1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) { 103 unplug_slaves(conf->mddev); 104 return NULL; 105 } 106 107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 108 nalloc = conf->copies; /* resync */ 109 else 110 nalloc = 2; /* recovery */ 111 112 /* 113 * Allocate bios. 114 */ 115 for (j = nalloc ; j-- ; ) { 116 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 117 if (!bio) 118 goto out_free_bio; 119 r10_bio->devs[j].bio = bio; 120 } 121 /* 122 * Allocate RESYNC_PAGES data pages and attach them 123 * where needed. 124 */ 125 for (j = 0 ; j < nalloc; j++) { 126 bio = r10_bio->devs[j].bio; 127 for (i = 0; i < RESYNC_PAGES; i++) { 128 page = alloc_page(gfp_flags); 129 if (unlikely(!page)) 130 goto out_free_pages; 131 132 bio->bi_io_vec[i].bv_page = page; 133 } 134 } 135 136 return r10_bio; 137 138 out_free_pages: 139 for ( ; i > 0 ; i--) 140 safe_put_page(bio->bi_io_vec[i-1].bv_page); 141 while (j--) 142 for (i = 0; i < RESYNC_PAGES ; i++) 143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < nalloc ) 147 bio_put(r10_bio->devs[j].bio); 148 r10bio_pool_free(r10_bio, conf); 149 return NULL; 150 } 151 152 static void r10buf_pool_free(void *__r10_bio, void *data) 153 { 154 int i; 155 conf_t *conf = data; 156 r10bio_t *r10bio = __r10_bio; 157 int j; 158 159 for (j=0; j < conf->copies; j++) { 160 struct bio *bio = r10bio->devs[j].bio; 161 if (bio) { 162 for (i = 0; i < RESYNC_PAGES; i++) { 163 safe_put_page(bio->bi_io_vec[i].bv_page); 164 bio->bi_io_vec[i].bv_page = NULL; 165 } 166 bio_put(bio); 167 } 168 } 169 r10bio_pool_free(r10bio, conf); 170 } 171 172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->copies; i++) { 177 struct bio **bio = & r10_bio->devs[i].bio; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r10bio(r10bio_t *r10_bio) 185 { 186 conf_t *conf = mddev_to_conf(r10_bio->mddev); 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r10_bio); 195 mempool_free(r10_bio, conf->r10bio_pool); 196 } 197 198 static void put_buf(r10bio_t *r10_bio) 199 { 200 conf_t *conf = mddev_to_conf(r10_bio->mddev); 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 lower_barrier(conf); 205 } 206 207 static void reschedule_retry(r10bio_t *r10_bio) 208 { 209 unsigned long flags; 210 mddev_t *mddev = r10_bio->mddev; 211 conf_t *conf = mddev_to_conf(mddev); 212 213 spin_lock_irqsave(&conf->device_lock, flags); 214 list_add(&r10_bio->retry_list, &conf->retry_list); 215 conf->nr_queued ++; 216 spin_unlock_irqrestore(&conf->device_lock, flags); 217 218 md_wakeup_thread(mddev->thread); 219 } 220 221 /* 222 * raid_end_bio_io() is called when we have finished servicing a mirrored 223 * operation and are ready to return a success/failure code to the buffer 224 * cache layer. 225 */ 226 static void raid_end_bio_io(r10bio_t *r10_bio) 227 { 228 struct bio *bio = r10_bio->master_bio; 229 230 bio_endio(bio, bio->bi_size, 231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 232 free_r10bio(r10_bio); 233 } 234 235 /* 236 * Update disk head position estimator based on IRQ completion info. 237 */ 238 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 239 { 240 conf_t *conf = mddev_to_conf(r10_bio->mddev); 241 242 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 243 r10_bio->devs[slot].addr + (r10_bio->sectors); 244 } 245 246 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 247 { 248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 250 int slot, dev; 251 conf_t *conf = mddev_to_conf(r10_bio->mddev); 252 253 if (bio->bi_size) 254 return 1; 255 256 slot = r10_bio->read_slot; 257 dev = r10_bio->devs[slot].devnum; 258 /* 259 * this branch is our 'one mirror IO has finished' event handler: 260 */ 261 update_head_pos(slot, r10_bio); 262 263 if (uptodate) { 264 /* 265 * Set R10BIO_Uptodate in our master bio, so that 266 * we will return a good error code to the higher 267 * levels even if IO on some other mirrored buffer fails. 268 * 269 * The 'master' represents the composite IO operation to 270 * user-side. So if something waits for IO, then it will 271 * wait for the 'master' bio. 272 */ 273 set_bit(R10BIO_Uptodate, &r10_bio->state); 274 raid_end_bio_io(r10_bio); 275 } else { 276 /* 277 * oops, read error: 278 */ 279 char b[BDEVNAME_SIZE]; 280 if (printk_ratelimit()) 281 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 282 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 283 reschedule_retry(r10_bio); 284 } 285 286 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 287 return 0; 288 } 289 290 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 291 { 292 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 293 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 294 int slot, dev; 295 conf_t *conf = mddev_to_conf(r10_bio->mddev); 296 297 if (bio->bi_size) 298 return 1; 299 300 for (slot = 0; slot < conf->copies; slot++) 301 if (r10_bio->devs[slot].bio == bio) 302 break; 303 dev = r10_bio->devs[slot].devnum; 304 305 /* 306 * this branch is our 'one mirror IO has finished' event handler: 307 */ 308 if (!uptodate) { 309 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 310 /* an I/O failed, we can't clear the bitmap */ 311 set_bit(R10BIO_Degraded, &r10_bio->state); 312 } else 313 /* 314 * Set R10BIO_Uptodate in our master bio, so that 315 * we will return a good error code for to the higher 316 * levels even if IO on some other mirrored buffer fails. 317 * 318 * The 'master' represents the composite IO operation to 319 * user-side. So if something waits for IO, then it will 320 * wait for the 'master' bio. 321 */ 322 set_bit(R10BIO_Uptodate, &r10_bio->state); 323 324 update_head_pos(slot, r10_bio); 325 326 /* 327 * 328 * Let's see if all mirrored write operations have finished 329 * already. 330 */ 331 if (atomic_dec_and_test(&r10_bio->remaining)) { 332 /* clear the bitmap if all writes complete successfully */ 333 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 334 r10_bio->sectors, 335 !test_bit(R10BIO_Degraded, &r10_bio->state), 336 0); 337 md_write_end(r10_bio->mddev); 338 raid_end_bio_io(r10_bio); 339 } 340 341 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 342 return 0; 343 } 344 345 346 /* 347 * RAID10 layout manager 348 * Aswell as the chunksize and raid_disks count, there are two 349 * parameters: near_copies and far_copies. 350 * near_copies * far_copies must be <= raid_disks. 351 * Normally one of these will be 1. 352 * If both are 1, we get raid0. 353 * If near_copies == raid_disks, we get raid1. 354 * 355 * Chunks are layed out in raid0 style with near_copies copies of the 356 * first chunk, followed by near_copies copies of the next chunk and 357 * so on. 358 * If far_copies > 1, then after 1/far_copies of the array has been assigned 359 * as described above, we start again with a device offset of near_copies. 360 * So we effectively have another copy of the whole array further down all 361 * the drives, but with blocks on different drives. 362 * With this layout, and block is never stored twice on the one device. 363 * 364 * raid10_find_phys finds the sector offset of a given virtual sector 365 * on each device that it is on. 366 * 367 * raid10_find_virt does the reverse mapping, from a device and a 368 * sector offset to a virtual address 369 */ 370 371 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 372 { 373 int n,f; 374 sector_t sector; 375 sector_t chunk; 376 sector_t stripe; 377 int dev; 378 379 int slot = 0; 380 381 /* now calculate first sector/dev */ 382 chunk = r10bio->sector >> conf->chunk_shift; 383 sector = r10bio->sector & conf->chunk_mask; 384 385 chunk *= conf->near_copies; 386 stripe = chunk; 387 dev = sector_div(stripe, conf->raid_disks); 388 if (conf->far_offset) 389 stripe *= conf->far_copies; 390 391 sector += stripe << conf->chunk_shift; 392 393 /* and calculate all the others */ 394 for (n=0; n < conf->near_copies; n++) { 395 int d = dev; 396 sector_t s = sector; 397 r10bio->devs[slot].addr = sector; 398 r10bio->devs[slot].devnum = d; 399 slot++; 400 401 for (f = 1; f < conf->far_copies; f++) { 402 d += conf->near_copies; 403 if (d >= conf->raid_disks) 404 d -= conf->raid_disks; 405 s += conf->stride; 406 r10bio->devs[slot].devnum = d; 407 r10bio->devs[slot].addr = s; 408 slot++; 409 } 410 dev++; 411 if (dev >= conf->raid_disks) { 412 dev = 0; 413 sector += (conf->chunk_mask + 1); 414 } 415 } 416 BUG_ON(slot != conf->copies); 417 } 418 419 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 420 { 421 sector_t offset, chunk, vchunk; 422 423 offset = sector & conf->chunk_mask; 424 if (conf->far_offset) { 425 int fc; 426 chunk = sector >> conf->chunk_shift; 427 fc = sector_div(chunk, conf->far_copies); 428 dev -= fc * conf->near_copies; 429 if (dev < 0) 430 dev += conf->raid_disks; 431 } else { 432 while (sector > conf->stride) { 433 sector -= conf->stride; 434 if (dev < conf->near_copies) 435 dev += conf->raid_disks - conf->near_copies; 436 else 437 dev -= conf->near_copies; 438 } 439 chunk = sector >> conf->chunk_shift; 440 } 441 vchunk = chunk * conf->raid_disks + dev; 442 sector_div(vchunk, conf->near_copies); 443 return (vchunk << conf->chunk_shift) + offset; 444 } 445 446 /** 447 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 448 * @q: request queue 449 * @bio: the buffer head that's been built up so far 450 * @biovec: the request that could be merged to it. 451 * 452 * Return amount of bytes we can accept at this offset 453 * If near_copies == raid_disk, there are no striping issues, 454 * but in that case, the function isn't called at all. 455 */ 456 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio, 457 struct bio_vec *bio_vec) 458 { 459 mddev_t *mddev = q->queuedata; 460 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 461 int max; 462 unsigned int chunk_sectors = mddev->chunk_size >> 9; 463 unsigned int bio_sectors = bio->bi_size >> 9; 464 465 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 466 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 467 if (max <= bio_vec->bv_len && bio_sectors == 0) 468 return bio_vec->bv_len; 469 else 470 return max; 471 } 472 473 /* 474 * This routine returns the disk from which the requested read should 475 * be done. There is a per-array 'next expected sequential IO' sector 476 * number - if this matches on the next IO then we use the last disk. 477 * There is also a per-disk 'last know head position' sector that is 478 * maintained from IRQ contexts, both the normal and the resync IO 479 * completion handlers update this position correctly. If there is no 480 * perfect sequential match then we pick the disk whose head is closest. 481 * 482 * If there are 2 mirrors in the same 2 devices, performance degrades 483 * because position is mirror, not device based. 484 * 485 * The rdev for the device selected will have nr_pending incremented. 486 */ 487 488 /* 489 * FIXME: possibly should rethink readbalancing and do it differently 490 * depending on near_copies / far_copies geometry. 491 */ 492 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 493 { 494 const unsigned long this_sector = r10_bio->sector; 495 int disk, slot, nslot; 496 const int sectors = r10_bio->sectors; 497 sector_t new_distance, current_distance; 498 mdk_rdev_t *rdev; 499 500 raid10_find_phys(conf, r10_bio); 501 rcu_read_lock(); 502 /* 503 * Check if we can balance. We can balance on the whole 504 * device if no resync is going on (recovery is ok), or below 505 * the resync window. We take the first readable disk when 506 * above the resync window. 507 */ 508 if (conf->mddev->recovery_cp < MaxSector 509 && (this_sector + sectors >= conf->next_resync)) { 510 /* make sure that disk is operational */ 511 slot = 0; 512 disk = r10_bio->devs[slot].devnum; 513 514 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 515 r10_bio->devs[slot].bio == IO_BLOCKED || 516 !test_bit(In_sync, &rdev->flags)) { 517 slot++; 518 if (slot == conf->copies) { 519 slot = 0; 520 disk = -1; 521 break; 522 } 523 disk = r10_bio->devs[slot].devnum; 524 } 525 goto rb_out; 526 } 527 528 529 /* make sure the disk is operational */ 530 slot = 0; 531 disk = r10_bio->devs[slot].devnum; 532 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 533 r10_bio->devs[slot].bio == IO_BLOCKED || 534 !test_bit(In_sync, &rdev->flags)) { 535 slot ++; 536 if (slot == conf->copies) { 537 disk = -1; 538 goto rb_out; 539 } 540 disk = r10_bio->devs[slot].devnum; 541 } 542 543 544 current_distance = abs(r10_bio->devs[slot].addr - 545 conf->mirrors[disk].head_position); 546 547 /* Find the disk whose head is closest */ 548 549 for (nslot = slot; nslot < conf->copies; nslot++) { 550 int ndisk = r10_bio->devs[nslot].devnum; 551 552 553 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 554 r10_bio->devs[nslot].bio == IO_BLOCKED || 555 !test_bit(In_sync, &rdev->flags)) 556 continue; 557 558 /* This optimisation is debatable, and completely destroys 559 * sequential read speed for 'far copies' arrays. So only 560 * keep it for 'near' arrays, and review those later. 561 */ 562 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 563 disk = ndisk; 564 slot = nslot; 565 break; 566 } 567 new_distance = abs(r10_bio->devs[nslot].addr - 568 conf->mirrors[ndisk].head_position); 569 if (new_distance < current_distance) { 570 current_distance = new_distance; 571 disk = ndisk; 572 slot = nslot; 573 } 574 } 575 576 rb_out: 577 r10_bio->read_slot = slot; 578 /* conf->next_seq_sect = this_sector + sectors;*/ 579 580 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 581 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 582 else 583 disk = -1; 584 rcu_read_unlock(); 585 586 return disk; 587 } 588 589 static void unplug_slaves(mddev_t *mddev) 590 { 591 conf_t *conf = mddev_to_conf(mddev); 592 int i; 593 594 rcu_read_lock(); 595 for (i=0; i<mddev->raid_disks; i++) { 596 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 597 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 598 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 599 600 atomic_inc(&rdev->nr_pending); 601 rcu_read_unlock(); 602 603 if (r_queue->unplug_fn) 604 r_queue->unplug_fn(r_queue); 605 606 rdev_dec_pending(rdev, mddev); 607 rcu_read_lock(); 608 } 609 } 610 rcu_read_unlock(); 611 } 612 613 static void raid10_unplug(request_queue_t *q) 614 { 615 mddev_t *mddev = q->queuedata; 616 617 unplug_slaves(q->queuedata); 618 md_wakeup_thread(mddev->thread); 619 } 620 621 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk, 622 sector_t *error_sector) 623 { 624 mddev_t *mddev = q->queuedata; 625 conf_t *conf = mddev_to_conf(mddev); 626 int i, ret = 0; 627 628 rcu_read_lock(); 629 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 630 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 631 if (rdev && !test_bit(Faulty, &rdev->flags)) { 632 struct block_device *bdev = rdev->bdev; 633 request_queue_t *r_queue = bdev_get_queue(bdev); 634 635 if (!r_queue->issue_flush_fn) 636 ret = -EOPNOTSUPP; 637 else { 638 atomic_inc(&rdev->nr_pending); 639 rcu_read_unlock(); 640 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 641 error_sector); 642 rdev_dec_pending(rdev, mddev); 643 rcu_read_lock(); 644 } 645 } 646 } 647 rcu_read_unlock(); 648 return ret; 649 } 650 651 static int raid10_congested(void *data, int bits) 652 { 653 mddev_t *mddev = data; 654 conf_t *conf = mddev_to_conf(mddev); 655 int i, ret = 0; 656 657 rcu_read_lock(); 658 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 659 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 660 if (rdev && !test_bit(Faulty, &rdev->flags)) { 661 request_queue_t *q = bdev_get_queue(rdev->bdev); 662 663 ret |= bdi_congested(&q->backing_dev_info, bits); 664 } 665 } 666 rcu_read_unlock(); 667 return ret; 668 } 669 670 671 /* Barriers.... 672 * Sometimes we need to suspend IO while we do something else, 673 * either some resync/recovery, or reconfigure the array. 674 * To do this we raise a 'barrier'. 675 * The 'barrier' is a counter that can be raised multiple times 676 * to count how many activities are happening which preclude 677 * normal IO. 678 * We can only raise the barrier if there is no pending IO. 679 * i.e. if nr_pending == 0. 680 * We choose only to raise the barrier if no-one is waiting for the 681 * barrier to go down. This means that as soon as an IO request 682 * is ready, no other operations which require a barrier will start 683 * until the IO request has had a chance. 684 * 685 * So: regular IO calls 'wait_barrier'. When that returns there 686 * is no backgroup IO happening, It must arrange to call 687 * allow_barrier when it has finished its IO. 688 * backgroup IO calls must call raise_barrier. Once that returns 689 * there is no normal IO happeing. It must arrange to call 690 * lower_barrier when the particular background IO completes. 691 */ 692 #define RESYNC_DEPTH 32 693 694 static void raise_barrier(conf_t *conf, int force) 695 { 696 BUG_ON(force && !conf->barrier); 697 spin_lock_irq(&conf->resync_lock); 698 699 /* Wait until no block IO is waiting (unless 'force') */ 700 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 701 conf->resync_lock, 702 raid10_unplug(conf->mddev->queue)); 703 704 /* block any new IO from starting */ 705 conf->barrier++; 706 707 /* No wait for all pending IO to complete */ 708 wait_event_lock_irq(conf->wait_barrier, 709 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 710 conf->resync_lock, 711 raid10_unplug(conf->mddev->queue)); 712 713 spin_unlock_irq(&conf->resync_lock); 714 } 715 716 static void lower_barrier(conf_t *conf) 717 { 718 unsigned long flags; 719 spin_lock_irqsave(&conf->resync_lock, flags); 720 conf->barrier--; 721 spin_unlock_irqrestore(&conf->resync_lock, flags); 722 wake_up(&conf->wait_barrier); 723 } 724 725 static void wait_barrier(conf_t *conf) 726 { 727 spin_lock_irq(&conf->resync_lock); 728 if (conf->barrier) { 729 conf->nr_waiting++; 730 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 731 conf->resync_lock, 732 raid10_unplug(conf->mddev->queue)); 733 conf->nr_waiting--; 734 } 735 conf->nr_pending++; 736 spin_unlock_irq(&conf->resync_lock); 737 } 738 739 static void allow_barrier(conf_t *conf) 740 { 741 unsigned long flags; 742 spin_lock_irqsave(&conf->resync_lock, flags); 743 conf->nr_pending--; 744 spin_unlock_irqrestore(&conf->resync_lock, flags); 745 wake_up(&conf->wait_barrier); 746 } 747 748 static void freeze_array(conf_t *conf) 749 { 750 /* stop syncio and normal IO and wait for everything to 751 * go quiet. 752 * We increment barrier and nr_waiting, and then 753 * wait until barrier+nr_pending match nr_queued+2 754 */ 755 spin_lock_irq(&conf->resync_lock); 756 conf->barrier++; 757 conf->nr_waiting++; 758 wait_event_lock_irq(conf->wait_barrier, 759 conf->barrier+conf->nr_pending == conf->nr_queued+2, 760 conf->resync_lock, 761 raid10_unplug(conf->mddev->queue)); 762 spin_unlock_irq(&conf->resync_lock); 763 } 764 765 static void unfreeze_array(conf_t *conf) 766 { 767 /* reverse the effect of the freeze */ 768 spin_lock_irq(&conf->resync_lock); 769 conf->barrier--; 770 conf->nr_waiting--; 771 wake_up(&conf->wait_barrier); 772 spin_unlock_irq(&conf->resync_lock); 773 } 774 775 static int make_request(request_queue_t *q, struct bio * bio) 776 { 777 mddev_t *mddev = q->queuedata; 778 conf_t *conf = mddev_to_conf(mddev); 779 mirror_info_t *mirror; 780 r10bio_t *r10_bio; 781 struct bio *read_bio; 782 int i; 783 int chunk_sects = conf->chunk_mask + 1; 784 const int rw = bio_data_dir(bio); 785 struct bio_list bl; 786 unsigned long flags; 787 788 if (unlikely(bio_barrier(bio))) { 789 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 790 return 0; 791 } 792 793 /* If this request crosses a chunk boundary, we need to 794 * split it. This will only happen for 1 PAGE (or less) requests. 795 */ 796 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 797 > chunk_sects && 798 conf->near_copies < conf->raid_disks)) { 799 struct bio_pair *bp; 800 /* Sanity check -- queue functions should prevent this happening */ 801 if (bio->bi_vcnt != 1 || 802 bio->bi_idx != 0) 803 goto bad_map; 804 /* This is a one page bio that upper layers 805 * refuse to split for us, so we need to split it. 806 */ 807 bp = bio_split(bio, bio_split_pool, 808 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 809 if (make_request(q, &bp->bio1)) 810 generic_make_request(&bp->bio1); 811 if (make_request(q, &bp->bio2)) 812 generic_make_request(&bp->bio2); 813 814 bio_pair_release(bp); 815 return 0; 816 bad_map: 817 printk("raid10_make_request bug: can't convert block across chunks" 818 " or bigger than %dk %llu %d\n", chunk_sects/2, 819 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 820 821 bio_io_error(bio, bio->bi_size); 822 return 0; 823 } 824 825 md_write_start(mddev, bio); 826 827 /* 828 * Register the new request and wait if the reconstruction 829 * thread has put up a bar for new requests. 830 * Continue immediately if no resync is active currently. 831 */ 832 wait_barrier(conf); 833 834 disk_stat_inc(mddev->gendisk, ios[rw]); 835 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 836 837 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 838 839 r10_bio->master_bio = bio; 840 r10_bio->sectors = bio->bi_size >> 9; 841 842 r10_bio->mddev = mddev; 843 r10_bio->sector = bio->bi_sector; 844 r10_bio->state = 0; 845 846 if (rw == READ) { 847 /* 848 * read balancing logic: 849 */ 850 int disk = read_balance(conf, r10_bio); 851 int slot = r10_bio->read_slot; 852 if (disk < 0) { 853 raid_end_bio_io(r10_bio); 854 return 0; 855 } 856 mirror = conf->mirrors + disk; 857 858 read_bio = bio_clone(bio, GFP_NOIO); 859 860 r10_bio->devs[slot].bio = read_bio; 861 862 read_bio->bi_sector = r10_bio->devs[slot].addr + 863 mirror->rdev->data_offset; 864 read_bio->bi_bdev = mirror->rdev->bdev; 865 read_bio->bi_end_io = raid10_end_read_request; 866 read_bio->bi_rw = READ; 867 read_bio->bi_private = r10_bio; 868 869 generic_make_request(read_bio); 870 return 0; 871 } 872 873 /* 874 * WRITE: 875 */ 876 /* first select target devices under spinlock and 877 * inc refcount on their rdev. Record them by setting 878 * bios[x] to bio 879 */ 880 raid10_find_phys(conf, r10_bio); 881 rcu_read_lock(); 882 for (i = 0; i < conf->copies; i++) { 883 int d = r10_bio->devs[i].devnum; 884 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 885 if (rdev && 886 !test_bit(Faulty, &rdev->flags)) { 887 atomic_inc(&rdev->nr_pending); 888 r10_bio->devs[i].bio = bio; 889 } else { 890 r10_bio->devs[i].bio = NULL; 891 set_bit(R10BIO_Degraded, &r10_bio->state); 892 } 893 } 894 rcu_read_unlock(); 895 896 atomic_set(&r10_bio->remaining, 0); 897 898 bio_list_init(&bl); 899 for (i = 0; i < conf->copies; i++) { 900 struct bio *mbio; 901 int d = r10_bio->devs[i].devnum; 902 if (!r10_bio->devs[i].bio) 903 continue; 904 905 mbio = bio_clone(bio, GFP_NOIO); 906 r10_bio->devs[i].bio = mbio; 907 908 mbio->bi_sector = r10_bio->devs[i].addr+ 909 conf->mirrors[d].rdev->data_offset; 910 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 911 mbio->bi_end_io = raid10_end_write_request; 912 mbio->bi_rw = WRITE; 913 mbio->bi_private = r10_bio; 914 915 atomic_inc(&r10_bio->remaining); 916 bio_list_add(&bl, mbio); 917 } 918 919 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 920 spin_lock_irqsave(&conf->device_lock, flags); 921 bio_list_merge(&conf->pending_bio_list, &bl); 922 blk_plug_device(mddev->queue); 923 spin_unlock_irqrestore(&conf->device_lock, flags); 924 925 return 0; 926 } 927 928 static void status(struct seq_file *seq, mddev_t *mddev) 929 { 930 conf_t *conf = mddev_to_conf(mddev); 931 int i; 932 933 if (conf->near_copies < conf->raid_disks) 934 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 935 if (conf->near_copies > 1) 936 seq_printf(seq, " %d near-copies", conf->near_copies); 937 if (conf->far_copies > 1) { 938 if (conf->far_offset) 939 seq_printf(seq, " %d offset-copies", conf->far_copies); 940 else 941 seq_printf(seq, " %d far-copies", conf->far_copies); 942 } 943 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 944 conf->raid_disks - mddev->degraded); 945 for (i = 0; i < conf->raid_disks; i++) 946 seq_printf(seq, "%s", 947 conf->mirrors[i].rdev && 948 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 949 seq_printf(seq, "]"); 950 } 951 952 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 953 { 954 char b[BDEVNAME_SIZE]; 955 conf_t *conf = mddev_to_conf(mddev); 956 957 /* 958 * If it is not operational, then we have already marked it as dead 959 * else if it is the last working disks, ignore the error, let the 960 * next level up know. 961 * else mark the drive as failed 962 */ 963 if (test_bit(In_sync, &rdev->flags) 964 && conf->raid_disks-mddev->degraded == 1) 965 /* 966 * Don't fail the drive, just return an IO error. 967 * The test should really be more sophisticated than 968 * "working_disks == 1", but it isn't critical, and 969 * can wait until we do more sophisticated "is the drive 970 * really dead" tests... 971 */ 972 return; 973 if (test_and_clear_bit(In_sync, &rdev->flags)) { 974 unsigned long flags; 975 spin_lock_irqsave(&conf->device_lock, flags); 976 mddev->degraded++; 977 spin_unlock_irqrestore(&conf->device_lock, flags); 978 /* 979 * if recovery is running, make sure it aborts. 980 */ 981 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 982 } 983 set_bit(Faulty, &rdev->flags); 984 set_bit(MD_CHANGE_DEVS, &mddev->flags); 985 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 986 " Operation continuing on %d devices\n", 987 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 988 } 989 990 static void print_conf(conf_t *conf) 991 { 992 int i; 993 mirror_info_t *tmp; 994 995 printk("RAID10 conf printout:\n"); 996 if (!conf) { 997 printk("(!conf)\n"); 998 return; 999 } 1000 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1001 conf->raid_disks); 1002 1003 for (i = 0; i < conf->raid_disks; i++) { 1004 char b[BDEVNAME_SIZE]; 1005 tmp = conf->mirrors + i; 1006 if (tmp->rdev) 1007 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1008 i, !test_bit(In_sync, &tmp->rdev->flags), 1009 !test_bit(Faulty, &tmp->rdev->flags), 1010 bdevname(tmp->rdev->bdev,b)); 1011 } 1012 } 1013 1014 static void close_sync(conf_t *conf) 1015 { 1016 wait_barrier(conf); 1017 allow_barrier(conf); 1018 1019 mempool_destroy(conf->r10buf_pool); 1020 conf->r10buf_pool = NULL; 1021 } 1022 1023 /* check if there are enough drives for 1024 * every block to appear on atleast one 1025 */ 1026 static int enough(conf_t *conf) 1027 { 1028 int first = 0; 1029 1030 do { 1031 int n = conf->copies; 1032 int cnt = 0; 1033 while (n--) { 1034 if (conf->mirrors[first].rdev) 1035 cnt++; 1036 first = (first+1) % conf->raid_disks; 1037 } 1038 if (cnt == 0) 1039 return 0; 1040 } while (first != 0); 1041 return 1; 1042 } 1043 1044 static int raid10_spare_active(mddev_t *mddev) 1045 { 1046 int i; 1047 conf_t *conf = mddev->private; 1048 mirror_info_t *tmp; 1049 1050 /* 1051 * Find all non-in_sync disks within the RAID10 configuration 1052 * and mark them in_sync 1053 */ 1054 for (i = 0; i < conf->raid_disks; i++) { 1055 tmp = conf->mirrors + i; 1056 if (tmp->rdev 1057 && !test_bit(Faulty, &tmp->rdev->flags) 1058 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1059 unsigned long flags; 1060 spin_lock_irqsave(&conf->device_lock, flags); 1061 mddev->degraded--; 1062 spin_unlock_irqrestore(&conf->device_lock, flags); 1063 } 1064 } 1065 1066 print_conf(conf); 1067 return 0; 1068 } 1069 1070 1071 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1072 { 1073 conf_t *conf = mddev->private; 1074 int found = 0; 1075 int mirror; 1076 mirror_info_t *p; 1077 1078 if (mddev->recovery_cp < MaxSector) 1079 /* only hot-add to in-sync arrays, as recovery is 1080 * very different from resync 1081 */ 1082 return 0; 1083 if (!enough(conf)) 1084 return 0; 1085 1086 if (rdev->saved_raid_disk >= 0 && 1087 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1088 mirror = rdev->saved_raid_disk; 1089 else 1090 mirror = 0; 1091 for ( ; mirror < mddev->raid_disks; mirror++) 1092 if ( !(p=conf->mirrors+mirror)->rdev) { 1093 1094 blk_queue_stack_limits(mddev->queue, 1095 rdev->bdev->bd_disk->queue); 1096 /* as we don't honour merge_bvec_fn, we must never risk 1097 * violating it, so limit ->max_sector to one PAGE, as 1098 * a one page request is never in violation. 1099 */ 1100 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1101 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1102 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1103 1104 p->head_position = 0; 1105 rdev->raid_disk = mirror; 1106 found = 1; 1107 if (rdev->saved_raid_disk != mirror) 1108 conf->fullsync = 1; 1109 rcu_assign_pointer(p->rdev, rdev); 1110 break; 1111 } 1112 1113 print_conf(conf); 1114 return found; 1115 } 1116 1117 static int raid10_remove_disk(mddev_t *mddev, int number) 1118 { 1119 conf_t *conf = mddev->private; 1120 int err = 0; 1121 mdk_rdev_t *rdev; 1122 mirror_info_t *p = conf->mirrors+ number; 1123 1124 print_conf(conf); 1125 rdev = p->rdev; 1126 if (rdev) { 1127 if (test_bit(In_sync, &rdev->flags) || 1128 atomic_read(&rdev->nr_pending)) { 1129 err = -EBUSY; 1130 goto abort; 1131 } 1132 p->rdev = NULL; 1133 synchronize_rcu(); 1134 if (atomic_read(&rdev->nr_pending)) { 1135 /* lost the race, try later */ 1136 err = -EBUSY; 1137 p->rdev = rdev; 1138 } 1139 } 1140 abort: 1141 1142 print_conf(conf); 1143 return err; 1144 } 1145 1146 1147 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1148 { 1149 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1150 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1151 int i,d; 1152 1153 if (bio->bi_size) 1154 return 1; 1155 1156 for (i=0; i<conf->copies; i++) 1157 if (r10_bio->devs[i].bio == bio) 1158 break; 1159 BUG_ON(i == conf->copies); 1160 update_head_pos(i, r10_bio); 1161 d = r10_bio->devs[i].devnum; 1162 1163 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1164 set_bit(R10BIO_Uptodate, &r10_bio->state); 1165 else { 1166 atomic_add(r10_bio->sectors, 1167 &conf->mirrors[d].rdev->corrected_errors); 1168 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1169 md_error(r10_bio->mddev, 1170 conf->mirrors[d].rdev); 1171 } 1172 1173 /* for reconstruct, we always reschedule after a read. 1174 * for resync, only after all reads 1175 */ 1176 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1177 atomic_dec_and_test(&r10_bio->remaining)) { 1178 /* we have read all the blocks, 1179 * do the comparison in process context in raid10d 1180 */ 1181 reschedule_retry(r10_bio); 1182 } 1183 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1184 return 0; 1185 } 1186 1187 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1188 { 1189 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1190 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1191 mddev_t *mddev = r10_bio->mddev; 1192 conf_t *conf = mddev_to_conf(mddev); 1193 int i,d; 1194 1195 if (bio->bi_size) 1196 return 1; 1197 1198 for (i = 0; i < conf->copies; i++) 1199 if (r10_bio->devs[i].bio == bio) 1200 break; 1201 d = r10_bio->devs[i].devnum; 1202 1203 if (!uptodate) 1204 md_error(mddev, conf->mirrors[d].rdev); 1205 update_head_pos(i, r10_bio); 1206 1207 while (atomic_dec_and_test(&r10_bio->remaining)) { 1208 if (r10_bio->master_bio == NULL) { 1209 /* the primary of several recovery bios */ 1210 md_done_sync(mddev, r10_bio->sectors, 1); 1211 put_buf(r10_bio); 1212 break; 1213 } else { 1214 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1215 put_buf(r10_bio); 1216 r10_bio = r10_bio2; 1217 } 1218 } 1219 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1220 return 0; 1221 } 1222 1223 /* 1224 * Note: sync and recover and handled very differently for raid10 1225 * This code is for resync. 1226 * For resync, we read through virtual addresses and read all blocks. 1227 * If there is any error, we schedule a write. The lowest numbered 1228 * drive is authoritative. 1229 * However requests come for physical address, so we need to map. 1230 * For every physical address there are raid_disks/copies virtual addresses, 1231 * which is always are least one, but is not necessarly an integer. 1232 * This means that a physical address can span multiple chunks, so we may 1233 * have to submit multiple io requests for a single sync request. 1234 */ 1235 /* 1236 * We check if all blocks are in-sync and only write to blocks that 1237 * aren't in sync 1238 */ 1239 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1240 { 1241 conf_t *conf = mddev_to_conf(mddev); 1242 int i, first; 1243 struct bio *tbio, *fbio; 1244 1245 atomic_set(&r10_bio->remaining, 1); 1246 1247 /* find the first device with a block */ 1248 for (i=0; i<conf->copies; i++) 1249 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1250 break; 1251 1252 if (i == conf->copies) 1253 goto done; 1254 1255 first = i; 1256 fbio = r10_bio->devs[i].bio; 1257 1258 /* now find blocks with errors */ 1259 for (i=0 ; i < conf->copies ; i++) { 1260 int j, d; 1261 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1262 1263 tbio = r10_bio->devs[i].bio; 1264 1265 if (tbio->bi_end_io != end_sync_read) 1266 continue; 1267 if (i == first) 1268 continue; 1269 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1270 /* We know that the bi_io_vec layout is the same for 1271 * both 'first' and 'i', so we just compare them. 1272 * All vec entries are PAGE_SIZE; 1273 */ 1274 for (j = 0; j < vcnt; j++) 1275 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1276 page_address(tbio->bi_io_vec[j].bv_page), 1277 PAGE_SIZE)) 1278 break; 1279 if (j == vcnt) 1280 continue; 1281 mddev->resync_mismatches += r10_bio->sectors; 1282 } 1283 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1284 /* Don't fix anything. */ 1285 continue; 1286 /* Ok, we need to write this bio 1287 * First we need to fixup bv_offset, bv_len and 1288 * bi_vecs, as the read request might have corrupted these 1289 */ 1290 tbio->bi_vcnt = vcnt; 1291 tbio->bi_size = r10_bio->sectors << 9; 1292 tbio->bi_idx = 0; 1293 tbio->bi_phys_segments = 0; 1294 tbio->bi_hw_segments = 0; 1295 tbio->bi_hw_front_size = 0; 1296 tbio->bi_hw_back_size = 0; 1297 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1298 tbio->bi_flags |= 1 << BIO_UPTODATE; 1299 tbio->bi_next = NULL; 1300 tbio->bi_rw = WRITE; 1301 tbio->bi_private = r10_bio; 1302 tbio->bi_sector = r10_bio->devs[i].addr; 1303 1304 for (j=0; j < vcnt ; j++) { 1305 tbio->bi_io_vec[j].bv_offset = 0; 1306 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1307 1308 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1309 page_address(fbio->bi_io_vec[j].bv_page), 1310 PAGE_SIZE); 1311 } 1312 tbio->bi_end_io = end_sync_write; 1313 1314 d = r10_bio->devs[i].devnum; 1315 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1316 atomic_inc(&r10_bio->remaining); 1317 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1318 1319 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1320 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1321 generic_make_request(tbio); 1322 } 1323 1324 done: 1325 if (atomic_dec_and_test(&r10_bio->remaining)) { 1326 md_done_sync(mddev, r10_bio->sectors, 1); 1327 put_buf(r10_bio); 1328 } 1329 } 1330 1331 /* 1332 * Now for the recovery code. 1333 * Recovery happens across physical sectors. 1334 * We recover all non-is_sync drives by finding the virtual address of 1335 * each, and then choose a working drive that also has that virt address. 1336 * There is a separate r10_bio for each non-in_sync drive. 1337 * Only the first two slots are in use. The first for reading, 1338 * The second for writing. 1339 * 1340 */ 1341 1342 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1343 { 1344 conf_t *conf = mddev_to_conf(mddev); 1345 int i, d; 1346 struct bio *bio, *wbio; 1347 1348 1349 /* move the pages across to the second bio 1350 * and submit the write request 1351 */ 1352 bio = r10_bio->devs[0].bio; 1353 wbio = r10_bio->devs[1].bio; 1354 for (i=0; i < wbio->bi_vcnt; i++) { 1355 struct page *p = bio->bi_io_vec[i].bv_page; 1356 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1357 wbio->bi_io_vec[i].bv_page = p; 1358 } 1359 d = r10_bio->devs[1].devnum; 1360 1361 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1362 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1363 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1364 generic_make_request(wbio); 1365 else 1366 bio_endio(wbio, wbio->bi_size, -EIO); 1367 } 1368 1369 1370 /* 1371 * This is a kernel thread which: 1372 * 1373 * 1. Retries failed read operations on working mirrors. 1374 * 2. Updates the raid superblock when problems encounter. 1375 * 3. Performs writes following reads for array synchronising. 1376 */ 1377 1378 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1379 { 1380 int sect = 0; /* Offset from r10_bio->sector */ 1381 int sectors = r10_bio->sectors; 1382 mdk_rdev_t*rdev; 1383 while(sectors) { 1384 int s = sectors; 1385 int sl = r10_bio->read_slot; 1386 int success = 0; 1387 int start; 1388 1389 if (s > (PAGE_SIZE>>9)) 1390 s = PAGE_SIZE >> 9; 1391 1392 rcu_read_lock(); 1393 do { 1394 int d = r10_bio->devs[sl].devnum; 1395 rdev = rcu_dereference(conf->mirrors[d].rdev); 1396 if (rdev && 1397 test_bit(In_sync, &rdev->flags)) { 1398 atomic_inc(&rdev->nr_pending); 1399 rcu_read_unlock(); 1400 success = sync_page_io(rdev->bdev, 1401 r10_bio->devs[sl].addr + 1402 sect + rdev->data_offset, 1403 s<<9, 1404 conf->tmppage, READ); 1405 rdev_dec_pending(rdev, mddev); 1406 rcu_read_lock(); 1407 if (success) 1408 break; 1409 } 1410 sl++; 1411 if (sl == conf->copies) 1412 sl = 0; 1413 } while (!success && sl != r10_bio->read_slot); 1414 rcu_read_unlock(); 1415 1416 if (!success) { 1417 /* Cannot read from anywhere -- bye bye array */ 1418 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1419 md_error(mddev, conf->mirrors[dn].rdev); 1420 break; 1421 } 1422 1423 start = sl; 1424 /* write it back and re-read */ 1425 rcu_read_lock(); 1426 while (sl != r10_bio->read_slot) { 1427 int d; 1428 if (sl==0) 1429 sl = conf->copies; 1430 sl--; 1431 d = r10_bio->devs[sl].devnum; 1432 rdev = rcu_dereference(conf->mirrors[d].rdev); 1433 if (rdev && 1434 test_bit(In_sync, &rdev->flags)) { 1435 atomic_inc(&rdev->nr_pending); 1436 rcu_read_unlock(); 1437 atomic_add(s, &rdev->corrected_errors); 1438 if (sync_page_io(rdev->bdev, 1439 r10_bio->devs[sl].addr + 1440 sect + rdev->data_offset, 1441 s<<9, conf->tmppage, WRITE) 1442 == 0) 1443 /* Well, this device is dead */ 1444 md_error(mddev, rdev); 1445 rdev_dec_pending(rdev, mddev); 1446 rcu_read_lock(); 1447 } 1448 } 1449 sl = start; 1450 while (sl != r10_bio->read_slot) { 1451 int d; 1452 if (sl==0) 1453 sl = conf->copies; 1454 sl--; 1455 d = r10_bio->devs[sl].devnum; 1456 rdev = rcu_dereference(conf->mirrors[d].rdev); 1457 if (rdev && 1458 test_bit(In_sync, &rdev->flags)) { 1459 char b[BDEVNAME_SIZE]; 1460 atomic_inc(&rdev->nr_pending); 1461 rcu_read_unlock(); 1462 if (sync_page_io(rdev->bdev, 1463 r10_bio->devs[sl].addr + 1464 sect + rdev->data_offset, 1465 s<<9, conf->tmppage, READ) == 0) 1466 /* Well, this device is dead */ 1467 md_error(mddev, rdev); 1468 else 1469 printk(KERN_INFO 1470 "raid10:%s: read error corrected" 1471 " (%d sectors at %llu on %s)\n", 1472 mdname(mddev), s, 1473 (unsigned long long)(sect+ 1474 rdev->data_offset), 1475 bdevname(rdev->bdev, b)); 1476 1477 rdev_dec_pending(rdev, mddev); 1478 rcu_read_lock(); 1479 } 1480 } 1481 rcu_read_unlock(); 1482 1483 sectors -= s; 1484 sect += s; 1485 } 1486 } 1487 1488 static void raid10d(mddev_t *mddev) 1489 { 1490 r10bio_t *r10_bio; 1491 struct bio *bio; 1492 unsigned long flags; 1493 conf_t *conf = mddev_to_conf(mddev); 1494 struct list_head *head = &conf->retry_list; 1495 int unplug=0; 1496 mdk_rdev_t *rdev; 1497 1498 md_check_recovery(mddev); 1499 1500 for (;;) { 1501 char b[BDEVNAME_SIZE]; 1502 spin_lock_irqsave(&conf->device_lock, flags); 1503 1504 if (conf->pending_bio_list.head) { 1505 bio = bio_list_get(&conf->pending_bio_list); 1506 blk_remove_plug(mddev->queue); 1507 spin_unlock_irqrestore(&conf->device_lock, flags); 1508 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1509 if (bitmap_unplug(mddev->bitmap) != 0) 1510 printk("%s: bitmap file write failed!\n", mdname(mddev)); 1511 1512 while (bio) { /* submit pending writes */ 1513 struct bio *next = bio->bi_next; 1514 bio->bi_next = NULL; 1515 generic_make_request(bio); 1516 bio = next; 1517 } 1518 unplug = 1; 1519 1520 continue; 1521 } 1522 1523 if (list_empty(head)) 1524 break; 1525 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1526 list_del(head->prev); 1527 conf->nr_queued--; 1528 spin_unlock_irqrestore(&conf->device_lock, flags); 1529 1530 mddev = r10_bio->mddev; 1531 conf = mddev_to_conf(mddev); 1532 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1533 sync_request_write(mddev, r10_bio); 1534 unplug = 1; 1535 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1536 recovery_request_write(mddev, r10_bio); 1537 unplug = 1; 1538 } else { 1539 int mirror; 1540 /* we got a read error. Maybe the drive is bad. Maybe just 1541 * the block and we can fix it. 1542 * We freeze all other IO, and try reading the block from 1543 * other devices. When we find one, we re-write 1544 * and check it that fixes the read error. 1545 * This is all done synchronously while the array is 1546 * frozen. 1547 */ 1548 if (mddev->ro == 0) { 1549 freeze_array(conf); 1550 fix_read_error(conf, mddev, r10_bio); 1551 unfreeze_array(conf); 1552 } 1553 1554 bio = r10_bio->devs[r10_bio->read_slot].bio; 1555 r10_bio->devs[r10_bio->read_slot].bio = 1556 mddev->ro ? IO_BLOCKED : NULL; 1557 bio_put(bio); 1558 mirror = read_balance(conf, r10_bio); 1559 if (mirror == -1) { 1560 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1561 " read error for block %llu\n", 1562 bdevname(bio->bi_bdev,b), 1563 (unsigned long long)r10_bio->sector); 1564 raid_end_bio_io(r10_bio); 1565 } else { 1566 rdev = conf->mirrors[mirror].rdev; 1567 if (printk_ratelimit()) 1568 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1569 " another mirror\n", 1570 bdevname(rdev->bdev,b), 1571 (unsigned long long)r10_bio->sector); 1572 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1573 r10_bio->devs[r10_bio->read_slot].bio = bio; 1574 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1575 + rdev->data_offset; 1576 bio->bi_bdev = rdev->bdev; 1577 bio->bi_rw = READ; 1578 bio->bi_private = r10_bio; 1579 bio->bi_end_io = raid10_end_read_request; 1580 unplug = 1; 1581 generic_make_request(bio); 1582 } 1583 } 1584 } 1585 spin_unlock_irqrestore(&conf->device_lock, flags); 1586 if (unplug) 1587 unplug_slaves(mddev); 1588 } 1589 1590 1591 static int init_resync(conf_t *conf) 1592 { 1593 int buffs; 1594 1595 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1596 BUG_ON(conf->r10buf_pool); 1597 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1598 if (!conf->r10buf_pool) 1599 return -ENOMEM; 1600 conf->next_resync = 0; 1601 return 0; 1602 } 1603 1604 /* 1605 * perform a "sync" on one "block" 1606 * 1607 * We need to make sure that no normal I/O request - particularly write 1608 * requests - conflict with active sync requests. 1609 * 1610 * This is achieved by tracking pending requests and a 'barrier' concept 1611 * that can be installed to exclude normal IO requests. 1612 * 1613 * Resync and recovery are handled very differently. 1614 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1615 * 1616 * For resync, we iterate over virtual addresses, read all copies, 1617 * and update if there are differences. If only one copy is live, 1618 * skip it. 1619 * For recovery, we iterate over physical addresses, read a good 1620 * value for each non-in_sync drive, and over-write. 1621 * 1622 * So, for recovery we may have several outstanding complex requests for a 1623 * given address, one for each out-of-sync device. We model this by allocating 1624 * a number of r10_bio structures, one for each out-of-sync device. 1625 * As we setup these structures, we collect all bio's together into a list 1626 * which we then process collectively to add pages, and then process again 1627 * to pass to generic_make_request. 1628 * 1629 * The r10_bio structures are linked using a borrowed master_bio pointer. 1630 * This link is counted in ->remaining. When the r10_bio that points to NULL 1631 * has its remaining count decremented to 0, the whole complex operation 1632 * is complete. 1633 * 1634 */ 1635 1636 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1637 { 1638 conf_t *conf = mddev_to_conf(mddev); 1639 r10bio_t *r10_bio; 1640 struct bio *biolist = NULL, *bio; 1641 sector_t max_sector, nr_sectors; 1642 int disk; 1643 int i; 1644 int max_sync; 1645 int sync_blocks; 1646 1647 sector_t sectors_skipped = 0; 1648 int chunks_skipped = 0; 1649 1650 if (!conf->r10buf_pool) 1651 if (init_resync(conf)) 1652 return 0; 1653 1654 skipped: 1655 max_sector = mddev->size << 1; 1656 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1657 max_sector = mddev->resync_max_sectors; 1658 if (sector_nr >= max_sector) { 1659 /* If we aborted, we need to abort the 1660 * sync on the 'current' bitmap chucks (there can 1661 * be several when recovering multiple devices). 1662 * as we may have started syncing it but not finished. 1663 * We can find the current address in 1664 * mddev->curr_resync, but for recovery, 1665 * we need to convert that to several 1666 * virtual addresses. 1667 */ 1668 if (mddev->curr_resync < max_sector) { /* aborted */ 1669 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1670 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1671 &sync_blocks, 1); 1672 else for (i=0; i<conf->raid_disks; i++) { 1673 sector_t sect = 1674 raid10_find_virt(conf, mddev->curr_resync, i); 1675 bitmap_end_sync(mddev->bitmap, sect, 1676 &sync_blocks, 1); 1677 } 1678 } else /* completed sync */ 1679 conf->fullsync = 0; 1680 1681 bitmap_close_sync(mddev->bitmap); 1682 close_sync(conf); 1683 *skipped = 1; 1684 return sectors_skipped; 1685 } 1686 if (chunks_skipped >= conf->raid_disks) { 1687 /* if there has been nothing to do on any drive, 1688 * then there is nothing to do at all.. 1689 */ 1690 *skipped = 1; 1691 return (max_sector - sector_nr) + sectors_skipped; 1692 } 1693 1694 /* make sure whole request will fit in a chunk - if chunks 1695 * are meaningful 1696 */ 1697 if (conf->near_copies < conf->raid_disks && 1698 max_sector > (sector_nr | conf->chunk_mask)) 1699 max_sector = (sector_nr | conf->chunk_mask) + 1; 1700 /* 1701 * If there is non-resync activity waiting for us then 1702 * put in a delay to throttle resync. 1703 */ 1704 if (!go_faster && conf->nr_waiting) 1705 msleep_interruptible(1000); 1706 1707 /* Again, very different code for resync and recovery. 1708 * Both must result in an r10bio with a list of bios that 1709 * have bi_end_io, bi_sector, bi_bdev set, 1710 * and bi_private set to the r10bio. 1711 * For recovery, we may actually create several r10bios 1712 * with 2 bios in each, that correspond to the bios in the main one. 1713 * In this case, the subordinate r10bios link back through a 1714 * borrowed master_bio pointer, and the counter in the master 1715 * includes a ref from each subordinate. 1716 */ 1717 /* First, we decide what to do and set ->bi_end_io 1718 * To end_sync_read if we want to read, and 1719 * end_sync_write if we will want to write. 1720 */ 1721 1722 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1723 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1724 /* recovery... the complicated one */ 1725 int i, j, k; 1726 r10_bio = NULL; 1727 1728 for (i=0 ; i<conf->raid_disks; i++) 1729 if (conf->mirrors[i].rdev && 1730 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1731 int still_degraded = 0; 1732 /* want to reconstruct this device */ 1733 r10bio_t *rb2 = r10_bio; 1734 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1735 int must_sync; 1736 /* Unless we are doing a full sync, we only need 1737 * to recover the block if it is set in the bitmap 1738 */ 1739 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1740 &sync_blocks, 1); 1741 if (sync_blocks < max_sync) 1742 max_sync = sync_blocks; 1743 if (!must_sync && 1744 !conf->fullsync) { 1745 /* yep, skip the sync_blocks here, but don't assume 1746 * that there will never be anything to do here 1747 */ 1748 chunks_skipped = -1; 1749 continue; 1750 } 1751 1752 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1753 raise_barrier(conf, rb2 != NULL); 1754 atomic_set(&r10_bio->remaining, 0); 1755 1756 r10_bio->master_bio = (struct bio*)rb2; 1757 if (rb2) 1758 atomic_inc(&rb2->remaining); 1759 r10_bio->mddev = mddev; 1760 set_bit(R10BIO_IsRecover, &r10_bio->state); 1761 r10_bio->sector = sect; 1762 1763 raid10_find_phys(conf, r10_bio); 1764 /* Need to check if this section will still be 1765 * degraded 1766 */ 1767 for (j=0; j<conf->copies;j++) { 1768 int d = r10_bio->devs[j].devnum; 1769 if (conf->mirrors[d].rdev == NULL || 1770 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1771 still_degraded = 1; 1772 break; 1773 } 1774 } 1775 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1776 &sync_blocks, still_degraded); 1777 1778 for (j=0; j<conf->copies;j++) { 1779 int d = r10_bio->devs[j].devnum; 1780 if (conf->mirrors[d].rdev && 1781 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1782 /* This is where we read from */ 1783 bio = r10_bio->devs[0].bio; 1784 bio->bi_next = biolist; 1785 biolist = bio; 1786 bio->bi_private = r10_bio; 1787 bio->bi_end_io = end_sync_read; 1788 bio->bi_rw = 0; 1789 bio->bi_sector = r10_bio->devs[j].addr + 1790 conf->mirrors[d].rdev->data_offset; 1791 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1792 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1793 atomic_inc(&r10_bio->remaining); 1794 /* and we write to 'i' */ 1795 1796 for (k=0; k<conf->copies; k++) 1797 if (r10_bio->devs[k].devnum == i) 1798 break; 1799 bio = r10_bio->devs[1].bio; 1800 bio->bi_next = biolist; 1801 biolist = bio; 1802 bio->bi_private = r10_bio; 1803 bio->bi_end_io = end_sync_write; 1804 bio->bi_rw = 1; 1805 bio->bi_sector = r10_bio->devs[k].addr + 1806 conf->mirrors[i].rdev->data_offset; 1807 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1808 1809 r10_bio->devs[0].devnum = d; 1810 r10_bio->devs[1].devnum = i; 1811 1812 break; 1813 } 1814 } 1815 if (j == conf->copies) { 1816 /* Cannot recover, so abort the recovery */ 1817 put_buf(r10_bio); 1818 r10_bio = rb2; 1819 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) 1820 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1821 mdname(mddev)); 1822 break; 1823 } 1824 } 1825 if (biolist == NULL) { 1826 while (r10_bio) { 1827 r10bio_t *rb2 = r10_bio; 1828 r10_bio = (r10bio_t*) rb2->master_bio; 1829 rb2->master_bio = NULL; 1830 put_buf(rb2); 1831 } 1832 goto giveup; 1833 } 1834 } else { 1835 /* resync. Schedule a read for every block at this virt offset */ 1836 int count = 0; 1837 1838 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1839 &sync_blocks, mddev->degraded) && 1840 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1841 /* We can skip this block */ 1842 *skipped = 1; 1843 return sync_blocks + sectors_skipped; 1844 } 1845 if (sync_blocks < max_sync) 1846 max_sync = sync_blocks; 1847 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1848 1849 r10_bio->mddev = mddev; 1850 atomic_set(&r10_bio->remaining, 0); 1851 raise_barrier(conf, 0); 1852 conf->next_resync = sector_nr; 1853 1854 r10_bio->master_bio = NULL; 1855 r10_bio->sector = sector_nr; 1856 set_bit(R10BIO_IsSync, &r10_bio->state); 1857 raid10_find_phys(conf, r10_bio); 1858 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1859 1860 for (i=0; i<conf->copies; i++) { 1861 int d = r10_bio->devs[i].devnum; 1862 bio = r10_bio->devs[i].bio; 1863 bio->bi_end_io = NULL; 1864 if (conf->mirrors[d].rdev == NULL || 1865 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1866 continue; 1867 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1868 atomic_inc(&r10_bio->remaining); 1869 bio->bi_next = biolist; 1870 biolist = bio; 1871 bio->bi_private = r10_bio; 1872 bio->bi_end_io = end_sync_read; 1873 bio->bi_rw = 0; 1874 bio->bi_sector = r10_bio->devs[i].addr + 1875 conf->mirrors[d].rdev->data_offset; 1876 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1877 count++; 1878 } 1879 1880 if (count < 2) { 1881 for (i=0; i<conf->copies; i++) { 1882 int d = r10_bio->devs[i].devnum; 1883 if (r10_bio->devs[i].bio->bi_end_io) 1884 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1885 } 1886 put_buf(r10_bio); 1887 biolist = NULL; 1888 goto giveup; 1889 } 1890 } 1891 1892 for (bio = biolist; bio ; bio=bio->bi_next) { 1893 1894 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1895 if (bio->bi_end_io) 1896 bio->bi_flags |= 1 << BIO_UPTODATE; 1897 bio->bi_vcnt = 0; 1898 bio->bi_idx = 0; 1899 bio->bi_phys_segments = 0; 1900 bio->bi_hw_segments = 0; 1901 bio->bi_size = 0; 1902 } 1903 1904 nr_sectors = 0; 1905 if (sector_nr + max_sync < max_sector) 1906 max_sector = sector_nr + max_sync; 1907 do { 1908 struct page *page; 1909 int len = PAGE_SIZE; 1910 disk = 0; 1911 if (sector_nr + (len>>9) > max_sector) 1912 len = (max_sector - sector_nr) << 9; 1913 if (len == 0) 1914 break; 1915 for (bio= biolist ; bio ; bio=bio->bi_next) { 1916 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1917 if (bio_add_page(bio, page, len, 0) == 0) { 1918 /* stop here */ 1919 struct bio *bio2; 1920 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1921 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1922 /* remove last page from this bio */ 1923 bio2->bi_vcnt--; 1924 bio2->bi_size -= len; 1925 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1926 } 1927 goto bio_full; 1928 } 1929 disk = i; 1930 } 1931 nr_sectors += len>>9; 1932 sector_nr += len>>9; 1933 } while (biolist->bi_vcnt < RESYNC_PAGES); 1934 bio_full: 1935 r10_bio->sectors = nr_sectors; 1936 1937 while (biolist) { 1938 bio = biolist; 1939 biolist = biolist->bi_next; 1940 1941 bio->bi_next = NULL; 1942 r10_bio = bio->bi_private; 1943 r10_bio->sectors = nr_sectors; 1944 1945 if (bio->bi_end_io == end_sync_read) { 1946 md_sync_acct(bio->bi_bdev, nr_sectors); 1947 generic_make_request(bio); 1948 } 1949 } 1950 1951 if (sectors_skipped) 1952 /* pretend they weren't skipped, it makes 1953 * no important difference in this case 1954 */ 1955 md_done_sync(mddev, sectors_skipped, 1); 1956 1957 return sectors_skipped + nr_sectors; 1958 giveup: 1959 /* There is nowhere to write, so all non-sync 1960 * drives must be failed, so try the next chunk... 1961 */ 1962 { 1963 sector_t sec = max_sector - sector_nr; 1964 sectors_skipped += sec; 1965 chunks_skipped ++; 1966 sector_nr = max_sector; 1967 goto skipped; 1968 } 1969 } 1970 1971 static int run(mddev_t *mddev) 1972 { 1973 conf_t *conf; 1974 int i, disk_idx; 1975 mirror_info_t *disk; 1976 mdk_rdev_t *rdev; 1977 struct list_head *tmp; 1978 int nc, fc, fo; 1979 sector_t stride, size; 1980 1981 if (mddev->chunk_size == 0) { 1982 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 1983 return -EINVAL; 1984 } 1985 1986 nc = mddev->layout & 255; 1987 fc = (mddev->layout >> 8) & 255; 1988 fo = mddev->layout & (1<<16); 1989 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 1990 (mddev->layout >> 17)) { 1991 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 1992 mdname(mddev), mddev->layout); 1993 goto out; 1994 } 1995 /* 1996 * copy the already verified devices into our private RAID10 1997 * bookkeeping area. [whatever we allocate in run(), 1998 * should be freed in stop()] 1999 */ 2000 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2001 mddev->private = conf; 2002 if (!conf) { 2003 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2004 mdname(mddev)); 2005 goto out; 2006 } 2007 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2008 GFP_KERNEL); 2009 if (!conf->mirrors) { 2010 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2011 mdname(mddev)); 2012 goto out_free_conf; 2013 } 2014 2015 conf->tmppage = alloc_page(GFP_KERNEL); 2016 if (!conf->tmppage) 2017 goto out_free_conf; 2018 2019 conf->near_copies = nc; 2020 conf->far_copies = fc; 2021 conf->copies = nc*fc; 2022 conf->far_offset = fo; 2023 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 2024 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 2025 if (fo) 2026 conf->stride = 1 << conf->chunk_shift; 2027 else { 2028 stride = mddev->size >> (conf->chunk_shift-1); 2029 sector_div(stride, fc); 2030 conf->stride = stride << conf->chunk_shift; 2031 } 2032 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2033 r10bio_pool_free, conf); 2034 if (!conf->r10bio_pool) { 2035 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2036 mdname(mddev)); 2037 goto out_free_conf; 2038 } 2039 2040 ITERATE_RDEV(mddev, rdev, tmp) { 2041 disk_idx = rdev->raid_disk; 2042 if (disk_idx >= mddev->raid_disks 2043 || disk_idx < 0) 2044 continue; 2045 disk = conf->mirrors + disk_idx; 2046 2047 disk->rdev = rdev; 2048 2049 blk_queue_stack_limits(mddev->queue, 2050 rdev->bdev->bd_disk->queue); 2051 /* as we don't honour merge_bvec_fn, we must never risk 2052 * violating it, so limit ->max_sector to one PAGE, as 2053 * a one page request is never in violation. 2054 */ 2055 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2056 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2057 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2058 2059 disk->head_position = 0; 2060 } 2061 conf->raid_disks = mddev->raid_disks; 2062 conf->mddev = mddev; 2063 spin_lock_init(&conf->device_lock); 2064 INIT_LIST_HEAD(&conf->retry_list); 2065 2066 spin_lock_init(&conf->resync_lock); 2067 init_waitqueue_head(&conf->wait_barrier); 2068 2069 /* need to check that every block has at least one working mirror */ 2070 if (!enough(conf)) { 2071 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2072 mdname(mddev)); 2073 goto out_free_conf; 2074 } 2075 2076 mddev->degraded = 0; 2077 for (i = 0; i < conf->raid_disks; i++) { 2078 2079 disk = conf->mirrors + i; 2080 2081 if (!disk->rdev || 2082 !test_bit(In_sync, &disk->rdev->flags)) { 2083 disk->head_position = 0; 2084 mddev->degraded++; 2085 } 2086 } 2087 2088 2089 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2090 if (!mddev->thread) { 2091 printk(KERN_ERR 2092 "raid10: couldn't allocate thread for %s\n", 2093 mdname(mddev)); 2094 goto out_free_conf; 2095 } 2096 2097 printk(KERN_INFO 2098 "raid10: raid set %s active with %d out of %d devices\n", 2099 mdname(mddev), mddev->raid_disks - mddev->degraded, 2100 mddev->raid_disks); 2101 /* 2102 * Ok, everything is just fine now 2103 */ 2104 if (conf->far_offset) { 2105 size = mddev->size >> (conf->chunk_shift-1); 2106 size *= conf->raid_disks; 2107 size <<= conf->chunk_shift; 2108 sector_div(size, conf->far_copies); 2109 } else 2110 size = conf->stride * conf->raid_disks; 2111 sector_div(size, conf->near_copies); 2112 mddev->array_size = size/2; 2113 mddev->resync_max_sectors = size; 2114 2115 mddev->queue->unplug_fn = raid10_unplug; 2116 mddev->queue->issue_flush_fn = raid10_issue_flush; 2117 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2118 mddev->queue->backing_dev_info.congested_data = mddev; 2119 2120 /* Calculate max read-ahead size. 2121 * We need to readahead at least twice a whole stripe.... 2122 * maybe... 2123 */ 2124 { 2125 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2126 stripe /= conf->near_copies; 2127 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2128 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2129 } 2130 2131 if (conf->near_copies < mddev->raid_disks) 2132 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2133 return 0; 2134 2135 out_free_conf: 2136 if (conf->r10bio_pool) 2137 mempool_destroy(conf->r10bio_pool); 2138 safe_put_page(conf->tmppage); 2139 kfree(conf->mirrors); 2140 kfree(conf); 2141 mddev->private = NULL; 2142 out: 2143 return -EIO; 2144 } 2145 2146 static int stop(mddev_t *mddev) 2147 { 2148 conf_t *conf = mddev_to_conf(mddev); 2149 2150 md_unregister_thread(mddev->thread); 2151 mddev->thread = NULL; 2152 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2153 if (conf->r10bio_pool) 2154 mempool_destroy(conf->r10bio_pool); 2155 kfree(conf->mirrors); 2156 kfree(conf); 2157 mddev->private = NULL; 2158 return 0; 2159 } 2160 2161 static void raid10_quiesce(mddev_t *mddev, int state) 2162 { 2163 conf_t *conf = mddev_to_conf(mddev); 2164 2165 switch(state) { 2166 case 1: 2167 raise_barrier(conf, 0); 2168 break; 2169 case 0: 2170 lower_barrier(conf); 2171 break; 2172 } 2173 if (mddev->thread) { 2174 if (mddev->bitmap) 2175 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2176 else 2177 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2178 md_wakeup_thread(mddev->thread); 2179 } 2180 } 2181 2182 static struct mdk_personality raid10_personality = 2183 { 2184 .name = "raid10", 2185 .level = 10, 2186 .owner = THIS_MODULE, 2187 .make_request = make_request, 2188 .run = run, 2189 .stop = stop, 2190 .status = status, 2191 .error_handler = error, 2192 .hot_add_disk = raid10_add_disk, 2193 .hot_remove_disk= raid10_remove_disk, 2194 .spare_active = raid10_spare_active, 2195 .sync_request = sync_request, 2196 .quiesce = raid10_quiesce, 2197 }; 2198 2199 static int __init raid_init(void) 2200 { 2201 return register_md_personality(&raid10_personality); 2202 } 2203 2204 static void raid_exit(void) 2205 { 2206 unregister_md_personality(&raid10_personality); 2207 } 2208 2209 module_init(raid_init); 2210 module_exit(raid_exit); 2211 MODULE_LICENSE("GPL"); 2212 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2213 MODULE_ALIAS("md-raid10"); 2214 MODULE_ALIAS("md-level-10"); 2215