xref: /linux/drivers/md/raid10.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/raid/raid10.h>
22 
23 /*
24  * RAID10 provides a combination of RAID0 and RAID1 functionality.
25  * The layout of data is defined by
26  *    chunk_size
27  *    raid_disks
28  *    near_copies (stored in low byte of layout)
29  *    far_copies (stored in second byte of layout)
30  *
31  * The data to be stored is divided into chunks using chunksize.
32  * Each device is divided into far_copies sections.
33  * In each section, chunks are laid out in a style similar to raid0, but
34  * near_copies copies of each chunk is stored (each on a different drive).
35  * The starting device for each section is offset near_copies from the starting
36  * device of the previous section.
37  * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
38  * drive.
39  * near_copies and far_copies must be at least one, and their product is at most
40  * raid_disks.
41  */
42 
43 /*
44  * Number of guaranteed r10bios in case of extreme VM load:
45  */
46 #define	NR_RAID10_BIOS 256
47 
48 static void unplug_slaves(mddev_t *mddev);
49 
50 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
51 {
52 	conf_t *conf = data;
53 	r10bio_t *r10_bio;
54 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
55 
56 	/* allocate a r10bio with room for raid_disks entries in the bios array */
57 	r10_bio = kmalloc(size, gfp_flags);
58 	if (r10_bio)
59 		memset(r10_bio, 0, size);
60 	else
61 		unplug_slaves(conf->mddev);
62 
63 	return r10_bio;
64 }
65 
66 static void r10bio_pool_free(void *r10_bio, void *data)
67 {
68 	kfree(r10_bio);
69 }
70 
71 #define RESYNC_BLOCK_SIZE (64*1024)
72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75 #define RESYNC_WINDOW (2048*1024)
76 
77 /*
78  * When performing a resync, we need to read and compare, so
79  * we need as many pages are there are copies.
80  * When performing a recovery, we need 2 bios, one for read,
81  * one for write (we recover only one drive per r10buf)
82  *
83  */
84 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
85 {
86 	conf_t *conf = data;
87 	struct page *page;
88 	r10bio_t *r10_bio;
89 	struct bio *bio;
90 	int i, j;
91 	int nalloc;
92 
93 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
94 	if (!r10_bio) {
95 		unplug_slaves(conf->mddev);
96 		return NULL;
97 	}
98 
99 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
100 		nalloc = conf->copies; /* resync */
101 	else
102 		nalloc = 2; /* recovery */
103 
104 	/*
105 	 * Allocate bios.
106 	 */
107 	for (j = nalloc ; j-- ; ) {
108 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
109 		if (!bio)
110 			goto out_free_bio;
111 		r10_bio->devs[j].bio = bio;
112 	}
113 	/*
114 	 * Allocate RESYNC_PAGES data pages and attach them
115 	 * where needed.
116 	 */
117 	for (j = 0 ; j < nalloc; j++) {
118 		bio = r10_bio->devs[j].bio;
119 		for (i = 0; i < RESYNC_PAGES; i++) {
120 			page = alloc_page(gfp_flags);
121 			if (unlikely(!page))
122 				goto out_free_pages;
123 
124 			bio->bi_io_vec[i].bv_page = page;
125 		}
126 	}
127 
128 	return r10_bio;
129 
130 out_free_pages:
131 	for ( ; i > 0 ; i--)
132 		__free_page(bio->bi_io_vec[i-1].bv_page);
133 	while (j--)
134 		for (i = 0; i < RESYNC_PAGES ; i++)
135 			__free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
136 	j = -1;
137 out_free_bio:
138 	while ( ++j < nalloc )
139 		bio_put(r10_bio->devs[j].bio);
140 	r10bio_pool_free(r10_bio, conf);
141 	return NULL;
142 }
143 
144 static void r10buf_pool_free(void *__r10_bio, void *data)
145 {
146 	int i;
147 	conf_t *conf = data;
148 	r10bio_t *r10bio = __r10_bio;
149 	int j;
150 
151 	for (j=0; j < conf->copies; j++) {
152 		struct bio *bio = r10bio->devs[j].bio;
153 		if (bio) {
154 			for (i = 0; i < RESYNC_PAGES; i++) {
155 				__free_page(bio->bi_io_vec[i].bv_page);
156 				bio->bi_io_vec[i].bv_page = NULL;
157 			}
158 			bio_put(bio);
159 		}
160 	}
161 	r10bio_pool_free(r10bio, conf);
162 }
163 
164 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
165 {
166 	int i;
167 
168 	for (i = 0; i < conf->copies; i++) {
169 		struct bio **bio = & r10_bio->devs[i].bio;
170 		if (*bio)
171 			bio_put(*bio);
172 		*bio = NULL;
173 	}
174 }
175 
176 static inline void free_r10bio(r10bio_t *r10_bio)
177 {
178 	unsigned long flags;
179 
180 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
181 
182 	/*
183 	 * Wake up any possible resync thread that waits for the device
184 	 * to go idle.
185 	 */
186 	spin_lock_irqsave(&conf->resync_lock, flags);
187 	if (!--conf->nr_pending) {
188 		wake_up(&conf->wait_idle);
189 		wake_up(&conf->wait_resume);
190 	}
191 	spin_unlock_irqrestore(&conf->resync_lock, flags);
192 
193 	put_all_bios(conf, r10_bio);
194 	mempool_free(r10_bio, conf->r10bio_pool);
195 }
196 
197 static inline void put_buf(r10bio_t *r10_bio)
198 {
199 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
200 	unsigned long flags;
201 
202 	mempool_free(r10_bio, conf->r10buf_pool);
203 
204 	spin_lock_irqsave(&conf->resync_lock, flags);
205 	if (!conf->barrier)
206 		BUG();
207 	--conf->barrier;
208 	wake_up(&conf->wait_resume);
209 	wake_up(&conf->wait_idle);
210 
211 	if (!--conf->nr_pending) {
212 		wake_up(&conf->wait_idle);
213 		wake_up(&conf->wait_resume);
214 	}
215 	spin_unlock_irqrestore(&conf->resync_lock, flags);
216 }
217 
218 static void reschedule_retry(r10bio_t *r10_bio)
219 {
220 	unsigned long flags;
221 	mddev_t *mddev = r10_bio->mddev;
222 	conf_t *conf = mddev_to_conf(mddev);
223 
224 	spin_lock_irqsave(&conf->device_lock, flags);
225 	list_add(&r10_bio->retry_list, &conf->retry_list);
226 	spin_unlock_irqrestore(&conf->device_lock, flags);
227 
228 	md_wakeup_thread(mddev->thread);
229 }
230 
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238 	struct bio *bio = r10_bio->master_bio;
239 
240 	bio_endio(bio, bio->bi_size,
241 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 	free_r10bio(r10_bio);
243 }
244 
245 /*
246  * Update disk head position estimator based on IRQ completion info.
247  */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
251 
252 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 		r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255 
256 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
257 {
258 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
260 	int slot, dev;
261 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
262 
263 	if (bio->bi_size)
264 		return 1;
265 
266 	slot = r10_bio->read_slot;
267 	dev = r10_bio->devs[slot].devnum;
268 	/*
269 	 * this branch is our 'one mirror IO has finished' event handler:
270 	 */
271 	if (!uptodate)
272 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
273 	else
274 		/*
275 		 * Set R10BIO_Uptodate in our master bio, so that
276 		 * we will return a good error code to the higher
277 		 * levels even if IO on some other mirrored buffer fails.
278 		 *
279 		 * The 'master' represents the composite IO operation to
280 		 * user-side. So if something waits for IO, then it will
281 		 * wait for the 'master' bio.
282 		 */
283 		set_bit(R10BIO_Uptodate, &r10_bio->state);
284 
285 	update_head_pos(slot, r10_bio);
286 
287 	/*
288 	 * we have only one bio on the read side
289 	 */
290 	if (uptodate)
291 		raid_end_bio_io(r10_bio);
292 	else {
293 		/*
294 		 * oops, read error:
295 		 */
296 		char b[BDEVNAME_SIZE];
297 		if (printk_ratelimit())
298 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
299 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
300 		reschedule_retry(r10_bio);
301 	}
302 
303 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
304 	return 0;
305 }
306 
307 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
308 {
309 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
311 	int slot, dev;
312 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
313 
314 	if (bio->bi_size)
315 		return 1;
316 
317 	for (slot = 0; slot < conf->copies; slot++)
318 		if (r10_bio->devs[slot].bio == bio)
319 			break;
320 	dev = r10_bio->devs[slot].devnum;
321 
322 	/*
323 	 * this branch is our 'one mirror IO has finished' event handler:
324 	 */
325 	if (!uptodate)
326 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
327 	else
328 		/*
329 		 * Set R10BIO_Uptodate in our master bio, so that
330 		 * we will return a good error code for to the higher
331 		 * levels even if IO on some other mirrored buffer fails.
332 		 *
333 		 * The 'master' represents the composite IO operation to
334 		 * user-side. So if something waits for IO, then it will
335 		 * wait for the 'master' bio.
336 		 */
337 		set_bit(R10BIO_Uptodate, &r10_bio->state);
338 
339 	update_head_pos(slot, r10_bio);
340 
341 	/*
342 	 *
343 	 * Let's see if all mirrored write operations have finished
344 	 * already.
345 	 */
346 	if (atomic_dec_and_test(&r10_bio->remaining)) {
347 		md_write_end(r10_bio->mddev);
348 		raid_end_bio_io(r10_bio);
349 	}
350 
351 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
352 	return 0;
353 }
354 
355 
356 /*
357  * RAID10 layout manager
358  * Aswell as the chunksize and raid_disks count, there are two
359  * parameters: near_copies and far_copies.
360  * near_copies * far_copies must be <= raid_disks.
361  * Normally one of these will be 1.
362  * If both are 1, we get raid0.
363  * If near_copies == raid_disks, we get raid1.
364  *
365  * Chunks are layed out in raid0 style with near_copies copies of the
366  * first chunk, followed by near_copies copies of the next chunk and
367  * so on.
368  * If far_copies > 1, then after 1/far_copies of the array has been assigned
369  * as described above, we start again with a device offset of near_copies.
370  * So we effectively have another copy of the whole array further down all
371  * the drives, but with blocks on different drives.
372  * With this layout, and block is never stored twice on the one device.
373  *
374  * raid10_find_phys finds the sector offset of a given virtual sector
375  * on each device that it is on. If a block isn't on a device,
376  * that entry in the array is set to MaxSector.
377  *
378  * raid10_find_virt does the reverse mapping, from a device and a
379  * sector offset to a virtual address
380  */
381 
382 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
383 {
384 	int n,f;
385 	sector_t sector;
386 	sector_t chunk;
387 	sector_t stripe;
388 	int dev;
389 
390 	int slot = 0;
391 
392 	/* now calculate first sector/dev */
393 	chunk = r10bio->sector >> conf->chunk_shift;
394 	sector = r10bio->sector & conf->chunk_mask;
395 
396 	chunk *= conf->near_copies;
397 	stripe = chunk;
398 	dev = sector_div(stripe, conf->raid_disks);
399 
400 	sector += stripe << conf->chunk_shift;
401 
402 	/* and calculate all the others */
403 	for (n=0; n < conf->near_copies; n++) {
404 		int d = dev;
405 		sector_t s = sector;
406 		r10bio->devs[slot].addr = sector;
407 		r10bio->devs[slot].devnum = d;
408 		slot++;
409 
410 		for (f = 1; f < conf->far_copies; f++) {
411 			d += conf->near_copies;
412 			if (d >= conf->raid_disks)
413 				d -= conf->raid_disks;
414 			s += conf->stride;
415 			r10bio->devs[slot].devnum = d;
416 			r10bio->devs[slot].addr = s;
417 			slot++;
418 		}
419 		dev++;
420 		if (dev >= conf->raid_disks) {
421 			dev = 0;
422 			sector += (conf->chunk_mask + 1);
423 		}
424 	}
425 	BUG_ON(slot != conf->copies);
426 }
427 
428 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
429 {
430 	sector_t offset, chunk, vchunk;
431 
432 	while (sector > conf->stride) {
433 		sector -= conf->stride;
434 		if (dev < conf->near_copies)
435 			dev += conf->raid_disks - conf->near_copies;
436 		else
437 			dev -= conf->near_copies;
438 	}
439 
440 	offset = sector & conf->chunk_mask;
441 	chunk = sector >> conf->chunk_shift;
442 	vchunk = chunk * conf->raid_disks + dev;
443 	sector_div(vchunk, conf->near_copies);
444 	return (vchunk << conf->chunk_shift) + offset;
445 }
446 
447 /**
448  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449  *	@q: request queue
450  *	@bio: the buffer head that's been built up so far
451  *	@biovec: the request that could be merged to it.
452  *
453  *	Return amount of bytes we can accept at this offset
454  *      If near_copies == raid_disk, there are no striping issues,
455  *      but in that case, the function isn't called at all.
456  */
457 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
458 				struct bio_vec *bio_vec)
459 {
460 	mddev_t *mddev = q->queuedata;
461 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
462 	int max;
463 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
464 	unsigned int bio_sectors = bio->bi_size >> 9;
465 
466 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
467 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
468 	if (max <= bio_vec->bv_len && bio_sectors == 0)
469 		return bio_vec->bv_len;
470 	else
471 		return max;
472 }
473 
474 /*
475  * This routine returns the disk from which the requested read should
476  * be done. There is a per-array 'next expected sequential IO' sector
477  * number - if this matches on the next IO then we use the last disk.
478  * There is also a per-disk 'last know head position' sector that is
479  * maintained from IRQ contexts, both the normal and the resync IO
480  * completion handlers update this position correctly. If there is no
481  * perfect sequential match then we pick the disk whose head is closest.
482  *
483  * If there are 2 mirrors in the same 2 devices, performance degrades
484  * because position is mirror, not device based.
485  *
486  * The rdev for the device selected will have nr_pending incremented.
487  */
488 
489 /*
490  * FIXME: possibly should rethink readbalancing and do it differently
491  * depending on near_copies / far_copies geometry.
492  */
493 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
494 {
495 	const unsigned long this_sector = r10_bio->sector;
496 	int disk, slot, nslot;
497 	const int sectors = r10_bio->sectors;
498 	sector_t new_distance, current_distance;
499 
500 	raid10_find_phys(conf, r10_bio);
501 	rcu_read_lock();
502 	/*
503 	 * Check if we can balance. We can balance on the whole
504 	 * device if no resync is going on, or below the resync window.
505 	 * We take the first readable disk when above the resync window.
506 	 */
507 	if (conf->mddev->recovery_cp < MaxSector
508 	    && (this_sector + sectors >= conf->next_resync)) {
509 		/* make sure that disk is operational */
510 		slot = 0;
511 		disk = r10_bio->devs[slot].devnum;
512 
513 		while (!conf->mirrors[disk].rdev ||
514 		       !conf->mirrors[disk].rdev->in_sync) {
515 			slot++;
516 			if (slot == conf->copies) {
517 				slot = 0;
518 				disk = -1;
519 				break;
520 			}
521 			disk = r10_bio->devs[slot].devnum;
522 		}
523 		goto rb_out;
524 	}
525 
526 
527 	/* make sure the disk is operational */
528 	slot = 0;
529 	disk = r10_bio->devs[slot].devnum;
530 	while (!conf->mirrors[disk].rdev ||
531 	       !conf->mirrors[disk].rdev->in_sync) {
532 		slot ++;
533 		if (slot == conf->copies) {
534 			disk = -1;
535 			goto rb_out;
536 		}
537 		disk = r10_bio->devs[slot].devnum;
538 	}
539 
540 
541 	current_distance = abs(r10_bio->devs[slot].addr -
542 			       conf->mirrors[disk].head_position);
543 
544 	/* Find the disk whose head is closest */
545 
546 	for (nslot = slot; nslot < conf->copies; nslot++) {
547 		int ndisk = r10_bio->devs[nslot].devnum;
548 
549 
550 		if (!conf->mirrors[ndisk].rdev ||
551 		    !conf->mirrors[ndisk].rdev->in_sync)
552 			continue;
553 
554 		if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) {
555 			disk = ndisk;
556 			slot = nslot;
557 			break;
558 		}
559 		new_distance = abs(r10_bio->devs[nslot].addr -
560 				   conf->mirrors[ndisk].head_position);
561 		if (new_distance < current_distance) {
562 			current_distance = new_distance;
563 			disk = ndisk;
564 			slot = nslot;
565 		}
566 	}
567 
568 rb_out:
569 	r10_bio->read_slot = slot;
570 /*	conf->next_seq_sect = this_sector + sectors;*/
571 
572 	if (disk >= 0 && conf->mirrors[disk].rdev)
573 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
574 	rcu_read_unlock();
575 
576 	return disk;
577 }
578 
579 static void unplug_slaves(mddev_t *mddev)
580 {
581 	conf_t *conf = mddev_to_conf(mddev);
582 	int i;
583 
584 	rcu_read_lock();
585 	for (i=0; i<mddev->raid_disks; i++) {
586 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
587 		if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
588 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
589 
590 			atomic_inc(&rdev->nr_pending);
591 			rcu_read_unlock();
592 
593 			if (r_queue->unplug_fn)
594 				r_queue->unplug_fn(r_queue);
595 
596 			rdev_dec_pending(rdev, mddev);
597 			rcu_read_lock();
598 		}
599 	}
600 	rcu_read_unlock();
601 }
602 
603 static void raid10_unplug(request_queue_t *q)
604 {
605 	unplug_slaves(q->queuedata);
606 }
607 
608 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
609 			     sector_t *error_sector)
610 {
611 	mddev_t *mddev = q->queuedata;
612 	conf_t *conf = mddev_to_conf(mddev);
613 	int i, ret = 0;
614 
615 	rcu_read_lock();
616 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
617 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
618 		if (rdev && !rdev->faulty) {
619 			struct block_device *bdev = rdev->bdev;
620 			request_queue_t *r_queue = bdev_get_queue(bdev);
621 
622 			if (!r_queue->issue_flush_fn)
623 				ret = -EOPNOTSUPP;
624 			else {
625 				atomic_inc(&rdev->nr_pending);
626 				rcu_read_unlock();
627 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
628 							      error_sector);
629 				rdev_dec_pending(rdev, mddev);
630 				rcu_read_lock();
631 			}
632 		}
633 	}
634 	rcu_read_unlock();
635 	return ret;
636 }
637 
638 /*
639  * Throttle resync depth, so that we can both get proper overlapping of
640  * requests, but are still able to handle normal requests quickly.
641  */
642 #define RESYNC_DEPTH 32
643 
644 static void device_barrier(conf_t *conf, sector_t sect)
645 {
646 	spin_lock_irq(&conf->resync_lock);
647 	wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
648 			    conf->resync_lock, unplug_slaves(conf->mddev));
649 
650 	if (!conf->barrier++) {
651 		wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
652 				    conf->resync_lock, unplug_slaves(conf->mddev));
653 		if (conf->nr_pending)
654 			BUG();
655 	}
656 	wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
657 			    conf->resync_lock, unplug_slaves(conf->mddev));
658 	conf->next_resync = sect;
659 	spin_unlock_irq(&conf->resync_lock);
660 }
661 
662 static int make_request(request_queue_t *q, struct bio * bio)
663 {
664 	mddev_t *mddev = q->queuedata;
665 	conf_t *conf = mddev_to_conf(mddev);
666 	mirror_info_t *mirror;
667 	r10bio_t *r10_bio;
668 	struct bio *read_bio;
669 	int i;
670 	int chunk_sects = conf->chunk_mask + 1;
671 
672 	if (unlikely(bio_barrier(bio))) {
673 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
674 		return 0;
675 	}
676 
677 	/* If this request crosses a chunk boundary, we need to
678 	 * split it.  This will only happen for 1 PAGE (or less) requests.
679 	 */
680 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
681 		      > chunk_sects &&
682 		    conf->near_copies < conf->raid_disks)) {
683 		struct bio_pair *bp;
684 		/* Sanity check -- queue functions should prevent this happening */
685 		if (bio->bi_vcnt != 1 ||
686 		    bio->bi_idx != 0)
687 			goto bad_map;
688 		/* This is a one page bio that upper layers
689 		 * refuse to split for us, so we need to split it.
690 		 */
691 		bp = bio_split(bio, bio_split_pool,
692 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
693 		if (make_request(q, &bp->bio1))
694 			generic_make_request(&bp->bio1);
695 		if (make_request(q, &bp->bio2))
696 			generic_make_request(&bp->bio2);
697 
698 		bio_pair_release(bp);
699 		return 0;
700 	bad_map:
701 		printk("raid10_make_request bug: can't convert block across chunks"
702 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
703 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
704 
705 		bio_io_error(bio, bio->bi_size);
706 		return 0;
707 	}
708 
709 	md_write_start(mddev, bio);
710 
711 	/*
712 	 * Register the new request and wait if the reconstruction
713 	 * thread has put up a bar for new requests.
714 	 * Continue immediately if no resync is active currently.
715 	 */
716 	spin_lock_irq(&conf->resync_lock);
717 	wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
718 	conf->nr_pending++;
719 	spin_unlock_irq(&conf->resync_lock);
720 
721 	if (bio_data_dir(bio)==WRITE) {
722 		disk_stat_inc(mddev->gendisk, writes);
723 		disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
724 	} else {
725 		disk_stat_inc(mddev->gendisk, reads);
726 		disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
727 	}
728 
729 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
730 
731 	r10_bio->master_bio = bio;
732 	r10_bio->sectors = bio->bi_size >> 9;
733 
734 	r10_bio->mddev = mddev;
735 	r10_bio->sector = bio->bi_sector;
736 
737 	if (bio_data_dir(bio) == READ) {
738 		/*
739 		 * read balancing logic:
740 		 */
741 		int disk = read_balance(conf, r10_bio);
742 		int slot = r10_bio->read_slot;
743 		if (disk < 0) {
744 			raid_end_bio_io(r10_bio);
745 			return 0;
746 		}
747 		mirror = conf->mirrors + disk;
748 
749 		read_bio = bio_clone(bio, GFP_NOIO);
750 
751 		r10_bio->devs[slot].bio = read_bio;
752 
753 		read_bio->bi_sector = r10_bio->devs[slot].addr +
754 			mirror->rdev->data_offset;
755 		read_bio->bi_bdev = mirror->rdev->bdev;
756 		read_bio->bi_end_io = raid10_end_read_request;
757 		read_bio->bi_rw = READ;
758 		read_bio->bi_private = r10_bio;
759 
760 		generic_make_request(read_bio);
761 		return 0;
762 	}
763 
764 	/*
765 	 * WRITE:
766 	 */
767 	/* first select target devices under spinlock and
768 	 * inc refcount on their rdev.  Record them by setting
769 	 * bios[x] to bio
770 	 */
771 	raid10_find_phys(conf, r10_bio);
772 	rcu_read_lock();
773 	for (i = 0;  i < conf->copies; i++) {
774 		int d = r10_bio->devs[i].devnum;
775 		if (conf->mirrors[d].rdev &&
776 		    !conf->mirrors[d].rdev->faulty) {
777 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
778 			r10_bio->devs[i].bio = bio;
779 		} else
780 			r10_bio->devs[i].bio = NULL;
781 	}
782 	rcu_read_unlock();
783 
784 	atomic_set(&r10_bio->remaining, 1);
785 
786 	for (i = 0; i < conf->copies; i++) {
787 		struct bio *mbio;
788 		int d = r10_bio->devs[i].devnum;
789 		if (!r10_bio->devs[i].bio)
790 			continue;
791 
792 		mbio = bio_clone(bio, GFP_NOIO);
793 		r10_bio->devs[i].bio = mbio;
794 
795 		mbio->bi_sector	= r10_bio->devs[i].addr+
796 			conf->mirrors[d].rdev->data_offset;
797 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
798 		mbio->bi_end_io	= raid10_end_write_request;
799 		mbio->bi_rw = WRITE;
800 		mbio->bi_private = r10_bio;
801 
802 		atomic_inc(&r10_bio->remaining);
803 		generic_make_request(mbio);
804 	}
805 
806 	if (atomic_dec_and_test(&r10_bio->remaining)) {
807 		md_write_end(mddev);
808 		raid_end_bio_io(r10_bio);
809 	}
810 
811 	return 0;
812 }
813 
814 static void status(struct seq_file *seq, mddev_t *mddev)
815 {
816 	conf_t *conf = mddev_to_conf(mddev);
817 	int i;
818 
819 	if (conf->near_copies < conf->raid_disks)
820 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
821 	if (conf->near_copies > 1)
822 		seq_printf(seq, " %d near-copies", conf->near_copies);
823 	if (conf->far_copies > 1)
824 		seq_printf(seq, " %d far-copies", conf->far_copies);
825 
826 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
827 						conf->working_disks);
828 	for (i = 0; i < conf->raid_disks; i++)
829 		seq_printf(seq, "%s",
830 			      conf->mirrors[i].rdev &&
831 			      conf->mirrors[i].rdev->in_sync ? "U" : "_");
832 	seq_printf(seq, "]");
833 }
834 
835 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
836 {
837 	char b[BDEVNAME_SIZE];
838 	conf_t *conf = mddev_to_conf(mddev);
839 
840 	/*
841 	 * If it is not operational, then we have already marked it as dead
842 	 * else if it is the last working disks, ignore the error, let the
843 	 * next level up know.
844 	 * else mark the drive as failed
845 	 */
846 	if (rdev->in_sync
847 	    && conf->working_disks == 1)
848 		/*
849 		 * Don't fail the drive, just return an IO error.
850 		 * The test should really be more sophisticated than
851 		 * "working_disks == 1", but it isn't critical, and
852 		 * can wait until we do more sophisticated "is the drive
853 		 * really dead" tests...
854 		 */
855 		return;
856 	if (rdev->in_sync) {
857 		mddev->degraded++;
858 		conf->working_disks--;
859 		/*
860 		 * if recovery is running, make sure it aborts.
861 		 */
862 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
863 	}
864 	rdev->in_sync = 0;
865 	rdev->faulty = 1;
866 	mddev->sb_dirty = 1;
867 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
868 		"	Operation continuing on %d devices\n",
869 		bdevname(rdev->bdev,b), conf->working_disks);
870 }
871 
872 static void print_conf(conf_t *conf)
873 {
874 	int i;
875 	mirror_info_t *tmp;
876 
877 	printk("RAID10 conf printout:\n");
878 	if (!conf) {
879 		printk("(!conf)\n");
880 		return;
881 	}
882 	printk(" --- wd:%d rd:%d\n", conf->working_disks,
883 		conf->raid_disks);
884 
885 	for (i = 0; i < conf->raid_disks; i++) {
886 		char b[BDEVNAME_SIZE];
887 		tmp = conf->mirrors + i;
888 		if (tmp->rdev)
889 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
890 				i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
891 				bdevname(tmp->rdev->bdev,b));
892 	}
893 }
894 
895 static void close_sync(conf_t *conf)
896 {
897 	spin_lock_irq(&conf->resync_lock);
898 	wait_event_lock_irq(conf->wait_resume, !conf->barrier,
899 			    conf->resync_lock, 	unplug_slaves(conf->mddev));
900 	spin_unlock_irq(&conf->resync_lock);
901 
902 	if (conf->barrier) BUG();
903 	if (waitqueue_active(&conf->wait_idle)) BUG();
904 
905 	mempool_destroy(conf->r10buf_pool);
906 	conf->r10buf_pool = NULL;
907 }
908 
909 /* check if there are enough drives for
910  * every block to appear on atleast one
911  */
912 static int enough(conf_t *conf)
913 {
914 	int first = 0;
915 
916 	do {
917 		int n = conf->copies;
918 		int cnt = 0;
919 		while (n--) {
920 			if (conf->mirrors[first].rdev)
921 				cnt++;
922 			first = (first+1) % conf->raid_disks;
923 		}
924 		if (cnt == 0)
925 			return 0;
926 	} while (first != 0);
927 	return 1;
928 }
929 
930 static int raid10_spare_active(mddev_t *mddev)
931 {
932 	int i;
933 	conf_t *conf = mddev->private;
934 	mirror_info_t *tmp;
935 
936 	/*
937 	 * Find all non-in_sync disks within the RAID10 configuration
938 	 * and mark them in_sync
939 	 */
940 	for (i = 0; i < conf->raid_disks; i++) {
941 		tmp = conf->mirrors + i;
942 		if (tmp->rdev
943 		    && !tmp->rdev->faulty
944 		    && !tmp->rdev->in_sync) {
945 			conf->working_disks++;
946 			mddev->degraded--;
947 			tmp->rdev->in_sync = 1;
948 		}
949 	}
950 
951 	print_conf(conf);
952 	return 0;
953 }
954 
955 
956 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
957 {
958 	conf_t *conf = mddev->private;
959 	int found = 0;
960 	int mirror;
961 	mirror_info_t *p;
962 
963 	if (mddev->recovery_cp < MaxSector)
964 		/* only hot-add to in-sync arrays, as recovery is
965 		 * very different from resync
966 		 */
967 		return 0;
968 	if (!enough(conf))
969 		return 0;
970 
971 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
972 		if ( !(p=conf->mirrors+mirror)->rdev) {
973 
974 			blk_queue_stack_limits(mddev->queue,
975 					       rdev->bdev->bd_disk->queue);
976 			/* as we don't honour merge_bvec_fn, we must never risk
977 			 * violating it, so limit ->max_sector to one PAGE, as
978 			 * a one page request is never in violation.
979 			 */
980 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
981 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
982 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
983 
984 			p->head_position = 0;
985 			rdev->raid_disk = mirror;
986 			found = 1;
987 			p->rdev = rdev;
988 			break;
989 		}
990 
991 	print_conf(conf);
992 	return found;
993 }
994 
995 static int raid10_remove_disk(mddev_t *mddev, int number)
996 {
997 	conf_t *conf = mddev->private;
998 	int err = 0;
999 	mdk_rdev_t *rdev;
1000 	mirror_info_t *p = conf->mirrors+ number;
1001 
1002 	print_conf(conf);
1003 	rdev = p->rdev;
1004 	if (rdev) {
1005 		if (rdev->in_sync ||
1006 		    atomic_read(&rdev->nr_pending)) {
1007 			err = -EBUSY;
1008 			goto abort;
1009 		}
1010 		p->rdev = NULL;
1011 		synchronize_rcu();
1012 		if (atomic_read(&rdev->nr_pending)) {
1013 			/* lost the race, try later */
1014 			err = -EBUSY;
1015 			p->rdev = rdev;
1016 		}
1017 	}
1018 abort:
1019 
1020 	print_conf(conf);
1021 	return err;
1022 }
1023 
1024 
1025 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1026 {
1027 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1028 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1029 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1030 	int i,d;
1031 
1032 	if (bio->bi_size)
1033 		return 1;
1034 
1035 	for (i=0; i<conf->copies; i++)
1036 		if (r10_bio->devs[i].bio == bio)
1037 			break;
1038 	if (i == conf->copies)
1039 		BUG();
1040 	update_head_pos(i, r10_bio);
1041 	d = r10_bio->devs[i].devnum;
1042 	if (!uptodate)
1043 		md_error(r10_bio->mddev,
1044 			 conf->mirrors[d].rdev);
1045 
1046 	/* for reconstruct, we always reschedule after a read.
1047 	 * for resync, only after all reads
1048 	 */
1049 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1050 	    atomic_dec_and_test(&r10_bio->remaining)) {
1051 		/* we have read all the blocks,
1052 		 * do the comparison in process context in raid10d
1053 		 */
1054 		reschedule_retry(r10_bio);
1055 	}
1056 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1057 	return 0;
1058 }
1059 
1060 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1061 {
1062 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1063 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1064 	mddev_t *mddev = r10_bio->mddev;
1065 	conf_t *conf = mddev_to_conf(mddev);
1066 	int i,d;
1067 
1068 	if (bio->bi_size)
1069 		return 1;
1070 
1071 	for (i = 0; i < conf->copies; i++)
1072 		if (r10_bio->devs[i].bio == bio)
1073 			break;
1074 	d = r10_bio->devs[i].devnum;
1075 
1076 	if (!uptodate)
1077 		md_error(mddev, conf->mirrors[d].rdev);
1078 	update_head_pos(i, r10_bio);
1079 
1080 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1081 		if (r10_bio->master_bio == NULL) {
1082 			/* the primary of several recovery bios */
1083 			md_done_sync(mddev, r10_bio->sectors, 1);
1084 			put_buf(r10_bio);
1085 			break;
1086 		} else {
1087 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1088 			put_buf(r10_bio);
1089 			r10_bio = r10_bio2;
1090 		}
1091 	}
1092 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1093 	return 0;
1094 }
1095 
1096 /*
1097  * Note: sync and recover and handled very differently for raid10
1098  * This code is for resync.
1099  * For resync, we read through virtual addresses and read all blocks.
1100  * If there is any error, we schedule a write.  The lowest numbered
1101  * drive is authoritative.
1102  * However requests come for physical address, so we need to map.
1103  * For every physical address there are raid_disks/copies virtual addresses,
1104  * which is always are least one, but is not necessarly an integer.
1105  * This means that a physical address can span multiple chunks, so we may
1106  * have to submit multiple io requests for a single sync request.
1107  */
1108 /*
1109  * We check if all blocks are in-sync and only write to blocks that
1110  * aren't in sync
1111  */
1112 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1113 {
1114 	conf_t *conf = mddev_to_conf(mddev);
1115 	int i, first;
1116 	struct bio *tbio, *fbio;
1117 
1118 	atomic_set(&r10_bio->remaining, 1);
1119 
1120 	/* find the first device with a block */
1121 	for (i=0; i<conf->copies; i++)
1122 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1123 			break;
1124 
1125 	if (i == conf->copies)
1126 		goto done;
1127 
1128 	first = i;
1129 	fbio = r10_bio->devs[i].bio;
1130 
1131 	/* now find blocks with errors */
1132 	for (i=first+1 ; i < conf->copies ; i++) {
1133 		int vcnt, j, d;
1134 
1135 		if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1136 			continue;
1137 		/* We know that the bi_io_vec layout is the same for
1138 		 * both 'first' and 'i', so we just compare them.
1139 		 * All vec entries are PAGE_SIZE;
1140 		 */
1141 		tbio = r10_bio->devs[i].bio;
1142 		vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1143 		for (j = 0; j < vcnt; j++)
1144 			if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1145 				   page_address(tbio->bi_io_vec[j].bv_page),
1146 				   PAGE_SIZE))
1147 				break;
1148 		if (j == vcnt)
1149 			continue;
1150 		/* Ok, we need to write this bio
1151 		 * First we need to fixup bv_offset, bv_len and
1152 		 * bi_vecs, as the read request might have corrupted these
1153 		 */
1154 		tbio->bi_vcnt = vcnt;
1155 		tbio->bi_size = r10_bio->sectors << 9;
1156 		tbio->bi_idx = 0;
1157 		tbio->bi_phys_segments = 0;
1158 		tbio->bi_hw_segments = 0;
1159 		tbio->bi_hw_front_size = 0;
1160 		tbio->bi_hw_back_size = 0;
1161 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1162 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1163 		tbio->bi_next = NULL;
1164 		tbio->bi_rw = WRITE;
1165 		tbio->bi_private = r10_bio;
1166 		tbio->bi_sector = r10_bio->devs[i].addr;
1167 
1168 		for (j=0; j < vcnt ; j++) {
1169 			tbio->bi_io_vec[j].bv_offset = 0;
1170 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1171 
1172 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1173 			       page_address(fbio->bi_io_vec[j].bv_page),
1174 			       PAGE_SIZE);
1175 		}
1176 		tbio->bi_end_io = end_sync_write;
1177 
1178 		d = r10_bio->devs[i].devnum;
1179 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1180 		atomic_inc(&r10_bio->remaining);
1181 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1182 
1183 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1184 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1185 		generic_make_request(tbio);
1186 	}
1187 
1188 done:
1189 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1190 		md_done_sync(mddev, r10_bio->sectors, 1);
1191 		put_buf(r10_bio);
1192 	}
1193 }
1194 
1195 /*
1196  * Now for the recovery code.
1197  * Recovery happens across physical sectors.
1198  * We recover all non-is_sync drives by finding the virtual address of
1199  * each, and then choose a working drive that also has that virt address.
1200  * There is a separate r10_bio for each non-in_sync drive.
1201  * Only the first two slots are in use. The first for reading,
1202  * The second for writing.
1203  *
1204  */
1205 
1206 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1207 {
1208 	conf_t *conf = mddev_to_conf(mddev);
1209 	int i, d;
1210 	struct bio *bio, *wbio;
1211 
1212 
1213 	/* move the pages across to the second bio
1214 	 * and submit the write request
1215 	 */
1216 	bio = r10_bio->devs[0].bio;
1217 	wbio = r10_bio->devs[1].bio;
1218 	for (i=0; i < wbio->bi_vcnt; i++) {
1219 		struct page *p = bio->bi_io_vec[i].bv_page;
1220 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1221 		wbio->bi_io_vec[i].bv_page = p;
1222 	}
1223 	d = r10_bio->devs[1].devnum;
1224 
1225 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1226 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1227 	generic_make_request(wbio);
1228 }
1229 
1230 
1231 /*
1232  * This is a kernel thread which:
1233  *
1234  *	1.	Retries failed read operations on working mirrors.
1235  *	2.	Updates the raid superblock when problems encounter.
1236  *	3.	Performs writes following reads for array syncronising.
1237  */
1238 
1239 static void raid10d(mddev_t *mddev)
1240 {
1241 	r10bio_t *r10_bio;
1242 	struct bio *bio;
1243 	unsigned long flags;
1244 	conf_t *conf = mddev_to_conf(mddev);
1245 	struct list_head *head = &conf->retry_list;
1246 	int unplug=0;
1247 	mdk_rdev_t *rdev;
1248 
1249 	md_check_recovery(mddev);
1250 
1251 	for (;;) {
1252 		char b[BDEVNAME_SIZE];
1253 		spin_lock_irqsave(&conf->device_lock, flags);
1254 		if (list_empty(head))
1255 			break;
1256 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1257 		list_del(head->prev);
1258 		spin_unlock_irqrestore(&conf->device_lock, flags);
1259 
1260 		mddev = r10_bio->mddev;
1261 		conf = mddev_to_conf(mddev);
1262 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1263 			sync_request_write(mddev, r10_bio);
1264 			unplug = 1;
1265 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1266 			recovery_request_write(mddev, r10_bio);
1267 			unplug = 1;
1268 		} else {
1269 			int mirror;
1270 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1271 			r10_bio->devs[r10_bio->read_slot].bio = NULL;
1272 			bio_put(bio);
1273 			mirror = read_balance(conf, r10_bio);
1274 			if (mirror == -1) {
1275 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1276 				       " read error for block %llu\n",
1277 				       bdevname(bio->bi_bdev,b),
1278 				       (unsigned long long)r10_bio->sector);
1279 				raid_end_bio_io(r10_bio);
1280 			} else {
1281 				rdev = conf->mirrors[mirror].rdev;
1282 				if (printk_ratelimit())
1283 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1284 					       " another mirror\n",
1285 					       bdevname(rdev->bdev,b),
1286 					       (unsigned long long)r10_bio->sector);
1287 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1288 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1289 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1290 					+ rdev->data_offset;
1291 				bio->bi_bdev = rdev->bdev;
1292 				bio->bi_rw = READ;
1293 				bio->bi_private = r10_bio;
1294 				bio->bi_end_io = raid10_end_read_request;
1295 				unplug = 1;
1296 				generic_make_request(bio);
1297 			}
1298 		}
1299 	}
1300 	spin_unlock_irqrestore(&conf->device_lock, flags);
1301 	if (unplug)
1302 		unplug_slaves(mddev);
1303 }
1304 
1305 
1306 static int init_resync(conf_t *conf)
1307 {
1308 	int buffs;
1309 
1310 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1311 	if (conf->r10buf_pool)
1312 		BUG();
1313 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1314 	if (!conf->r10buf_pool)
1315 		return -ENOMEM;
1316 	conf->next_resync = 0;
1317 	return 0;
1318 }
1319 
1320 /*
1321  * perform a "sync" on one "block"
1322  *
1323  * We need to make sure that no normal I/O request - particularly write
1324  * requests - conflict with active sync requests.
1325  *
1326  * This is achieved by tracking pending requests and a 'barrier' concept
1327  * that can be installed to exclude normal IO requests.
1328  *
1329  * Resync and recovery are handled very differently.
1330  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1331  *
1332  * For resync, we iterate over virtual addresses, read all copies,
1333  * and update if there are differences.  If only one copy is live,
1334  * skip it.
1335  * For recovery, we iterate over physical addresses, read a good
1336  * value for each non-in_sync drive, and over-write.
1337  *
1338  * So, for recovery we may have several outstanding complex requests for a
1339  * given address, one for each out-of-sync device.  We model this by allocating
1340  * a number of r10_bio structures, one for each out-of-sync device.
1341  * As we setup these structures, we collect all bio's together into a list
1342  * which we then process collectively to add pages, and then process again
1343  * to pass to generic_make_request.
1344  *
1345  * The r10_bio structures are linked using a borrowed master_bio pointer.
1346  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1347  * has its remaining count decremented to 0, the whole complex operation
1348  * is complete.
1349  *
1350  */
1351 
1352 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1353 {
1354 	conf_t *conf = mddev_to_conf(mddev);
1355 	r10bio_t *r10_bio;
1356 	struct bio *biolist = NULL, *bio;
1357 	sector_t max_sector, nr_sectors;
1358 	int disk;
1359 	int i;
1360 
1361 	sector_t sectors_skipped = 0;
1362 	int chunks_skipped = 0;
1363 
1364 	if (!conf->r10buf_pool)
1365 		if (init_resync(conf))
1366 			return 0;
1367 
1368  skipped:
1369 	max_sector = mddev->size << 1;
1370 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1371 		max_sector = mddev->resync_max_sectors;
1372 	if (sector_nr >= max_sector) {
1373 		close_sync(conf);
1374 		*skipped = 1;
1375 		return sectors_skipped;
1376 	}
1377 	if (chunks_skipped >= conf->raid_disks) {
1378 		/* if there has been nothing to do on any drive,
1379 		 * then there is nothing to do at all..
1380 		 */
1381 		*skipped = 1;
1382 		return (max_sector - sector_nr) + sectors_skipped;
1383 	}
1384 
1385 	/* make sure whole request will fit in a chunk - if chunks
1386 	 * are meaningful
1387 	 */
1388 	if (conf->near_copies < conf->raid_disks &&
1389 	    max_sector > (sector_nr | conf->chunk_mask))
1390 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1391 	/*
1392 	 * If there is non-resync activity waiting for us then
1393 	 * put in a delay to throttle resync.
1394 	 */
1395 	if (!go_faster && waitqueue_active(&conf->wait_resume))
1396 		msleep_interruptible(1000);
1397 	device_barrier(conf, sector_nr + RESYNC_SECTORS);
1398 
1399 	/* Again, very different code for resync and recovery.
1400 	 * Both must result in an r10bio with a list of bios that
1401 	 * have bi_end_io, bi_sector, bi_bdev set,
1402 	 * and bi_private set to the r10bio.
1403 	 * For recovery, we may actually create several r10bios
1404 	 * with 2 bios in each, that correspond to the bios in the main one.
1405 	 * In this case, the subordinate r10bios link back through a
1406 	 * borrowed master_bio pointer, and the counter in the master
1407 	 * includes a ref from each subordinate.
1408 	 */
1409 	/* First, we decide what to do and set ->bi_end_io
1410 	 * To end_sync_read if we want to read, and
1411 	 * end_sync_write if we will want to write.
1412 	 */
1413 
1414 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1415 		/* recovery... the complicated one */
1416 		int i, j, k;
1417 		r10_bio = NULL;
1418 
1419 		for (i=0 ; i<conf->raid_disks; i++)
1420 			if (conf->mirrors[i].rdev &&
1421 			    !conf->mirrors[i].rdev->in_sync) {
1422 				/* want to reconstruct this device */
1423 				r10bio_t *rb2 = r10_bio;
1424 
1425 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1426 				spin_lock_irq(&conf->resync_lock);
1427 				conf->nr_pending++;
1428 				if (rb2) conf->barrier++;
1429 				spin_unlock_irq(&conf->resync_lock);
1430 				atomic_set(&r10_bio->remaining, 0);
1431 
1432 				r10_bio->master_bio = (struct bio*)rb2;
1433 				if (rb2)
1434 					atomic_inc(&rb2->remaining);
1435 				r10_bio->mddev = mddev;
1436 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1437 				r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
1438 				raid10_find_phys(conf, r10_bio);
1439 				for (j=0; j<conf->copies;j++) {
1440 					int d = r10_bio->devs[j].devnum;
1441 					if (conf->mirrors[d].rdev &&
1442 					    conf->mirrors[d].rdev->in_sync) {
1443 						/* This is where we read from */
1444 						bio = r10_bio->devs[0].bio;
1445 						bio->bi_next = biolist;
1446 						biolist = bio;
1447 						bio->bi_private = r10_bio;
1448 						bio->bi_end_io = end_sync_read;
1449 						bio->bi_rw = 0;
1450 						bio->bi_sector = r10_bio->devs[j].addr +
1451 							conf->mirrors[d].rdev->data_offset;
1452 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1453 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1454 						atomic_inc(&r10_bio->remaining);
1455 						/* and we write to 'i' */
1456 
1457 						for (k=0; k<conf->copies; k++)
1458 							if (r10_bio->devs[k].devnum == i)
1459 								break;
1460 						bio = r10_bio->devs[1].bio;
1461 						bio->bi_next = biolist;
1462 						biolist = bio;
1463 						bio->bi_private = r10_bio;
1464 						bio->bi_end_io = end_sync_write;
1465 						bio->bi_rw = 1;
1466 						bio->bi_sector = r10_bio->devs[k].addr +
1467 							conf->mirrors[i].rdev->data_offset;
1468 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1469 
1470 						r10_bio->devs[0].devnum = d;
1471 						r10_bio->devs[1].devnum = i;
1472 
1473 						break;
1474 					}
1475 				}
1476 				if (j == conf->copies) {
1477 					/* Cannot recover, so abort the recovery */
1478 					put_buf(r10_bio);
1479 					r10_bio = rb2;
1480 					if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1481 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1482 						       mdname(mddev));
1483 					break;
1484 				}
1485 			}
1486 		if (biolist == NULL) {
1487 			while (r10_bio) {
1488 				r10bio_t *rb2 = r10_bio;
1489 				r10_bio = (r10bio_t*) rb2->master_bio;
1490 				rb2->master_bio = NULL;
1491 				put_buf(rb2);
1492 			}
1493 			goto giveup;
1494 		}
1495 	} else {
1496 		/* resync. Schedule a read for every block at this virt offset */
1497 		int count = 0;
1498 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1499 
1500 		spin_lock_irq(&conf->resync_lock);
1501 		conf->nr_pending++;
1502 		spin_unlock_irq(&conf->resync_lock);
1503 
1504 		r10_bio->mddev = mddev;
1505 		atomic_set(&r10_bio->remaining, 0);
1506 
1507 		r10_bio->master_bio = NULL;
1508 		r10_bio->sector = sector_nr;
1509 		set_bit(R10BIO_IsSync, &r10_bio->state);
1510 		raid10_find_phys(conf, r10_bio);
1511 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1512 
1513 		for (i=0; i<conf->copies; i++) {
1514 			int d = r10_bio->devs[i].devnum;
1515 			bio = r10_bio->devs[i].bio;
1516 			bio->bi_end_io = NULL;
1517 			if (conf->mirrors[d].rdev == NULL ||
1518 			    conf->mirrors[d].rdev->faulty)
1519 				continue;
1520 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1521 			atomic_inc(&r10_bio->remaining);
1522 			bio->bi_next = biolist;
1523 			biolist = bio;
1524 			bio->bi_private = r10_bio;
1525 			bio->bi_end_io = end_sync_read;
1526 			bio->bi_rw = 0;
1527 			bio->bi_sector = r10_bio->devs[i].addr +
1528 				conf->mirrors[d].rdev->data_offset;
1529 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1530 			count++;
1531 		}
1532 
1533 		if (count < 2) {
1534 			for (i=0; i<conf->copies; i++) {
1535 				int d = r10_bio->devs[i].devnum;
1536 				if (r10_bio->devs[i].bio->bi_end_io)
1537 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1538 			}
1539 			put_buf(r10_bio);
1540 			biolist = NULL;
1541 			goto giveup;
1542 		}
1543 	}
1544 
1545 	for (bio = biolist; bio ; bio=bio->bi_next) {
1546 
1547 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1548 		if (bio->bi_end_io)
1549 			bio->bi_flags |= 1 << BIO_UPTODATE;
1550 		bio->bi_vcnt = 0;
1551 		bio->bi_idx = 0;
1552 		bio->bi_phys_segments = 0;
1553 		bio->bi_hw_segments = 0;
1554 		bio->bi_size = 0;
1555 	}
1556 
1557 	nr_sectors = 0;
1558 	do {
1559 		struct page *page;
1560 		int len = PAGE_SIZE;
1561 		disk = 0;
1562 		if (sector_nr + (len>>9) > max_sector)
1563 			len = (max_sector - sector_nr) << 9;
1564 		if (len == 0)
1565 			break;
1566 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1567 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1568 			if (bio_add_page(bio, page, len, 0) == 0) {
1569 				/* stop here */
1570 				struct bio *bio2;
1571 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1572 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1573 					/* remove last page from this bio */
1574 					bio2->bi_vcnt--;
1575 					bio2->bi_size -= len;
1576 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1577 				}
1578 				goto bio_full;
1579 			}
1580 			disk = i;
1581 		}
1582 		nr_sectors += len>>9;
1583 		sector_nr += len>>9;
1584 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1585  bio_full:
1586 	r10_bio->sectors = nr_sectors;
1587 
1588 	while (biolist) {
1589 		bio = biolist;
1590 		biolist = biolist->bi_next;
1591 
1592 		bio->bi_next = NULL;
1593 		r10_bio = bio->bi_private;
1594 		r10_bio->sectors = nr_sectors;
1595 
1596 		if (bio->bi_end_io == end_sync_read) {
1597 			md_sync_acct(bio->bi_bdev, nr_sectors);
1598 			generic_make_request(bio);
1599 		}
1600 	}
1601 
1602 	if (sectors_skipped)
1603 		/* pretend they weren't skipped, it makes
1604 		 * no important difference in this case
1605 		 */
1606 		md_done_sync(mddev, sectors_skipped, 1);
1607 
1608 	return sectors_skipped + nr_sectors;
1609  giveup:
1610 	/* There is nowhere to write, so all non-sync
1611 	 * drives must be failed, so try the next chunk...
1612 	 */
1613 	{
1614 	sector_t sec = max_sector - sector_nr;
1615 	sectors_skipped += sec;
1616 	chunks_skipped ++;
1617 	sector_nr = max_sector;
1618 	goto skipped;
1619 	}
1620 }
1621 
1622 static int run(mddev_t *mddev)
1623 {
1624 	conf_t *conf;
1625 	int i, disk_idx;
1626 	mirror_info_t *disk;
1627 	mdk_rdev_t *rdev;
1628 	struct list_head *tmp;
1629 	int nc, fc;
1630 	sector_t stride, size;
1631 
1632 	if (mddev->level != 10) {
1633 		printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1634 		       mdname(mddev), mddev->level);
1635 		goto out;
1636 	}
1637 	nc = mddev->layout & 255;
1638 	fc = (mddev->layout >> 8) & 255;
1639 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1640 	    (mddev->layout >> 16)) {
1641 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1642 		       mdname(mddev), mddev->layout);
1643 		goto out;
1644 	}
1645 	/*
1646 	 * copy the already verified devices into our private RAID10
1647 	 * bookkeeping area. [whatever we allocate in run(),
1648 	 * should be freed in stop()]
1649 	 */
1650 	conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1651 	mddev->private = conf;
1652 	if (!conf) {
1653 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1654 			mdname(mddev));
1655 		goto out;
1656 	}
1657 	memset(conf, 0, sizeof(*conf));
1658 	conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1659 				 GFP_KERNEL);
1660 	if (!conf->mirrors) {
1661 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1662 		       mdname(mddev));
1663 		goto out_free_conf;
1664 	}
1665 	memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1666 
1667 	conf->near_copies = nc;
1668 	conf->far_copies = fc;
1669 	conf->copies = nc*fc;
1670 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1671 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1672 	stride = mddev->size >> (conf->chunk_shift-1);
1673 	sector_div(stride, fc);
1674 	conf->stride = stride << conf->chunk_shift;
1675 
1676 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1677 						r10bio_pool_free, conf);
1678 	if (!conf->r10bio_pool) {
1679 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1680 			mdname(mddev));
1681 		goto out_free_conf;
1682 	}
1683 
1684 	ITERATE_RDEV(mddev, rdev, tmp) {
1685 		disk_idx = rdev->raid_disk;
1686 		if (disk_idx >= mddev->raid_disks
1687 		    || disk_idx < 0)
1688 			continue;
1689 		disk = conf->mirrors + disk_idx;
1690 
1691 		disk->rdev = rdev;
1692 
1693 		blk_queue_stack_limits(mddev->queue,
1694 				       rdev->bdev->bd_disk->queue);
1695 		/* as we don't honour merge_bvec_fn, we must never risk
1696 		 * violating it, so limit ->max_sector to one PAGE, as
1697 		 * a one page request is never in violation.
1698 		 */
1699 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1700 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1701 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
1702 
1703 		disk->head_position = 0;
1704 		if (!rdev->faulty && rdev->in_sync)
1705 			conf->working_disks++;
1706 	}
1707 	conf->raid_disks = mddev->raid_disks;
1708 	conf->mddev = mddev;
1709 	spin_lock_init(&conf->device_lock);
1710 	INIT_LIST_HEAD(&conf->retry_list);
1711 
1712 	spin_lock_init(&conf->resync_lock);
1713 	init_waitqueue_head(&conf->wait_idle);
1714 	init_waitqueue_head(&conf->wait_resume);
1715 
1716 	/* need to check that every block has at least one working mirror */
1717 	if (!enough(conf)) {
1718 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
1719 		       mdname(mddev));
1720 		goto out_free_conf;
1721 	}
1722 
1723 	mddev->degraded = 0;
1724 	for (i = 0; i < conf->raid_disks; i++) {
1725 
1726 		disk = conf->mirrors + i;
1727 
1728 		if (!disk->rdev) {
1729 			disk->head_position = 0;
1730 			mddev->degraded++;
1731 		}
1732 	}
1733 
1734 
1735 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1736 	if (!mddev->thread) {
1737 		printk(KERN_ERR
1738 		       "raid10: couldn't allocate thread for %s\n",
1739 		       mdname(mddev));
1740 		goto out_free_conf;
1741 	}
1742 
1743 	printk(KERN_INFO
1744 		"raid10: raid set %s active with %d out of %d devices\n",
1745 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1746 		mddev->raid_disks);
1747 	/*
1748 	 * Ok, everything is just fine now
1749 	 */
1750 	size = conf->stride * conf->raid_disks;
1751 	sector_div(size, conf->near_copies);
1752 	mddev->array_size = size/2;
1753 	mddev->resync_max_sectors = size;
1754 
1755 	mddev->queue->unplug_fn = raid10_unplug;
1756 	mddev->queue->issue_flush_fn = raid10_issue_flush;
1757 
1758 	/* Calculate max read-ahead size.
1759 	 * We need to readahead at least twice a whole stripe....
1760 	 * maybe...
1761 	 */
1762 	{
1763 		int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
1764 		stripe /= conf->near_copies;
1765 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
1766 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
1767 	}
1768 
1769 	if (conf->near_copies < mddev->raid_disks)
1770 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1771 	return 0;
1772 
1773 out_free_conf:
1774 	if (conf->r10bio_pool)
1775 		mempool_destroy(conf->r10bio_pool);
1776 	kfree(conf->mirrors);
1777 	kfree(conf);
1778 	mddev->private = NULL;
1779 out:
1780 	return -EIO;
1781 }
1782 
1783 static int stop(mddev_t *mddev)
1784 {
1785 	conf_t *conf = mddev_to_conf(mddev);
1786 
1787 	md_unregister_thread(mddev->thread);
1788 	mddev->thread = NULL;
1789 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1790 	if (conf->r10bio_pool)
1791 		mempool_destroy(conf->r10bio_pool);
1792 	kfree(conf->mirrors);
1793 	kfree(conf);
1794 	mddev->private = NULL;
1795 	return 0;
1796 }
1797 
1798 
1799 static mdk_personality_t raid10_personality =
1800 {
1801 	.name		= "raid10",
1802 	.owner		= THIS_MODULE,
1803 	.make_request	= make_request,
1804 	.run		= run,
1805 	.stop		= stop,
1806 	.status		= status,
1807 	.error_handler	= error,
1808 	.hot_add_disk	= raid10_add_disk,
1809 	.hot_remove_disk= raid10_remove_disk,
1810 	.spare_active	= raid10_spare_active,
1811 	.sync_request	= sync_request,
1812 };
1813 
1814 static int __init raid_init(void)
1815 {
1816 	return register_md_personality(RAID10, &raid10_personality);
1817 }
1818 
1819 static void raid_exit(void)
1820 {
1821 	unregister_md_personality(RAID10);
1822 }
1823 
1824 module_init(raid_init);
1825 module_exit(raid_exit);
1826 MODULE_LICENSE("GPL");
1827 MODULE_ALIAS("md-personality-9"); /* RAID10 */
1828