xref: /linux/drivers/md/raid10.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
24 
25 /*
26  * RAID10 provides a combination of RAID0 and RAID1 functionality.
27  * The layout of data is defined by
28  *    chunk_size
29  *    raid_disks
30  *    near_copies (stored in low byte of layout)
31  *    far_copies (stored in second byte of layout)
32  *    far_offset (stored in bit 16 of layout )
33  *
34  * The data to be stored is divided into chunks using chunksize.
35  * Each device is divided into far_copies sections.
36  * In each section, chunks are laid out in a style similar to raid0, but
37  * near_copies copies of each chunk is stored (each on a different drive).
38  * The starting device for each section is offset near_copies from the starting
39  * device of the previous section.
40  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41  * drive.
42  * near_copies and far_copies must be at least one, and their product is at most
43  * raid_disks.
44  *
45  * If far_offset is true, then the far_copies are handled a bit differently.
46  * The copies are still in different stripes, but instead of be very far apart
47  * on disk, there are adjacent stripes.
48  */
49 
50 /*
51  * Number of guaranteed r10bios in case of extreme VM load:
52  */
53 #define	NR_RAID10_BIOS 256
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	conf_t *conf = data;
63 	r10bio_t *r10_bio;
64 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
65 
66 	/* allocate a r10bio with room for raid_disks entries in the bios array */
67 	r10_bio = kzalloc(size, gfp_flags);
68 	if (!r10_bio)
69 		unplug_slaves(conf->mddev);
70 
71 	return r10_bio;
72 }
73 
74 static void r10bio_pool_free(void *r10_bio, void *data)
75 {
76 	kfree(r10_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 /*
86  * When performing a resync, we need to read and compare, so
87  * we need as many pages are there are copies.
88  * When performing a recovery, we need 2 bios, one for read,
89  * one for write (we recover only one drive per r10buf)
90  *
91  */
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	conf_t *conf = data;
95 	struct page *page;
96 	r10bio_t *r10_bio;
97 	struct bio *bio;
98 	int i, j;
99 	int nalloc;
100 
101 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 	if (!r10_bio) {
103 		unplug_slaves(conf->mddev);
104 		return NULL;
105 	}
106 
107 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 		nalloc = conf->copies; /* resync */
109 	else
110 		nalloc = 2; /* recovery */
111 
112 	/*
113 	 * Allocate bios.
114 	 */
115 	for (j = nalloc ; j-- ; ) {
116 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
117 		if (!bio)
118 			goto out_free_bio;
119 		r10_bio->devs[j].bio = bio;
120 	}
121 	/*
122 	 * Allocate RESYNC_PAGES data pages and attach them
123 	 * where needed.
124 	 */
125 	for (j = 0 ; j < nalloc; j++) {
126 		bio = r10_bio->devs[j].bio;
127 		for (i = 0; i < RESYNC_PAGES; i++) {
128 			page = alloc_page(gfp_flags);
129 			if (unlikely(!page))
130 				goto out_free_pages;
131 
132 			bio->bi_io_vec[i].bv_page = page;
133 		}
134 	}
135 
136 	return r10_bio;
137 
138 out_free_pages:
139 	for ( ; i > 0 ; i--)
140 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
141 	while (j--)
142 		for (i = 0; i < RESYNC_PAGES ; i++)
143 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
144 	j = -1;
145 out_free_bio:
146 	while ( ++j < nalloc )
147 		bio_put(r10_bio->devs[j].bio);
148 	r10bio_pool_free(r10_bio, conf);
149 	return NULL;
150 }
151 
152 static void r10buf_pool_free(void *__r10_bio, void *data)
153 {
154 	int i;
155 	conf_t *conf = data;
156 	r10bio_t *r10bio = __r10_bio;
157 	int j;
158 
159 	for (j=0; j < conf->copies; j++) {
160 		struct bio *bio = r10bio->devs[j].bio;
161 		if (bio) {
162 			for (i = 0; i < RESYNC_PAGES; i++) {
163 				safe_put_page(bio->bi_io_vec[i].bv_page);
164 				bio->bi_io_vec[i].bv_page = NULL;
165 			}
166 			bio_put(bio);
167 		}
168 	}
169 	r10bio_pool_free(r10bio, conf);
170 }
171 
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->copies; i++) {
177 		struct bio **bio = & r10_bio->devs[i].bio;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r10bio(r10bio_t *r10_bio)
185 {
186 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r10_bio);
195 	mempool_free(r10_bio, conf->r10bio_pool);
196 }
197 
198 static void put_buf(r10bio_t *r10_bio)
199 {
200 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
201 
202 	mempool_free(r10_bio, conf->r10buf_pool);
203 
204 	lower_barrier(conf);
205 }
206 
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209 	unsigned long flags;
210 	mddev_t *mddev = r10_bio->mddev;
211 	conf_t *conf = mddev_to_conf(mddev);
212 
213 	spin_lock_irqsave(&conf->device_lock, flags);
214 	list_add(&r10_bio->retry_list, &conf->retry_list);
215 	conf->nr_queued ++;
216 	spin_unlock_irqrestore(&conf->device_lock, flags);
217 
218 	md_wakeup_thread(mddev->thread);
219 }
220 
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void raid_end_bio_io(r10bio_t *r10_bio)
227 {
228 	struct bio *bio = r10_bio->master_bio;
229 
230 	bio_endio(bio, bio->bi_size,
231 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232 	free_r10bio(r10_bio);
233 }
234 
235 /*
236  * Update disk head position estimator based on IRQ completion info.
237  */
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
239 {
240 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
241 
242 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243 		r10_bio->devs[slot].addr + (r10_bio->sectors);
244 }
245 
246 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
247 {
248 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
250 	int slot, dev;
251 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
252 
253 	if (bio->bi_size)
254 		return 1;
255 
256 	slot = r10_bio->read_slot;
257 	dev = r10_bio->devs[slot].devnum;
258 	/*
259 	 * this branch is our 'one mirror IO has finished' event handler:
260 	 */
261 	update_head_pos(slot, r10_bio);
262 
263 	if (uptodate) {
264 		/*
265 		 * Set R10BIO_Uptodate in our master bio, so that
266 		 * we will return a good error code to the higher
267 		 * levels even if IO on some other mirrored buffer fails.
268 		 *
269 		 * The 'master' represents the composite IO operation to
270 		 * user-side. So if something waits for IO, then it will
271 		 * wait for the 'master' bio.
272 		 */
273 		set_bit(R10BIO_Uptodate, &r10_bio->state);
274 		raid_end_bio_io(r10_bio);
275 	} else {
276 		/*
277 		 * oops, read error:
278 		 */
279 		char b[BDEVNAME_SIZE];
280 		if (printk_ratelimit())
281 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
282 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
283 		reschedule_retry(r10_bio);
284 	}
285 
286 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
287 	return 0;
288 }
289 
290 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
291 {
292 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
293 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
294 	int slot, dev;
295 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
296 
297 	if (bio->bi_size)
298 		return 1;
299 
300 	for (slot = 0; slot < conf->copies; slot++)
301 		if (r10_bio->devs[slot].bio == bio)
302 			break;
303 	dev = r10_bio->devs[slot].devnum;
304 
305 	/*
306 	 * this branch is our 'one mirror IO has finished' event handler:
307 	 */
308 	if (!uptodate) {
309 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
310 		/* an I/O failed, we can't clear the bitmap */
311 		set_bit(R10BIO_Degraded, &r10_bio->state);
312 	} else
313 		/*
314 		 * Set R10BIO_Uptodate in our master bio, so that
315 		 * we will return a good error code for to the higher
316 		 * levels even if IO on some other mirrored buffer fails.
317 		 *
318 		 * The 'master' represents the composite IO operation to
319 		 * user-side. So if something waits for IO, then it will
320 		 * wait for the 'master' bio.
321 		 */
322 		set_bit(R10BIO_Uptodate, &r10_bio->state);
323 
324 	update_head_pos(slot, r10_bio);
325 
326 	/*
327 	 *
328 	 * Let's see if all mirrored write operations have finished
329 	 * already.
330 	 */
331 	if (atomic_dec_and_test(&r10_bio->remaining)) {
332 		/* clear the bitmap if all writes complete successfully */
333 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334 				r10_bio->sectors,
335 				!test_bit(R10BIO_Degraded, &r10_bio->state),
336 				0);
337 		md_write_end(r10_bio->mddev);
338 		raid_end_bio_io(r10_bio);
339 	}
340 
341 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
342 	return 0;
343 }
344 
345 
346 /*
347  * RAID10 layout manager
348  * Aswell as the chunksize and raid_disks count, there are two
349  * parameters: near_copies and far_copies.
350  * near_copies * far_copies must be <= raid_disks.
351  * Normally one of these will be 1.
352  * If both are 1, we get raid0.
353  * If near_copies == raid_disks, we get raid1.
354  *
355  * Chunks are layed out in raid0 style with near_copies copies of the
356  * first chunk, followed by near_copies copies of the next chunk and
357  * so on.
358  * If far_copies > 1, then after 1/far_copies of the array has been assigned
359  * as described above, we start again with a device offset of near_copies.
360  * So we effectively have another copy of the whole array further down all
361  * the drives, but with blocks on different drives.
362  * With this layout, and block is never stored twice on the one device.
363  *
364  * raid10_find_phys finds the sector offset of a given virtual sector
365  * on each device that it is on.
366  *
367  * raid10_find_virt does the reverse mapping, from a device and a
368  * sector offset to a virtual address
369  */
370 
371 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
372 {
373 	int n,f;
374 	sector_t sector;
375 	sector_t chunk;
376 	sector_t stripe;
377 	int dev;
378 
379 	int slot = 0;
380 
381 	/* now calculate first sector/dev */
382 	chunk = r10bio->sector >> conf->chunk_shift;
383 	sector = r10bio->sector & conf->chunk_mask;
384 
385 	chunk *= conf->near_copies;
386 	stripe = chunk;
387 	dev = sector_div(stripe, conf->raid_disks);
388 	if (conf->far_offset)
389 		stripe *= conf->far_copies;
390 
391 	sector += stripe << conf->chunk_shift;
392 
393 	/* and calculate all the others */
394 	for (n=0; n < conf->near_copies; n++) {
395 		int d = dev;
396 		sector_t s = sector;
397 		r10bio->devs[slot].addr = sector;
398 		r10bio->devs[slot].devnum = d;
399 		slot++;
400 
401 		for (f = 1; f < conf->far_copies; f++) {
402 			d += conf->near_copies;
403 			if (d >= conf->raid_disks)
404 				d -= conf->raid_disks;
405 			s += conf->stride;
406 			r10bio->devs[slot].devnum = d;
407 			r10bio->devs[slot].addr = s;
408 			slot++;
409 		}
410 		dev++;
411 		if (dev >= conf->raid_disks) {
412 			dev = 0;
413 			sector += (conf->chunk_mask + 1);
414 		}
415 	}
416 	BUG_ON(slot != conf->copies);
417 }
418 
419 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
420 {
421 	sector_t offset, chunk, vchunk;
422 
423 	offset = sector & conf->chunk_mask;
424 	if (conf->far_offset) {
425 		int fc;
426 		chunk = sector >> conf->chunk_shift;
427 		fc = sector_div(chunk, conf->far_copies);
428 		dev -= fc * conf->near_copies;
429 		if (dev < 0)
430 			dev += conf->raid_disks;
431 	} else {
432 		while (sector > conf->stride) {
433 			sector -= conf->stride;
434 			if (dev < conf->near_copies)
435 				dev += conf->raid_disks - conf->near_copies;
436 			else
437 				dev -= conf->near_copies;
438 		}
439 		chunk = sector >> conf->chunk_shift;
440 	}
441 	vchunk = chunk * conf->raid_disks + dev;
442 	sector_div(vchunk, conf->near_copies);
443 	return (vchunk << conf->chunk_shift) + offset;
444 }
445 
446 /**
447  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
448  *	@q: request queue
449  *	@bio: the buffer head that's been built up so far
450  *	@biovec: the request that could be merged to it.
451  *
452  *	Return amount of bytes we can accept at this offset
453  *      If near_copies == raid_disk, there are no striping issues,
454  *      but in that case, the function isn't called at all.
455  */
456 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
457 				struct bio_vec *bio_vec)
458 {
459 	mddev_t *mddev = q->queuedata;
460 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
461 	int max;
462 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
463 	unsigned int bio_sectors = bio->bi_size >> 9;
464 
465 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
466 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
467 	if (max <= bio_vec->bv_len && bio_sectors == 0)
468 		return bio_vec->bv_len;
469 	else
470 		return max;
471 }
472 
473 /*
474  * This routine returns the disk from which the requested read should
475  * be done. There is a per-array 'next expected sequential IO' sector
476  * number - if this matches on the next IO then we use the last disk.
477  * There is also a per-disk 'last know head position' sector that is
478  * maintained from IRQ contexts, both the normal and the resync IO
479  * completion handlers update this position correctly. If there is no
480  * perfect sequential match then we pick the disk whose head is closest.
481  *
482  * If there are 2 mirrors in the same 2 devices, performance degrades
483  * because position is mirror, not device based.
484  *
485  * The rdev for the device selected will have nr_pending incremented.
486  */
487 
488 /*
489  * FIXME: possibly should rethink readbalancing and do it differently
490  * depending on near_copies / far_copies geometry.
491  */
492 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
493 {
494 	const unsigned long this_sector = r10_bio->sector;
495 	int disk, slot, nslot;
496 	const int sectors = r10_bio->sectors;
497 	sector_t new_distance, current_distance;
498 	mdk_rdev_t *rdev;
499 
500 	raid10_find_phys(conf, r10_bio);
501 	rcu_read_lock();
502 	/*
503 	 * Check if we can balance. We can balance on the whole
504 	 * device if no resync is going on (recovery is ok), or below
505 	 * the resync window. We take the first readable disk when
506 	 * above the resync window.
507 	 */
508 	if (conf->mddev->recovery_cp < MaxSector
509 	    && (this_sector + sectors >= conf->next_resync)) {
510 		/* make sure that disk is operational */
511 		slot = 0;
512 		disk = r10_bio->devs[slot].devnum;
513 
514 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
515 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
516 		       !test_bit(In_sync, &rdev->flags)) {
517 			slot++;
518 			if (slot == conf->copies) {
519 				slot = 0;
520 				disk = -1;
521 				break;
522 			}
523 			disk = r10_bio->devs[slot].devnum;
524 		}
525 		goto rb_out;
526 	}
527 
528 
529 	/* make sure the disk is operational */
530 	slot = 0;
531 	disk = r10_bio->devs[slot].devnum;
532 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
533 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
534 	       !test_bit(In_sync, &rdev->flags)) {
535 		slot ++;
536 		if (slot == conf->copies) {
537 			disk = -1;
538 			goto rb_out;
539 		}
540 		disk = r10_bio->devs[slot].devnum;
541 	}
542 
543 
544 	current_distance = abs(r10_bio->devs[slot].addr -
545 			       conf->mirrors[disk].head_position);
546 
547 	/* Find the disk whose head is closest */
548 
549 	for (nslot = slot; nslot < conf->copies; nslot++) {
550 		int ndisk = r10_bio->devs[nslot].devnum;
551 
552 
553 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
554 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
555 		    !test_bit(In_sync, &rdev->flags))
556 			continue;
557 
558 		/* This optimisation is debatable, and completely destroys
559 		 * sequential read speed for 'far copies' arrays.  So only
560 		 * keep it for 'near' arrays, and review those later.
561 		 */
562 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
563 			disk = ndisk;
564 			slot = nslot;
565 			break;
566 		}
567 		new_distance = abs(r10_bio->devs[nslot].addr -
568 				   conf->mirrors[ndisk].head_position);
569 		if (new_distance < current_distance) {
570 			current_distance = new_distance;
571 			disk = ndisk;
572 			slot = nslot;
573 		}
574 	}
575 
576 rb_out:
577 	r10_bio->read_slot = slot;
578 /*	conf->next_seq_sect = this_sector + sectors;*/
579 
580 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
581 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
582 	else
583 		disk = -1;
584 	rcu_read_unlock();
585 
586 	return disk;
587 }
588 
589 static void unplug_slaves(mddev_t *mddev)
590 {
591 	conf_t *conf = mddev_to_conf(mddev);
592 	int i;
593 
594 	rcu_read_lock();
595 	for (i=0; i<mddev->raid_disks; i++) {
596 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
597 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
598 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
599 
600 			atomic_inc(&rdev->nr_pending);
601 			rcu_read_unlock();
602 
603 			if (r_queue->unplug_fn)
604 				r_queue->unplug_fn(r_queue);
605 
606 			rdev_dec_pending(rdev, mddev);
607 			rcu_read_lock();
608 		}
609 	}
610 	rcu_read_unlock();
611 }
612 
613 static void raid10_unplug(request_queue_t *q)
614 {
615 	mddev_t *mddev = q->queuedata;
616 
617 	unplug_slaves(q->queuedata);
618 	md_wakeup_thread(mddev->thread);
619 }
620 
621 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
622 			     sector_t *error_sector)
623 {
624 	mddev_t *mddev = q->queuedata;
625 	conf_t *conf = mddev_to_conf(mddev);
626 	int i, ret = 0;
627 
628 	rcu_read_lock();
629 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
630 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
631 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
632 			struct block_device *bdev = rdev->bdev;
633 			request_queue_t *r_queue = bdev_get_queue(bdev);
634 
635 			if (!r_queue->issue_flush_fn)
636 				ret = -EOPNOTSUPP;
637 			else {
638 				atomic_inc(&rdev->nr_pending);
639 				rcu_read_unlock();
640 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
641 							      error_sector);
642 				rdev_dec_pending(rdev, mddev);
643 				rcu_read_lock();
644 			}
645 		}
646 	}
647 	rcu_read_unlock();
648 	return ret;
649 }
650 
651 static int raid10_congested(void *data, int bits)
652 {
653 	mddev_t *mddev = data;
654 	conf_t *conf = mddev_to_conf(mddev);
655 	int i, ret = 0;
656 
657 	rcu_read_lock();
658 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
659 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
660 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
661 			request_queue_t *q = bdev_get_queue(rdev->bdev);
662 
663 			ret |= bdi_congested(&q->backing_dev_info, bits);
664 		}
665 	}
666 	rcu_read_unlock();
667 	return ret;
668 }
669 
670 
671 /* Barriers....
672  * Sometimes we need to suspend IO while we do something else,
673  * either some resync/recovery, or reconfigure the array.
674  * To do this we raise a 'barrier'.
675  * The 'barrier' is a counter that can be raised multiple times
676  * to count how many activities are happening which preclude
677  * normal IO.
678  * We can only raise the barrier if there is no pending IO.
679  * i.e. if nr_pending == 0.
680  * We choose only to raise the barrier if no-one is waiting for the
681  * barrier to go down.  This means that as soon as an IO request
682  * is ready, no other operations which require a barrier will start
683  * until the IO request has had a chance.
684  *
685  * So: regular IO calls 'wait_barrier'.  When that returns there
686  *    is no backgroup IO happening,  It must arrange to call
687  *    allow_barrier when it has finished its IO.
688  * backgroup IO calls must call raise_barrier.  Once that returns
689  *    there is no normal IO happeing.  It must arrange to call
690  *    lower_barrier when the particular background IO completes.
691  */
692 #define RESYNC_DEPTH 32
693 
694 static void raise_barrier(conf_t *conf, int force)
695 {
696 	BUG_ON(force && !conf->barrier);
697 	spin_lock_irq(&conf->resync_lock);
698 
699 	/* Wait until no block IO is waiting (unless 'force') */
700 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
701 			    conf->resync_lock,
702 			    raid10_unplug(conf->mddev->queue));
703 
704 	/* block any new IO from starting */
705 	conf->barrier++;
706 
707 	/* No wait for all pending IO to complete */
708 	wait_event_lock_irq(conf->wait_barrier,
709 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
710 			    conf->resync_lock,
711 			    raid10_unplug(conf->mddev->queue));
712 
713 	spin_unlock_irq(&conf->resync_lock);
714 }
715 
716 static void lower_barrier(conf_t *conf)
717 {
718 	unsigned long flags;
719 	spin_lock_irqsave(&conf->resync_lock, flags);
720 	conf->barrier--;
721 	spin_unlock_irqrestore(&conf->resync_lock, flags);
722 	wake_up(&conf->wait_barrier);
723 }
724 
725 static void wait_barrier(conf_t *conf)
726 {
727 	spin_lock_irq(&conf->resync_lock);
728 	if (conf->barrier) {
729 		conf->nr_waiting++;
730 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
731 				    conf->resync_lock,
732 				    raid10_unplug(conf->mddev->queue));
733 		conf->nr_waiting--;
734 	}
735 	conf->nr_pending++;
736 	spin_unlock_irq(&conf->resync_lock);
737 }
738 
739 static void allow_barrier(conf_t *conf)
740 {
741 	unsigned long flags;
742 	spin_lock_irqsave(&conf->resync_lock, flags);
743 	conf->nr_pending--;
744 	spin_unlock_irqrestore(&conf->resync_lock, flags);
745 	wake_up(&conf->wait_barrier);
746 }
747 
748 static void freeze_array(conf_t *conf)
749 {
750 	/* stop syncio and normal IO and wait for everything to
751 	 * go quiet.
752 	 * We increment barrier and nr_waiting, and then
753 	 * wait until barrier+nr_pending match nr_queued+2
754 	 */
755 	spin_lock_irq(&conf->resync_lock);
756 	conf->barrier++;
757 	conf->nr_waiting++;
758 	wait_event_lock_irq(conf->wait_barrier,
759 			    conf->barrier+conf->nr_pending == conf->nr_queued+2,
760 			    conf->resync_lock,
761 			    raid10_unplug(conf->mddev->queue));
762 	spin_unlock_irq(&conf->resync_lock);
763 }
764 
765 static void unfreeze_array(conf_t *conf)
766 {
767 	/* reverse the effect of the freeze */
768 	spin_lock_irq(&conf->resync_lock);
769 	conf->barrier--;
770 	conf->nr_waiting--;
771 	wake_up(&conf->wait_barrier);
772 	spin_unlock_irq(&conf->resync_lock);
773 }
774 
775 static int make_request(request_queue_t *q, struct bio * bio)
776 {
777 	mddev_t *mddev = q->queuedata;
778 	conf_t *conf = mddev_to_conf(mddev);
779 	mirror_info_t *mirror;
780 	r10bio_t *r10_bio;
781 	struct bio *read_bio;
782 	int i;
783 	int chunk_sects = conf->chunk_mask + 1;
784 	const int rw = bio_data_dir(bio);
785 	struct bio_list bl;
786 	unsigned long flags;
787 
788 	if (unlikely(bio_barrier(bio))) {
789 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
790 		return 0;
791 	}
792 
793 	/* If this request crosses a chunk boundary, we need to
794 	 * split it.  This will only happen for 1 PAGE (or less) requests.
795 	 */
796 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
797 		      > chunk_sects &&
798 		    conf->near_copies < conf->raid_disks)) {
799 		struct bio_pair *bp;
800 		/* Sanity check -- queue functions should prevent this happening */
801 		if (bio->bi_vcnt != 1 ||
802 		    bio->bi_idx != 0)
803 			goto bad_map;
804 		/* This is a one page bio that upper layers
805 		 * refuse to split for us, so we need to split it.
806 		 */
807 		bp = bio_split(bio, bio_split_pool,
808 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
809 		if (make_request(q, &bp->bio1))
810 			generic_make_request(&bp->bio1);
811 		if (make_request(q, &bp->bio2))
812 			generic_make_request(&bp->bio2);
813 
814 		bio_pair_release(bp);
815 		return 0;
816 	bad_map:
817 		printk("raid10_make_request bug: can't convert block across chunks"
818 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
819 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
820 
821 		bio_io_error(bio, bio->bi_size);
822 		return 0;
823 	}
824 
825 	md_write_start(mddev, bio);
826 
827 	/*
828 	 * Register the new request and wait if the reconstruction
829 	 * thread has put up a bar for new requests.
830 	 * Continue immediately if no resync is active currently.
831 	 */
832 	wait_barrier(conf);
833 
834 	disk_stat_inc(mddev->gendisk, ios[rw]);
835 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
836 
837 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
838 
839 	r10_bio->master_bio = bio;
840 	r10_bio->sectors = bio->bi_size >> 9;
841 
842 	r10_bio->mddev = mddev;
843 	r10_bio->sector = bio->bi_sector;
844 	r10_bio->state = 0;
845 
846 	if (rw == READ) {
847 		/*
848 		 * read balancing logic:
849 		 */
850 		int disk = read_balance(conf, r10_bio);
851 		int slot = r10_bio->read_slot;
852 		if (disk < 0) {
853 			raid_end_bio_io(r10_bio);
854 			return 0;
855 		}
856 		mirror = conf->mirrors + disk;
857 
858 		read_bio = bio_clone(bio, GFP_NOIO);
859 
860 		r10_bio->devs[slot].bio = read_bio;
861 
862 		read_bio->bi_sector = r10_bio->devs[slot].addr +
863 			mirror->rdev->data_offset;
864 		read_bio->bi_bdev = mirror->rdev->bdev;
865 		read_bio->bi_end_io = raid10_end_read_request;
866 		read_bio->bi_rw = READ;
867 		read_bio->bi_private = r10_bio;
868 
869 		generic_make_request(read_bio);
870 		return 0;
871 	}
872 
873 	/*
874 	 * WRITE:
875 	 */
876 	/* first select target devices under spinlock and
877 	 * inc refcount on their rdev.  Record them by setting
878 	 * bios[x] to bio
879 	 */
880 	raid10_find_phys(conf, r10_bio);
881 	rcu_read_lock();
882 	for (i = 0;  i < conf->copies; i++) {
883 		int d = r10_bio->devs[i].devnum;
884 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
885 		if (rdev &&
886 		    !test_bit(Faulty, &rdev->flags)) {
887 			atomic_inc(&rdev->nr_pending);
888 			r10_bio->devs[i].bio = bio;
889 		} else {
890 			r10_bio->devs[i].bio = NULL;
891 			set_bit(R10BIO_Degraded, &r10_bio->state);
892 		}
893 	}
894 	rcu_read_unlock();
895 
896 	atomic_set(&r10_bio->remaining, 0);
897 
898 	bio_list_init(&bl);
899 	for (i = 0; i < conf->copies; i++) {
900 		struct bio *mbio;
901 		int d = r10_bio->devs[i].devnum;
902 		if (!r10_bio->devs[i].bio)
903 			continue;
904 
905 		mbio = bio_clone(bio, GFP_NOIO);
906 		r10_bio->devs[i].bio = mbio;
907 
908 		mbio->bi_sector	= r10_bio->devs[i].addr+
909 			conf->mirrors[d].rdev->data_offset;
910 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
911 		mbio->bi_end_io	= raid10_end_write_request;
912 		mbio->bi_rw = WRITE;
913 		mbio->bi_private = r10_bio;
914 
915 		atomic_inc(&r10_bio->remaining);
916 		bio_list_add(&bl, mbio);
917 	}
918 
919 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
920 	spin_lock_irqsave(&conf->device_lock, flags);
921 	bio_list_merge(&conf->pending_bio_list, &bl);
922 	blk_plug_device(mddev->queue);
923 	spin_unlock_irqrestore(&conf->device_lock, flags);
924 
925 	return 0;
926 }
927 
928 static void status(struct seq_file *seq, mddev_t *mddev)
929 {
930 	conf_t *conf = mddev_to_conf(mddev);
931 	int i;
932 
933 	if (conf->near_copies < conf->raid_disks)
934 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
935 	if (conf->near_copies > 1)
936 		seq_printf(seq, " %d near-copies", conf->near_copies);
937 	if (conf->far_copies > 1) {
938 		if (conf->far_offset)
939 			seq_printf(seq, " %d offset-copies", conf->far_copies);
940 		else
941 			seq_printf(seq, " %d far-copies", conf->far_copies);
942 	}
943 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
944 					conf->raid_disks - mddev->degraded);
945 	for (i = 0; i < conf->raid_disks; i++)
946 		seq_printf(seq, "%s",
947 			      conf->mirrors[i].rdev &&
948 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
949 	seq_printf(seq, "]");
950 }
951 
952 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
953 {
954 	char b[BDEVNAME_SIZE];
955 	conf_t *conf = mddev_to_conf(mddev);
956 
957 	/*
958 	 * If it is not operational, then we have already marked it as dead
959 	 * else if it is the last working disks, ignore the error, let the
960 	 * next level up know.
961 	 * else mark the drive as failed
962 	 */
963 	if (test_bit(In_sync, &rdev->flags)
964 	    && conf->raid_disks-mddev->degraded == 1)
965 		/*
966 		 * Don't fail the drive, just return an IO error.
967 		 * The test should really be more sophisticated than
968 		 * "working_disks == 1", but it isn't critical, and
969 		 * can wait until we do more sophisticated "is the drive
970 		 * really dead" tests...
971 		 */
972 		return;
973 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
974 		unsigned long flags;
975 		spin_lock_irqsave(&conf->device_lock, flags);
976 		mddev->degraded++;
977 		spin_unlock_irqrestore(&conf->device_lock, flags);
978 		/*
979 		 * if recovery is running, make sure it aborts.
980 		 */
981 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
982 	}
983 	set_bit(Faulty, &rdev->flags);
984 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
985 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
986 		"	Operation continuing on %d devices\n",
987 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
988 }
989 
990 static void print_conf(conf_t *conf)
991 {
992 	int i;
993 	mirror_info_t *tmp;
994 
995 	printk("RAID10 conf printout:\n");
996 	if (!conf) {
997 		printk("(!conf)\n");
998 		return;
999 	}
1000 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1001 		conf->raid_disks);
1002 
1003 	for (i = 0; i < conf->raid_disks; i++) {
1004 		char b[BDEVNAME_SIZE];
1005 		tmp = conf->mirrors + i;
1006 		if (tmp->rdev)
1007 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1008 				i, !test_bit(In_sync, &tmp->rdev->flags),
1009 			        !test_bit(Faulty, &tmp->rdev->flags),
1010 				bdevname(tmp->rdev->bdev,b));
1011 	}
1012 }
1013 
1014 static void close_sync(conf_t *conf)
1015 {
1016 	wait_barrier(conf);
1017 	allow_barrier(conf);
1018 
1019 	mempool_destroy(conf->r10buf_pool);
1020 	conf->r10buf_pool = NULL;
1021 }
1022 
1023 /* check if there are enough drives for
1024  * every block to appear on atleast one
1025  */
1026 static int enough(conf_t *conf)
1027 {
1028 	int first = 0;
1029 
1030 	do {
1031 		int n = conf->copies;
1032 		int cnt = 0;
1033 		while (n--) {
1034 			if (conf->mirrors[first].rdev)
1035 				cnt++;
1036 			first = (first+1) % conf->raid_disks;
1037 		}
1038 		if (cnt == 0)
1039 			return 0;
1040 	} while (first != 0);
1041 	return 1;
1042 }
1043 
1044 static int raid10_spare_active(mddev_t *mddev)
1045 {
1046 	int i;
1047 	conf_t *conf = mddev->private;
1048 	mirror_info_t *tmp;
1049 
1050 	/*
1051 	 * Find all non-in_sync disks within the RAID10 configuration
1052 	 * and mark them in_sync
1053 	 */
1054 	for (i = 0; i < conf->raid_disks; i++) {
1055 		tmp = conf->mirrors + i;
1056 		if (tmp->rdev
1057 		    && !test_bit(Faulty, &tmp->rdev->flags)
1058 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1059 			unsigned long flags;
1060 			spin_lock_irqsave(&conf->device_lock, flags);
1061 			mddev->degraded--;
1062 			spin_unlock_irqrestore(&conf->device_lock, flags);
1063 		}
1064 	}
1065 
1066 	print_conf(conf);
1067 	return 0;
1068 }
1069 
1070 
1071 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1072 {
1073 	conf_t *conf = mddev->private;
1074 	int found = 0;
1075 	int mirror;
1076 	mirror_info_t *p;
1077 
1078 	if (mddev->recovery_cp < MaxSector)
1079 		/* only hot-add to in-sync arrays, as recovery is
1080 		 * very different from resync
1081 		 */
1082 		return 0;
1083 	if (!enough(conf))
1084 		return 0;
1085 
1086 	if (rdev->saved_raid_disk >= 0 &&
1087 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1088 		mirror = rdev->saved_raid_disk;
1089 	else
1090 		mirror = 0;
1091 	for ( ; mirror < mddev->raid_disks; mirror++)
1092 		if ( !(p=conf->mirrors+mirror)->rdev) {
1093 
1094 			blk_queue_stack_limits(mddev->queue,
1095 					       rdev->bdev->bd_disk->queue);
1096 			/* as we don't honour merge_bvec_fn, we must never risk
1097 			 * violating it, so limit ->max_sector to one PAGE, as
1098 			 * a one page request is never in violation.
1099 			 */
1100 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1101 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1102 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
1103 
1104 			p->head_position = 0;
1105 			rdev->raid_disk = mirror;
1106 			found = 1;
1107 			if (rdev->saved_raid_disk != mirror)
1108 				conf->fullsync = 1;
1109 			rcu_assign_pointer(p->rdev, rdev);
1110 			break;
1111 		}
1112 
1113 	print_conf(conf);
1114 	return found;
1115 }
1116 
1117 static int raid10_remove_disk(mddev_t *mddev, int number)
1118 {
1119 	conf_t *conf = mddev->private;
1120 	int err = 0;
1121 	mdk_rdev_t *rdev;
1122 	mirror_info_t *p = conf->mirrors+ number;
1123 
1124 	print_conf(conf);
1125 	rdev = p->rdev;
1126 	if (rdev) {
1127 		if (test_bit(In_sync, &rdev->flags) ||
1128 		    atomic_read(&rdev->nr_pending)) {
1129 			err = -EBUSY;
1130 			goto abort;
1131 		}
1132 		p->rdev = NULL;
1133 		synchronize_rcu();
1134 		if (atomic_read(&rdev->nr_pending)) {
1135 			/* lost the race, try later */
1136 			err = -EBUSY;
1137 			p->rdev = rdev;
1138 		}
1139 	}
1140 abort:
1141 
1142 	print_conf(conf);
1143 	return err;
1144 }
1145 
1146 
1147 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1148 {
1149 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1150 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1151 	int i,d;
1152 
1153 	if (bio->bi_size)
1154 		return 1;
1155 
1156 	for (i=0; i<conf->copies; i++)
1157 		if (r10_bio->devs[i].bio == bio)
1158 			break;
1159 	BUG_ON(i == conf->copies);
1160 	update_head_pos(i, r10_bio);
1161 	d = r10_bio->devs[i].devnum;
1162 
1163 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1164 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1165 	else {
1166 		atomic_add(r10_bio->sectors,
1167 			   &conf->mirrors[d].rdev->corrected_errors);
1168 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1169 			md_error(r10_bio->mddev,
1170 				 conf->mirrors[d].rdev);
1171 	}
1172 
1173 	/* for reconstruct, we always reschedule after a read.
1174 	 * for resync, only after all reads
1175 	 */
1176 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1177 	    atomic_dec_and_test(&r10_bio->remaining)) {
1178 		/* we have read all the blocks,
1179 		 * do the comparison in process context in raid10d
1180 		 */
1181 		reschedule_retry(r10_bio);
1182 	}
1183 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1184 	return 0;
1185 }
1186 
1187 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1188 {
1189 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1190 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1191 	mddev_t *mddev = r10_bio->mddev;
1192 	conf_t *conf = mddev_to_conf(mddev);
1193 	int i,d;
1194 
1195 	if (bio->bi_size)
1196 		return 1;
1197 
1198 	for (i = 0; i < conf->copies; i++)
1199 		if (r10_bio->devs[i].bio == bio)
1200 			break;
1201 	d = r10_bio->devs[i].devnum;
1202 
1203 	if (!uptodate)
1204 		md_error(mddev, conf->mirrors[d].rdev);
1205 	update_head_pos(i, r10_bio);
1206 
1207 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1208 		if (r10_bio->master_bio == NULL) {
1209 			/* the primary of several recovery bios */
1210 			md_done_sync(mddev, r10_bio->sectors, 1);
1211 			put_buf(r10_bio);
1212 			break;
1213 		} else {
1214 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1215 			put_buf(r10_bio);
1216 			r10_bio = r10_bio2;
1217 		}
1218 	}
1219 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1220 	return 0;
1221 }
1222 
1223 /*
1224  * Note: sync and recover and handled very differently for raid10
1225  * This code is for resync.
1226  * For resync, we read through virtual addresses and read all blocks.
1227  * If there is any error, we schedule a write.  The lowest numbered
1228  * drive is authoritative.
1229  * However requests come for physical address, so we need to map.
1230  * For every physical address there are raid_disks/copies virtual addresses,
1231  * which is always are least one, but is not necessarly an integer.
1232  * This means that a physical address can span multiple chunks, so we may
1233  * have to submit multiple io requests for a single sync request.
1234  */
1235 /*
1236  * We check if all blocks are in-sync and only write to blocks that
1237  * aren't in sync
1238  */
1239 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1240 {
1241 	conf_t *conf = mddev_to_conf(mddev);
1242 	int i, first;
1243 	struct bio *tbio, *fbio;
1244 
1245 	atomic_set(&r10_bio->remaining, 1);
1246 
1247 	/* find the first device with a block */
1248 	for (i=0; i<conf->copies; i++)
1249 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1250 			break;
1251 
1252 	if (i == conf->copies)
1253 		goto done;
1254 
1255 	first = i;
1256 	fbio = r10_bio->devs[i].bio;
1257 
1258 	/* now find blocks with errors */
1259 	for (i=0 ; i < conf->copies ; i++) {
1260 		int  j, d;
1261 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1262 
1263 		tbio = r10_bio->devs[i].bio;
1264 
1265 		if (tbio->bi_end_io != end_sync_read)
1266 			continue;
1267 		if (i == first)
1268 			continue;
1269 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1270 			/* We know that the bi_io_vec layout is the same for
1271 			 * both 'first' and 'i', so we just compare them.
1272 			 * All vec entries are PAGE_SIZE;
1273 			 */
1274 			for (j = 0; j < vcnt; j++)
1275 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1276 					   page_address(tbio->bi_io_vec[j].bv_page),
1277 					   PAGE_SIZE))
1278 					break;
1279 			if (j == vcnt)
1280 				continue;
1281 			mddev->resync_mismatches += r10_bio->sectors;
1282 		}
1283 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1284 			/* Don't fix anything. */
1285 			continue;
1286 		/* Ok, we need to write this bio
1287 		 * First we need to fixup bv_offset, bv_len and
1288 		 * bi_vecs, as the read request might have corrupted these
1289 		 */
1290 		tbio->bi_vcnt = vcnt;
1291 		tbio->bi_size = r10_bio->sectors << 9;
1292 		tbio->bi_idx = 0;
1293 		tbio->bi_phys_segments = 0;
1294 		tbio->bi_hw_segments = 0;
1295 		tbio->bi_hw_front_size = 0;
1296 		tbio->bi_hw_back_size = 0;
1297 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1298 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1299 		tbio->bi_next = NULL;
1300 		tbio->bi_rw = WRITE;
1301 		tbio->bi_private = r10_bio;
1302 		tbio->bi_sector = r10_bio->devs[i].addr;
1303 
1304 		for (j=0; j < vcnt ; j++) {
1305 			tbio->bi_io_vec[j].bv_offset = 0;
1306 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1307 
1308 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1309 			       page_address(fbio->bi_io_vec[j].bv_page),
1310 			       PAGE_SIZE);
1311 		}
1312 		tbio->bi_end_io = end_sync_write;
1313 
1314 		d = r10_bio->devs[i].devnum;
1315 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1316 		atomic_inc(&r10_bio->remaining);
1317 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1318 
1319 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1320 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1321 		generic_make_request(tbio);
1322 	}
1323 
1324 done:
1325 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1326 		md_done_sync(mddev, r10_bio->sectors, 1);
1327 		put_buf(r10_bio);
1328 	}
1329 }
1330 
1331 /*
1332  * Now for the recovery code.
1333  * Recovery happens across physical sectors.
1334  * We recover all non-is_sync drives by finding the virtual address of
1335  * each, and then choose a working drive that also has that virt address.
1336  * There is a separate r10_bio for each non-in_sync drive.
1337  * Only the first two slots are in use. The first for reading,
1338  * The second for writing.
1339  *
1340  */
1341 
1342 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1343 {
1344 	conf_t *conf = mddev_to_conf(mddev);
1345 	int i, d;
1346 	struct bio *bio, *wbio;
1347 
1348 
1349 	/* move the pages across to the second bio
1350 	 * and submit the write request
1351 	 */
1352 	bio = r10_bio->devs[0].bio;
1353 	wbio = r10_bio->devs[1].bio;
1354 	for (i=0; i < wbio->bi_vcnt; i++) {
1355 		struct page *p = bio->bi_io_vec[i].bv_page;
1356 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1357 		wbio->bi_io_vec[i].bv_page = p;
1358 	}
1359 	d = r10_bio->devs[1].devnum;
1360 
1361 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1362 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1363 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1364 		generic_make_request(wbio);
1365 	else
1366 		bio_endio(wbio, wbio->bi_size, -EIO);
1367 }
1368 
1369 
1370 /*
1371  * This is a kernel thread which:
1372  *
1373  *	1.	Retries failed read operations on working mirrors.
1374  *	2.	Updates the raid superblock when problems encounter.
1375  *	3.	Performs writes following reads for array synchronising.
1376  */
1377 
1378 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1379 {
1380 	int sect = 0; /* Offset from r10_bio->sector */
1381 	int sectors = r10_bio->sectors;
1382 	mdk_rdev_t*rdev;
1383 	while(sectors) {
1384 		int s = sectors;
1385 		int sl = r10_bio->read_slot;
1386 		int success = 0;
1387 		int start;
1388 
1389 		if (s > (PAGE_SIZE>>9))
1390 			s = PAGE_SIZE >> 9;
1391 
1392 		rcu_read_lock();
1393 		do {
1394 			int d = r10_bio->devs[sl].devnum;
1395 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1396 			if (rdev &&
1397 			    test_bit(In_sync, &rdev->flags)) {
1398 				atomic_inc(&rdev->nr_pending);
1399 				rcu_read_unlock();
1400 				success = sync_page_io(rdev->bdev,
1401 						       r10_bio->devs[sl].addr +
1402 						       sect + rdev->data_offset,
1403 						       s<<9,
1404 						       conf->tmppage, READ);
1405 				rdev_dec_pending(rdev, mddev);
1406 				rcu_read_lock();
1407 				if (success)
1408 					break;
1409 			}
1410 			sl++;
1411 			if (sl == conf->copies)
1412 				sl = 0;
1413 		} while (!success && sl != r10_bio->read_slot);
1414 		rcu_read_unlock();
1415 
1416 		if (!success) {
1417 			/* Cannot read from anywhere -- bye bye array */
1418 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1419 			md_error(mddev, conf->mirrors[dn].rdev);
1420 			break;
1421 		}
1422 
1423 		start = sl;
1424 		/* write it back and re-read */
1425 		rcu_read_lock();
1426 		while (sl != r10_bio->read_slot) {
1427 			int d;
1428 			if (sl==0)
1429 				sl = conf->copies;
1430 			sl--;
1431 			d = r10_bio->devs[sl].devnum;
1432 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1433 			if (rdev &&
1434 			    test_bit(In_sync, &rdev->flags)) {
1435 				atomic_inc(&rdev->nr_pending);
1436 				rcu_read_unlock();
1437 				atomic_add(s, &rdev->corrected_errors);
1438 				if (sync_page_io(rdev->bdev,
1439 						 r10_bio->devs[sl].addr +
1440 						 sect + rdev->data_offset,
1441 						 s<<9, conf->tmppage, WRITE)
1442 				    == 0)
1443 					/* Well, this device is dead */
1444 					md_error(mddev, rdev);
1445 				rdev_dec_pending(rdev, mddev);
1446 				rcu_read_lock();
1447 			}
1448 		}
1449 		sl = start;
1450 		while (sl != r10_bio->read_slot) {
1451 			int d;
1452 			if (sl==0)
1453 				sl = conf->copies;
1454 			sl--;
1455 			d = r10_bio->devs[sl].devnum;
1456 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1457 			if (rdev &&
1458 			    test_bit(In_sync, &rdev->flags)) {
1459 				char b[BDEVNAME_SIZE];
1460 				atomic_inc(&rdev->nr_pending);
1461 				rcu_read_unlock();
1462 				if (sync_page_io(rdev->bdev,
1463 						 r10_bio->devs[sl].addr +
1464 						 sect + rdev->data_offset,
1465 						 s<<9, conf->tmppage, READ) == 0)
1466 					/* Well, this device is dead */
1467 					md_error(mddev, rdev);
1468 				else
1469 					printk(KERN_INFO
1470 					       "raid10:%s: read error corrected"
1471 					       " (%d sectors at %llu on %s)\n",
1472 					       mdname(mddev), s,
1473 					       (unsigned long long)(sect+
1474 					            rdev->data_offset),
1475 					       bdevname(rdev->bdev, b));
1476 
1477 				rdev_dec_pending(rdev, mddev);
1478 				rcu_read_lock();
1479 			}
1480 		}
1481 		rcu_read_unlock();
1482 
1483 		sectors -= s;
1484 		sect += s;
1485 	}
1486 }
1487 
1488 static void raid10d(mddev_t *mddev)
1489 {
1490 	r10bio_t *r10_bio;
1491 	struct bio *bio;
1492 	unsigned long flags;
1493 	conf_t *conf = mddev_to_conf(mddev);
1494 	struct list_head *head = &conf->retry_list;
1495 	int unplug=0;
1496 	mdk_rdev_t *rdev;
1497 
1498 	md_check_recovery(mddev);
1499 
1500 	for (;;) {
1501 		char b[BDEVNAME_SIZE];
1502 		spin_lock_irqsave(&conf->device_lock, flags);
1503 
1504 		if (conf->pending_bio_list.head) {
1505 			bio = bio_list_get(&conf->pending_bio_list);
1506 			blk_remove_plug(mddev->queue);
1507 			spin_unlock_irqrestore(&conf->device_lock, flags);
1508 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1509 			if (bitmap_unplug(mddev->bitmap) != 0)
1510 				printk("%s: bitmap file write failed!\n", mdname(mddev));
1511 
1512 			while (bio) { /* submit pending writes */
1513 				struct bio *next = bio->bi_next;
1514 				bio->bi_next = NULL;
1515 				generic_make_request(bio);
1516 				bio = next;
1517 			}
1518 			unplug = 1;
1519 
1520 			continue;
1521 		}
1522 
1523 		if (list_empty(head))
1524 			break;
1525 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1526 		list_del(head->prev);
1527 		conf->nr_queued--;
1528 		spin_unlock_irqrestore(&conf->device_lock, flags);
1529 
1530 		mddev = r10_bio->mddev;
1531 		conf = mddev_to_conf(mddev);
1532 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1533 			sync_request_write(mddev, r10_bio);
1534 			unplug = 1;
1535 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1536 			recovery_request_write(mddev, r10_bio);
1537 			unplug = 1;
1538 		} else {
1539 			int mirror;
1540 			/* we got a read error. Maybe the drive is bad.  Maybe just
1541 			 * the block and we can fix it.
1542 			 * We freeze all other IO, and try reading the block from
1543 			 * other devices.  When we find one, we re-write
1544 			 * and check it that fixes the read error.
1545 			 * This is all done synchronously while the array is
1546 			 * frozen.
1547 			 */
1548 			if (mddev->ro == 0) {
1549 				freeze_array(conf);
1550 				fix_read_error(conf, mddev, r10_bio);
1551 				unfreeze_array(conf);
1552 			}
1553 
1554 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1555 			r10_bio->devs[r10_bio->read_slot].bio =
1556 				mddev->ro ? IO_BLOCKED : NULL;
1557 			bio_put(bio);
1558 			mirror = read_balance(conf, r10_bio);
1559 			if (mirror == -1) {
1560 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1561 				       " read error for block %llu\n",
1562 				       bdevname(bio->bi_bdev,b),
1563 				       (unsigned long long)r10_bio->sector);
1564 				raid_end_bio_io(r10_bio);
1565 			} else {
1566 				rdev = conf->mirrors[mirror].rdev;
1567 				if (printk_ratelimit())
1568 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1569 					       " another mirror\n",
1570 					       bdevname(rdev->bdev,b),
1571 					       (unsigned long long)r10_bio->sector);
1572 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1573 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1574 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1575 					+ rdev->data_offset;
1576 				bio->bi_bdev = rdev->bdev;
1577 				bio->bi_rw = READ;
1578 				bio->bi_private = r10_bio;
1579 				bio->bi_end_io = raid10_end_read_request;
1580 				unplug = 1;
1581 				generic_make_request(bio);
1582 			}
1583 		}
1584 	}
1585 	spin_unlock_irqrestore(&conf->device_lock, flags);
1586 	if (unplug)
1587 		unplug_slaves(mddev);
1588 }
1589 
1590 
1591 static int init_resync(conf_t *conf)
1592 {
1593 	int buffs;
1594 
1595 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1596 	BUG_ON(conf->r10buf_pool);
1597 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1598 	if (!conf->r10buf_pool)
1599 		return -ENOMEM;
1600 	conf->next_resync = 0;
1601 	return 0;
1602 }
1603 
1604 /*
1605  * perform a "sync" on one "block"
1606  *
1607  * We need to make sure that no normal I/O request - particularly write
1608  * requests - conflict with active sync requests.
1609  *
1610  * This is achieved by tracking pending requests and a 'barrier' concept
1611  * that can be installed to exclude normal IO requests.
1612  *
1613  * Resync and recovery are handled very differently.
1614  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1615  *
1616  * For resync, we iterate over virtual addresses, read all copies,
1617  * and update if there are differences.  If only one copy is live,
1618  * skip it.
1619  * For recovery, we iterate over physical addresses, read a good
1620  * value for each non-in_sync drive, and over-write.
1621  *
1622  * So, for recovery we may have several outstanding complex requests for a
1623  * given address, one for each out-of-sync device.  We model this by allocating
1624  * a number of r10_bio structures, one for each out-of-sync device.
1625  * As we setup these structures, we collect all bio's together into a list
1626  * which we then process collectively to add pages, and then process again
1627  * to pass to generic_make_request.
1628  *
1629  * The r10_bio structures are linked using a borrowed master_bio pointer.
1630  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1631  * has its remaining count decremented to 0, the whole complex operation
1632  * is complete.
1633  *
1634  */
1635 
1636 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1637 {
1638 	conf_t *conf = mddev_to_conf(mddev);
1639 	r10bio_t *r10_bio;
1640 	struct bio *biolist = NULL, *bio;
1641 	sector_t max_sector, nr_sectors;
1642 	int disk;
1643 	int i;
1644 	int max_sync;
1645 	int sync_blocks;
1646 
1647 	sector_t sectors_skipped = 0;
1648 	int chunks_skipped = 0;
1649 
1650 	if (!conf->r10buf_pool)
1651 		if (init_resync(conf))
1652 			return 0;
1653 
1654  skipped:
1655 	max_sector = mddev->size << 1;
1656 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1657 		max_sector = mddev->resync_max_sectors;
1658 	if (sector_nr >= max_sector) {
1659 		/* If we aborted, we need to abort the
1660 		 * sync on the 'current' bitmap chucks (there can
1661 		 * be several when recovering multiple devices).
1662 		 * as we may have started syncing it but not finished.
1663 		 * We can find the current address in
1664 		 * mddev->curr_resync, but for recovery,
1665 		 * we need to convert that to several
1666 		 * virtual addresses.
1667 		 */
1668 		if (mddev->curr_resync < max_sector) { /* aborted */
1669 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1670 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1671 						&sync_blocks, 1);
1672 			else for (i=0; i<conf->raid_disks; i++) {
1673 				sector_t sect =
1674 					raid10_find_virt(conf, mddev->curr_resync, i);
1675 				bitmap_end_sync(mddev->bitmap, sect,
1676 						&sync_blocks, 1);
1677 			}
1678 		} else /* completed sync */
1679 			conf->fullsync = 0;
1680 
1681 		bitmap_close_sync(mddev->bitmap);
1682 		close_sync(conf);
1683 		*skipped = 1;
1684 		return sectors_skipped;
1685 	}
1686 	if (chunks_skipped >= conf->raid_disks) {
1687 		/* if there has been nothing to do on any drive,
1688 		 * then there is nothing to do at all..
1689 		 */
1690 		*skipped = 1;
1691 		return (max_sector - sector_nr) + sectors_skipped;
1692 	}
1693 
1694 	/* make sure whole request will fit in a chunk - if chunks
1695 	 * are meaningful
1696 	 */
1697 	if (conf->near_copies < conf->raid_disks &&
1698 	    max_sector > (sector_nr | conf->chunk_mask))
1699 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1700 	/*
1701 	 * If there is non-resync activity waiting for us then
1702 	 * put in a delay to throttle resync.
1703 	 */
1704 	if (!go_faster && conf->nr_waiting)
1705 		msleep_interruptible(1000);
1706 
1707 	/* Again, very different code for resync and recovery.
1708 	 * Both must result in an r10bio with a list of bios that
1709 	 * have bi_end_io, bi_sector, bi_bdev set,
1710 	 * and bi_private set to the r10bio.
1711 	 * For recovery, we may actually create several r10bios
1712 	 * with 2 bios in each, that correspond to the bios in the main one.
1713 	 * In this case, the subordinate r10bios link back through a
1714 	 * borrowed master_bio pointer, and the counter in the master
1715 	 * includes a ref from each subordinate.
1716 	 */
1717 	/* First, we decide what to do and set ->bi_end_io
1718 	 * To end_sync_read if we want to read, and
1719 	 * end_sync_write if we will want to write.
1720 	 */
1721 
1722 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1723 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1724 		/* recovery... the complicated one */
1725 		int i, j, k;
1726 		r10_bio = NULL;
1727 
1728 		for (i=0 ; i<conf->raid_disks; i++)
1729 			if (conf->mirrors[i].rdev &&
1730 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1731 				int still_degraded = 0;
1732 				/* want to reconstruct this device */
1733 				r10bio_t *rb2 = r10_bio;
1734 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1735 				int must_sync;
1736 				/* Unless we are doing a full sync, we only need
1737 				 * to recover the block if it is set in the bitmap
1738 				 */
1739 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1740 							      &sync_blocks, 1);
1741 				if (sync_blocks < max_sync)
1742 					max_sync = sync_blocks;
1743 				if (!must_sync &&
1744 				    !conf->fullsync) {
1745 					/* yep, skip the sync_blocks here, but don't assume
1746 					 * that there will never be anything to do here
1747 					 */
1748 					chunks_skipped = -1;
1749 					continue;
1750 				}
1751 
1752 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1753 				raise_barrier(conf, rb2 != NULL);
1754 				atomic_set(&r10_bio->remaining, 0);
1755 
1756 				r10_bio->master_bio = (struct bio*)rb2;
1757 				if (rb2)
1758 					atomic_inc(&rb2->remaining);
1759 				r10_bio->mddev = mddev;
1760 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1761 				r10_bio->sector = sect;
1762 
1763 				raid10_find_phys(conf, r10_bio);
1764 				/* Need to check if this section will still be
1765 				 * degraded
1766 				 */
1767 				for (j=0; j<conf->copies;j++) {
1768 					int d = r10_bio->devs[j].devnum;
1769 					if (conf->mirrors[d].rdev == NULL ||
1770 					    test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1771 						still_degraded = 1;
1772 						break;
1773 					}
1774 				}
1775 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1776 							      &sync_blocks, still_degraded);
1777 
1778 				for (j=0; j<conf->copies;j++) {
1779 					int d = r10_bio->devs[j].devnum;
1780 					if (conf->mirrors[d].rdev &&
1781 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1782 						/* This is where we read from */
1783 						bio = r10_bio->devs[0].bio;
1784 						bio->bi_next = biolist;
1785 						biolist = bio;
1786 						bio->bi_private = r10_bio;
1787 						bio->bi_end_io = end_sync_read;
1788 						bio->bi_rw = 0;
1789 						bio->bi_sector = r10_bio->devs[j].addr +
1790 							conf->mirrors[d].rdev->data_offset;
1791 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1792 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1793 						atomic_inc(&r10_bio->remaining);
1794 						/* and we write to 'i' */
1795 
1796 						for (k=0; k<conf->copies; k++)
1797 							if (r10_bio->devs[k].devnum == i)
1798 								break;
1799 						bio = r10_bio->devs[1].bio;
1800 						bio->bi_next = biolist;
1801 						biolist = bio;
1802 						bio->bi_private = r10_bio;
1803 						bio->bi_end_io = end_sync_write;
1804 						bio->bi_rw = 1;
1805 						bio->bi_sector = r10_bio->devs[k].addr +
1806 							conf->mirrors[i].rdev->data_offset;
1807 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1808 
1809 						r10_bio->devs[0].devnum = d;
1810 						r10_bio->devs[1].devnum = i;
1811 
1812 						break;
1813 					}
1814 				}
1815 				if (j == conf->copies) {
1816 					/* Cannot recover, so abort the recovery */
1817 					put_buf(r10_bio);
1818 					r10_bio = rb2;
1819 					if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1820 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1821 						       mdname(mddev));
1822 					break;
1823 				}
1824 			}
1825 		if (biolist == NULL) {
1826 			while (r10_bio) {
1827 				r10bio_t *rb2 = r10_bio;
1828 				r10_bio = (r10bio_t*) rb2->master_bio;
1829 				rb2->master_bio = NULL;
1830 				put_buf(rb2);
1831 			}
1832 			goto giveup;
1833 		}
1834 	} else {
1835 		/* resync. Schedule a read for every block at this virt offset */
1836 		int count = 0;
1837 
1838 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1839 				       &sync_blocks, mddev->degraded) &&
1840 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1841 			/* We can skip this block */
1842 			*skipped = 1;
1843 			return sync_blocks + sectors_skipped;
1844 		}
1845 		if (sync_blocks < max_sync)
1846 			max_sync = sync_blocks;
1847 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1848 
1849 		r10_bio->mddev = mddev;
1850 		atomic_set(&r10_bio->remaining, 0);
1851 		raise_barrier(conf, 0);
1852 		conf->next_resync = sector_nr;
1853 
1854 		r10_bio->master_bio = NULL;
1855 		r10_bio->sector = sector_nr;
1856 		set_bit(R10BIO_IsSync, &r10_bio->state);
1857 		raid10_find_phys(conf, r10_bio);
1858 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1859 
1860 		for (i=0; i<conf->copies; i++) {
1861 			int d = r10_bio->devs[i].devnum;
1862 			bio = r10_bio->devs[i].bio;
1863 			bio->bi_end_io = NULL;
1864 			if (conf->mirrors[d].rdev == NULL ||
1865 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1866 				continue;
1867 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1868 			atomic_inc(&r10_bio->remaining);
1869 			bio->bi_next = biolist;
1870 			biolist = bio;
1871 			bio->bi_private = r10_bio;
1872 			bio->bi_end_io = end_sync_read;
1873 			bio->bi_rw = 0;
1874 			bio->bi_sector = r10_bio->devs[i].addr +
1875 				conf->mirrors[d].rdev->data_offset;
1876 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1877 			count++;
1878 		}
1879 
1880 		if (count < 2) {
1881 			for (i=0; i<conf->copies; i++) {
1882 				int d = r10_bio->devs[i].devnum;
1883 				if (r10_bio->devs[i].bio->bi_end_io)
1884 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1885 			}
1886 			put_buf(r10_bio);
1887 			biolist = NULL;
1888 			goto giveup;
1889 		}
1890 	}
1891 
1892 	for (bio = biolist; bio ; bio=bio->bi_next) {
1893 
1894 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1895 		if (bio->bi_end_io)
1896 			bio->bi_flags |= 1 << BIO_UPTODATE;
1897 		bio->bi_vcnt = 0;
1898 		bio->bi_idx = 0;
1899 		bio->bi_phys_segments = 0;
1900 		bio->bi_hw_segments = 0;
1901 		bio->bi_size = 0;
1902 	}
1903 
1904 	nr_sectors = 0;
1905 	if (sector_nr + max_sync < max_sector)
1906 		max_sector = sector_nr + max_sync;
1907 	do {
1908 		struct page *page;
1909 		int len = PAGE_SIZE;
1910 		disk = 0;
1911 		if (sector_nr + (len>>9) > max_sector)
1912 			len = (max_sector - sector_nr) << 9;
1913 		if (len == 0)
1914 			break;
1915 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1916 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1917 			if (bio_add_page(bio, page, len, 0) == 0) {
1918 				/* stop here */
1919 				struct bio *bio2;
1920 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1921 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1922 					/* remove last page from this bio */
1923 					bio2->bi_vcnt--;
1924 					bio2->bi_size -= len;
1925 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1926 				}
1927 				goto bio_full;
1928 			}
1929 			disk = i;
1930 		}
1931 		nr_sectors += len>>9;
1932 		sector_nr += len>>9;
1933 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1934  bio_full:
1935 	r10_bio->sectors = nr_sectors;
1936 
1937 	while (biolist) {
1938 		bio = biolist;
1939 		biolist = biolist->bi_next;
1940 
1941 		bio->bi_next = NULL;
1942 		r10_bio = bio->bi_private;
1943 		r10_bio->sectors = nr_sectors;
1944 
1945 		if (bio->bi_end_io == end_sync_read) {
1946 			md_sync_acct(bio->bi_bdev, nr_sectors);
1947 			generic_make_request(bio);
1948 		}
1949 	}
1950 
1951 	if (sectors_skipped)
1952 		/* pretend they weren't skipped, it makes
1953 		 * no important difference in this case
1954 		 */
1955 		md_done_sync(mddev, sectors_skipped, 1);
1956 
1957 	return sectors_skipped + nr_sectors;
1958  giveup:
1959 	/* There is nowhere to write, so all non-sync
1960 	 * drives must be failed, so try the next chunk...
1961 	 */
1962 	{
1963 	sector_t sec = max_sector - sector_nr;
1964 	sectors_skipped += sec;
1965 	chunks_skipped ++;
1966 	sector_nr = max_sector;
1967 	goto skipped;
1968 	}
1969 }
1970 
1971 static int run(mddev_t *mddev)
1972 {
1973 	conf_t *conf;
1974 	int i, disk_idx;
1975 	mirror_info_t *disk;
1976 	mdk_rdev_t *rdev;
1977 	struct list_head *tmp;
1978 	int nc, fc, fo;
1979 	sector_t stride, size;
1980 
1981 	if (mddev->chunk_size == 0) {
1982 		printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
1983 		return -EINVAL;
1984 	}
1985 
1986 	nc = mddev->layout & 255;
1987 	fc = (mddev->layout >> 8) & 255;
1988 	fo = mddev->layout & (1<<16);
1989 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1990 	    (mddev->layout >> 17)) {
1991 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1992 		       mdname(mddev), mddev->layout);
1993 		goto out;
1994 	}
1995 	/*
1996 	 * copy the already verified devices into our private RAID10
1997 	 * bookkeeping area. [whatever we allocate in run(),
1998 	 * should be freed in stop()]
1999 	 */
2000 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2001 	mddev->private = conf;
2002 	if (!conf) {
2003 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2004 			mdname(mddev));
2005 		goto out;
2006 	}
2007 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2008 				 GFP_KERNEL);
2009 	if (!conf->mirrors) {
2010 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2011 		       mdname(mddev));
2012 		goto out_free_conf;
2013 	}
2014 
2015 	conf->tmppage = alloc_page(GFP_KERNEL);
2016 	if (!conf->tmppage)
2017 		goto out_free_conf;
2018 
2019 	conf->near_copies = nc;
2020 	conf->far_copies = fc;
2021 	conf->copies = nc*fc;
2022 	conf->far_offset = fo;
2023 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2024 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2025 	if (fo)
2026 		conf->stride = 1 << conf->chunk_shift;
2027 	else {
2028 		stride = mddev->size >> (conf->chunk_shift-1);
2029 		sector_div(stride, fc);
2030 		conf->stride = stride << conf->chunk_shift;
2031 	}
2032 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2033 						r10bio_pool_free, conf);
2034 	if (!conf->r10bio_pool) {
2035 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2036 			mdname(mddev));
2037 		goto out_free_conf;
2038 	}
2039 
2040 	ITERATE_RDEV(mddev, rdev, tmp) {
2041 		disk_idx = rdev->raid_disk;
2042 		if (disk_idx >= mddev->raid_disks
2043 		    || disk_idx < 0)
2044 			continue;
2045 		disk = conf->mirrors + disk_idx;
2046 
2047 		disk->rdev = rdev;
2048 
2049 		blk_queue_stack_limits(mddev->queue,
2050 				       rdev->bdev->bd_disk->queue);
2051 		/* as we don't honour merge_bvec_fn, we must never risk
2052 		 * violating it, so limit ->max_sector to one PAGE, as
2053 		 * a one page request is never in violation.
2054 		 */
2055 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2056 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
2057 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
2058 
2059 		disk->head_position = 0;
2060 	}
2061 	conf->raid_disks = mddev->raid_disks;
2062 	conf->mddev = mddev;
2063 	spin_lock_init(&conf->device_lock);
2064 	INIT_LIST_HEAD(&conf->retry_list);
2065 
2066 	spin_lock_init(&conf->resync_lock);
2067 	init_waitqueue_head(&conf->wait_barrier);
2068 
2069 	/* need to check that every block has at least one working mirror */
2070 	if (!enough(conf)) {
2071 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2072 		       mdname(mddev));
2073 		goto out_free_conf;
2074 	}
2075 
2076 	mddev->degraded = 0;
2077 	for (i = 0; i < conf->raid_disks; i++) {
2078 
2079 		disk = conf->mirrors + i;
2080 
2081 		if (!disk->rdev ||
2082 		    !test_bit(In_sync, &disk->rdev->flags)) {
2083 			disk->head_position = 0;
2084 			mddev->degraded++;
2085 		}
2086 	}
2087 
2088 
2089 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2090 	if (!mddev->thread) {
2091 		printk(KERN_ERR
2092 		       "raid10: couldn't allocate thread for %s\n",
2093 		       mdname(mddev));
2094 		goto out_free_conf;
2095 	}
2096 
2097 	printk(KERN_INFO
2098 		"raid10: raid set %s active with %d out of %d devices\n",
2099 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2100 		mddev->raid_disks);
2101 	/*
2102 	 * Ok, everything is just fine now
2103 	 */
2104 	if (conf->far_offset) {
2105 		size = mddev->size >> (conf->chunk_shift-1);
2106 		size *= conf->raid_disks;
2107 		size <<= conf->chunk_shift;
2108 		sector_div(size, conf->far_copies);
2109 	} else
2110 		size = conf->stride * conf->raid_disks;
2111 	sector_div(size, conf->near_copies);
2112 	mddev->array_size = size/2;
2113 	mddev->resync_max_sectors = size;
2114 
2115 	mddev->queue->unplug_fn = raid10_unplug;
2116 	mddev->queue->issue_flush_fn = raid10_issue_flush;
2117 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2118 	mddev->queue->backing_dev_info.congested_data = mddev;
2119 
2120 	/* Calculate max read-ahead size.
2121 	 * We need to readahead at least twice a whole stripe....
2122 	 * maybe...
2123 	 */
2124 	{
2125 		int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2126 		stripe /= conf->near_copies;
2127 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2128 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2129 	}
2130 
2131 	if (conf->near_copies < mddev->raid_disks)
2132 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2133 	return 0;
2134 
2135 out_free_conf:
2136 	if (conf->r10bio_pool)
2137 		mempool_destroy(conf->r10bio_pool);
2138 	safe_put_page(conf->tmppage);
2139 	kfree(conf->mirrors);
2140 	kfree(conf);
2141 	mddev->private = NULL;
2142 out:
2143 	return -EIO;
2144 }
2145 
2146 static int stop(mddev_t *mddev)
2147 {
2148 	conf_t *conf = mddev_to_conf(mddev);
2149 
2150 	md_unregister_thread(mddev->thread);
2151 	mddev->thread = NULL;
2152 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2153 	if (conf->r10bio_pool)
2154 		mempool_destroy(conf->r10bio_pool);
2155 	kfree(conf->mirrors);
2156 	kfree(conf);
2157 	mddev->private = NULL;
2158 	return 0;
2159 }
2160 
2161 static void raid10_quiesce(mddev_t *mddev, int state)
2162 {
2163 	conf_t *conf = mddev_to_conf(mddev);
2164 
2165 	switch(state) {
2166 	case 1:
2167 		raise_barrier(conf, 0);
2168 		break;
2169 	case 0:
2170 		lower_barrier(conf);
2171 		break;
2172 	}
2173 	if (mddev->thread) {
2174 		if (mddev->bitmap)
2175 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2176 		else
2177 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2178 		md_wakeup_thread(mddev->thread);
2179 	}
2180 }
2181 
2182 static struct mdk_personality raid10_personality =
2183 {
2184 	.name		= "raid10",
2185 	.level		= 10,
2186 	.owner		= THIS_MODULE,
2187 	.make_request	= make_request,
2188 	.run		= run,
2189 	.stop		= stop,
2190 	.status		= status,
2191 	.error_handler	= error,
2192 	.hot_add_disk	= raid10_add_disk,
2193 	.hot_remove_disk= raid10_remove_disk,
2194 	.spare_active	= raid10_spare_active,
2195 	.sync_request	= sync_request,
2196 	.quiesce	= raid10_quiesce,
2197 };
2198 
2199 static int __init raid_init(void)
2200 {
2201 	return register_md_personality(&raid10_personality);
2202 }
2203 
2204 static void raid_exit(void)
2205 {
2206 	unregister_md_personality(&raid10_personality);
2207 }
2208 
2209 module_init(raid_init);
2210 module_exit(raid_exit);
2211 MODULE_LICENSE("GPL");
2212 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2213 MODULE_ALIAS("md-raid10");
2214 MODULE_ALIAS("md-level-10");
2215