1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) { 103 unplug_slaves(conf->mddev); 104 return NULL; 105 } 106 107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 108 nalloc = conf->copies; /* resync */ 109 else 110 nalloc = 2; /* recovery */ 111 112 /* 113 * Allocate bios. 114 */ 115 for (j = nalloc ; j-- ; ) { 116 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 117 if (!bio) 118 goto out_free_bio; 119 r10_bio->devs[j].bio = bio; 120 } 121 /* 122 * Allocate RESYNC_PAGES data pages and attach them 123 * where needed. 124 */ 125 for (j = 0 ; j < nalloc; j++) { 126 bio = r10_bio->devs[j].bio; 127 for (i = 0; i < RESYNC_PAGES; i++) { 128 page = alloc_page(gfp_flags); 129 if (unlikely(!page)) 130 goto out_free_pages; 131 132 bio->bi_io_vec[i].bv_page = page; 133 } 134 } 135 136 return r10_bio; 137 138 out_free_pages: 139 for ( ; i > 0 ; i--) 140 safe_put_page(bio->bi_io_vec[i-1].bv_page); 141 while (j--) 142 for (i = 0; i < RESYNC_PAGES ; i++) 143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < nalloc ) 147 bio_put(r10_bio->devs[j].bio); 148 r10bio_pool_free(r10_bio, conf); 149 return NULL; 150 } 151 152 static void r10buf_pool_free(void *__r10_bio, void *data) 153 { 154 int i; 155 conf_t *conf = data; 156 r10bio_t *r10bio = __r10_bio; 157 int j; 158 159 for (j=0; j < conf->copies; j++) { 160 struct bio *bio = r10bio->devs[j].bio; 161 if (bio) { 162 for (i = 0; i < RESYNC_PAGES; i++) { 163 safe_put_page(bio->bi_io_vec[i].bv_page); 164 bio->bi_io_vec[i].bv_page = NULL; 165 } 166 bio_put(bio); 167 } 168 } 169 r10bio_pool_free(r10bio, conf); 170 } 171 172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->copies; i++) { 177 struct bio **bio = & r10_bio->devs[i].bio; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r10bio(r10bio_t *r10_bio) 185 { 186 conf_t *conf = mddev_to_conf(r10_bio->mddev); 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r10_bio); 195 mempool_free(r10_bio, conf->r10bio_pool); 196 } 197 198 static void put_buf(r10bio_t *r10_bio) 199 { 200 conf_t *conf = mddev_to_conf(r10_bio->mddev); 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 lower_barrier(conf); 205 } 206 207 static void reschedule_retry(r10bio_t *r10_bio) 208 { 209 unsigned long flags; 210 mddev_t *mddev = r10_bio->mddev; 211 conf_t *conf = mddev_to_conf(mddev); 212 213 spin_lock_irqsave(&conf->device_lock, flags); 214 list_add(&r10_bio->retry_list, &conf->retry_list); 215 conf->nr_queued ++; 216 spin_unlock_irqrestore(&conf->device_lock, flags); 217 218 md_wakeup_thread(mddev->thread); 219 } 220 221 /* 222 * raid_end_bio_io() is called when we have finished servicing a mirrored 223 * operation and are ready to return a success/failure code to the buffer 224 * cache layer. 225 */ 226 static void raid_end_bio_io(r10bio_t *r10_bio) 227 { 228 struct bio *bio = r10_bio->master_bio; 229 230 bio_endio(bio, 231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 232 free_r10bio(r10_bio); 233 } 234 235 /* 236 * Update disk head position estimator based on IRQ completion info. 237 */ 238 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 239 { 240 conf_t *conf = mddev_to_conf(r10_bio->mddev); 241 242 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 243 r10_bio->devs[slot].addr + (r10_bio->sectors); 244 } 245 246 static void raid10_end_read_request(struct bio *bio, int error) 247 { 248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 250 int slot, dev; 251 conf_t *conf = mddev_to_conf(r10_bio->mddev); 252 253 254 slot = r10_bio->read_slot; 255 dev = r10_bio->devs[slot].devnum; 256 /* 257 * this branch is our 'one mirror IO has finished' event handler: 258 */ 259 update_head_pos(slot, r10_bio); 260 261 if (uptodate) { 262 /* 263 * Set R10BIO_Uptodate in our master bio, so that 264 * we will return a good error code to the higher 265 * levels even if IO on some other mirrored buffer fails. 266 * 267 * The 'master' represents the composite IO operation to 268 * user-side. So if something waits for IO, then it will 269 * wait for the 'master' bio. 270 */ 271 set_bit(R10BIO_Uptodate, &r10_bio->state); 272 raid_end_bio_io(r10_bio); 273 } else { 274 /* 275 * oops, read error: 276 */ 277 char b[BDEVNAME_SIZE]; 278 if (printk_ratelimit()) 279 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 280 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 281 reschedule_retry(r10_bio); 282 } 283 284 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 285 } 286 287 static void raid10_end_write_request(struct bio *bio, int error) 288 { 289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 291 int slot, dev; 292 conf_t *conf = mddev_to_conf(r10_bio->mddev); 293 294 for (slot = 0; slot < conf->copies; slot++) 295 if (r10_bio->devs[slot].bio == bio) 296 break; 297 dev = r10_bio->devs[slot].devnum; 298 299 /* 300 * this branch is our 'one mirror IO has finished' event handler: 301 */ 302 if (!uptodate) { 303 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 304 /* an I/O failed, we can't clear the bitmap */ 305 set_bit(R10BIO_Degraded, &r10_bio->state); 306 } else 307 /* 308 * Set R10BIO_Uptodate in our master bio, so that 309 * we will return a good error code for to the higher 310 * levels even if IO on some other mirrored buffer fails. 311 * 312 * The 'master' represents the composite IO operation to 313 * user-side. So if something waits for IO, then it will 314 * wait for the 'master' bio. 315 */ 316 set_bit(R10BIO_Uptodate, &r10_bio->state); 317 318 update_head_pos(slot, r10_bio); 319 320 /* 321 * 322 * Let's see if all mirrored write operations have finished 323 * already. 324 */ 325 if (atomic_dec_and_test(&r10_bio->remaining)) { 326 /* clear the bitmap if all writes complete successfully */ 327 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 328 r10_bio->sectors, 329 !test_bit(R10BIO_Degraded, &r10_bio->state), 330 0); 331 md_write_end(r10_bio->mddev); 332 raid_end_bio_io(r10_bio); 333 } 334 335 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 336 } 337 338 339 /* 340 * RAID10 layout manager 341 * Aswell as the chunksize and raid_disks count, there are two 342 * parameters: near_copies and far_copies. 343 * near_copies * far_copies must be <= raid_disks. 344 * Normally one of these will be 1. 345 * If both are 1, we get raid0. 346 * If near_copies == raid_disks, we get raid1. 347 * 348 * Chunks are layed out in raid0 style with near_copies copies of the 349 * first chunk, followed by near_copies copies of the next chunk and 350 * so on. 351 * If far_copies > 1, then after 1/far_copies of the array has been assigned 352 * as described above, we start again with a device offset of near_copies. 353 * So we effectively have another copy of the whole array further down all 354 * the drives, but with blocks on different drives. 355 * With this layout, and block is never stored twice on the one device. 356 * 357 * raid10_find_phys finds the sector offset of a given virtual sector 358 * on each device that it is on. 359 * 360 * raid10_find_virt does the reverse mapping, from a device and a 361 * sector offset to a virtual address 362 */ 363 364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 365 { 366 int n,f; 367 sector_t sector; 368 sector_t chunk; 369 sector_t stripe; 370 int dev; 371 372 int slot = 0; 373 374 /* now calculate first sector/dev */ 375 chunk = r10bio->sector >> conf->chunk_shift; 376 sector = r10bio->sector & conf->chunk_mask; 377 378 chunk *= conf->near_copies; 379 stripe = chunk; 380 dev = sector_div(stripe, conf->raid_disks); 381 if (conf->far_offset) 382 stripe *= conf->far_copies; 383 384 sector += stripe << conf->chunk_shift; 385 386 /* and calculate all the others */ 387 for (n=0; n < conf->near_copies; n++) { 388 int d = dev; 389 sector_t s = sector; 390 r10bio->devs[slot].addr = sector; 391 r10bio->devs[slot].devnum = d; 392 slot++; 393 394 for (f = 1; f < conf->far_copies; f++) { 395 d += conf->near_copies; 396 if (d >= conf->raid_disks) 397 d -= conf->raid_disks; 398 s += conf->stride; 399 r10bio->devs[slot].devnum = d; 400 r10bio->devs[slot].addr = s; 401 slot++; 402 } 403 dev++; 404 if (dev >= conf->raid_disks) { 405 dev = 0; 406 sector += (conf->chunk_mask + 1); 407 } 408 } 409 BUG_ON(slot != conf->copies); 410 } 411 412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 413 { 414 sector_t offset, chunk, vchunk; 415 416 offset = sector & conf->chunk_mask; 417 if (conf->far_offset) { 418 int fc; 419 chunk = sector >> conf->chunk_shift; 420 fc = sector_div(chunk, conf->far_copies); 421 dev -= fc * conf->near_copies; 422 if (dev < 0) 423 dev += conf->raid_disks; 424 } else { 425 while (sector >= conf->stride) { 426 sector -= conf->stride; 427 if (dev < conf->near_copies) 428 dev += conf->raid_disks - conf->near_copies; 429 else 430 dev -= conf->near_copies; 431 } 432 chunk = sector >> conf->chunk_shift; 433 } 434 vchunk = chunk * conf->raid_disks + dev; 435 sector_div(vchunk, conf->near_copies); 436 return (vchunk << conf->chunk_shift) + offset; 437 } 438 439 /** 440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 441 * @q: request queue 442 * @bio: the buffer head that's been built up so far 443 * @biovec: the request that could be merged to it. 444 * 445 * Return amount of bytes we can accept at this offset 446 * If near_copies == raid_disk, there are no striping issues, 447 * but in that case, the function isn't called at all. 448 */ 449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio, 450 struct bio_vec *bio_vec) 451 { 452 mddev_t *mddev = q->queuedata; 453 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 454 int max; 455 unsigned int chunk_sectors = mddev->chunk_size >> 9; 456 unsigned int bio_sectors = bio->bi_size >> 9; 457 458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 459 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 460 if (max <= bio_vec->bv_len && bio_sectors == 0) 461 return bio_vec->bv_len; 462 else 463 return max; 464 } 465 466 /* 467 * This routine returns the disk from which the requested read should 468 * be done. There is a per-array 'next expected sequential IO' sector 469 * number - if this matches on the next IO then we use the last disk. 470 * There is also a per-disk 'last know head position' sector that is 471 * maintained from IRQ contexts, both the normal and the resync IO 472 * completion handlers update this position correctly. If there is no 473 * perfect sequential match then we pick the disk whose head is closest. 474 * 475 * If there are 2 mirrors in the same 2 devices, performance degrades 476 * because position is mirror, not device based. 477 * 478 * The rdev for the device selected will have nr_pending incremented. 479 */ 480 481 /* 482 * FIXME: possibly should rethink readbalancing and do it differently 483 * depending on near_copies / far_copies geometry. 484 */ 485 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 486 { 487 const unsigned long this_sector = r10_bio->sector; 488 int disk, slot, nslot; 489 const int sectors = r10_bio->sectors; 490 sector_t new_distance, current_distance; 491 mdk_rdev_t *rdev; 492 493 raid10_find_phys(conf, r10_bio); 494 rcu_read_lock(); 495 /* 496 * Check if we can balance. We can balance on the whole 497 * device if no resync is going on (recovery is ok), or below 498 * the resync window. We take the first readable disk when 499 * above the resync window. 500 */ 501 if (conf->mddev->recovery_cp < MaxSector 502 && (this_sector + sectors >= conf->next_resync)) { 503 /* make sure that disk is operational */ 504 slot = 0; 505 disk = r10_bio->devs[slot].devnum; 506 507 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 508 r10_bio->devs[slot].bio == IO_BLOCKED || 509 !test_bit(In_sync, &rdev->flags)) { 510 slot++; 511 if (slot == conf->copies) { 512 slot = 0; 513 disk = -1; 514 break; 515 } 516 disk = r10_bio->devs[slot].devnum; 517 } 518 goto rb_out; 519 } 520 521 522 /* make sure the disk is operational */ 523 slot = 0; 524 disk = r10_bio->devs[slot].devnum; 525 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 526 r10_bio->devs[slot].bio == IO_BLOCKED || 527 !test_bit(In_sync, &rdev->flags)) { 528 slot ++; 529 if (slot == conf->copies) { 530 disk = -1; 531 goto rb_out; 532 } 533 disk = r10_bio->devs[slot].devnum; 534 } 535 536 537 current_distance = abs(r10_bio->devs[slot].addr - 538 conf->mirrors[disk].head_position); 539 540 /* Find the disk whose head is closest */ 541 542 for (nslot = slot; nslot < conf->copies; nslot++) { 543 int ndisk = r10_bio->devs[nslot].devnum; 544 545 546 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 547 r10_bio->devs[nslot].bio == IO_BLOCKED || 548 !test_bit(In_sync, &rdev->flags)) 549 continue; 550 551 /* This optimisation is debatable, and completely destroys 552 * sequential read speed for 'far copies' arrays. So only 553 * keep it for 'near' arrays, and review those later. 554 */ 555 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 556 disk = ndisk; 557 slot = nslot; 558 break; 559 } 560 new_distance = abs(r10_bio->devs[nslot].addr - 561 conf->mirrors[ndisk].head_position); 562 if (new_distance < current_distance) { 563 current_distance = new_distance; 564 disk = ndisk; 565 slot = nslot; 566 } 567 } 568 569 rb_out: 570 r10_bio->read_slot = slot; 571 /* conf->next_seq_sect = this_sector + sectors;*/ 572 573 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 574 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 575 else 576 disk = -1; 577 rcu_read_unlock(); 578 579 return disk; 580 } 581 582 static void unplug_slaves(mddev_t *mddev) 583 { 584 conf_t *conf = mddev_to_conf(mddev); 585 int i; 586 587 rcu_read_lock(); 588 for (i=0; i<mddev->raid_disks; i++) { 589 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 590 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 591 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 592 593 atomic_inc(&rdev->nr_pending); 594 rcu_read_unlock(); 595 596 blk_unplug(r_queue); 597 598 rdev_dec_pending(rdev, mddev); 599 rcu_read_lock(); 600 } 601 } 602 rcu_read_unlock(); 603 } 604 605 static void raid10_unplug(struct request_queue *q) 606 { 607 mddev_t *mddev = q->queuedata; 608 609 unplug_slaves(q->queuedata); 610 md_wakeup_thread(mddev->thread); 611 } 612 613 static int raid10_congested(void *data, int bits) 614 { 615 mddev_t *mddev = data; 616 conf_t *conf = mddev_to_conf(mddev); 617 int i, ret = 0; 618 619 rcu_read_lock(); 620 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 621 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 622 if (rdev && !test_bit(Faulty, &rdev->flags)) { 623 struct request_queue *q = bdev_get_queue(rdev->bdev); 624 625 ret |= bdi_congested(&q->backing_dev_info, bits); 626 } 627 } 628 rcu_read_unlock(); 629 return ret; 630 } 631 632 633 /* Barriers.... 634 * Sometimes we need to suspend IO while we do something else, 635 * either some resync/recovery, or reconfigure the array. 636 * To do this we raise a 'barrier'. 637 * The 'barrier' is a counter that can be raised multiple times 638 * to count how many activities are happening which preclude 639 * normal IO. 640 * We can only raise the barrier if there is no pending IO. 641 * i.e. if nr_pending == 0. 642 * We choose only to raise the barrier if no-one is waiting for the 643 * barrier to go down. This means that as soon as an IO request 644 * is ready, no other operations which require a barrier will start 645 * until the IO request has had a chance. 646 * 647 * So: regular IO calls 'wait_barrier'. When that returns there 648 * is no backgroup IO happening, It must arrange to call 649 * allow_barrier when it has finished its IO. 650 * backgroup IO calls must call raise_barrier. Once that returns 651 * there is no normal IO happeing. It must arrange to call 652 * lower_barrier when the particular background IO completes. 653 */ 654 #define RESYNC_DEPTH 32 655 656 static void raise_barrier(conf_t *conf, int force) 657 { 658 BUG_ON(force && !conf->barrier); 659 spin_lock_irq(&conf->resync_lock); 660 661 /* Wait until no block IO is waiting (unless 'force') */ 662 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 663 conf->resync_lock, 664 raid10_unplug(conf->mddev->queue)); 665 666 /* block any new IO from starting */ 667 conf->barrier++; 668 669 /* No wait for all pending IO to complete */ 670 wait_event_lock_irq(conf->wait_barrier, 671 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 672 conf->resync_lock, 673 raid10_unplug(conf->mddev->queue)); 674 675 spin_unlock_irq(&conf->resync_lock); 676 } 677 678 static void lower_barrier(conf_t *conf) 679 { 680 unsigned long flags; 681 spin_lock_irqsave(&conf->resync_lock, flags); 682 conf->barrier--; 683 spin_unlock_irqrestore(&conf->resync_lock, flags); 684 wake_up(&conf->wait_barrier); 685 } 686 687 static void wait_barrier(conf_t *conf) 688 { 689 spin_lock_irq(&conf->resync_lock); 690 if (conf->barrier) { 691 conf->nr_waiting++; 692 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 693 conf->resync_lock, 694 raid10_unplug(conf->mddev->queue)); 695 conf->nr_waiting--; 696 } 697 conf->nr_pending++; 698 spin_unlock_irq(&conf->resync_lock); 699 } 700 701 static void allow_barrier(conf_t *conf) 702 { 703 unsigned long flags; 704 spin_lock_irqsave(&conf->resync_lock, flags); 705 conf->nr_pending--; 706 spin_unlock_irqrestore(&conf->resync_lock, flags); 707 wake_up(&conf->wait_barrier); 708 } 709 710 static void freeze_array(conf_t *conf) 711 { 712 /* stop syncio and normal IO and wait for everything to 713 * go quiet. 714 * We increment barrier and nr_waiting, and then 715 * wait until barrier+nr_pending match nr_queued+2 716 */ 717 spin_lock_irq(&conf->resync_lock); 718 conf->barrier++; 719 conf->nr_waiting++; 720 wait_event_lock_irq(conf->wait_barrier, 721 conf->barrier+conf->nr_pending == conf->nr_queued+2, 722 conf->resync_lock, 723 raid10_unplug(conf->mddev->queue)); 724 spin_unlock_irq(&conf->resync_lock); 725 } 726 727 static void unfreeze_array(conf_t *conf) 728 { 729 /* reverse the effect of the freeze */ 730 spin_lock_irq(&conf->resync_lock); 731 conf->barrier--; 732 conf->nr_waiting--; 733 wake_up(&conf->wait_barrier); 734 spin_unlock_irq(&conf->resync_lock); 735 } 736 737 static int make_request(struct request_queue *q, struct bio * bio) 738 { 739 mddev_t *mddev = q->queuedata; 740 conf_t *conf = mddev_to_conf(mddev); 741 mirror_info_t *mirror; 742 r10bio_t *r10_bio; 743 struct bio *read_bio; 744 int i; 745 int chunk_sects = conf->chunk_mask + 1; 746 const int rw = bio_data_dir(bio); 747 const int do_sync = bio_sync(bio); 748 struct bio_list bl; 749 unsigned long flags; 750 751 if (unlikely(bio_barrier(bio))) { 752 bio_endio(bio, -EOPNOTSUPP); 753 return 0; 754 } 755 756 /* If this request crosses a chunk boundary, we need to 757 * split it. This will only happen for 1 PAGE (or less) requests. 758 */ 759 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 760 > chunk_sects && 761 conf->near_copies < conf->raid_disks)) { 762 struct bio_pair *bp; 763 /* Sanity check -- queue functions should prevent this happening */ 764 if (bio->bi_vcnt != 1 || 765 bio->bi_idx != 0) 766 goto bad_map; 767 /* This is a one page bio that upper layers 768 * refuse to split for us, so we need to split it. 769 */ 770 bp = bio_split(bio, bio_split_pool, 771 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 772 if (make_request(q, &bp->bio1)) 773 generic_make_request(&bp->bio1); 774 if (make_request(q, &bp->bio2)) 775 generic_make_request(&bp->bio2); 776 777 bio_pair_release(bp); 778 return 0; 779 bad_map: 780 printk("raid10_make_request bug: can't convert block across chunks" 781 " or bigger than %dk %llu %d\n", chunk_sects/2, 782 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 783 784 bio_io_error(bio); 785 return 0; 786 } 787 788 md_write_start(mddev, bio); 789 790 /* 791 * Register the new request and wait if the reconstruction 792 * thread has put up a bar for new requests. 793 * Continue immediately if no resync is active currently. 794 */ 795 wait_barrier(conf); 796 797 disk_stat_inc(mddev->gendisk, ios[rw]); 798 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 799 800 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 801 802 r10_bio->master_bio = bio; 803 r10_bio->sectors = bio->bi_size >> 9; 804 805 r10_bio->mddev = mddev; 806 r10_bio->sector = bio->bi_sector; 807 r10_bio->state = 0; 808 809 if (rw == READ) { 810 /* 811 * read balancing logic: 812 */ 813 int disk = read_balance(conf, r10_bio); 814 int slot = r10_bio->read_slot; 815 if (disk < 0) { 816 raid_end_bio_io(r10_bio); 817 return 0; 818 } 819 mirror = conf->mirrors + disk; 820 821 read_bio = bio_clone(bio, GFP_NOIO); 822 823 r10_bio->devs[slot].bio = read_bio; 824 825 read_bio->bi_sector = r10_bio->devs[slot].addr + 826 mirror->rdev->data_offset; 827 read_bio->bi_bdev = mirror->rdev->bdev; 828 read_bio->bi_end_io = raid10_end_read_request; 829 read_bio->bi_rw = READ | do_sync; 830 read_bio->bi_private = r10_bio; 831 832 generic_make_request(read_bio); 833 return 0; 834 } 835 836 /* 837 * WRITE: 838 */ 839 /* first select target devices under spinlock and 840 * inc refcount on their rdev. Record them by setting 841 * bios[x] to bio 842 */ 843 raid10_find_phys(conf, r10_bio); 844 rcu_read_lock(); 845 for (i = 0; i < conf->copies; i++) { 846 int d = r10_bio->devs[i].devnum; 847 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 848 if (rdev && 849 !test_bit(Faulty, &rdev->flags)) { 850 atomic_inc(&rdev->nr_pending); 851 r10_bio->devs[i].bio = bio; 852 } else { 853 r10_bio->devs[i].bio = NULL; 854 set_bit(R10BIO_Degraded, &r10_bio->state); 855 } 856 } 857 rcu_read_unlock(); 858 859 atomic_set(&r10_bio->remaining, 0); 860 861 bio_list_init(&bl); 862 for (i = 0; i < conf->copies; i++) { 863 struct bio *mbio; 864 int d = r10_bio->devs[i].devnum; 865 if (!r10_bio->devs[i].bio) 866 continue; 867 868 mbio = bio_clone(bio, GFP_NOIO); 869 r10_bio->devs[i].bio = mbio; 870 871 mbio->bi_sector = r10_bio->devs[i].addr+ 872 conf->mirrors[d].rdev->data_offset; 873 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 874 mbio->bi_end_io = raid10_end_write_request; 875 mbio->bi_rw = WRITE | do_sync; 876 mbio->bi_private = r10_bio; 877 878 atomic_inc(&r10_bio->remaining); 879 bio_list_add(&bl, mbio); 880 } 881 882 if (unlikely(!atomic_read(&r10_bio->remaining))) { 883 /* the array is dead */ 884 md_write_end(mddev); 885 raid_end_bio_io(r10_bio); 886 return 0; 887 } 888 889 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 890 spin_lock_irqsave(&conf->device_lock, flags); 891 bio_list_merge(&conf->pending_bio_list, &bl); 892 blk_plug_device(mddev->queue); 893 spin_unlock_irqrestore(&conf->device_lock, flags); 894 895 if (do_sync) 896 md_wakeup_thread(mddev->thread); 897 898 return 0; 899 } 900 901 static void status(struct seq_file *seq, mddev_t *mddev) 902 { 903 conf_t *conf = mddev_to_conf(mddev); 904 int i; 905 906 if (conf->near_copies < conf->raid_disks) 907 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 908 if (conf->near_copies > 1) 909 seq_printf(seq, " %d near-copies", conf->near_copies); 910 if (conf->far_copies > 1) { 911 if (conf->far_offset) 912 seq_printf(seq, " %d offset-copies", conf->far_copies); 913 else 914 seq_printf(seq, " %d far-copies", conf->far_copies); 915 } 916 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 917 conf->raid_disks - mddev->degraded); 918 for (i = 0; i < conf->raid_disks; i++) 919 seq_printf(seq, "%s", 920 conf->mirrors[i].rdev && 921 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 922 seq_printf(seq, "]"); 923 } 924 925 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 926 { 927 char b[BDEVNAME_SIZE]; 928 conf_t *conf = mddev_to_conf(mddev); 929 930 /* 931 * If it is not operational, then we have already marked it as dead 932 * else if it is the last working disks, ignore the error, let the 933 * next level up know. 934 * else mark the drive as failed 935 */ 936 if (test_bit(In_sync, &rdev->flags) 937 && conf->raid_disks-mddev->degraded == 1) 938 /* 939 * Don't fail the drive, just return an IO error. 940 * The test should really be more sophisticated than 941 * "working_disks == 1", but it isn't critical, and 942 * can wait until we do more sophisticated "is the drive 943 * really dead" tests... 944 */ 945 return; 946 if (test_and_clear_bit(In_sync, &rdev->flags)) { 947 unsigned long flags; 948 spin_lock_irqsave(&conf->device_lock, flags); 949 mddev->degraded++; 950 spin_unlock_irqrestore(&conf->device_lock, flags); 951 /* 952 * if recovery is running, make sure it aborts. 953 */ 954 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 955 } 956 set_bit(Faulty, &rdev->flags); 957 set_bit(MD_CHANGE_DEVS, &mddev->flags); 958 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 959 " Operation continuing on %d devices\n", 960 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 961 } 962 963 static void print_conf(conf_t *conf) 964 { 965 int i; 966 mirror_info_t *tmp; 967 968 printk("RAID10 conf printout:\n"); 969 if (!conf) { 970 printk("(!conf)\n"); 971 return; 972 } 973 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 974 conf->raid_disks); 975 976 for (i = 0; i < conf->raid_disks; i++) { 977 char b[BDEVNAME_SIZE]; 978 tmp = conf->mirrors + i; 979 if (tmp->rdev) 980 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 981 i, !test_bit(In_sync, &tmp->rdev->flags), 982 !test_bit(Faulty, &tmp->rdev->flags), 983 bdevname(tmp->rdev->bdev,b)); 984 } 985 } 986 987 static void close_sync(conf_t *conf) 988 { 989 wait_barrier(conf); 990 allow_barrier(conf); 991 992 mempool_destroy(conf->r10buf_pool); 993 conf->r10buf_pool = NULL; 994 } 995 996 /* check if there are enough drives for 997 * every block to appear on atleast one 998 */ 999 static int enough(conf_t *conf) 1000 { 1001 int first = 0; 1002 1003 do { 1004 int n = conf->copies; 1005 int cnt = 0; 1006 while (n--) { 1007 if (conf->mirrors[first].rdev) 1008 cnt++; 1009 first = (first+1) % conf->raid_disks; 1010 } 1011 if (cnt == 0) 1012 return 0; 1013 } while (first != 0); 1014 return 1; 1015 } 1016 1017 static int raid10_spare_active(mddev_t *mddev) 1018 { 1019 int i; 1020 conf_t *conf = mddev->private; 1021 mirror_info_t *tmp; 1022 1023 /* 1024 * Find all non-in_sync disks within the RAID10 configuration 1025 * and mark them in_sync 1026 */ 1027 for (i = 0; i < conf->raid_disks; i++) { 1028 tmp = conf->mirrors + i; 1029 if (tmp->rdev 1030 && !test_bit(Faulty, &tmp->rdev->flags) 1031 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1032 unsigned long flags; 1033 spin_lock_irqsave(&conf->device_lock, flags); 1034 mddev->degraded--; 1035 spin_unlock_irqrestore(&conf->device_lock, flags); 1036 } 1037 } 1038 1039 print_conf(conf); 1040 return 0; 1041 } 1042 1043 1044 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1045 { 1046 conf_t *conf = mddev->private; 1047 int found = 0; 1048 int mirror; 1049 mirror_info_t *p; 1050 1051 if (mddev->recovery_cp < MaxSector) 1052 /* only hot-add to in-sync arrays, as recovery is 1053 * very different from resync 1054 */ 1055 return 0; 1056 if (!enough(conf)) 1057 return 0; 1058 1059 if (rdev->saved_raid_disk >= 0 && 1060 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1061 mirror = rdev->saved_raid_disk; 1062 else 1063 mirror = 0; 1064 for ( ; mirror < mddev->raid_disks; mirror++) 1065 if ( !(p=conf->mirrors+mirror)->rdev) { 1066 1067 blk_queue_stack_limits(mddev->queue, 1068 rdev->bdev->bd_disk->queue); 1069 /* as we don't honour merge_bvec_fn, we must never risk 1070 * violating it, so limit ->max_sector to one PAGE, as 1071 * a one page request is never in violation. 1072 */ 1073 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1074 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1075 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1076 1077 p->head_position = 0; 1078 rdev->raid_disk = mirror; 1079 found = 1; 1080 if (rdev->saved_raid_disk != mirror) 1081 conf->fullsync = 1; 1082 rcu_assign_pointer(p->rdev, rdev); 1083 break; 1084 } 1085 1086 print_conf(conf); 1087 return found; 1088 } 1089 1090 static int raid10_remove_disk(mddev_t *mddev, int number) 1091 { 1092 conf_t *conf = mddev->private; 1093 int err = 0; 1094 mdk_rdev_t *rdev; 1095 mirror_info_t *p = conf->mirrors+ number; 1096 1097 print_conf(conf); 1098 rdev = p->rdev; 1099 if (rdev) { 1100 if (test_bit(In_sync, &rdev->flags) || 1101 atomic_read(&rdev->nr_pending)) { 1102 err = -EBUSY; 1103 goto abort; 1104 } 1105 p->rdev = NULL; 1106 synchronize_rcu(); 1107 if (atomic_read(&rdev->nr_pending)) { 1108 /* lost the race, try later */ 1109 err = -EBUSY; 1110 p->rdev = rdev; 1111 } 1112 } 1113 abort: 1114 1115 print_conf(conf); 1116 return err; 1117 } 1118 1119 1120 static void end_sync_read(struct bio *bio, int error) 1121 { 1122 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1123 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1124 int i,d; 1125 1126 for (i=0; i<conf->copies; i++) 1127 if (r10_bio->devs[i].bio == bio) 1128 break; 1129 BUG_ON(i == conf->copies); 1130 update_head_pos(i, r10_bio); 1131 d = r10_bio->devs[i].devnum; 1132 1133 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1134 set_bit(R10BIO_Uptodate, &r10_bio->state); 1135 else { 1136 atomic_add(r10_bio->sectors, 1137 &conf->mirrors[d].rdev->corrected_errors); 1138 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1139 md_error(r10_bio->mddev, 1140 conf->mirrors[d].rdev); 1141 } 1142 1143 /* for reconstruct, we always reschedule after a read. 1144 * for resync, only after all reads 1145 */ 1146 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1147 atomic_dec_and_test(&r10_bio->remaining)) { 1148 /* we have read all the blocks, 1149 * do the comparison in process context in raid10d 1150 */ 1151 reschedule_retry(r10_bio); 1152 } 1153 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1154 } 1155 1156 static void end_sync_write(struct bio *bio, int error) 1157 { 1158 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1159 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1160 mddev_t *mddev = r10_bio->mddev; 1161 conf_t *conf = mddev_to_conf(mddev); 1162 int i,d; 1163 1164 for (i = 0; i < conf->copies; i++) 1165 if (r10_bio->devs[i].bio == bio) 1166 break; 1167 d = r10_bio->devs[i].devnum; 1168 1169 if (!uptodate) 1170 md_error(mddev, conf->mirrors[d].rdev); 1171 update_head_pos(i, r10_bio); 1172 1173 while (atomic_dec_and_test(&r10_bio->remaining)) { 1174 if (r10_bio->master_bio == NULL) { 1175 /* the primary of several recovery bios */ 1176 md_done_sync(mddev, r10_bio->sectors, 1); 1177 put_buf(r10_bio); 1178 break; 1179 } else { 1180 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1181 put_buf(r10_bio); 1182 r10_bio = r10_bio2; 1183 } 1184 } 1185 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1186 } 1187 1188 /* 1189 * Note: sync and recover and handled very differently for raid10 1190 * This code is for resync. 1191 * For resync, we read through virtual addresses and read all blocks. 1192 * If there is any error, we schedule a write. The lowest numbered 1193 * drive is authoritative. 1194 * However requests come for physical address, so we need to map. 1195 * For every physical address there are raid_disks/copies virtual addresses, 1196 * which is always are least one, but is not necessarly an integer. 1197 * This means that a physical address can span multiple chunks, so we may 1198 * have to submit multiple io requests for a single sync request. 1199 */ 1200 /* 1201 * We check if all blocks are in-sync and only write to blocks that 1202 * aren't in sync 1203 */ 1204 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1205 { 1206 conf_t *conf = mddev_to_conf(mddev); 1207 int i, first; 1208 struct bio *tbio, *fbio; 1209 1210 atomic_set(&r10_bio->remaining, 1); 1211 1212 /* find the first device with a block */ 1213 for (i=0; i<conf->copies; i++) 1214 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1215 break; 1216 1217 if (i == conf->copies) 1218 goto done; 1219 1220 first = i; 1221 fbio = r10_bio->devs[i].bio; 1222 1223 /* now find blocks with errors */ 1224 for (i=0 ; i < conf->copies ; i++) { 1225 int j, d; 1226 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1227 1228 tbio = r10_bio->devs[i].bio; 1229 1230 if (tbio->bi_end_io != end_sync_read) 1231 continue; 1232 if (i == first) 1233 continue; 1234 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1235 /* We know that the bi_io_vec layout is the same for 1236 * both 'first' and 'i', so we just compare them. 1237 * All vec entries are PAGE_SIZE; 1238 */ 1239 for (j = 0; j < vcnt; j++) 1240 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1241 page_address(tbio->bi_io_vec[j].bv_page), 1242 PAGE_SIZE)) 1243 break; 1244 if (j == vcnt) 1245 continue; 1246 mddev->resync_mismatches += r10_bio->sectors; 1247 } 1248 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1249 /* Don't fix anything. */ 1250 continue; 1251 /* Ok, we need to write this bio 1252 * First we need to fixup bv_offset, bv_len and 1253 * bi_vecs, as the read request might have corrupted these 1254 */ 1255 tbio->bi_vcnt = vcnt; 1256 tbio->bi_size = r10_bio->sectors << 9; 1257 tbio->bi_idx = 0; 1258 tbio->bi_phys_segments = 0; 1259 tbio->bi_hw_segments = 0; 1260 tbio->bi_hw_front_size = 0; 1261 tbio->bi_hw_back_size = 0; 1262 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1263 tbio->bi_flags |= 1 << BIO_UPTODATE; 1264 tbio->bi_next = NULL; 1265 tbio->bi_rw = WRITE; 1266 tbio->bi_private = r10_bio; 1267 tbio->bi_sector = r10_bio->devs[i].addr; 1268 1269 for (j=0; j < vcnt ; j++) { 1270 tbio->bi_io_vec[j].bv_offset = 0; 1271 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1272 1273 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1274 page_address(fbio->bi_io_vec[j].bv_page), 1275 PAGE_SIZE); 1276 } 1277 tbio->bi_end_io = end_sync_write; 1278 1279 d = r10_bio->devs[i].devnum; 1280 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1281 atomic_inc(&r10_bio->remaining); 1282 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1283 1284 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1285 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1286 generic_make_request(tbio); 1287 } 1288 1289 done: 1290 if (atomic_dec_and_test(&r10_bio->remaining)) { 1291 md_done_sync(mddev, r10_bio->sectors, 1); 1292 put_buf(r10_bio); 1293 } 1294 } 1295 1296 /* 1297 * Now for the recovery code. 1298 * Recovery happens across physical sectors. 1299 * We recover all non-is_sync drives by finding the virtual address of 1300 * each, and then choose a working drive that also has that virt address. 1301 * There is a separate r10_bio for each non-in_sync drive. 1302 * Only the first two slots are in use. The first for reading, 1303 * The second for writing. 1304 * 1305 */ 1306 1307 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1308 { 1309 conf_t *conf = mddev_to_conf(mddev); 1310 int i, d; 1311 struct bio *bio, *wbio; 1312 1313 1314 /* move the pages across to the second bio 1315 * and submit the write request 1316 */ 1317 bio = r10_bio->devs[0].bio; 1318 wbio = r10_bio->devs[1].bio; 1319 for (i=0; i < wbio->bi_vcnt; i++) { 1320 struct page *p = bio->bi_io_vec[i].bv_page; 1321 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1322 wbio->bi_io_vec[i].bv_page = p; 1323 } 1324 d = r10_bio->devs[1].devnum; 1325 1326 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1327 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1328 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1329 generic_make_request(wbio); 1330 else 1331 bio_endio(wbio, -EIO); 1332 } 1333 1334 1335 /* 1336 * This is a kernel thread which: 1337 * 1338 * 1. Retries failed read operations on working mirrors. 1339 * 2. Updates the raid superblock when problems encounter. 1340 * 3. Performs writes following reads for array synchronising. 1341 */ 1342 1343 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1344 { 1345 int sect = 0; /* Offset from r10_bio->sector */ 1346 int sectors = r10_bio->sectors; 1347 mdk_rdev_t*rdev; 1348 while(sectors) { 1349 int s = sectors; 1350 int sl = r10_bio->read_slot; 1351 int success = 0; 1352 int start; 1353 1354 if (s > (PAGE_SIZE>>9)) 1355 s = PAGE_SIZE >> 9; 1356 1357 rcu_read_lock(); 1358 do { 1359 int d = r10_bio->devs[sl].devnum; 1360 rdev = rcu_dereference(conf->mirrors[d].rdev); 1361 if (rdev && 1362 test_bit(In_sync, &rdev->flags)) { 1363 atomic_inc(&rdev->nr_pending); 1364 rcu_read_unlock(); 1365 success = sync_page_io(rdev->bdev, 1366 r10_bio->devs[sl].addr + 1367 sect + rdev->data_offset, 1368 s<<9, 1369 conf->tmppage, READ); 1370 rdev_dec_pending(rdev, mddev); 1371 rcu_read_lock(); 1372 if (success) 1373 break; 1374 } 1375 sl++; 1376 if (sl == conf->copies) 1377 sl = 0; 1378 } while (!success && sl != r10_bio->read_slot); 1379 rcu_read_unlock(); 1380 1381 if (!success) { 1382 /* Cannot read from anywhere -- bye bye array */ 1383 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1384 md_error(mddev, conf->mirrors[dn].rdev); 1385 break; 1386 } 1387 1388 start = sl; 1389 /* write it back and re-read */ 1390 rcu_read_lock(); 1391 while (sl != r10_bio->read_slot) { 1392 int d; 1393 if (sl==0) 1394 sl = conf->copies; 1395 sl--; 1396 d = r10_bio->devs[sl].devnum; 1397 rdev = rcu_dereference(conf->mirrors[d].rdev); 1398 if (rdev && 1399 test_bit(In_sync, &rdev->flags)) { 1400 atomic_inc(&rdev->nr_pending); 1401 rcu_read_unlock(); 1402 atomic_add(s, &rdev->corrected_errors); 1403 if (sync_page_io(rdev->bdev, 1404 r10_bio->devs[sl].addr + 1405 sect + rdev->data_offset, 1406 s<<9, conf->tmppage, WRITE) 1407 == 0) 1408 /* Well, this device is dead */ 1409 md_error(mddev, rdev); 1410 rdev_dec_pending(rdev, mddev); 1411 rcu_read_lock(); 1412 } 1413 } 1414 sl = start; 1415 while (sl != r10_bio->read_slot) { 1416 int d; 1417 if (sl==0) 1418 sl = conf->copies; 1419 sl--; 1420 d = r10_bio->devs[sl].devnum; 1421 rdev = rcu_dereference(conf->mirrors[d].rdev); 1422 if (rdev && 1423 test_bit(In_sync, &rdev->flags)) { 1424 char b[BDEVNAME_SIZE]; 1425 atomic_inc(&rdev->nr_pending); 1426 rcu_read_unlock(); 1427 if (sync_page_io(rdev->bdev, 1428 r10_bio->devs[sl].addr + 1429 sect + rdev->data_offset, 1430 s<<9, conf->tmppage, READ) == 0) 1431 /* Well, this device is dead */ 1432 md_error(mddev, rdev); 1433 else 1434 printk(KERN_INFO 1435 "raid10:%s: read error corrected" 1436 " (%d sectors at %llu on %s)\n", 1437 mdname(mddev), s, 1438 (unsigned long long)(sect+ 1439 rdev->data_offset), 1440 bdevname(rdev->bdev, b)); 1441 1442 rdev_dec_pending(rdev, mddev); 1443 rcu_read_lock(); 1444 } 1445 } 1446 rcu_read_unlock(); 1447 1448 sectors -= s; 1449 sect += s; 1450 } 1451 } 1452 1453 static void raid10d(mddev_t *mddev) 1454 { 1455 r10bio_t *r10_bio; 1456 struct bio *bio; 1457 unsigned long flags; 1458 conf_t *conf = mddev_to_conf(mddev); 1459 struct list_head *head = &conf->retry_list; 1460 int unplug=0; 1461 mdk_rdev_t *rdev; 1462 1463 md_check_recovery(mddev); 1464 1465 for (;;) { 1466 char b[BDEVNAME_SIZE]; 1467 spin_lock_irqsave(&conf->device_lock, flags); 1468 1469 if (conf->pending_bio_list.head) { 1470 bio = bio_list_get(&conf->pending_bio_list); 1471 blk_remove_plug(mddev->queue); 1472 spin_unlock_irqrestore(&conf->device_lock, flags); 1473 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1474 bitmap_unplug(mddev->bitmap); 1475 1476 while (bio) { /* submit pending writes */ 1477 struct bio *next = bio->bi_next; 1478 bio->bi_next = NULL; 1479 generic_make_request(bio); 1480 bio = next; 1481 } 1482 unplug = 1; 1483 1484 continue; 1485 } 1486 1487 if (list_empty(head)) 1488 break; 1489 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1490 list_del(head->prev); 1491 conf->nr_queued--; 1492 spin_unlock_irqrestore(&conf->device_lock, flags); 1493 1494 mddev = r10_bio->mddev; 1495 conf = mddev_to_conf(mddev); 1496 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1497 sync_request_write(mddev, r10_bio); 1498 unplug = 1; 1499 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1500 recovery_request_write(mddev, r10_bio); 1501 unplug = 1; 1502 } else { 1503 int mirror; 1504 /* we got a read error. Maybe the drive is bad. Maybe just 1505 * the block and we can fix it. 1506 * We freeze all other IO, and try reading the block from 1507 * other devices. When we find one, we re-write 1508 * and check it that fixes the read error. 1509 * This is all done synchronously while the array is 1510 * frozen. 1511 */ 1512 if (mddev->ro == 0) { 1513 freeze_array(conf); 1514 fix_read_error(conf, mddev, r10_bio); 1515 unfreeze_array(conf); 1516 } 1517 1518 bio = r10_bio->devs[r10_bio->read_slot].bio; 1519 r10_bio->devs[r10_bio->read_slot].bio = 1520 mddev->ro ? IO_BLOCKED : NULL; 1521 mirror = read_balance(conf, r10_bio); 1522 if (mirror == -1) { 1523 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1524 " read error for block %llu\n", 1525 bdevname(bio->bi_bdev,b), 1526 (unsigned long long)r10_bio->sector); 1527 raid_end_bio_io(r10_bio); 1528 bio_put(bio); 1529 } else { 1530 const int do_sync = bio_sync(r10_bio->master_bio); 1531 bio_put(bio); 1532 rdev = conf->mirrors[mirror].rdev; 1533 if (printk_ratelimit()) 1534 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1535 " another mirror\n", 1536 bdevname(rdev->bdev,b), 1537 (unsigned long long)r10_bio->sector); 1538 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1539 r10_bio->devs[r10_bio->read_slot].bio = bio; 1540 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1541 + rdev->data_offset; 1542 bio->bi_bdev = rdev->bdev; 1543 bio->bi_rw = READ | do_sync; 1544 bio->bi_private = r10_bio; 1545 bio->bi_end_io = raid10_end_read_request; 1546 unplug = 1; 1547 generic_make_request(bio); 1548 } 1549 } 1550 } 1551 spin_unlock_irqrestore(&conf->device_lock, flags); 1552 if (unplug) 1553 unplug_slaves(mddev); 1554 } 1555 1556 1557 static int init_resync(conf_t *conf) 1558 { 1559 int buffs; 1560 1561 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1562 BUG_ON(conf->r10buf_pool); 1563 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1564 if (!conf->r10buf_pool) 1565 return -ENOMEM; 1566 conf->next_resync = 0; 1567 return 0; 1568 } 1569 1570 /* 1571 * perform a "sync" on one "block" 1572 * 1573 * We need to make sure that no normal I/O request - particularly write 1574 * requests - conflict with active sync requests. 1575 * 1576 * This is achieved by tracking pending requests and a 'barrier' concept 1577 * that can be installed to exclude normal IO requests. 1578 * 1579 * Resync and recovery are handled very differently. 1580 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1581 * 1582 * For resync, we iterate over virtual addresses, read all copies, 1583 * and update if there are differences. If only one copy is live, 1584 * skip it. 1585 * For recovery, we iterate over physical addresses, read a good 1586 * value for each non-in_sync drive, and over-write. 1587 * 1588 * So, for recovery we may have several outstanding complex requests for a 1589 * given address, one for each out-of-sync device. We model this by allocating 1590 * a number of r10_bio structures, one for each out-of-sync device. 1591 * As we setup these structures, we collect all bio's together into a list 1592 * which we then process collectively to add pages, and then process again 1593 * to pass to generic_make_request. 1594 * 1595 * The r10_bio structures are linked using a borrowed master_bio pointer. 1596 * This link is counted in ->remaining. When the r10_bio that points to NULL 1597 * has its remaining count decremented to 0, the whole complex operation 1598 * is complete. 1599 * 1600 */ 1601 1602 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1603 { 1604 conf_t *conf = mddev_to_conf(mddev); 1605 r10bio_t *r10_bio; 1606 struct bio *biolist = NULL, *bio; 1607 sector_t max_sector, nr_sectors; 1608 int disk; 1609 int i; 1610 int max_sync; 1611 int sync_blocks; 1612 1613 sector_t sectors_skipped = 0; 1614 int chunks_skipped = 0; 1615 1616 if (!conf->r10buf_pool) 1617 if (init_resync(conf)) 1618 return 0; 1619 1620 skipped: 1621 max_sector = mddev->size << 1; 1622 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1623 max_sector = mddev->resync_max_sectors; 1624 if (sector_nr >= max_sector) { 1625 /* If we aborted, we need to abort the 1626 * sync on the 'current' bitmap chucks (there can 1627 * be several when recovering multiple devices). 1628 * as we may have started syncing it but not finished. 1629 * We can find the current address in 1630 * mddev->curr_resync, but for recovery, 1631 * we need to convert that to several 1632 * virtual addresses. 1633 */ 1634 if (mddev->curr_resync < max_sector) { /* aborted */ 1635 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1636 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1637 &sync_blocks, 1); 1638 else for (i=0; i<conf->raid_disks; i++) { 1639 sector_t sect = 1640 raid10_find_virt(conf, mddev->curr_resync, i); 1641 bitmap_end_sync(mddev->bitmap, sect, 1642 &sync_blocks, 1); 1643 } 1644 } else /* completed sync */ 1645 conf->fullsync = 0; 1646 1647 bitmap_close_sync(mddev->bitmap); 1648 close_sync(conf); 1649 *skipped = 1; 1650 return sectors_skipped; 1651 } 1652 if (chunks_skipped >= conf->raid_disks) { 1653 /* if there has been nothing to do on any drive, 1654 * then there is nothing to do at all.. 1655 */ 1656 *skipped = 1; 1657 return (max_sector - sector_nr) + sectors_skipped; 1658 } 1659 1660 /* make sure whole request will fit in a chunk - if chunks 1661 * are meaningful 1662 */ 1663 if (conf->near_copies < conf->raid_disks && 1664 max_sector > (sector_nr | conf->chunk_mask)) 1665 max_sector = (sector_nr | conf->chunk_mask) + 1; 1666 /* 1667 * If there is non-resync activity waiting for us then 1668 * put in a delay to throttle resync. 1669 */ 1670 if (!go_faster && conf->nr_waiting) 1671 msleep_interruptible(1000); 1672 1673 /* Again, very different code for resync and recovery. 1674 * Both must result in an r10bio with a list of bios that 1675 * have bi_end_io, bi_sector, bi_bdev set, 1676 * and bi_private set to the r10bio. 1677 * For recovery, we may actually create several r10bios 1678 * with 2 bios in each, that correspond to the bios in the main one. 1679 * In this case, the subordinate r10bios link back through a 1680 * borrowed master_bio pointer, and the counter in the master 1681 * includes a ref from each subordinate. 1682 */ 1683 /* First, we decide what to do and set ->bi_end_io 1684 * To end_sync_read if we want to read, and 1685 * end_sync_write if we will want to write. 1686 */ 1687 1688 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1689 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1690 /* recovery... the complicated one */ 1691 int i, j, k; 1692 r10_bio = NULL; 1693 1694 for (i=0 ; i<conf->raid_disks; i++) 1695 if (conf->mirrors[i].rdev && 1696 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1697 int still_degraded = 0; 1698 /* want to reconstruct this device */ 1699 r10bio_t *rb2 = r10_bio; 1700 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1701 int must_sync; 1702 /* Unless we are doing a full sync, we only need 1703 * to recover the block if it is set in the bitmap 1704 */ 1705 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1706 &sync_blocks, 1); 1707 if (sync_blocks < max_sync) 1708 max_sync = sync_blocks; 1709 if (!must_sync && 1710 !conf->fullsync) { 1711 /* yep, skip the sync_blocks here, but don't assume 1712 * that there will never be anything to do here 1713 */ 1714 chunks_skipped = -1; 1715 continue; 1716 } 1717 1718 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1719 raise_barrier(conf, rb2 != NULL); 1720 atomic_set(&r10_bio->remaining, 0); 1721 1722 r10_bio->master_bio = (struct bio*)rb2; 1723 if (rb2) 1724 atomic_inc(&rb2->remaining); 1725 r10_bio->mddev = mddev; 1726 set_bit(R10BIO_IsRecover, &r10_bio->state); 1727 r10_bio->sector = sect; 1728 1729 raid10_find_phys(conf, r10_bio); 1730 /* Need to check if this section will still be 1731 * degraded 1732 */ 1733 for (j=0; j<conf->copies;j++) { 1734 int d = r10_bio->devs[j].devnum; 1735 if (conf->mirrors[d].rdev == NULL || 1736 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1737 still_degraded = 1; 1738 break; 1739 } 1740 } 1741 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1742 &sync_blocks, still_degraded); 1743 1744 for (j=0; j<conf->copies;j++) { 1745 int d = r10_bio->devs[j].devnum; 1746 if (conf->mirrors[d].rdev && 1747 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1748 /* This is where we read from */ 1749 bio = r10_bio->devs[0].bio; 1750 bio->bi_next = biolist; 1751 biolist = bio; 1752 bio->bi_private = r10_bio; 1753 bio->bi_end_io = end_sync_read; 1754 bio->bi_rw = READ; 1755 bio->bi_sector = r10_bio->devs[j].addr + 1756 conf->mirrors[d].rdev->data_offset; 1757 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1758 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1759 atomic_inc(&r10_bio->remaining); 1760 /* and we write to 'i' */ 1761 1762 for (k=0; k<conf->copies; k++) 1763 if (r10_bio->devs[k].devnum == i) 1764 break; 1765 BUG_ON(k == conf->copies); 1766 bio = r10_bio->devs[1].bio; 1767 bio->bi_next = biolist; 1768 biolist = bio; 1769 bio->bi_private = r10_bio; 1770 bio->bi_end_io = end_sync_write; 1771 bio->bi_rw = WRITE; 1772 bio->bi_sector = r10_bio->devs[k].addr + 1773 conf->mirrors[i].rdev->data_offset; 1774 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1775 1776 r10_bio->devs[0].devnum = d; 1777 r10_bio->devs[1].devnum = i; 1778 1779 break; 1780 } 1781 } 1782 if (j == conf->copies) { 1783 /* Cannot recover, so abort the recovery */ 1784 put_buf(r10_bio); 1785 r10_bio = rb2; 1786 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) 1787 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1788 mdname(mddev)); 1789 break; 1790 } 1791 } 1792 if (biolist == NULL) { 1793 while (r10_bio) { 1794 r10bio_t *rb2 = r10_bio; 1795 r10_bio = (r10bio_t*) rb2->master_bio; 1796 rb2->master_bio = NULL; 1797 put_buf(rb2); 1798 } 1799 goto giveup; 1800 } 1801 } else { 1802 /* resync. Schedule a read for every block at this virt offset */ 1803 int count = 0; 1804 1805 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1806 &sync_blocks, mddev->degraded) && 1807 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1808 /* We can skip this block */ 1809 *skipped = 1; 1810 return sync_blocks + sectors_skipped; 1811 } 1812 if (sync_blocks < max_sync) 1813 max_sync = sync_blocks; 1814 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1815 1816 r10_bio->mddev = mddev; 1817 atomic_set(&r10_bio->remaining, 0); 1818 raise_barrier(conf, 0); 1819 conf->next_resync = sector_nr; 1820 1821 r10_bio->master_bio = NULL; 1822 r10_bio->sector = sector_nr; 1823 set_bit(R10BIO_IsSync, &r10_bio->state); 1824 raid10_find_phys(conf, r10_bio); 1825 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1826 1827 for (i=0; i<conf->copies; i++) { 1828 int d = r10_bio->devs[i].devnum; 1829 bio = r10_bio->devs[i].bio; 1830 bio->bi_end_io = NULL; 1831 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1832 if (conf->mirrors[d].rdev == NULL || 1833 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1834 continue; 1835 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1836 atomic_inc(&r10_bio->remaining); 1837 bio->bi_next = biolist; 1838 biolist = bio; 1839 bio->bi_private = r10_bio; 1840 bio->bi_end_io = end_sync_read; 1841 bio->bi_rw = READ; 1842 bio->bi_sector = r10_bio->devs[i].addr + 1843 conf->mirrors[d].rdev->data_offset; 1844 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1845 count++; 1846 } 1847 1848 if (count < 2) { 1849 for (i=0; i<conf->copies; i++) { 1850 int d = r10_bio->devs[i].devnum; 1851 if (r10_bio->devs[i].bio->bi_end_io) 1852 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1853 } 1854 put_buf(r10_bio); 1855 biolist = NULL; 1856 goto giveup; 1857 } 1858 } 1859 1860 for (bio = biolist; bio ; bio=bio->bi_next) { 1861 1862 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1863 if (bio->bi_end_io) 1864 bio->bi_flags |= 1 << BIO_UPTODATE; 1865 bio->bi_vcnt = 0; 1866 bio->bi_idx = 0; 1867 bio->bi_phys_segments = 0; 1868 bio->bi_hw_segments = 0; 1869 bio->bi_size = 0; 1870 } 1871 1872 nr_sectors = 0; 1873 if (sector_nr + max_sync < max_sector) 1874 max_sector = sector_nr + max_sync; 1875 do { 1876 struct page *page; 1877 int len = PAGE_SIZE; 1878 disk = 0; 1879 if (sector_nr + (len>>9) > max_sector) 1880 len = (max_sector - sector_nr) << 9; 1881 if (len == 0) 1882 break; 1883 for (bio= biolist ; bio ; bio=bio->bi_next) { 1884 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1885 if (bio_add_page(bio, page, len, 0) == 0) { 1886 /* stop here */ 1887 struct bio *bio2; 1888 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1889 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1890 /* remove last page from this bio */ 1891 bio2->bi_vcnt--; 1892 bio2->bi_size -= len; 1893 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1894 } 1895 goto bio_full; 1896 } 1897 disk = i; 1898 } 1899 nr_sectors += len>>9; 1900 sector_nr += len>>9; 1901 } while (biolist->bi_vcnt < RESYNC_PAGES); 1902 bio_full: 1903 r10_bio->sectors = nr_sectors; 1904 1905 while (biolist) { 1906 bio = biolist; 1907 biolist = biolist->bi_next; 1908 1909 bio->bi_next = NULL; 1910 r10_bio = bio->bi_private; 1911 r10_bio->sectors = nr_sectors; 1912 1913 if (bio->bi_end_io == end_sync_read) { 1914 md_sync_acct(bio->bi_bdev, nr_sectors); 1915 generic_make_request(bio); 1916 } 1917 } 1918 1919 if (sectors_skipped) 1920 /* pretend they weren't skipped, it makes 1921 * no important difference in this case 1922 */ 1923 md_done_sync(mddev, sectors_skipped, 1); 1924 1925 return sectors_skipped + nr_sectors; 1926 giveup: 1927 /* There is nowhere to write, so all non-sync 1928 * drives must be failed, so try the next chunk... 1929 */ 1930 { 1931 sector_t sec = max_sector - sector_nr; 1932 sectors_skipped += sec; 1933 chunks_skipped ++; 1934 sector_nr = max_sector; 1935 goto skipped; 1936 } 1937 } 1938 1939 static int run(mddev_t *mddev) 1940 { 1941 conf_t *conf; 1942 int i, disk_idx; 1943 mirror_info_t *disk; 1944 mdk_rdev_t *rdev; 1945 struct list_head *tmp; 1946 int nc, fc, fo; 1947 sector_t stride, size; 1948 1949 if (mddev->chunk_size == 0) { 1950 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 1951 return -EINVAL; 1952 } 1953 1954 nc = mddev->layout & 255; 1955 fc = (mddev->layout >> 8) & 255; 1956 fo = mddev->layout & (1<<16); 1957 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 1958 (mddev->layout >> 17)) { 1959 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 1960 mdname(mddev), mddev->layout); 1961 goto out; 1962 } 1963 /* 1964 * copy the already verified devices into our private RAID10 1965 * bookkeeping area. [whatever we allocate in run(), 1966 * should be freed in stop()] 1967 */ 1968 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1969 mddev->private = conf; 1970 if (!conf) { 1971 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1972 mdname(mddev)); 1973 goto out; 1974 } 1975 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1976 GFP_KERNEL); 1977 if (!conf->mirrors) { 1978 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1979 mdname(mddev)); 1980 goto out_free_conf; 1981 } 1982 1983 conf->tmppage = alloc_page(GFP_KERNEL); 1984 if (!conf->tmppage) 1985 goto out_free_conf; 1986 1987 conf->mddev = mddev; 1988 conf->raid_disks = mddev->raid_disks; 1989 conf->near_copies = nc; 1990 conf->far_copies = fc; 1991 conf->copies = nc*fc; 1992 conf->far_offset = fo; 1993 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 1994 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 1995 size = mddev->size >> (conf->chunk_shift-1); 1996 sector_div(size, fc); 1997 size = size * conf->raid_disks; 1998 sector_div(size, nc); 1999 /* 'size' is now the number of chunks in the array */ 2000 /* calculate "used chunks per device" in 'stride' */ 2001 stride = size * conf->copies; 2002 2003 /* We need to round up when dividing by raid_disks to 2004 * get the stride size. 2005 */ 2006 stride += conf->raid_disks - 1; 2007 sector_div(stride, conf->raid_disks); 2008 mddev->size = stride << (conf->chunk_shift-1); 2009 2010 if (fo) 2011 stride = 1; 2012 else 2013 sector_div(stride, fc); 2014 conf->stride = stride << conf->chunk_shift; 2015 2016 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2017 r10bio_pool_free, conf); 2018 if (!conf->r10bio_pool) { 2019 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2020 mdname(mddev)); 2021 goto out_free_conf; 2022 } 2023 2024 ITERATE_RDEV(mddev, rdev, tmp) { 2025 disk_idx = rdev->raid_disk; 2026 if (disk_idx >= mddev->raid_disks 2027 || disk_idx < 0) 2028 continue; 2029 disk = conf->mirrors + disk_idx; 2030 2031 disk->rdev = rdev; 2032 2033 blk_queue_stack_limits(mddev->queue, 2034 rdev->bdev->bd_disk->queue); 2035 /* as we don't honour merge_bvec_fn, we must never risk 2036 * violating it, so limit ->max_sector to one PAGE, as 2037 * a one page request is never in violation. 2038 */ 2039 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2040 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2041 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2042 2043 disk->head_position = 0; 2044 } 2045 spin_lock_init(&conf->device_lock); 2046 INIT_LIST_HEAD(&conf->retry_list); 2047 2048 spin_lock_init(&conf->resync_lock); 2049 init_waitqueue_head(&conf->wait_barrier); 2050 2051 /* need to check that every block has at least one working mirror */ 2052 if (!enough(conf)) { 2053 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2054 mdname(mddev)); 2055 goto out_free_conf; 2056 } 2057 2058 mddev->degraded = 0; 2059 for (i = 0; i < conf->raid_disks; i++) { 2060 2061 disk = conf->mirrors + i; 2062 2063 if (!disk->rdev || 2064 !test_bit(In_sync, &disk->rdev->flags)) { 2065 disk->head_position = 0; 2066 mddev->degraded++; 2067 } 2068 } 2069 2070 2071 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2072 if (!mddev->thread) { 2073 printk(KERN_ERR 2074 "raid10: couldn't allocate thread for %s\n", 2075 mdname(mddev)); 2076 goto out_free_conf; 2077 } 2078 2079 printk(KERN_INFO 2080 "raid10: raid set %s active with %d out of %d devices\n", 2081 mdname(mddev), mddev->raid_disks - mddev->degraded, 2082 mddev->raid_disks); 2083 /* 2084 * Ok, everything is just fine now 2085 */ 2086 mddev->array_size = size << (conf->chunk_shift-1); 2087 mddev->resync_max_sectors = size << conf->chunk_shift; 2088 2089 mddev->queue->unplug_fn = raid10_unplug; 2090 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2091 mddev->queue->backing_dev_info.congested_data = mddev; 2092 2093 /* Calculate max read-ahead size. 2094 * We need to readahead at least twice a whole stripe.... 2095 * maybe... 2096 */ 2097 { 2098 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2099 stripe /= conf->near_copies; 2100 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2101 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2102 } 2103 2104 if (conf->near_copies < mddev->raid_disks) 2105 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2106 return 0; 2107 2108 out_free_conf: 2109 if (conf->r10bio_pool) 2110 mempool_destroy(conf->r10bio_pool); 2111 safe_put_page(conf->tmppage); 2112 kfree(conf->mirrors); 2113 kfree(conf); 2114 mddev->private = NULL; 2115 out: 2116 return -EIO; 2117 } 2118 2119 static int stop(mddev_t *mddev) 2120 { 2121 conf_t *conf = mddev_to_conf(mddev); 2122 2123 md_unregister_thread(mddev->thread); 2124 mddev->thread = NULL; 2125 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2126 if (conf->r10bio_pool) 2127 mempool_destroy(conf->r10bio_pool); 2128 kfree(conf->mirrors); 2129 kfree(conf); 2130 mddev->private = NULL; 2131 return 0; 2132 } 2133 2134 static void raid10_quiesce(mddev_t *mddev, int state) 2135 { 2136 conf_t *conf = mddev_to_conf(mddev); 2137 2138 switch(state) { 2139 case 1: 2140 raise_barrier(conf, 0); 2141 break; 2142 case 0: 2143 lower_barrier(conf); 2144 break; 2145 } 2146 if (mddev->thread) { 2147 if (mddev->bitmap) 2148 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2149 else 2150 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2151 md_wakeup_thread(mddev->thread); 2152 } 2153 } 2154 2155 static struct mdk_personality raid10_personality = 2156 { 2157 .name = "raid10", 2158 .level = 10, 2159 .owner = THIS_MODULE, 2160 .make_request = make_request, 2161 .run = run, 2162 .stop = stop, 2163 .status = status, 2164 .error_handler = error, 2165 .hot_add_disk = raid10_add_disk, 2166 .hot_remove_disk= raid10_remove_disk, 2167 .spare_active = raid10_spare_active, 2168 .sync_request = sync_request, 2169 .quiesce = raid10_quiesce, 2170 }; 2171 2172 static int __init raid_init(void) 2173 { 2174 return register_md_personality(&raid10_personality); 2175 } 2176 2177 static void raid_exit(void) 2178 { 2179 unregister_md_personality(&raid10_personality); 2180 } 2181 2182 module_init(raid_init); 2183 module_exit(raid_exit); 2184 MODULE_LICENSE("GPL"); 2185 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2186 MODULE_ALIAS("md-raid10"); 2187 MODULE_ALIAS("md-level-10"); 2188