1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) { 103 unplug_slaves(conf->mddev); 104 return NULL; 105 } 106 107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 108 nalloc = conf->copies; /* resync */ 109 else 110 nalloc = 2; /* recovery */ 111 112 /* 113 * Allocate bios. 114 */ 115 for (j = nalloc ; j-- ; ) { 116 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 117 if (!bio) 118 goto out_free_bio; 119 r10_bio->devs[j].bio = bio; 120 } 121 /* 122 * Allocate RESYNC_PAGES data pages and attach them 123 * where needed. 124 */ 125 for (j = 0 ; j < nalloc; j++) { 126 bio = r10_bio->devs[j].bio; 127 for (i = 0; i < RESYNC_PAGES; i++) { 128 page = alloc_page(gfp_flags); 129 if (unlikely(!page)) 130 goto out_free_pages; 131 132 bio->bi_io_vec[i].bv_page = page; 133 } 134 } 135 136 return r10_bio; 137 138 out_free_pages: 139 for ( ; i > 0 ; i--) 140 safe_put_page(bio->bi_io_vec[i-1].bv_page); 141 while (j--) 142 for (i = 0; i < RESYNC_PAGES ; i++) 143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < nalloc ) 147 bio_put(r10_bio->devs[j].bio); 148 r10bio_pool_free(r10_bio, conf); 149 return NULL; 150 } 151 152 static void r10buf_pool_free(void *__r10_bio, void *data) 153 { 154 int i; 155 conf_t *conf = data; 156 r10bio_t *r10bio = __r10_bio; 157 int j; 158 159 for (j=0; j < conf->copies; j++) { 160 struct bio *bio = r10bio->devs[j].bio; 161 if (bio) { 162 for (i = 0; i < RESYNC_PAGES; i++) { 163 safe_put_page(bio->bi_io_vec[i].bv_page); 164 bio->bi_io_vec[i].bv_page = NULL; 165 } 166 bio_put(bio); 167 } 168 } 169 r10bio_pool_free(r10bio, conf); 170 } 171 172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->copies; i++) { 177 struct bio **bio = & r10_bio->devs[i].bio; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r10bio(r10bio_t *r10_bio) 185 { 186 conf_t *conf = mddev_to_conf(r10_bio->mddev); 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r10_bio); 195 mempool_free(r10_bio, conf->r10bio_pool); 196 } 197 198 static void put_buf(r10bio_t *r10_bio) 199 { 200 conf_t *conf = mddev_to_conf(r10_bio->mddev); 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 lower_barrier(conf); 205 } 206 207 static void reschedule_retry(r10bio_t *r10_bio) 208 { 209 unsigned long flags; 210 mddev_t *mddev = r10_bio->mddev; 211 conf_t *conf = mddev_to_conf(mddev); 212 213 spin_lock_irqsave(&conf->device_lock, flags); 214 list_add(&r10_bio->retry_list, &conf->retry_list); 215 conf->nr_queued ++; 216 spin_unlock_irqrestore(&conf->device_lock, flags); 217 218 /* wake up frozen array... */ 219 wake_up(&conf->wait_barrier); 220 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r10bio_t *r10_bio) 230 { 231 struct bio *bio = r10_bio->master_bio; 232 233 bio_endio(bio, 234 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 235 free_r10bio(r10_bio); 236 } 237 238 /* 239 * Update disk head position estimator based on IRQ completion info. 240 */ 241 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 242 { 243 conf_t *conf = mddev_to_conf(r10_bio->mddev); 244 245 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 246 r10_bio->devs[slot].addr + (r10_bio->sectors); 247 } 248 249 static void raid10_end_read_request(struct bio *bio, int error) 250 { 251 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 252 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 253 int slot, dev; 254 conf_t *conf = mddev_to_conf(r10_bio->mddev); 255 256 257 slot = r10_bio->read_slot; 258 dev = r10_bio->devs[slot].devnum; 259 /* 260 * this branch is our 'one mirror IO has finished' event handler: 261 */ 262 update_head_pos(slot, r10_bio); 263 264 if (uptodate) { 265 /* 266 * Set R10BIO_Uptodate in our master bio, so that 267 * we will return a good error code to the higher 268 * levels even if IO on some other mirrored buffer fails. 269 * 270 * The 'master' represents the composite IO operation to 271 * user-side. So if something waits for IO, then it will 272 * wait for the 'master' bio. 273 */ 274 set_bit(R10BIO_Uptodate, &r10_bio->state); 275 raid_end_bio_io(r10_bio); 276 } else { 277 /* 278 * oops, read error: 279 */ 280 char b[BDEVNAME_SIZE]; 281 if (printk_ratelimit()) 282 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 283 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 284 reschedule_retry(r10_bio); 285 } 286 287 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 288 } 289 290 static void raid10_end_write_request(struct bio *bio, int error) 291 { 292 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 293 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 294 int slot, dev; 295 conf_t *conf = mddev_to_conf(r10_bio->mddev); 296 297 for (slot = 0; slot < conf->copies; slot++) 298 if (r10_bio->devs[slot].bio == bio) 299 break; 300 dev = r10_bio->devs[slot].devnum; 301 302 /* 303 * this branch is our 'one mirror IO has finished' event handler: 304 */ 305 if (!uptodate) { 306 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 307 /* an I/O failed, we can't clear the bitmap */ 308 set_bit(R10BIO_Degraded, &r10_bio->state); 309 } else 310 /* 311 * Set R10BIO_Uptodate in our master bio, so that 312 * we will return a good error code for to the higher 313 * levels even if IO on some other mirrored buffer fails. 314 * 315 * The 'master' represents the composite IO operation to 316 * user-side. So if something waits for IO, then it will 317 * wait for the 'master' bio. 318 */ 319 set_bit(R10BIO_Uptodate, &r10_bio->state); 320 321 update_head_pos(slot, r10_bio); 322 323 /* 324 * 325 * Let's see if all mirrored write operations have finished 326 * already. 327 */ 328 if (atomic_dec_and_test(&r10_bio->remaining)) { 329 /* clear the bitmap if all writes complete successfully */ 330 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 331 r10_bio->sectors, 332 !test_bit(R10BIO_Degraded, &r10_bio->state), 333 0); 334 md_write_end(r10_bio->mddev); 335 raid_end_bio_io(r10_bio); 336 } 337 338 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 339 } 340 341 342 /* 343 * RAID10 layout manager 344 * Aswell as the chunksize and raid_disks count, there are two 345 * parameters: near_copies and far_copies. 346 * near_copies * far_copies must be <= raid_disks. 347 * Normally one of these will be 1. 348 * If both are 1, we get raid0. 349 * If near_copies == raid_disks, we get raid1. 350 * 351 * Chunks are layed out in raid0 style with near_copies copies of the 352 * first chunk, followed by near_copies copies of the next chunk and 353 * so on. 354 * If far_copies > 1, then after 1/far_copies of the array has been assigned 355 * as described above, we start again with a device offset of near_copies. 356 * So we effectively have another copy of the whole array further down all 357 * the drives, but with blocks on different drives. 358 * With this layout, and block is never stored twice on the one device. 359 * 360 * raid10_find_phys finds the sector offset of a given virtual sector 361 * on each device that it is on. 362 * 363 * raid10_find_virt does the reverse mapping, from a device and a 364 * sector offset to a virtual address 365 */ 366 367 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 368 { 369 int n,f; 370 sector_t sector; 371 sector_t chunk; 372 sector_t stripe; 373 int dev; 374 375 int slot = 0; 376 377 /* now calculate first sector/dev */ 378 chunk = r10bio->sector >> conf->chunk_shift; 379 sector = r10bio->sector & conf->chunk_mask; 380 381 chunk *= conf->near_copies; 382 stripe = chunk; 383 dev = sector_div(stripe, conf->raid_disks); 384 if (conf->far_offset) 385 stripe *= conf->far_copies; 386 387 sector += stripe << conf->chunk_shift; 388 389 /* and calculate all the others */ 390 for (n=0; n < conf->near_copies; n++) { 391 int d = dev; 392 sector_t s = sector; 393 r10bio->devs[slot].addr = sector; 394 r10bio->devs[slot].devnum = d; 395 slot++; 396 397 for (f = 1; f < conf->far_copies; f++) { 398 d += conf->near_copies; 399 if (d >= conf->raid_disks) 400 d -= conf->raid_disks; 401 s += conf->stride; 402 r10bio->devs[slot].devnum = d; 403 r10bio->devs[slot].addr = s; 404 slot++; 405 } 406 dev++; 407 if (dev >= conf->raid_disks) { 408 dev = 0; 409 sector += (conf->chunk_mask + 1); 410 } 411 } 412 BUG_ON(slot != conf->copies); 413 } 414 415 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 416 { 417 sector_t offset, chunk, vchunk; 418 419 offset = sector & conf->chunk_mask; 420 if (conf->far_offset) { 421 int fc; 422 chunk = sector >> conf->chunk_shift; 423 fc = sector_div(chunk, conf->far_copies); 424 dev -= fc * conf->near_copies; 425 if (dev < 0) 426 dev += conf->raid_disks; 427 } else { 428 while (sector >= conf->stride) { 429 sector -= conf->stride; 430 if (dev < conf->near_copies) 431 dev += conf->raid_disks - conf->near_copies; 432 else 433 dev -= conf->near_copies; 434 } 435 chunk = sector >> conf->chunk_shift; 436 } 437 vchunk = chunk * conf->raid_disks + dev; 438 sector_div(vchunk, conf->near_copies); 439 return (vchunk << conf->chunk_shift) + offset; 440 } 441 442 /** 443 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 444 * @q: request queue 445 * @bvm: properties of new bio 446 * @biovec: the request that could be merged to it. 447 * 448 * Return amount of bytes we can accept at this offset 449 * If near_copies == raid_disk, there are no striping issues, 450 * but in that case, the function isn't called at all. 451 */ 452 static int raid10_mergeable_bvec(struct request_queue *q, 453 struct bvec_merge_data *bvm, 454 struct bio_vec *biovec) 455 { 456 mddev_t *mddev = q->queuedata; 457 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 458 int max; 459 unsigned int chunk_sectors = mddev->chunk_size >> 9; 460 unsigned int bio_sectors = bvm->bi_size >> 9; 461 462 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 463 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 464 if (max <= biovec->bv_len && bio_sectors == 0) 465 return biovec->bv_len; 466 else 467 return max; 468 } 469 470 /* 471 * This routine returns the disk from which the requested read should 472 * be done. There is a per-array 'next expected sequential IO' sector 473 * number - if this matches on the next IO then we use the last disk. 474 * There is also a per-disk 'last know head position' sector that is 475 * maintained from IRQ contexts, both the normal and the resync IO 476 * completion handlers update this position correctly. If there is no 477 * perfect sequential match then we pick the disk whose head is closest. 478 * 479 * If there are 2 mirrors in the same 2 devices, performance degrades 480 * because position is mirror, not device based. 481 * 482 * The rdev for the device selected will have nr_pending incremented. 483 */ 484 485 /* 486 * FIXME: possibly should rethink readbalancing and do it differently 487 * depending on near_copies / far_copies geometry. 488 */ 489 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 490 { 491 const unsigned long this_sector = r10_bio->sector; 492 int disk, slot, nslot; 493 const int sectors = r10_bio->sectors; 494 sector_t new_distance, current_distance; 495 mdk_rdev_t *rdev; 496 497 raid10_find_phys(conf, r10_bio); 498 rcu_read_lock(); 499 /* 500 * Check if we can balance. We can balance on the whole 501 * device if no resync is going on (recovery is ok), or below 502 * the resync window. We take the first readable disk when 503 * above the resync window. 504 */ 505 if (conf->mddev->recovery_cp < MaxSector 506 && (this_sector + sectors >= conf->next_resync)) { 507 /* make sure that disk is operational */ 508 slot = 0; 509 disk = r10_bio->devs[slot].devnum; 510 511 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 512 r10_bio->devs[slot].bio == IO_BLOCKED || 513 !test_bit(In_sync, &rdev->flags)) { 514 slot++; 515 if (slot == conf->copies) { 516 slot = 0; 517 disk = -1; 518 break; 519 } 520 disk = r10_bio->devs[slot].devnum; 521 } 522 goto rb_out; 523 } 524 525 526 /* make sure the disk is operational */ 527 slot = 0; 528 disk = r10_bio->devs[slot].devnum; 529 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 530 r10_bio->devs[slot].bio == IO_BLOCKED || 531 !test_bit(In_sync, &rdev->flags)) { 532 slot ++; 533 if (slot == conf->copies) { 534 disk = -1; 535 goto rb_out; 536 } 537 disk = r10_bio->devs[slot].devnum; 538 } 539 540 541 current_distance = abs(r10_bio->devs[slot].addr - 542 conf->mirrors[disk].head_position); 543 544 /* Find the disk whose head is closest, 545 * or - for far > 1 - find the closest to partition beginning */ 546 547 for (nslot = slot; nslot < conf->copies; nslot++) { 548 int ndisk = r10_bio->devs[nslot].devnum; 549 550 551 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 552 r10_bio->devs[nslot].bio == IO_BLOCKED || 553 !test_bit(In_sync, &rdev->flags)) 554 continue; 555 556 /* This optimisation is debatable, and completely destroys 557 * sequential read speed for 'far copies' arrays. So only 558 * keep it for 'near' arrays, and review those later. 559 */ 560 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 561 disk = ndisk; 562 slot = nslot; 563 break; 564 } 565 566 /* for far > 1 always use the lowest address */ 567 if (conf->far_copies > 1) 568 new_distance = r10_bio->devs[nslot].addr; 569 else 570 new_distance = abs(r10_bio->devs[nslot].addr - 571 conf->mirrors[ndisk].head_position); 572 if (new_distance < current_distance) { 573 current_distance = new_distance; 574 disk = ndisk; 575 slot = nslot; 576 } 577 } 578 579 rb_out: 580 r10_bio->read_slot = slot; 581 /* conf->next_seq_sect = this_sector + sectors;*/ 582 583 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 584 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 585 else 586 disk = -1; 587 rcu_read_unlock(); 588 589 return disk; 590 } 591 592 static void unplug_slaves(mddev_t *mddev) 593 { 594 conf_t *conf = mddev_to_conf(mddev); 595 int i; 596 597 rcu_read_lock(); 598 for (i=0; i<mddev->raid_disks; i++) { 599 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 600 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 601 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 602 603 atomic_inc(&rdev->nr_pending); 604 rcu_read_unlock(); 605 606 blk_unplug(r_queue); 607 608 rdev_dec_pending(rdev, mddev); 609 rcu_read_lock(); 610 } 611 } 612 rcu_read_unlock(); 613 } 614 615 static void raid10_unplug(struct request_queue *q) 616 { 617 mddev_t *mddev = q->queuedata; 618 619 unplug_slaves(q->queuedata); 620 md_wakeup_thread(mddev->thread); 621 } 622 623 static int raid10_congested(void *data, int bits) 624 { 625 mddev_t *mddev = data; 626 conf_t *conf = mddev_to_conf(mddev); 627 int i, ret = 0; 628 629 rcu_read_lock(); 630 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 631 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 632 if (rdev && !test_bit(Faulty, &rdev->flags)) { 633 struct request_queue *q = bdev_get_queue(rdev->bdev); 634 635 ret |= bdi_congested(&q->backing_dev_info, bits); 636 } 637 } 638 rcu_read_unlock(); 639 return ret; 640 } 641 642 static int flush_pending_writes(conf_t *conf) 643 { 644 /* Any writes that have been queued but are awaiting 645 * bitmap updates get flushed here. 646 * We return 1 if any requests were actually submitted. 647 */ 648 int rv = 0; 649 650 spin_lock_irq(&conf->device_lock); 651 652 if (conf->pending_bio_list.head) { 653 struct bio *bio; 654 bio = bio_list_get(&conf->pending_bio_list); 655 blk_remove_plug(conf->mddev->queue); 656 spin_unlock_irq(&conf->device_lock); 657 /* flush any pending bitmap writes to disk 658 * before proceeding w/ I/O */ 659 bitmap_unplug(conf->mddev->bitmap); 660 661 while (bio) { /* submit pending writes */ 662 struct bio *next = bio->bi_next; 663 bio->bi_next = NULL; 664 generic_make_request(bio); 665 bio = next; 666 } 667 rv = 1; 668 } else 669 spin_unlock_irq(&conf->device_lock); 670 return rv; 671 } 672 /* Barriers.... 673 * Sometimes we need to suspend IO while we do something else, 674 * either some resync/recovery, or reconfigure the array. 675 * To do this we raise a 'barrier'. 676 * The 'barrier' is a counter that can be raised multiple times 677 * to count how many activities are happening which preclude 678 * normal IO. 679 * We can only raise the barrier if there is no pending IO. 680 * i.e. if nr_pending == 0. 681 * We choose only to raise the barrier if no-one is waiting for the 682 * barrier to go down. This means that as soon as an IO request 683 * is ready, no other operations which require a barrier will start 684 * until the IO request has had a chance. 685 * 686 * So: regular IO calls 'wait_barrier'. When that returns there 687 * is no backgroup IO happening, It must arrange to call 688 * allow_barrier when it has finished its IO. 689 * backgroup IO calls must call raise_barrier. Once that returns 690 * there is no normal IO happeing. It must arrange to call 691 * lower_barrier when the particular background IO completes. 692 */ 693 #define RESYNC_DEPTH 32 694 695 static void raise_barrier(conf_t *conf, int force) 696 { 697 BUG_ON(force && !conf->barrier); 698 spin_lock_irq(&conf->resync_lock); 699 700 /* Wait until no block IO is waiting (unless 'force') */ 701 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 702 conf->resync_lock, 703 raid10_unplug(conf->mddev->queue)); 704 705 /* block any new IO from starting */ 706 conf->barrier++; 707 708 /* No wait for all pending IO to complete */ 709 wait_event_lock_irq(conf->wait_barrier, 710 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 711 conf->resync_lock, 712 raid10_unplug(conf->mddev->queue)); 713 714 spin_unlock_irq(&conf->resync_lock); 715 } 716 717 static void lower_barrier(conf_t *conf) 718 { 719 unsigned long flags; 720 spin_lock_irqsave(&conf->resync_lock, flags); 721 conf->barrier--; 722 spin_unlock_irqrestore(&conf->resync_lock, flags); 723 wake_up(&conf->wait_barrier); 724 } 725 726 static void wait_barrier(conf_t *conf) 727 { 728 spin_lock_irq(&conf->resync_lock); 729 if (conf->barrier) { 730 conf->nr_waiting++; 731 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 732 conf->resync_lock, 733 raid10_unplug(conf->mddev->queue)); 734 conf->nr_waiting--; 735 } 736 conf->nr_pending++; 737 spin_unlock_irq(&conf->resync_lock); 738 } 739 740 static void allow_barrier(conf_t *conf) 741 { 742 unsigned long flags; 743 spin_lock_irqsave(&conf->resync_lock, flags); 744 conf->nr_pending--; 745 spin_unlock_irqrestore(&conf->resync_lock, flags); 746 wake_up(&conf->wait_barrier); 747 } 748 749 static void freeze_array(conf_t *conf) 750 { 751 /* stop syncio and normal IO and wait for everything to 752 * go quiet. 753 * We increment barrier and nr_waiting, and then 754 * wait until nr_pending match nr_queued+1 755 * This is called in the context of one normal IO request 756 * that has failed. Thus any sync request that might be pending 757 * will be blocked by nr_pending, and we need to wait for 758 * pending IO requests to complete or be queued for re-try. 759 * Thus the number queued (nr_queued) plus this request (1) 760 * must match the number of pending IOs (nr_pending) before 761 * we continue. 762 */ 763 spin_lock_irq(&conf->resync_lock); 764 conf->barrier++; 765 conf->nr_waiting++; 766 wait_event_lock_irq(conf->wait_barrier, 767 conf->nr_pending == conf->nr_queued+1, 768 conf->resync_lock, 769 ({ flush_pending_writes(conf); 770 raid10_unplug(conf->mddev->queue); })); 771 spin_unlock_irq(&conf->resync_lock); 772 } 773 774 static void unfreeze_array(conf_t *conf) 775 { 776 /* reverse the effect of the freeze */ 777 spin_lock_irq(&conf->resync_lock); 778 conf->barrier--; 779 conf->nr_waiting--; 780 wake_up(&conf->wait_barrier); 781 spin_unlock_irq(&conf->resync_lock); 782 } 783 784 static int make_request(struct request_queue *q, struct bio * bio) 785 { 786 mddev_t *mddev = q->queuedata; 787 conf_t *conf = mddev_to_conf(mddev); 788 mirror_info_t *mirror; 789 r10bio_t *r10_bio; 790 struct bio *read_bio; 791 int i; 792 int chunk_sects = conf->chunk_mask + 1; 793 const int rw = bio_data_dir(bio); 794 const int do_sync = bio_sync(bio); 795 struct bio_list bl; 796 unsigned long flags; 797 mdk_rdev_t *blocked_rdev; 798 799 if (unlikely(bio_barrier(bio))) { 800 bio_endio(bio, -EOPNOTSUPP); 801 return 0; 802 } 803 804 /* If this request crosses a chunk boundary, we need to 805 * split it. This will only happen for 1 PAGE (or less) requests. 806 */ 807 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 808 > chunk_sects && 809 conf->near_copies < conf->raid_disks)) { 810 struct bio_pair *bp; 811 /* Sanity check -- queue functions should prevent this happening */ 812 if (bio->bi_vcnt != 1 || 813 bio->bi_idx != 0) 814 goto bad_map; 815 /* This is a one page bio that upper layers 816 * refuse to split for us, so we need to split it. 817 */ 818 bp = bio_split(bio, bio_split_pool, 819 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 820 if (make_request(q, &bp->bio1)) 821 generic_make_request(&bp->bio1); 822 if (make_request(q, &bp->bio2)) 823 generic_make_request(&bp->bio2); 824 825 bio_pair_release(bp); 826 return 0; 827 bad_map: 828 printk("raid10_make_request bug: can't convert block across chunks" 829 " or bigger than %dk %llu %d\n", chunk_sects/2, 830 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 831 832 bio_io_error(bio); 833 return 0; 834 } 835 836 md_write_start(mddev, bio); 837 838 /* 839 * Register the new request and wait if the reconstruction 840 * thread has put up a bar for new requests. 841 * Continue immediately if no resync is active currently. 842 */ 843 wait_barrier(conf); 844 845 disk_stat_inc(mddev->gendisk, ios[rw]); 846 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 847 848 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 849 850 r10_bio->master_bio = bio; 851 r10_bio->sectors = bio->bi_size >> 9; 852 853 r10_bio->mddev = mddev; 854 r10_bio->sector = bio->bi_sector; 855 r10_bio->state = 0; 856 857 if (rw == READ) { 858 /* 859 * read balancing logic: 860 */ 861 int disk = read_balance(conf, r10_bio); 862 int slot = r10_bio->read_slot; 863 if (disk < 0) { 864 raid_end_bio_io(r10_bio); 865 return 0; 866 } 867 mirror = conf->mirrors + disk; 868 869 read_bio = bio_clone(bio, GFP_NOIO); 870 871 r10_bio->devs[slot].bio = read_bio; 872 873 read_bio->bi_sector = r10_bio->devs[slot].addr + 874 mirror->rdev->data_offset; 875 read_bio->bi_bdev = mirror->rdev->bdev; 876 read_bio->bi_end_io = raid10_end_read_request; 877 read_bio->bi_rw = READ | do_sync; 878 read_bio->bi_private = r10_bio; 879 880 generic_make_request(read_bio); 881 return 0; 882 } 883 884 /* 885 * WRITE: 886 */ 887 /* first select target devices under rcu_lock and 888 * inc refcount on their rdev. Record them by setting 889 * bios[x] to bio 890 */ 891 raid10_find_phys(conf, r10_bio); 892 retry_write: 893 blocked_rdev = NULL; 894 rcu_read_lock(); 895 for (i = 0; i < conf->copies; i++) { 896 int d = r10_bio->devs[i].devnum; 897 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 898 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 899 atomic_inc(&rdev->nr_pending); 900 blocked_rdev = rdev; 901 break; 902 } 903 if (rdev && !test_bit(Faulty, &rdev->flags)) { 904 atomic_inc(&rdev->nr_pending); 905 r10_bio->devs[i].bio = bio; 906 } else { 907 r10_bio->devs[i].bio = NULL; 908 set_bit(R10BIO_Degraded, &r10_bio->state); 909 } 910 } 911 rcu_read_unlock(); 912 913 if (unlikely(blocked_rdev)) { 914 /* Have to wait for this device to get unblocked, then retry */ 915 int j; 916 int d; 917 918 for (j = 0; j < i; j++) 919 if (r10_bio->devs[j].bio) { 920 d = r10_bio->devs[j].devnum; 921 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 922 } 923 allow_barrier(conf); 924 md_wait_for_blocked_rdev(blocked_rdev, mddev); 925 wait_barrier(conf); 926 goto retry_write; 927 } 928 929 atomic_set(&r10_bio->remaining, 0); 930 931 bio_list_init(&bl); 932 for (i = 0; i < conf->copies; i++) { 933 struct bio *mbio; 934 int d = r10_bio->devs[i].devnum; 935 if (!r10_bio->devs[i].bio) 936 continue; 937 938 mbio = bio_clone(bio, GFP_NOIO); 939 r10_bio->devs[i].bio = mbio; 940 941 mbio->bi_sector = r10_bio->devs[i].addr+ 942 conf->mirrors[d].rdev->data_offset; 943 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 944 mbio->bi_end_io = raid10_end_write_request; 945 mbio->bi_rw = WRITE | do_sync; 946 mbio->bi_private = r10_bio; 947 948 atomic_inc(&r10_bio->remaining); 949 bio_list_add(&bl, mbio); 950 } 951 952 if (unlikely(!atomic_read(&r10_bio->remaining))) { 953 /* the array is dead */ 954 md_write_end(mddev); 955 raid_end_bio_io(r10_bio); 956 return 0; 957 } 958 959 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 960 spin_lock_irqsave(&conf->device_lock, flags); 961 bio_list_merge(&conf->pending_bio_list, &bl); 962 blk_plug_device(mddev->queue); 963 spin_unlock_irqrestore(&conf->device_lock, flags); 964 965 /* In case raid10d snuck in to freeze_array */ 966 wake_up(&conf->wait_barrier); 967 968 if (do_sync) 969 md_wakeup_thread(mddev->thread); 970 971 return 0; 972 } 973 974 static void status(struct seq_file *seq, mddev_t *mddev) 975 { 976 conf_t *conf = mddev_to_conf(mddev); 977 int i; 978 979 if (conf->near_copies < conf->raid_disks) 980 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 981 if (conf->near_copies > 1) 982 seq_printf(seq, " %d near-copies", conf->near_copies); 983 if (conf->far_copies > 1) { 984 if (conf->far_offset) 985 seq_printf(seq, " %d offset-copies", conf->far_copies); 986 else 987 seq_printf(seq, " %d far-copies", conf->far_copies); 988 } 989 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 990 conf->raid_disks - mddev->degraded); 991 for (i = 0; i < conf->raid_disks; i++) 992 seq_printf(seq, "%s", 993 conf->mirrors[i].rdev && 994 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 995 seq_printf(seq, "]"); 996 } 997 998 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 999 { 1000 char b[BDEVNAME_SIZE]; 1001 conf_t *conf = mddev_to_conf(mddev); 1002 1003 /* 1004 * If it is not operational, then we have already marked it as dead 1005 * else if it is the last working disks, ignore the error, let the 1006 * next level up know. 1007 * else mark the drive as failed 1008 */ 1009 if (test_bit(In_sync, &rdev->flags) 1010 && conf->raid_disks-mddev->degraded == 1) 1011 /* 1012 * Don't fail the drive, just return an IO error. 1013 * The test should really be more sophisticated than 1014 * "working_disks == 1", but it isn't critical, and 1015 * can wait until we do more sophisticated "is the drive 1016 * really dead" tests... 1017 */ 1018 return; 1019 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1020 unsigned long flags; 1021 spin_lock_irqsave(&conf->device_lock, flags); 1022 mddev->degraded++; 1023 spin_unlock_irqrestore(&conf->device_lock, flags); 1024 /* 1025 * if recovery is running, make sure it aborts. 1026 */ 1027 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1028 } 1029 set_bit(Faulty, &rdev->flags); 1030 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1031 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n" 1032 "raid10: Operation continuing on %d devices.\n", 1033 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1034 } 1035 1036 static void print_conf(conf_t *conf) 1037 { 1038 int i; 1039 mirror_info_t *tmp; 1040 1041 printk("RAID10 conf printout:\n"); 1042 if (!conf) { 1043 printk("(!conf)\n"); 1044 return; 1045 } 1046 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1047 conf->raid_disks); 1048 1049 for (i = 0; i < conf->raid_disks; i++) { 1050 char b[BDEVNAME_SIZE]; 1051 tmp = conf->mirrors + i; 1052 if (tmp->rdev) 1053 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1054 i, !test_bit(In_sync, &tmp->rdev->flags), 1055 !test_bit(Faulty, &tmp->rdev->flags), 1056 bdevname(tmp->rdev->bdev,b)); 1057 } 1058 } 1059 1060 static void close_sync(conf_t *conf) 1061 { 1062 wait_barrier(conf); 1063 allow_barrier(conf); 1064 1065 mempool_destroy(conf->r10buf_pool); 1066 conf->r10buf_pool = NULL; 1067 } 1068 1069 /* check if there are enough drives for 1070 * every block to appear on atleast one 1071 */ 1072 static int enough(conf_t *conf) 1073 { 1074 int first = 0; 1075 1076 do { 1077 int n = conf->copies; 1078 int cnt = 0; 1079 while (n--) { 1080 if (conf->mirrors[first].rdev) 1081 cnt++; 1082 first = (first+1) % conf->raid_disks; 1083 } 1084 if (cnt == 0) 1085 return 0; 1086 } while (first != 0); 1087 return 1; 1088 } 1089 1090 static int raid10_spare_active(mddev_t *mddev) 1091 { 1092 int i; 1093 conf_t *conf = mddev->private; 1094 mirror_info_t *tmp; 1095 1096 /* 1097 * Find all non-in_sync disks within the RAID10 configuration 1098 * and mark them in_sync 1099 */ 1100 for (i = 0; i < conf->raid_disks; i++) { 1101 tmp = conf->mirrors + i; 1102 if (tmp->rdev 1103 && !test_bit(Faulty, &tmp->rdev->flags) 1104 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1105 unsigned long flags; 1106 spin_lock_irqsave(&conf->device_lock, flags); 1107 mddev->degraded--; 1108 spin_unlock_irqrestore(&conf->device_lock, flags); 1109 } 1110 } 1111 1112 print_conf(conf); 1113 return 0; 1114 } 1115 1116 1117 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1118 { 1119 conf_t *conf = mddev->private; 1120 int err = -EEXIST; 1121 int mirror; 1122 mirror_info_t *p; 1123 int first = 0; 1124 int last = mddev->raid_disks - 1; 1125 1126 if (mddev->recovery_cp < MaxSector) 1127 /* only hot-add to in-sync arrays, as recovery is 1128 * very different from resync 1129 */ 1130 return -EBUSY; 1131 if (!enough(conf)) 1132 return -EINVAL; 1133 1134 if (rdev->raid_disk) 1135 first = last = rdev->raid_disk; 1136 1137 if (rdev->saved_raid_disk >= 0 && 1138 rdev->saved_raid_disk >= first && 1139 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1140 mirror = rdev->saved_raid_disk; 1141 else 1142 mirror = first; 1143 for ( ; mirror <= last ; mirror++) 1144 if ( !(p=conf->mirrors+mirror)->rdev) { 1145 1146 blk_queue_stack_limits(mddev->queue, 1147 rdev->bdev->bd_disk->queue); 1148 /* as we don't honour merge_bvec_fn, we must never risk 1149 * violating it, so limit ->max_sector to one PAGE, as 1150 * a one page request is never in violation. 1151 */ 1152 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1153 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1154 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1155 1156 p->head_position = 0; 1157 rdev->raid_disk = mirror; 1158 err = 0; 1159 if (rdev->saved_raid_disk != mirror) 1160 conf->fullsync = 1; 1161 rcu_assign_pointer(p->rdev, rdev); 1162 break; 1163 } 1164 1165 print_conf(conf); 1166 return err; 1167 } 1168 1169 static int raid10_remove_disk(mddev_t *mddev, int number) 1170 { 1171 conf_t *conf = mddev->private; 1172 int err = 0; 1173 mdk_rdev_t *rdev; 1174 mirror_info_t *p = conf->mirrors+ number; 1175 1176 print_conf(conf); 1177 rdev = p->rdev; 1178 if (rdev) { 1179 if (test_bit(In_sync, &rdev->flags) || 1180 atomic_read(&rdev->nr_pending)) { 1181 err = -EBUSY; 1182 goto abort; 1183 } 1184 /* Only remove faulty devices in recovery 1185 * is not possible. 1186 */ 1187 if (!test_bit(Faulty, &rdev->flags) && 1188 enough(conf)) { 1189 err = -EBUSY; 1190 goto abort; 1191 } 1192 p->rdev = NULL; 1193 synchronize_rcu(); 1194 if (atomic_read(&rdev->nr_pending)) { 1195 /* lost the race, try later */ 1196 err = -EBUSY; 1197 p->rdev = rdev; 1198 } 1199 } 1200 abort: 1201 1202 print_conf(conf); 1203 return err; 1204 } 1205 1206 1207 static void end_sync_read(struct bio *bio, int error) 1208 { 1209 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1210 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1211 int i,d; 1212 1213 for (i=0; i<conf->copies; i++) 1214 if (r10_bio->devs[i].bio == bio) 1215 break; 1216 BUG_ON(i == conf->copies); 1217 update_head_pos(i, r10_bio); 1218 d = r10_bio->devs[i].devnum; 1219 1220 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1221 set_bit(R10BIO_Uptodate, &r10_bio->state); 1222 else { 1223 atomic_add(r10_bio->sectors, 1224 &conf->mirrors[d].rdev->corrected_errors); 1225 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1226 md_error(r10_bio->mddev, 1227 conf->mirrors[d].rdev); 1228 } 1229 1230 /* for reconstruct, we always reschedule after a read. 1231 * for resync, only after all reads 1232 */ 1233 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1234 atomic_dec_and_test(&r10_bio->remaining)) { 1235 /* we have read all the blocks, 1236 * do the comparison in process context in raid10d 1237 */ 1238 reschedule_retry(r10_bio); 1239 } 1240 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1241 } 1242 1243 static void end_sync_write(struct bio *bio, int error) 1244 { 1245 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1246 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1247 mddev_t *mddev = r10_bio->mddev; 1248 conf_t *conf = mddev_to_conf(mddev); 1249 int i,d; 1250 1251 for (i = 0; i < conf->copies; i++) 1252 if (r10_bio->devs[i].bio == bio) 1253 break; 1254 d = r10_bio->devs[i].devnum; 1255 1256 if (!uptodate) 1257 md_error(mddev, conf->mirrors[d].rdev); 1258 1259 update_head_pos(i, r10_bio); 1260 1261 while (atomic_dec_and_test(&r10_bio->remaining)) { 1262 if (r10_bio->master_bio == NULL) { 1263 /* the primary of several recovery bios */ 1264 md_done_sync(mddev, r10_bio->sectors, 1); 1265 put_buf(r10_bio); 1266 break; 1267 } else { 1268 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1269 put_buf(r10_bio); 1270 r10_bio = r10_bio2; 1271 } 1272 } 1273 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1274 } 1275 1276 /* 1277 * Note: sync and recover and handled very differently for raid10 1278 * This code is for resync. 1279 * For resync, we read through virtual addresses and read all blocks. 1280 * If there is any error, we schedule a write. The lowest numbered 1281 * drive is authoritative. 1282 * However requests come for physical address, so we need to map. 1283 * For every physical address there are raid_disks/copies virtual addresses, 1284 * which is always are least one, but is not necessarly an integer. 1285 * This means that a physical address can span multiple chunks, so we may 1286 * have to submit multiple io requests for a single sync request. 1287 */ 1288 /* 1289 * We check if all blocks are in-sync and only write to blocks that 1290 * aren't in sync 1291 */ 1292 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1293 { 1294 conf_t *conf = mddev_to_conf(mddev); 1295 int i, first; 1296 struct bio *tbio, *fbio; 1297 1298 atomic_set(&r10_bio->remaining, 1); 1299 1300 /* find the first device with a block */ 1301 for (i=0; i<conf->copies; i++) 1302 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1303 break; 1304 1305 if (i == conf->copies) 1306 goto done; 1307 1308 first = i; 1309 fbio = r10_bio->devs[i].bio; 1310 1311 /* now find blocks with errors */ 1312 for (i=0 ; i < conf->copies ; i++) { 1313 int j, d; 1314 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1315 1316 tbio = r10_bio->devs[i].bio; 1317 1318 if (tbio->bi_end_io != end_sync_read) 1319 continue; 1320 if (i == first) 1321 continue; 1322 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1323 /* We know that the bi_io_vec layout is the same for 1324 * both 'first' and 'i', so we just compare them. 1325 * All vec entries are PAGE_SIZE; 1326 */ 1327 for (j = 0; j < vcnt; j++) 1328 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1329 page_address(tbio->bi_io_vec[j].bv_page), 1330 PAGE_SIZE)) 1331 break; 1332 if (j == vcnt) 1333 continue; 1334 mddev->resync_mismatches += r10_bio->sectors; 1335 } 1336 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1337 /* Don't fix anything. */ 1338 continue; 1339 /* Ok, we need to write this bio 1340 * First we need to fixup bv_offset, bv_len and 1341 * bi_vecs, as the read request might have corrupted these 1342 */ 1343 tbio->bi_vcnt = vcnt; 1344 tbio->bi_size = r10_bio->sectors << 9; 1345 tbio->bi_idx = 0; 1346 tbio->bi_phys_segments = 0; 1347 tbio->bi_hw_segments = 0; 1348 tbio->bi_hw_front_size = 0; 1349 tbio->bi_hw_back_size = 0; 1350 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1351 tbio->bi_flags |= 1 << BIO_UPTODATE; 1352 tbio->bi_next = NULL; 1353 tbio->bi_rw = WRITE; 1354 tbio->bi_private = r10_bio; 1355 tbio->bi_sector = r10_bio->devs[i].addr; 1356 1357 for (j=0; j < vcnt ; j++) { 1358 tbio->bi_io_vec[j].bv_offset = 0; 1359 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1360 1361 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1362 page_address(fbio->bi_io_vec[j].bv_page), 1363 PAGE_SIZE); 1364 } 1365 tbio->bi_end_io = end_sync_write; 1366 1367 d = r10_bio->devs[i].devnum; 1368 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1369 atomic_inc(&r10_bio->remaining); 1370 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1371 1372 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1373 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1374 generic_make_request(tbio); 1375 } 1376 1377 done: 1378 if (atomic_dec_and_test(&r10_bio->remaining)) { 1379 md_done_sync(mddev, r10_bio->sectors, 1); 1380 put_buf(r10_bio); 1381 } 1382 } 1383 1384 /* 1385 * Now for the recovery code. 1386 * Recovery happens across physical sectors. 1387 * We recover all non-is_sync drives by finding the virtual address of 1388 * each, and then choose a working drive that also has that virt address. 1389 * There is a separate r10_bio for each non-in_sync drive. 1390 * Only the first two slots are in use. The first for reading, 1391 * The second for writing. 1392 * 1393 */ 1394 1395 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1396 { 1397 conf_t *conf = mddev_to_conf(mddev); 1398 int i, d; 1399 struct bio *bio, *wbio; 1400 1401 1402 /* move the pages across to the second bio 1403 * and submit the write request 1404 */ 1405 bio = r10_bio->devs[0].bio; 1406 wbio = r10_bio->devs[1].bio; 1407 for (i=0; i < wbio->bi_vcnt; i++) { 1408 struct page *p = bio->bi_io_vec[i].bv_page; 1409 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1410 wbio->bi_io_vec[i].bv_page = p; 1411 } 1412 d = r10_bio->devs[1].devnum; 1413 1414 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1415 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1416 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1417 generic_make_request(wbio); 1418 else 1419 bio_endio(wbio, -EIO); 1420 } 1421 1422 1423 /* 1424 * This is a kernel thread which: 1425 * 1426 * 1. Retries failed read operations on working mirrors. 1427 * 2. Updates the raid superblock when problems encounter. 1428 * 3. Performs writes following reads for array synchronising. 1429 */ 1430 1431 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1432 { 1433 int sect = 0; /* Offset from r10_bio->sector */ 1434 int sectors = r10_bio->sectors; 1435 mdk_rdev_t*rdev; 1436 while(sectors) { 1437 int s = sectors; 1438 int sl = r10_bio->read_slot; 1439 int success = 0; 1440 int start; 1441 1442 if (s > (PAGE_SIZE>>9)) 1443 s = PAGE_SIZE >> 9; 1444 1445 rcu_read_lock(); 1446 do { 1447 int d = r10_bio->devs[sl].devnum; 1448 rdev = rcu_dereference(conf->mirrors[d].rdev); 1449 if (rdev && 1450 test_bit(In_sync, &rdev->flags)) { 1451 atomic_inc(&rdev->nr_pending); 1452 rcu_read_unlock(); 1453 success = sync_page_io(rdev->bdev, 1454 r10_bio->devs[sl].addr + 1455 sect + rdev->data_offset, 1456 s<<9, 1457 conf->tmppage, READ); 1458 rdev_dec_pending(rdev, mddev); 1459 rcu_read_lock(); 1460 if (success) 1461 break; 1462 } 1463 sl++; 1464 if (sl == conf->copies) 1465 sl = 0; 1466 } while (!success && sl != r10_bio->read_slot); 1467 rcu_read_unlock(); 1468 1469 if (!success) { 1470 /* Cannot read from anywhere -- bye bye array */ 1471 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1472 md_error(mddev, conf->mirrors[dn].rdev); 1473 break; 1474 } 1475 1476 start = sl; 1477 /* write it back and re-read */ 1478 rcu_read_lock(); 1479 while (sl != r10_bio->read_slot) { 1480 int d; 1481 if (sl==0) 1482 sl = conf->copies; 1483 sl--; 1484 d = r10_bio->devs[sl].devnum; 1485 rdev = rcu_dereference(conf->mirrors[d].rdev); 1486 if (rdev && 1487 test_bit(In_sync, &rdev->flags)) { 1488 atomic_inc(&rdev->nr_pending); 1489 rcu_read_unlock(); 1490 atomic_add(s, &rdev->corrected_errors); 1491 if (sync_page_io(rdev->bdev, 1492 r10_bio->devs[sl].addr + 1493 sect + rdev->data_offset, 1494 s<<9, conf->tmppage, WRITE) 1495 == 0) 1496 /* Well, this device is dead */ 1497 md_error(mddev, rdev); 1498 rdev_dec_pending(rdev, mddev); 1499 rcu_read_lock(); 1500 } 1501 } 1502 sl = start; 1503 while (sl != r10_bio->read_slot) { 1504 int d; 1505 if (sl==0) 1506 sl = conf->copies; 1507 sl--; 1508 d = r10_bio->devs[sl].devnum; 1509 rdev = rcu_dereference(conf->mirrors[d].rdev); 1510 if (rdev && 1511 test_bit(In_sync, &rdev->flags)) { 1512 char b[BDEVNAME_SIZE]; 1513 atomic_inc(&rdev->nr_pending); 1514 rcu_read_unlock(); 1515 if (sync_page_io(rdev->bdev, 1516 r10_bio->devs[sl].addr + 1517 sect + rdev->data_offset, 1518 s<<9, conf->tmppage, READ) == 0) 1519 /* Well, this device is dead */ 1520 md_error(mddev, rdev); 1521 else 1522 printk(KERN_INFO 1523 "raid10:%s: read error corrected" 1524 " (%d sectors at %llu on %s)\n", 1525 mdname(mddev), s, 1526 (unsigned long long)(sect+ 1527 rdev->data_offset), 1528 bdevname(rdev->bdev, b)); 1529 1530 rdev_dec_pending(rdev, mddev); 1531 rcu_read_lock(); 1532 } 1533 } 1534 rcu_read_unlock(); 1535 1536 sectors -= s; 1537 sect += s; 1538 } 1539 } 1540 1541 static void raid10d(mddev_t *mddev) 1542 { 1543 r10bio_t *r10_bio; 1544 struct bio *bio; 1545 unsigned long flags; 1546 conf_t *conf = mddev_to_conf(mddev); 1547 struct list_head *head = &conf->retry_list; 1548 int unplug=0; 1549 mdk_rdev_t *rdev; 1550 1551 md_check_recovery(mddev); 1552 1553 for (;;) { 1554 char b[BDEVNAME_SIZE]; 1555 1556 unplug += flush_pending_writes(conf); 1557 1558 spin_lock_irqsave(&conf->device_lock, flags); 1559 if (list_empty(head)) { 1560 spin_unlock_irqrestore(&conf->device_lock, flags); 1561 break; 1562 } 1563 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1564 list_del(head->prev); 1565 conf->nr_queued--; 1566 spin_unlock_irqrestore(&conf->device_lock, flags); 1567 1568 mddev = r10_bio->mddev; 1569 conf = mddev_to_conf(mddev); 1570 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1571 sync_request_write(mddev, r10_bio); 1572 unplug = 1; 1573 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1574 recovery_request_write(mddev, r10_bio); 1575 unplug = 1; 1576 } else { 1577 int mirror; 1578 /* we got a read error. Maybe the drive is bad. Maybe just 1579 * the block and we can fix it. 1580 * We freeze all other IO, and try reading the block from 1581 * other devices. When we find one, we re-write 1582 * and check it that fixes the read error. 1583 * This is all done synchronously while the array is 1584 * frozen. 1585 */ 1586 if (mddev->ro == 0) { 1587 freeze_array(conf); 1588 fix_read_error(conf, mddev, r10_bio); 1589 unfreeze_array(conf); 1590 } 1591 1592 bio = r10_bio->devs[r10_bio->read_slot].bio; 1593 r10_bio->devs[r10_bio->read_slot].bio = 1594 mddev->ro ? IO_BLOCKED : NULL; 1595 mirror = read_balance(conf, r10_bio); 1596 if (mirror == -1) { 1597 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1598 " read error for block %llu\n", 1599 bdevname(bio->bi_bdev,b), 1600 (unsigned long long)r10_bio->sector); 1601 raid_end_bio_io(r10_bio); 1602 bio_put(bio); 1603 } else { 1604 const int do_sync = bio_sync(r10_bio->master_bio); 1605 bio_put(bio); 1606 rdev = conf->mirrors[mirror].rdev; 1607 if (printk_ratelimit()) 1608 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1609 " another mirror\n", 1610 bdevname(rdev->bdev,b), 1611 (unsigned long long)r10_bio->sector); 1612 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1613 r10_bio->devs[r10_bio->read_slot].bio = bio; 1614 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1615 + rdev->data_offset; 1616 bio->bi_bdev = rdev->bdev; 1617 bio->bi_rw = READ | do_sync; 1618 bio->bi_private = r10_bio; 1619 bio->bi_end_io = raid10_end_read_request; 1620 unplug = 1; 1621 generic_make_request(bio); 1622 } 1623 } 1624 } 1625 if (unplug) 1626 unplug_slaves(mddev); 1627 } 1628 1629 1630 static int init_resync(conf_t *conf) 1631 { 1632 int buffs; 1633 1634 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1635 BUG_ON(conf->r10buf_pool); 1636 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1637 if (!conf->r10buf_pool) 1638 return -ENOMEM; 1639 conf->next_resync = 0; 1640 return 0; 1641 } 1642 1643 /* 1644 * perform a "sync" on one "block" 1645 * 1646 * We need to make sure that no normal I/O request - particularly write 1647 * requests - conflict with active sync requests. 1648 * 1649 * This is achieved by tracking pending requests and a 'barrier' concept 1650 * that can be installed to exclude normal IO requests. 1651 * 1652 * Resync and recovery are handled very differently. 1653 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1654 * 1655 * For resync, we iterate over virtual addresses, read all copies, 1656 * and update if there are differences. If only one copy is live, 1657 * skip it. 1658 * For recovery, we iterate over physical addresses, read a good 1659 * value for each non-in_sync drive, and over-write. 1660 * 1661 * So, for recovery we may have several outstanding complex requests for a 1662 * given address, one for each out-of-sync device. We model this by allocating 1663 * a number of r10_bio structures, one for each out-of-sync device. 1664 * As we setup these structures, we collect all bio's together into a list 1665 * which we then process collectively to add pages, and then process again 1666 * to pass to generic_make_request. 1667 * 1668 * The r10_bio structures are linked using a borrowed master_bio pointer. 1669 * This link is counted in ->remaining. When the r10_bio that points to NULL 1670 * has its remaining count decremented to 0, the whole complex operation 1671 * is complete. 1672 * 1673 */ 1674 1675 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1676 { 1677 conf_t *conf = mddev_to_conf(mddev); 1678 r10bio_t *r10_bio; 1679 struct bio *biolist = NULL, *bio; 1680 sector_t max_sector, nr_sectors; 1681 int disk; 1682 int i; 1683 int max_sync; 1684 int sync_blocks; 1685 1686 sector_t sectors_skipped = 0; 1687 int chunks_skipped = 0; 1688 1689 if (!conf->r10buf_pool) 1690 if (init_resync(conf)) 1691 return 0; 1692 1693 skipped: 1694 max_sector = mddev->size << 1; 1695 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1696 max_sector = mddev->resync_max_sectors; 1697 if (sector_nr >= max_sector) { 1698 /* If we aborted, we need to abort the 1699 * sync on the 'current' bitmap chucks (there can 1700 * be several when recovering multiple devices). 1701 * as we may have started syncing it but not finished. 1702 * We can find the current address in 1703 * mddev->curr_resync, but for recovery, 1704 * we need to convert that to several 1705 * virtual addresses. 1706 */ 1707 if (mddev->curr_resync < max_sector) { /* aborted */ 1708 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1709 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1710 &sync_blocks, 1); 1711 else for (i=0; i<conf->raid_disks; i++) { 1712 sector_t sect = 1713 raid10_find_virt(conf, mddev->curr_resync, i); 1714 bitmap_end_sync(mddev->bitmap, sect, 1715 &sync_blocks, 1); 1716 } 1717 } else /* completed sync */ 1718 conf->fullsync = 0; 1719 1720 bitmap_close_sync(mddev->bitmap); 1721 close_sync(conf); 1722 *skipped = 1; 1723 return sectors_skipped; 1724 } 1725 if (chunks_skipped >= conf->raid_disks) { 1726 /* if there has been nothing to do on any drive, 1727 * then there is nothing to do at all.. 1728 */ 1729 *skipped = 1; 1730 return (max_sector - sector_nr) + sectors_skipped; 1731 } 1732 1733 if (max_sector > mddev->resync_max) 1734 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1735 1736 /* make sure whole request will fit in a chunk - if chunks 1737 * are meaningful 1738 */ 1739 if (conf->near_copies < conf->raid_disks && 1740 max_sector > (sector_nr | conf->chunk_mask)) 1741 max_sector = (sector_nr | conf->chunk_mask) + 1; 1742 /* 1743 * If there is non-resync activity waiting for us then 1744 * put in a delay to throttle resync. 1745 */ 1746 if (!go_faster && conf->nr_waiting) 1747 msleep_interruptible(1000); 1748 1749 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1750 1751 /* Again, very different code for resync and recovery. 1752 * Both must result in an r10bio with a list of bios that 1753 * have bi_end_io, bi_sector, bi_bdev set, 1754 * and bi_private set to the r10bio. 1755 * For recovery, we may actually create several r10bios 1756 * with 2 bios in each, that correspond to the bios in the main one. 1757 * In this case, the subordinate r10bios link back through a 1758 * borrowed master_bio pointer, and the counter in the master 1759 * includes a ref from each subordinate. 1760 */ 1761 /* First, we decide what to do and set ->bi_end_io 1762 * To end_sync_read if we want to read, and 1763 * end_sync_write if we will want to write. 1764 */ 1765 1766 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1767 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1768 /* recovery... the complicated one */ 1769 int i, j, k; 1770 r10_bio = NULL; 1771 1772 for (i=0 ; i<conf->raid_disks; i++) 1773 if (conf->mirrors[i].rdev && 1774 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1775 int still_degraded = 0; 1776 /* want to reconstruct this device */ 1777 r10bio_t *rb2 = r10_bio; 1778 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1779 int must_sync; 1780 /* Unless we are doing a full sync, we only need 1781 * to recover the block if it is set in the bitmap 1782 */ 1783 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1784 &sync_blocks, 1); 1785 if (sync_blocks < max_sync) 1786 max_sync = sync_blocks; 1787 if (!must_sync && 1788 !conf->fullsync) { 1789 /* yep, skip the sync_blocks here, but don't assume 1790 * that there will never be anything to do here 1791 */ 1792 chunks_skipped = -1; 1793 continue; 1794 } 1795 1796 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1797 raise_barrier(conf, rb2 != NULL); 1798 atomic_set(&r10_bio->remaining, 0); 1799 1800 r10_bio->master_bio = (struct bio*)rb2; 1801 if (rb2) 1802 atomic_inc(&rb2->remaining); 1803 r10_bio->mddev = mddev; 1804 set_bit(R10BIO_IsRecover, &r10_bio->state); 1805 r10_bio->sector = sect; 1806 1807 raid10_find_phys(conf, r10_bio); 1808 /* Need to check if this section will still be 1809 * degraded 1810 */ 1811 for (j=0; j<conf->copies;j++) { 1812 int d = r10_bio->devs[j].devnum; 1813 if (conf->mirrors[d].rdev == NULL || 1814 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1815 still_degraded = 1; 1816 break; 1817 } 1818 } 1819 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1820 &sync_blocks, still_degraded); 1821 1822 for (j=0; j<conf->copies;j++) { 1823 int d = r10_bio->devs[j].devnum; 1824 if (conf->mirrors[d].rdev && 1825 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1826 /* This is where we read from */ 1827 bio = r10_bio->devs[0].bio; 1828 bio->bi_next = biolist; 1829 biolist = bio; 1830 bio->bi_private = r10_bio; 1831 bio->bi_end_io = end_sync_read; 1832 bio->bi_rw = READ; 1833 bio->bi_sector = r10_bio->devs[j].addr + 1834 conf->mirrors[d].rdev->data_offset; 1835 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1836 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1837 atomic_inc(&r10_bio->remaining); 1838 /* and we write to 'i' */ 1839 1840 for (k=0; k<conf->copies; k++) 1841 if (r10_bio->devs[k].devnum == i) 1842 break; 1843 BUG_ON(k == conf->copies); 1844 bio = r10_bio->devs[1].bio; 1845 bio->bi_next = biolist; 1846 biolist = bio; 1847 bio->bi_private = r10_bio; 1848 bio->bi_end_io = end_sync_write; 1849 bio->bi_rw = WRITE; 1850 bio->bi_sector = r10_bio->devs[k].addr + 1851 conf->mirrors[i].rdev->data_offset; 1852 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1853 1854 r10_bio->devs[0].devnum = d; 1855 r10_bio->devs[1].devnum = i; 1856 1857 break; 1858 } 1859 } 1860 if (j == conf->copies) { 1861 /* Cannot recover, so abort the recovery */ 1862 put_buf(r10_bio); 1863 if (rb2) 1864 atomic_dec(&rb2->remaining); 1865 r10_bio = rb2; 1866 if (!test_and_set_bit(MD_RECOVERY_INTR, 1867 &mddev->recovery)) 1868 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1869 mdname(mddev)); 1870 break; 1871 } 1872 } 1873 if (biolist == NULL) { 1874 while (r10_bio) { 1875 r10bio_t *rb2 = r10_bio; 1876 r10_bio = (r10bio_t*) rb2->master_bio; 1877 rb2->master_bio = NULL; 1878 put_buf(rb2); 1879 } 1880 goto giveup; 1881 } 1882 } else { 1883 /* resync. Schedule a read for every block at this virt offset */ 1884 int count = 0; 1885 1886 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1887 &sync_blocks, mddev->degraded) && 1888 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1889 /* We can skip this block */ 1890 *skipped = 1; 1891 return sync_blocks + sectors_skipped; 1892 } 1893 if (sync_blocks < max_sync) 1894 max_sync = sync_blocks; 1895 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1896 1897 r10_bio->mddev = mddev; 1898 atomic_set(&r10_bio->remaining, 0); 1899 raise_barrier(conf, 0); 1900 conf->next_resync = sector_nr; 1901 1902 r10_bio->master_bio = NULL; 1903 r10_bio->sector = sector_nr; 1904 set_bit(R10BIO_IsSync, &r10_bio->state); 1905 raid10_find_phys(conf, r10_bio); 1906 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1907 1908 for (i=0; i<conf->copies; i++) { 1909 int d = r10_bio->devs[i].devnum; 1910 bio = r10_bio->devs[i].bio; 1911 bio->bi_end_io = NULL; 1912 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1913 if (conf->mirrors[d].rdev == NULL || 1914 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1915 continue; 1916 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1917 atomic_inc(&r10_bio->remaining); 1918 bio->bi_next = biolist; 1919 biolist = bio; 1920 bio->bi_private = r10_bio; 1921 bio->bi_end_io = end_sync_read; 1922 bio->bi_rw = READ; 1923 bio->bi_sector = r10_bio->devs[i].addr + 1924 conf->mirrors[d].rdev->data_offset; 1925 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1926 count++; 1927 } 1928 1929 if (count < 2) { 1930 for (i=0; i<conf->copies; i++) { 1931 int d = r10_bio->devs[i].devnum; 1932 if (r10_bio->devs[i].bio->bi_end_io) 1933 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1934 } 1935 put_buf(r10_bio); 1936 biolist = NULL; 1937 goto giveup; 1938 } 1939 } 1940 1941 for (bio = biolist; bio ; bio=bio->bi_next) { 1942 1943 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1944 if (bio->bi_end_io) 1945 bio->bi_flags |= 1 << BIO_UPTODATE; 1946 bio->bi_vcnt = 0; 1947 bio->bi_idx = 0; 1948 bio->bi_phys_segments = 0; 1949 bio->bi_hw_segments = 0; 1950 bio->bi_size = 0; 1951 } 1952 1953 nr_sectors = 0; 1954 if (sector_nr + max_sync < max_sector) 1955 max_sector = sector_nr + max_sync; 1956 do { 1957 struct page *page; 1958 int len = PAGE_SIZE; 1959 disk = 0; 1960 if (sector_nr + (len>>9) > max_sector) 1961 len = (max_sector - sector_nr) << 9; 1962 if (len == 0) 1963 break; 1964 for (bio= biolist ; bio ; bio=bio->bi_next) { 1965 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1966 if (bio_add_page(bio, page, len, 0) == 0) { 1967 /* stop here */ 1968 struct bio *bio2; 1969 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1970 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1971 /* remove last page from this bio */ 1972 bio2->bi_vcnt--; 1973 bio2->bi_size -= len; 1974 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1975 } 1976 goto bio_full; 1977 } 1978 disk = i; 1979 } 1980 nr_sectors += len>>9; 1981 sector_nr += len>>9; 1982 } while (biolist->bi_vcnt < RESYNC_PAGES); 1983 bio_full: 1984 r10_bio->sectors = nr_sectors; 1985 1986 while (biolist) { 1987 bio = biolist; 1988 biolist = biolist->bi_next; 1989 1990 bio->bi_next = NULL; 1991 r10_bio = bio->bi_private; 1992 r10_bio->sectors = nr_sectors; 1993 1994 if (bio->bi_end_io == end_sync_read) { 1995 md_sync_acct(bio->bi_bdev, nr_sectors); 1996 generic_make_request(bio); 1997 } 1998 } 1999 2000 if (sectors_skipped) 2001 /* pretend they weren't skipped, it makes 2002 * no important difference in this case 2003 */ 2004 md_done_sync(mddev, sectors_skipped, 1); 2005 2006 return sectors_skipped + nr_sectors; 2007 giveup: 2008 /* There is nowhere to write, so all non-sync 2009 * drives must be failed, so try the next chunk... 2010 */ 2011 { 2012 sector_t sec = max_sector - sector_nr; 2013 sectors_skipped += sec; 2014 chunks_skipped ++; 2015 sector_nr = max_sector; 2016 goto skipped; 2017 } 2018 } 2019 2020 static int run(mddev_t *mddev) 2021 { 2022 conf_t *conf; 2023 int i, disk_idx; 2024 mirror_info_t *disk; 2025 mdk_rdev_t *rdev; 2026 struct list_head *tmp; 2027 int nc, fc, fo; 2028 sector_t stride, size; 2029 2030 if (mddev->chunk_size == 0) { 2031 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 2032 return -EINVAL; 2033 } 2034 2035 nc = mddev->layout & 255; 2036 fc = (mddev->layout >> 8) & 255; 2037 fo = mddev->layout & (1<<16); 2038 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2039 (mddev->layout >> 17)) { 2040 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 2041 mdname(mddev), mddev->layout); 2042 goto out; 2043 } 2044 /* 2045 * copy the already verified devices into our private RAID10 2046 * bookkeeping area. [whatever we allocate in run(), 2047 * should be freed in stop()] 2048 */ 2049 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2050 mddev->private = conf; 2051 if (!conf) { 2052 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2053 mdname(mddev)); 2054 goto out; 2055 } 2056 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2057 GFP_KERNEL); 2058 if (!conf->mirrors) { 2059 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2060 mdname(mddev)); 2061 goto out_free_conf; 2062 } 2063 2064 conf->tmppage = alloc_page(GFP_KERNEL); 2065 if (!conf->tmppage) 2066 goto out_free_conf; 2067 2068 conf->mddev = mddev; 2069 conf->raid_disks = mddev->raid_disks; 2070 conf->near_copies = nc; 2071 conf->far_copies = fc; 2072 conf->copies = nc*fc; 2073 conf->far_offset = fo; 2074 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 2075 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 2076 size = mddev->size >> (conf->chunk_shift-1); 2077 sector_div(size, fc); 2078 size = size * conf->raid_disks; 2079 sector_div(size, nc); 2080 /* 'size' is now the number of chunks in the array */ 2081 /* calculate "used chunks per device" in 'stride' */ 2082 stride = size * conf->copies; 2083 2084 /* We need to round up when dividing by raid_disks to 2085 * get the stride size. 2086 */ 2087 stride += conf->raid_disks - 1; 2088 sector_div(stride, conf->raid_disks); 2089 mddev->size = stride << (conf->chunk_shift-1); 2090 2091 if (fo) 2092 stride = 1; 2093 else 2094 sector_div(stride, fc); 2095 conf->stride = stride << conf->chunk_shift; 2096 2097 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2098 r10bio_pool_free, conf); 2099 if (!conf->r10bio_pool) { 2100 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2101 mdname(mddev)); 2102 goto out_free_conf; 2103 } 2104 2105 spin_lock_init(&conf->device_lock); 2106 mddev->queue->queue_lock = &conf->device_lock; 2107 2108 rdev_for_each(rdev, tmp, mddev) { 2109 disk_idx = rdev->raid_disk; 2110 if (disk_idx >= mddev->raid_disks 2111 || disk_idx < 0) 2112 continue; 2113 disk = conf->mirrors + disk_idx; 2114 2115 disk->rdev = rdev; 2116 2117 blk_queue_stack_limits(mddev->queue, 2118 rdev->bdev->bd_disk->queue); 2119 /* as we don't honour merge_bvec_fn, we must never risk 2120 * violating it, so limit ->max_sector to one PAGE, as 2121 * a one page request is never in violation. 2122 */ 2123 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2124 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2125 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2126 2127 disk->head_position = 0; 2128 } 2129 INIT_LIST_HEAD(&conf->retry_list); 2130 2131 spin_lock_init(&conf->resync_lock); 2132 init_waitqueue_head(&conf->wait_barrier); 2133 2134 /* need to check that every block has at least one working mirror */ 2135 if (!enough(conf)) { 2136 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2137 mdname(mddev)); 2138 goto out_free_conf; 2139 } 2140 2141 mddev->degraded = 0; 2142 for (i = 0; i < conf->raid_disks; i++) { 2143 2144 disk = conf->mirrors + i; 2145 2146 if (!disk->rdev || 2147 !test_bit(In_sync, &disk->rdev->flags)) { 2148 disk->head_position = 0; 2149 mddev->degraded++; 2150 if (disk->rdev) 2151 conf->fullsync = 1; 2152 } 2153 } 2154 2155 2156 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2157 if (!mddev->thread) { 2158 printk(KERN_ERR 2159 "raid10: couldn't allocate thread for %s\n", 2160 mdname(mddev)); 2161 goto out_free_conf; 2162 } 2163 2164 printk(KERN_INFO 2165 "raid10: raid set %s active with %d out of %d devices\n", 2166 mdname(mddev), mddev->raid_disks - mddev->degraded, 2167 mddev->raid_disks); 2168 /* 2169 * Ok, everything is just fine now 2170 */ 2171 mddev->array_sectors = size << conf->chunk_shift; 2172 mddev->resync_max_sectors = size << conf->chunk_shift; 2173 2174 mddev->queue->unplug_fn = raid10_unplug; 2175 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2176 mddev->queue->backing_dev_info.congested_data = mddev; 2177 2178 /* Calculate max read-ahead size. 2179 * We need to readahead at least twice a whole stripe.... 2180 * maybe... 2181 */ 2182 { 2183 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2184 stripe /= conf->near_copies; 2185 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2186 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2187 } 2188 2189 if (conf->near_copies < mddev->raid_disks) 2190 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2191 return 0; 2192 2193 out_free_conf: 2194 if (conf->r10bio_pool) 2195 mempool_destroy(conf->r10bio_pool); 2196 safe_put_page(conf->tmppage); 2197 kfree(conf->mirrors); 2198 kfree(conf); 2199 mddev->private = NULL; 2200 out: 2201 return -EIO; 2202 } 2203 2204 static int stop(mddev_t *mddev) 2205 { 2206 conf_t *conf = mddev_to_conf(mddev); 2207 2208 md_unregister_thread(mddev->thread); 2209 mddev->thread = NULL; 2210 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2211 if (conf->r10bio_pool) 2212 mempool_destroy(conf->r10bio_pool); 2213 kfree(conf->mirrors); 2214 kfree(conf); 2215 mddev->private = NULL; 2216 return 0; 2217 } 2218 2219 static void raid10_quiesce(mddev_t *mddev, int state) 2220 { 2221 conf_t *conf = mddev_to_conf(mddev); 2222 2223 switch(state) { 2224 case 1: 2225 raise_barrier(conf, 0); 2226 break; 2227 case 0: 2228 lower_barrier(conf); 2229 break; 2230 } 2231 if (mddev->thread) { 2232 if (mddev->bitmap) 2233 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2234 else 2235 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2236 md_wakeup_thread(mddev->thread); 2237 } 2238 } 2239 2240 static struct mdk_personality raid10_personality = 2241 { 2242 .name = "raid10", 2243 .level = 10, 2244 .owner = THIS_MODULE, 2245 .make_request = make_request, 2246 .run = run, 2247 .stop = stop, 2248 .status = status, 2249 .error_handler = error, 2250 .hot_add_disk = raid10_add_disk, 2251 .hot_remove_disk= raid10_remove_disk, 2252 .spare_active = raid10_spare_active, 2253 .sync_request = sync_request, 2254 .quiesce = raid10_quiesce, 2255 }; 2256 2257 static int __init raid_init(void) 2258 { 2259 return register_md_personality(&raid10_personality); 2260 } 2261 2262 static void raid_exit(void) 2263 { 2264 unregister_md_personality(&raid10_personality); 2265 } 2266 2267 module_init(raid_init); 2268 module_exit(raid_exit); 2269 MODULE_LICENSE("GPL"); 2270 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2271 MODULE_ALIAS("md-raid10"); 2272 MODULE_ALIAS("md-level-10"); 2273