 	md_unregister_thread(&mddev->thread);
3349 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3350 	if (conf->r10bio_pool)
3351 		mempool_destroy(conf->r10bio_pool);
3352 	kfree(conf->mirrors);
3353 	kfree(conf);
3354 	mddev->private = NULL;
3355 	return 0;
3356 }
3357 
3358 static void raid10_quiesce(struct mddev *mddev, int state)
3359 {
3360 	struct r10conf *conf = mddev->private;
3361 
3362 	switch(state) {
3363 	case 1:
3364 		raise_barrier(conf, 0);
3365 		break;
3366 	case 0:
3367 		lower_barrier(conf);
3368 		break;
3369 	}
3370 }
3371 
3372 static void *raid10_takeover_raid0(struct mddev *mddev)
3373 {
3374 	struct md_rdev *rdev;
3375 	struct r10conf *conf;
3376 
3377 	if (mddev->degraded > 0) {
3378 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3379 		       mdname(mddev));
3380 		return ERR_PTR(-EINVAL);
3381 	}
3382 
3383 	/* Set new parameters */
3384 	mddev->new_level = 10;
3385 	/* new layout: far_copies = 1, near_copies = 2 */
3386 	mddev->new_layout = (1<<8) + 2;
3387 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3388 	mddev->delta_disks = mddev->raid_disks;
3389 	mddev->raid_disks *= 2;
3390 	/* make sure it will be not marked as dirty */
3391 	mddev->recovery_cp = MaxSector;
3392 
3393 	conf = setup_conf(mddev);
3394 	if (!IS_ERR(conf)) {
3395 		list_for_each_entry(rdev, &mddev->disks, same_set)
3396 			if (rdev->raid_disk >= 0)
3397 				rdev->new_raid_disk = rdev->raid_disk * 2;
3398 		conf->barrier = 1;
3399 	}
3400 
3401 	return conf;
3402 }
3403 
3404 static void *raid10_takeover(struct mddev *mddev)
3405 {
3406 	struct r0conf *raid0_conf;
3407 
3408 	/* raid10 can take over:
3409 	 *  raid0 - providing it has only two drives
3410 	 */
3411 	if (mddev->level == 0) {
3412 		/* for raid0 takeover only one zone is supported */
3413 		raid0_conf = mddev->private;
3414 		if (raid0_conf->nr_strip_zones > 1) {
3415 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3416 			       " with more than one zone.\n",
3417 			       mdname(mddev));
3418 			return ERR_PTR(-EINVAL);
3419 		}
3420 		return raid10_takeover_raid0(mddev);
3421 	}
3422 	return ERR_PTR(-EINVAL);
3423 }
3424 
3425 static struct md_personality raid10_personality =
3426 {
3427 	.name		= "raid10",
3428 	.level		= 10,
3429 	.owner		= THIS_MODULE,
3430 	.make_request	= make_request,
3431 	.run		= run,
3432 	.stop		= stop,
3433 	.status		= status,
3434 	.error_handler	= error,
3435 	.hot_add_disk	= raid10_add_disk,
3436 	.hot_remove_disk= raid10_remove_disk,
3437 	.spare_active	= raid10_spare_active,
3438 	.sync_request	= sync_request,
3439 	.quiesce	= raid10_quiesce,
3440 	.size		= raid10_size,
3441 	.takeover	= raid10_takeover,
3442 };
3443 
3444 static int __init raid_init(void)
3445 {
3446 	return register_md_personality(&raid10_personality);
3447 }
3448 
3449 static void raid_exit(void)
3450 {
3451 	unregister_md_personality(&raid10_personality);
3452 }
3453 
3454 module_init(raid_init);
3455 module_exit(raid_exit);
3456 MODULE_LICENSE("GPL");
3457 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3458 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3459 MODULE_ALIAS("md-raid10");
3460 MODULE_ALIAS("md-level-10");
3461 
3462 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3463