xref: /linux/drivers/md/raid10.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
24 
25 /*
26  * RAID10 provides a combination of RAID0 and RAID1 functionality.
27  * The layout of data is defined by
28  *    chunk_size
29  *    raid_disks
30  *    near_copies (stored in low byte of layout)
31  *    far_copies (stored in second byte of layout)
32  *    far_offset (stored in bit 16 of layout )
33  *
34  * The data to be stored is divided into chunks using chunksize.
35  * Each device is divided into far_copies sections.
36  * In each section, chunks are laid out in a style similar to raid0, but
37  * near_copies copies of each chunk is stored (each on a different drive).
38  * The starting device for each section is offset near_copies from the starting
39  * device of the previous section.
40  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41  * drive.
42  * near_copies and far_copies must be at least one, and their product is at most
43  * raid_disks.
44  *
45  * If far_offset is true, then the far_copies are handled a bit differently.
46  * The copies are still in different stripes, but instead of be very far apart
47  * on disk, there are adjacent stripes.
48  */
49 
50 /*
51  * Number of guaranteed r10bios in case of extreme VM load:
52  */
53 #define	NR_RAID10_BIOS 256
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	conf_t *conf = data;
63 	r10bio_t *r10_bio;
64 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
65 
66 	/* allocate a r10bio with room for raid_disks entries in the bios array */
67 	r10_bio = kzalloc(size, gfp_flags);
68 	if (!r10_bio)
69 		unplug_slaves(conf->mddev);
70 
71 	return r10_bio;
72 }
73 
74 static void r10bio_pool_free(void *r10_bio, void *data)
75 {
76 	kfree(r10_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 /*
86  * When performing a resync, we need to read and compare, so
87  * we need as many pages are there are copies.
88  * When performing a recovery, we need 2 bios, one for read,
89  * one for write (we recover only one drive per r10buf)
90  *
91  */
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	conf_t *conf = data;
95 	struct page *page;
96 	r10bio_t *r10_bio;
97 	struct bio *bio;
98 	int i, j;
99 	int nalloc;
100 
101 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 	if (!r10_bio) {
103 		unplug_slaves(conf->mddev);
104 		return NULL;
105 	}
106 
107 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 		nalloc = conf->copies; /* resync */
109 	else
110 		nalloc = 2; /* recovery */
111 
112 	/*
113 	 * Allocate bios.
114 	 */
115 	for (j = nalloc ; j-- ; ) {
116 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
117 		if (!bio)
118 			goto out_free_bio;
119 		r10_bio->devs[j].bio = bio;
120 	}
121 	/*
122 	 * Allocate RESYNC_PAGES data pages and attach them
123 	 * where needed.
124 	 */
125 	for (j = 0 ; j < nalloc; j++) {
126 		bio = r10_bio->devs[j].bio;
127 		for (i = 0; i < RESYNC_PAGES; i++) {
128 			page = alloc_page(gfp_flags);
129 			if (unlikely(!page))
130 				goto out_free_pages;
131 
132 			bio->bi_io_vec[i].bv_page = page;
133 		}
134 	}
135 
136 	return r10_bio;
137 
138 out_free_pages:
139 	for ( ; i > 0 ; i--)
140 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
141 	while (j--)
142 		for (i = 0; i < RESYNC_PAGES ; i++)
143 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
144 	j = -1;
145 out_free_bio:
146 	while ( ++j < nalloc )
147 		bio_put(r10_bio->devs[j].bio);
148 	r10bio_pool_free(r10_bio, conf);
149 	return NULL;
150 }
151 
152 static void r10buf_pool_free(void *__r10_bio, void *data)
153 {
154 	int i;
155 	conf_t *conf = data;
156 	r10bio_t *r10bio = __r10_bio;
157 	int j;
158 
159 	for (j=0; j < conf->copies; j++) {
160 		struct bio *bio = r10bio->devs[j].bio;
161 		if (bio) {
162 			for (i = 0; i < RESYNC_PAGES; i++) {
163 				safe_put_page(bio->bi_io_vec[i].bv_page);
164 				bio->bi_io_vec[i].bv_page = NULL;
165 			}
166 			bio_put(bio);
167 		}
168 	}
169 	r10bio_pool_free(r10bio, conf);
170 }
171 
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->copies; i++) {
177 		struct bio **bio = & r10_bio->devs[i].bio;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r10bio(r10bio_t *r10_bio)
185 {
186 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r10_bio);
195 	mempool_free(r10_bio, conf->r10bio_pool);
196 }
197 
198 static void put_buf(r10bio_t *r10_bio)
199 {
200 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
201 
202 	mempool_free(r10_bio, conf->r10buf_pool);
203 
204 	lower_barrier(conf);
205 }
206 
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209 	unsigned long flags;
210 	mddev_t *mddev = r10_bio->mddev;
211 	conf_t *conf = mddev_to_conf(mddev);
212 
213 	spin_lock_irqsave(&conf->device_lock, flags);
214 	list_add(&r10_bio->retry_list, &conf->retry_list);
215 	conf->nr_queued ++;
216 	spin_unlock_irqrestore(&conf->device_lock, flags);
217 
218 	md_wakeup_thread(mddev->thread);
219 }
220 
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void raid_end_bio_io(r10bio_t *r10_bio)
227 {
228 	struct bio *bio = r10_bio->master_bio;
229 
230 	bio_endio(bio, bio->bi_size,
231 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232 	free_r10bio(r10_bio);
233 }
234 
235 /*
236  * Update disk head position estimator based on IRQ completion info.
237  */
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
239 {
240 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
241 
242 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243 		r10_bio->devs[slot].addr + (r10_bio->sectors);
244 }
245 
246 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
247 {
248 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
250 	int slot, dev;
251 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
252 
253 	if (bio->bi_size)
254 		return 1;
255 
256 	slot = r10_bio->read_slot;
257 	dev = r10_bio->devs[slot].devnum;
258 	/*
259 	 * this branch is our 'one mirror IO has finished' event handler:
260 	 */
261 	update_head_pos(slot, r10_bio);
262 
263 	if (uptodate) {
264 		/*
265 		 * Set R10BIO_Uptodate in our master bio, so that
266 		 * we will return a good error code to the higher
267 		 * levels even if IO on some other mirrored buffer fails.
268 		 *
269 		 * The 'master' represents the composite IO operation to
270 		 * user-side. So if something waits for IO, then it will
271 		 * wait for the 'master' bio.
272 		 */
273 		set_bit(R10BIO_Uptodate, &r10_bio->state);
274 		raid_end_bio_io(r10_bio);
275 	} else {
276 		/*
277 		 * oops, read error:
278 		 */
279 		char b[BDEVNAME_SIZE];
280 		if (printk_ratelimit())
281 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
282 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
283 		reschedule_retry(r10_bio);
284 	}
285 
286 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
287 	return 0;
288 }
289 
290 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
291 {
292 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
293 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
294 	int slot, dev;
295 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
296 
297 	if (bio->bi_size)
298 		return 1;
299 
300 	for (slot = 0; slot < conf->copies; slot++)
301 		if (r10_bio->devs[slot].bio == bio)
302 			break;
303 	dev = r10_bio->devs[slot].devnum;
304 
305 	/*
306 	 * this branch is our 'one mirror IO has finished' event handler:
307 	 */
308 	if (!uptodate) {
309 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
310 		/* an I/O failed, we can't clear the bitmap */
311 		set_bit(R10BIO_Degraded, &r10_bio->state);
312 	} else
313 		/*
314 		 * Set R10BIO_Uptodate in our master bio, so that
315 		 * we will return a good error code for to the higher
316 		 * levels even if IO on some other mirrored buffer fails.
317 		 *
318 		 * The 'master' represents the composite IO operation to
319 		 * user-side. So if something waits for IO, then it will
320 		 * wait for the 'master' bio.
321 		 */
322 		set_bit(R10BIO_Uptodate, &r10_bio->state);
323 
324 	update_head_pos(slot, r10_bio);
325 
326 	/*
327 	 *
328 	 * Let's see if all mirrored write operations have finished
329 	 * already.
330 	 */
331 	if (atomic_dec_and_test(&r10_bio->remaining)) {
332 		/* clear the bitmap if all writes complete successfully */
333 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334 				r10_bio->sectors,
335 				!test_bit(R10BIO_Degraded, &r10_bio->state),
336 				0);
337 		md_write_end(r10_bio->mddev);
338 		raid_end_bio_io(r10_bio);
339 	}
340 
341 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
342 	return 0;
343 }
344 
345 
346 /*
347  * RAID10 layout manager
348  * Aswell as the chunksize and raid_disks count, there are two
349  * parameters: near_copies and far_copies.
350  * near_copies * far_copies must be <= raid_disks.
351  * Normally one of these will be 1.
352  * If both are 1, we get raid0.
353  * If near_copies == raid_disks, we get raid1.
354  *
355  * Chunks are layed out in raid0 style with near_copies copies of the
356  * first chunk, followed by near_copies copies of the next chunk and
357  * so on.
358  * If far_copies > 1, then after 1/far_copies of the array has been assigned
359  * as described above, we start again with a device offset of near_copies.
360  * So we effectively have another copy of the whole array further down all
361  * the drives, but with blocks on different drives.
362  * With this layout, and block is never stored twice on the one device.
363  *
364  * raid10_find_phys finds the sector offset of a given virtual sector
365  * on each device that it is on.
366  *
367  * raid10_find_virt does the reverse mapping, from a device and a
368  * sector offset to a virtual address
369  */
370 
371 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
372 {
373 	int n,f;
374 	sector_t sector;
375 	sector_t chunk;
376 	sector_t stripe;
377 	int dev;
378 
379 	int slot = 0;
380 
381 	/* now calculate first sector/dev */
382 	chunk = r10bio->sector >> conf->chunk_shift;
383 	sector = r10bio->sector & conf->chunk_mask;
384 
385 	chunk *= conf->near_copies;
386 	stripe = chunk;
387 	dev = sector_div(stripe, conf->raid_disks);
388 	if (conf->far_offset)
389 		stripe *= conf->far_copies;
390 
391 	sector += stripe << conf->chunk_shift;
392 
393 	/* and calculate all the others */
394 	for (n=0; n < conf->near_copies; n++) {
395 		int d = dev;
396 		sector_t s = sector;
397 		r10bio->devs[slot].addr = sector;
398 		r10bio->devs[slot].devnum = d;
399 		slot++;
400 
401 		for (f = 1; f < conf->far_copies; f++) {
402 			d += conf->near_copies;
403 			if (d >= conf->raid_disks)
404 				d -= conf->raid_disks;
405 			s += conf->stride;
406 			r10bio->devs[slot].devnum = d;
407 			r10bio->devs[slot].addr = s;
408 			slot++;
409 		}
410 		dev++;
411 		if (dev >= conf->raid_disks) {
412 			dev = 0;
413 			sector += (conf->chunk_mask + 1);
414 		}
415 	}
416 	BUG_ON(slot != conf->copies);
417 }
418 
419 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
420 {
421 	sector_t offset, chunk, vchunk;
422 
423 	offset = sector & conf->chunk_mask;
424 	if (conf->far_offset) {
425 		int fc;
426 		chunk = sector >> conf->chunk_shift;
427 		fc = sector_div(chunk, conf->far_copies);
428 		dev -= fc * conf->near_copies;
429 		if (dev < 0)
430 			dev += conf->raid_disks;
431 	} else {
432 		while (sector > conf->stride) {
433 			sector -= conf->stride;
434 			if (dev < conf->near_copies)
435 				dev += conf->raid_disks - conf->near_copies;
436 			else
437 				dev -= conf->near_copies;
438 		}
439 		chunk = sector >> conf->chunk_shift;
440 	}
441 	vchunk = chunk * conf->raid_disks + dev;
442 	sector_div(vchunk, conf->near_copies);
443 	return (vchunk << conf->chunk_shift) + offset;
444 }
445 
446 /**
447  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
448  *	@q: request queue
449  *	@bio: the buffer head that's been built up so far
450  *	@biovec: the request that could be merged to it.
451  *
452  *	Return amount of bytes we can accept at this offset
453  *      If near_copies == raid_disk, there are no striping issues,
454  *      but in that case, the function isn't called at all.
455  */
456 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
457 				struct bio_vec *bio_vec)
458 {
459 	mddev_t *mddev = q->queuedata;
460 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
461 	int max;
462 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
463 	unsigned int bio_sectors = bio->bi_size >> 9;
464 
465 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
466 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
467 	if (max <= bio_vec->bv_len && bio_sectors == 0)
468 		return bio_vec->bv_len;
469 	else
470 		return max;
471 }
472 
473 /*
474  * This routine returns the disk from which the requested read should
475  * be done. There is a per-array 'next expected sequential IO' sector
476  * number - if this matches on the next IO then we use the last disk.
477  * There is also a per-disk 'last know head position' sector that is
478  * maintained from IRQ contexts, both the normal and the resync IO
479  * completion handlers update this position correctly. If there is no
480  * perfect sequential match then we pick the disk whose head is closest.
481  *
482  * If there are 2 mirrors in the same 2 devices, performance degrades
483  * because position is mirror, not device based.
484  *
485  * The rdev for the device selected will have nr_pending incremented.
486  */
487 
488 /*
489  * FIXME: possibly should rethink readbalancing and do it differently
490  * depending on near_copies / far_copies geometry.
491  */
492 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
493 {
494 	const unsigned long this_sector = r10_bio->sector;
495 	int disk, slot, nslot;
496 	const int sectors = r10_bio->sectors;
497 	sector_t new_distance, current_distance;
498 	mdk_rdev_t *rdev;
499 
500 	raid10_find_phys(conf, r10_bio);
501 	rcu_read_lock();
502 	/*
503 	 * Check if we can balance. We can balance on the whole
504 	 * device if no resync is going on (recovery is ok), or below
505 	 * the resync window. We take the first readable disk when
506 	 * above the resync window.
507 	 */
508 	if (conf->mddev->recovery_cp < MaxSector
509 	    && (this_sector + sectors >= conf->next_resync)) {
510 		/* make sure that disk is operational */
511 		slot = 0;
512 		disk = r10_bio->devs[slot].devnum;
513 
514 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
515 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
516 		       !test_bit(In_sync, &rdev->flags)) {
517 			slot++;
518 			if (slot == conf->copies) {
519 				slot = 0;
520 				disk = -1;
521 				break;
522 			}
523 			disk = r10_bio->devs[slot].devnum;
524 		}
525 		goto rb_out;
526 	}
527 
528 
529 	/* make sure the disk is operational */
530 	slot = 0;
531 	disk = r10_bio->devs[slot].devnum;
532 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
533 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
534 	       !test_bit(In_sync, &rdev->flags)) {
535 		slot ++;
536 		if (slot == conf->copies) {
537 			disk = -1;
538 			goto rb_out;
539 		}
540 		disk = r10_bio->devs[slot].devnum;
541 	}
542 
543 
544 	current_distance = abs(r10_bio->devs[slot].addr -
545 			       conf->mirrors[disk].head_position);
546 
547 	/* Find the disk whose head is closest */
548 
549 	for (nslot = slot; nslot < conf->copies; nslot++) {
550 		int ndisk = r10_bio->devs[nslot].devnum;
551 
552 
553 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
554 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
555 		    !test_bit(In_sync, &rdev->flags))
556 			continue;
557 
558 		/* This optimisation is debatable, and completely destroys
559 		 * sequential read speed for 'far copies' arrays.  So only
560 		 * keep it for 'near' arrays, and review those later.
561 		 */
562 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
563 			disk = ndisk;
564 			slot = nslot;
565 			break;
566 		}
567 		new_distance = abs(r10_bio->devs[nslot].addr -
568 				   conf->mirrors[ndisk].head_position);
569 		if (new_distance < current_distance) {
570 			current_distance = new_distance;
571 			disk = ndisk;
572 			slot = nslot;
573 		}
574 	}
575 
576 rb_out:
577 	r10_bio->read_slot = slot;
578 /*	conf->next_seq_sect = this_sector + sectors;*/
579 
580 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
581 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
582 	else
583 		disk = -1;
584 	rcu_read_unlock();
585 
586 	return disk;
587 }
588 
589 static void unplug_slaves(mddev_t *mddev)
590 {
591 	conf_t *conf = mddev_to_conf(mddev);
592 	int i;
593 
594 	rcu_read_lock();
595 	for (i=0; i<mddev->raid_disks; i++) {
596 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
597 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
598 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
599 
600 			atomic_inc(&rdev->nr_pending);
601 			rcu_read_unlock();
602 
603 			if (r_queue->unplug_fn)
604 				r_queue->unplug_fn(r_queue);
605 
606 			rdev_dec_pending(rdev, mddev);
607 			rcu_read_lock();
608 		}
609 	}
610 	rcu_read_unlock();
611 }
612 
613 static void raid10_unplug(request_queue_t *q)
614 {
615 	mddev_t *mddev = q->queuedata;
616 
617 	unplug_slaves(q->queuedata);
618 	md_wakeup_thread(mddev->thread);
619 }
620 
621 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
622 			     sector_t *error_sector)
623 {
624 	mddev_t *mddev = q->queuedata;
625 	conf_t *conf = mddev_to_conf(mddev);
626 	int i, ret = 0;
627 
628 	rcu_read_lock();
629 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
630 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
631 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
632 			struct block_device *bdev = rdev->bdev;
633 			request_queue_t *r_queue = bdev_get_queue(bdev);
634 
635 			if (!r_queue->issue_flush_fn)
636 				ret = -EOPNOTSUPP;
637 			else {
638 				atomic_inc(&rdev->nr_pending);
639 				rcu_read_unlock();
640 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
641 							      error_sector);
642 				rdev_dec_pending(rdev, mddev);
643 				rcu_read_lock();
644 			}
645 		}
646 	}
647 	rcu_read_unlock();
648 	return ret;
649 }
650 
651 /* Barriers....
652  * Sometimes we need to suspend IO while we do something else,
653  * either some resync/recovery, or reconfigure the array.
654  * To do this we raise a 'barrier'.
655  * The 'barrier' is a counter that can be raised multiple times
656  * to count how many activities are happening which preclude
657  * normal IO.
658  * We can only raise the barrier if there is no pending IO.
659  * i.e. if nr_pending == 0.
660  * We choose only to raise the barrier if no-one is waiting for the
661  * barrier to go down.  This means that as soon as an IO request
662  * is ready, no other operations which require a barrier will start
663  * until the IO request has had a chance.
664  *
665  * So: regular IO calls 'wait_barrier'.  When that returns there
666  *    is no backgroup IO happening,  It must arrange to call
667  *    allow_barrier when it has finished its IO.
668  * backgroup IO calls must call raise_barrier.  Once that returns
669  *    there is no normal IO happeing.  It must arrange to call
670  *    lower_barrier when the particular background IO completes.
671  */
672 #define RESYNC_DEPTH 32
673 
674 static void raise_barrier(conf_t *conf, int force)
675 {
676 	BUG_ON(force && !conf->barrier);
677 	spin_lock_irq(&conf->resync_lock);
678 
679 	/* Wait until no block IO is waiting (unless 'force') */
680 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
681 			    conf->resync_lock,
682 			    raid10_unplug(conf->mddev->queue));
683 
684 	/* block any new IO from starting */
685 	conf->barrier++;
686 
687 	/* No wait for all pending IO to complete */
688 	wait_event_lock_irq(conf->wait_barrier,
689 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
690 			    conf->resync_lock,
691 			    raid10_unplug(conf->mddev->queue));
692 
693 	spin_unlock_irq(&conf->resync_lock);
694 }
695 
696 static void lower_barrier(conf_t *conf)
697 {
698 	unsigned long flags;
699 	spin_lock_irqsave(&conf->resync_lock, flags);
700 	conf->barrier--;
701 	spin_unlock_irqrestore(&conf->resync_lock, flags);
702 	wake_up(&conf->wait_barrier);
703 }
704 
705 static void wait_barrier(conf_t *conf)
706 {
707 	spin_lock_irq(&conf->resync_lock);
708 	if (conf->barrier) {
709 		conf->nr_waiting++;
710 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
711 				    conf->resync_lock,
712 				    raid10_unplug(conf->mddev->queue));
713 		conf->nr_waiting--;
714 	}
715 	conf->nr_pending++;
716 	spin_unlock_irq(&conf->resync_lock);
717 }
718 
719 static void allow_barrier(conf_t *conf)
720 {
721 	unsigned long flags;
722 	spin_lock_irqsave(&conf->resync_lock, flags);
723 	conf->nr_pending--;
724 	spin_unlock_irqrestore(&conf->resync_lock, flags);
725 	wake_up(&conf->wait_barrier);
726 }
727 
728 static void freeze_array(conf_t *conf)
729 {
730 	/* stop syncio and normal IO and wait for everything to
731 	 * go quiet.
732 	 * We increment barrier and nr_waiting, and then
733 	 * wait until barrier+nr_pending match nr_queued+2
734 	 */
735 	spin_lock_irq(&conf->resync_lock);
736 	conf->barrier++;
737 	conf->nr_waiting++;
738 	wait_event_lock_irq(conf->wait_barrier,
739 			    conf->barrier+conf->nr_pending == conf->nr_queued+2,
740 			    conf->resync_lock,
741 			    raid10_unplug(conf->mddev->queue));
742 	spin_unlock_irq(&conf->resync_lock);
743 }
744 
745 static void unfreeze_array(conf_t *conf)
746 {
747 	/* reverse the effect of the freeze */
748 	spin_lock_irq(&conf->resync_lock);
749 	conf->barrier--;
750 	conf->nr_waiting--;
751 	wake_up(&conf->wait_barrier);
752 	spin_unlock_irq(&conf->resync_lock);
753 }
754 
755 static int make_request(request_queue_t *q, struct bio * bio)
756 {
757 	mddev_t *mddev = q->queuedata;
758 	conf_t *conf = mddev_to_conf(mddev);
759 	mirror_info_t *mirror;
760 	r10bio_t *r10_bio;
761 	struct bio *read_bio;
762 	int i;
763 	int chunk_sects = conf->chunk_mask + 1;
764 	const int rw = bio_data_dir(bio);
765 	struct bio_list bl;
766 	unsigned long flags;
767 
768 	if (unlikely(bio_barrier(bio))) {
769 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
770 		return 0;
771 	}
772 
773 	/* If this request crosses a chunk boundary, we need to
774 	 * split it.  This will only happen for 1 PAGE (or less) requests.
775 	 */
776 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
777 		      > chunk_sects &&
778 		    conf->near_copies < conf->raid_disks)) {
779 		struct bio_pair *bp;
780 		/* Sanity check -- queue functions should prevent this happening */
781 		if (bio->bi_vcnt != 1 ||
782 		    bio->bi_idx != 0)
783 			goto bad_map;
784 		/* This is a one page bio that upper layers
785 		 * refuse to split for us, so we need to split it.
786 		 */
787 		bp = bio_split(bio, bio_split_pool,
788 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
789 		if (make_request(q, &bp->bio1))
790 			generic_make_request(&bp->bio1);
791 		if (make_request(q, &bp->bio2))
792 			generic_make_request(&bp->bio2);
793 
794 		bio_pair_release(bp);
795 		return 0;
796 	bad_map:
797 		printk("raid10_make_request bug: can't convert block across chunks"
798 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
799 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
800 
801 		bio_io_error(bio, bio->bi_size);
802 		return 0;
803 	}
804 
805 	md_write_start(mddev, bio);
806 
807 	/*
808 	 * Register the new request and wait if the reconstruction
809 	 * thread has put up a bar for new requests.
810 	 * Continue immediately if no resync is active currently.
811 	 */
812 	wait_barrier(conf);
813 
814 	disk_stat_inc(mddev->gendisk, ios[rw]);
815 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
816 
817 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
818 
819 	r10_bio->master_bio = bio;
820 	r10_bio->sectors = bio->bi_size >> 9;
821 
822 	r10_bio->mddev = mddev;
823 	r10_bio->sector = bio->bi_sector;
824 	r10_bio->state = 0;
825 
826 	if (rw == READ) {
827 		/*
828 		 * read balancing logic:
829 		 */
830 		int disk = read_balance(conf, r10_bio);
831 		int slot = r10_bio->read_slot;
832 		if (disk < 0) {
833 			raid_end_bio_io(r10_bio);
834 			return 0;
835 		}
836 		mirror = conf->mirrors + disk;
837 
838 		read_bio = bio_clone(bio, GFP_NOIO);
839 
840 		r10_bio->devs[slot].bio = read_bio;
841 
842 		read_bio->bi_sector = r10_bio->devs[slot].addr +
843 			mirror->rdev->data_offset;
844 		read_bio->bi_bdev = mirror->rdev->bdev;
845 		read_bio->bi_end_io = raid10_end_read_request;
846 		read_bio->bi_rw = READ;
847 		read_bio->bi_private = r10_bio;
848 
849 		generic_make_request(read_bio);
850 		return 0;
851 	}
852 
853 	/*
854 	 * WRITE:
855 	 */
856 	/* first select target devices under spinlock and
857 	 * inc refcount on their rdev.  Record them by setting
858 	 * bios[x] to bio
859 	 */
860 	raid10_find_phys(conf, r10_bio);
861 	rcu_read_lock();
862 	for (i = 0;  i < conf->copies; i++) {
863 		int d = r10_bio->devs[i].devnum;
864 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
865 		if (rdev &&
866 		    !test_bit(Faulty, &rdev->flags)) {
867 			atomic_inc(&rdev->nr_pending);
868 			r10_bio->devs[i].bio = bio;
869 		} else {
870 			r10_bio->devs[i].bio = NULL;
871 			set_bit(R10BIO_Degraded, &r10_bio->state);
872 		}
873 	}
874 	rcu_read_unlock();
875 
876 	atomic_set(&r10_bio->remaining, 0);
877 
878 	bio_list_init(&bl);
879 	for (i = 0; i < conf->copies; i++) {
880 		struct bio *mbio;
881 		int d = r10_bio->devs[i].devnum;
882 		if (!r10_bio->devs[i].bio)
883 			continue;
884 
885 		mbio = bio_clone(bio, GFP_NOIO);
886 		r10_bio->devs[i].bio = mbio;
887 
888 		mbio->bi_sector	= r10_bio->devs[i].addr+
889 			conf->mirrors[d].rdev->data_offset;
890 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
891 		mbio->bi_end_io	= raid10_end_write_request;
892 		mbio->bi_rw = WRITE;
893 		mbio->bi_private = r10_bio;
894 
895 		atomic_inc(&r10_bio->remaining);
896 		bio_list_add(&bl, mbio);
897 	}
898 
899 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
900 	spin_lock_irqsave(&conf->device_lock, flags);
901 	bio_list_merge(&conf->pending_bio_list, &bl);
902 	blk_plug_device(mddev->queue);
903 	spin_unlock_irqrestore(&conf->device_lock, flags);
904 
905 	return 0;
906 }
907 
908 static void status(struct seq_file *seq, mddev_t *mddev)
909 {
910 	conf_t *conf = mddev_to_conf(mddev);
911 	int i;
912 
913 	if (conf->near_copies < conf->raid_disks)
914 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
915 	if (conf->near_copies > 1)
916 		seq_printf(seq, " %d near-copies", conf->near_copies);
917 	if (conf->far_copies > 1) {
918 		if (conf->far_offset)
919 			seq_printf(seq, " %d offset-copies", conf->far_copies);
920 		else
921 			seq_printf(seq, " %d far-copies", conf->far_copies);
922 	}
923 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
924 						conf->working_disks);
925 	for (i = 0; i < conf->raid_disks; i++)
926 		seq_printf(seq, "%s",
927 			      conf->mirrors[i].rdev &&
928 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
929 	seq_printf(seq, "]");
930 }
931 
932 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
933 {
934 	char b[BDEVNAME_SIZE];
935 	conf_t *conf = mddev_to_conf(mddev);
936 
937 	/*
938 	 * If it is not operational, then we have already marked it as dead
939 	 * else if it is the last working disks, ignore the error, let the
940 	 * next level up know.
941 	 * else mark the drive as failed
942 	 */
943 	if (test_bit(In_sync, &rdev->flags)
944 	    && conf->working_disks == 1)
945 		/*
946 		 * Don't fail the drive, just return an IO error.
947 		 * The test should really be more sophisticated than
948 		 * "working_disks == 1", but it isn't critical, and
949 		 * can wait until we do more sophisticated "is the drive
950 		 * really dead" tests...
951 		 */
952 		return;
953 	if (test_bit(In_sync, &rdev->flags)) {
954 		mddev->degraded++;
955 		conf->working_disks--;
956 		/*
957 		 * if recovery is running, make sure it aborts.
958 		 */
959 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
960 	}
961 	clear_bit(In_sync, &rdev->flags);
962 	set_bit(Faulty, &rdev->flags);
963 	mddev->sb_dirty = 1;
964 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
965 		"	Operation continuing on %d devices\n",
966 		bdevname(rdev->bdev,b), conf->working_disks);
967 }
968 
969 static void print_conf(conf_t *conf)
970 {
971 	int i;
972 	mirror_info_t *tmp;
973 
974 	printk("RAID10 conf printout:\n");
975 	if (!conf) {
976 		printk("(!conf)\n");
977 		return;
978 	}
979 	printk(" --- wd:%d rd:%d\n", conf->working_disks,
980 		conf->raid_disks);
981 
982 	for (i = 0; i < conf->raid_disks; i++) {
983 		char b[BDEVNAME_SIZE];
984 		tmp = conf->mirrors + i;
985 		if (tmp->rdev)
986 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
987 				i, !test_bit(In_sync, &tmp->rdev->flags),
988 			        !test_bit(Faulty, &tmp->rdev->flags),
989 				bdevname(tmp->rdev->bdev,b));
990 	}
991 }
992 
993 static void close_sync(conf_t *conf)
994 {
995 	wait_barrier(conf);
996 	allow_barrier(conf);
997 
998 	mempool_destroy(conf->r10buf_pool);
999 	conf->r10buf_pool = NULL;
1000 }
1001 
1002 /* check if there are enough drives for
1003  * every block to appear on atleast one
1004  */
1005 static int enough(conf_t *conf)
1006 {
1007 	int first = 0;
1008 
1009 	do {
1010 		int n = conf->copies;
1011 		int cnt = 0;
1012 		while (n--) {
1013 			if (conf->mirrors[first].rdev)
1014 				cnt++;
1015 			first = (first+1) % conf->raid_disks;
1016 		}
1017 		if (cnt == 0)
1018 			return 0;
1019 	} while (first != 0);
1020 	return 1;
1021 }
1022 
1023 static int raid10_spare_active(mddev_t *mddev)
1024 {
1025 	int i;
1026 	conf_t *conf = mddev->private;
1027 	mirror_info_t *tmp;
1028 
1029 	/*
1030 	 * Find all non-in_sync disks within the RAID10 configuration
1031 	 * and mark them in_sync
1032 	 */
1033 	for (i = 0; i < conf->raid_disks; i++) {
1034 		tmp = conf->mirrors + i;
1035 		if (tmp->rdev
1036 		    && !test_bit(Faulty, &tmp->rdev->flags)
1037 		    && !test_bit(In_sync, &tmp->rdev->flags)) {
1038 			conf->working_disks++;
1039 			mddev->degraded--;
1040 			set_bit(In_sync, &tmp->rdev->flags);
1041 		}
1042 	}
1043 
1044 	print_conf(conf);
1045 	return 0;
1046 }
1047 
1048 
1049 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1050 {
1051 	conf_t *conf = mddev->private;
1052 	int found = 0;
1053 	int mirror;
1054 	mirror_info_t *p;
1055 
1056 	if (mddev->recovery_cp < MaxSector)
1057 		/* only hot-add to in-sync arrays, as recovery is
1058 		 * very different from resync
1059 		 */
1060 		return 0;
1061 	if (!enough(conf))
1062 		return 0;
1063 
1064 	if (rdev->saved_raid_disk >= 0 &&
1065 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1066 		mirror = rdev->saved_raid_disk;
1067 	else
1068 		mirror = 0;
1069 	for ( ; mirror < mddev->raid_disks; mirror++)
1070 		if ( !(p=conf->mirrors+mirror)->rdev) {
1071 
1072 			blk_queue_stack_limits(mddev->queue,
1073 					       rdev->bdev->bd_disk->queue);
1074 			/* as we don't honour merge_bvec_fn, we must never risk
1075 			 * violating it, so limit ->max_sector to one PAGE, as
1076 			 * a one page request is never in violation.
1077 			 */
1078 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1079 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1080 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
1081 
1082 			p->head_position = 0;
1083 			rdev->raid_disk = mirror;
1084 			found = 1;
1085 			if (rdev->saved_raid_disk != mirror)
1086 				conf->fullsync = 1;
1087 			rcu_assign_pointer(p->rdev, rdev);
1088 			break;
1089 		}
1090 
1091 	print_conf(conf);
1092 	return found;
1093 }
1094 
1095 static int raid10_remove_disk(mddev_t *mddev, int number)
1096 {
1097 	conf_t *conf = mddev->private;
1098 	int err = 0;
1099 	mdk_rdev_t *rdev;
1100 	mirror_info_t *p = conf->mirrors+ number;
1101 
1102 	print_conf(conf);
1103 	rdev = p->rdev;
1104 	if (rdev) {
1105 		if (test_bit(In_sync, &rdev->flags) ||
1106 		    atomic_read(&rdev->nr_pending)) {
1107 			err = -EBUSY;
1108 			goto abort;
1109 		}
1110 		p->rdev = NULL;
1111 		synchronize_rcu();
1112 		if (atomic_read(&rdev->nr_pending)) {
1113 			/* lost the race, try later */
1114 			err = -EBUSY;
1115 			p->rdev = rdev;
1116 		}
1117 	}
1118 abort:
1119 
1120 	print_conf(conf);
1121 	return err;
1122 }
1123 
1124 
1125 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1126 {
1127 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1128 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1129 	int i,d;
1130 
1131 	if (bio->bi_size)
1132 		return 1;
1133 
1134 	for (i=0; i<conf->copies; i++)
1135 		if (r10_bio->devs[i].bio == bio)
1136 			break;
1137 	BUG_ON(i == conf->copies);
1138 	update_head_pos(i, r10_bio);
1139 	d = r10_bio->devs[i].devnum;
1140 
1141 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1142 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1143 	else {
1144 		atomic_add(r10_bio->sectors,
1145 			   &conf->mirrors[d].rdev->corrected_errors);
1146 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1147 			md_error(r10_bio->mddev,
1148 				 conf->mirrors[d].rdev);
1149 	}
1150 
1151 	/* for reconstruct, we always reschedule after a read.
1152 	 * for resync, only after all reads
1153 	 */
1154 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1155 	    atomic_dec_and_test(&r10_bio->remaining)) {
1156 		/* we have read all the blocks,
1157 		 * do the comparison in process context in raid10d
1158 		 */
1159 		reschedule_retry(r10_bio);
1160 	}
1161 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1162 	return 0;
1163 }
1164 
1165 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1166 {
1167 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1168 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1169 	mddev_t *mddev = r10_bio->mddev;
1170 	conf_t *conf = mddev_to_conf(mddev);
1171 	int i,d;
1172 
1173 	if (bio->bi_size)
1174 		return 1;
1175 
1176 	for (i = 0; i < conf->copies; i++)
1177 		if (r10_bio->devs[i].bio == bio)
1178 			break;
1179 	d = r10_bio->devs[i].devnum;
1180 
1181 	if (!uptodate)
1182 		md_error(mddev, conf->mirrors[d].rdev);
1183 	update_head_pos(i, r10_bio);
1184 
1185 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1186 		if (r10_bio->master_bio == NULL) {
1187 			/* the primary of several recovery bios */
1188 			md_done_sync(mddev, r10_bio->sectors, 1);
1189 			put_buf(r10_bio);
1190 			break;
1191 		} else {
1192 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1193 			put_buf(r10_bio);
1194 			r10_bio = r10_bio2;
1195 		}
1196 	}
1197 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1198 	return 0;
1199 }
1200 
1201 /*
1202  * Note: sync and recover and handled very differently for raid10
1203  * This code is for resync.
1204  * For resync, we read through virtual addresses and read all blocks.
1205  * If there is any error, we schedule a write.  The lowest numbered
1206  * drive is authoritative.
1207  * However requests come for physical address, so we need to map.
1208  * For every physical address there are raid_disks/copies virtual addresses,
1209  * which is always are least one, but is not necessarly an integer.
1210  * This means that a physical address can span multiple chunks, so we may
1211  * have to submit multiple io requests for a single sync request.
1212  */
1213 /*
1214  * We check if all blocks are in-sync and only write to blocks that
1215  * aren't in sync
1216  */
1217 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1218 {
1219 	conf_t *conf = mddev_to_conf(mddev);
1220 	int i, first;
1221 	struct bio *tbio, *fbio;
1222 
1223 	atomic_set(&r10_bio->remaining, 1);
1224 
1225 	/* find the first device with a block */
1226 	for (i=0; i<conf->copies; i++)
1227 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1228 			break;
1229 
1230 	if (i == conf->copies)
1231 		goto done;
1232 
1233 	first = i;
1234 	fbio = r10_bio->devs[i].bio;
1235 
1236 	/* now find blocks with errors */
1237 	for (i=0 ; i < conf->copies ; i++) {
1238 		int  j, d;
1239 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1240 
1241 		tbio = r10_bio->devs[i].bio;
1242 
1243 		if (tbio->bi_end_io != end_sync_read)
1244 			continue;
1245 		if (i == first)
1246 			continue;
1247 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1248 			/* We know that the bi_io_vec layout is the same for
1249 			 * both 'first' and 'i', so we just compare them.
1250 			 * All vec entries are PAGE_SIZE;
1251 			 */
1252 			for (j = 0; j < vcnt; j++)
1253 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1254 					   page_address(tbio->bi_io_vec[j].bv_page),
1255 					   PAGE_SIZE))
1256 					break;
1257 			if (j == vcnt)
1258 				continue;
1259 			mddev->resync_mismatches += r10_bio->sectors;
1260 		}
1261 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1262 			/* Don't fix anything. */
1263 			continue;
1264 		/* Ok, we need to write this bio
1265 		 * First we need to fixup bv_offset, bv_len and
1266 		 * bi_vecs, as the read request might have corrupted these
1267 		 */
1268 		tbio->bi_vcnt = vcnt;
1269 		tbio->bi_size = r10_bio->sectors << 9;
1270 		tbio->bi_idx = 0;
1271 		tbio->bi_phys_segments = 0;
1272 		tbio->bi_hw_segments = 0;
1273 		tbio->bi_hw_front_size = 0;
1274 		tbio->bi_hw_back_size = 0;
1275 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1276 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1277 		tbio->bi_next = NULL;
1278 		tbio->bi_rw = WRITE;
1279 		tbio->bi_private = r10_bio;
1280 		tbio->bi_sector = r10_bio->devs[i].addr;
1281 
1282 		for (j=0; j < vcnt ; j++) {
1283 			tbio->bi_io_vec[j].bv_offset = 0;
1284 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1285 
1286 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1287 			       page_address(fbio->bi_io_vec[j].bv_page),
1288 			       PAGE_SIZE);
1289 		}
1290 		tbio->bi_end_io = end_sync_write;
1291 
1292 		d = r10_bio->devs[i].devnum;
1293 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1294 		atomic_inc(&r10_bio->remaining);
1295 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1296 
1297 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1298 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1299 		generic_make_request(tbio);
1300 	}
1301 
1302 done:
1303 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1304 		md_done_sync(mddev, r10_bio->sectors, 1);
1305 		put_buf(r10_bio);
1306 	}
1307 }
1308 
1309 /*
1310  * Now for the recovery code.
1311  * Recovery happens across physical sectors.
1312  * We recover all non-is_sync drives by finding the virtual address of
1313  * each, and then choose a working drive that also has that virt address.
1314  * There is a separate r10_bio for each non-in_sync drive.
1315  * Only the first two slots are in use. The first for reading,
1316  * The second for writing.
1317  *
1318  */
1319 
1320 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1321 {
1322 	conf_t *conf = mddev_to_conf(mddev);
1323 	int i, d;
1324 	struct bio *bio, *wbio;
1325 
1326 
1327 	/* move the pages across to the second bio
1328 	 * and submit the write request
1329 	 */
1330 	bio = r10_bio->devs[0].bio;
1331 	wbio = r10_bio->devs[1].bio;
1332 	for (i=0; i < wbio->bi_vcnt; i++) {
1333 		struct page *p = bio->bi_io_vec[i].bv_page;
1334 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1335 		wbio->bi_io_vec[i].bv_page = p;
1336 	}
1337 	d = r10_bio->devs[1].devnum;
1338 
1339 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1340 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1341 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1342 		generic_make_request(wbio);
1343 	else
1344 		bio_endio(wbio, wbio->bi_size, -EIO);
1345 }
1346 
1347 
1348 /*
1349  * This is a kernel thread which:
1350  *
1351  *	1.	Retries failed read operations on working mirrors.
1352  *	2.	Updates the raid superblock when problems encounter.
1353  *	3.	Performs writes following reads for array syncronising.
1354  */
1355 
1356 static void raid10d(mddev_t *mddev)
1357 {
1358 	r10bio_t *r10_bio;
1359 	struct bio *bio;
1360 	unsigned long flags;
1361 	conf_t *conf = mddev_to_conf(mddev);
1362 	struct list_head *head = &conf->retry_list;
1363 	int unplug=0;
1364 	mdk_rdev_t *rdev;
1365 
1366 	md_check_recovery(mddev);
1367 
1368 	for (;;) {
1369 		char b[BDEVNAME_SIZE];
1370 		spin_lock_irqsave(&conf->device_lock, flags);
1371 
1372 		if (conf->pending_bio_list.head) {
1373 			bio = bio_list_get(&conf->pending_bio_list);
1374 			blk_remove_plug(mddev->queue);
1375 			spin_unlock_irqrestore(&conf->device_lock, flags);
1376 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1377 			if (bitmap_unplug(mddev->bitmap) != 0)
1378 				printk("%s: bitmap file write failed!\n", mdname(mddev));
1379 
1380 			while (bio) { /* submit pending writes */
1381 				struct bio *next = bio->bi_next;
1382 				bio->bi_next = NULL;
1383 				generic_make_request(bio);
1384 				bio = next;
1385 			}
1386 			unplug = 1;
1387 
1388 			continue;
1389 		}
1390 
1391 		if (list_empty(head))
1392 			break;
1393 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1394 		list_del(head->prev);
1395 		conf->nr_queued--;
1396 		spin_unlock_irqrestore(&conf->device_lock, flags);
1397 
1398 		mddev = r10_bio->mddev;
1399 		conf = mddev_to_conf(mddev);
1400 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1401 			sync_request_write(mddev, r10_bio);
1402 			unplug = 1;
1403 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1404 			recovery_request_write(mddev, r10_bio);
1405 			unplug = 1;
1406 		} else {
1407 			int mirror;
1408 			/* we got a read error. Maybe the drive is bad.  Maybe just
1409 			 * the block and we can fix it.
1410 			 * We freeze all other IO, and try reading the block from
1411 			 * other devices.  When we find one, we re-write
1412 			 * and check it that fixes the read error.
1413 			 * This is all done synchronously while the array is
1414 			 * frozen.
1415 			 */
1416 			int sect = 0; /* Offset from r10_bio->sector */
1417 			int sectors = r10_bio->sectors;
1418 			freeze_array(conf);
1419 			if (mddev->ro == 0) while(sectors) {
1420 				int s = sectors;
1421 				int sl = r10_bio->read_slot;
1422 				int success = 0;
1423 
1424 				if (s > (PAGE_SIZE>>9))
1425 					s = PAGE_SIZE >> 9;
1426 
1427 				rcu_read_lock();
1428 				do {
1429 					int d = r10_bio->devs[sl].devnum;
1430 					rdev = rcu_dereference(conf->mirrors[d].rdev);
1431 					if (rdev &&
1432 					    test_bit(In_sync, &rdev->flags)) {
1433 						atomic_inc(&rdev->nr_pending);
1434 						rcu_read_unlock();
1435 						success = sync_page_io(rdev->bdev,
1436 								       r10_bio->devs[sl].addr +
1437 								       sect + rdev->data_offset,
1438 								       s<<9,
1439 								       conf->tmppage, READ);
1440 						rdev_dec_pending(rdev, mddev);
1441 						rcu_read_lock();
1442 						if (success)
1443 							break;
1444 					}
1445 					sl++;
1446 					if (sl == conf->copies)
1447 						sl = 0;
1448 				} while (!success && sl != r10_bio->read_slot);
1449 				rcu_read_unlock();
1450 
1451 				if (success) {
1452 					int start = sl;
1453 					/* write it back and re-read */
1454 					rcu_read_lock();
1455 					while (sl != r10_bio->read_slot) {
1456 						int d;
1457 						if (sl==0)
1458 							sl = conf->copies;
1459 						sl--;
1460 						d = r10_bio->devs[sl].devnum;
1461 						rdev = rcu_dereference(conf->mirrors[d].rdev);
1462 						if (rdev &&
1463 						    test_bit(In_sync, &rdev->flags)) {
1464 							atomic_inc(&rdev->nr_pending);
1465 							rcu_read_unlock();
1466 							atomic_add(s, &rdev->corrected_errors);
1467 							if (sync_page_io(rdev->bdev,
1468 									 r10_bio->devs[sl].addr +
1469 									 sect + rdev->data_offset,
1470 									 s<<9, conf->tmppage, WRITE) == 0)
1471 								/* Well, this device is dead */
1472 								md_error(mddev, rdev);
1473 							rdev_dec_pending(rdev, mddev);
1474 							rcu_read_lock();
1475 						}
1476 					}
1477 					sl = start;
1478 					while (sl != r10_bio->read_slot) {
1479 						int d;
1480 						if (sl==0)
1481 							sl = conf->copies;
1482 						sl--;
1483 						d = r10_bio->devs[sl].devnum;
1484 						rdev = rcu_dereference(conf->mirrors[d].rdev);
1485 						if (rdev &&
1486 						    test_bit(In_sync, &rdev->flags)) {
1487 							atomic_inc(&rdev->nr_pending);
1488 							rcu_read_unlock();
1489 							if (sync_page_io(rdev->bdev,
1490 									 r10_bio->devs[sl].addr +
1491 									 sect + rdev->data_offset,
1492 									 s<<9, conf->tmppage, READ) == 0)
1493 								/* Well, this device is dead */
1494 								md_error(mddev, rdev);
1495 							rdev_dec_pending(rdev, mddev);
1496 							rcu_read_lock();
1497 						}
1498 					}
1499 					rcu_read_unlock();
1500 				} else {
1501 					/* Cannot read from anywhere -- bye bye array */
1502 					md_error(mddev, conf->mirrors[r10_bio->devs[r10_bio->read_slot].devnum].rdev);
1503 					break;
1504 				}
1505 				sectors -= s;
1506 				sect += s;
1507 			}
1508 
1509 			unfreeze_array(conf);
1510 
1511 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1512 			r10_bio->devs[r10_bio->read_slot].bio =
1513 				mddev->ro ? IO_BLOCKED : NULL;
1514 			bio_put(bio);
1515 			mirror = read_balance(conf, r10_bio);
1516 			if (mirror == -1) {
1517 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1518 				       " read error for block %llu\n",
1519 				       bdevname(bio->bi_bdev,b),
1520 				       (unsigned long long)r10_bio->sector);
1521 				raid_end_bio_io(r10_bio);
1522 			} else {
1523 				rdev = conf->mirrors[mirror].rdev;
1524 				if (printk_ratelimit())
1525 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1526 					       " another mirror\n",
1527 					       bdevname(rdev->bdev,b),
1528 					       (unsigned long long)r10_bio->sector);
1529 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1530 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1531 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1532 					+ rdev->data_offset;
1533 				bio->bi_bdev = rdev->bdev;
1534 				bio->bi_rw = READ;
1535 				bio->bi_private = r10_bio;
1536 				bio->bi_end_io = raid10_end_read_request;
1537 				unplug = 1;
1538 				generic_make_request(bio);
1539 			}
1540 		}
1541 	}
1542 	spin_unlock_irqrestore(&conf->device_lock, flags);
1543 	if (unplug)
1544 		unplug_slaves(mddev);
1545 }
1546 
1547 
1548 static int init_resync(conf_t *conf)
1549 {
1550 	int buffs;
1551 
1552 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1553 	BUG_ON(conf->r10buf_pool);
1554 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1555 	if (!conf->r10buf_pool)
1556 		return -ENOMEM;
1557 	conf->next_resync = 0;
1558 	return 0;
1559 }
1560 
1561 /*
1562  * perform a "sync" on one "block"
1563  *
1564  * We need to make sure that no normal I/O request - particularly write
1565  * requests - conflict with active sync requests.
1566  *
1567  * This is achieved by tracking pending requests and a 'barrier' concept
1568  * that can be installed to exclude normal IO requests.
1569  *
1570  * Resync and recovery are handled very differently.
1571  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1572  *
1573  * For resync, we iterate over virtual addresses, read all copies,
1574  * and update if there are differences.  If only one copy is live,
1575  * skip it.
1576  * For recovery, we iterate over physical addresses, read a good
1577  * value for each non-in_sync drive, and over-write.
1578  *
1579  * So, for recovery we may have several outstanding complex requests for a
1580  * given address, one for each out-of-sync device.  We model this by allocating
1581  * a number of r10_bio structures, one for each out-of-sync device.
1582  * As we setup these structures, we collect all bio's together into a list
1583  * which we then process collectively to add pages, and then process again
1584  * to pass to generic_make_request.
1585  *
1586  * The r10_bio structures are linked using a borrowed master_bio pointer.
1587  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1588  * has its remaining count decremented to 0, the whole complex operation
1589  * is complete.
1590  *
1591  */
1592 
1593 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1594 {
1595 	conf_t *conf = mddev_to_conf(mddev);
1596 	r10bio_t *r10_bio;
1597 	struct bio *biolist = NULL, *bio;
1598 	sector_t max_sector, nr_sectors;
1599 	int disk;
1600 	int i;
1601 	int max_sync;
1602 	int sync_blocks;
1603 
1604 	sector_t sectors_skipped = 0;
1605 	int chunks_skipped = 0;
1606 
1607 	if (!conf->r10buf_pool)
1608 		if (init_resync(conf))
1609 			return 0;
1610 
1611  skipped:
1612 	max_sector = mddev->size << 1;
1613 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1614 		max_sector = mddev->resync_max_sectors;
1615 	if (sector_nr >= max_sector) {
1616 		/* If we aborted, we need to abort the
1617 		 * sync on the 'current' bitmap chucks (there can
1618 		 * be several when recovering multiple devices).
1619 		 * as we may have started syncing it but not finished.
1620 		 * We can find the current address in
1621 		 * mddev->curr_resync, but for recovery,
1622 		 * we need to convert that to several
1623 		 * virtual addresses.
1624 		 */
1625 		if (mddev->curr_resync < max_sector) { /* aborted */
1626 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1627 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1628 						&sync_blocks, 1);
1629 			else for (i=0; i<conf->raid_disks; i++) {
1630 				sector_t sect =
1631 					raid10_find_virt(conf, mddev->curr_resync, i);
1632 				bitmap_end_sync(mddev->bitmap, sect,
1633 						&sync_blocks, 1);
1634 			}
1635 		} else /* completed sync */
1636 			conf->fullsync = 0;
1637 
1638 		bitmap_close_sync(mddev->bitmap);
1639 		close_sync(conf);
1640 		*skipped = 1;
1641 		return sectors_skipped;
1642 	}
1643 	if (chunks_skipped >= conf->raid_disks) {
1644 		/* if there has been nothing to do on any drive,
1645 		 * then there is nothing to do at all..
1646 		 */
1647 		*skipped = 1;
1648 		return (max_sector - sector_nr) + sectors_skipped;
1649 	}
1650 
1651 	/* make sure whole request will fit in a chunk - if chunks
1652 	 * are meaningful
1653 	 */
1654 	if (conf->near_copies < conf->raid_disks &&
1655 	    max_sector > (sector_nr | conf->chunk_mask))
1656 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1657 	/*
1658 	 * If there is non-resync activity waiting for us then
1659 	 * put in a delay to throttle resync.
1660 	 */
1661 	if (!go_faster && conf->nr_waiting)
1662 		msleep_interruptible(1000);
1663 
1664 	/* Again, very different code for resync and recovery.
1665 	 * Both must result in an r10bio with a list of bios that
1666 	 * have bi_end_io, bi_sector, bi_bdev set,
1667 	 * and bi_private set to the r10bio.
1668 	 * For recovery, we may actually create several r10bios
1669 	 * with 2 bios in each, that correspond to the bios in the main one.
1670 	 * In this case, the subordinate r10bios link back through a
1671 	 * borrowed master_bio pointer, and the counter in the master
1672 	 * includes a ref from each subordinate.
1673 	 */
1674 	/* First, we decide what to do and set ->bi_end_io
1675 	 * To end_sync_read if we want to read, and
1676 	 * end_sync_write if we will want to write.
1677 	 */
1678 
1679 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1680 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1681 		/* recovery... the complicated one */
1682 		int i, j, k;
1683 		r10_bio = NULL;
1684 
1685 		for (i=0 ; i<conf->raid_disks; i++)
1686 			if (conf->mirrors[i].rdev &&
1687 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1688 				int still_degraded = 0;
1689 				/* want to reconstruct this device */
1690 				r10bio_t *rb2 = r10_bio;
1691 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1692 				int must_sync;
1693 				/* Unless we are doing a full sync, we only need
1694 				 * to recover the block if it is set in the bitmap
1695 				 */
1696 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1697 							      &sync_blocks, 1);
1698 				if (sync_blocks < max_sync)
1699 					max_sync = sync_blocks;
1700 				if (!must_sync &&
1701 				    !conf->fullsync) {
1702 					/* yep, skip the sync_blocks here, but don't assume
1703 					 * that there will never be anything to do here
1704 					 */
1705 					chunks_skipped = -1;
1706 					continue;
1707 				}
1708 
1709 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1710 				raise_barrier(conf, rb2 != NULL);
1711 				atomic_set(&r10_bio->remaining, 0);
1712 
1713 				r10_bio->master_bio = (struct bio*)rb2;
1714 				if (rb2)
1715 					atomic_inc(&rb2->remaining);
1716 				r10_bio->mddev = mddev;
1717 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1718 				r10_bio->sector = sect;
1719 
1720 				raid10_find_phys(conf, r10_bio);
1721 				/* Need to check if this section will still be
1722 				 * degraded
1723 				 */
1724 				for (j=0; j<conf->copies;j++) {
1725 					int d = r10_bio->devs[j].devnum;
1726 					if (conf->mirrors[d].rdev == NULL ||
1727 					    test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1728 						still_degraded = 1;
1729 						break;
1730 					}
1731 				}
1732 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1733 							      &sync_blocks, still_degraded);
1734 
1735 				for (j=0; j<conf->copies;j++) {
1736 					int d = r10_bio->devs[j].devnum;
1737 					if (conf->mirrors[d].rdev &&
1738 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1739 						/* This is where we read from */
1740 						bio = r10_bio->devs[0].bio;
1741 						bio->bi_next = biolist;
1742 						biolist = bio;
1743 						bio->bi_private = r10_bio;
1744 						bio->bi_end_io = end_sync_read;
1745 						bio->bi_rw = 0;
1746 						bio->bi_sector = r10_bio->devs[j].addr +
1747 							conf->mirrors[d].rdev->data_offset;
1748 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1749 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1750 						atomic_inc(&r10_bio->remaining);
1751 						/* and we write to 'i' */
1752 
1753 						for (k=0; k<conf->copies; k++)
1754 							if (r10_bio->devs[k].devnum == i)
1755 								break;
1756 						bio = r10_bio->devs[1].bio;
1757 						bio->bi_next = biolist;
1758 						biolist = bio;
1759 						bio->bi_private = r10_bio;
1760 						bio->bi_end_io = end_sync_write;
1761 						bio->bi_rw = 1;
1762 						bio->bi_sector = r10_bio->devs[k].addr +
1763 							conf->mirrors[i].rdev->data_offset;
1764 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1765 
1766 						r10_bio->devs[0].devnum = d;
1767 						r10_bio->devs[1].devnum = i;
1768 
1769 						break;
1770 					}
1771 				}
1772 				if (j == conf->copies) {
1773 					/* Cannot recover, so abort the recovery */
1774 					put_buf(r10_bio);
1775 					r10_bio = rb2;
1776 					if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1777 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1778 						       mdname(mddev));
1779 					break;
1780 				}
1781 			}
1782 		if (biolist == NULL) {
1783 			while (r10_bio) {
1784 				r10bio_t *rb2 = r10_bio;
1785 				r10_bio = (r10bio_t*) rb2->master_bio;
1786 				rb2->master_bio = NULL;
1787 				put_buf(rb2);
1788 			}
1789 			goto giveup;
1790 		}
1791 	} else {
1792 		/* resync. Schedule a read for every block at this virt offset */
1793 		int count = 0;
1794 
1795 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1796 				       &sync_blocks, mddev->degraded) &&
1797 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1798 			/* We can skip this block */
1799 			*skipped = 1;
1800 			return sync_blocks + sectors_skipped;
1801 		}
1802 		if (sync_blocks < max_sync)
1803 			max_sync = sync_blocks;
1804 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1805 
1806 		r10_bio->mddev = mddev;
1807 		atomic_set(&r10_bio->remaining, 0);
1808 		raise_barrier(conf, 0);
1809 		conf->next_resync = sector_nr;
1810 
1811 		r10_bio->master_bio = NULL;
1812 		r10_bio->sector = sector_nr;
1813 		set_bit(R10BIO_IsSync, &r10_bio->state);
1814 		raid10_find_phys(conf, r10_bio);
1815 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1816 
1817 		for (i=0; i<conf->copies; i++) {
1818 			int d = r10_bio->devs[i].devnum;
1819 			bio = r10_bio->devs[i].bio;
1820 			bio->bi_end_io = NULL;
1821 			if (conf->mirrors[d].rdev == NULL ||
1822 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1823 				continue;
1824 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1825 			atomic_inc(&r10_bio->remaining);
1826 			bio->bi_next = biolist;
1827 			biolist = bio;
1828 			bio->bi_private = r10_bio;
1829 			bio->bi_end_io = end_sync_read;
1830 			bio->bi_rw = 0;
1831 			bio->bi_sector = r10_bio->devs[i].addr +
1832 				conf->mirrors[d].rdev->data_offset;
1833 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1834 			count++;
1835 		}
1836 
1837 		if (count < 2) {
1838 			for (i=0; i<conf->copies; i++) {
1839 				int d = r10_bio->devs[i].devnum;
1840 				if (r10_bio->devs[i].bio->bi_end_io)
1841 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1842 			}
1843 			put_buf(r10_bio);
1844 			biolist = NULL;
1845 			goto giveup;
1846 		}
1847 	}
1848 
1849 	for (bio = biolist; bio ; bio=bio->bi_next) {
1850 
1851 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1852 		if (bio->bi_end_io)
1853 			bio->bi_flags |= 1 << BIO_UPTODATE;
1854 		bio->bi_vcnt = 0;
1855 		bio->bi_idx = 0;
1856 		bio->bi_phys_segments = 0;
1857 		bio->bi_hw_segments = 0;
1858 		bio->bi_size = 0;
1859 	}
1860 
1861 	nr_sectors = 0;
1862 	if (sector_nr + max_sync < max_sector)
1863 		max_sector = sector_nr + max_sync;
1864 	do {
1865 		struct page *page;
1866 		int len = PAGE_SIZE;
1867 		disk = 0;
1868 		if (sector_nr + (len>>9) > max_sector)
1869 			len = (max_sector - sector_nr) << 9;
1870 		if (len == 0)
1871 			break;
1872 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1873 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1874 			if (bio_add_page(bio, page, len, 0) == 0) {
1875 				/* stop here */
1876 				struct bio *bio2;
1877 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1878 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1879 					/* remove last page from this bio */
1880 					bio2->bi_vcnt--;
1881 					bio2->bi_size -= len;
1882 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1883 				}
1884 				goto bio_full;
1885 			}
1886 			disk = i;
1887 		}
1888 		nr_sectors += len>>9;
1889 		sector_nr += len>>9;
1890 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1891  bio_full:
1892 	r10_bio->sectors = nr_sectors;
1893 
1894 	while (biolist) {
1895 		bio = biolist;
1896 		biolist = biolist->bi_next;
1897 
1898 		bio->bi_next = NULL;
1899 		r10_bio = bio->bi_private;
1900 		r10_bio->sectors = nr_sectors;
1901 
1902 		if (bio->bi_end_io == end_sync_read) {
1903 			md_sync_acct(bio->bi_bdev, nr_sectors);
1904 			generic_make_request(bio);
1905 		}
1906 	}
1907 
1908 	if (sectors_skipped)
1909 		/* pretend they weren't skipped, it makes
1910 		 * no important difference in this case
1911 		 */
1912 		md_done_sync(mddev, sectors_skipped, 1);
1913 
1914 	return sectors_skipped + nr_sectors;
1915  giveup:
1916 	/* There is nowhere to write, so all non-sync
1917 	 * drives must be failed, so try the next chunk...
1918 	 */
1919 	{
1920 	sector_t sec = max_sector - sector_nr;
1921 	sectors_skipped += sec;
1922 	chunks_skipped ++;
1923 	sector_nr = max_sector;
1924 	goto skipped;
1925 	}
1926 }
1927 
1928 static int run(mddev_t *mddev)
1929 {
1930 	conf_t *conf;
1931 	int i, disk_idx;
1932 	mirror_info_t *disk;
1933 	mdk_rdev_t *rdev;
1934 	struct list_head *tmp;
1935 	int nc, fc, fo;
1936 	sector_t stride, size;
1937 
1938 	if (mddev->chunk_size == 0) {
1939 		printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
1940 		return -EINVAL;
1941 	}
1942 
1943 	nc = mddev->layout & 255;
1944 	fc = (mddev->layout >> 8) & 255;
1945 	fo = mddev->layout & (1<<16);
1946 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1947 	    (mddev->layout >> 17)) {
1948 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1949 		       mdname(mddev), mddev->layout);
1950 		goto out;
1951 	}
1952 	/*
1953 	 * copy the already verified devices into our private RAID10
1954 	 * bookkeeping area. [whatever we allocate in run(),
1955 	 * should be freed in stop()]
1956 	 */
1957 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1958 	mddev->private = conf;
1959 	if (!conf) {
1960 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1961 			mdname(mddev));
1962 		goto out;
1963 	}
1964 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1965 				 GFP_KERNEL);
1966 	if (!conf->mirrors) {
1967 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1968 		       mdname(mddev));
1969 		goto out_free_conf;
1970 	}
1971 
1972 	conf->tmppage = alloc_page(GFP_KERNEL);
1973 	if (!conf->tmppage)
1974 		goto out_free_conf;
1975 
1976 	conf->near_copies = nc;
1977 	conf->far_copies = fc;
1978 	conf->copies = nc*fc;
1979 	conf->far_offset = fo;
1980 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1981 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1982 	if (fo)
1983 		conf->stride = 1 << conf->chunk_shift;
1984 	else {
1985 		stride = mddev->size >> (conf->chunk_shift-1);
1986 		sector_div(stride, fc);
1987 		conf->stride = stride << conf->chunk_shift;
1988 	}
1989 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1990 						r10bio_pool_free, conf);
1991 	if (!conf->r10bio_pool) {
1992 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1993 			mdname(mddev));
1994 		goto out_free_conf;
1995 	}
1996 
1997 	ITERATE_RDEV(mddev, rdev, tmp) {
1998 		disk_idx = rdev->raid_disk;
1999 		if (disk_idx >= mddev->raid_disks
2000 		    || disk_idx < 0)
2001 			continue;
2002 		disk = conf->mirrors + disk_idx;
2003 
2004 		disk->rdev = rdev;
2005 
2006 		blk_queue_stack_limits(mddev->queue,
2007 				       rdev->bdev->bd_disk->queue);
2008 		/* as we don't honour merge_bvec_fn, we must never risk
2009 		 * violating it, so limit ->max_sector to one PAGE, as
2010 		 * a one page request is never in violation.
2011 		 */
2012 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2013 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
2014 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
2015 
2016 		disk->head_position = 0;
2017 		if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
2018 			conf->working_disks++;
2019 	}
2020 	conf->raid_disks = mddev->raid_disks;
2021 	conf->mddev = mddev;
2022 	spin_lock_init(&conf->device_lock);
2023 	INIT_LIST_HEAD(&conf->retry_list);
2024 
2025 	spin_lock_init(&conf->resync_lock);
2026 	init_waitqueue_head(&conf->wait_barrier);
2027 
2028 	/* need to check that every block has at least one working mirror */
2029 	if (!enough(conf)) {
2030 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2031 		       mdname(mddev));
2032 		goto out_free_conf;
2033 	}
2034 
2035 	mddev->degraded = 0;
2036 	for (i = 0; i < conf->raid_disks; i++) {
2037 
2038 		disk = conf->mirrors + i;
2039 
2040 		if (!disk->rdev ||
2041 		    !test_bit(In_sync, &rdev->flags)) {
2042 			disk->head_position = 0;
2043 			mddev->degraded++;
2044 		}
2045 	}
2046 
2047 
2048 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2049 	if (!mddev->thread) {
2050 		printk(KERN_ERR
2051 		       "raid10: couldn't allocate thread for %s\n",
2052 		       mdname(mddev));
2053 		goto out_free_conf;
2054 	}
2055 
2056 	printk(KERN_INFO
2057 		"raid10: raid set %s active with %d out of %d devices\n",
2058 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2059 		mddev->raid_disks);
2060 	/*
2061 	 * Ok, everything is just fine now
2062 	 */
2063 	if (conf->far_offset) {
2064 		size = mddev->size >> (conf->chunk_shift-1);
2065 		size *= conf->raid_disks;
2066 		size <<= conf->chunk_shift;
2067 		sector_div(size, conf->far_copies);
2068 	} else
2069 		size = conf->stride * conf->raid_disks;
2070 	sector_div(size, conf->near_copies);
2071 	mddev->array_size = size/2;
2072 	mddev->resync_max_sectors = size;
2073 
2074 	mddev->queue->unplug_fn = raid10_unplug;
2075 	mddev->queue->issue_flush_fn = raid10_issue_flush;
2076 
2077 	/* Calculate max read-ahead size.
2078 	 * We need to readahead at least twice a whole stripe....
2079 	 * maybe...
2080 	 */
2081 	{
2082 		int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2083 		stripe /= conf->near_copies;
2084 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2085 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2086 	}
2087 
2088 	if (conf->near_copies < mddev->raid_disks)
2089 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2090 	return 0;
2091 
2092 out_free_conf:
2093 	if (conf->r10bio_pool)
2094 		mempool_destroy(conf->r10bio_pool);
2095 	safe_put_page(conf->tmppage);
2096 	kfree(conf->mirrors);
2097 	kfree(conf);
2098 	mddev->private = NULL;
2099 out:
2100 	return -EIO;
2101 }
2102 
2103 static int stop(mddev_t *mddev)
2104 {
2105 	conf_t *conf = mddev_to_conf(mddev);
2106 
2107 	md_unregister_thread(mddev->thread);
2108 	mddev->thread = NULL;
2109 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2110 	if (conf->r10bio_pool)
2111 		mempool_destroy(conf->r10bio_pool);
2112 	kfree(conf->mirrors);
2113 	kfree(conf);
2114 	mddev->private = NULL;
2115 	return 0;
2116 }
2117 
2118 static void raid10_quiesce(mddev_t *mddev, int state)
2119 {
2120 	conf_t *conf = mddev_to_conf(mddev);
2121 
2122 	switch(state) {
2123 	case 1:
2124 		raise_barrier(conf, 0);
2125 		break;
2126 	case 0:
2127 		lower_barrier(conf);
2128 		break;
2129 	}
2130 	if (mddev->thread) {
2131 		if (mddev->bitmap)
2132 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2133 		else
2134 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2135 		md_wakeup_thread(mddev->thread);
2136 	}
2137 }
2138 
2139 static struct mdk_personality raid10_personality =
2140 {
2141 	.name		= "raid10",
2142 	.level		= 10,
2143 	.owner		= THIS_MODULE,
2144 	.make_request	= make_request,
2145 	.run		= run,
2146 	.stop		= stop,
2147 	.status		= status,
2148 	.error_handler	= error,
2149 	.hot_add_disk	= raid10_add_disk,
2150 	.hot_remove_disk= raid10_remove_disk,
2151 	.spare_active	= raid10_spare_active,
2152 	.sync_request	= sync_request,
2153 	.quiesce	= raid10_quiesce,
2154 };
2155 
2156 static int __init raid_init(void)
2157 {
2158 	return register_md_personality(&raid10_personality);
2159 }
2160 
2161 static void raid_exit(void)
2162 {
2163 	unregister_md_personality(&raid10_personality);
2164 }
2165 
2166 module_init(raid_init);
2167 module_exit(raid_exit);
2168 MODULE_LICENSE("GPL");
2169 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2170 MODULE_ALIAS("md-raid10");
2171 MODULE_ALIAS("md-level-10");
2172