1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include "md.h" 28 #include "raid10.h" 29 #include "raid0.h" 30 #include "bitmap.h" 31 32 /* 33 * RAID10 provides a combination of RAID0 and RAID1 functionality. 34 * The layout of data is defined by 35 * chunk_size 36 * raid_disks 37 * near_copies (stored in low byte of layout) 38 * far_copies (stored in second byte of layout) 39 * far_offset (stored in bit 16 of layout ) 40 * 41 * The data to be stored is divided into chunks using chunksize. 42 * Each device is divided into far_copies sections. 43 * In each section, chunks are laid out in a style similar to raid0, but 44 * near_copies copies of each chunk is stored (each on a different drive). 45 * The starting device for each section is offset near_copies from the starting 46 * device of the previous section. 47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 48 * drive. 49 * near_copies and far_copies must be at least one, and their product is at most 50 * raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of be very far apart 54 * on disk, there are adjacent stripes. 55 */ 56 57 /* 58 * Number of guaranteed r10bios in case of extreme VM load: 59 */ 60 #define NR_RAID10_BIOS 256 61 62 /* When there are this many requests queue to be written by 63 * the raid10 thread, we become 'congested' to provide back-pressure 64 * for writeback. 65 */ 66 static int max_queued_requests = 1024; 67 68 static void allow_barrier(struct r10conf *conf); 69 static void lower_barrier(struct r10conf *conf); 70 71 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 72 { 73 struct r10conf *conf = data; 74 int size = offsetof(struct r10bio, devs[conf->copies]); 75 76 /* allocate a r10bio with room for raid_disks entries in the 77 * bios array */ 78 return kzalloc(size, gfp_flags); 79 } 80 81 static void r10bio_pool_free(void *r10_bio, void *data) 82 { 83 kfree(r10_bio); 84 } 85 86 /* Maximum size of each resync request */ 87 #define RESYNC_BLOCK_SIZE (64*1024) 88 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 89 /* amount of memory to reserve for resync requests */ 90 #define RESYNC_WINDOW (1024*1024) 91 /* maximum number of concurrent requests, memory permitting */ 92 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 93 94 /* 95 * When performing a resync, we need to read and compare, so 96 * we need as many pages are there are copies. 97 * When performing a recovery, we need 2 bios, one for read, 98 * one for write (we recover only one drive per r10buf) 99 * 100 */ 101 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 102 { 103 struct r10conf *conf = data; 104 struct page *page; 105 struct r10bio *r10_bio; 106 struct bio *bio; 107 int i, j; 108 int nalloc; 109 110 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 111 if (!r10_bio) 112 return NULL; 113 114 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 115 nalloc = conf->copies; /* resync */ 116 else 117 nalloc = 2; /* recovery */ 118 119 /* 120 * Allocate bios. 121 */ 122 for (j = nalloc ; j-- ; ) { 123 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 124 if (!bio) 125 goto out_free_bio; 126 r10_bio->devs[j].bio = bio; 127 if (!conf->have_replacement) 128 continue; 129 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 130 if (!bio) 131 goto out_free_bio; 132 r10_bio->devs[j].repl_bio = bio; 133 } 134 /* 135 * Allocate RESYNC_PAGES data pages and attach them 136 * where needed. 137 */ 138 for (j = 0 ; j < nalloc; j++) { 139 struct bio *rbio = r10_bio->devs[j].repl_bio; 140 bio = r10_bio->devs[j].bio; 141 for (i = 0; i < RESYNC_PAGES; i++) { 142 if (j == 1 && !test_bit(MD_RECOVERY_SYNC, 143 &conf->mddev->recovery)) { 144 /* we can share bv_page's during recovery */ 145 struct bio *rbio = r10_bio->devs[0].bio; 146 page = rbio->bi_io_vec[i].bv_page; 147 get_page(page); 148 } else 149 page = alloc_page(gfp_flags); 150 if (unlikely(!page)) 151 goto out_free_pages; 152 153 bio->bi_io_vec[i].bv_page = page; 154 if (rbio) 155 rbio->bi_io_vec[i].bv_page = page; 156 } 157 } 158 159 return r10_bio; 160 161 out_free_pages: 162 for ( ; i > 0 ; i--) 163 safe_put_page(bio->bi_io_vec[i-1].bv_page); 164 while (j--) 165 for (i = 0; i < RESYNC_PAGES ; i++) 166 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 167 j = -1; 168 out_free_bio: 169 while (++j < nalloc) { 170 bio_put(r10_bio->devs[j].bio); 171 if (r10_bio->devs[j].repl_bio) 172 bio_put(r10_bio->devs[j].repl_bio); 173 } 174 r10bio_pool_free(r10_bio, conf); 175 return NULL; 176 } 177 178 static void r10buf_pool_free(void *__r10_bio, void *data) 179 { 180 int i; 181 struct r10conf *conf = data; 182 struct r10bio *r10bio = __r10_bio; 183 int j; 184 185 for (j=0; j < conf->copies; j++) { 186 struct bio *bio = r10bio->devs[j].bio; 187 if (bio) { 188 for (i = 0; i < RESYNC_PAGES; i++) { 189 safe_put_page(bio->bi_io_vec[i].bv_page); 190 bio->bi_io_vec[i].bv_page = NULL; 191 } 192 bio_put(bio); 193 } 194 bio = r10bio->devs[j].repl_bio; 195 if (bio) 196 bio_put(bio); 197 } 198 r10bio_pool_free(r10bio, conf); 199 } 200 201 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 202 { 203 int i; 204 205 for (i = 0; i < conf->copies; i++) { 206 struct bio **bio = & r10_bio->devs[i].bio; 207 if (!BIO_SPECIAL(*bio)) 208 bio_put(*bio); 209 *bio = NULL; 210 bio = &r10_bio->devs[i].repl_bio; 211 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 212 bio_put(*bio); 213 *bio = NULL; 214 } 215 } 216 217 static void free_r10bio(struct r10bio *r10_bio) 218 { 219 struct r10conf *conf = r10_bio->mddev->private; 220 221 put_all_bios(conf, r10_bio); 222 mempool_free(r10_bio, conf->r10bio_pool); 223 } 224 225 static void put_buf(struct r10bio *r10_bio) 226 { 227 struct r10conf *conf = r10_bio->mddev->private; 228 229 mempool_free(r10_bio, conf->r10buf_pool); 230 231 lower_barrier(conf); 232 } 233 234 static void reschedule_retry(struct r10bio *r10_bio) 235 { 236 unsigned long flags; 237 struct mddev *mddev = r10_bio->mddev; 238 struct r10conf *conf = mddev->private; 239 240 spin_lock_irqsave(&conf->device_lock, flags); 241 list_add(&r10_bio->retry_list, &conf->retry_list); 242 conf->nr_queued ++; 243 spin_unlock_irqrestore(&conf->device_lock, flags); 244 245 /* wake up frozen array... */ 246 wake_up(&conf->wait_barrier); 247 248 md_wakeup_thread(mddev->thread); 249 } 250 251 /* 252 * raid_end_bio_io() is called when we have finished servicing a mirrored 253 * operation and are ready to return a success/failure code to the buffer 254 * cache layer. 255 */ 256 static void raid_end_bio_io(struct r10bio *r10_bio) 257 { 258 struct bio *bio = r10_bio->master_bio; 259 int done; 260 struct r10conf *conf = r10_bio->mddev->private; 261 262 if (bio->bi_phys_segments) { 263 unsigned long flags; 264 spin_lock_irqsave(&conf->device_lock, flags); 265 bio->bi_phys_segments--; 266 done = (bio->bi_phys_segments == 0); 267 spin_unlock_irqrestore(&conf->device_lock, flags); 268 } else 269 done = 1; 270 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 271 clear_bit(BIO_UPTODATE, &bio->bi_flags); 272 if (done) { 273 bio_endio(bio, 0); 274 /* 275 * Wake up any possible resync thread that waits for the device 276 * to go idle. 277 */ 278 allow_barrier(conf); 279 } 280 free_r10bio(r10_bio); 281 } 282 283 /* 284 * Update disk head position estimator based on IRQ completion info. 285 */ 286 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 287 { 288 struct r10conf *conf = r10_bio->mddev->private; 289 290 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 291 r10_bio->devs[slot].addr + (r10_bio->sectors); 292 } 293 294 /* 295 * Find the disk number which triggered given bio 296 */ 297 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 298 struct bio *bio, int *slotp, int *replp) 299 { 300 int slot; 301 int repl = 0; 302 303 for (slot = 0; slot < conf->copies; slot++) { 304 if (r10_bio->devs[slot].bio == bio) 305 break; 306 if (r10_bio->devs[slot].repl_bio == bio) { 307 repl = 1; 308 break; 309 } 310 } 311 312 BUG_ON(slot == conf->copies); 313 update_head_pos(slot, r10_bio); 314 315 if (slotp) 316 *slotp = slot; 317 if (replp) 318 *replp = repl; 319 return r10_bio->devs[slot].devnum; 320 } 321 322 static void raid10_end_read_request(struct bio *bio, int error) 323 { 324 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 325 struct r10bio *r10_bio = bio->bi_private; 326 int slot, dev; 327 struct md_rdev *rdev; 328 struct r10conf *conf = r10_bio->mddev->private; 329 330 331 slot = r10_bio->read_slot; 332 dev = r10_bio->devs[slot].devnum; 333 rdev = r10_bio->devs[slot].rdev; 334 /* 335 * this branch is our 'one mirror IO has finished' event handler: 336 */ 337 update_head_pos(slot, r10_bio); 338 339 if (uptodate) { 340 /* 341 * Set R10BIO_Uptodate in our master bio, so that 342 * we will return a good error code to the higher 343 * levels even if IO on some other mirrored buffer fails. 344 * 345 * The 'master' represents the composite IO operation to 346 * user-side. So if something waits for IO, then it will 347 * wait for the 'master' bio. 348 */ 349 set_bit(R10BIO_Uptodate, &r10_bio->state); 350 raid_end_bio_io(r10_bio); 351 rdev_dec_pending(rdev, conf->mddev); 352 } else { 353 /* 354 * oops, read error - keep the refcount on the rdev 355 */ 356 char b[BDEVNAME_SIZE]; 357 printk_ratelimited(KERN_ERR 358 "md/raid10:%s: %s: rescheduling sector %llu\n", 359 mdname(conf->mddev), 360 bdevname(rdev->bdev, b), 361 (unsigned long long)r10_bio->sector); 362 set_bit(R10BIO_ReadError, &r10_bio->state); 363 reschedule_retry(r10_bio); 364 } 365 } 366 367 static void close_write(struct r10bio *r10_bio) 368 { 369 /* clear the bitmap if all writes complete successfully */ 370 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 371 r10_bio->sectors, 372 !test_bit(R10BIO_Degraded, &r10_bio->state), 373 0); 374 md_write_end(r10_bio->mddev); 375 } 376 377 static void one_write_done(struct r10bio *r10_bio) 378 { 379 if (atomic_dec_and_test(&r10_bio->remaining)) { 380 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 381 reschedule_retry(r10_bio); 382 else { 383 close_write(r10_bio); 384 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 385 reschedule_retry(r10_bio); 386 else 387 raid_end_bio_io(r10_bio); 388 } 389 } 390 } 391 392 static void raid10_end_write_request(struct bio *bio, int error) 393 { 394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 395 struct r10bio *r10_bio = bio->bi_private; 396 int dev; 397 int dec_rdev = 1; 398 struct r10conf *conf = r10_bio->mddev->private; 399 int slot, repl; 400 struct md_rdev *rdev = NULL; 401 402 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 403 404 if (repl) 405 rdev = conf->mirrors[dev].replacement; 406 if (!rdev) { 407 smp_rmb(); 408 repl = 0; 409 rdev = conf->mirrors[dev].rdev; 410 } 411 /* 412 * this branch is our 'one mirror IO has finished' event handler: 413 */ 414 if (!uptodate) { 415 if (repl) 416 /* Never record new bad blocks to replacement, 417 * just fail it. 418 */ 419 md_error(rdev->mddev, rdev); 420 else { 421 set_bit(WriteErrorSeen, &rdev->flags); 422 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 423 set_bit(MD_RECOVERY_NEEDED, 424 &rdev->mddev->recovery); 425 set_bit(R10BIO_WriteError, &r10_bio->state); 426 dec_rdev = 0; 427 } 428 } else { 429 /* 430 * Set R10BIO_Uptodate in our master bio, so that 431 * we will return a good error code for to the higher 432 * levels even if IO on some other mirrored buffer fails. 433 * 434 * The 'master' represents the composite IO operation to 435 * user-side. So if something waits for IO, then it will 436 * wait for the 'master' bio. 437 */ 438 sector_t first_bad; 439 int bad_sectors; 440 441 set_bit(R10BIO_Uptodate, &r10_bio->state); 442 443 /* Maybe we can clear some bad blocks. */ 444 if (is_badblock(rdev, 445 r10_bio->devs[slot].addr, 446 r10_bio->sectors, 447 &first_bad, &bad_sectors)) { 448 bio_put(bio); 449 if (repl) 450 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 451 else 452 r10_bio->devs[slot].bio = IO_MADE_GOOD; 453 dec_rdev = 0; 454 set_bit(R10BIO_MadeGood, &r10_bio->state); 455 } 456 } 457 458 /* 459 * 460 * Let's see if all mirrored write operations have finished 461 * already. 462 */ 463 one_write_done(r10_bio); 464 if (dec_rdev) 465 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 466 } 467 468 /* 469 * RAID10 layout manager 470 * As well as the chunksize and raid_disks count, there are two 471 * parameters: near_copies and far_copies. 472 * near_copies * far_copies must be <= raid_disks. 473 * Normally one of these will be 1. 474 * If both are 1, we get raid0. 475 * If near_copies == raid_disks, we get raid1. 476 * 477 * Chunks are laid out in raid0 style with near_copies copies of the 478 * first chunk, followed by near_copies copies of the next chunk and 479 * so on. 480 * If far_copies > 1, then after 1/far_copies of the array has been assigned 481 * as described above, we start again with a device offset of near_copies. 482 * So we effectively have another copy of the whole array further down all 483 * the drives, but with blocks on different drives. 484 * With this layout, and block is never stored twice on the one device. 485 * 486 * raid10_find_phys finds the sector offset of a given virtual sector 487 * on each device that it is on. 488 * 489 * raid10_find_virt does the reverse mapping, from a device and a 490 * sector offset to a virtual address 491 */ 492 493 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 494 { 495 int n,f; 496 sector_t sector; 497 sector_t chunk; 498 sector_t stripe; 499 int dev; 500 501 int slot = 0; 502 503 /* now calculate first sector/dev */ 504 chunk = r10bio->sector >> conf->chunk_shift; 505 sector = r10bio->sector & conf->chunk_mask; 506 507 chunk *= conf->near_copies; 508 stripe = chunk; 509 dev = sector_div(stripe, conf->raid_disks); 510 if (conf->far_offset) 511 stripe *= conf->far_copies; 512 513 sector += stripe << conf->chunk_shift; 514 515 /* and calculate all the others */ 516 for (n=0; n < conf->near_copies; n++) { 517 int d = dev; 518 sector_t s = sector; 519 r10bio->devs[slot].addr = sector; 520 r10bio->devs[slot].devnum = d; 521 slot++; 522 523 for (f = 1; f < conf->far_copies; f++) { 524 d += conf->near_copies; 525 if (d >= conf->raid_disks) 526 d -= conf->raid_disks; 527 s += conf->stride; 528 r10bio->devs[slot].devnum = d; 529 r10bio->devs[slot].addr = s; 530 slot++; 531 } 532 dev++; 533 if (dev >= conf->raid_disks) { 534 dev = 0; 535 sector += (conf->chunk_mask + 1); 536 } 537 } 538 BUG_ON(slot != conf->copies); 539 } 540 541 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 542 { 543 sector_t offset, chunk, vchunk; 544 545 offset = sector & conf->chunk_mask; 546 if (conf->far_offset) { 547 int fc; 548 chunk = sector >> conf->chunk_shift; 549 fc = sector_div(chunk, conf->far_copies); 550 dev -= fc * conf->near_copies; 551 if (dev < 0) 552 dev += conf->raid_disks; 553 } else { 554 while (sector >= conf->stride) { 555 sector -= conf->stride; 556 if (dev < conf->near_copies) 557 dev += conf->raid_disks - conf->near_copies; 558 else 559 dev -= conf->near_copies; 560 } 561 chunk = sector >> conf->chunk_shift; 562 } 563 vchunk = chunk * conf->raid_disks + dev; 564 sector_div(vchunk, conf->near_copies); 565 return (vchunk << conf->chunk_shift) + offset; 566 } 567 568 /** 569 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 570 * @q: request queue 571 * @bvm: properties of new bio 572 * @biovec: the request that could be merged to it. 573 * 574 * Return amount of bytes we can accept at this offset 575 * If near_copies == raid_disk, there are no striping issues, 576 * but in that case, the function isn't called at all. 577 */ 578 static int raid10_mergeable_bvec(struct request_queue *q, 579 struct bvec_merge_data *bvm, 580 struct bio_vec *biovec) 581 { 582 struct mddev *mddev = q->queuedata; 583 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 584 int max; 585 unsigned int chunk_sectors = mddev->chunk_sectors; 586 unsigned int bio_sectors = bvm->bi_size >> 9; 587 588 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 589 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 590 if (max <= biovec->bv_len && bio_sectors == 0) 591 return biovec->bv_len; 592 else 593 return max; 594 } 595 596 /* 597 * This routine returns the disk from which the requested read should 598 * be done. There is a per-array 'next expected sequential IO' sector 599 * number - if this matches on the next IO then we use the last disk. 600 * There is also a per-disk 'last know head position' sector that is 601 * maintained from IRQ contexts, both the normal and the resync IO 602 * completion handlers update this position correctly. If there is no 603 * perfect sequential match then we pick the disk whose head is closest. 604 * 605 * If there are 2 mirrors in the same 2 devices, performance degrades 606 * because position is mirror, not device based. 607 * 608 * The rdev for the device selected will have nr_pending incremented. 609 */ 610 611 /* 612 * FIXME: possibly should rethink readbalancing and do it differently 613 * depending on near_copies / far_copies geometry. 614 */ 615 static struct md_rdev *read_balance(struct r10conf *conf, 616 struct r10bio *r10_bio, 617 int *max_sectors) 618 { 619 const sector_t this_sector = r10_bio->sector; 620 int disk, slot; 621 int sectors = r10_bio->sectors; 622 int best_good_sectors; 623 sector_t new_distance, best_dist; 624 struct md_rdev *rdev, *best_rdev; 625 int do_balance; 626 int best_slot; 627 628 raid10_find_phys(conf, r10_bio); 629 rcu_read_lock(); 630 retry: 631 sectors = r10_bio->sectors; 632 best_slot = -1; 633 best_rdev = NULL; 634 best_dist = MaxSector; 635 best_good_sectors = 0; 636 do_balance = 1; 637 /* 638 * Check if we can balance. We can balance on the whole 639 * device if no resync is going on (recovery is ok), or below 640 * the resync window. We take the first readable disk when 641 * above the resync window. 642 */ 643 if (conf->mddev->recovery_cp < MaxSector 644 && (this_sector + sectors >= conf->next_resync)) 645 do_balance = 0; 646 647 for (slot = 0; slot < conf->copies ; slot++) { 648 sector_t first_bad; 649 int bad_sectors; 650 sector_t dev_sector; 651 652 if (r10_bio->devs[slot].bio == IO_BLOCKED) 653 continue; 654 disk = r10_bio->devs[slot].devnum; 655 rdev = rcu_dereference(conf->mirrors[disk].replacement); 656 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 657 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 658 rdev = rcu_dereference(conf->mirrors[disk].rdev); 659 if (rdev == NULL) 660 continue; 661 if (test_bit(Faulty, &rdev->flags)) 662 continue; 663 if (!test_bit(In_sync, &rdev->flags) && 664 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 665 continue; 666 667 dev_sector = r10_bio->devs[slot].addr; 668 if (is_badblock(rdev, dev_sector, sectors, 669 &first_bad, &bad_sectors)) { 670 if (best_dist < MaxSector) 671 /* Already have a better slot */ 672 continue; 673 if (first_bad <= dev_sector) { 674 /* Cannot read here. If this is the 675 * 'primary' device, then we must not read 676 * beyond 'bad_sectors' from another device. 677 */ 678 bad_sectors -= (dev_sector - first_bad); 679 if (!do_balance && sectors > bad_sectors) 680 sectors = bad_sectors; 681 if (best_good_sectors > sectors) 682 best_good_sectors = sectors; 683 } else { 684 sector_t good_sectors = 685 first_bad - dev_sector; 686 if (good_sectors > best_good_sectors) { 687 best_good_sectors = good_sectors; 688 best_slot = slot; 689 best_rdev = rdev; 690 } 691 if (!do_balance) 692 /* Must read from here */ 693 break; 694 } 695 continue; 696 } else 697 best_good_sectors = sectors; 698 699 if (!do_balance) 700 break; 701 702 /* This optimisation is debatable, and completely destroys 703 * sequential read speed for 'far copies' arrays. So only 704 * keep it for 'near' arrays, and review those later. 705 */ 706 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 707 break; 708 709 /* for far > 1 always use the lowest address */ 710 if (conf->far_copies > 1) 711 new_distance = r10_bio->devs[slot].addr; 712 else 713 new_distance = abs(r10_bio->devs[slot].addr - 714 conf->mirrors[disk].head_position); 715 if (new_distance < best_dist) { 716 best_dist = new_distance; 717 best_slot = slot; 718 best_rdev = rdev; 719 } 720 } 721 if (slot >= conf->copies) { 722 slot = best_slot; 723 rdev = best_rdev; 724 } 725 726 if (slot >= 0) { 727 atomic_inc(&rdev->nr_pending); 728 if (test_bit(Faulty, &rdev->flags)) { 729 /* Cannot risk returning a device that failed 730 * before we inc'ed nr_pending 731 */ 732 rdev_dec_pending(rdev, conf->mddev); 733 goto retry; 734 } 735 r10_bio->read_slot = slot; 736 } else 737 rdev = NULL; 738 rcu_read_unlock(); 739 *max_sectors = best_good_sectors; 740 741 return rdev; 742 } 743 744 static int raid10_congested(void *data, int bits) 745 { 746 struct mddev *mddev = data; 747 struct r10conf *conf = mddev->private; 748 int i, ret = 0; 749 750 if ((bits & (1 << BDI_async_congested)) && 751 conf->pending_count >= max_queued_requests) 752 return 1; 753 754 if (mddev_congested(mddev, bits)) 755 return 1; 756 rcu_read_lock(); 757 for (i = 0; i < conf->raid_disks && ret == 0; i++) { 758 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 759 if (rdev && !test_bit(Faulty, &rdev->flags)) { 760 struct request_queue *q = bdev_get_queue(rdev->bdev); 761 762 ret |= bdi_congested(&q->backing_dev_info, bits); 763 } 764 } 765 rcu_read_unlock(); 766 return ret; 767 } 768 769 static void flush_pending_writes(struct r10conf *conf) 770 { 771 /* Any writes that have been queued but are awaiting 772 * bitmap updates get flushed here. 773 */ 774 spin_lock_irq(&conf->device_lock); 775 776 if (conf->pending_bio_list.head) { 777 struct bio *bio; 778 bio = bio_list_get(&conf->pending_bio_list); 779 conf->pending_count = 0; 780 spin_unlock_irq(&conf->device_lock); 781 /* flush any pending bitmap writes to disk 782 * before proceeding w/ I/O */ 783 bitmap_unplug(conf->mddev->bitmap); 784 wake_up(&conf->wait_barrier); 785 786 while (bio) { /* submit pending writes */ 787 struct bio *next = bio->bi_next; 788 bio->bi_next = NULL; 789 generic_make_request(bio); 790 bio = next; 791 } 792 } else 793 spin_unlock_irq(&conf->device_lock); 794 } 795 796 /* Barriers.... 797 * Sometimes we need to suspend IO while we do something else, 798 * either some resync/recovery, or reconfigure the array. 799 * To do this we raise a 'barrier'. 800 * The 'barrier' is a counter that can be raised multiple times 801 * to count how many activities are happening which preclude 802 * normal IO. 803 * We can only raise the barrier if there is no pending IO. 804 * i.e. if nr_pending == 0. 805 * We choose only to raise the barrier if no-one is waiting for the 806 * barrier to go down. This means that as soon as an IO request 807 * is ready, no other operations which require a barrier will start 808 * until the IO request has had a chance. 809 * 810 * So: regular IO calls 'wait_barrier'. When that returns there 811 * is no backgroup IO happening, It must arrange to call 812 * allow_barrier when it has finished its IO. 813 * backgroup IO calls must call raise_barrier. Once that returns 814 * there is no normal IO happeing. It must arrange to call 815 * lower_barrier when the particular background IO completes. 816 */ 817 818 static void raise_barrier(struct r10conf *conf, int force) 819 { 820 BUG_ON(force && !conf->barrier); 821 spin_lock_irq(&conf->resync_lock); 822 823 /* Wait until no block IO is waiting (unless 'force') */ 824 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 825 conf->resync_lock, ); 826 827 /* block any new IO from starting */ 828 conf->barrier++; 829 830 /* Now wait for all pending IO to complete */ 831 wait_event_lock_irq(conf->wait_barrier, 832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 833 conf->resync_lock, ); 834 835 spin_unlock_irq(&conf->resync_lock); 836 } 837 838 static void lower_barrier(struct r10conf *conf) 839 { 840 unsigned long flags; 841 spin_lock_irqsave(&conf->resync_lock, flags); 842 conf->barrier--; 843 spin_unlock_irqrestore(&conf->resync_lock, flags); 844 wake_up(&conf->wait_barrier); 845 } 846 847 static void wait_barrier(struct r10conf *conf) 848 { 849 spin_lock_irq(&conf->resync_lock); 850 if (conf->barrier) { 851 conf->nr_waiting++; 852 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 853 conf->resync_lock, 854 ); 855 conf->nr_waiting--; 856 } 857 conf->nr_pending++; 858 spin_unlock_irq(&conf->resync_lock); 859 } 860 861 static void allow_barrier(struct r10conf *conf) 862 { 863 unsigned long flags; 864 spin_lock_irqsave(&conf->resync_lock, flags); 865 conf->nr_pending--; 866 spin_unlock_irqrestore(&conf->resync_lock, flags); 867 wake_up(&conf->wait_barrier); 868 } 869 870 static void freeze_array(struct r10conf *conf) 871 { 872 /* stop syncio and normal IO and wait for everything to 873 * go quiet. 874 * We increment barrier and nr_waiting, and then 875 * wait until nr_pending match nr_queued+1 876 * This is called in the context of one normal IO request 877 * that has failed. Thus any sync request that might be pending 878 * will be blocked by nr_pending, and we need to wait for 879 * pending IO requests to complete or be queued for re-try. 880 * Thus the number queued (nr_queued) plus this request (1) 881 * must match the number of pending IOs (nr_pending) before 882 * we continue. 883 */ 884 spin_lock_irq(&conf->resync_lock); 885 conf->barrier++; 886 conf->nr_waiting++; 887 wait_event_lock_irq(conf->wait_barrier, 888 conf->nr_pending == conf->nr_queued+1, 889 conf->resync_lock, 890 flush_pending_writes(conf)); 891 892 spin_unlock_irq(&conf->resync_lock); 893 } 894 895 static void unfreeze_array(struct r10conf *conf) 896 { 897 /* reverse the effect of the freeze */ 898 spin_lock_irq(&conf->resync_lock); 899 conf->barrier--; 900 conf->nr_waiting--; 901 wake_up(&conf->wait_barrier); 902 spin_unlock_irq(&conf->resync_lock); 903 } 904 905 static void make_request(struct mddev *mddev, struct bio * bio) 906 { 907 struct r10conf *conf = mddev->private; 908 struct r10bio *r10_bio; 909 struct bio *read_bio; 910 int i; 911 int chunk_sects = conf->chunk_mask + 1; 912 const int rw = bio_data_dir(bio); 913 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 914 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 915 unsigned long flags; 916 struct md_rdev *blocked_rdev; 917 int plugged; 918 int sectors_handled; 919 int max_sectors; 920 921 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 922 md_flush_request(mddev, bio); 923 return; 924 } 925 926 /* If this request crosses a chunk boundary, we need to 927 * split it. This will only happen for 1 PAGE (or less) requests. 928 */ 929 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 930 > chunk_sects && 931 conf->near_copies < conf->raid_disks)) { 932 struct bio_pair *bp; 933 /* Sanity check -- queue functions should prevent this happening */ 934 if (bio->bi_vcnt != 1 || 935 bio->bi_idx != 0) 936 goto bad_map; 937 /* This is a one page bio that upper layers 938 * refuse to split for us, so we need to split it. 939 */ 940 bp = bio_split(bio, 941 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 942 943 /* Each of these 'make_request' calls will call 'wait_barrier'. 944 * If the first succeeds but the second blocks due to the resync 945 * thread raising the barrier, we will deadlock because the 946 * IO to the underlying device will be queued in generic_make_request 947 * and will never complete, so will never reduce nr_pending. 948 * So increment nr_waiting here so no new raise_barriers will 949 * succeed, and so the second wait_barrier cannot block. 950 */ 951 spin_lock_irq(&conf->resync_lock); 952 conf->nr_waiting++; 953 spin_unlock_irq(&conf->resync_lock); 954 955 make_request(mddev, &bp->bio1); 956 make_request(mddev, &bp->bio2); 957 958 spin_lock_irq(&conf->resync_lock); 959 conf->nr_waiting--; 960 wake_up(&conf->wait_barrier); 961 spin_unlock_irq(&conf->resync_lock); 962 963 bio_pair_release(bp); 964 return; 965 bad_map: 966 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 967 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 968 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 969 970 bio_io_error(bio); 971 return; 972 } 973 974 md_write_start(mddev, bio); 975 976 /* 977 * Register the new request and wait if the reconstruction 978 * thread has put up a bar for new requests. 979 * Continue immediately if no resync is active currently. 980 */ 981 wait_barrier(conf); 982 983 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 984 985 r10_bio->master_bio = bio; 986 r10_bio->sectors = bio->bi_size >> 9; 987 988 r10_bio->mddev = mddev; 989 r10_bio->sector = bio->bi_sector; 990 r10_bio->state = 0; 991 992 /* We might need to issue multiple reads to different 993 * devices if there are bad blocks around, so we keep 994 * track of the number of reads in bio->bi_phys_segments. 995 * If this is 0, there is only one r10_bio and no locking 996 * will be needed when the request completes. If it is 997 * non-zero, then it is the number of not-completed requests. 998 */ 999 bio->bi_phys_segments = 0; 1000 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1001 1002 if (rw == READ) { 1003 /* 1004 * read balancing logic: 1005 */ 1006 struct md_rdev *rdev; 1007 int slot; 1008 1009 read_again: 1010 rdev = read_balance(conf, r10_bio, &max_sectors); 1011 if (!rdev) { 1012 raid_end_bio_io(r10_bio); 1013 return; 1014 } 1015 slot = r10_bio->read_slot; 1016 1017 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1018 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1019 max_sectors); 1020 1021 r10_bio->devs[slot].bio = read_bio; 1022 r10_bio->devs[slot].rdev = rdev; 1023 1024 read_bio->bi_sector = r10_bio->devs[slot].addr + 1025 rdev->data_offset; 1026 read_bio->bi_bdev = rdev->bdev; 1027 read_bio->bi_end_io = raid10_end_read_request; 1028 read_bio->bi_rw = READ | do_sync; 1029 read_bio->bi_private = r10_bio; 1030 1031 if (max_sectors < r10_bio->sectors) { 1032 /* Could not read all from this device, so we will 1033 * need another r10_bio. 1034 */ 1035 sectors_handled = (r10_bio->sectors + max_sectors 1036 - bio->bi_sector); 1037 r10_bio->sectors = max_sectors; 1038 spin_lock_irq(&conf->device_lock); 1039 if (bio->bi_phys_segments == 0) 1040 bio->bi_phys_segments = 2; 1041 else 1042 bio->bi_phys_segments++; 1043 spin_unlock(&conf->device_lock); 1044 /* Cannot call generic_make_request directly 1045 * as that will be queued in __generic_make_request 1046 * and subsequent mempool_alloc might block 1047 * waiting for it. so hand bio over to raid10d. 1048 */ 1049 reschedule_retry(r10_bio); 1050 1051 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1052 1053 r10_bio->master_bio = bio; 1054 r10_bio->sectors = ((bio->bi_size >> 9) 1055 - sectors_handled); 1056 r10_bio->state = 0; 1057 r10_bio->mddev = mddev; 1058 r10_bio->sector = bio->bi_sector + sectors_handled; 1059 goto read_again; 1060 } else 1061 generic_make_request(read_bio); 1062 return; 1063 } 1064 1065 /* 1066 * WRITE: 1067 */ 1068 if (conf->pending_count >= max_queued_requests) { 1069 md_wakeup_thread(mddev->thread); 1070 wait_event(conf->wait_barrier, 1071 conf->pending_count < max_queued_requests); 1072 } 1073 /* first select target devices under rcu_lock and 1074 * inc refcount on their rdev. Record them by setting 1075 * bios[x] to bio 1076 * If there are known/acknowledged bad blocks on any device 1077 * on which we have seen a write error, we want to avoid 1078 * writing to those blocks. This potentially requires several 1079 * writes to write around the bad blocks. Each set of writes 1080 * gets its own r10_bio with a set of bios attached. The number 1081 * of r10_bios is recored in bio->bi_phys_segments just as with 1082 * the read case. 1083 */ 1084 plugged = mddev_check_plugged(mddev); 1085 1086 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1087 raid10_find_phys(conf, r10_bio); 1088 retry_write: 1089 blocked_rdev = NULL; 1090 rcu_read_lock(); 1091 max_sectors = r10_bio->sectors; 1092 1093 for (i = 0; i < conf->copies; i++) { 1094 int d = r10_bio->devs[i].devnum; 1095 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1096 struct md_rdev *rrdev = rcu_dereference( 1097 conf->mirrors[d].replacement); 1098 if (rdev == rrdev) 1099 rrdev = NULL; 1100 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1101 atomic_inc(&rdev->nr_pending); 1102 blocked_rdev = rdev; 1103 break; 1104 } 1105 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1106 atomic_inc(&rrdev->nr_pending); 1107 blocked_rdev = rrdev; 1108 break; 1109 } 1110 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1111 rrdev = NULL; 1112 1113 r10_bio->devs[i].bio = NULL; 1114 r10_bio->devs[i].repl_bio = NULL; 1115 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1116 set_bit(R10BIO_Degraded, &r10_bio->state); 1117 continue; 1118 } 1119 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1120 sector_t first_bad; 1121 sector_t dev_sector = r10_bio->devs[i].addr; 1122 int bad_sectors; 1123 int is_bad; 1124 1125 is_bad = is_badblock(rdev, dev_sector, 1126 max_sectors, 1127 &first_bad, &bad_sectors); 1128 if (is_bad < 0) { 1129 /* Mustn't write here until the bad block 1130 * is acknowledged 1131 */ 1132 atomic_inc(&rdev->nr_pending); 1133 set_bit(BlockedBadBlocks, &rdev->flags); 1134 blocked_rdev = rdev; 1135 break; 1136 } 1137 if (is_bad && first_bad <= dev_sector) { 1138 /* Cannot write here at all */ 1139 bad_sectors -= (dev_sector - first_bad); 1140 if (bad_sectors < max_sectors) 1141 /* Mustn't write more than bad_sectors 1142 * to other devices yet 1143 */ 1144 max_sectors = bad_sectors; 1145 /* We don't set R10BIO_Degraded as that 1146 * only applies if the disk is missing, 1147 * so it might be re-added, and we want to 1148 * know to recover this chunk. 1149 * In this case the device is here, and the 1150 * fact that this chunk is not in-sync is 1151 * recorded in the bad block log. 1152 */ 1153 continue; 1154 } 1155 if (is_bad) { 1156 int good_sectors = first_bad - dev_sector; 1157 if (good_sectors < max_sectors) 1158 max_sectors = good_sectors; 1159 } 1160 } 1161 r10_bio->devs[i].bio = bio; 1162 atomic_inc(&rdev->nr_pending); 1163 if (rrdev) { 1164 r10_bio->devs[i].repl_bio = bio; 1165 atomic_inc(&rrdev->nr_pending); 1166 } 1167 } 1168 rcu_read_unlock(); 1169 1170 if (unlikely(blocked_rdev)) { 1171 /* Have to wait for this device to get unblocked, then retry */ 1172 int j; 1173 int d; 1174 1175 for (j = 0; j < i; j++) { 1176 if (r10_bio->devs[j].bio) { 1177 d = r10_bio->devs[j].devnum; 1178 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1179 } 1180 if (r10_bio->devs[j].repl_bio) { 1181 struct md_rdev *rdev; 1182 d = r10_bio->devs[j].devnum; 1183 rdev = conf->mirrors[d].replacement; 1184 if (!rdev) { 1185 /* Race with remove_disk */ 1186 smp_mb(); 1187 rdev = conf->mirrors[d].rdev; 1188 } 1189 rdev_dec_pending(rdev, mddev); 1190 } 1191 } 1192 allow_barrier(conf); 1193 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1194 wait_barrier(conf); 1195 goto retry_write; 1196 } 1197 1198 if (max_sectors < r10_bio->sectors) { 1199 /* We are splitting this into multiple parts, so 1200 * we need to prepare for allocating another r10_bio. 1201 */ 1202 r10_bio->sectors = max_sectors; 1203 spin_lock_irq(&conf->device_lock); 1204 if (bio->bi_phys_segments == 0) 1205 bio->bi_phys_segments = 2; 1206 else 1207 bio->bi_phys_segments++; 1208 spin_unlock_irq(&conf->device_lock); 1209 } 1210 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1211 1212 atomic_set(&r10_bio->remaining, 1); 1213 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1214 1215 for (i = 0; i < conf->copies; i++) { 1216 struct bio *mbio; 1217 int d = r10_bio->devs[i].devnum; 1218 if (!r10_bio->devs[i].bio) 1219 continue; 1220 1221 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1222 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1223 max_sectors); 1224 r10_bio->devs[i].bio = mbio; 1225 1226 mbio->bi_sector = (r10_bio->devs[i].addr+ 1227 conf->mirrors[d].rdev->data_offset); 1228 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1229 mbio->bi_end_io = raid10_end_write_request; 1230 mbio->bi_rw = WRITE | do_sync | do_fua; 1231 mbio->bi_private = r10_bio; 1232 1233 atomic_inc(&r10_bio->remaining); 1234 spin_lock_irqsave(&conf->device_lock, flags); 1235 bio_list_add(&conf->pending_bio_list, mbio); 1236 conf->pending_count++; 1237 spin_unlock_irqrestore(&conf->device_lock, flags); 1238 1239 if (!r10_bio->devs[i].repl_bio) 1240 continue; 1241 1242 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1243 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1244 max_sectors); 1245 r10_bio->devs[i].repl_bio = mbio; 1246 1247 /* We are actively writing to the original device 1248 * so it cannot disappear, so the replacement cannot 1249 * become NULL here 1250 */ 1251 mbio->bi_sector = (r10_bio->devs[i].addr+ 1252 conf->mirrors[d].replacement->data_offset); 1253 mbio->bi_bdev = conf->mirrors[d].replacement->bdev; 1254 mbio->bi_end_io = raid10_end_write_request; 1255 mbio->bi_rw = WRITE | do_sync | do_fua; 1256 mbio->bi_private = r10_bio; 1257 1258 atomic_inc(&r10_bio->remaining); 1259 spin_lock_irqsave(&conf->device_lock, flags); 1260 bio_list_add(&conf->pending_bio_list, mbio); 1261 conf->pending_count++; 1262 spin_unlock_irqrestore(&conf->device_lock, flags); 1263 } 1264 1265 /* Don't remove the bias on 'remaining' (one_write_done) until 1266 * after checking if we need to go around again. 1267 */ 1268 1269 if (sectors_handled < (bio->bi_size >> 9)) { 1270 one_write_done(r10_bio); 1271 /* We need another r10_bio. It has already been counted 1272 * in bio->bi_phys_segments. 1273 */ 1274 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1275 1276 r10_bio->master_bio = bio; 1277 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1278 1279 r10_bio->mddev = mddev; 1280 r10_bio->sector = bio->bi_sector + sectors_handled; 1281 r10_bio->state = 0; 1282 goto retry_write; 1283 } 1284 one_write_done(r10_bio); 1285 1286 /* In case raid10d snuck in to freeze_array */ 1287 wake_up(&conf->wait_barrier); 1288 1289 if (do_sync || !mddev->bitmap || !plugged) 1290 md_wakeup_thread(mddev->thread); 1291 } 1292 1293 static void status(struct seq_file *seq, struct mddev *mddev) 1294 { 1295 struct r10conf *conf = mddev->private; 1296 int i; 1297 1298 if (conf->near_copies < conf->raid_disks) 1299 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1300 if (conf->near_copies > 1) 1301 seq_printf(seq, " %d near-copies", conf->near_copies); 1302 if (conf->far_copies > 1) { 1303 if (conf->far_offset) 1304 seq_printf(seq, " %d offset-copies", conf->far_copies); 1305 else 1306 seq_printf(seq, " %d far-copies", conf->far_copies); 1307 } 1308 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1309 conf->raid_disks - mddev->degraded); 1310 for (i = 0; i < conf->raid_disks; i++) 1311 seq_printf(seq, "%s", 1312 conf->mirrors[i].rdev && 1313 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1314 seq_printf(seq, "]"); 1315 } 1316 1317 /* check if there are enough drives for 1318 * every block to appear on atleast one. 1319 * Don't consider the device numbered 'ignore' 1320 * as we might be about to remove it. 1321 */ 1322 static int enough(struct r10conf *conf, int ignore) 1323 { 1324 int first = 0; 1325 1326 do { 1327 int n = conf->copies; 1328 int cnt = 0; 1329 while (n--) { 1330 if (conf->mirrors[first].rdev && 1331 first != ignore) 1332 cnt++; 1333 first = (first+1) % conf->raid_disks; 1334 } 1335 if (cnt == 0) 1336 return 0; 1337 } while (first != 0); 1338 return 1; 1339 } 1340 1341 static void error(struct mddev *mddev, struct md_rdev *rdev) 1342 { 1343 char b[BDEVNAME_SIZE]; 1344 struct r10conf *conf = mddev->private; 1345 1346 /* 1347 * If it is not operational, then we have already marked it as dead 1348 * else if it is the last working disks, ignore the error, let the 1349 * next level up know. 1350 * else mark the drive as failed 1351 */ 1352 if (test_bit(In_sync, &rdev->flags) 1353 && !enough(conf, rdev->raid_disk)) 1354 /* 1355 * Don't fail the drive, just return an IO error. 1356 */ 1357 return; 1358 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1359 unsigned long flags; 1360 spin_lock_irqsave(&conf->device_lock, flags); 1361 mddev->degraded++; 1362 spin_unlock_irqrestore(&conf->device_lock, flags); 1363 /* 1364 * if recovery is running, make sure it aborts. 1365 */ 1366 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1367 } 1368 set_bit(Blocked, &rdev->flags); 1369 set_bit(Faulty, &rdev->flags); 1370 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1371 printk(KERN_ALERT 1372 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1373 "md/raid10:%s: Operation continuing on %d devices.\n", 1374 mdname(mddev), bdevname(rdev->bdev, b), 1375 mdname(mddev), conf->raid_disks - mddev->degraded); 1376 } 1377 1378 static void print_conf(struct r10conf *conf) 1379 { 1380 int i; 1381 struct mirror_info *tmp; 1382 1383 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1384 if (!conf) { 1385 printk(KERN_DEBUG "(!conf)\n"); 1386 return; 1387 } 1388 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1389 conf->raid_disks); 1390 1391 for (i = 0; i < conf->raid_disks; i++) { 1392 char b[BDEVNAME_SIZE]; 1393 tmp = conf->mirrors + i; 1394 if (tmp->rdev) 1395 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1396 i, !test_bit(In_sync, &tmp->rdev->flags), 1397 !test_bit(Faulty, &tmp->rdev->flags), 1398 bdevname(tmp->rdev->bdev,b)); 1399 } 1400 } 1401 1402 static void close_sync(struct r10conf *conf) 1403 { 1404 wait_barrier(conf); 1405 allow_barrier(conf); 1406 1407 mempool_destroy(conf->r10buf_pool); 1408 conf->r10buf_pool = NULL; 1409 } 1410 1411 static int raid10_spare_active(struct mddev *mddev) 1412 { 1413 int i; 1414 struct r10conf *conf = mddev->private; 1415 struct mirror_info *tmp; 1416 int count = 0; 1417 unsigned long flags; 1418 1419 /* 1420 * Find all non-in_sync disks within the RAID10 configuration 1421 * and mark them in_sync 1422 */ 1423 for (i = 0; i < conf->raid_disks; i++) { 1424 tmp = conf->mirrors + i; 1425 if (tmp->replacement 1426 && tmp->replacement->recovery_offset == MaxSector 1427 && !test_bit(Faulty, &tmp->replacement->flags) 1428 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1429 /* Replacement has just become active */ 1430 if (!tmp->rdev 1431 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1432 count++; 1433 if (tmp->rdev) { 1434 /* Replaced device not technically faulty, 1435 * but we need to be sure it gets removed 1436 * and never re-added. 1437 */ 1438 set_bit(Faulty, &tmp->rdev->flags); 1439 sysfs_notify_dirent_safe( 1440 tmp->rdev->sysfs_state); 1441 } 1442 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1443 } else if (tmp->rdev 1444 && !test_bit(Faulty, &tmp->rdev->flags) 1445 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1446 count++; 1447 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1448 } 1449 } 1450 spin_lock_irqsave(&conf->device_lock, flags); 1451 mddev->degraded -= count; 1452 spin_unlock_irqrestore(&conf->device_lock, flags); 1453 1454 print_conf(conf); 1455 return count; 1456 } 1457 1458 1459 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1460 { 1461 struct r10conf *conf = mddev->private; 1462 int err = -EEXIST; 1463 int mirror; 1464 int first = 0; 1465 int last = conf->raid_disks - 1; 1466 1467 if (mddev->recovery_cp < MaxSector) 1468 /* only hot-add to in-sync arrays, as recovery is 1469 * very different from resync 1470 */ 1471 return -EBUSY; 1472 if (!enough(conf, -1)) 1473 return -EINVAL; 1474 1475 if (rdev->raid_disk >= 0) 1476 first = last = rdev->raid_disk; 1477 1478 if (rdev->saved_raid_disk >= first && 1479 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1480 mirror = rdev->saved_raid_disk; 1481 else 1482 mirror = first; 1483 for ( ; mirror <= last ; mirror++) { 1484 struct mirror_info *p = &conf->mirrors[mirror]; 1485 if (p->recovery_disabled == mddev->recovery_disabled) 1486 continue; 1487 if (p->rdev) { 1488 if (!test_bit(WantReplacement, &p->rdev->flags) || 1489 p->replacement != NULL) 1490 continue; 1491 clear_bit(In_sync, &rdev->flags); 1492 set_bit(Replacement, &rdev->flags); 1493 rdev->raid_disk = mirror; 1494 err = 0; 1495 disk_stack_limits(mddev->gendisk, rdev->bdev, 1496 rdev->data_offset << 9); 1497 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1498 blk_queue_max_segments(mddev->queue, 1); 1499 blk_queue_segment_boundary(mddev->queue, 1500 PAGE_CACHE_SIZE - 1); 1501 } 1502 conf->fullsync = 1; 1503 rcu_assign_pointer(p->replacement, rdev); 1504 break; 1505 } 1506 1507 disk_stack_limits(mddev->gendisk, rdev->bdev, 1508 rdev->data_offset << 9); 1509 /* as we don't honour merge_bvec_fn, we must 1510 * never risk violating it, so limit 1511 * ->max_segments to one lying with a single 1512 * page, as a one page request is never in 1513 * violation. 1514 */ 1515 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1516 blk_queue_max_segments(mddev->queue, 1); 1517 blk_queue_segment_boundary(mddev->queue, 1518 PAGE_CACHE_SIZE - 1); 1519 } 1520 1521 p->head_position = 0; 1522 p->recovery_disabled = mddev->recovery_disabled - 1; 1523 rdev->raid_disk = mirror; 1524 err = 0; 1525 if (rdev->saved_raid_disk != mirror) 1526 conf->fullsync = 1; 1527 rcu_assign_pointer(p->rdev, rdev); 1528 break; 1529 } 1530 1531 md_integrity_add_rdev(rdev, mddev); 1532 print_conf(conf); 1533 return err; 1534 } 1535 1536 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1537 { 1538 struct r10conf *conf = mddev->private; 1539 int err = 0; 1540 int number = rdev->raid_disk; 1541 struct md_rdev **rdevp; 1542 struct mirror_info *p = conf->mirrors + number; 1543 1544 print_conf(conf); 1545 if (rdev == p->rdev) 1546 rdevp = &p->rdev; 1547 else if (rdev == p->replacement) 1548 rdevp = &p->replacement; 1549 else 1550 return 0; 1551 1552 if (test_bit(In_sync, &rdev->flags) || 1553 atomic_read(&rdev->nr_pending)) { 1554 err = -EBUSY; 1555 goto abort; 1556 } 1557 /* Only remove faulty devices if recovery 1558 * is not possible. 1559 */ 1560 if (!test_bit(Faulty, &rdev->flags) && 1561 mddev->recovery_disabled != p->recovery_disabled && 1562 (!p->replacement || p->replacement == rdev) && 1563 enough(conf, -1)) { 1564 err = -EBUSY; 1565 goto abort; 1566 } 1567 *rdevp = NULL; 1568 synchronize_rcu(); 1569 if (atomic_read(&rdev->nr_pending)) { 1570 /* lost the race, try later */ 1571 err = -EBUSY; 1572 *rdevp = rdev; 1573 goto abort; 1574 } else if (p->replacement) { 1575 /* We must have just cleared 'rdev' */ 1576 p->rdev = p->replacement; 1577 clear_bit(Replacement, &p->replacement->flags); 1578 smp_mb(); /* Make sure other CPUs may see both as identical 1579 * but will never see neither -- if they are careful. 1580 */ 1581 p->replacement = NULL; 1582 clear_bit(WantReplacement, &rdev->flags); 1583 } else 1584 /* We might have just remove the Replacement as faulty 1585 * Clear the flag just in case 1586 */ 1587 clear_bit(WantReplacement, &rdev->flags); 1588 1589 err = md_integrity_register(mddev); 1590 1591 abort: 1592 1593 print_conf(conf); 1594 return err; 1595 } 1596 1597 1598 static void end_sync_read(struct bio *bio, int error) 1599 { 1600 struct r10bio *r10_bio = bio->bi_private; 1601 struct r10conf *conf = r10_bio->mddev->private; 1602 int d; 1603 1604 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1605 1606 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1607 set_bit(R10BIO_Uptodate, &r10_bio->state); 1608 else 1609 /* The write handler will notice the lack of 1610 * R10BIO_Uptodate and record any errors etc 1611 */ 1612 atomic_add(r10_bio->sectors, 1613 &conf->mirrors[d].rdev->corrected_errors); 1614 1615 /* for reconstruct, we always reschedule after a read. 1616 * for resync, only after all reads 1617 */ 1618 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1619 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1620 atomic_dec_and_test(&r10_bio->remaining)) { 1621 /* we have read all the blocks, 1622 * do the comparison in process context in raid10d 1623 */ 1624 reschedule_retry(r10_bio); 1625 } 1626 } 1627 1628 static void end_sync_request(struct r10bio *r10_bio) 1629 { 1630 struct mddev *mddev = r10_bio->mddev; 1631 1632 while (atomic_dec_and_test(&r10_bio->remaining)) { 1633 if (r10_bio->master_bio == NULL) { 1634 /* the primary of several recovery bios */ 1635 sector_t s = r10_bio->sectors; 1636 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1637 test_bit(R10BIO_WriteError, &r10_bio->state)) 1638 reschedule_retry(r10_bio); 1639 else 1640 put_buf(r10_bio); 1641 md_done_sync(mddev, s, 1); 1642 break; 1643 } else { 1644 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1645 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1646 test_bit(R10BIO_WriteError, &r10_bio->state)) 1647 reschedule_retry(r10_bio); 1648 else 1649 put_buf(r10_bio); 1650 r10_bio = r10_bio2; 1651 } 1652 } 1653 } 1654 1655 static void end_sync_write(struct bio *bio, int error) 1656 { 1657 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1658 struct r10bio *r10_bio = bio->bi_private; 1659 struct mddev *mddev = r10_bio->mddev; 1660 struct r10conf *conf = mddev->private; 1661 int d; 1662 sector_t first_bad; 1663 int bad_sectors; 1664 int slot; 1665 int repl; 1666 struct md_rdev *rdev = NULL; 1667 1668 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1669 if (repl) 1670 rdev = conf->mirrors[d].replacement; 1671 if (!rdev) { 1672 smp_mb(); 1673 rdev = conf->mirrors[d].rdev; 1674 } 1675 1676 if (!uptodate) { 1677 if (repl) 1678 md_error(mddev, rdev); 1679 else { 1680 set_bit(WriteErrorSeen, &rdev->flags); 1681 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1682 set_bit(MD_RECOVERY_NEEDED, 1683 &rdev->mddev->recovery); 1684 set_bit(R10BIO_WriteError, &r10_bio->state); 1685 } 1686 } else if (is_badblock(rdev, 1687 r10_bio->devs[slot].addr, 1688 r10_bio->sectors, 1689 &first_bad, &bad_sectors)) 1690 set_bit(R10BIO_MadeGood, &r10_bio->state); 1691 1692 rdev_dec_pending(rdev, mddev); 1693 1694 end_sync_request(r10_bio); 1695 } 1696 1697 /* 1698 * Note: sync and recover and handled very differently for raid10 1699 * This code is for resync. 1700 * For resync, we read through virtual addresses and read all blocks. 1701 * If there is any error, we schedule a write. The lowest numbered 1702 * drive is authoritative. 1703 * However requests come for physical address, so we need to map. 1704 * For every physical address there are raid_disks/copies virtual addresses, 1705 * which is always are least one, but is not necessarly an integer. 1706 * This means that a physical address can span multiple chunks, so we may 1707 * have to submit multiple io requests for a single sync request. 1708 */ 1709 /* 1710 * We check if all blocks are in-sync and only write to blocks that 1711 * aren't in sync 1712 */ 1713 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1714 { 1715 struct r10conf *conf = mddev->private; 1716 int i, first; 1717 struct bio *tbio, *fbio; 1718 1719 atomic_set(&r10_bio->remaining, 1); 1720 1721 /* find the first device with a block */ 1722 for (i=0; i<conf->copies; i++) 1723 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1724 break; 1725 1726 if (i == conf->copies) 1727 goto done; 1728 1729 first = i; 1730 fbio = r10_bio->devs[i].bio; 1731 1732 /* now find blocks with errors */ 1733 for (i=0 ; i < conf->copies ; i++) { 1734 int j, d; 1735 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1736 1737 tbio = r10_bio->devs[i].bio; 1738 1739 if (tbio->bi_end_io != end_sync_read) 1740 continue; 1741 if (i == first) 1742 continue; 1743 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1744 /* We know that the bi_io_vec layout is the same for 1745 * both 'first' and 'i', so we just compare them. 1746 * All vec entries are PAGE_SIZE; 1747 */ 1748 for (j = 0; j < vcnt; j++) 1749 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1750 page_address(tbio->bi_io_vec[j].bv_page), 1751 PAGE_SIZE)) 1752 break; 1753 if (j == vcnt) 1754 continue; 1755 mddev->resync_mismatches += r10_bio->sectors; 1756 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1757 /* Don't fix anything. */ 1758 continue; 1759 } 1760 /* Ok, we need to write this bio, either to correct an 1761 * inconsistency or to correct an unreadable block. 1762 * First we need to fixup bv_offset, bv_len and 1763 * bi_vecs, as the read request might have corrupted these 1764 */ 1765 tbio->bi_vcnt = vcnt; 1766 tbio->bi_size = r10_bio->sectors << 9; 1767 tbio->bi_idx = 0; 1768 tbio->bi_phys_segments = 0; 1769 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1770 tbio->bi_flags |= 1 << BIO_UPTODATE; 1771 tbio->bi_next = NULL; 1772 tbio->bi_rw = WRITE; 1773 tbio->bi_private = r10_bio; 1774 tbio->bi_sector = r10_bio->devs[i].addr; 1775 1776 for (j=0; j < vcnt ; j++) { 1777 tbio->bi_io_vec[j].bv_offset = 0; 1778 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1779 1780 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1781 page_address(fbio->bi_io_vec[j].bv_page), 1782 PAGE_SIZE); 1783 } 1784 tbio->bi_end_io = end_sync_write; 1785 1786 d = r10_bio->devs[i].devnum; 1787 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1788 atomic_inc(&r10_bio->remaining); 1789 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1790 1791 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1792 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1793 generic_make_request(tbio); 1794 } 1795 1796 /* Now write out to any replacement devices 1797 * that are active 1798 */ 1799 for (i = 0; i < conf->copies; i++) { 1800 int j, d; 1801 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1802 1803 tbio = r10_bio->devs[i].repl_bio; 1804 if (!tbio || !tbio->bi_end_io) 1805 continue; 1806 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 1807 && r10_bio->devs[i].bio != fbio) 1808 for (j = 0; j < vcnt; j++) 1809 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1810 page_address(fbio->bi_io_vec[j].bv_page), 1811 PAGE_SIZE); 1812 d = r10_bio->devs[i].devnum; 1813 atomic_inc(&r10_bio->remaining); 1814 md_sync_acct(conf->mirrors[d].replacement->bdev, 1815 tbio->bi_size >> 9); 1816 generic_make_request(tbio); 1817 } 1818 1819 done: 1820 if (atomic_dec_and_test(&r10_bio->remaining)) { 1821 md_done_sync(mddev, r10_bio->sectors, 1); 1822 put_buf(r10_bio); 1823 } 1824 } 1825 1826 /* 1827 * Now for the recovery code. 1828 * Recovery happens across physical sectors. 1829 * We recover all non-is_sync drives by finding the virtual address of 1830 * each, and then choose a working drive that also has that virt address. 1831 * There is a separate r10_bio for each non-in_sync drive. 1832 * Only the first two slots are in use. The first for reading, 1833 * The second for writing. 1834 * 1835 */ 1836 static void fix_recovery_read_error(struct r10bio *r10_bio) 1837 { 1838 /* We got a read error during recovery. 1839 * We repeat the read in smaller page-sized sections. 1840 * If a read succeeds, write it to the new device or record 1841 * a bad block if we cannot. 1842 * If a read fails, record a bad block on both old and 1843 * new devices. 1844 */ 1845 struct mddev *mddev = r10_bio->mddev; 1846 struct r10conf *conf = mddev->private; 1847 struct bio *bio = r10_bio->devs[0].bio; 1848 sector_t sect = 0; 1849 int sectors = r10_bio->sectors; 1850 int idx = 0; 1851 int dr = r10_bio->devs[0].devnum; 1852 int dw = r10_bio->devs[1].devnum; 1853 1854 while (sectors) { 1855 int s = sectors; 1856 struct md_rdev *rdev; 1857 sector_t addr; 1858 int ok; 1859 1860 if (s > (PAGE_SIZE>>9)) 1861 s = PAGE_SIZE >> 9; 1862 1863 rdev = conf->mirrors[dr].rdev; 1864 addr = r10_bio->devs[0].addr + sect, 1865 ok = sync_page_io(rdev, 1866 addr, 1867 s << 9, 1868 bio->bi_io_vec[idx].bv_page, 1869 READ, false); 1870 if (ok) { 1871 rdev = conf->mirrors[dw].rdev; 1872 addr = r10_bio->devs[1].addr + sect; 1873 ok = sync_page_io(rdev, 1874 addr, 1875 s << 9, 1876 bio->bi_io_vec[idx].bv_page, 1877 WRITE, false); 1878 if (!ok) { 1879 set_bit(WriteErrorSeen, &rdev->flags); 1880 if (!test_and_set_bit(WantReplacement, 1881 &rdev->flags)) 1882 set_bit(MD_RECOVERY_NEEDED, 1883 &rdev->mddev->recovery); 1884 } 1885 } 1886 if (!ok) { 1887 /* We don't worry if we cannot set a bad block - 1888 * it really is bad so there is no loss in not 1889 * recording it yet 1890 */ 1891 rdev_set_badblocks(rdev, addr, s, 0); 1892 1893 if (rdev != conf->mirrors[dw].rdev) { 1894 /* need bad block on destination too */ 1895 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 1896 addr = r10_bio->devs[1].addr + sect; 1897 ok = rdev_set_badblocks(rdev2, addr, s, 0); 1898 if (!ok) { 1899 /* just abort the recovery */ 1900 printk(KERN_NOTICE 1901 "md/raid10:%s: recovery aborted" 1902 " due to read error\n", 1903 mdname(mddev)); 1904 1905 conf->mirrors[dw].recovery_disabled 1906 = mddev->recovery_disabled; 1907 set_bit(MD_RECOVERY_INTR, 1908 &mddev->recovery); 1909 break; 1910 } 1911 } 1912 } 1913 1914 sectors -= s; 1915 sect += s; 1916 idx++; 1917 } 1918 } 1919 1920 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1921 { 1922 struct r10conf *conf = mddev->private; 1923 int d; 1924 struct bio *wbio, *wbio2; 1925 1926 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 1927 fix_recovery_read_error(r10_bio); 1928 end_sync_request(r10_bio); 1929 return; 1930 } 1931 1932 /* 1933 * share the pages with the first bio 1934 * and submit the write request 1935 */ 1936 d = r10_bio->devs[1].devnum; 1937 wbio = r10_bio->devs[1].bio; 1938 wbio2 = r10_bio->devs[1].repl_bio; 1939 if (wbio->bi_end_io) { 1940 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1941 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1942 generic_make_request(wbio); 1943 } 1944 if (wbio2 && wbio2->bi_end_io) { 1945 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 1946 md_sync_acct(conf->mirrors[d].replacement->bdev, 1947 wbio2->bi_size >> 9); 1948 generic_make_request(wbio2); 1949 } 1950 } 1951 1952 1953 /* 1954 * Used by fix_read_error() to decay the per rdev read_errors. 1955 * We halve the read error count for every hour that has elapsed 1956 * since the last recorded read error. 1957 * 1958 */ 1959 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 1960 { 1961 struct timespec cur_time_mon; 1962 unsigned long hours_since_last; 1963 unsigned int read_errors = atomic_read(&rdev->read_errors); 1964 1965 ktime_get_ts(&cur_time_mon); 1966 1967 if (rdev->last_read_error.tv_sec == 0 && 1968 rdev->last_read_error.tv_nsec == 0) { 1969 /* first time we've seen a read error */ 1970 rdev->last_read_error = cur_time_mon; 1971 return; 1972 } 1973 1974 hours_since_last = (cur_time_mon.tv_sec - 1975 rdev->last_read_error.tv_sec) / 3600; 1976 1977 rdev->last_read_error = cur_time_mon; 1978 1979 /* 1980 * if hours_since_last is > the number of bits in read_errors 1981 * just set read errors to 0. We do this to avoid 1982 * overflowing the shift of read_errors by hours_since_last. 1983 */ 1984 if (hours_since_last >= 8 * sizeof(read_errors)) 1985 atomic_set(&rdev->read_errors, 0); 1986 else 1987 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 1988 } 1989 1990 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 1991 int sectors, struct page *page, int rw) 1992 { 1993 sector_t first_bad; 1994 int bad_sectors; 1995 1996 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 1997 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 1998 return -1; 1999 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2000 /* success */ 2001 return 1; 2002 if (rw == WRITE) { 2003 set_bit(WriteErrorSeen, &rdev->flags); 2004 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2005 set_bit(MD_RECOVERY_NEEDED, 2006 &rdev->mddev->recovery); 2007 } 2008 /* need to record an error - either for the block or the device */ 2009 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2010 md_error(rdev->mddev, rdev); 2011 return 0; 2012 } 2013 2014 /* 2015 * This is a kernel thread which: 2016 * 2017 * 1. Retries failed read operations on working mirrors. 2018 * 2. Updates the raid superblock when problems encounter. 2019 * 3. Performs writes following reads for array synchronising. 2020 */ 2021 2022 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2023 { 2024 int sect = 0; /* Offset from r10_bio->sector */ 2025 int sectors = r10_bio->sectors; 2026 struct md_rdev*rdev; 2027 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2028 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2029 2030 /* still own a reference to this rdev, so it cannot 2031 * have been cleared recently. 2032 */ 2033 rdev = conf->mirrors[d].rdev; 2034 2035 if (test_bit(Faulty, &rdev->flags)) 2036 /* drive has already been failed, just ignore any 2037 more fix_read_error() attempts */ 2038 return; 2039 2040 check_decay_read_errors(mddev, rdev); 2041 atomic_inc(&rdev->read_errors); 2042 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2043 char b[BDEVNAME_SIZE]; 2044 bdevname(rdev->bdev, b); 2045 2046 printk(KERN_NOTICE 2047 "md/raid10:%s: %s: Raid device exceeded " 2048 "read_error threshold [cur %d:max %d]\n", 2049 mdname(mddev), b, 2050 atomic_read(&rdev->read_errors), max_read_errors); 2051 printk(KERN_NOTICE 2052 "md/raid10:%s: %s: Failing raid device\n", 2053 mdname(mddev), b); 2054 md_error(mddev, conf->mirrors[d].rdev); 2055 return; 2056 } 2057 2058 while(sectors) { 2059 int s = sectors; 2060 int sl = r10_bio->read_slot; 2061 int success = 0; 2062 int start; 2063 2064 if (s > (PAGE_SIZE>>9)) 2065 s = PAGE_SIZE >> 9; 2066 2067 rcu_read_lock(); 2068 do { 2069 sector_t first_bad; 2070 int bad_sectors; 2071 2072 d = r10_bio->devs[sl].devnum; 2073 rdev = rcu_dereference(conf->mirrors[d].rdev); 2074 if (rdev && 2075 test_bit(In_sync, &rdev->flags) && 2076 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2077 &first_bad, &bad_sectors) == 0) { 2078 atomic_inc(&rdev->nr_pending); 2079 rcu_read_unlock(); 2080 success = sync_page_io(rdev, 2081 r10_bio->devs[sl].addr + 2082 sect, 2083 s<<9, 2084 conf->tmppage, READ, false); 2085 rdev_dec_pending(rdev, mddev); 2086 rcu_read_lock(); 2087 if (success) 2088 break; 2089 } 2090 sl++; 2091 if (sl == conf->copies) 2092 sl = 0; 2093 } while (!success && sl != r10_bio->read_slot); 2094 rcu_read_unlock(); 2095 2096 if (!success) { 2097 /* Cannot read from anywhere, just mark the block 2098 * as bad on the first device to discourage future 2099 * reads. 2100 */ 2101 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2102 rdev = conf->mirrors[dn].rdev; 2103 2104 if (!rdev_set_badblocks( 2105 rdev, 2106 r10_bio->devs[r10_bio->read_slot].addr 2107 + sect, 2108 s, 0)) 2109 md_error(mddev, rdev); 2110 break; 2111 } 2112 2113 start = sl; 2114 /* write it back and re-read */ 2115 rcu_read_lock(); 2116 while (sl != r10_bio->read_slot) { 2117 char b[BDEVNAME_SIZE]; 2118 2119 if (sl==0) 2120 sl = conf->copies; 2121 sl--; 2122 d = r10_bio->devs[sl].devnum; 2123 rdev = rcu_dereference(conf->mirrors[d].rdev); 2124 if (!rdev || 2125 !test_bit(In_sync, &rdev->flags)) 2126 continue; 2127 2128 atomic_inc(&rdev->nr_pending); 2129 rcu_read_unlock(); 2130 if (r10_sync_page_io(rdev, 2131 r10_bio->devs[sl].addr + 2132 sect, 2133 s<<9, conf->tmppage, WRITE) 2134 == 0) { 2135 /* Well, this device is dead */ 2136 printk(KERN_NOTICE 2137 "md/raid10:%s: read correction " 2138 "write failed" 2139 " (%d sectors at %llu on %s)\n", 2140 mdname(mddev), s, 2141 (unsigned long long)( 2142 sect + rdev->data_offset), 2143 bdevname(rdev->bdev, b)); 2144 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2145 "drive\n", 2146 mdname(mddev), 2147 bdevname(rdev->bdev, b)); 2148 } 2149 rdev_dec_pending(rdev, mddev); 2150 rcu_read_lock(); 2151 } 2152 sl = start; 2153 while (sl != r10_bio->read_slot) { 2154 char b[BDEVNAME_SIZE]; 2155 2156 if (sl==0) 2157 sl = conf->copies; 2158 sl--; 2159 d = r10_bio->devs[sl].devnum; 2160 rdev = rcu_dereference(conf->mirrors[d].rdev); 2161 if (!rdev || 2162 !test_bit(In_sync, &rdev->flags)) 2163 continue; 2164 2165 atomic_inc(&rdev->nr_pending); 2166 rcu_read_unlock(); 2167 switch (r10_sync_page_io(rdev, 2168 r10_bio->devs[sl].addr + 2169 sect, 2170 s<<9, conf->tmppage, 2171 READ)) { 2172 case 0: 2173 /* Well, this device is dead */ 2174 printk(KERN_NOTICE 2175 "md/raid10:%s: unable to read back " 2176 "corrected sectors" 2177 " (%d sectors at %llu on %s)\n", 2178 mdname(mddev), s, 2179 (unsigned long long)( 2180 sect + rdev->data_offset), 2181 bdevname(rdev->bdev, b)); 2182 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2183 "drive\n", 2184 mdname(mddev), 2185 bdevname(rdev->bdev, b)); 2186 break; 2187 case 1: 2188 printk(KERN_INFO 2189 "md/raid10:%s: read error corrected" 2190 " (%d sectors at %llu on %s)\n", 2191 mdname(mddev), s, 2192 (unsigned long long)( 2193 sect + rdev->data_offset), 2194 bdevname(rdev->bdev, b)); 2195 atomic_add(s, &rdev->corrected_errors); 2196 } 2197 2198 rdev_dec_pending(rdev, mddev); 2199 rcu_read_lock(); 2200 } 2201 rcu_read_unlock(); 2202 2203 sectors -= s; 2204 sect += s; 2205 } 2206 } 2207 2208 static void bi_complete(struct bio *bio, int error) 2209 { 2210 complete((struct completion *)bio->bi_private); 2211 } 2212 2213 static int submit_bio_wait(int rw, struct bio *bio) 2214 { 2215 struct completion event; 2216 rw |= REQ_SYNC; 2217 2218 init_completion(&event); 2219 bio->bi_private = &event; 2220 bio->bi_end_io = bi_complete; 2221 submit_bio(rw, bio); 2222 wait_for_completion(&event); 2223 2224 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2225 } 2226 2227 static int narrow_write_error(struct r10bio *r10_bio, int i) 2228 { 2229 struct bio *bio = r10_bio->master_bio; 2230 struct mddev *mddev = r10_bio->mddev; 2231 struct r10conf *conf = mddev->private; 2232 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2233 /* bio has the data to be written to slot 'i' where 2234 * we just recently had a write error. 2235 * We repeatedly clone the bio and trim down to one block, 2236 * then try the write. Where the write fails we record 2237 * a bad block. 2238 * It is conceivable that the bio doesn't exactly align with 2239 * blocks. We must handle this. 2240 * 2241 * We currently own a reference to the rdev. 2242 */ 2243 2244 int block_sectors; 2245 sector_t sector; 2246 int sectors; 2247 int sect_to_write = r10_bio->sectors; 2248 int ok = 1; 2249 2250 if (rdev->badblocks.shift < 0) 2251 return 0; 2252 2253 block_sectors = 1 << rdev->badblocks.shift; 2254 sector = r10_bio->sector; 2255 sectors = ((r10_bio->sector + block_sectors) 2256 & ~(sector_t)(block_sectors - 1)) 2257 - sector; 2258 2259 while (sect_to_write) { 2260 struct bio *wbio; 2261 if (sectors > sect_to_write) 2262 sectors = sect_to_write; 2263 /* Write at 'sector' for 'sectors' */ 2264 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2265 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2266 wbio->bi_sector = (r10_bio->devs[i].addr+ 2267 rdev->data_offset+ 2268 (sector - r10_bio->sector)); 2269 wbio->bi_bdev = rdev->bdev; 2270 if (submit_bio_wait(WRITE, wbio) == 0) 2271 /* Failure! */ 2272 ok = rdev_set_badblocks(rdev, sector, 2273 sectors, 0) 2274 && ok; 2275 2276 bio_put(wbio); 2277 sect_to_write -= sectors; 2278 sector += sectors; 2279 sectors = block_sectors; 2280 } 2281 return ok; 2282 } 2283 2284 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2285 { 2286 int slot = r10_bio->read_slot; 2287 struct bio *bio; 2288 struct r10conf *conf = mddev->private; 2289 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2290 char b[BDEVNAME_SIZE]; 2291 unsigned long do_sync; 2292 int max_sectors; 2293 2294 /* we got a read error. Maybe the drive is bad. Maybe just 2295 * the block and we can fix it. 2296 * We freeze all other IO, and try reading the block from 2297 * other devices. When we find one, we re-write 2298 * and check it that fixes the read error. 2299 * This is all done synchronously while the array is 2300 * frozen. 2301 */ 2302 if (mddev->ro == 0) { 2303 freeze_array(conf); 2304 fix_read_error(conf, mddev, r10_bio); 2305 unfreeze_array(conf); 2306 } 2307 rdev_dec_pending(rdev, mddev); 2308 2309 bio = r10_bio->devs[slot].bio; 2310 bdevname(bio->bi_bdev, b); 2311 r10_bio->devs[slot].bio = 2312 mddev->ro ? IO_BLOCKED : NULL; 2313 read_more: 2314 rdev = read_balance(conf, r10_bio, &max_sectors); 2315 if (rdev == NULL) { 2316 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2317 " read error for block %llu\n", 2318 mdname(mddev), b, 2319 (unsigned long long)r10_bio->sector); 2320 raid_end_bio_io(r10_bio); 2321 bio_put(bio); 2322 return; 2323 } 2324 2325 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2326 if (bio) 2327 bio_put(bio); 2328 slot = r10_bio->read_slot; 2329 printk_ratelimited( 2330 KERN_ERR 2331 "md/raid10:%s: %s: redirecting" 2332 "sector %llu to another mirror\n", 2333 mdname(mddev), 2334 bdevname(rdev->bdev, b), 2335 (unsigned long long)r10_bio->sector); 2336 bio = bio_clone_mddev(r10_bio->master_bio, 2337 GFP_NOIO, mddev); 2338 md_trim_bio(bio, 2339 r10_bio->sector - bio->bi_sector, 2340 max_sectors); 2341 r10_bio->devs[slot].bio = bio; 2342 r10_bio->devs[slot].rdev = rdev; 2343 bio->bi_sector = r10_bio->devs[slot].addr 2344 + rdev->data_offset; 2345 bio->bi_bdev = rdev->bdev; 2346 bio->bi_rw = READ | do_sync; 2347 bio->bi_private = r10_bio; 2348 bio->bi_end_io = raid10_end_read_request; 2349 if (max_sectors < r10_bio->sectors) { 2350 /* Drat - have to split this up more */ 2351 struct bio *mbio = r10_bio->master_bio; 2352 int sectors_handled = 2353 r10_bio->sector + max_sectors 2354 - mbio->bi_sector; 2355 r10_bio->sectors = max_sectors; 2356 spin_lock_irq(&conf->device_lock); 2357 if (mbio->bi_phys_segments == 0) 2358 mbio->bi_phys_segments = 2; 2359 else 2360 mbio->bi_phys_segments++; 2361 spin_unlock_irq(&conf->device_lock); 2362 generic_make_request(bio); 2363 bio = NULL; 2364 2365 r10_bio = mempool_alloc(conf->r10bio_pool, 2366 GFP_NOIO); 2367 r10_bio->master_bio = mbio; 2368 r10_bio->sectors = (mbio->bi_size >> 9) 2369 - sectors_handled; 2370 r10_bio->state = 0; 2371 set_bit(R10BIO_ReadError, 2372 &r10_bio->state); 2373 r10_bio->mddev = mddev; 2374 r10_bio->sector = mbio->bi_sector 2375 + sectors_handled; 2376 2377 goto read_more; 2378 } else 2379 generic_make_request(bio); 2380 } 2381 2382 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2383 { 2384 /* Some sort of write request has finished and it 2385 * succeeded in writing where we thought there was a 2386 * bad block. So forget the bad block. 2387 * Or possibly if failed and we need to record 2388 * a bad block. 2389 */ 2390 int m; 2391 struct md_rdev *rdev; 2392 2393 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2394 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2395 for (m = 0; m < conf->copies; m++) { 2396 int dev = r10_bio->devs[m].devnum; 2397 rdev = conf->mirrors[dev].rdev; 2398 if (r10_bio->devs[m].bio == NULL) 2399 continue; 2400 if (test_bit(BIO_UPTODATE, 2401 &r10_bio->devs[m].bio->bi_flags)) { 2402 rdev_clear_badblocks( 2403 rdev, 2404 r10_bio->devs[m].addr, 2405 r10_bio->sectors); 2406 } else { 2407 if (!rdev_set_badblocks( 2408 rdev, 2409 r10_bio->devs[m].addr, 2410 r10_bio->sectors, 0)) 2411 md_error(conf->mddev, rdev); 2412 } 2413 rdev = conf->mirrors[dev].replacement; 2414 if (r10_bio->devs[m].repl_bio == NULL) 2415 continue; 2416 if (test_bit(BIO_UPTODATE, 2417 &r10_bio->devs[m].repl_bio->bi_flags)) { 2418 rdev_clear_badblocks( 2419 rdev, 2420 r10_bio->devs[m].addr, 2421 r10_bio->sectors); 2422 } else { 2423 if (!rdev_set_badblocks( 2424 rdev, 2425 r10_bio->devs[m].addr, 2426 r10_bio->sectors, 0)) 2427 md_error(conf->mddev, rdev); 2428 } 2429 } 2430 put_buf(r10_bio); 2431 } else { 2432 for (m = 0; m < conf->copies; m++) { 2433 int dev = r10_bio->devs[m].devnum; 2434 struct bio *bio = r10_bio->devs[m].bio; 2435 rdev = conf->mirrors[dev].rdev; 2436 if (bio == IO_MADE_GOOD) { 2437 rdev_clear_badblocks( 2438 rdev, 2439 r10_bio->devs[m].addr, 2440 r10_bio->sectors); 2441 rdev_dec_pending(rdev, conf->mddev); 2442 } else if (bio != NULL && 2443 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2444 if (!narrow_write_error(r10_bio, m)) { 2445 md_error(conf->mddev, rdev); 2446 set_bit(R10BIO_Degraded, 2447 &r10_bio->state); 2448 } 2449 rdev_dec_pending(rdev, conf->mddev); 2450 } 2451 bio = r10_bio->devs[m].repl_bio; 2452 rdev = conf->mirrors[dev].replacement; 2453 if (rdev && bio == IO_MADE_GOOD) { 2454 rdev_clear_badblocks( 2455 rdev, 2456 r10_bio->devs[m].addr, 2457 r10_bio->sectors); 2458 rdev_dec_pending(rdev, conf->mddev); 2459 } 2460 } 2461 if (test_bit(R10BIO_WriteError, 2462 &r10_bio->state)) 2463 close_write(r10_bio); 2464 raid_end_bio_io(r10_bio); 2465 } 2466 } 2467 2468 static void raid10d(struct mddev *mddev) 2469 { 2470 struct r10bio *r10_bio; 2471 unsigned long flags; 2472 struct r10conf *conf = mddev->private; 2473 struct list_head *head = &conf->retry_list; 2474 struct blk_plug plug; 2475 2476 md_check_recovery(mddev); 2477 2478 blk_start_plug(&plug); 2479 for (;;) { 2480 2481 flush_pending_writes(conf); 2482 2483 spin_lock_irqsave(&conf->device_lock, flags); 2484 if (list_empty(head)) { 2485 spin_unlock_irqrestore(&conf->device_lock, flags); 2486 break; 2487 } 2488 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2489 list_del(head->prev); 2490 conf->nr_queued--; 2491 spin_unlock_irqrestore(&conf->device_lock, flags); 2492 2493 mddev = r10_bio->mddev; 2494 conf = mddev->private; 2495 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2496 test_bit(R10BIO_WriteError, &r10_bio->state)) 2497 handle_write_completed(conf, r10_bio); 2498 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2499 sync_request_write(mddev, r10_bio); 2500 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2501 recovery_request_write(mddev, r10_bio); 2502 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2503 handle_read_error(mddev, r10_bio); 2504 else { 2505 /* just a partial read to be scheduled from a 2506 * separate context 2507 */ 2508 int slot = r10_bio->read_slot; 2509 generic_make_request(r10_bio->devs[slot].bio); 2510 } 2511 2512 cond_resched(); 2513 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2514 md_check_recovery(mddev); 2515 } 2516 blk_finish_plug(&plug); 2517 } 2518 2519 2520 static int init_resync(struct r10conf *conf) 2521 { 2522 int buffs; 2523 int i; 2524 2525 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2526 BUG_ON(conf->r10buf_pool); 2527 conf->have_replacement = 0; 2528 for (i = 0; i < conf->raid_disks; i++) 2529 if (conf->mirrors[i].replacement) 2530 conf->have_replacement = 1; 2531 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2532 if (!conf->r10buf_pool) 2533 return -ENOMEM; 2534 conf->next_resync = 0; 2535 return 0; 2536 } 2537 2538 /* 2539 * perform a "sync" on one "block" 2540 * 2541 * We need to make sure that no normal I/O request - particularly write 2542 * requests - conflict with active sync requests. 2543 * 2544 * This is achieved by tracking pending requests and a 'barrier' concept 2545 * that can be installed to exclude normal IO requests. 2546 * 2547 * Resync and recovery are handled very differently. 2548 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2549 * 2550 * For resync, we iterate over virtual addresses, read all copies, 2551 * and update if there are differences. If only one copy is live, 2552 * skip it. 2553 * For recovery, we iterate over physical addresses, read a good 2554 * value for each non-in_sync drive, and over-write. 2555 * 2556 * So, for recovery we may have several outstanding complex requests for a 2557 * given address, one for each out-of-sync device. We model this by allocating 2558 * a number of r10_bio structures, one for each out-of-sync device. 2559 * As we setup these structures, we collect all bio's together into a list 2560 * which we then process collectively to add pages, and then process again 2561 * to pass to generic_make_request. 2562 * 2563 * The r10_bio structures are linked using a borrowed master_bio pointer. 2564 * This link is counted in ->remaining. When the r10_bio that points to NULL 2565 * has its remaining count decremented to 0, the whole complex operation 2566 * is complete. 2567 * 2568 */ 2569 2570 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2571 int *skipped, int go_faster) 2572 { 2573 struct r10conf *conf = mddev->private; 2574 struct r10bio *r10_bio; 2575 struct bio *biolist = NULL, *bio; 2576 sector_t max_sector, nr_sectors; 2577 int i; 2578 int max_sync; 2579 sector_t sync_blocks; 2580 sector_t sectors_skipped = 0; 2581 int chunks_skipped = 0; 2582 2583 if (!conf->r10buf_pool) 2584 if (init_resync(conf)) 2585 return 0; 2586 2587 skipped: 2588 max_sector = mddev->dev_sectors; 2589 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2590 max_sector = mddev->resync_max_sectors; 2591 if (sector_nr >= max_sector) { 2592 /* If we aborted, we need to abort the 2593 * sync on the 'current' bitmap chucks (there can 2594 * be several when recovering multiple devices). 2595 * as we may have started syncing it but not finished. 2596 * We can find the current address in 2597 * mddev->curr_resync, but for recovery, 2598 * we need to convert that to several 2599 * virtual addresses. 2600 */ 2601 if (mddev->curr_resync < max_sector) { /* aborted */ 2602 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2603 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2604 &sync_blocks, 1); 2605 else for (i=0; i<conf->raid_disks; i++) { 2606 sector_t sect = 2607 raid10_find_virt(conf, mddev->curr_resync, i); 2608 bitmap_end_sync(mddev->bitmap, sect, 2609 &sync_blocks, 1); 2610 } 2611 } else { 2612 /* completed sync */ 2613 if ((!mddev->bitmap || conf->fullsync) 2614 && conf->have_replacement 2615 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2616 /* Completed a full sync so the replacements 2617 * are now fully recovered. 2618 */ 2619 for (i = 0; i < conf->raid_disks; i++) 2620 if (conf->mirrors[i].replacement) 2621 conf->mirrors[i].replacement 2622 ->recovery_offset 2623 = MaxSector; 2624 } 2625 conf->fullsync = 0; 2626 } 2627 bitmap_close_sync(mddev->bitmap); 2628 close_sync(conf); 2629 *skipped = 1; 2630 return sectors_skipped; 2631 } 2632 if (chunks_skipped >= conf->raid_disks) { 2633 /* if there has been nothing to do on any drive, 2634 * then there is nothing to do at all.. 2635 */ 2636 *skipped = 1; 2637 return (max_sector - sector_nr) + sectors_skipped; 2638 } 2639 2640 if (max_sector > mddev->resync_max) 2641 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2642 2643 /* make sure whole request will fit in a chunk - if chunks 2644 * are meaningful 2645 */ 2646 if (conf->near_copies < conf->raid_disks && 2647 max_sector > (sector_nr | conf->chunk_mask)) 2648 max_sector = (sector_nr | conf->chunk_mask) + 1; 2649 /* 2650 * If there is non-resync activity waiting for us then 2651 * put in a delay to throttle resync. 2652 */ 2653 if (!go_faster && conf->nr_waiting) 2654 msleep_interruptible(1000); 2655 2656 /* Again, very different code for resync and recovery. 2657 * Both must result in an r10bio with a list of bios that 2658 * have bi_end_io, bi_sector, bi_bdev set, 2659 * and bi_private set to the r10bio. 2660 * For recovery, we may actually create several r10bios 2661 * with 2 bios in each, that correspond to the bios in the main one. 2662 * In this case, the subordinate r10bios link back through a 2663 * borrowed master_bio pointer, and the counter in the master 2664 * includes a ref from each subordinate. 2665 */ 2666 /* First, we decide what to do and set ->bi_end_io 2667 * To end_sync_read if we want to read, and 2668 * end_sync_write if we will want to write. 2669 */ 2670 2671 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2672 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2673 /* recovery... the complicated one */ 2674 int j; 2675 r10_bio = NULL; 2676 2677 for (i=0 ; i<conf->raid_disks; i++) { 2678 int still_degraded; 2679 struct r10bio *rb2; 2680 sector_t sect; 2681 int must_sync; 2682 int any_working; 2683 struct mirror_info *mirror = &conf->mirrors[i]; 2684 2685 if ((mirror->rdev == NULL || 2686 test_bit(In_sync, &mirror->rdev->flags)) 2687 && 2688 (mirror->replacement == NULL || 2689 test_bit(Faulty, 2690 &mirror->replacement->flags))) 2691 continue; 2692 2693 still_degraded = 0; 2694 /* want to reconstruct this device */ 2695 rb2 = r10_bio; 2696 sect = raid10_find_virt(conf, sector_nr, i); 2697 /* Unless we are doing a full sync, or a replacement 2698 * we only need to recover the block if it is set in 2699 * the bitmap 2700 */ 2701 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2702 &sync_blocks, 1); 2703 if (sync_blocks < max_sync) 2704 max_sync = sync_blocks; 2705 if (!must_sync && 2706 mirror->replacement == NULL && 2707 !conf->fullsync) { 2708 /* yep, skip the sync_blocks here, but don't assume 2709 * that there will never be anything to do here 2710 */ 2711 chunks_skipped = -1; 2712 continue; 2713 } 2714 2715 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2716 raise_barrier(conf, rb2 != NULL); 2717 atomic_set(&r10_bio->remaining, 0); 2718 2719 r10_bio->master_bio = (struct bio*)rb2; 2720 if (rb2) 2721 atomic_inc(&rb2->remaining); 2722 r10_bio->mddev = mddev; 2723 set_bit(R10BIO_IsRecover, &r10_bio->state); 2724 r10_bio->sector = sect; 2725 2726 raid10_find_phys(conf, r10_bio); 2727 2728 /* Need to check if the array will still be 2729 * degraded 2730 */ 2731 for (j=0; j<conf->raid_disks; j++) 2732 if (conf->mirrors[j].rdev == NULL || 2733 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2734 still_degraded = 1; 2735 break; 2736 } 2737 2738 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2739 &sync_blocks, still_degraded); 2740 2741 any_working = 0; 2742 for (j=0; j<conf->copies;j++) { 2743 int k; 2744 int d = r10_bio->devs[j].devnum; 2745 sector_t from_addr, to_addr; 2746 struct md_rdev *rdev; 2747 sector_t sector, first_bad; 2748 int bad_sectors; 2749 if (!conf->mirrors[d].rdev || 2750 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 2751 continue; 2752 /* This is where we read from */ 2753 any_working = 1; 2754 rdev = conf->mirrors[d].rdev; 2755 sector = r10_bio->devs[j].addr; 2756 2757 if (is_badblock(rdev, sector, max_sync, 2758 &first_bad, &bad_sectors)) { 2759 if (first_bad > sector) 2760 max_sync = first_bad - sector; 2761 else { 2762 bad_sectors -= (sector 2763 - first_bad); 2764 if (max_sync > bad_sectors) 2765 max_sync = bad_sectors; 2766 continue; 2767 } 2768 } 2769 bio = r10_bio->devs[0].bio; 2770 bio->bi_next = biolist; 2771 biolist = bio; 2772 bio->bi_private = r10_bio; 2773 bio->bi_end_io = end_sync_read; 2774 bio->bi_rw = READ; 2775 from_addr = r10_bio->devs[j].addr; 2776 bio->bi_sector = from_addr + rdev->data_offset; 2777 bio->bi_bdev = rdev->bdev; 2778 atomic_inc(&rdev->nr_pending); 2779 /* and we write to 'i' (if not in_sync) */ 2780 2781 for (k=0; k<conf->copies; k++) 2782 if (r10_bio->devs[k].devnum == i) 2783 break; 2784 BUG_ON(k == conf->copies); 2785 to_addr = r10_bio->devs[k].addr; 2786 r10_bio->devs[0].devnum = d; 2787 r10_bio->devs[0].addr = from_addr; 2788 r10_bio->devs[1].devnum = i; 2789 r10_bio->devs[1].addr = to_addr; 2790 2791 rdev = mirror->rdev; 2792 if (!test_bit(In_sync, &rdev->flags)) { 2793 bio = r10_bio->devs[1].bio; 2794 bio->bi_next = biolist; 2795 biolist = bio; 2796 bio->bi_private = r10_bio; 2797 bio->bi_end_io = end_sync_write; 2798 bio->bi_rw = WRITE; 2799 bio->bi_sector = to_addr 2800 + rdev->data_offset; 2801 bio->bi_bdev = rdev->bdev; 2802 atomic_inc(&r10_bio->remaining); 2803 } else 2804 r10_bio->devs[1].bio->bi_end_io = NULL; 2805 2806 /* and maybe write to replacement */ 2807 bio = r10_bio->devs[1].repl_bio; 2808 if (bio) 2809 bio->bi_end_io = NULL; 2810 rdev = mirror->replacement; 2811 /* Note: if rdev != NULL, then bio 2812 * cannot be NULL as r10buf_pool_alloc will 2813 * have allocated it. 2814 * So the second test here is pointless. 2815 * But it keeps semantic-checkers happy, and 2816 * this comment keeps human reviewers 2817 * happy. 2818 */ 2819 if (rdev == NULL || bio == NULL || 2820 test_bit(Faulty, &rdev->flags)) 2821 break; 2822 bio->bi_next = biolist; 2823 biolist = bio; 2824 bio->bi_private = r10_bio; 2825 bio->bi_end_io = end_sync_write; 2826 bio->bi_rw = WRITE; 2827 bio->bi_sector = to_addr + rdev->data_offset; 2828 bio->bi_bdev = rdev->bdev; 2829 atomic_inc(&r10_bio->remaining); 2830 break; 2831 } 2832 if (j == conf->copies) { 2833 /* Cannot recover, so abort the recovery or 2834 * record a bad block */ 2835 put_buf(r10_bio); 2836 if (rb2) 2837 atomic_dec(&rb2->remaining); 2838 r10_bio = rb2; 2839 if (any_working) { 2840 /* problem is that there are bad blocks 2841 * on other device(s) 2842 */ 2843 int k; 2844 for (k = 0; k < conf->copies; k++) 2845 if (r10_bio->devs[k].devnum == i) 2846 break; 2847 if (!test_bit(In_sync, 2848 &mirror->rdev->flags) 2849 && !rdev_set_badblocks( 2850 mirror->rdev, 2851 r10_bio->devs[k].addr, 2852 max_sync, 0)) 2853 any_working = 0; 2854 if (mirror->replacement && 2855 !rdev_set_badblocks( 2856 mirror->replacement, 2857 r10_bio->devs[k].addr, 2858 max_sync, 0)) 2859 any_working = 0; 2860 } 2861 if (!any_working) { 2862 if (!test_and_set_bit(MD_RECOVERY_INTR, 2863 &mddev->recovery)) 2864 printk(KERN_INFO "md/raid10:%s: insufficient " 2865 "working devices for recovery.\n", 2866 mdname(mddev)); 2867 mirror->recovery_disabled 2868 = mddev->recovery_disabled; 2869 } 2870 break; 2871 } 2872 } 2873 if (biolist == NULL) { 2874 while (r10_bio) { 2875 struct r10bio *rb2 = r10_bio; 2876 r10_bio = (struct r10bio*) rb2->master_bio; 2877 rb2->master_bio = NULL; 2878 put_buf(rb2); 2879 } 2880 goto giveup; 2881 } 2882 } else { 2883 /* resync. Schedule a read for every block at this virt offset */ 2884 int count = 0; 2885 2886 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2887 2888 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2889 &sync_blocks, mddev->degraded) && 2890 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 2891 &mddev->recovery)) { 2892 /* We can skip this block */ 2893 *skipped = 1; 2894 return sync_blocks + sectors_skipped; 2895 } 2896 if (sync_blocks < max_sync) 2897 max_sync = sync_blocks; 2898 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2899 2900 r10_bio->mddev = mddev; 2901 atomic_set(&r10_bio->remaining, 0); 2902 raise_barrier(conf, 0); 2903 conf->next_resync = sector_nr; 2904 2905 r10_bio->master_bio = NULL; 2906 r10_bio->sector = sector_nr; 2907 set_bit(R10BIO_IsSync, &r10_bio->state); 2908 raid10_find_phys(conf, r10_bio); 2909 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 2910 2911 for (i=0; i<conf->copies; i++) { 2912 int d = r10_bio->devs[i].devnum; 2913 sector_t first_bad, sector; 2914 int bad_sectors; 2915 2916 if (r10_bio->devs[i].repl_bio) 2917 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 2918 2919 bio = r10_bio->devs[i].bio; 2920 bio->bi_end_io = NULL; 2921 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2922 if (conf->mirrors[d].rdev == NULL || 2923 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 2924 continue; 2925 sector = r10_bio->devs[i].addr; 2926 if (is_badblock(conf->mirrors[d].rdev, 2927 sector, max_sync, 2928 &first_bad, &bad_sectors)) { 2929 if (first_bad > sector) 2930 max_sync = first_bad - sector; 2931 else { 2932 bad_sectors -= (sector - first_bad); 2933 if (max_sync > bad_sectors) 2934 max_sync = max_sync; 2935 continue; 2936 } 2937 } 2938 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2939 atomic_inc(&r10_bio->remaining); 2940 bio->bi_next = biolist; 2941 biolist = bio; 2942 bio->bi_private = r10_bio; 2943 bio->bi_end_io = end_sync_read; 2944 bio->bi_rw = READ; 2945 bio->bi_sector = sector + 2946 conf->mirrors[d].rdev->data_offset; 2947 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2948 count++; 2949 2950 if (conf->mirrors[d].replacement == NULL || 2951 test_bit(Faulty, 2952 &conf->mirrors[d].replacement->flags)) 2953 continue; 2954 2955 /* Need to set up for writing to the replacement */ 2956 bio = r10_bio->devs[i].repl_bio; 2957 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2958 2959 sector = r10_bio->devs[i].addr; 2960 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2961 bio->bi_next = biolist; 2962 biolist = bio; 2963 bio->bi_private = r10_bio; 2964 bio->bi_end_io = end_sync_write; 2965 bio->bi_rw = WRITE; 2966 bio->bi_sector = sector + 2967 conf->mirrors[d].replacement->data_offset; 2968 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 2969 count++; 2970 } 2971 2972 if (count < 2) { 2973 for (i=0; i<conf->copies; i++) { 2974 int d = r10_bio->devs[i].devnum; 2975 if (r10_bio->devs[i].bio->bi_end_io) 2976 rdev_dec_pending(conf->mirrors[d].rdev, 2977 mddev); 2978 if (r10_bio->devs[i].repl_bio && 2979 r10_bio->devs[i].repl_bio->bi_end_io) 2980 rdev_dec_pending( 2981 conf->mirrors[d].replacement, 2982 mddev); 2983 } 2984 put_buf(r10_bio); 2985 biolist = NULL; 2986 goto giveup; 2987 } 2988 } 2989 2990 for (bio = biolist; bio ; bio=bio->bi_next) { 2991 2992 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 2993 if (bio->bi_end_io) 2994 bio->bi_flags |= 1 << BIO_UPTODATE; 2995 bio->bi_vcnt = 0; 2996 bio->bi_idx = 0; 2997 bio->bi_phys_segments = 0; 2998 bio->bi_size = 0; 2999 } 3000 3001 nr_sectors = 0; 3002 if (sector_nr + max_sync < max_sector) 3003 max_sector = sector_nr + max_sync; 3004 do { 3005 struct page *page; 3006 int len = PAGE_SIZE; 3007 if (sector_nr + (len>>9) > max_sector) 3008 len = (max_sector - sector_nr) << 9; 3009 if (len == 0) 3010 break; 3011 for (bio= biolist ; bio ; bio=bio->bi_next) { 3012 struct bio *bio2; 3013 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3014 if (bio_add_page(bio, page, len, 0)) 3015 continue; 3016 3017 /* stop here */ 3018 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3019 for (bio2 = biolist; 3020 bio2 && bio2 != bio; 3021 bio2 = bio2->bi_next) { 3022 /* remove last page from this bio */ 3023 bio2->bi_vcnt--; 3024 bio2->bi_size -= len; 3025 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3026 } 3027 goto bio_full; 3028 } 3029 nr_sectors += len>>9; 3030 sector_nr += len>>9; 3031 } while (biolist->bi_vcnt < RESYNC_PAGES); 3032 bio_full: 3033 r10_bio->sectors = nr_sectors; 3034 3035 while (biolist) { 3036 bio = biolist; 3037 biolist = biolist->bi_next; 3038 3039 bio->bi_next = NULL; 3040 r10_bio = bio->bi_private; 3041 r10_bio->sectors = nr_sectors; 3042 3043 if (bio->bi_end_io == end_sync_read) { 3044 md_sync_acct(bio->bi_bdev, nr_sectors); 3045 generic_make_request(bio); 3046 } 3047 } 3048 3049 if (sectors_skipped) 3050 /* pretend they weren't skipped, it makes 3051 * no important difference in this case 3052 */ 3053 md_done_sync(mddev, sectors_skipped, 1); 3054 3055 return sectors_skipped + nr_sectors; 3056 giveup: 3057 /* There is nowhere to write, so all non-sync 3058 * drives must be failed or in resync, all drives 3059 * have a bad block, so try the next chunk... 3060 */ 3061 if (sector_nr + max_sync < max_sector) 3062 max_sector = sector_nr + max_sync; 3063 3064 sectors_skipped += (max_sector - sector_nr); 3065 chunks_skipped ++; 3066 sector_nr = max_sector; 3067 goto skipped; 3068 } 3069 3070 static sector_t 3071 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3072 { 3073 sector_t size; 3074 struct r10conf *conf = mddev->private; 3075 3076 if (!raid_disks) 3077 raid_disks = conf->raid_disks; 3078 if (!sectors) 3079 sectors = conf->dev_sectors; 3080 3081 size = sectors >> conf->chunk_shift; 3082 sector_div(size, conf->far_copies); 3083 size = size * raid_disks; 3084 sector_div(size, conf->near_copies); 3085 3086 return size << conf->chunk_shift; 3087 } 3088 3089 3090 static struct r10conf *setup_conf(struct mddev *mddev) 3091 { 3092 struct r10conf *conf = NULL; 3093 int nc, fc, fo; 3094 sector_t stride, size; 3095 int err = -EINVAL; 3096 3097 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || 3098 !is_power_of_2(mddev->new_chunk_sectors)) { 3099 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3100 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3101 mdname(mddev), PAGE_SIZE); 3102 goto out; 3103 } 3104 3105 nc = mddev->new_layout & 255; 3106 fc = (mddev->new_layout >> 8) & 255; 3107 fo = mddev->new_layout & (1<<16); 3108 3109 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 3110 (mddev->new_layout >> 17)) { 3111 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3112 mdname(mddev), mddev->new_layout); 3113 goto out; 3114 } 3115 3116 err = -ENOMEM; 3117 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3118 if (!conf) 3119 goto out; 3120 3121 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 3122 GFP_KERNEL); 3123 if (!conf->mirrors) 3124 goto out; 3125 3126 conf->tmppage = alloc_page(GFP_KERNEL); 3127 if (!conf->tmppage) 3128 goto out; 3129 3130 3131 conf->raid_disks = mddev->raid_disks; 3132 conf->near_copies = nc; 3133 conf->far_copies = fc; 3134 conf->copies = nc*fc; 3135 conf->far_offset = fo; 3136 conf->chunk_mask = mddev->new_chunk_sectors - 1; 3137 conf->chunk_shift = ffz(~mddev->new_chunk_sectors); 3138 3139 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3140 r10bio_pool_free, conf); 3141 if (!conf->r10bio_pool) 3142 goto out; 3143 3144 size = mddev->dev_sectors >> conf->chunk_shift; 3145 sector_div(size, fc); 3146 size = size * conf->raid_disks; 3147 sector_div(size, nc); 3148 /* 'size' is now the number of chunks in the array */ 3149 /* calculate "used chunks per device" in 'stride' */ 3150 stride = size * conf->copies; 3151 3152 /* We need to round up when dividing by raid_disks to 3153 * get the stride size. 3154 */ 3155 stride += conf->raid_disks - 1; 3156 sector_div(stride, conf->raid_disks); 3157 3158 conf->dev_sectors = stride << conf->chunk_shift; 3159 3160 if (fo) 3161 stride = 1; 3162 else 3163 sector_div(stride, fc); 3164 conf->stride = stride << conf->chunk_shift; 3165 3166 3167 spin_lock_init(&conf->device_lock); 3168 INIT_LIST_HEAD(&conf->retry_list); 3169 3170 spin_lock_init(&conf->resync_lock); 3171 init_waitqueue_head(&conf->wait_barrier); 3172 3173 conf->thread = md_register_thread(raid10d, mddev, NULL); 3174 if (!conf->thread) 3175 goto out; 3176 3177 conf->mddev = mddev; 3178 return conf; 3179 3180 out: 3181 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3182 mdname(mddev)); 3183 if (conf) { 3184 if (conf->r10bio_pool) 3185 mempool_destroy(conf->r10bio_pool); 3186 kfree(conf->mirrors); 3187 safe_put_page(conf->tmppage); 3188 kfree(conf); 3189 } 3190 return ERR_PTR(err); 3191 } 3192 3193 static int run(struct mddev *mddev) 3194 { 3195 struct r10conf *conf; 3196 int i, disk_idx, chunk_size; 3197 struct mirror_info *disk; 3198 struct md_rdev *rdev; 3199 sector_t size; 3200 3201 /* 3202 * copy the already verified devices into our private RAID10 3203 * bookkeeping area. [whatever we allocate in run(), 3204 * should be freed in stop()] 3205 */ 3206 3207 if (mddev->private == NULL) { 3208 conf = setup_conf(mddev); 3209 if (IS_ERR(conf)) 3210 return PTR_ERR(conf); 3211 mddev->private = conf; 3212 } 3213 conf = mddev->private; 3214 if (!conf) 3215 goto out; 3216 3217 mddev->thread = conf->thread; 3218 conf->thread = NULL; 3219 3220 chunk_size = mddev->chunk_sectors << 9; 3221 blk_queue_io_min(mddev->queue, chunk_size); 3222 if (conf->raid_disks % conf->near_copies) 3223 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 3224 else 3225 blk_queue_io_opt(mddev->queue, chunk_size * 3226 (conf->raid_disks / conf->near_copies)); 3227 3228 list_for_each_entry(rdev, &mddev->disks, same_set) { 3229 3230 disk_idx = rdev->raid_disk; 3231 if (disk_idx >= conf->raid_disks 3232 || disk_idx < 0) 3233 continue; 3234 disk = conf->mirrors + disk_idx; 3235 3236 if (test_bit(Replacement, &rdev->flags)) { 3237 if (disk->replacement) 3238 goto out_free_conf; 3239 disk->replacement = rdev; 3240 } else { 3241 if (disk->rdev) 3242 goto out_free_conf; 3243 disk->rdev = rdev; 3244 } 3245 3246 disk->rdev = rdev; 3247 disk_stack_limits(mddev->gendisk, rdev->bdev, 3248 rdev->data_offset << 9); 3249 /* as we don't honour merge_bvec_fn, we must never risk 3250 * violating it, so limit max_segments to 1 lying 3251 * within a single page. 3252 */ 3253 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 3254 blk_queue_max_segments(mddev->queue, 1); 3255 blk_queue_segment_boundary(mddev->queue, 3256 PAGE_CACHE_SIZE - 1); 3257 } 3258 3259 disk->head_position = 0; 3260 } 3261 /* need to check that every block has at least one working mirror */ 3262 if (!enough(conf, -1)) { 3263 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3264 mdname(mddev)); 3265 goto out_free_conf; 3266 } 3267 3268 mddev->degraded = 0; 3269 for (i = 0; i < conf->raid_disks; i++) { 3270 3271 disk = conf->mirrors + i; 3272 3273 if (!disk->rdev && disk->replacement) { 3274 /* The replacement is all we have - use it */ 3275 disk->rdev = disk->replacement; 3276 disk->replacement = NULL; 3277 clear_bit(Replacement, &disk->rdev->flags); 3278 } 3279 3280 if (!disk->rdev || 3281 !test_bit(In_sync, &disk->rdev->flags)) { 3282 disk->head_position = 0; 3283 mddev->degraded++; 3284 if (disk->rdev) 3285 conf->fullsync = 1; 3286 } 3287 disk->recovery_disabled = mddev->recovery_disabled - 1; 3288 } 3289 3290 if (mddev->recovery_cp != MaxSector) 3291 printk(KERN_NOTICE "md/raid10:%s: not clean" 3292 " -- starting background reconstruction\n", 3293 mdname(mddev)); 3294 printk(KERN_INFO 3295 "md/raid10:%s: active with %d out of %d devices\n", 3296 mdname(mddev), conf->raid_disks - mddev->degraded, 3297 conf->raid_disks); 3298 /* 3299 * Ok, everything is just fine now 3300 */ 3301 mddev->dev_sectors = conf->dev_sectors; 3302 size = raid10_size(mddev, 0, 0); 3303 md_set_array_sectors(mddev, size); 3304 mddev->resync_max_sectors = size; 3305 3306 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3307 mddev->queue->backing_dev_info.congested_data = mddev; 3308 3309 /* Calculate max read-ahead size. 3310 * We need to readahead at least twice a whole stripe.... 3311 * maybe... 3312 */ 3313 { 3314 int stripe = conf->raid_disks * 3315 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3316 stripe /= conf->near_copies; 3317 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 3318 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 3319 } 3320 3321 if (conf->near_copies < conf->raid_disks) 3322 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3323 3324 if (md_integrity_register(mddev)) 3325 goto out_free_conf; 3326 3327 return 0; 3328 3329 out_free_conf: 3330 md_unregister_thread(&mddev->thread); 3331 if (conf->r10bio_pool) 3332 mempool_destroy(conf->r10bio_pool); 3333 safe_put_page(conf->tmppage); 3334 kfree(conf->mirrors); 3335 kfree(conf); 3336 mddev->private = NULL; 3337 out: 3338 return -EIO; 3339 } 3340 3341 static int stop(struct mddev *mddev) 3342 { 3343 struct r10conf *conf = mddev->private; 3344 3345 raise_barrier(conf, 0); 3346 lower_barrier(conf); 3347 3348 md_unregister_thread(&mddev->thread); 3349 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 3350 if (conf->r10bio_pool) 3351 mempool_destroy(conf->r10bio_pool); 3352 kfree(conf->mirrors); 3353 kfree(conf); 3354 mddev->private = NULL; 3355 return 0; 3356 } 3357 3358 static void raid10_quiesce(struct mddev *mddev, int state) 3359 { 3360 struct r10conf *conf = mddev->private; 3361 3362 switch(state) { 3363 case 1: 3364 raise_barrier(conf, 0); 3365 break; 3366 case 0: 3367 lower_barrier(conf); 3368 break; 3369 } 3370 } 3371 3372 static void *raid10_takeover_raid0(struct mddev *mddev) 3373 { 3374 struct md_rdev *rdev; 3375 struct r10conf *conf; 3376 3377 if (mddev->degraded > 0) { 3378 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3379 mdname(mddev)); 3380 return ERR_PTR(-EINVAL); 3381 } 3382 3383 /* Set new parameters */ 3384 mddev->new_level = 10; 3385 /* new layout: far_copies = 1, near_copies = 2 */ 3386 mddev->new_layout = (1<<8) + 2; 3387 mddev->new_chunk_sectors = mddev->chunk_sectors; 3388 mddev->delta_disks = mddev->raid_disks; 3389 mddev->raid_disks *= 2; 3390 /* make sure it will be not marked as dirty */ 3391 mddev->recovery_cp = MaxSector; 3392 3393 conf = setup_conf(mddev); 3394 if (!IS_ERR(conf)) { 3395 list_for_each_entry(rdev, &mddev->disks, same_set) 3396 if (rdev->raid_disk >= 0) 3397 rdev->new_raid_disk = rdev->raid_disk * 2; 3398 conf->barrier = 1; 3399 } 3400 3401 return conf; 3402 } 3403 3404 static void *raid10_takeover(struct mddev *mddev) 3405 { 3406 struct r0conf *raid0_conf; 3407 3408 /* raid10 can take over: 3409 * raid0 - providing it has only two drives 3410 */ 3411 if (mddev->level == 0) { 3412 /* for raid0 takeover only one zone is supported */ 3413 raid0_conf = mddev->private; 3414 if (raid0_conf->nr_strip_zones > 1) { 3415 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3416 " with more than one zone.\n", 3417 mdname(mddev)); 3418 return ERR_PTR(-EINVAL); 3419 } 3420 return raid10_takeover_raid0(mddev); 3421 } 3422 return ERR_PTR(-EINVAL); 3423 } 3424 3425 static struct md_personality raid10_personality = 3426 { 3427 .name = "raid10", 3428 .level = 10, 3429 .owner = THIS_MODULE, 3430 .make_request = make_request, 3431 .run = run, 3432 .stop = stop, 3433 .status = status, 3434 .error_handler = error, 3435 .hot_add_disk = raid10_add_disk, 3436 .hot_remove_disk= raid10_remove_disk, 3437 .spare_active = raid10_spare_active, 3438 .sync_request = sync_request, 3439 .quiesce = raid10_quiesce, 3440 .size = raid10_size, 3441 .takeover = raid10_takeover, 3442 }; 3443 3444 static int __init raid_init(void) 3445 { 3446 return register_md_personality(&raid10_personality); 3447 } 3448 3449 static void raid_exit(void) 3450 { 3451 unregister_md_personality(&raid10_personality); 3452 } 3453 3454 module_init(raid_init); 3455 module_exit(raid_exit); 3456 MODULE_LICENSE("GPL"); 3457 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 3458 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 3459 MODULE_ALIAS("md-raid10"); 3460 MODULE_ALIAS("md-level-10"); 3461 3462 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3463