xref: /linux/drivers/md/raid10.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27 
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *    use_far_sets (stored in bit 17 of layout )
37  *    use_far_sets_bugfixed (stored in bit 18 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.  Each device
40  * is divided into far_copies sections.   In each section, chunks are laid out
41  * in a style similar to raid0, but near_copies copies of each chunk is stored
42  * (each on a different drive).  The starting device for each section is offset
43  * near_copies from the starting device of the previous section.  Thus there
44  * are (near_copies * far_copies) of each chunk, and each is on a different
45  * drive.  near_copies and far_copies must be at least one, and their product
46  * is at most raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of being very far
50  * apart on disk, there are adjacent stripes.
51  *
52  * The far and offset algorithms are handled slightly differently if
53  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
54  * sets that are (near_copies * far_copies) in size.  The far copied stripes
55  * are still shifted by 'near_copies' devices, but this shifting stays confined
56  * to the set rather than the entire array.  This is done to improve the number
57  * of device combinations that can fail without causing the array to fail.
58  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59  * on a device):
60  *    A B C D    A B C D E
61  *      ...         ...
62  *    D A B C    E A B C D
63  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64  *    [A B] [C D]    [A B] [C D E]
65  *    |...| |...|    |...| | ... |
66  *    [B A] [D C]    [B A] [E C D]
67  */
68 
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int _enough(struct r10conf *conf, int previous, int ignore);
72 static int enough(struct r10conf *conf, int ignore);
73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74 				int *skipped);
75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76 static void end_reshape_write(struct bio *bio);
77 static void end_reshape(struct r10conf *conf);
78 
79 #include "raid1-10.c"
80 
81 #define NULL_CMD
82 #define cmd_before(conf, cmd) \
83 	do { \
84 		write_sequnlock_irq(&(conf)->resync_lock); \
85 		cmd; \
86 	} while (0)
87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
88 
89 #define wait_event_barrier_cmd(conf, cond, cmd) \
90 	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
91 		       cmd_after(conf))
92 
93 #define wait_event_barrier(conf, cond) \
94 	wait_event_barrier_cmd(conf, cond, NULL_CMD)
95 
96 /*
97  * for resync bio, r10bio pointer can be retrieved from the per-bio
98  * 'struct resync_pages'.
99  */
100 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
101 {
102 	return get_resync_pages(bio)->raid_bio;
103 }
104 
105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
106 {
107 	struct r10conf *conf = data;
108 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
109 
110 	/* allocate a r10bio with room for raid_disks entries in the
111 	 * bios array */
112 	return kzalloc(size, gfp_flags);
113 }
114 
115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
116 /* amount of memory to reserve for resync requests */
117 #define RESYNC_WINDOW (1024*1024)
118 /* maximum number of concurrent requests, memory permitting */
119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122 
123 /*
124  * When performing a resync, we need to read and compare, so
125  * we need as many pages are there are copies.
126  * When performing a recovery, we need 2 bios, one for read,
127  * one for write (we recover only one drive per r10buf)
128  *
129  */
130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct r10conf *conf = data;
133 	struct r10bio *r10_bio;
134 	struct bio *bio;
135 	int j;
136 	int nalloc, nalloc_rp;
137 	struct resync_pages *rps;
138 
139 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
140 	if (!r10_bio)
141 		return NULL;
142 
143 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
144 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
145 		nalloc = conf->copies; /* resync */
146 	else
147 		nalloc = 2; /* recovery */
148 
149 	/* allocate once for all bios */
150 	if (!conf->have_replacement)
151 		nalloc_rp = nalloc;
152 	else
153 		nalloc_rp = nalloc * 2;
154 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
155 	if (!rps)
156 		goto out_free_r10bio;
157 
158 	/*
159 	 * Allocate bios.
160 	 */
161 	for (j = nalloc ; j-- ; ) {
162 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
163 		if (!bio)
164 			goto out_free_bio;
165 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
166 		r10_bio->devs[j].bio = bio;
167 		if (!conf->have_replacement)
168 			continue;
169 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
170 		if (!bio)
171 			goto out_free_bio;
172 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173 		r10_bio->devs[j].repl_bio = bio;
174 	}
175 	/*
176 	 * Allocate RESYNC_PAGES data pages and attach them
177 	 * where needed.
178 	 */
179 	for (j = 0; j < nalloc; j++) {
180 		struct bio *rbio = r10_bio->devs[j].repl_bio;
181 		struct resync_pages *rp, *rp_repl;
182 
183 		rp = &rps[j];
184 		if (rbio)
185 			rp_repl = &rps[nalloc + j];
186 
187 		bio = r10_bio->devs[j].bio;
188 
189 		if (!j || test_bit(MD_RECOVERY_SYNC,
190 				   &conf->mddev->recovery)) {
191 			if (resync_alloc_pages(rp, gfp_flags))
192 				goto out_free_pages;
193 		} else {
194 			memcpy(rp, &rps[0], sizeof(*rp));
195 			resync_get_all_pages(rp);
196 		}
197 
198 		rp->raid_bio = r10_bio;
199 		bio->bi_private = rp;
200 		if (rbio) {
201 			memcpy(rp_repl, rp, sizeof(*rp));
202 			rbio->bi_private = rp_repl;
203 		}
204 	}
205 
206 	return r10_bio;
207 
208 out_free_pages:
209 	while (--j >= 0)
210 		resync_free_pages(&rps[j]);
211 
212 	j = 0;
213 out_free_bio:
214 	for ( ; j < nalloc; j++) {
215 		if (r10_bio->devs[j].bio)
216 			bio_uninit(r10_bio->devs[j].bio);
217 		kfree(r10_bio->devs[j].bio);
218 		if (r10_bio->devs[j].repl_bio)
219 			bio_uninit(r10_bio->devs[j].repl_bio);
220 		kfree(r10_bio->devs[j].repl_bio);
221 	}
222 	kfree(rps);
223 out_free_r10bio:
224 	rbio_pool_free(r10_bio, conf);
225 	return NULL;
226 }
227 
228 static void r10buf_pool_free(void *__r10_bio, void *data)
229 {
230 	struct r10conf *conf = data;
231 	struct r10bio *r10bio = __r10_bio;
232 	int j;
233 	struct resync_pages *rp = NULL;
234 
235 	for (j = conf->copies; j--; ) {
236 		struct bio *bio = r10bio->devs[j].bio;
237 
238 		if (bio) {
239 			rp = get_resync_pages(bio);
240 			resync_free_pages(rp);
241 			bio_uninit(bio);
242 			kfree(bio);
243 		}
244 
245 		bio = r10bio->devs[j].repl_bio;
246 		if (bio) {
247 			bio_uninit(bio);
248 			kfree(bio);
249 		}
250 	}
251 
252 	/* resync pages array stored in the 1st bio's .bi_private */
253 	kfree(rp);
254 
255 	rbio_pool_free(r10bio, conf);
256 }
257 
258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
259 {
260 	int i;
261 
262 	for (i = 0; i < conf->geo.raid_disks; i++) {
263 		struct bio **bio = & r10_bio->devs[i].bio;
264 		if (!BIO_SPECIAL(*bio))
265 			bio_put(*bio);
266 		*bio = NULL;
267 		bio = &r10_bio->devs[i].repl_bio;
268 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
269 			bio_put(*bio);
270 		*bio = NULL;
271 	}
272 }
273 
274 static void free_r10bio(struct r10bio *r10_bio)
275 {
276 	struct r10conf *conf = r10_bio->mddev->private;
277 
278 	put_all_bios(conf, r10_bio);
279 	mempool_free(r10_bio, &conf->r10bio_pool);
280 }
281 
282 static void put_buf(struct r10bio *r10_bio)
283 {
284 	struct r10conf *conf = r10_bio->mddev->private;
285 
286 	mempool_free(r10_bio, &conf->r10buf_pool);
287 
288 	lower_barrier(conf);
289 }
290 
291 static void wake_up_barrier(struct r10conf *conf)
292 {
293 	if (wq_has_sleeper(&conf->wait_barrier))
294 		wake_up(&conf->wait_barrier);
295 }
296 
297 static void reschedule_retry(struct r10bio *r10_bio)
298 {
299 	unsigned long flags;
300 	struct mddev *mddev = r10_bio->mddev;
301 	struct r10conf *conf = mddev->private;
302 
303 	spin_lock_irqsave(&conf->device_lock, flags);
304 	list_add(&r10_bio->retry_list, &conf->retry_list);
305 	conf->nr_queued ++;
306 	spin_unlock_irqrestore(&conf->device_lock, flags);
307 
308 	/* wake up frozen array... */
309 	wake_up(&conf->wait_barrier);
310 
311 	md_wakeup_thread(mddev->thread);
312 }
313 
314 /*
315  * raid_end_bio_io() is called when we have finished servicing a mirrored
316  * operation and are ready to return a success/failure code to the buffer
317  * cache layer.
318  */
319 static void raid_end_bio_io(struct r10bio *r10_bio)
320 {
321 	struct bio *bio = r10_bio->master_bio;
322 	struct r10conf *conf = r10_bio->mddev->private;
323 
324 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
325 		bio->bi_status = BLK_STS_IOERR;
326 
327 	bio_endio(bio);
328 	/*
329 	 * Wake up any possible resync thread that waits for the device
330 	 * to go idle.
331 	 */
332 	allow_barrier(conf);
333 
334 	free_r10bio(r10_bio);
335 }
336 
337 /*
338  * Update disk head position estimator based on IRQ completion info.
339  */
340 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
341 {
342 	struct r10conf *conf = r10_bio->mddev->private;
343 
344 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
345 		r10_bio->devs[slot].addr + (r10_bio->sectors);
346 }
347 
348 /*
349  * Find the disk number which triggered given bio
350  */
351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
352 			 struct bio *bio, int *slotp, int *replp)
353 {
354 	int slot;
355 	int repl = 0;
356 
357 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
358 		if (r10_bio->devs[slot].bio == bio)
359 			break;
360 		if (r10_bio->devs[slot].repl_bio == bio) {
361 			repl = 1;
362 			break;
363 		}
364 	}
365 
366 	update_head_pos(slot, r10_bio);
367 
368 	if (slotp)
369 		*slotp = slot;
370 	if (replp)
371 		*replp = repl;
372 	return r10_bio->devs[slot].devnum;
373 }
374 
375 static void raid10_end_read_request(struct bio *bio)
376 {
377 	int uptodate = !bio->bi_status;
378 	struct r10bio *r10_bio = bio->bi_private;
379 	int slot;
380 	struct md_rdev *rdev;
381 	struct r10conf *conf = r10_bio->mddev->private;
382 
383 	slot = r10_bio->read_slot;
384 	rdev = r10_bio->devs[slot].rdev;
385 	/*
386 	 * this branch is our 'one mirror IO has finished' event handler:
387 	 */
388 	update_head_pos(slot, r10_bio);
389 
390 	if (uptodate) {
391 		/*
392 		 * Set R10BIO_Uptodate in our master bio, so that
393 		 * we will return a good error code to the higher
394 		 * levels even if IO on some other mirrored buffer fails.
395 		 *
396 		 * The 'master' represents the composite IO operation to
397 		 * user-side. So if something waits for IO, then it will
398 		 * wait for the 'master' bio.
399 		 */
400 		set_bit(R10BIO_Uptodate, &r10_bio->state);
401 	} else {
402 		/* If all other devices that store this block have
403 		 * failed, we want to return the error upwards rather
404 		 * than fail the last device.  Here we redefine
405 		 * "uptodate" to mean "Don't want to retry"
406 		 */
407 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
408 			     rdev->raid_disk))
409 			uptodate = 1;
410 	}
411 	if (uptodate) {
412 		raid_end_bio_io(r10_bio);
413 		rdev_dec_pending(rdev, conf->mddev);
414 	} else {
415 		/*
416 		 * oops, read error - keep the refcount on the rdev
417 		 */
418 		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
419 				   mdname(conf->mddev),
420 				   rdev->bdev,
421 				   (unsigned long long)r10_bio->sector);
422 		set_bit(R10BIO_ReadError, &r10_bio->state);
423 		reschedule_retry(r10_bio);
424 	}
425 }
426 
427 static void close_write(struct r10bio *r10_bio)
428 {
429 	struct mddev *mddev = r10_bio->mddev;
430 
431 	/* clear the bitmap if all writes complete successfully */
432 	mddev->bitmap_ops->endwrite(mddev, r10_bio->sector, r10_bio->sectors,
433 				    !test_bit(R10BIO_Degraded, &r10_bio->state),
434 				    false);
435 	md_write_end(mddev);
436 }
437 
438 static void one_write_done(struct r10bio *r10_bio)
439 {
440 	if (atomic_dec_and_test(&r10_bio->remaining)) {
441 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
442 			reschedule_retry(r10_bio);
443 		else {
444 			close_write(r10_bio);
445 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
446 				reschedule_retry(r10_bio);
447 			else
448 				raid_end_bio_io(r10_bio);
449 		}
450 	}
451 }
452 
453 static void raid10_end_write_request(struct bio *bio)
454 {
455 	struct r10bio *r10_bio = bio->bi_private;
456 	int dev;
457 	int dec_rdev = 1;
458 	struct r10conf *conf = r10_bio->mddev->private;
459 	int slot, repl;
460 	struct md_rdev *rdev = NULL;
461 	struct bio *to_put = NULL;
462 	bool discard_error;
463 
464 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
465 
466 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
467 
468 	if (repl)
469 		rdev = conf->mirrors[dev].replacement;
470 	if (!rdev) {
471 		smp_rmb();
472 		repl = 0;
473 		rdev = conf->mirrors[dev].rdev;
474 	}
475 	/*
476 	 * this branch is our 'one mirror IO has finished' event handler:
477 	 */
478 	if (bio->bi_status && !discard_error) {
479 		if (repl)
480 			/* Never record new bad blocks to replacement,
481 			 * just fail it.
482 			 */
483 			md_error(rdev->mddev, rdev);
484 		else {
485 			set_bit(WriteErrorSeen,	&rdev->flags);
486 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
487 				set_bit(MD_RECOVERY_NEEDED,
488 					&rdev->mddev->recovery);
489 
490 			dec_rdev = 0;
491 			if (test_bit(FailFast, &rdev->flags) &&
492 			    (bio->bi_opf & MD_FAILFAST)) {
493 				md_error(rdev->mddev, rdev);
494 			}
495 
496 			/*
497 			 * When the device is faulty, it is not necessary to
498 			 * handle write error.
499 			 */
500 			if (!test_bit(Faulty, &rdev->flags))
501 				set_bit(R10BIO_WriteError, &r10_bio->state);
502 			else {
503 				/* Fail the request */
504 				set_bit(R10BIO_Degraded, &r10_bio->state);
505 				r10_bio->devs[slot].bio = NULL;
506 				to_put = bio;
507 				dec_rdev = 1;
508 			}
509 		}
510 	} else {
511 		/*
512 		 * Set R10BIO_Uptodate in our master bio, so that
513 		 * we will return a good error code for to the higher
514 		 * levels even if IO on some other mirrored buffer fails.
515 		 *
516 		 * The 'master' represents the composite IO operation to
517 		 * user-side. So if something waits for IO, then it will
518 		 * wait for the 'master' bio.
519 		 *
520 		 * Do not set R10BIO_Uptodate if the current device is
521 		 * rebuilding or Faulty. This is because we cannot use
522 		 * such device for properly reading the data back (we could
523 		 * potentially use it, if the current write would have felt
524 		 * before rdev->recovery_offset, but for simplicity we don't
525 		 * check this here.
526 		 */
527 		if (test_bit(In_sync, &rdev->flags) &&
528 		    !test_bit(Faulty, &rdev->flags))
529 			set_bit(R10BIO_Uptodate, &r10_bio->state);
530 
531 		/* Maybe we can clear some bad blocks. */
532 		if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
533 				      r10_bio->sectors) &&
534 		    !discard_error) {
535 			bio_put(bio);
536 			if (repl)
537 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
538 			else
539 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
540 			dec_rdev = 0;
541 			set_bit(R10BIO_MadeGood, &r10_bio->state);
542 		}
543 	}
544 
545 	/*
546 	 *
547 	 * Let's see if all mirrored write operations have finished
548 	 * already.
549 	 */
550 	one_write_done(r10_bio);
551 	if (dec_rdev)
552 		rdev_dec_pending(rdev, conf->mddev);
553 	if (to_put)
554 		bio_put(to_put);
555 }
556 
557 /*
558  * RAID10 layout manager
559  * As well as the chunksize and raid_disks count, there are two
560  * parameters: near_copies and far_copies.
561  * near_copies * far_copies must be <= raid_disks.
562  * Normally one of these will be 1.
563  * If both are 1, we get raid0.
564  * If near_copies == raid_disks, we get raid1.
565  *
566  * Chunks are laid out in raid0 style with near_copies copies of the
567  * first chunk, followed by near_copies copies of the next chunk and
568  * so on.
569  * If far_copies > 1, then after 1/far_copies of the array has been assigned
570  * as described above, we start again with a device offset of near_copies.
571  * So we effectively have another copy of the whole array further down all
572  * the drives, but with blocks on different drives.
573  * With this layout, and block is never stored twice on the one device.
574  *
575  * raid10_find_phys finds the sector offset of a given virtual sector
576  * on each device that it is on.
577  *
578  * raid10_find_virt does the reverse mapping, from a device and a
579  * sector offset to a virtual address
580  */
581 
582 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
583 {
584 	int n,f;
585 	sector_t sector;
586 	sector_t chunk;
587 	sector_t stripe;
588 	int dev;
589 	int slot = 0;
590 	int last_far_set_start, last_far_set_size;
591 
592 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
593 	last_far_set_start *= geo->far_set_size;
594 
595 	last_far_set_size = geo->far_set_size;
596 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
597 
598 	/* now calculate first sector/dev */
599 	chunk = r10bio->sector >> geo->chunk_shift;
600 	sector = r10bio->sector & geo->chunk_mask;
601 
602 	chunk *= geo->near_copies;
603 	stripe = chunk;
604 	dev = sector_div(stripe, geo->raid_disks);
605 	if (geo->far_offset)
606 		stripe *= geo->far_copies;
607 
608 	sector += stripe << geo->chunk_shift;
609 
610 	/* and calculate all the others */
611 	for (n = 0; n < geo->near_copies; n++) {
612 		int d = dev;
613 		int set;
614 		sector_t s = sector;
615 		r10bio->devs[slot].devnum = d;
616 		r10bio->devs[slot].addr = s;
617 		slot++;
618 
619 		for (f = 1; f < geo->far_copies; f++) {
620 			set = d / geo->far_set_size;
621 			d += geo->near_copies;
622 
623 			if ((geo->raid_disks % geo->far_set_size) &&
624 			    (d > last_far_set_start)) {
625 				d -= last_far_set_start;
626 				d %= last_far_set_size;
627 				d += last_far_set_start;
628 			} else {
629 				d %= geo->far_set_size;
630 				d += geo->far_set_size * set;
631 			}
632 			s += geo->stride;
633 			r10bio->devs[slot].devnum = d;
634 			r10bio->devs[slot].addr = s;
635 			slot++;
636 		}
637 		dev++;
638 		if (dev >= geo->raid_disks) {
639 			dev = 0;
640 			sector += (geo->chunk_mask + 1);
641 		}
642 	}
643 }
644 
645 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
646 {
647 	struct geom *geo = &conf->geo;
648 
649 	if (conf->reshape_progress != MaxSector &&
650 	    ((r10bio->sector >= conf->reshape_progress) !=
651 	     conf->mddev->reshape_backwards)) {
652 		set_bit(R10BIO_Previous, &r10bio->state);
653 		geo = &conf->prev;
654 	} else
655 		clear_bit(R10BIO_Previous, &r10bio->state);
656 
657 	__raid10_find_phys(geo, r10bio);
658 }
659 
660 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
661 {
662 	sector_t offset, chunk, vchunk;
663 	/* Never use conf->prev as this is only called during resync
664 	 * or recovery, so reshape isn't happening
665 	 */
666 	struct geom *geo = &conf->geo;
667 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
668 	int far_set_size = geo->far_set_size;
669 	int last_far_set_start;
670 
671 	if (geo->raid_disks % geo->far_set_size) {
672 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
673 		last_far_set_start *= geo->far_set_size;
674 
675 		if (dev >= last_far_set_start) {
676 			far_set_size = geo->far_set_size;
677 			far_set_size += (geo->raid_disks % geo->far_set_size);
678 			far_set_start = last_far_set_start;
679 		}
680 	}
681 
682 	offset = sector & geo->chunk_mask;
683 	if (geo->far_offset) {
684 		int fc;
685 		chunk = sector >> geo->chunk_shift;
686 		fc = sector_div(chunk, geo->far_copies);
687 		dev -= fc * geo->near_copies;
688 		if (dev < far_set_start)
689 			dev += far_set_size;
690 	} else {
691 		while (sector >= geo->stride) {
692 			sector -= geo->stride;
693 			if (dev < (geo->near_copies + far_set_start))
694 				dev += far_set_size - geo->near_copies;
695 			else
696 				dev -= geo->near_copies;
697 		}
698 		chunk = sector >> geo->chunk_shift;
699 	}
700 	vchunk = chunk * geo->raid_disks + dev;
701 	sector_div(vchunk, geo->near_copies);
702 	return (vchunk << geo->chunk_shift) + offset;
703 }
704 
705 /*
706  * This routine returns the disk from which the requested read should
707  * be done. There is a per-array 'next expected sequential IO' sector
708  * number - if this matches on the next IO then we use the last disk.
709  * There is also a per-disk 'last know head position' sector that is
710  * maintained from IRQ contexts, both the normal and the resync IO
711  * completion handlers update this position correctly. If there is no
712  * perfect sequential match then we pick the disk whose head is closest.
713  *
714  * If there are 2 mirrors in the same 2 devices, performance degrades
715  * because position is mirror, not device based.
716  *
717  * The rdev for the device selected will have nr_pending incremented.
718  */
719 
720 /*
721  * FIXME: possibly should rethink readbalancing and do it differently
722  * depending on near_copies / far_copies geometry.
723  */
724 static struct md_rdev *read_balance(struct r10conf *conf,
725 				    struct r10bio *r10_bio,
726 				    int *max_sectors)
727 {
728 	const sector_t this_sector = r10_bio->sector;
729 	int disk, slot;
730 	int sectors = r10_bio->sectors;
731 	int best_good_sectors;
732 	sector_t new_distance, best_dist;
733 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
734 	int do_balance;
735 	int best_dist_slot, best_pending_slot;
736 	bool has_nonrot_disk = false;
737 	unsigned int min_pending;
738 	struct geom *geo = &conf->geo;
739 
740 	raid10_find_phys(conf, r10_bio);
741 	best_dist_slot = -1;
742 	min_pending = UINT_MAX;
743 	best_dist_rdev = NULL;
744 	best_pending_rdev = NULL;
745 	best_dist = MaxSector;
746 	best_good_sectors = 0;
747 	do_balance = 1;
748 	clear_bit(R10BIO_FailFast, &r10_bio->state);
749 
750 	if (raid1_should_read_first(conf->mddev, this_sector, sectors))
751 		do_balance = 0;
752 
753 	for (slot = 0; slot < conf->copies ; slot++) {
754 		sector_t first_bad;
755 		int bad_sectors;
756 		sector_t dev_sector;
757 		unsigned int pending;
758 		bool nonrot;
759 
760 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
761 			continue;
762 		disk = r10_bio->devs[slot].devnum;
763 		rdev = conf->mirrors[disk].replacement;
764 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
765 		    r10_bio->devs[slot].addr + sectors >
766 		    rdev->recovery_offset)
767 			rdev = conf->mirrors[disk].rdev;
768 		if (rdev == NULL ||
769 		    test_bit(Faulty, &rdev->flags))
770 			continue;
771 		if (!test_bit(In_sync, &rdev->flags) &&
772 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
773 			continue;
774 
775 		dev_sector = r10_bio->devs[slot].addr;
776 		if (is_badblock(rdev, dev_sector, sectors,
777 				&first_bad, &bad_sectors)) {
778 			if (best_dist < MaxSector)
779 				/* Already have a better slot */
780 				continue;
781 			if (first_bad <= dev_sector) {
782 				/* Cannot read here.  If this is the
783 				 * 'primary' device, then we must not read
784 				 * beyond 'bad_sectors' from another device.
785 				 */
786 				bad_sectors -= (dev_sector - first_bad);
787 				if (!do_balance && sectors > bad_sectors)
788 					sectors = bad_sectors;
789 				if (best_good_sectors > sectors)
790 					best_good_sectors = sectors;
791 			} else {
792 				sector_t good_sectors =
793 					first_bad - dev_sector;
794 				if (good_sectors > best_good_sectors) {
795 					best_good_sectors = good_sectors;
796 					best_dist_slot = slot;
797 					best_dist_rdev = rdev;
798 				}
799 				if (!do_balance)
800 					/* Must read from here */
801 					break;
802 			}
803 			continue;
804 		} else
805 			best_good_sectors = sectors;
806 
807 		if (!do_balance)
808 			break;
809 
810 		nonrot = bdev_nonrot(rdev->bdev);
811 		has_nonrot_disk |= nonrot;
812 		pending = atomic_read(&rdev->nr_pending);
813 		if (min_pending > pending && nonrot) {
814 			min_pending = pending;
815 			best_pending_slot = slot;
816 			best_pending_rdev = rdev;
817 		}
818 
819 		if (best_dist_slot >= 0)
820 			/* At least 2 disks to choose from so failfast is OK */
821 			set_bit(R10BIO_FailFast, &r10_bio->state);
822 		/* This optimisation is debatable, and completely destroys
823 		 * sequential read speed for 'far copies' arrays.  So only
824 		 * keep it for 'near' arrays, and review those later.
825 		 */
826 		if (geo->near_copies > 1 && !pending)
827 			new_distance = 0;
828 
829 		/* for far > 1 always use the lowest address */
830 		else if (geo->far_copies > 1)
831 			new_distance = r10_bio->devs[slot].addr;
832 		else
833 			new_distance = abs(r10_bio->devs[slot].addr -
834 					   conf->mirrors[disk].head_position);
835 
836 		if (new_distance < best_dist) {
837 			best_dist = new_distance;
838 			best_dist_slot = slot;
839 			best_dist_rdev = rdev;
840 		}
841 	}
842 	if (slot >= conf->copies) {
843 		if (has_nonrot_disk) {
844 			slot = best_pending_slot;
845 			rdev = best_pending_rdev;
846 		} else {
847 			slot = best_dist_slot;
848 			rdev = best_dist_rdev;
849 		}
850 	}
851 
852 	if (slot >= 0) {
853 		atomic_inc(&rdev->nr_pending);
854 		r10_bio->read_slot = slot;
855 	} else
856 		rdev = NULL;
857 	*max_sectors = best_good_sectors;
858 
859 	return rdev;
860 }
861 
862 static void flush_pending_writes(struct r10conf *conf)
863 {
864 	/* Any writes that have been queued but are awaiting
865 	 * bitmap updates get flushed here.
866 	 */
867 	spin_lock_irq(&conf->device_lock);
868 
869 	if (conf->pending_bio_list.head) {
870 		struct blk_plug plug;
871 		struct bio *bio;
872 
873 		bio = bio_list_get(&conf->pending_bio_list);
874 		spin_unlock_irq(&conf->device_lock);
875 
876 		/*
877 		 * As this is called in a wait_event() loop (see freeze_array),
878 		 * current->state might be TASK_UNINTERRUPTIBLE which will
879 		 * cause a warning when we prepare to wait again.  As it is
880 		 * rare that this path is taken, it is perfectly safe to force
881 		 * us to go around the wait_event() loop again, so the warning
882 		 * is a false-positive. Silence the warning by resetting
883 		 * thread state
884 		 */
885 		__set_current_state(TASK_RUNNING);
886 
887 		blk_start_plug(&plug);
888 		raid1_prepare_flush_writes(conf->mddev);
889 		wake_up(&conf->wait_barrier);
890 
891 		while (bio) { /* submit pending writes */
892 			struct bio *next = bio->bi_next;
893 
894 			raid1_submit_write(bio);
895 			bio = next;
896 			cond_resched();
897 		}
898 		blk_finish_plug(&plug);
899 	} else
900 		spin_unlock_irq(&conf->device_lock);
901 }
902 
903 /* Barriers....
904  * Sometimes we need to suspend IO while we do something else,
905  * either some resync/recovery, or reconfigure the array.
906  * To do this we raise a 'barrier'.
907  * The 'barrier' is a counter that can be raised multiple times
908  * to count how many activities are happening which preclude
909  * normal IO.
910  * We can only raise the barrier if there is no pending IO.
911  * i.e. if nr_pending == 0.
912  * We choose only to raise the barrier if no-one is waiting for the
913  * barrier to go down.  This means that as soon as an IO request
914  * is ready, no other operations which require a barrier will start
915  * until the IO request has had a chance.
916  *
917  * So: regular IO calls 'wait_barrier'.  When that returns there
918  *    is no backgroup IO happening,  It must arrange to call
919  *    allow_barrier when it has finished its IO.
920  * backgroup IO calls must call raise_barrier.  Once that returns
921  *    there is no normal IO happeing.  It must arrange to call
922  *    lower_barrier when the particular background IO completes.
923  */
924 
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927 	write_seqlock_irq(&conf->resync_lock);
928 
929 	if (WARN_ON_ONCE(force && !conf->barrier))
930 		force = false;
931 
932 	/* Wait until no block IO is waiting (unless 'force') */
933 	wait_event_barrier(conf, force || !conf->nr_waiting);
934 
935 	/* block any new IO from starting */
936 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
937 
938 	/* Now wait for all pending IO to complete */
939 	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
940 				 conf->barrier < RESYNC_DEPTH);
941 
942 	write_sequnlock_irq(&conf->resync_lock);
943 }
944 
945 static void lower_barrier(struct r10conf *conf)
946 {
947 	unsigned long flags;
948 
949 	write_seqlock_irqsave(&conf->resync_lock, flags);
950 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
951 	write_sequnlock_irqrestore(&conf->resync_lock, flags);
952 	wake_up(&conf->wait_barrier);
953 }
954 
955 static bool stop_waiting_barrier(struct r10conf *conf)
956 {
957 	struct bio_list *bio_list = current->bio_list;
958 	struct md_thread *thread;
959 
960 	/* barrier is dropped */
961 	if (!conf->barrier)
962 		return true;
963 
964 	/*
965 	 * If there are already pending requests (preventing the barrier from
966 	 * rising completely), and the pre-process bio queue isn't empty, then
967 	 * don't wait, as we need to empty that queue to get the nr_pending
968 	 * count down.
969 	 */
970 	if (atomic_read(&conf->nr_pending) && bio_list &&
971 	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
972 		return true;
973 
974 	/* daemon thread must exist while handling io */
975 	thread = rcu_dereference_protected(conf->mddev->thread, true);
976 	/*
977 	 * move on if io is issued from raid10d(), nr_pending is not released
978 	 * from original io(see handle_read_error()). All raise barrier is
979 	 * blocked until this io is done.
980 	 */
981 	if (thread->tsk == current) {
982 		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
983 		return true;
984 	}
985 
986 	return false;
987 }
988 
989 static bool wait_barrier_nolock(struct r10conf *conf)
990 {
991 	unsigned int seq = read_seqbegin(&conf->resync_lock);
992 
993 	if (READ_ONCE(conf->barrier))
994 		return false;
995 
996 	atomic_inc(&conf->nr_pending);
997 	if (!read_seqretry(&conf->resync_lock, seq))
998 		return true;
999 
1000 	if (atomic_dec_and_test(&conf->nr_pending))
1001 		wake_up_barrier(conf);
1002 
1003 	return false;
1004 }
1005 
1006 static bool wait_barrier(struct r10conf *conf, bool nowait)
1007 {
1008 	bool ret = true;
1009 
1010 	if (wait_barrier_nolock(conf))
1011 		return true;
1012 
1013 	write_seqlock_irq(&conf->resync_lock);
1014 	if (conf->barrier) {
1015 		/* Return false when nowait flag is set */
1016 		if (nowait) {
1017 			ret = false;
1018 		} else {
1019 			conf->nr_waiting++;
1020 			mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1021 			wait_event_barrier(conf, stop_waiting_barrier(conf));
1022 			conf->nr_waiting--;
1023 		}
1024 		if (!conf->nr_waiting)
1025 			wake_up(&conf->wait_barrier);
1026 	}
1027 	/* Only increment nr_pending when we wait */
1028 	if (ret)
1029 		atomic_inc(&conf->nr_pending);
1030 	write_sequnlock_irq(&conf->resync_lock);
1031 	return ret;
1032 }
1033 
1034 static void allow_barrier(struct r10conf *conf)
1035 {
1036 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1037 			(conf->array_freeze_pending))
1038 		wake_up_barrier(conf);
1039 }
1040 
1041 static void freeze_array(struct r10conf *conf, int extra)
1042 {
1043 	/* stop syncio and normal IO and wait for everything to
1044 	 * go quiet.
1045 	 * We increment barrier and nr_waiting, and then
1046 	 * wait until nr_pending match nr_queued+extra
1047 	 * This is called in the context of one normal IO request
1048 	 * that has failed. Thus any sync request that might be pending
1049 	 * will be blocked by nr_pending, and we need to wait for
1050 	 * pending IO requests to complete or be queued for re-try.
1051 	 * Thus the number queued (nr_queued) plus this request (extra)
1052 	 * must match the number of pending IOs (nr_pending) before
1053 	 * we continue.
1054 	 */
1055 	write_seqlock_irq(&conf->resync_lock);
1056 	conf->array_freeze_pending++;
1057 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1058 	conf->nr_waiting++;
1059 	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1060 			conf->nr_queued + extra, flush_pending_writes(conf));
1061 	conf->array_freeze_pending--;
1062 	write_sequnlock_irq(&conf->resync_lock);
1063 }
1064 
1065 static void unfreeze_array(struct r10conf *conf)
1066 {
1067 	/* reverse the effect of the freeze */
1068 	write_seqlock_irq(&conf->resync_lock);
1069 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1070 	conf->nr_waiting--;
1071 	wake_up(&conf->wait_barrier);
1072 	write_sequnlock_irq(&conf->resync_lock);
1073 }
1074 
1075 static sector_t choose_data_offset(struct r10bio *r10_bio,
1076 				   struct md_rdev *rdev)
1077 {
1078 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1079 	    test_bit(R10BIO_Previous, &r10_bio->state))
1080 		return rdev->data_offset;
1081 	else
1082 		return rdev->new_data_offset;
1083 }
1084 
1085 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1086 {
1087 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1088 	struct mddev *mddev = plug->cb.data;
1089 	struct r10conf *conf = mddev->private;
1090 	struct bio *bio;
1091 
1092 	if (from_schedule) {
1093 		spin_lock_irq(&conf->device_lock);
1094 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095 		spin_unlock_irq(&conf->device_lock);
1096 		wake_up_barrier(conf);
1097 		md_wakeup_thread(mddev->thread);
1098 		kfree(plug);
1099 		return;
1100 	}
1101 
1102 	/* we aren't scheduling, so we can do the write-out directly. */
1103 	bio = bio_list_get(&plug->pending);
1104 	raid1_prepare_flush_writes(mddev);
1105 	wake_up_barrier(conf);
1106 
1107 	while (bio) { /* submit pending writes */
1108 		struct bio *next = bio->bi_next;
1109 
1110 		raid1_submit_write(bio);
1111 		bio = next;
1112 		cond_resched();
1113 	}
1114 	kfree(plug);
1115 }
1116 
1117 /*
1118  * 1. Register the new request and wait if the reconstruction thread has put
1119  * up a bar for new requests. Continue immediately if no resync is active
1120  * currently.
1121  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1122  */
1123 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1124 				 struct bio *bio, sector_t sectors)
1125 {
1126 	/* Bail out if REQ_NOWAIT is set for the bio */
1127 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1128 		bio_wouldblock_error(bio);
1129 		return false;
1130 	}
1131 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1132 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1133 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1134 		allow_barrier(conf);
1135 		if (bio->bi_opf & REQ_NOWAIT) {
1136 			bio_wouldblock_error(bio);
1137 			return false;
1138 		}
1139 		mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1140 		wait_event(conf->wait_barrier,
1141 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1142 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1143 			   sectors);
1144 		wait_barrier(conf, false);
1145 	}
1146 	return true;
1147 }
1148 
1149 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1150 				struct r10bio *r10_bio, bool io_accounting)
1151 {
1152 	struct r10conf *conf = mddev->private;
1153 	struct bio *read_bio;
1154 	const enum req_op op = bio_op(bio);
1155 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1156 	int max_sectors;
1157 	struct md_rdev *rdev;
1158 	char b[BDEVNAME_SIZE];
1159 	int slot = r10_bio->read_slot;
1160 	struct md_rdev *err_rdev = NULL;
1161 	gfp_t gfp = GFP_NOIO;
1162 	int error;
1163 
1164 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1165 		/*
1166 		 * This is an error retry, but we cannot
1167 		 * safely dereference the rdev in the r10_bio,
1168 		 * we must use the one in conf.
1169 		 * If it has already been disconnected (unlikely)
1170 		 * we lose the device name in error messages.
1171 		 */
1172 		int disk;
1173 		/*
1174 		 * As we are blocking raid10, it is a little safer to
1175 		 * use __GFP_HIGH.
1176 		 */
1177 		gfp = GFP_NOIO | __GFP_HIGH;
1178 
1179 		disk = r10_bio->devs[slot].devnum;
1180 		err_rdev = conf->mirrors[disk].rdev;
1181 		if (err_rdev)
1182 			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1183 		else {
1184 			strcpy(b, "???");
1185 			/* This never gets dereferenced */
1186 			err_rdev = r10_bio->devs[slot].rdev;
1187 		}
1188 	}
1189 
1190 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1191 		return;
1192 	rdev = read_balance(conf, r10_bio, &max_sectors);
1193 	if (!rdev) {
1194 		if (err_rdev) {
1195 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1196 					    mdname(mddev), b,
1197 					    (unsigned long long)r10_bio->sector);
1198 		}
1199 		raid_end_bio_io(r10_bio);
1200 		return;
1201 	}
1202 	if (err_rdev)
1203 		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1204 				   mdname(mddev),
1205 				   rdev->bdev,
1206 				   (unsigned long long)r10_bio->sector);
1207 	if (max_sectors < bio_sectors(bio)) {
1208 		struct bio *split = bio_split(bio, max_sectors,
1209 					      gfp, &conf->bio_split);
1210 		if (IS_ERR(split)) {
1211 			error = PTR_ERR(split);
1212 			goto err_handle;
1213 		}
1214 		bio_chain(split, bio);
1215 		allow_barrier(conf);
1216 		submit_bio_noacct(bio);
1217 		wait_barrier(conf, false);
1218 		bio = split;
1219 		r10_bio->master_bio = bio;
1220 		r10_bio->sectors = max_sectors;
1221 	}
1222 	slot = r10_bio->read_slot;
1223 
1224 	if (io_accounting) {
1225 		md_account_bio(mddev, &bio);
1226 		r10_bio->master_bio = bio;
1227 	}
1228 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1229 
1230 	r10_bio->devs[slot].bio = read_bio;
1231 	r10_bio->devs[slot].rdev = rdev;
1232 
1233 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1234 		choose_data_offset(r10_bio, rdev);
1235 	read_bio->bi_end_io = raid10_end_read_request;
1236 	read_bio->bi_opf = op | do_sync;
1237 	if (test_bit(FailFast, &rdev->flags) &&
1238 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1239 	        read_bio->bi_opf |= MD_FAILFAST;
1240 	read_bio->bi_private = r10_bio;
1241 	mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1242 	submit_bio_noacct(read_bio);
1243 	return;
1244 err_handle:
1245 	atomic_dec(&rdev->nr_pending);
1246 	bio->bi_status = errno_to_blk_status(error);
1247 	set_bit(R10BIO_Uptodate, &r10_bio->state);
1248 	raid_end_bio_io(r10_bio);
1249 }
1250 
1251 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1252 				  struct bio *bio, bool replacement,
1253 				  int n_copy)
1254 {
1255 	const enum req_op op = bio_op(bio);
1256 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1257 	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1258 	unsigned long flags;
1259 	struct r10conf *conf = mddev->private;
1260 	struct md_rdev *rdev;
1261 	int devnum = r10_bio->devs[n_copy].devnum;
1262 	struct bio *mbio;
1263 
1264 	rdev = replacement ? conf->mirrors[devnum].replacement :
1265 			     conf->mirrors[devnum].rdev;
1266 
1267 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1268 	if (replacement)
1269 		r10_bio->devs[n_copy].repl_bio = mbio;
1270 	else
1271 		r10_bio->devs[n_copy].bio = mbio;
1272 
1273 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1274 				   choose_data_offset(r10_bio, rdev));
1275 	mbio->bi_end_io	= raid10_end_write_request;
1276 	mbio->bi_opf = op | do_sync | do_fua;
1277 	if (!replacement && test_bit(FailFast,
1278 				     &conf->mirrors[devnum].rdev->flags)
1279 			 && enough(conf, devnum))
1280 		mbio->bi_opf |= MD_FAILFAST;
1281 	mbio->bi_private = r10_bio;
1282 	mddev_trace_remap(mddev, mbio, r10_bio->sector);
1283 	/* flush_pending_writes() needs access to the rdev so...*/
1284 	mbio->bi_bdev = (void *)rdev;
1285 
1286 	atomic_inc(&r10_bio->remaining);
1287 
1288 	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1289 		spin_lock_irqsave(&conf->device_lock, flags);
1290 		bio_list_add(&conf->pending_bio_list, mbio);
1291 		spin_unlock_irqrestore(&conf->device_lock, flags);
1292 		md_wakeup_thread(mddev->thread);
1293 	}
1294 }
1295 
1296 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1297 {
1298 	struct r10conf *conf = mddev->private;
1299 	struct md_rdev *blocked_rdev;
1300 	int i;
1301 
1302 retry_wait:
1303 	blocked_rdev = NULL;
1304 	for (i = 0; i < conf->copies; i++) {
1305 		struct md_rdev *rdev, *rrdev;
1306 
1307 		rdev = conf->mirrors[i].rdev;
1308 		if (rdev) {
1309 			sector_t dev_sector = r10_bio->devs[i].addr;
1310 
1311 			/*
1312 			 * Discard request doesn't care the write result
1313 			 * so it doesn't need to wait blocked disk here.
1314 			 */
1315 			if (test_bit(WriteErrorSeen, &rdev->flags) &&
1316 			    r10_bio->sectors &&
1317 			    rdev_has_badblock(rdev, dev_sector,
1318 					      r10_bio->sectors) < 0)
1319 				/*
1320 				 * Mustn't write here until the bad
1321 				 * block is acknowledged
1322 				 */
1323 				set_bit(BlockedBadBlocks, &rdev->flags);
1324 
1325 			if (rdev_blocked(rdev)) {
1326 				blocked_rdev = rdev;
1327 				atomic_inc(&rdev->nr_pending);
1328 				break;
1329 			}
1330 		}
1331 
1332 		rrdev = conf->mirrors[i].replacement;
1333 		if (rrdev && rdev_blocked(rrdev)) {
1334 			atomic_inc(&rrdev->nr_pending);
1335 			blocked_rdev = rrdev;
1336 			break;
1337 		}
1338 	}
1339 
1340 	if (unlikely(blocked_rdev)) {
1341 		/* Have to wait for this device to get unblocked, then retry */
1342 		allow_barrier(conf);
1343 		mddev_add_trace_msg(conf->mddev,
1344 			"raid10 %s wait rdev %d blocked",
1345 			__func__, blocked_rdev->raid_disk);
1346 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1347 		wait_barrier(conf, false);
1348 		goto retry_wait;
1349 	}
1350 }
1351 
1352 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1353 				 struct r10bio *r10_bio)
1354 {
1355 	struct r10conf *conf = mddev->private;
1356 	int i, k;
1357 	sector_t sectors;
1358 	int max_sectors;
1359 	int error;
1360 
1361 	if ((mddev_is_clustered(mddev) &&
1362 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1363 					    bio->bi_iter.bi_sector,
1364 					    bio_end_sector(bio)))) {
1365 		DEFINE_WAIT(w);
1366 		/* Bail out if REQ_NOWAIT is set for the bio */
1367 		if (bio->bi_opf & REQ_NOWAIT) {
1368 			bio_wouldblock_error(bio);
1369 			return;
1370 		}
1371 		for (;;) {
1372 			prepare_to_wait(&conf->wait_barrier,
1373 					&w, TASK_IDLE);
1374 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1375 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1376 				break;
1377 			schedule();
1378 		}
1379 		finish_wait(&conf->wait_barrier, &w);
1380 	}
1381 
1382 	sectors = r10_bio->sectors;
1383 	if (!regular_request_wait(mddev, conf, bio, sectors))
1384 		return;
1385 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1386 	    (mddev->reshape_backwards
1387 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1388 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1389 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1390 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1391 		/* Need to update reshape_position in metadata */
1392 		mddev->reshape_position = conf->reshape_progress;
1393 		set_mask_bits(&mddev->sb_flags, 0,
1394 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1395 		md_wakeup_thread(mddev->thread);
1396 		if (bio->bi_opf & REQ_NOWAIT) {
1397 			allow_barrier(conf);
1398 			bio_wouldblock_error(bio);
1399 			return;
1400 		}
1401 		mddev_add_trace_msg(conf->mddev,
1402 			"raid10 wait reshape metadata");
1403 		wait_event(mddev->sb_wait,
1404 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1405 
1406 		conf->reshape_safe = mddev->reshape_position;
1407 	}
1408 
1409 	/* first select target devices under rcu_lock and
1410 	 * inc refcount on their rdev.  Record them by setting
1411 	 * bios[x] to bio
1412 	 * If there are known/acknowledged bad blocks on any device
1413 	 * on which we have seen a write error, we want to avoid
1414 	 * writing to those blocks.  This potentially requires several
1415 	 * writes to write around the bad blocks.  Each set of writes
1416 	 * gets its own r10_bio with a set of bios attached.
1417 	 */
1418 
1419 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1420 	raid10_find_phys(conf, r10_bio);
1421 
1422 	wait_blocked_dev(mddev, r10_bio);
1423 
1424 	max_sectors = r10_bio->sectors;
1425 
1426 	for (i = 0;  i < conf->copies; i++) {
1427 		int d = r10_bio->devs[i].devnum;
1428 		struct md_rdev *rdev, *rrdev;
1429 
1430 		rdev = conf->mirrors[d].rdev;
1431 		rrdev = conf->mirrors[d].replacement;
1432 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1433 			rdev = NULL;
1434 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1435 			rrdev = NULL;
1436 
1437 		r10_bio->devs[i].bio = NULL;
1438 		r10_bio->devs[i].repl_bio = NULL;
1439 
1440 		if (!rdev && !rrdev) {
1441 			set_bit(R10BIO_Degraded, &r10_bio->state);
1442 			continue;
1443 		}
1444 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1445 			sector_t first_bad;
1446 			sector_t dev_sector = r10_bio->devs[i].addr;
1447 			int bad_sectors;
1448 			int is_bad;
1449 
1450 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1451 					     &first_bad, &bad_sectors);
1452 			if (is_bad && first_bad <= dev_sector) {
1453 				/* Cannot write here at all */
1454 				bad_sectors -= (dev_sector - first_bad);
1455 				if (bad_sectors < max_sectors)
1456 					/* Mustn't write more than bad_sectors
1457 					 * to other devices yet
1458 					 */
1459 					max_sectors = bad_sectors;
1460 				/* We don't set R10BIO_Degraded as that
1461 				 * only applies if the disk is missing,
1462 				 * so it might be re-added, and we want to
1463 				 * know to recover this chunk.
1464 				 * In this case the device is here, and the
1465 				 * fact that this chunk is not in-sync is
1466 				 * recorded in the bad block log.
1467 				 */
1468 				continue;
1469 			}
1470 			if (is_bad) {
1471 				int good_sectors = first_bad - dev_sector;
1472 				if (good_sectors < max_sectors)
1473 					max_sectors = good_sectors;
1474 			}
1475 		}
1476 		if (rdev) {
1477 			r10_bio->devs[i].bio = bio;
1478 			atomic_inc(&rdev->nr_pending);
1479 		}
1480 		if (rrdev) {
1481 			r10_bio->devs[i].repl_bio = bio;
1482 			atomic_inc(&rrdev->nr_pending);
1483 		}
1484 	}
1485 
1486 	if (max_sectors < r10_bio->sectors)
1487 		r10_bio->sectors = max_sectors;
1488 
1489 	if (r10_bio->sectors < bio_sectors(bio)) {
1490 		struct bio *split = bio_split(bio, r10_bio->sectors,
1491 					      GFP_NOIO, &conf->bio_split);
1492 		if (IS_ERR(split)) {
1493 			error = PTR_ERR(split);
1494 			goto err_handle;
1495 		}
1496 		bio_chain(split, bio);
1497 		allow_barrier(conf);
1498 		submit_bio_noacct(bio);
1499 		wait_barrier(conf, false);
1500 		bio = split;
1501 		r10_bio->master_bio = bio;
1502 	}
1503 
1504 	md_account_bio(mddev, &bio);
1505 	r10_bio->master_bio = bio;
1506 	atomic_set(&r10_bio->remaining, 1);
1507 	mddev->bitmap_ops->startwrite(mddev, r10_bio->sector, r10_bio->sectors,
1508 				      false);
1509 
1510 	for (i = 0; i < conf->copies; i++) {
1511 		if (r10_bio->devs[i].bio)
1512 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1513 		if (r10_bio->devs[i].repl_bio)
1514 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1515 	}
1516 	one_write_done(r10_bio);
1517 	return;
1518 err_handle:
1519 	for (k = 0;  k < i; k++) {
1520 		int d = r10_bio->devs[k].devnum;
1521 		struct md_rdev *rdev = conf->mirrors[d].rdev;
1522 		struct md_rdev *rrdev = conf->mirrors[d].replacement;
1523 
1524 		if (r10_bio->devs[k].bio) {
1525 			rdev_dec_pending(rdev, mddev);
1526 			r10_bio->devs[k].bio = NULL;
1527 		}
1528 		if (r10_bio->devs[k].repl_bio) {
1529 			rdev_dec_pending(rrdev, mddev);
1530 			r10_bio->devs[k].repl_bio = NULL;
1531 		}
1532 	}
1533 
1534 	bio->bi_status = errno_to_blk_status(error);
1535 	set_bit(R10BIO_Uptodate, &r10_bio->state);
1536 	raid_end_bio_io(r10_bio);
1537 }
1538 
1539 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1540 {
1541 	struct r10conf *conf = mddev->private;
1542 	struct r10bio *r10_bio;
1543 
1544 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1545 
1546 	r10_bio->master_bio = bio;
1547 	r10_bio->sectors = sectors;
1548 
1549 	r10_bio->mddev = mddev;
1550 	r10_bio->sector = bio->bi_iter.bi_sector;
1551 	r10_bio->state = 0;
1552 	r10_bio->read_slot = -1;
1553 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1554 			conf->geo.raid_disks);
1555 
1556 	if (bio_data_dir(bio) == READ)
1557 		raid10_read_request(mddev, bio, r10_bio, true);
1558 	else
1559 		raid10_write_request(mddev, bio, r10_bio);
1560 }
1561 
1562 static void raid_end_discard_bio(struct r10bio *r10bio)
1563 {
1564 	struct r10conf *conf = r10bio->mddev->private;
1565 	struct r10bio *first_r10bio;
1566 
1567 	while (atomic_dec_and_test(&r10bio->remaining)) {
1568 
1569 		allow_barrier(conf);
1570 
1571 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1572 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1573 			free_r10bio(r10bio);
1574 			r10bio = first_r10bio;
1575 		} else {
1576 			md_write_end(r10bio->mddev);
1577 			bio_endio(r10bio->master_bio);
1578 			free_r10bio(r10bio);
1579 			break;
1580 		}
1581 	}
1582 }
1583 
1584 static void raid10_end_discard_request(struct bio *bio)
1585 {
1586 	struct r10bio *r10_bio = bio->bi_private;
1587 	struct r10conf *conf = r10_bio->mddev->private;
1588 	struct md_rdev *rdev = NULL;
1589 	int dev;
1590 	int slot, repl;
1591 
1592 	/*
1593 	 * We don't care the return value of discard bio
1594 	 */
1595 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1596 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1597 
1598 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1599 	rdev = repl ? conf->mirrors[dev].replacement :
1600 		      conf->mirrors[dev].rdev;
1601 
1602 	raid_end_discard_bio(r10_bio);
1603 	rdev_dec_pending(rdev, conf->mddev);
1604 }
1605 
1606 /*
1607  * There are some limitations to handle discard bio
1608  * 1st, the discard size is bigger than stripe_size*2.
1609  * 2st, if the discard bio spans reshape progress, we use the old way to
1610  * handle discard bio
1611  */
1612 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1613 {
1614 	struct r10conf *conf = mddev->private;
1615 	struct geom *geo = &conf->geo;
1616 	int far_copies = geo->far_copies;
1617 	bool first_copy = true;
1618 	struct r10bio *r10_bio, *first_r10bio;
1619 	struct bio *split;
1620 	int disk;
1621 	sector_t chunk;
1622 	unsigned int stripe_size;
1623 	unsigned int stripe_data_disks;
1624 	sector_t split_size;
1625 	sector_t bio_start, bio_end;
1626 	sector_t first_stripe_index, last_stripe_index;
1627 	sector_t start_disk_offset;
1628 	unsigned int start_disk_index;
1629 	sector_t end_disk_offset;
1630 	unsigned int end_disk_index;
1631 	unsigned int remainder;
1632 
1633 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1634 		return -EAGAIN;
1635 
1636 	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1637 		bio_wouldblock_error(bio);
1638 		return 0;
1639 	}
1640 	wait_barrier(conf, false);
1641 
1642 	/*
1643 	 * Check reshape again to avoid reshape happens after checking
1644 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1645 	 */
1646 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1647 		goto out;
1648 
1649 	if (geo->near_copies)
1650 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1651 					geo->raid_disks % geo->near_copies;
1652 	else
1653 		stripe_data_disks = geo->raid_disks;
1654 
1655 	stripe_size = stripe_data_disks << geo->chunk_shift;
1656 
1657 	bio_start = bio->bi_iter.bi_sector;
1658 	bio_end = bio_end_sector(bio);
1659 
1660 	/*
1661 	 * Maybe one discard bio is smaller than strip size or across one
1662 	 * stripe and discard region is larger than one stripe size. For far
1663 	 * offset layout, if the discard region is not aligned with stripe
1664 	 * size, there is hole when we submit discard bio to member disk.
1665 	 * For simplicity, we only handle discard bio which discard region
1666 	 * is bigger than stripe_size * 2
1667 	 */
1668 	if (bio_sectors(bio) < stripe_size*2)
1669 		goto out;
1670 
1671 	/*
1672 	 * Keep bio aligned with strip size.
1673 	 */
1674 	div_u64_rem(bio_start, stripe_size, &remainder);
1675 	if (remainder) {
1676 		split_size = stripe_size - remainder;
1677 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1678 		if (IS_ERR(split)) {
1679 			bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1680 			bio_endio(bio);
1681 			return 0;
1682 		}
1683 		bio_chain(split, bio);
1684 		allow_barrier(conf);
1685 		/* Resend the fist split part */
1686 		submit_bio_noacct(split);
1687 		wait_barrier(conf, false);
1688 	}
1689 	div_u64_rem(bio_end, stripe_size, &remainder);
1690 	if (remainder) {
1691 		split_size = bio_sectors(bio) - remainder;
1692 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1693 		if (IS_ERR(split)) {
1694 			bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1695 			bio_endio(bio);
1696 			return 0;
1697 		}
1698 		bio_chain(split, bio);
1699 		allow_barrier(conf);
1700 		/* Resend the second split part */
1701 		submit_bio_noacct(bio);
1702 		bio = split;
1703 		wait_barrier(conf, false);
1704 	}
1705 
1706 	bio_start = bio->bi_iter.bi_sector;
1707 	bio_end = bio_end_sector(bio);
1708 
1709 	/*
1710 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1711 	 * One stripe contains the chunks from all member disk (one chunk from
1712 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1713 	 */
1714 	chunk = bio_start >> geo->chunk_shift;
1715 	chunk *= geo->near_copies;
1716 	first_stripe_index = chunk;
1717 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1718 	if (geo->far_offset)
1719 		first_stripe_index *= geo->far_copies;
1720 	start_disk_offset = (bio_start & geo->chunk_mask) +
1721 				(first_stripe_index << geo->chunk_shift);
1722 
1723 	chunk = bio_end >> geo->chunk_shift;
1724 	chunk *= geo->near_copies;
1725 	last_stripe_index = chunk;
1726 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1727 	if (geo->far_offset)
1728 		last_stripe_index *= geo->far_copies;
1729 	end_disk_offset = (bio_end & geo->chunk_mask) +
1730 				(last_stripe_index << geo->chunk_shift);
1731 
1732 retry_discard:
1733 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1734 	r10_bio->mddev = mddev;
1735 	r10_bio->state = 0;
1736 	r10_bio->sectors = 0;
1737 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1738 	wait_blocked_dev(mddev, r10_bio);
1739 
1740 	/*
1741 	 * For far layout it needs more than one r10bio to cover all regions.
1742 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1743 	 * to record the discard bio. Other r10bio->master_bio record the first
1744 	 * r10bio. The first r10bio only release after all other r10bios finish.
1745 	 * The discard bio returns only first r10bio finishes
1746 	 */
1747 	if (first_copy) {
1748 		r10_bio->master_bio = bio;
1749 		set_bit(R10BIO_Discard, &r10_bio->state);
1750 		first_copy = false;
1751 		first_r10bio = r10_bio;
1752 	} else
1753 		r10_bio->master_bio = (struct bio *)first_r10bio;
1754 
1755 	/*
1756 	 * first select target devices under rcu_lock and
1757 	 * inc refcount on their rdev.  Record them by setting
1758 	 * bios[x] to bio
1759 	 */
1760 	for (disk = 0; disk < geo->raid_disks; disk++) {
1761 		struct md_rdev *rdev, *rrdev;
1762 
1763 		rdev = conf->mirrors[disk].rdev;
1764 		rrdev = conf->mirrors[disk].replacement;
1765 		r10_bio->devs[disk].bio = NULL;
1766 		r10_bio->devs[disk].repl_bio = NULL;
1767 
1768 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1769 			rdev = NULL;
1770 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1771 			rrdev = NULL;
1772 		if (!rdev && !rrdev)
1773 			continue;
1774 
1775 		if (rdev) {
1776 			r10_bio->devs[disk].bio = bio;
1777 			atomic_inc(&rdev->nr_pending);
1778 		}
1779 		if (rrdev) {
1780 			r10_bio->devs[disk].repl_bio = bio;
1781 			atomic_inc(&rrdev->nr_pending);
1782 		}
1783 	}
1784 
1785 	atomic_set(&r10_bio->remaining, 1);
1786 	for (disk = 0; disk < geo->raid_disks; disk++) {
1787 		sector_t dev_start, dev_end;
1788 		struct bio *mbio, *rbio = NULL;
1789 
1790 		/*
1791 		 * Now start to calculate the start and end address for each disk.
1792 		 * The space between dev_start and dev_end is the discard region.
1793 		 *
1794 		 * For dev_start, it needs to consider three conditions:
1795 		 * 1st, the disk is before start_disk, you can imagine the disk in
1796 		 * the next stripe. So the dev_start is the start address of next
1797 		 * stripe.
1798 		 * 2st, the disk is after start_disk, it means the disk is at the
1799 		 * same stripe of first disk
1800 		 * 3st, the first disk itself, we can use start_disk_offset directly
1801 		 */
1802 		if (disk < start_disk_index)
1803 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1804 		else if (disk > start_disk_index)
1805 			dev_start = first_stripe_index * mddev->chunk_sectors;
1806 		else
1807 			dev_start = start_disk_offset;
1808 
1809 		if (disk < end_disk_index)
1810 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1811 		else if (disk > end_disk_index)
1812 			dev_end = last_stripe_index * mddev->chunk_sectors;
1813 		else
1814 			dev_end = end_disk_offset;
1815 
1816 		/*
1817 		 * It only handles discard bio which size is >= stripe size, so
1818 		 * dev_end > dev_start all the time.
1819 		 * It doesn't need to use rcu lock to get rdev here. We already
1820 		 * add rdev->nr_pending in the first loop.
1821 		 */
1822 		if (r10_bio->devs[disk].bio) {
1823 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1824 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1825 					       &mddev->bio_set);
1826 			mbio->bi_end_io = raid10_end_discard_request;
1827 			mbio->bi_private = r10_bio;
1828 			r10_bio->devs[disk].bio = mbio;
1829 			r10_bio->devs[disk].devnum = disk;
1830 			atomic_inc(&r10_bio->remaining);
1831 			md_submit_discard_bio(mddev, rdev, mbio,
1832 					dev_start + choose_data_offset(r10_bio, rdev),
1833 					dev_end - dev_start);
1834 			bio_endio(mbio);
1835 		}
1836 		if (r10_bio->devs[disk].repl_bio) {
1837 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1838 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1839 					       &mddev->bio_set);
1840 			rbio->bi_end_io = raid10_end_discard_request;
1841 			rbio->bi_private = r10_bio;
1842 			r10_bio->devs[disk].repl_bio = rbio;
1843 			r10_bio->devs[disk].devnum = disk;
1844 			atomic_inc(&r10_bio->remaining);
1845 			md_submit_discard_bio(mddev, rrdev, rbio,
1846 					dev_start + choose_data_offset(r10_bio, rrdev),
1847 					dev_end - dev_start);
1848 			bio_endio(rbio);
1849 		}
1850 	}
1851 
1852 	if (!geo->far_offset && --far_copies) {
1853 		first_stripe_index += geo->stride >> geo->chunk_shift;
1854 		start_disk_offset += geo->stride;
1855 		last_stripe_index += geo->stride >> geo->chunk_shift;
1856 		end_disk_offset += geo->stride;
1857 		atomic_inc(&first_r10bio->remaining);
1858 		raid_end_discard_bio(r10_bio);
1859 		wait_barrier(conf, false);
1860 		goto retry_discard;
1861 	}
1862 
1863 	raid_end_discard_bio(r10_bio);
1864 
1865 	return 0;
1866 out:
1867 	allow_barrier(conf);
1868 	return -EAGAIN;
1869 }
1870 
1871 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1872 {
1873 	struct r10conf *conf = mddev->private;
1874 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1875 	int chunk_sects = chunk_mask + 1;
1876 	int sectors = bio_sectors(bio);
1877 
1878 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1879 	    && md_flush_request(mddev, bio))
1880 		return true;
1881 
1882 	md_write_start(mddev, bio);
1883 
1884 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1885 		if (!raid10_handle_discard(mddev, bio))
1886 			return true;
1887 
1888 	/*
1889 	 * If this request crosses a chunk boundary, we need to split
1890 	 * it.
1891 	 */
1892 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1893 		     sectors > chunk_sects
1894 		     && (conf->geo.near_copies < conf->geo.raid_disks
1895 			 || conf->prev.near_copies <
1896 			 conf->prev.raid_disks)))
1897 		sectors = chunk_sects -
1898 			(bio->bi_iter.bi_sector &
1899 			 (chunk_sects - 1));
1900 	__make_request(mddev, bio, sectors);
1901 
1902 	/* In case raid10d snuck in to freeze_array */
1903 	wake_up_barrier(conf);
1904 	return true;
1905 }
1906 
1907 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1908 {
1909 	struct r10conf *conf = mddev->private;
1910 	int i;
1911 
1912 	lockdep_assert_held(&mddev->lock);
1913 
1914 	if (conf->geo.near_copies < conf->geo.raid_disks)
1915 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1916 	if (conf->geo.near_copies > 1)
1917 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1918 	if (conf->geo.far_copies > 1) {
1919 		if (conf->geo.far_offset)
1920 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1921 		else
1922 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1923 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1924 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1925 	}
1926 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1927 					conf->geo.raid_disks - mddev->degraded);
1928 	for (i = 0; i < conf->geo.raid_disks; i++) {
1929 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1930 
1931 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1932 	}
1933 	seq_printf(seq, "]");
1934 }
1935 
1936 /* check if there are enough drives for
1937  * every block to appear on atleast one.
1938  * Don't consider the device numbered 'ignore'
1939  * as we might be about to remove it.
1940  */
1941 static int _enough(struct r10conf *conf, int previous, int ignore)
1942 {
1943 	int first = 0;
1944 	int has_enough = 0;
1945 	int disks, ncopies;
1946 	if (previous) {
1947 		disks = conf->prev.raid_disks;
1948 		ncopies = conf->prev.near_copies;
1949 	} else {
1950 		disks = conf->geo.raid_disks;
1951 		ncopies = conf->geo.near_copies;
1952 	}
1953 
1954 	do {
1955 		int n = conf->copies;
1956 		int cnt = 0;
1957 		int this = first;
1958 		while (n--) {
1959 			struct md_rdev *rdev;
1960 			if (this != ignore &&
1961 			    (rdev = conf->mirrors[this].rdev) &&
1962 			    test_bit(In_sync, &rdev->flags))
1963 				cnt++;
1964 			this = (this+1) % disks;
1965 		}
1966 		if (cnt == 0)
1967 			goto out;
1968 		first = (first + ncopies) % disks;
1969 	} while (first != 0);
1970 	has_enough = 1;
1971 out:
1972 	return has_enough;
1973 }
1974 
1975 static int enough(struct r10conf *conf, int ignore)
1976 {
1977 	/* when calling 'enough', both 'prev' and 'geo' must
1978 	 * be stable.
1979 	 * This is ensured if ->reconfig_mutex or ->device_lock
1980 	 * is held.
1981 	 */
1982 	return _enough(conf, 0, ignore) &&
1983 		_enough(conf, 1, ignore);
1984 }
1985 
1986 /**
1987  * raid10_error() - RAID10 error handler.
1988  * @mddev: affected md device.
1989  * @rdev: member device to fail.
1990  *
1991  * The routine acknowledges &rdev failure and determines new @mddev state.
1992  * If it failed, then:
1993  *	- &MD_BROKEN flag is set in &mddev->flags.
1994  * Otherwise, it must be degraded:
1995  *	- recovery is interrupted.
1996  *	- &mddev->degraded is bumped.
1997  *
1998  * @rdev is marked as &Faulty excluding case when array is failed and
1999  * &mddev->fail_last_dev is off.
2000  */
2001 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2002 {
2003 	struct r10conf *conf = mddev->private;
2004 	unsigned long flags;
2005 
2006 	spin_lock_irqsave(&conf->device_lock, flags);
2007 
2008 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2009 		set_bit(MD_BROKEN, &mddev->flags);
2010 
2011 		if (!mddev->fail_last_dev) {
2012 			spin_unlock_irqrestore(&conf->device_lock, flags);
2013 			return;
2014 		}
2015 	}
2016 	if (test_and_clear_bit(In_sync, &rdev->flags))
2017 		mddev->degraded++;
2018 
2019 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2020 	set_bit(Blocked, &rdev->flags);
2021 	set_bit(Faulty, &rdev->flags);
2022 	set_mask_bits(&mddev->sb_flags, 0,
2023 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2024 	spin_unlock_irqrestore(&conf->device_lock, flags);
2025 	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2026 		"md/raid10:%s: Operation continuing on %d devices.\n",
2027 		mdname(mddev), rdev->bdev,
2028 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2029 }
2030 
2031 static void print_conf(struct r10conf *conf)
2032 {
2033 	int i;
2034 	struct md_rdev *rdev;
2035 
2036 	pr_debug("RAID10 conf printout:\n");
2037 	if (!conf) {
2038 		pr_debug("(!conf)\n");
2039 		return;
2040 	}
2041 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2042 		 conf->geo.raid_disks);
2043 
2044 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
2045 	for (i = 0; i < conf->geo.raid_disks; i++) {
2046 		rdev = conf->mirrors[i].rdev;
2047 		if (rdev)
2048 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2049 				 i, !test_bit(In_sync, &rdev->flags),
2050 				 !test_bit(Faulty, &rdev->flags),
2051 				 rdev->bdev);
2052 	}
2053 }
2054 
2055 static void close_sync(struct r10conf *conf)
2056 {
2057 	wait_barrier(conf, false);
2058 	allow_barrier(conf);
2059 
2060 	mempool_exit(&conf->r10buf_pool);
2061 }
2062 
2063 static int raid10_spare_active(struct mddev *mddev)
2064 {
2065 	int i;
2066 	struct r10conf *conf = mddev->private;
2067 	struct raid10_info *tmp;
2068 	int count = 0;
2069 	unsigned long flags;
2070 
2071 	/*
2072 	 * Find all non-in_sync disks within the RAID10 configuration
2073 	 * and mark them in_sync
2074 	 */
2075 	for (i = 0; i < conf->geo.raid_disks; i++) {
2076 		tmp = conf->mirrors + i;
2077 		if (tmp->replacement
2078 		    && tmp->replacement->recovery_offset == MaxSector
2079 		    && !test_bit(Faulty, &tmp->replacement->flags)
2080 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2081 			/* Replacement has just become active */
2082 			if (!tmp->rdev
2083 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2084 				count++;
2085 			if (tmp->rdev) {
2086 				/* Replaced device not technically faulty,
2087 				 * but we need to be sure it gets removed
2088 				 * and never re-added.
2089 				 */
2090 				set_bit(Faulty, &tmp->rdev->flags);
2091 				sysfs_notify_dirent_safe(
2092 					tmp->rdev->sysfs_state);
2093 			}
2094 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2095 		} else if (tmp->rdev
2096 			   && tmp->rdev->recovery_offset == MaxSector
2097 			   && !test_bit(Faulty, &tmp->rdev->flags)
2098 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2099 			count++;
2100 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2101 		}
2102 	}
2103 	spin_lock_irqsave(&conf->device_lock, flags);
2104 	mddev->degraded -= count;
2105 	spin_unlock_irqrestore(&conf->device_lock, flags);
2106 
2107 	print_conf(conf);
2108 	return count;
2109 }
2110 
2111 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2112 {
2113 	struct r10conf *conf = mddev->private;
2114 	int err = -EEXIST;
2115 	int mirror, repl_slot = -1;
2116 	int first = 0;
2117 	int last = conf->geo.raid_disks - 1;
2118 	struct raid10_info *p;
2119 
2120 	if (mddev->recovery_cp < MaxSector)
2121 		/* only hot-add to in-sync arrays, as recovery is
2122 		 * very different from resync
2123 		 */
2124 		return -EBUSY;
2125 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2126 		return -EINVAL;
2127 
2128 	if (rdev->raid_disk >= 0)
2129 		first = last = rdev->raid_disk;
2130 
2131 	if (rdev->saved_raid_disk >= first &&
2132 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2133 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2134 		mirror = rdev->saved_raid_disk;
2135 	else
2136 		mirror = first;
2137 	for ( ; mirror <= last ; mirror++) {
2138 		p = &conf->mirrors[mirror];
2139 		if (p->recovery_disabled == mddev->recovery_disabled)
2140 			continue;
2141 		if (p->rdev) {
2142 			if (test_bit(WantReplacement, &p->rdev->flags) &&
2143 			    p->replacement == NULL && repl_slot < 0)
2144 				repl_slot = mirror;
2145 			continue;
2146 		}
2147 
2148 		err = mddev_stack_new_rdev(mddev, rdev);
2149 		if (err)
2150 			return err;
2151 		p->head_position = 0;
2152 		p->recovery_disabled = mddev->recovery_disabled - 1;
2153 		rdev->raid_disk = mirror;
2154 		err = 0;
2155 		if (rdev->saved_raid_disk != mirror)
2156 			conf->fullsync = 1;
2157 		WRITE_ONCE(p->rdev, rdev);
2158 		break;
2159 	}
2160 
2161 	if (err && repl_slot >= 0) {
2162 		p = &conf->mirrors[repl_slot];
2163 		clear_bit(In_sync, &rdev->flags);
2164 		set_bit(Replacement, &rdev->flags);
2165 		rdev->raid_disk = repl_slot;
2166 		err = mddev_stack_new_rdev(mddev, rdev);
2167 		if (err)
2168 			return err;
2169 		conf->fullsync = 1;
2170 		WRITE_ONCE(p->replacement, rdev);
2171 	}
2172 
2173 	print_conf(conf);
2174 	return err;
2175 }
2176 
2177 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2178 {
2179 	struct r10conf *conf = mddev->private;
2180 	int err = 0;
2181 	int number = rdev->raid_disk;
2182 	struct md_rdev **rdevp;
2183 	struct raid10_info *p;
2184 
2185 	print_conf(conf);
2186 	if (unlikely(number >= mddev->raid_disks))
2187 		return 0;
2188 	p = conf->mirrors + number;
2189 	if (rdev == p->rdev)
2190 		rdevp = &p->rdev;
2191 	else if (rdev == p->replacement)
2192 		rdevp = &p->replacement;
2193 	else
2194 		return 0;
2195 
2196 	if (test_bit(In_sync, &rdev->flags) ||
2197 	    atomic_read(&rdev->nr_pending)) {
2198 		err = -EBUSY;
2199 		goto abort;
2200 	}
2201 	/* Only remove non-faulty devices if recovery
2202 	 * is not possible.
2203 	 */
2204 	if (!test_bit(Faulty, &rdev->flags) &&
2205 	    mddev->recovery_disabled != p->recovery_disabled &&
2206 	    (!p->replacement || p->replacement == rdev) &&
2207 	    number < conf->geo.raid_disks &&
2208 	    enough(conf, -1)) {
2209 		err = -EBUSY;
2210 		goto abort;
2211 	}
2212 	WRITE_ONCE(*rdevp, NULL);
2213 	if (p->replacement) {
2214 		/* We must have just cleared 'rdev' */
2215 		WRITE_ONCE(p->rdev, p->replacement);
2216 		clear_bit(Replacement, &p->replacement->flags);
2217 		WRITE_ONCE(p->replacement, NULL);
2218 	}
2219 
2220 	clear_bit(WantReplacement, &rdev->flags);
2221 	err = md_integrity_register(mddev);
2222 
2223 abort:
2224 
2225 	print_conf(conf);
2226 	return err;
2227 }
2228 
2229 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2230 {
2231 	struct r10conf *conf = r10_bio->mddev->private;
2232 
2233 	if (!bio->bi_status)
2234 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2235 	else
2236 		/* The write handler will notice the lack of
2237 		 * R10BIO_Uptodate and record any errors etc
2238 		 */
2239 		atomic_add(r10_bio->sectors,
2240 			   &conf->mirrors[d].rdev->corrected_errors);
2241 
2242 	/* for reconstruct, we always reschedule after a read.
2243 	 * for resync, only after all reads
2244 	 */
2245 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2246 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2247 	    atomic_dec_and_test(&r10_bio->remaining)) {
2248 		/* we have read all the blocks,
2249 		 * do the comparison in process context in raid10d
2250 		 */
2251 		reschedule_retry(r10_bio);
2252 	}
2253 }
2254 
2255 static void end_sync_read(struct bio *bio)
2256 {
2257 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2258 	struct r10conf *conf = r10_bio->mddev->private;
2259 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2260 
2261 	__end_sync_read(r10_bio, bio, d);
2262 }
2263 
2264 static void end_reshape_read(struct bio *bio)
2265 {
2266 	/* reshape read bio isn't allocated from r10buf_pool */
2267 	struct r10bio *r10_bio = bio->bi_private;
2268 
2269 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2270 }
2271 
2272 static void end_sync_request(struct r10bio *r10_bio)
2273 {
2274 	struct mddev *mddev = r10_bio->mddev;
2275 
2276 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2277 		if (r10_bio->master_bio == NULL) {
2278 			/* the primary of several recovery bios */
2279 			sector_t s = r10_bio->sectors;
2280 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2281 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2282 				reschedule_retry(r10_bio);
2283 			else
2284 				put_buf(r10_bio);
2285 			md_done_sync(mddev, s, 1);
2286 			break;
2287 		} else {
2288 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2289 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2290 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2291 				reschedule_retry(r10_bio);
2292 			else
2293 				put_buf(r10_bio);
2294 			r10_bio = r10_bio2;
2295 		}
2296 	}
2297 }
2298 
2299 static void end_sync_write(struct bio *bio)
2300 {
2301 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2302 	struct mddev *mddev = r10_bio->mddev;
2303 	struct r10conf *conf = mddev->private;
2304 	int d;
2305 	int slot;
2306 	int repl;
2307 	struct md_rdev *rdev = NULL;
2308 
2309 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2310 	if (repl)
2311 		rdev = conf->mirrors[d].replacement;
2312 	else
2313 		rdev = conf->mirrors[d].rdev;
2314 
2315 	if (bio->bi_status) {
2316 		if (repl)
2317 			md_error(mddev, rdev);
2318 		else {
2319 			set_bit(WriteErrorSeen, &rdev->flags);
2320 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2321 				set_bit(MD_RECOVERY_NEEDED,
2322 					&rdev->mddev->recovery);
2323 			set_bit(R10BIO_WriteError, &r10_bio->state);
2324 		}
2325 	} else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2326 				     r10_bio->sectors)) {
2327 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2328 	}
2329 
2330 	rdev_dec_pending(rdev, mddev);
2331 
2332 	end_sync_request(r10_bio);
2333 }
2334 
2335 /*
2336  * Note: sync and recover and handled very differently for raid10
2337  * This code is for resync.
2338  * For resync, we read through virtual addresses and read all blocks.
2339  * If there is any error, we schedule a write.  The lowest numbered
2340  * drive is authoritative.
2341  * However requests come for physical address, so we need to map.
2342  * For every physical address there are raid_disks/copies virtual addresses,
2343  * which is always are least one, but is not necessarly an integer.
2344  * This means that a physical address can span multiple chunks, so we may
2345  * have to submit multiple io requests for a single sync request.
2346  */
2347 /*
2348  * We check if all blocks are in-sync and only write to blocks that
2349  * aren't in sync
2350  */
2351 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2352 {
2353 	struct r10conf *conf = mddev->private;
2354 	int i, first;
2355 	struct bio *tbio, *fbio;
2356 	int vcnt;
2357 	struct page **tpages, **fpages;
2358 
2359 	atomic_set(&r10_bio->remaining, 1);
2360 
2361 	/* find the first device with a block */
2362 	for (i=0; i<conf->copies; i++)
2363 		if (!r10_bio->devs[i].bio->bi_status)
2364 			break;
2365 
2366 	if (i == conf->copies)
2367 		goto done;
2368 
2369 	first = i;
2370 	fbio = r10_bio->devs[i].bio;
2371 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2372 	fbio->bi_iter.bi_idx = 0;
2373 	fpages = get_resync_pages(fbio)->pages;
2374 
2375 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2376 	/* now find blocks with errors */
2377 	for (i=0 ; i < conf->copies ; i++) {
2378 		int  j, d;
2379 		struct md_rdev *rdev;
2380 		struct resync_pages *rp;
2381 
2382 		tbio = r10_bio->devs[i].bio;
2383 
2384 		if (tbio->bi_end_io != end_sync_read)
2385 			continue;
2386 		if (i == first)
2387 			continue;
2388 
2389 		tpages = get_resync_pages(tbio)->pages;
2390 		d = r10_bio->devs[i].devnum;
2391 		rdev = conf->mirrors[d].rdev;
2392 		if (!r10_bio->devs[i].bio->bi_status) {
2393 			/* We know that the bi_io_vec layout is the same for
2394 			 * both 'first' and 'i', so we just compare them.
2395 			 * All vec entries are PAGE_SIZE;
2396 			 */
2397 			int sectors = r10_bio->sectors;
2398 			for (j = 0; j < vcnt; j++) {
2399 				int len = PAGE_SIZE;
2400 				if (sectors < (len / 512))
2401 					len = sectors * 512;
2402 				if (memcmp(page_address(fpages[j]),
2403 					   page_address(tpages[j]),
2404 					   len))
2405 					break;
2406 				sectors -= len/512;
2407 			}
2408 			if (j == vcnt)
2409 				continue;
2410 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2411 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2412 				/* Don't fix anything. */
2413 				continue;
2414 		} else if (test_bit(FailFast, &rdev->flags)) {
2415 			/* Just give up on this device */
2416 			md_error(rdev->mddev, rdev);
2417 			continue;
2418 		}
2419 		/* Ok, we need to write this bio, either to correct an
2420 		 * inconsistency or to correct an unreadable block.
2421 		 * First we need to fixup bv_offset, bv_len and
2422 		 * bi_vecs, as the read request might have corrupted these
2423 		 */
2424 		rp = get_resync_pages(tbio);
2425 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2426 
2427 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2428 
2429 		rp->raid_bio = r10_bio;
2430 		tbio->bi_private = rp;
2431 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2432 		tbio->bi_end_io = end_sync_write;
2433 
2434 		bio_copy_data(tbio, fbio);
2435 
2436 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2437 		atomic_inc(&r10_bio->remaining);
2438 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2439 
2440 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2441 			tbio->bi_opf |= MD_FAILFAST;
2442 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2443 		submit_bio_noacct(tbio);
2444 	}
2445 
2446 	/* Now write out to any replacement devices
2447 	 * that are active
2448 	 */
2449 	for (i = 0; i < conf->copies; i++) {
2450 		int d;
2451 
2452 		tbio = r10_bio->devs[i].repl_bio;
2453 		if (!tbio || !tbio->bi_end_io)
2454 			continue;
2455 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2456 		    && r10_bio->devs[i].bio != fbio)
2457 			bio_copy_data(tbio, fbio);
2458 		d = r10_bio->devs[i].devnum;
2459 		atomic_inc(&r10_bio->remaining);
2460 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2461 			     bio_sectors(tbio));
2462 		submit_bio_noacct(tbio);
2463 	}
2464 
2465 done:
2466 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2467 		md_done_sync(mddev, r10_bio->sectors, 1);
2468 		put_buf(r10_bio);
2469 	}
2470 }
2471 
2472 /*
2473  * Now for the recovery code.
2474  * Recovery happens across physical sectors.
2475  * We recover all non-is_sync drives by finding the virtual address of
2476  * each, and then choose a working drive that also has that virt address.
2477  * There is a separate r10_bio for each non-in_sync drive.
2478  * Only the first two slots are in use. The first for reading,
2479  * The second for writing.
2480  *
2481  */
2482 static void fix_recovery_read_error(struct r10bio *r10_bio)
2483 {
2484 	/* We got a read error during recovery.
2485 	 * We repeat the read in smaller page-sized sections.
2486 	 * If a read succeeds, write it to the new device or record
2487 	 * a bad block if we cannot.
2488 	 * If a read fails, record a bad block on both old and
2489 	 * new devices.
2490 	 */
2491 	struct mddev *mddev = r10_bio->mddev;
2492 	struct r10conf *conf = mddev->private;
2493 	struct bio *bio = r10_bio->devs[0].bio;
2494 	sector_t sect = 0;
2495 	int sectors = r10_bio->sectors;
2496 	int idx = 0;
2497 	int dr = r10_bio->devs[0].devnum;
2498 	int dw = r10_bio->devs[1].devnum;
2499 	struct page **pages = get_resync_pages(bio)->pages;
2500 
2501 	while (sectors) {
2502 		int s = sectors;
2503 		struct md_rdev *rdev;
2504 		sector_t addr;
2505 		int ok;
2506 
2507 		if (s > (PAGE_SIZE>>9))
2508 			s = PAGE_SIZE >> 9;
2509 
2510 		rdev = conf->mirrors[dr].rdev;
2511 		addr = r10_bio->devs[0].addr + sect;
2512 		ok = sync_page_io(rdev,
2513 				  addr,
2514 				  s << 9,
2515 				  pages[idx],
2516 				  REQ_OP_READ, false);
2517 		if (ok) {
2518 			rdev = conf->mirrors[dw].rdev;
2519 			addr = r10_bio->devs[1].addr + sect;
2520 			ok = sync_page_io(rdev,
2521 					  addr,
2522 					  s << 9,
2523 					  pages[idx],
2524 					  REQ_OP_WRITE, false);
2525 			if (!ok) {
2526 				set_bit(WriteErrorSeen, &rdev->flags);
2527 				if (!test_and_set_bit(WantReplacement,
2528 						      &rdev->flags))
2529 					set_bit(MD_RECOVERY_NEEDED,
2530 						&rdev->mddev->recovery);
2531 			}
2532 		}
2533 		if (!ok) {
2534 			/* We don't worry if we cannot set a bad block -
2535 			 * it really is bad so there is no loss in not
2536 			 * recording it yet
2537 			 */
2538 			rdev_set_badblocks(rdev, addr, s, 0);
2539 
2540 			if (rdev != conf->mirrors[dw].rdev) {
2541 				/* need bad block on destination too */
2542 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2543 				addr = r10_bio->devs[1].addr + sect;
2544 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2545 				if (!ok) {
2546 					/* just abort the recovery */
2547 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2548 						  mdname(mddev));
2549 
2550 					conf->mirrors[dw].recovery_disabled
2551 						= mddev->recovery_disabled;
2552 					set_bit(MD_RECOVERY_INTR,
2553 						&mddev->recovery);
2554 					break;
2555 				}
2556 			}
2557 		}
2558 
2559 		sectors -= s;
2560 		sect += s;
2561 		idx++;
2562 	}
2563 }
2564 
2565 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2566 {
2567 	struct r10conf *conf = mddev->private;
2568 	int d;
2569 	struct bio *wbio = r10_bio->devs[1].bio;
2570 	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2571 
2572 	/* Need to test wbio2->bi_end_io before we call
2573 	 * submit_bio_noacct as if the former is NULL,
2574 	 * the latter is free to free wbio2.
2575 	 */
2576 	if (wbio2 && !wbio2->bi_end_io)
2577 		wbio2 = NULL;
2578 
2579 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2580 		fix_recovery_read_error(r10_bio);
2581 		if (wbio->bi_end_io)
2582 			end_sync_request(r10_bio);
2583 		if (wbio2)
2584 			end_sync_request(r10_bio);
2585 		return;
2586 	}
2587 
2588 	/*
2589 	 * share the pages with the first bio
2590 	 * and submit the write request
2591 	 */
2592 	d = r10_bio->devs[1].devnum;
2593 	if (wbio->bi_end_io) {
2594 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2595 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2596 		submit_bio_noacct(wbio);
2597 	}
2598 	if (wbio2) {
2599 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2600 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2601 			     bio_sectors(wbio2));
2602 		submit_bio_noacct(wbio2);
2603 	}
2604 }
2605 
2606 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2607 			    int sectors, struct page *page, enum req_op op)
2608 {
2609 	if (rdev_has_badblock(rdev, sector, sectors) &&
2610 	    (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2611 		return -1;
2612 	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2613 		/* success */
2614 		return 1;
2615 	if (op == REQ_OP_WRITE) {
2616 		set_bit(WriteErrorSeen, &rdev->flags);
2617 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2618 			set_bit(MD_RECOVERY_NEEDED,
2619 				&rdev->mddev->recovery);
2620 	}
2621 	/* need to record an error - either for the block or the device */
2622 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2623 		md_error(rdev->mddev, rdev);
2624 	return 0;
2625 }
2626 
2627 /*
2628  * This is a kernel thread which:
2629  *
2630  *	1.	Retries failed read operations on working mirrors.
2631  *	2.	Updates the raid superblock when problems encounter.
2632  *	3.	Performs writes following reads for array synchronising.
2633  */
2634 
2635 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2636 {
2637 	int sect = 0; /* Offset from r10_bio->sector */
2638 	int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2639 	struct md_rdev *rdev;
2640 	int d = r10_bio->devs[slot].devnum;
2641 
2642 	/* still own a reference to this rdev, so it cannot
2643 	 * have been cleared recently.
2644 	 */
2645 	rdev = conf->mirrors[d].rdev;
2646 
2647 	if (test_bit(Faulty, &rdev->flags))
2648 		/* drive has already been failed, just ignore any
2649 		   more fix_read_error() attempts */
2650 		return;
2651 
2652 	if (exceed_read_errors(mddev, rdev)) {
2653 		r10_bio->devs[slot].bio = IO_BLOCKED;
2654 		return;
2655 	}
2656 
2657 	while(sectors) {
2658 		int s = sectors;
2659 		int sl = slot;
2660 		int success = 0;
2661 		int start;
2662 
2663 		if (s > (PAGE_SIZE>>9))
2664 			s = PAGE_SIZE >> 9;
2665 
2666 		do {
2667 			d = r10_bio->devs[sl].devnum;
2668 			rdev = conf->mirrors[d].rdev;
2669 			if (rdev &&
2670 			    test_bit(In_sync, &rdev->flags) &&
2671 			    !test_bit(Faulty, &rdev->flags) &&
2672 			    rdev_has_badblock(rdev,
2673 					      r10_bio->devs[sl].addr + sect,
2674 					      s) == 0) {
2675 				atomic_inc(&rdev->nr_pending);
2676 				success = sync_page_io(rdev,
2677 						       r10_bio->devs[sl].addr +
2678 						       sect,
2679 						       s<<9,
2680 						       conf->tmppage,
2681 						       REQ_OP_READ, false);
2682 				rdev_dec_pending(rdev, mddev);
2683 				if (success)
2684 					break;
2685 			}
2686 			sl++;
2687 			if (sl == conf->copies)
2688 				sl = 0;
2689 		} while (sl != slot);
2690 
2691 		if (!success) {
2692 			/* Cannot read from anywhere, just mark the block
2693 			 * as bad on the first device to discourage future
2694 			 * reads.
2695 			 */
2696 			int dn = r10_bio->devs[slot].devnum;
2697 			rdev = conf->mirrors[dn].rdev;
2698 
2699 			if (!rdev_set_badblocks(
2700 				    rdev,
2701 				    r10_bio->devs[slot].addr
2702 				    + sect,
2703 				    s, 0)) {
2704 				md_error(mddev, rdev);
2705 				r10_bio->devs[slot].bio
2706 					= IO_BLOCKED;
2707 			}
2708 			break;
2709 		}
2710 
2711 		start = sl;
2712 		/* write it back and re-read */
2713 		while (sl != slot) {
2714 			if (sl==0)
2715 				sl = conf->copies;
2716 			sl--;
2717 			d = r10_bio->devs[sl].devnum;
2718 			rdev = conf->mirrors[d].rdev;
2719 			if (!rdev ||
2720 			    test_bit(Faulty, &rdev->flags) ||
2721 			    !test_bit(In_sync, &rdev->flags))
2722 				continue;
2723 
2724 			atomic_inc(&rdev->nr_pending);
2725 			if (r10_sync_page_io(rdev,
2726 					     r10_bio->devs[sl].addr +
2727 					     sect,
2728 					     s, conf->tmppage, REQ_OP_WRITE)
2729 			    == 0) {
2730 				/* Well, this device is dead */
2731 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2732 					  mdname(mddev), s,
2733 					  (unsigned long long)(
2734 						  sect +
2735 						  choose_data_offset(r10_bio,
2736 								     rdev)),
2737 					  rdev->bdev);
2738 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2739 					  mdname(mddev),
2740 					  rdev->bdev);
2741 			}
2742 			rdev_dec_pending(rdev, mddev);
2743 		}
2744 		sl = start;
2745 		while (sl != slot) {
2746 			if (sl==0)
2747 				sl = conf->copies;
2748 			sl--;
2749 			d = r10_bio->devs[sl].devnum;
2750 			rdev = conf->mirrors[d].rdev;
2751 			if (!rdev ||
2752 			    test_bit(Faulty, &rdev->flags) ||
2753 			    !test_bit(In_sync, &rdev->flags))
2754 				continue;
2755 
2756 			atomic_inc(&rdev->nr_pending);
2757 			switch (r10_sync_page_io(rdev,
2758 					     r10_bio->devs[sl].addr +
2759 					     sect,
2760 					     s, conf->tmppage, REQ_OP_READ)) {
2761 			case 0:
2762 				/* Well, this device is dead */
2763 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2764 				       mdname(mddev), s,
2765 				       (unsigned long long)(
2766 					       sect +
2767 					       choose_data_offset(r10_bio, rdev)),
2768 				       rdev->bdev);
2769 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2770 				       mdname(mddev),
2771 				       rdev->bdev);
2772 				break;
2773 			case 1:
2774 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2775 				       mdname(mddev), s,
2776 				       (unsigned long long)(
2777 					       sect +
2778 					       choose_data_offset(r10_bio, rdev)),
2779 				       rdev->bdev);
2780 				atomic_add(s, &rdev->corrected_errors);
2781 			}
2782 
2783 			rdev_dec_pending(rdev, mddev);
2784 		}
2785 
2786 		sectors -= s;
2787 		sect += s;
2788 	}
2789 }
2790 
2791 static int narrow_write_error(struct r10bio *r10_bio, int i)
2792 {
2793 	struct bio *bio = r10_bio->master_bio;
2794 	struct mddev *mddev = r10_bio->mddev;
2795 	struct r10conf *conf = mddev->private;
2796 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2797 	/* bio has the data to be written to slot 'i' where
2798 	 * we just recently had a write error.
2799 	 * We repeatedly clone the bio and trim down to one block,
2800 	 * then try the write.  Where the write fails we record
2801 	 * a bad block.
2802 	 * It is conceivable that the bio doesn't exactly align with
2803 	 * blocks.  We must handle this.
2804 	 *
2805 	 * We currently own a reference to the rdev.
2806 	 */
2807 
2808 	int block_sectors;
2809 	sector_t sector;
2810 	int sectors;
2811 	int sect_to_write = r10_bio->sectors;
2812 	int ok = 1;
2813 
2814 	if (rdev->badblocks.shift < 0)
2815 		return 0;
2816 
2817 	block_sectors = roundup(1 << rdev->badblocks.shift,
2818 				bdev_logical_block_size(rdev->bdev) >> 9);
2819 	sector = r10_bio->sector;
2820 	sectors = ((r10_bio->sector + block_sectors)
2821 		   & ~(sector_t)(block_sectors - 1))
2822 		- sector;
2823 
2824 	while (sect_to_write) {
2825 		struct bio *wbio;
2826 		sector_t wsector;
2827 		if (sectors > sect_to_write)
2828 			sectors = sect_to_write;
2829 		/* Write at 'sector' for 'sectors' */
2830 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2831 				       &mddev->bio_set);
2832 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2833 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2834 		wbio->bi_iter.bi_sector = wsector +
2835 				   choose_data_offset(r10_bio, rdev);
2836 		wbio->bi_opf = REQ_OP_WRITE;
2837 
2838 		if (submit_bio_wait(wbio) < 0)
2839 			/* Failure! */
2840 			ok = rdev_set_badblocks(rdev, wsector,
2841 						sectors, 0)
2842 				&& ok;
2843 
2844 		bio_put(wbio);
2845 		sect_to_write -= sectors;
2846 		sector += sectors;
2847 		sectors = block_sectors;
2848 	}
2849 	return ok;
2850 }
2851 
2852 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2853 {
2854 	int slot = r10_bio->read_slot;
2855 	struct bio *bio;
2856 	struct r10conf *conf = mddev->private;
2857 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2858 
2859 	/* we got a read error. Maybe the drive is bad.  Maybe just
2860 	 * the block and we can fix it.
2861 	 * We freeze all other IO, and try reading the block from
2862 	 * other devices.  When we find one, we re-write
2863 	 * and check it that fixes the read error.
2864 	 * This is all done synchronously while the array is
2865 	 * frozen.
2866 	 */
2867 	bio = r10_bio->devs[slot].bio;
2868 	bio_put(bio);
2869 	r10_bio->devs[slot].bio = NULL;
2870 
2871 	if (mddev->ro)
2872 		r10_bio->devs[slot].bio = IO_BLOCKED;
2873 	else if (!test_bit(FailFast, &rdev->flags)) {
2874 		freeze_array(conf, 1);
2875 		fix_read_error(conf, mddev, r10_bio);
2876 		unfreeze_array(conf);
2877 	} else
2878 		md_error(mddev, rdev);
2879 
2880 	rdev_dec_pending(rdev, mddev);
2881 	r10_bio->state = 0;
2882 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2883 	/*
2884 	 * allow_barrier after re-submit to ensure no sync io
2885 	 * can be issued while regular io pending.
2886 	 */
2887 	allow_barrier(conf);
2888 }
2889 
2890 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2891 {
2892 	/* Some sort of write request has finished and it
2893 	 * succeeded in writing where we thought there was a
2894 	 * bad block.  So forget the bad block.
2895 	 * Or possibly if failed and we need to record
2896 	 * a bad block.
2897 	 */
2898 	int m;
2899 	struct md_rdev *rdev;
2900 
2901 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2902 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2903 		for (m = 0; m < conf->copies; m++) {
2904 			int dev = r10_bio->devs[m].devnum;
2905 			rdev = conf->mirrors[dev].rdev;
2906 			if (r10_bio->devs[m].bio == NULL ||
2907 				r10_bio->devs[m].bio->bi_end_io == NULL)
2908 				continue;
2909 			if (!r10_bio->devs[m].bio->bi_status) {
2910 				rdev_clear_badblocks(
2911 					rdev,
2912 					r10_bio->devs[m].addr,
2913 					r10_bio->sectors, 0);
2914 			} else {
2915 				if (!rdev_set_badblocks(
2916 					    rdev,
2917 					    r10_bio->devs[m].addr,
2918 					    r10_bio->sectors, 0))
2919 					md_error(conf->mddev, rdev);
2920 			}
2921 			rdev = conf->mirrors[dev].replacement;
2922 			if (r10_bio->devs[m].repl_bio == NULL ||
2923 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2924 				continue;
2925 
2926 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2927 				rdev_clear_badblocks(
2928 					rdev,
2929 					r10_bio->devs[m].addr,
2930 					r10_bio->sectors, 0);
2931 			} else {
2932 				if (!rdev_set_badblocks(
2933 					    rdev,
2934 					    r10_bio->devs[m].addr,
2935 					    r10_bio->sectors, 0))
2936 					md_error(conf->mddev, rdev);
2937 			}
2938 		}
2939 		put_buf(r10_bio);
2940 	} else {
2941 		bool fail = false;
2942 		for (m = 0; m < conf->copies; m++) {
2943 			int dev = r10_bio->devs[m].devnum;
2944 			struct bio *bio = r10_bio->devs[m].bio;
2945 			rdev = conf->mirrors[dev].rdev;
2946 			if (bio == IO_MADE_GOOD) {
2947 				rdev_clear_badblocks(
2948 					rdev,
2949 					r10_bio->devs[m].addr,
2950 					r10_bio->sectors, 0);
2951 				rdev_dec_pending(rdev, conf->mddev);
2952 			} else if (bio != NULL && bio->bi_status) {
2953 				fail = true;
2954 				if (!narrow_write_error(r10_bio, m)) {
2955 					md_error(conf->mddev, rdev);
2956 					set_bit(R10BIO_Degraded,
2957 						&r10_bio->state);
2958 				}
2959 				rdev_dec_pending(rdev, conf->mddev);
2960 			}
2961 			bio = r10_bio->devs[m].repl_bio;
2962 			rdev = conf->mirrors[dev].replacement;
2963 			if (rdev && bio == IO_MADE_GOOD) {
2964 				rdev_clear_badblocks(
2965 					rdev,
2966 					r10_bio->devs[m].addr,
2967 					r10_bio->sectors, 0);
2968 				rdev_dec_pending(rdev, conf->mddev);
2969 			}
2970 		}
2971 		if (fail) {
2972 			spin_lock_irq(&conf->device_lock);
2973 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2974 			conf->nr_queued++;
2975 			spin_unlock_irq(&conf->device_lock);
2976 			/*
2977 			 * In case freeze_array() is waiting for condition
2978 			 * nr_pending == nr_queued + extra to be true.
2979 			 */
2980 			wake_up(&conf->wait_barrier);
2981 			md_wakeup_thread(conf->mddev->thread);
2982 		} else {
2983 			if (test_bit(R10BIO_WriteError,
2984 				     &r10_bio->state))
2985 				close_write(r10_bio);
2986 			raid_end_bio_io(r10_bio);
2987 		}
2988 	}
2989 }
2990 
2991 static void raid10d(struct md_thread *thread)
2992 {
2993 	struct mddev *mddev = thread->mddev;
2994 	struct r10bio *r10_bio;
2995 	unsigned long flags;
2996 	struct r10conf *conf = mddev->private;
2997 	struct list_head *head = &conf->retry_list;
2998 	struct blk_plug plug;
2999 
3000 	md_check_recovery(mddev);
3001 
3002 	if (!list_empty_careful(&conf->bio_end_io_list) &&
3003 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3004 		LIST_HEAD(tmp);
3005 		spin_lock_irqsave(&conf->device_lock, flags);
3006 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3007 			while (!list_empty(&conf->bio_end_io_list)) {
3008 				list_move(conf->bio_end_io_list.prev, &tmp);
3009 				conf->nr_queued--;
3010 			}
3011 		}
3012 		spin_unlock_irqrestore(&conf->device_lock, flags);
3013 		while (!list_empty(&tmp)) {
3014 			r10_bio = list_first_entry(&tmp, struct r10bio,
3015 						   retry_list);
3016 			list_del(&r10_bio->retry_list);
3017 			if (mddev->degraded)
3018 				set_bit(R10BIO_Degraded, &r10_bio->state);
3019 
3020 			if (test_bit(R10BIO_WriteError,
3021 				     &r10_bio->state))
3022 				close_write(r10_bio);
3023 			raid_end_bio_io(r10_bio);
3024 		}
3025 	}
3026 
3027 	blk_start_plug(&plug);
3028 	for (;;) {
3029 
3030 		flush_pending_writes(conf);
3031 
3032 		spin_lock_irqsave(&conf->device_lock, flags);
3033 		if (list_empty(head)) {
3034 			spin_unlock_irqrestore(&conf->device_lock, flags);
3035 			break;
3036 		}
3037 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3038 		list_del(head->prev);
3039 		conf->nr_queued--;
3040 		spin_unlock_irqrestore(&conf->device_lock, flags);
3041 
3042 		mddev = r10_bio->mddev;
3043 		conf = mddev->private;
3044 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3045 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3046 			handle_write_completed(conf, r10_bio);
3047 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3048 			reshape_request_write(mddev, r10_bio);
3049 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3050 			sync_request_write(mddev, r10_bio);
3051 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3052 			recovery_request_write(mddev, r10_bio);
3053 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3054 			handle_read_error(mddev, r10_bio);
3055 		else
3056 			WARN_ON_ONCE(1);
3057 
3058 		cond_resched();
3059 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3060 			md_check_recovery(mddev);
3061 	}
3062 	blk_finish_plug(&plug);
3063 }
3064 
3065 static int init_resync(struct r10conf *conf)
3066 {
3067 	int ret, buffs, i;
3068 
3069 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3070 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3071 	conf->have_replacement = 0;
3072 	for (i = 0; i < conf->geo.raid_disks; i++)
3073 		if (conf->mirrors[i].replacement)
3074 			conf->have_replacement = 1;
3075 	ret = mempool_init(&conf->r10buf_pool, buffs,
3076 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3077 	if (ret)
3078 		return ret;
3079 	conf->next_resync = 0;
3080 	return 0;
3081 }
3082 
3083 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3084 {
3085 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3086 	struct rsync_pages *rp;
3087 	struct bio *bio;
3088 	int nalloc;
3089 	int i;
3090 
3091 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3092 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3093 		nalloc = conf->copies; /* resync */
3094 	else
3095 		nalloc = 2; /* recovery */
3096 
3097 	for (i = 0; i < nalloc; i++) {
3098 		bio = r10bio->devs[i].bio;
3099 		rp = bio->bi_private;
3100 		bio_reset(bio, NULL, 0);
3101 		bio->bi_private = rp;
3102 		bio = r10bio->devs[i].repl_bio;
3103 		if (bio) {
3104 			rp = bio->bi_private;
3105 			bio_reset(bio, NULL, 0);
3106 			bio->bi_private = rp;
3107 		}
3108 	}
3109 	return r10bio;
3110 }
3111 
3112 /*
3113  * Set cluster_sync_high since we need other nodes to add the
3114  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3115  */
3116 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3117 {
3118 	sector_t window_size;
3119 	int extra_chunk, chunks;
3120 
3121 	/*
3122 	 * First, here we define "stripe" as a unit which across
3123 	 * all member devices one time, so we get chunks by use
3124 	 * raid_disks / near_copies. Otherwise, if near_copies is
3125 	 * close to raid_disks, then resync window could increases
3126 	 * linearly with the increase of raid_disks, which means
3127 	 * we will suspend a really large IO window while it is not
3128 	 * necessary. If raid_disks is not divisible by near_copies,
3129 	 * an extra chunk is needed to ensure the whole "stripe" is
3130 	 * covered.
3131 	 */
3132 
3133 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3134 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3135 		extra_chunk = 0;
3136 	else
3137 		extra_chunk = 1;
3138 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3139 
3140 	/*
3141 	 * At least use a 32M window to align with raid1's resync window
3142 	 */
3143 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3144 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3145 
3146 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3147 }
3148 
3149 /*
3150  * perform a "sync" on one "block"
3151  *
3152  * We need to make sure that no normal I/O request - particularly write
3153  * requests - conflict with active sync requests.
3154  *
3155  * This is achieved by tracking pending requests and a 'barrier' concept
3156  * that can be installed to exclude normal IO requests.
3157  *
3158  * Resync and recovery are handled very differently.
3159  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3160  *
3161  * For resync, we iterate over virtual addresses, read all copies,
3162  * and update if there are differences.  If only one copy is live,
3163  * skip it.
3164  * For recovery, we iterate over physical addresses, read a good
3165  * value for each non-in_sync drive, and over-write.
3166  *
3167  * So, for recovery we may have several outstanding complex requests for a
3168  * given address, one for each out-of-sync device.  We model this by allocating
3169  * a number of r10_bio structures, one for each out-of-sync device.
3170  * As we setup these structures, we collect all bio's together into a list
3171  * which we then process collectively to add pages, and then process again
3172  * to pass to submit_bio_noacct.
3173  *
3174  * The r10_bio structures are linked using a borrowed master_bio pointer.
3175  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3176  * has its remaining count decremented to 0, the whole complex operation
3177  * is complete.
3178  *
3179  */
3180 
3181 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3182 				    sector_t max_sector, int *skipped)
3183 {
3184 	struct r10conf *conf = mddev->private;
3185 	struct r10bio *r10_bio;
3186 	struct bio *biolist = NULL, *bio;
3187 	sector_t nr_sectors;
3188 	int i;
3189 	int max_sync;
3190 	sector_t sync_blocks;
3191 	sector_t sectors_skipped = 0;
3192 	int chunks_skipped = 0;
3193 	sector_t chunk_mask = conf->geo.chunk_mask;
3194 	int page_idx = 0;
3195 	int error_disk = -1;
3196 
3197 	/*
3198 	 * Allow skipping a full rebuild for incremental assembly
3199 	 * of a clean array, like RAID1 does.
3200 	 */
3201 	if (mddev->bitmap == NULL &&
3202 	    mddev->recovery_cp == MaxSector &&
3203 	    mddev->reshape_position == MaxSector &&
3204 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3205 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3206 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3207 	    conf->fullsync == 0) {
3208 		*skipped = 1;
3209 		return mddev->dev_sectors - sector_nr;
3210 	}
3211 
3212 	if (!mempool_initialized(&conf->r10buf_pool))
3213 		if (init_resync(conf))
3214 			return 0;
3215 
3216  skipped:
3217 	if (sector_nr >= max_sector) {
3218 		conf->cluster_sync_low = 0;
3219 		conf->cluster_sync_high = 0;
3220 
3221 		/* If we aborted, we need to abort the
3222 		 * sync on the 'current' bitmap chucks (there can
3223 		 * be several when recovering multiple devices).
3224 		 * as we may have started syncing it but not finished.
3225 		 * We can find the current address in
3226 		 * mddev->curr_resync, but for recovery,
3227 		 * we need to convert that to several
3228 		 * virtual addresses.
3229 		 */
3230 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3231 			end_reshape(conf);
3232 			close_sync(conf);
3233 			return 0;
3234 		}
3235 
3236 		if (mddev->curr_resync < max_sector) { /* aborted */
3237 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3238 				mddev->bitmap_ops->end_sync(mddev,
3239 							    mddev->curr_resync,
3240 							    &sync_blocks);
3241 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3242 				sector_t sect =
3243 					raid10_find_virt(conf, mddev->curr_resync, i);
3244 
3245 				mddev->bitmap_ops->end_sync(mddev, sect,
3246 							    &sync_blocks);
3247 			}
3248 		} else {
3249 			/* completed sync */
3250 			if ((!mddev->bitmap || conf->fullsync)
3251 			    && conf->have_replacement
3252 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3253 				/* Completed a full sync so the replacements
3254 				 * are now fully recovered.
3255 				 */
3256 				for (i = 0; i < conf->geo.raid_disks; i++) {
3257 					struct md_rdev *rdev =
3258 						conf->mirrors[i].replacement;
3259 
3260 					if (rdev)
3261 						rdev->recovery_offset = MaxSector;
3262 				}
3263 			}
3264 			conf->fullsync = 0;
3265 		}
3266 		mddev->bitmap_ops->close_sync(mddev);
3267 		close_sync(conf);
3268 		*skipped = 1;
3269 		return sectors_skipped;
3270 	}
3271 
3272 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3273 		return reshape_request(mddev, sector_nr, skipped);
3274 
3275 	if (chunks_skipped >= conf->geo.raid_disks) {
3276 		pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3277 			test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3278 		if (error_disk >= 0 &&
3279 		    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3280 			/*
3281 			 * recovery fails, set mirrors.recovery_disabled,
3282 			 * device shouldn't be added to there.
3283 			 */
3284 			conf->mirrors[error_disk].recovery_disabled =
3285 						mddev->recovery_disabled;
3286 			return 0;
3287 		}
3288 		/*
3289 		 * if there has been nothing to do on any drive,
3290 		 * then there is nothing to do at all.
3291 		 */
3292 		*skipped = 1;
3293 		return (max_sector - sector_nr) + sectors_skipped;
3294 	}
3295 
3296 	if (max_sector > mddev->resync_max)
3297 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3298 
3299 	/* make sure whole request will fit in a chunk - if chunks
3300 	 * are meaningful
3301 	 */
3302 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3303 	    max_sector > (sector_nr | chunk_mask))
3304 		max_sector = (sector_nr | chunk_mask) + 1;
3305 
3306 	/*
3307 	 * If there is non-resync activity waiting for a turn, then let it
3308 	 * though before starting on this new sync request.
3309 	 */
3310 	if (conf->nr_waiting)
3311 		schedule_timeout_uninterruptible(1);
3312 
3313 	/* Again, very different code for resync and recovery.
3314 	 * Both must result in an r10bio with a list of bios that
3315 	 * have bi_end_io, bi_sector, bi_bdev set,
3316 	 * and bi_private set to the r10bio.
3317 	 * For recovery, we may actually create several r10bios
3318 	 * with 2 bios in each, that correspond to the bios in the main one.
3319 	 * In this case, the subordinate r10bios link back through a
3320 	 * borrowed master_bio pointer, and the counter in the master
3321 	 * includes a ref from each subordinate.
3322 	 */
3323 	/* First, we decide what to do and set ->bi_end_io
3324 	 * To end_sync_read if we want to read, and
3325 	 * end_sync_write if we will want to write.
3326 	 */
3327 
3328 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3329 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3330 		/* recovery... the complicated one */
3331 		int j;
3332 		r10_bio = NULL;
3333 
3334 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3335 			bool still_degraded;
3336 			struct r10bio *rb2;
3337 			sector_t sect;
3338 			bool must_sync;
3339 			int any_working;
3340 			struct raid10_info *mirror = &conf->mirrors[i];
3341 			struct md_rdev *mrdev, *mreplace;
3342 
3343 			mrdev = mirror->rdev;
3344 			mreplace = mirror->replacement;
3345 
3346 			if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3347 			    test_bit(In_sync, &mrdev->flags)))
3348 				mrdev = NULL;
3349 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3350 				mreplace = NULL;
3351 
3352 			if (!mrdev && !mreplace)
3353 				continue;
3354 
3355 			still_degraded = false;
3356 			/* want to reconstruct this device */
3357 			rb2 = r10_bio;
3358 			sect = raid10_find_virt(conf, sector_nr, i);
3359 			if (sect >= mddev->resync_max_sectors)
3360 				/* last stripe is not complete - don't
3361 				 * try to recover this sector.
3362 				 */
3363 				continue;
3364 			/* Unless we are doing a full sync, or a replacement
3365 			 * we only need to recover the block if it is set in
3366 			 * the bitmap
3367 			 */
3368 			must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3369 								  &sync_blocks,
3370 								  true);
3371 			if (sync_blocks < max_sync)
3372 				max_sync = sync_blocks;
3373 			if (!must_sync &&
3374 			    mreplace == NULL &&
3375 			    !conf->fullsync) {
3376 				/* yep, skip the sync_blocks here, but don't assume
3377 				 * that there will never be anything to do here
3378 				 */
3379 				chunks_skipped = -1;
3380 				continue;
3381 			}
3382 			if (mrdev)
3383 				atomic_inc(&mrdev->nr_pending);
3384 			if (mreplace)
3385 				atomic_inc(&mreplace->nr_pending);
3386 
3387 			r10_bio = raid10_alloc_init_r10buf(conf);
3388 			r10_bio->state = 0;
3389 			raise_barrier(conf, rb2 != NULL);
3390 			atomic_set(&r10_bio->remaining, 0);
3391 
3392 			r10_bio->master_bio = (struct bio*)rb2;
3393 			if (rb2)
3394 				atomic_inc(&rb2->remaining);
3395 			r10_bio->mddev = mddev;
3396 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3397 			r10_bio->sector = sect;
3398 
3399 			raid10_find_phys(conf, r10_bio);
3400 
3401 			/* Need to check if the array will still be
3402 			 * degraded
3403 			 */
3404 			for (j = 0; j < conf->geo.raid_disks; j++) {
3405 				struct md_rdev *rdev = conf->mirrors[j].rdev;
3406 
3407 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3408 					still_degraded = false;
3409 					break;
3410 				}
3411 			}
3412 
3413 			must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3414 						&sync_blocks, still_degraded);
3415 
3416 			any_working = 0;
3417 			for (j=0; j<conf->copies;j++) {
3418 				int k;
3419 				int d = r10_bio->devs[j].devnum;
3420 				sector_t from_addr, to_addr;
3421 				struct md_rdev *rdev = conf->mirrors[d].rdev;
3422 				sector_t sector, first_bad;
3423 				int bad_sectors;
3424 				if (!rdev ||
3425 				    !test_bit(In_sync, &rdev->flags))
3426 					continue;
3427 				/* This is where we read from */
3428 				any_working = 1;
3429 				sector = r10_bio->devs[j].addr;
3430 
3431 				if (is_badblock(rdev, sector, max_sync,
3432 						&first_bad, &bad_sectors)) {
3433 					if (first_bad > sector)
3434 						max_sync = first_bad - sector;
3435 					else {
3436 						bad_sectors -= (sector
3437 								- first_bad);
3438 						if (max_sync > bad_sectors)
3439 							max_sync = bad_sectors;
3440 						continue;
3441 					}
3442 				}
3443 				bio = r10_bio->devs[0].bio;
3444 				bio->bi_next = biolist;
3445 				biolist = bio;
3446 				bio->bi_end_io = end_sync_read;
3447 				bio->bi_opf = REQ_OP_READ;
3448 				if (test_bit(FailFast, &rdev->flags))
3449 					bio->bi_opf |= MD_FAILFAST;
3450 				from_addr = r10_bio->devs[j].addr;
3451 				bio->bi_iter.bi_sector = from_addr +
3452 					rdev->data_offset;
3453 				bio_set_dev(bio, rdev->bdev);
3454 				atomic_inc(&rdev->nr_pending);
3455 				/* and we write to 'i' (if not in_sync) */
3456 
3457 				for (k=0; k<conf->copies; k++)
3458 					if (r10_bio->devs[k].devnum == i)
3459 						break;
3460 				BUG_ON(k == conf->copies);
3461 				to_addr = r10_bio->devs[k].addr;
3462 				r10_bio->devs[0].devnum = d;
3463 				r10_bio->devs[0].addr = from_addr;
3464 				r10_bio->devs[1].devnum = i;
3465 				r10_bio->devs[1].addr = to_addr;
3466 
3467 				if (mrdev) {
3468 					bio = r10_bio->devs[1].bio;
3469 					bio->bi_next = biolist;
3470 					biolist = bio;
3471 					bio->bi_end_io = end_sync_write;
3472 					bio->bi_opf = REQ_OP_WRITE;
3473 					bio->bi_iter.bi_sector = to_addr
3474 						+ mrdev->data_offset;
3475 					bio_set_dev(bio, mrdev->bdev);
3476 					atomic_inc(&r10_bio->remaining);
3477 				} else
3478 					r10_bio->devs[1].bio->bi_end_io = NULL;
3479 
3480 				/* and maybe write to replacement */
3481 				bio = r10_bio->devs[1].repl_bio;
3482 				if (bio)
3483 					bio->bi_end_io = NULL;
3484 				/* Note: if replace is not NULL, then bio
3485 				 * cannot be NULL as r10buf_pool_alloc will
3486 				 * have allocated it.
3487 				 */
3488 				if (!mreplace)
3489 					break;
3490 				bio->bi_next = biolist;
3491 				biolist = bio;
3492 				bio->bi_end_io = end_sync_write;
3493 				bio->bi_opf = REQ_OP_WRITE;
3494 				bio->bi_iter.bi_sector = to_addr +
3495 					mreplace->data_offset;
3496 				bio_set_dev(bio, mreplace->bdev);
3497 				atomic_inc(&r10_bio->remaining);
3498 				break;
3499 			}
3500 			if (j == conf->copies) {
3501 				/* Cannot recover, so abort the recovery or
3502 				 * record a bad block */
3503 				if (any_working) {
3504 					/* problem is that there are bad blocks
3505 					 * on other device(s)
3506 					 */
3507 					int k;
3508 					for (k = 0; k < conf->copies; k++)
3509 						if (r10_bio->devs[k].devnum == i)
3510 							break;
3511 					if (mrdev && !test_bit(In_sync,
3512 						      &mrdev->flags)
3513 					    && !rdev_set_badblocks(
3514 						    mrdev,
3515 						    r10_bio->devs[k].addr,
3516 						    max_sync, 0))
3517 						any_working = 0;
3518 					if (mreplace &&
3519 					    !rdev_set_badblocks(
3520 						    mreplace,
3521 						    r10_bio->devs[k].addr,
3522 						    max_sync, 0))
3523 						any_working = 0;
3524 				}
3525 				if (!any_working)  {
3526 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3527 							      &mddev->recovery))
3528 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3529 						       mdname(mddev));
3530 					mirror->recovery_disabled
3531 						= mddev->recovery_disabled;
3532 				} else {
3533 					error_disk = i;
3534 				}
3535 				put_buf(r10_bio);
3536 				if (rb2)
3537 					atomic_dec(&rb2->remaining);
3538 				r10_bio = rb2;
3539 				if (mrdev)
3540 					rdev_dec_pending(mrdev, mddev);
3541 				if (mreplace)
3542 					rdev_dec_pending(mreplace, mddev);
3543 				break;
3544 			}
3545 			if (mrdev)
3546 				rdev_dec_pending(mrdev, mddev);
3547 			if (mreplace)
3548 				rdev_dec_pending(mreplace, mddev);
3549 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3550 				/* Only want this if there is elsewhere to
3551 				 * read from. 'j' is currently the first
3552 				 * readable copy.
3553 				 */
3554 				int targets = 1;
3555 				for (; j < conf->copies; j++) {
3556 					int d = r10_bio->devs[j].devnum;
3557 					if (conf->mirrors[d].rdev &&
3558 					    test_bit(In_sync,
3559 						      &conf->mirrors[d].rdev->flags))
3560 						targets++;
3561 				}
3562 				if (targets == 1)
3563 					r10_bio->devs[0].bio->bi_opf
3564 						&= ~MD_FAILFAST;
3565 			}
3566 		}
3567 		if (biolist == NULL) {
3568 			while (r10_bio) {
3569 				struct r10bio *rb2 = r10_bio;
3570 				r10_bio = (struct r10bio*) rb2->master_bio;
3571 				rb2->master_bio = NULL;
3572 				put_buf(rb2);
3573 			}
3574 			goto giveup;
3575 		}
3576 	} else {
3577 		/* resync. Schedule a read for every block at this virt offset */
3578 		int count = 0;
3579 
3580 		/*
3581 		 * Since curr_resync_completed could probably not update in
3582 		 * time, and we will set cluster_sync_low based on it.
3583 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3584 		 * safety reason, which ensures curr_resync_completed is
3585 		 * updated in bitmap_cond_end_sync.
3586 		 */
3587 		mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3588 					mddev_is_clustered(mddev) &&
3589 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3590 
3591 		if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3592 						   &sync_blocks,
3593 						   mddev->degraded) &&
3594 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3595 						 &mddev->recovery)) {
3596 			/* We can skip this block */
3597 			*skipped = 1;
3598 			return sync_blocks + sectors_skipped;
3599 		}
3600 		if (sync_blocks < max_sync)
3601 			max_sync = sync_blocks;
3602 		r10_bio = raid10_alloc_init_r10buf(conf);
3603 		r10_bio->state = 0;
3604 
3605 		r10_bio->mddev = mddev;
3606 		atomic_set(&r10_bio->remaining, 0);
3607 		raise_barrier(conf, 0);
3608 		conf->next_resync = sector_nr;
3609 
3610 		r10_bio->master_bio = NULL;
3611 		r10_bio->sector = sector_nr;
3612 		set_bit(R10BIO_IsSync, &r10_bio->state);
3613 		raid10_find_phys(conf, r10_bio);
3614 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3615 
3616 		for (i = 0; i < conf->copies; i++) {
3617 			int d = r10_bio->devs[i].devnum;
3618 			sector_t first_bad, sector;
3619 			int bad_sectors;
3620 			struct md_rdev *rdev;
3621 
3622 			if (r10_bio->devs[i].repl_bio)
3623 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3624 
3625 			bio = r10_bio->devs[i].bio;
3626 			bio->bi_status = BLK_STS_IOERR;
3627 			rdev = conf->mirrors[d].rdev;
3628 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3629 				continue;
3630 
3631 			sector = r10_bio->devs[i].addr;
3632 			if (is_badblock(rdev, sector, max_sync,
3633 					&first_bad, &bad_sectors)) {
3634 				if (first_bad > sector)
3635 					max_sync = first_bad - sector;
3636 				else {
3637 					bad_sectors -= (sector - first_bad);
3638 					if (max_sync > bad_sectors)
3639 						max_sync = bad_sectors;
3640 					continue;
3641 				}
3642 			}
3643 			atomic_inc(&rdev->nr_pending);
3644 			atomic_inc(&r10_bio->remaining);
3645 			bio->bi_next = biolist;
3646 			biolist = bio;
3647 			bio->bi_end_io = end_sync_read;
3648 			bio->bi_opf = REQ_OP_READ;
3649 			if (test_bit(FailFast, &rdev->flags))
3650 				bio->bi_opf |= MD_FAILFAST;
3651 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3652 			bio_set_dev(bio, rdev->bdev);
3653 			count++;
3654 
3655 			rdev = conf->mirrors[d].replacement;
3656 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3657 				continue;
3658 
3659 			atomic_inc(&rdev->nr_pending);
3660 
3661 			/* Need to set up for writing to the replacement */
3662 			bio = r10_bio->devs[i].repl_bio;
3663 			bio->bi_status = BLK_STS_IOERR;
3664 
3665 			sector = r10_bio->devs[i].addr;
3666 			bio->bi_next = biolist;
3667 			biolist = bio;
3668 			bio->bi_end_io = end_sync_write;
3669 			bio->bi_opf = REQ_OP_WRITE;
3670 			if (test_bit(FailFast, &rdev->flags))
3671 				bio->bi_opf |= MD_FAILFAST;
3672 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3673 			bio_set_dev(bio, rdev->bdev);
3674 			count++;
3675 		}
3676 
3677 		if (count < 2) {
3678 			for (i=0; i<conf->copies; i++) {
3679 				int d = r10_bio->devs[i].devnum;
3680 				if (r10_bio->devs[i].bio->bi_end_io)
3681 					rdev_dec_pending(conf->mirrors[d].rdev,
3682 							 mddev);
3683 				if (r10_bio->devs[i].repl_bio &&
3684 				    r10_bio->devs[i].repl_bio->bi_end_io)
3685 					rdev_dec_pending(
3686 						conf->mirrors[d].replacement,
3687 						mddev);
3688 			}
3689 			put_buf(r10_bio);
3690 			biolist = NULL;
3691 			goto giveup;
3692 		}
3693 	}
3694 
3695 	nr_sectors = 0;
3696 	if (sector_nr + max_sync < max_sector)
3697 		max_sector = sector_nr + max_sync;
3698 	do {
3699 		struct page *page;
3700 		int len = PAGE_SIZE;
3701 		if (sector_nr + (len>>9) > max_sector)
3702 			len = (max_sector - sector_nr) << 9;
3703 		if (len == 0)
3704 			break;
3705 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3706 			struct resync_pages *rp = get_resync_pages(bio);
3707 			page = resync_fetch_page(rp, page_idx);
3708 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3709 				bio->bi_status = BLK_STS_RESOURCE;
3710 				bio_endio(bio);
3711 				goto giveup;
3712 			}
3713 		}
3714 		nr_sectors += len>>9;
3715 		sector_nr += len>>9;
3716 	} while (++page_idx < RESYNC_PAGES);
3717 	r10_bio->sectors = nr_sectors;
3718 
3719 	if (mddev_is_clustered(mddev) &&
3720 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3721 		/* It is resync not recovery */
3722 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3723 			conf->cluster_sync_low = mddev->curr_resync_completed;
3724 			raid10_set_cluster_sync_high(conf);
3725 			/* Send resync message */
3726 			md_cluster_ops->resync_info_update(mddev,
3727 						conf->cluster_sync_low,
3728 						conf->cluster_sync_high);
3729 		}
3730 	} else if (mddev_is_clustered(mddev)) {
3731 		/* This is recovery not resync */
3732 		sector_t sect_va1, sect_va2;
3733 		bool broadcast_msg = false;
3734 
3735 		for (i = 0; i < conf->geo.raid_disks; i++) {
3736 			/*
3737 			 * sector_nr is a device address for recovery, so we
3738 			 * need translate it to array address before compare
3739 			 * with cluster_sync_high.
3740 			 */
3741 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3742 
3743 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3744 				broadcast_msg = true;
3745 				/*
3746 				 * curr_resync_completed is similar as
3747 				 * sector_nr, so make the translation too.
3748 				 */
3749 				sect_va2 = raid10_find_virt(conf,
3750 					mddev->curr_resync_completed, i);
3751 
3752 				if (conf->cluster_sync_low == 0 ||
3753 				    conf->cluster_sync_low > sect_va2)
3754 					conf->cluster_sync_low = sect_va2;
3755 			}
3756 		}
3757 		if (broadcast_msg) {
3758 			raid10_set_cluster_sync_high(conf);
3759 			md_cluster_ops->resync_info_update(mddev,
3760 						conf->cluster_sync_low,
3761 						conf->cluster_sync_high);
3762 		}
3763 	}
3764 
3765 	while (biolist) {
3766 		bio = biolist;
3767 		biolist = biolist->bi_next;
3768 
3769 		bio->bi_next = NULL;
3770 		r10_bio = get_resync_r10bio(bio);
3771 		r10_bio->sectors = nr_sectors;
3772 
3773 		if (bio->bi_end_io == end_sync_read) {
3774 			md_sync_acct_bio(bio, nr_sectors);
3775 			bio->bi_status = 0;
3776 			submit_bio_noacct(bio);
3777 		}
3778 	}
3779 
3780 	if (sectors_skipped)
3781 		/* pretend they weren't skipped, it makes
3782 		 * no important difference in this case
3783 		 */
3784 		md_done_sync(mddev, sectors_skipped, 1);
3785 
3786 	return sectors_skipped + nr_sectors;
3787  giveup:
3788 	/* There is nowhere to write, so all non-sync
3789 	 * drives must be failed or in resync, all drives
3790 	 * have a bad block, so try the next chunk...
3791 	 */
3792 	if (sector_nr + max_sync < max_sector)
3793 		max_sector = sector_nr + max_sync;
3794 
3795 	sectors_skipped += (max_sector - sector_nr);
3796 	chunks_skipped ++;
3797 	sector_nr = max_sector;
3798 	goto skipped;
3799 }
3800 
3801 static sector_t
3802 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3803 {
3804 	sector_t size;
3805 	struct r10conf *conf = mddev->private;
3806 
3807 	if (!raid_disks)
3808 		raid_disks = min(conf->geo.raid_disks,
3809 				 conf->prev.raid_disks);
3810 	if (!sectors)
3811 		sectors = conf->dev_sectors;
3812 
3813 	size = sectors >> conf->geo.chunk_shift;
3814 	sector_div(size, conf->geo.far_copies);
3815 	size = size * raid_disks;
3816 	sector_div(size, conf->geo.near_copies);
3817 
3818 	return size << conf->geo.chunk_shift;
3819 }
3820 
3821 static void calc_sectors(struct r10conf *conf, sector_t size)
3822 {
3823 	/* Calculate the number of sectors-per-device that will
3824 	 * actually be used, and set conf->dev_sectors and
3825 	 * conf->stride
3826 	 */
3827 
3828 	size = size >> conf->geo.chunk_shift;
3829 	sector_div(size, conf->geo.far_copies);
3830 	size = size * conf->geo.raid_disks;
3831 	sector_div(size, conf->geo.near_copies);
3832 	/* 'size' is now the number of chunks in the array */
3833 	/* calculate "used chunks per device" */
3834 	size = size * conf->copies;
3835 
3836 	/* We need to round up when dividing by raid_disks to
3837 	 * get the stride size.
3838 	 */
3839 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3840 
3841 	conf->dev_sectors = size << conf->geo.chunk_shift;
3842 
3843 	if (conf->geo.far_offset)
3844 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3845 	else {
3846 		sector_div(size, conf->geo.far_copies);
3847 		conf->geo.stride = size << conf->geo.chunk_shift;
3848 	}
3849 }
3850 
3851 enum geo_type {geo_new, geo_old, geo_start};
3852 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3853 {
3854 	int nc, fc, fo;
3855 	int layout, chunk, disks;
3856 	switch (new) {
3857 	case geo_old:
3858 		layout = mddev->layout;
3859 		chunk = mddev->chunk_sectors;
3860 		disks = mddev->raid_disks - mddev->delta_disks;
3861 		break;
3862 	case geo_new:
3863 		layout = mddev->new_layout;
3864 		chunk = mddev->new_chunk_sectors;
3865 		disks = mddev->raid_disks;
3866 		break;
3867 	default: /* avoid 'may be unused' warnings */
3868 	case geo_start: /* new when starting reshape - raid_disks not
3869 			 * updated yet. */
3870 		layout = mddev->new_layout;
3871 		chunk = mddev->new_chunk_sectors;
3872 		disks = mddev->raid_disks + mddev->delta_disks;
3873 		break;
3874 	}
3875 	if (layout >> 19)
3876 		return -1;
3877 	if (chunk < (PAGE_SIZE >> 9) ||
3878 	    !is_power_of_2(chunk))
3879 		return -2;
3880 	nc = layout & 255;
3881 	fc = (layout >> 8) & 255;
3882 	fo = layout & (1<<16);
3883 	geo->raid_disks = disks;
3884 	geo->near_copies = nc;
3885 	geo->far_copies = fc;
3886 	geo->far_offset = fo;
3887 	switch (layout >> 17) {
3888 	case 0:	/* original layout.  simple but not always optimal */
3889 		geo->far_set_size = disks;
3890 		break;
3891 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3892 		 * actually using this, but leave code here just in case.*/
3893 		geo->far_set_size = disks/fc;
3894 		WARN(geo->far_set_size < fc,
3895 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3896 		break;
3897 	case 2: /* "improved" layout fixed to match documentation */
3898 		geo->far_set_size = fc * nc;
3899 		break;
3900 	default: /* Not a valid layout */
3901 		return -1;
3902 	}
3903 	geo->chunk_mask = chunk - 1;
3904 	geo->chunk_shift = ffz(~chunk);
3905 	return nc*fc;
3906 }
3907 
3908 static void raid10_free_conf(struct r10conf *conf)
3909 {
3910 	if (!conf)
3911 		return;
3912 
3913 	mempool_exit(&conf->r10bio_pool);
3914 	kfree(conf->mirrors);
3915 	kfree(conf->mirrors_old);
3916 	kfree(conf->mirrors_new);
3917 	safe_put_page(conf->tmppage);
3918 	bioset_exit(&conf->bio_split);
3919 	kfree(conf);
3920 }
3921 
3922 static struct r10conf *setup_conf(struct mddev *mddev)
3923 {
3924 	struct r10conf *conf = NULL;
3925 	int err = -EINVAL;
3926 	struct geom geo;
3927 	int copies;
3928 
3929 	copies = setup_geo(&geo, mddev, geo_new);
3930 
3931 	if (copies == -2) {
3932 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3933 			mdname(mddev), PAGE_SIZE);
3934 		goto out;
3935 	}
3936 
3937 	if (copies < 2 || copies > mddev->raid_disks) {
3938 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3939 			mdname(mddev), mddev->new_layout);
3940 		goto out;
3941 	}
3942 
3943 	err = -ENOMEM;
3944 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3945 	if (!conf)
3946 		goto out;
3947 
3948 	/* FIXME calc properly */
3949 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3950 				sizeof(struct raid10_info),
3951 				GFP_KERNEL);
3952 	if (!conf->mirrors)
3953 		goto out;
3954 
3955 	conf->tmppage = alloc_page(GFP_KERNEL);
3956 	if (!conf->tmppage)
3957 		goto out;
3958 
3959 	conf->geo = geo;
3960 	conf->copies = copies;
3961 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3962 			   rbio_pool_free, conf);
3963 	if (err)
3964 		goto out;
3965 
3966 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3967 	if (err)
3968 		goto out;
3969 
3970 	calc_sectors(conf, mddev->dev_sectors);
3971 	if (mddev->reshape_position == MaxSector) {
3972 		conf->prev = conf->geo;
3973 		conf->reshape_progress = MaxSector;
3974 	} else {
3975 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3976 			err = -EINVAL;
3977 			goto out;
3978 		}
3979 		conf->reshape_progress = mddev->reshape_position;
3980 		if (conf->prev.far_offset)
3981 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3982 		else
3983 			/* far_copies must be 1 */
3984 			conf->prev.stride = conf->dev_sectors;
3985 	}
3986 	conf->reshape_safe = conf->reshape_progress;
3987 	spin_lock_init(&conf->device_lock);
3988 	INIT_LIST_HEAD(&conf->retry_list);
3989 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3990 
3991 	seqlock_init(&conf->resync_lock);
3992 	init_waitqueue_head(&conf->wait_barrier);
3993 	atomic_set(&conf->nr_pending, 0);
3994 
3995 	err = -ENOMEM;
3996 	rcu_assign_pointer(conf->thread,
3997 			   md_register_thread(raid10d, mddev, "raid10"));
3998 	if (!conf->thread)
3999 		goto out;
4000 
4001 	conf->mddev = mddev;
4002 	return conf;
4003 
4004  out:
4005 	raid10_free_conf(conf);
4006 	return ERR_PTR(err);
4007 }
4008 
4009 static unsigned int raid10_nr_stripes(struct r10conf *conf)
4010 {
4011 	unsigned int raid_disks = conf->geo.raid_disks;
4012 
4013 	if (conf->geo.raid_disks % conf->geo.near_copies)
4014 		return raid_disks;
4015 	return raid_disks / conf->geo.near_copies;
4016 }
4017 
4018 static int raid10_set_queue_limits(struct mddev *mddev)
4019 {
4020 	struct r10conf *conf = mddev->private;
4021 	struct queue_limits lim;
4022 	int err;
4023 
4024 	md_init_stacking_limits(&lim);
4025 	lim.max_write_zeroes_sectors = 0;
4026 	lim.io_min = mddev->chunk_sectors << 9;
4027 	lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
4028 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
4029 	if (err) {
4030 		queue_limits_cancel_update(mddev->gendisk->queue);
4031 		return err;
4032 	}
4033 	return queue_limits_set(mddev->gendisk->queue, &lim);
4034 }
4035 
4036 static int raid10_run(struct mddev *mddev)
4037 {
4038 	struct r10conf *conf;
4039 	int i, disk_idx;
4040 	struct raid10_info *disk;
4041 	struct md_rdev *rdev;
4042 	sector_t size;
4043 	sector_t min_offset_diff = 0;
4044 	int first = 1;
4045 	int ret = -EIO;
4046 
4047 	if (mddev->private == NULL) {
4048 		conf = setup_conf(mddev);
4049 		if (IS_ERR(conf))
4050 			return PTR_ERR(conf);
4051 		mddev->private = conf;
4052 	}
4053 	conf = mddev->private;
4054 	if (!conf)
4055 		goto out;
4056 
4057 	rcu_assign_pointer(mddev->thread, conf->thread);
4058 	rcu_assign_pointer(conf->thread, NULL);
4059 
4060 	if (mddev_is_clustered(conf->mddev)) {
4061 		int fc, fo;
4062 
4063 		fc = (mddev->layout >> 8) & 255;
4064 		fo = mddev->layout & (1<<16);
4065 		if (fc > 1 || fo > 0) {
4066 			pr_err("only near layout is supported by clustered"
4067 				" raid10\n");
4068 			goto out_free_conf;
4069 		}
4070 	}
4071 
4072 	rdev_for_each(rdev, mddev) {
4073 		long long diff;
4074 
4075 		disk_idx = rdev->raid_disk;
4076 		if (disk_idx < 0)
4077 			continue;
4078 		if (disk_idx >= conf->geo.raid_disks &&
4079 		    disk_idx >= conf->prev.raid_disks)
4080 			continue;
4081 		disk = conf->mirrors + disk_idx;
4082 
4083 		if (test_bit(Replacement, &rdev->flags)) {
4084 			if (disk->replacement)
4085 				goto out_free_conf;
4086 			disk->replacement = rdev;
4087 		} else {
4088 			if (disk->rdev)
4089 				goto out_free_conf;
4090 			disk->rdev = rdev;
4091 		}
4092 		diff = (rdev->new_data_offset - rdev->data_offset);
4093 		if (!mddev->reshape_backwards)
4094 			diff = -diff;
4095 		if (diff < 0)
4096 			diff = 0;
4097 		if (first || diff < min_offset_diff)
4098 			min_offset_diff = diff;
4099 
4100 		disk->head_position = 0;
4101 		first = 0;
4102 	}
4103 
4104 	if (!mddev_is_dm(conf->mddev)) {
4105 		int err = raid10_set_queue_limits(mddev);
4106 
4107 		if (err) {
4108 			ret = err;
4109 			goto out_free_conf;
4110 		}
4111 	}
4112 
4113 	/* need to check that every block has at least one working mirror */
4114 	if (!enough(conf, -1)) {
4115 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4116 		       mdname(mddev));
4117 		goto out_free_conf;
4118 	}
4119 
4120 	if (conf->reshape_progress != MaxSector) {
4121 		/* must ensure that shape change is supported */
4122 		if (conf->geo.far_copies != 1 &&
4123 		    conf->geo.far_offset == 0)
4124 			goto out_free_conf;
4125 		if (conf->prev.far_copies != 1 &&
4126 		    conf->prev.far_offset == 0)
4127 			goto out_free_conf;
4128 	}
4129 
4130 	mddev->degraded = 0;
4131 	for (i = 0;
4132 	     i < conf->geo.raid_disks
4133 		     || i < conf->prev.raid_disks;
4134 	     i++) {
4135 
4136 		disk = conf->mirrors + i;
4137 
4138 		if (!disk->rdev && disk->replacement) {
4139 			/* The replacement is all we have - use it */
4140 			disk->rdev = disk->replacement;
4141 			disk->replacement = NULL;
4142 			clear_bit(Replacement, &disk->rdev->flags);
4143 		}
4144 
4145 		if (!disk->rdev ||
4146 		    !test_bit(In_sync, &disk->rdev->flags)) {
4147 			disk->head_position = 0;
4148 			mddev->degraded++;
4149 			if (disk->rdev &&
4150 			    disk->rdev->saved_raid_disk < 0)
4151 				conf->fullsync = 1;
4152 		}
4153 
4154 		if (disk->replacement &&
4155 		    !test_bit(In_sync, &disk->replacement->flags) &&
4156 		    disk->replacement->saved_raid_disk < 0) {
4157 			conf->fullsync = 1;
4158 		}
4159 
4160 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4161 	}
4162 
4163 	if (mddev->recovery_cp != MaxSector)
4164 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4165 			  mdname(mddev));
4166 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4167 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4168 		conf->geo.raid_disks);
4169 	/*
4170 	 * Ok, everything is just fine now
4171 	 */
4172 	mddev->dev_sectors = conf->dev_sectors;
4173 	size = raid10_size(mddev, 0, 0);
4174 	md_set_array_sectors(mddev, size);
4175 	mddev->resync_max_sectors = size;
4176 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4177 
4178 	if (md_integrity_register(mddev))
4179 		goto out_free_conf;
4180 
4181 	if (conf->reshape_progress != MaxSector) {
4182 		unsigned long before_length, after_length;
4183 
4184 		before_length = ((1 << conf->prev.chunk_shift) *
4185 				 conf->prev.far_copies);
4186 		after_length = ((1 << conf->geo.chunk_shift) *
4187 				conf->geo.far_copies);
4188 
4189 		if (max(before_length, after_length) > min_offset_diff) {
4190 			/* This cannot work */
4191 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4192 			goto out_free_conf;
4193 		}
4194 		conf->offset_diff = min_offset_diff;
4195 
4196 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4197 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4198 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4199 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4200 	}
4201 
4202 	return 0;
4203 
4204 out_free_conf:
4205 	md_unregister_thread(mddev, &mddev->thread);
4206 	raid10_free_conf(conf);
4207 	mddev->private = NULL;
4208 out:
4209 	return ret;
4210 }
4211 
4212 static void raid10_free(struct mddev *mddev, void *priv)
4213 {
4214 	raid10_free_conf(priv);
4215 }
4216 
4217 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4218 {
4219 	struct r10conf *conf = mddev->private;
4220 
4221 	if (quiesce)
4222 		raise_barrier(conf, 0);
4223 	else
4224 		lower_barrier(conf);
4225 }
4226 
4227 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4228 {
4229 	/* Resize of 'far' arrays is not supported.
4230 	 * For 'near' and 'offset' arrays we can set the
4231 	 * number of sectors used to be an appropriate multiple
4232 	 * of the chunk size.
4233 	 * For 'offset', this is far_copies*chunksize.
4234 	 * For 'near' the multiplier is the LCM of
4235 	 * near_copies and raid_disks.
4236 	 * So if far_copies > 1 && !far_offset, fail.
4237 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4238 	 * multiply by chunk_size.  Then round to this number.
4239 	 * This is mostly done by raid10_size()
4240 	 */
4241 	struct r10conf *conf = mddev->private;
4242 	sector_t oldsize, size;
4243 	int ret;
4244 
4245 	if (mddev->reshape_position != MaxSector)
4246 		return -EBUSY;
4247 
4248 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4249 		return -EINVAL;
4250 
4251 	oldsize = raid10_size(mddev, 0, 0);
4252 	size = raid10_size(mddev, sectors, 0);
4253 	if (mddev->external_size &&
4254 	    mddev->array_sectors > size)
4255 		return -EINVAL;
4256 
4257 	ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
4258 	if (ret)
4259 		return ret;
4260 
4261 	md_set_array_sectors(mddev, size);
4262 	if (sectors > mddev->dev_sectors &&
4263 	    mddev->recovery_cp > oldsize) {
4264 		mddev->recovery_cp = oldsize;
4265 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4266 	}
4267 	calc_sectors(conf, sectors);
4268 	mddev->dev_sectors = conf->dev_sectors;
4269 	mddev->resync_max_sectors = size;
4270 	return 0;
4271 }
4272 
4273 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4274 {
4275 	struct md_rdev *rdev;
4276 	struct r10conf *conf;
4277 
4278 	if (mddev->degraded > 0) {
4279 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4280 			mdname(mddev));
4281 		return ERR_PTR(-EINVAL);
4282 	}
4283 	sector_div(size, devs);
4284 
4285 	/* Set new parameters */
4286 	mddev->new_level = 10;
4287 	/* new layout: far_copies = 1, near_copies = 2 */
4288 	mddev->new_layout = (1<<8) + 2;
4289 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4290 	mddev->delta_disks = mddev->raid_disks;
4291 	mddev->raid_disks *= 2;
4292 	/* make sure it will be not marked as dirty */
4293 	mddev->recovery_cp = MaxSector;
4294 	mddev->dev_sectors = size;
4295 
4296 	conf = setup_conf(mddev);
4297 	if (!IS_ERR(conf)) {
4298 		rdev_for_each(rdev, mddev)
4299 			if (rdev->raid_disk >= 0) {
4300 				rdev->new_raid_disk = rdev->raid_disk * 2;
4301 				rdev->sectors = size;
4302 			}
4303 	}
4304 
4305 	return conf;
4306 }
4307 
4308 static void *raid10_takeover(struct mddev *mddev)
4309 {
4310 	struct r0conf *raid0_conf;
4311 
4312 	/* raid10 can take over:
4313 	 *  raid0 - providing it has only two drives
4314 	 */
4315 	if (mddev->level == 0) {
4316 		/* for raid0 takeover only one zone is supported */
4317 		raid0_conf = mddev->private;
4318 		if (raid0_conf->nr_strip_zones > 1) {
4319 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4320 				mdname(mddev));
4321 			return ERR_PTR(-EINVAL);
4322 		}
4323 		return raid10_takeover_raid0(mddev,
4324 			raid0_conf->strip_zone->zone_end,
4325 			raid0_conf->strip_zone->nb_dev);
4326 	}
4327 	return ERR_PTR(-EINVAL);
4328 }
4329 
4330 static int raid10_check_reshape(struct mddev *mddev)
4331 {
4332 	/* Called when there is a request to change
4333 	 * - layout (to ->new_layout)
4334 	 * - chunk size (to ->new_chunk_sectors)
4335 	 * - raid_disks (by delta_disks)
4336 	 * or when trying to restart a reshape that was ongoing.
4337 	 *
4338 	 * We need to validate the request and possibly allocate
4339 	 * space if that might be an issue later.
4340 	 *
4341 	 * Currently we reject any reshape of a 'far' mode array,
4342 	 * allow chunk size to change if new is generally acceptable,
4343 	 * allow raid_disks to increase, and allow
4344 	 * a switch between 'near' mode and 'offset' mode.
4345 	 */
4346 	struct r10conf *conf = mddev->private;
4347 	struct geom geo;
4348 
4349 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4350 		return -EINVAL;
4351 
4352 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4353 		/* mustn't change number of copies */
4354 		return -EINVAL;
4355 	if (geo.far_copies > 1 && !geo.far_offset)
4356 		/* Cannot switch to 'far' mode */
4357 		return -EINVAL;
4358 
4359 	if (mddev->array_sectors & geo.chunk_mask)
4360 			/* not factor of array size */
4361 			return -EINVAL;
4362 
4363 	if (!enough(conf, -1))
4364 		return -EINVAL;
4365 
4366 	kfree(conf->mirrors_new);
4367 	conf->mirrors_new = NULL;
4368 	if (mddev->delta_disks > 0) {
4369 		/* allocate new 'mirrors' list */
4370 		conf->mirrors_new =
4371 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4372 				sizeof(struct raid10_info),
4373 				GFP_KERNEL);
4374 		if (!conf->mirrors_new)
4375 			return -ENOMEM;
4376 	}
4377 	return 0;
4378 }
4379 
4380 /*
4381  * Need to check if array has failed when deciding whether to:
4382  *  - start an array
4383  *  - remove non-faulty devices
4384  *  - add a spare
4385  *  - allow a reshape
4386  * This determination is simple when no reshape is happening.
4387  * However if there is a reshape, we need to carefully check
4388  * both the before and after sections.
4389  * This is because some failed devices may only affect one
4390  * of the two sections, and some non-in_sync devices may
4391  * be insync in the section most affected by failed devices.
4392  */
4393 static int calc_degraded(struct r10conf *conf)
4394 {
4395 	int degraded, degraded2;
4396 	int i;
4397 
4398 	degraded = 0;
4399 	/* 'prev' section first */
4400 	for (i = 0; i < conf->prev.raid_disks; i++) {
4401 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4402 
4403 		if (!rdev || test_bit(Faulty, &rdev->flags))
4404 			degraded++;
4405 		else if (!test_bit(In_sync, &rdev->flags))
4406 			/* When we can reduce the number of devices in
4407 			 * an array, this might not contribute to
4408 			 * 'degraded'.  It does now.
4409 			 */
4410 			degraded++;
4411 	}
4412 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4413 		return degraded;
4414 	degraded2 = 0;
4415 	for (i = 0; i < conf->geo.raid_disks; i++) {
4416 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4417 
4418 		if (!rdev || test_bit(Faulty, &rdev->flags))
4419 			degraded2++;
4420 		else if (!test_bit(In_sync, &rdev->flags)) {
4421 			/* If reshape is increasing the number of devices,
4422 			 * this section has already been recovered, so
4423 			 * it doesn't contribute to degraded.
4424 			 * else it does.
4425 			 */
4426 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4427 				degraded2++;
4428 		}
4429 	}
4430 	if (degraded2 > degraded)
4431 		return degraded2;
4432 	return degraded;
4433 }
4434 
4435 static int raid10_start_reshape(struct mddev *mddev)
4436 {
4437 	/* A 'reshape' has been requested. This commits
4438 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4439 	 * This also checks if there are enough spares and adds them
4440 	 * to the array.
4441 	 * We currently require enough spares to make the final
4442 	 * array non-degraded.  We also require that the difference
4443 	 * between old and new data_offset - on each device - is
4444 	 * enough that we never risk over-writing.
4445 	 */
4446 
4447 	unsigned long before_length, after_length;
4448 	sector_t min_offset_diff = 0;
4449 	int first = 1;
4450 	struct geom new;
4451 	struct r10conf *conf = mddev->private;
4452 	struct md_rdev *rdev;
4453 	int spares = 0;
4454 	int ret;
4455 
4456 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4457 		return -EBUSY;
4458 
4459 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4460 		return -EINVAL;
4461 
4462 	before_length = ((1 << conf->prev.chunk_shift) *
4463 			 conf->prev.far_copies);
4464 	after_length = ((1 << conf->geo.chunk_shift) *
4465 			conf->geo.far_copies);
4466 
4467 	rdev_for_each(rdev, mddev) {
4468 		if (!test_bit(In_sync, &rdev->flags)
4469 		    && !test_bit(Faulty, &rdev->flags))
4470 			spares++;
4471 		if (rdev->raid_disk >= 0) {
4472 			long long diff = (rdev->new_data_offset
4473 					  - rdev->data_offset);
4474 			if (!mddev->reshape_backwards)
4475 				diff = -diff;
4476 			if (diff < 0)
4477 				diff = 0;
4478 			if (first || diff < min_offset_diff)
4479 				min_offset_diff = diff;
4480 			first = 0;
4481 		}
4482 	}
4483 
4484 	if (max(before_length, after_length) > min_offset_diff)
4485 		return -EINVAL;
4486 
4487 	if (spares < mddev->delta_disks)
4488 		return -EINVAL;
4489 
4490 	conf->offset_diff = min_offset_diff;
4491 	spin_lock_irq(&conf->device_lock);
4492 	if (conf->mirrors_new) {
4493 		memcpy(conf->mirrors_new, conf->mirrors,
4494 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4495 		smp_mb();
4496 		kfree(conf->mirrors_old);
4497 		conf->mirrors_old = conf->mirrors;
4498 		conf->mirrors = conf->mirrors_new;
4499 		conf->mirrors_new = NULL;
4500 	}
4501 	setup_geo(&conf->geo, mddev, geo_start);
4502 	smp_mb();
4503 	if (mddev->reshape_backwards) {
4504 		sector_t size = raid10_size(mddev, 0, 0);
4505 		if (size < mddev->array_sectors) {
4506 			spin_unlock_irq(&conf->device_lock);
4507 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4508 				mdname(mddev));
4509 			return -EINVAL;
4510 		}
4511 		mddev->resync_max_sectors = size;
4512 		conf->reshape_progress = size;
4513 	} else
4514 		conf->reshape_progress = 0;
4515 	conf->reshape_safe = conf->reshape_progress;
4516 	spin_unlock_irq(&conf->device_lock);
4517 
4518 	if (mddev->delta_disks && mddev->bitmap) {
4519 		struct mdp_superblock_1 *sb = NULL;
4520 		sector_t oldsize, newsize;
4521 
4522 		oldsize = raid10_size(mddev, 0, 0);
4523 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4524 
4525 		if (!mddev_is_clustered(mddev)) {
4526 			ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4527 			if (ret)
4528 				goto abort;
4529 			else
4530 				goto out;
4531 		}
4532 
4533 		rdev_for_each(rdev, mddev) {
4534 			if (rdev->raid_disk > -1 &&
4535 			    !test_bit(Faulty, &rdev->flags))
4536 				sb = page_address(rdev->sb_page);
4537 		}
4538 
4539 		/*
4540 		 * some node is already performing reshape, and no need to
4541 		 * call bitmap_ops->resize again since it should be called when
4542 		 * receiving BITMAP_RESIZE msg
4543 		 */
4544 		if ((sb && (le32_to_cpu(sb->feature_map) &
4545 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4546 			goto out;
4547 
4548 		ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4549 		if (ret)
4550 			goto abort;
4551 
4552 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4553 		if (ret) {
4554 			mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
4555 			goto abort;
4556 		}
4557 	}
4558 out:
4559 	if (mddev->delta_disks > 0) {
4560 		rdev_for_each(rdev, mddev)
4561 			if (rdev->raid_disk < 0 &&
4562 			    !test_bit(Faulty, &rdev->flags)) {
4563 				if (raid10_add_disk(mddev, rdev) == 0) {
4564 					if (rdev->raid_disk >=
4565 					    conf->prev.raid_disks)
4566 						set_bit(In_sync, &rdev->flags);
4567 					else
4568 						rdev->recovery_offset = 0;
4569 
4570 					/* Failure here is OK */
4571 					sysfs_link_rdev(mddev, rdev);
4572 				}
4573 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4574 				   && !test_bit(Faulty, &rdev->flags)) {
4575 				/* This is a spare that was manually added */
4576 				set_bit(In_sync, &rdev->flags);
4577 			}
4578 	}
4579 	/* When a reshape changes the number of devices,
4580 	 * ->degraded is measured against the larger of the
4581 	 * pre and  post numbers.
4582 	 */
4583 	spin_lock_irq(&conf->device_lock);
4584 	mddev->degraded = calc_degraded(conf);
4585 	spin_unlock_irq(&conf->device_lock);
4586 	mddev->raid_disks = conf->geo.raid_disks;
4587 	mddev->reshape_position = conf->reshape_progress;
4588 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4589 
4590 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4591 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4592 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4593 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4594 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4595 	conf->reshape_checkpoint = jiffies;
4596 	md_new_event();
4597 	return 0;
4598 
4599 abort:
4600 	mddev->recovery = 0;
4601 	spin_lock_irq(&conf->device_lock);
4602 	conf->geo = conf->prev;
4603 	mddev->raid_disks = conf->geo.raid_disks;
4604 	rdev_for_each(rdev, mddev)
4605 		rdev->new_data_offset = rdev->data_offset;
4606 	smp_wmb();
4607 	conf->reshape_progress = MaxSector;
4608 	conf->reshape_safe = MaxSector;
4609 	mddev->reshape_position = MaxSector;
4610 	spin_unlock_irq(&conf->device_lock);
4611 	return ret;
4612 }
4613 
4614 /* Calculate the last device-address that could contain
4615  * any block from the chunk that includes the array-address 's'
4616  * and report the next address.
4617  * i.e. the address returned will be chunk-aligned and after
4618  * any data that is in the chunk containing 's'.
4619  */
4620 static sector_t last_dev_address(sector_t s, struct geom *geo)
4621 {
4622 	s = (s | geo->chunk_mask) + 1;
4623 	s >>= geo->chunk_shift;
4624 	s *= geo->near_copies;
4625 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4626 	s *= geo->far_copies;
4627 	s <<= geo->chunk_shift;
4628 	return s;
4629 }
4630 
4631 /* Calculate the first device-address that could contain
4632  * any block from the chunk that includes the array-address 's'.
4633  * This too will be the start of a chunk
4634  */
4635 static sector_t first_dev_address(sector_t s, struct geom *geo)
4636 {
4637 	s >>= geo->chunk_shift;
4638 	s *= geo->near_copies;
4639 	sector_div(s, geo->raid_disks);
4640 	s *= geo->far_copies;
4641 	s <<= geo->chunk_shift;
4642 	return s;
4643 }
4644 
4645 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4646 				int *skipped)
4647 {
4648 	/* We simply copy at most one chunk (smallest of old and new)
4649 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4650 	 * or we hit a bad block or something.
4651 	 * This might mean we pause for normal IO in the middle of
4652 	 * a chunk, but that is not a problem as mddev->reshape_position
4653 	 * can record any location.
4654 	 *
4655 	 * If we will want to write to a location that isn't
4656 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4657 	 * we need to flush all reshape requests and update the metadata.
4658 	 *
4659 	 * When reshaping forwards (e.g. to more devices), we interpret
4660 	 * 'safe' as the earliest block which might not have been copied
4661 	 * down yet.  We divide this by previous stripe size and multiply
4662 	 * by previous stripe length to get lowest device offset that we
4663 	 * cannot write to yet.
4664 	 * We interpret 'sector_nr' as an address that we want to write to.
4665 	 * From this we use last_device_address() to find where we might
4666 	 * write to, and first_device_address on the  'safe' position.
4667 	 * If this 'next' write position is after the 'safe' position,
4668 	 * we must update the metadata to increase the 'safe' position.
4669 	 *
4670 	 * When reshaping backwards, we round in the opposite direction
4671 	 * and perform the reverse test:  next write position must not be
4672 	 * less than current safe position.
4673 	 *
4674 	 * In all this the minimum difference in data offsets
4675 	 * (conf->offset_diff - always positive) allows a bit of slack,
4676 	 * so next can be after 'safe', but not by more than offset_diff
4677 	 *
4678 	 * We need to prepare all the bios here before we start any IO
4679 	 * to ensure the size we choose is acceptable to all devices.
4680 	 * The means one for each copy for write-out and an extra one for
4681 	 * read-in.
4682 	 * We store the read-in bio in ->master_bio and the others in
4683 	 * ->devs[x].bio and ->devs[x].repl_bio.
4684 	 */
4685 	struct r10conf *conf = mddev->private;
4686 	struct r10bio *r10_bio;
4687 	sector_t next, safe, last;
4688 	int max_sectors;
4689 	int nr_sectors;
4690 	int s;
4691 	struct md_rdev *rdev;
4692 	int need_flush = 0;
4693 	struct bio *blist;
4694 	struct bio *bio, *read_bio;
4695 	int sectors_done = 0;
4696 	struct page **pages;
4697 
4698 	if (sector_nr == 0) {
4699 		/* If restarting in the middle, skip the initial sectors */
4700 		if (mddev->reshape_backwards &&
4701 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4702 			sector_nr = (raid10_size(mddev, 0, 0)
4703 				     - conf->reshape_progress);
4704 		} else if (!mddev->reshape_backwards &&
4705 			   conf->reshape_progress > 0)
4706 			sector_nr = conf->reshape_progress;
4707 		if (sector_nr) {
4708 			mddev->curr_resync_completed = sector_nr;
4709 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4710 			*skipped = 1;
4711 			return sector_nr;
4712 		}
4713 	}
4714 
4715 	/* We don't use sector_nr to track where we are up to
4716 	 * as that doesn't work well for ->reshape_backwards.
4717 	 * So just use ->reshape_progress.
4718 	 */
4719 	if (mddev->reshape_backwards) {
4720 		/* 'next' is the earliest device address that we might
4721 		 * write to for this chunk in the new layout
4722 		 */
4723 		next = first_dev_address(conf->reshape_progress - 1,
4724 					 &conf->geo);
4725 
4726 		/* 'safe' is the last device address that we might read from
4727 		 * in the old layout after a restart
4728 		 */
4729 		safe = last_dev_address(conf->reshape_safe - 1,
4730 					&conf->prev);
4731 
4732 		if (next + conf->offset_diff < safe)
4733 			need_flush = 1;
4734 
4735 		last = conf->reshape_progress - 1;
4736 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4737 					       & conf->prev.chunk_mask);
4738 		if (sector_nr + RESYNC_SECTORS < last)
4739 			sector_nr = last + 1 - RESYNC_SECTORS;
4740 	} else {
4741 		/* 'next' is after the last device address that we
4742 		 * might write to for this chunk in the new layout
4743 		 */
4744 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4745 
4746 		/* 'safe' is the earliest device address that we might
4747 		 * read from in the old layout after a restart
4748 		 */
4749 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4750 
4751 		/* Need to update metadata if 'next' might be beyond 'safe'
4752 		 * as that would possibly corrupt data
4753 		 */
4754 		if (next > safe + conf->offset_diff)
4755 			need_flush = 1;
4756 
4757 		sector_nr = conf->reshape_progress;
4758 		last  = sector_nr | (conf->geo.chunk_mask
4759 				     & conf->prev.chunk_mask);
4760 
4761 		if (sector_nr + RESYNC_SECTORS <= last)
4762 			last = sector_nr + RESYNC_SECTORS - 1;
4763 	}
4764 
4765 	if (need_flush ||
4766 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4767 		/* Need to update reshape_position in metadata */
4768 		wait_barrier(conf, false);
4769 		mddev->reshape_position = conf->reshape_progress;
4770 		if (mddev->reshape_backwards)
4771 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4772 				- conf->reshape_progress;
4773 		else
4774 			mddev->curr_resync_completed = conf->reshape_progress;
4775 		conf->reshape_checkpoint = jiffies;
4776 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4777 		md_wakeup_thread(mddev->thread);
4778 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4779 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4780 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4781 			allow_barrier(conf);
4782 			return sectors_done;
4783 		}
4784 		conf->reshape_safe = mddev->reshape_position;
4785 		allow_barrier(conf);
4786 	}
4787 
4788 	raise_barrier(conf, 0);
4789 read_more:
4790 	/* Now schedule reads for blocks from sector_nr to last */
4791 	r10_bio = raid10_alloc_init_r10buf(conf);
4792 	r10_bio->state = 0;
4793 	raise_barrier(conf, 1);
4794 	atomic_set(&r10_bio->remaining, 0);
4795 	r10_bio->mddev = mddev;
4796 	r10_bio->sector = sector_nr;
4797 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4798 	r10_bio->sectors = last - sector_nr + 1;
4799 	rdev = read_balance(conf, r10_bio, &max_sectors);
4800 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4801 
4802 	if (!rdev) {
4803 		/* Cannot read from here, so need to record bad blocks
4804 		 * on all the target devices.
4805 		 */
4806 		// FIXME
4807 		mempool_free(r10_bio, &conf->r10buf_pool);
4808 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4809 		return sectors_done;
4810 	}
4811 
4812 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4813 				    GFP_KERNEL, &mddev->bio_set);
4814 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4815 			       + rdev->data_offset);
4816 	read_bio->bi_private = r10_bio;
4817 	read_bio->bi_end_io = end_reshape_read;
4818 	r10_bio->master_bio = read_bio;
4819 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4820 
4821 	/*
4822 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4823 	 * write to the region to avoid conflict.
4824 	*/
4825 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4826 		struct mdp_superblock_1 *sb = NULL;
4827 		int sb_reshape_pos = 0;
4828 
4829 		conf->cluster_sync_low = sector_nr;
4830 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4831 		sb = page_address(rdev->sb_page);
4832 		if (sb) {
4833 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4834 			/*
4835 			 * Set cluster_sync_low again if next address for array
4836 			 * reshape is less than cluster_sync_low. Since we can't
4837 			 * update cluster_sync_low until it has finished reshape.
4838 			 */
4839 			if (sb_reshape_pos < conf->cluster_sync_low)
4840 				conf->cluster_sync_low = sb_reshape_pos;
4841 		}
4842 
4843 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4844 							  conf->cluster_sync_high);
4845 	}
4846 
4847 	/* Now find the locations in the new layout */
4848 	__raid10_find_phys(&conf->geo, r10_bio);
4849 
4850 	blist = read_bio;
4851 	read_bio->bi_next = NULL;
4852 
4853 	for (s = 0; s < conf->copies*2; s++) {
4854 		struct bio *b;
4855 		int d = r10_bio->devs[s/2].devnum;
4856 		struct md_rdev *rdev2;
4857 		if (s&1) {
4858 			rdev2 = conf->mirrors[d].replacement;
4859 			b = r10_bio->devs[s/2].repl_bio;
4860 		} else {
4861 			rdev2 = conf->mirrors[d].rdev;
4862 			b = r10_bio->devs[s/2].bio;
4863 		}
4864 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4865 			continue;
4866 
4867 		bio_set_dev(b, rdev2->bdev);
4868 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4869 			rdev2->new_data_offset;
4870 		b->bi_end_io = end_reshape_write;
4871 		b->bi_opf = REQ_OP_WRITE;
4872 		b->bi_next = blist;
4873 		blist = b;
4874 	}
4875 
4876 	/* Now add as many pages as possible to all of these bios. */
4877 
4878 	nr_sectors = 0;
4879 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4880 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4881 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4882 		int len = (max_sectors - s) << 9;
4883 		if (len > PAGE_SIZE)
4884 			len = PAGE_SIZE;
4885 		for (bio = blist; bio ; bio = bio->bi_next) {
4886 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4887 				bio->bi_status = BLK_STS_RESOURCE;
4888 				bio_endio(bio);
4889 				return sectors_done;
4890 			}
4891 		}
4892 		sector_nr += len >> 9;
4893 		nr_sectors += len >> 9;
4894 	}
4895 	r10_bio->sectors = nr_sectors;
4896 
4897 	/* Now submit the read */
4898 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4899 	atomic_inc(&r10_bio->remaining);
4900 	read_bio->bi_next = NULL;
4901 	submit_bio_noacct(read_bio);
4902 	sectors_done += nr_sectors;
4903 	if (sector_nr <= last)
4904 		goto read_more;
4905 
4906 	lower_barrier(conf);
4907 
4908 	/* Now that we have done the whole section we can
4909 	 * update reshape_progress
4910 	 */
4911 	if (mddev->reshape_backwards)
4912 		conf->reshape_progress -= sectors_done;
4913 	else
4914 		conf->reshape_progress += sectors_done;
4915 
4916 	return sectors_done;
4917 }
4918 
4919 static void end_reshape_request(struct r10bio *r10_bio);
4920 static int handle_reshape_read_error(struct mddev *mddev,
4921 				     struct r10bio *r10_bio);
4922 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4923 {
4924 	/* Reshape read completed.  Hopefully we have a block
4925 	 * to write out.
4926 	 * If we got a read error then we do sync 1-page reads from
4927 	 * elsewhere until we find the data - or give up.
4928 	 */
4929 	struct r10conf *conf = mddev->private;
4930 	int s;
4931 
4932 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4933 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4934 			/* Reshape has been aborted */
4935 			md_done_sync(mddev, r10_bio->sectors, 0);
4936 			return;
4937 		}
4938 
4939 	/* We definitely have the data in the pages, schedule the
4940 	 * writes.
4941 	 */
4942 	atomic_set(&r10_bio->remaining, 1);
4943 	for (s = 0; s < conf->copies*2; s++) {
4944 		struct bio *b;
4945 		int d = r10_bio->devs[s/2].devnum;
4946 		struct md_rdev *rdev;
4947 		if (s&1) {
4948 			rdev = conf->mirrors[d].replacement;
4949 			b = r10_bio->devs[s/2].repl_bio;
4950 		} else {
4951 			rdev = conf->mirrors[d].rdev;
4952 			b = r10_bio->devs[s/2].bio;
4953 		}
4954 		if (!rdev || test_bit(Faulty, &rdev->flags))
4955 			continue;
4956 
4957 		atomic_inc(&rdev->nr_pending);
4958 		md_sync_acct_bio(b, r10_bio->sectors);
4959 		atomic_inc(&r10_bio->remaining);
4960 		b->bi_next = NULL;
4961 		submit_bio_noacct(b);
4962 	}
4963 	end_reshape_request(r10_bio);
4964 }
4965 
4966 static void end_reshape(struct r10conf *conf)
4967 {
4968 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4969 		return;
4970 
4971 	spin_lock_irq(&conf->device_lock);
4972 	conf->prev = conf->geo;
4973 	md_finish_reshape(conf->mddev);
4974 	smp_wmb();
4975 	conf->reshape_progress = MaxSector;
4976 	conf->reshape_safe = MaxSector;
4977 	spin_unlock_irq(&conf->device_lock);
4978 
4979 	mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4980 	conf->fullsync = 0;
4981 }
4982 
4983 static void raid10_update_reshape_pos(struct mddev *mddev)
4984 {
4985 	struct r10conf *conf = mddev->private;
4986 	sector_t lo, hi;
4987 
4988 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4989 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4990 	    || mddev->reshape_position == MaxSector)
4991 		conf->reshape_progress = mddev->reshape_position;
4992 	else
4993 		WARN_ON_ONCE(1);
4994 }
4995 
4996 static int handle_reshape_read_error(struct mddev *mddev,
4997 				     struct r10bio *r10_bio)
4998 {
4999 	/* Use sync reads to get the blocks from somewhere else */
5000 	int sectors = r10_bio->sectors;
5001 	struct r10conf *conf = mddev->private;
5002 	struct r10bio *r10b;
5003 	int slot = 0;
5004 	int idx = 0;
5005 	struct page **pages;
5006 
5007 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5008 	if (!r10b) {
5009 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5010 		return -ENOMEM;
5011 	}
5012 
5013 	/* reshape IOs share pages from .devs[0].bio */
5014 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5015 
5016 	r10b->sector = r10_bio->sector;
5017 	__raid10_find_phys(&conf->prev, r10b);
5018 
5019 	while (sectors) {
5020 		int s = sectors;
5021 		int success = 0;
5022 		int first_slot = slot;
5023 
5024 		if (s > (PAGE_SIZE >> 9))
5025 			s = PAGE_SIZE >> 9;
5026 
5027 		while (!success) {
5028 			int d = r10b->devs[slot].devnum;
5029 			struct md_rdev *rdev = conf->mirrors[d].rdev;
5030 			sector_t addr;
5031 			if (rdev == NULL ||
5032 			    test_bit(Faulty, &rdev->flags) ||
5033 			    !test_bit(In_sync, &rdev->flags))
5034 				goto failed;
5035 
5036 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5037 			atomic_inc(&rdev->nr_pending);
5038 			success = sync_page_io(rdev,
5039 					       addr,
5040 					       s << 9,
5041 					       pages[idx],
5042 					       REQ_OP_READ, false);
5043 			rdev_dec_pending(rdev, mddev);
5044 			if (success)
5045 				break;
5046 		failed:
5047 			slot++;
5048 			if (slot >= conf->copies)
5049 				slot = 0;
5050 			if (slot == first_slot)
5051 				break;
5052 		}
5053 		if (!success) {
5054 			/* couldn't read this block, must give up */
5055 			set_bit(MD_RECOVERY_INTR,
5056 				&mddev->recovery);
5057 			kfree(r10b);
5058 			return -EIO;
5059 		}
5060 		sectors -= s;
5061 		idx++;
5062 	}
5063 	kfree(r10b);
5064 	return 0;
5065 }
5066 
5067 static void end_reshape_write(struct bio *bio)
5068 {
5069 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5070 	struct mddev *mddev = r10_bio->mddev;
5071 	struct r10conf *conf = mddev->private;
5072 	int d;
5073 	int slot;
5074 	int repl;
5075 	struct md_rdev *rdev = NULL;
5076 
5077 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5078 	rdev = repl ? conf->mirrors[d].replacement :
5079 		      conf->mirrors[d].rdev;
5080 
5081 	if (bio->bi_status) {
5082 		/* FIXME should record badblock */
5083 		md_error(mddev, rdev);
5084 	}
5085 
5086 	rdev_dec_pending(rdev, mddev);
5087 	end_reshape_request(r10_bio);
5088 }
5089 
5090 static void end_reshape_request(struct r10bio *r10_bio)
5091 {
5092 	if (!atomic_dec_and_test(&r10_bio->remaining))
5093 		return;
5094 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5095 	bio_put(r10_bio->master_bio);
5096 	put_buf(r10_bio);
5097 }
5098 
5099 static void raid10_finish_reshape(struct mddev *mddev)
5100 {
5101 	struct r10conf *conf = mddev->private;
5102 
5103 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5104 		return;
5105 
5106 	if (mddev->delta_disks > 0) {
5107 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5108 			mddev->recovery_cp = mddev->resync_max_sectors;
5109 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5110 		}
5111 		mddev->resync_max_sectors = mddev->array_sectors;
5112 	} else {
5113 		int d;
5114 		for (d = conf->geo.raid_disks ;
5115 		     d < conf->geo.raid_disks - mddev->delta_disks;
5116 		     d++) {
5117 			struct md_rdev *rdev = conf->mirrors[d].rdev;
5118 			if (rdev)
5119 				clear_bit(In_sync, &rdev->flags);
5120 			rdev = conf->mirrors[d].replacement;
5121 			if (rdev)
5122 				clear_bit(In_sync, &rdev->flags);
5123 		}
5124 	}
5125 	mddev->layout = mddev->new_layout;
5126 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5127 	mddev->reshape_position = MaxSector;
5128 	mddev->delta_disks = 0;
5129 	mddev->reshape_backwards = 0;
5130 }
5131 
5132 static struct md_personality raid10_personality =
5133 {
5134 	.name		= "raid10",
5135 	.level		= 10,
5136 	.owner		= THIS_MODULE,
5137 	.make_request	= raid10_make_request,
5138 	.run		= raid10_run,
5139 	.free		= raid10_free,
5140 	.status		= raid10_status,
5141 	.error_handler	= raid10_error,
5142 	.hot_add_disk	= raid10_add_disk,
5143 	.hot_remove_disk= raid10_remove_disk,
5144 	.spare_active	= raid10_spare_active,
5145 	.sync_request	= raid10_sync_request,
5146 	.quiesce	= raid10_quiesce,
5147 	.size		= raid10_size,
5148 	.resize		= raid10_resize,
5149 	.takeover	= raid10_takeover,
5150 	.check_reshape	= raid10_check_reshape,
5151 	.start_reshape	= raid10_start_reshape,
5152 	.finish_reshape	= raid10_finish_reshape,
5153 	.update_reshape_pos = raid10_update_reshape_pos,
5154 };
5155 
5156 static int __init raid_init(void)
5157 {
5158 	return register_md_personality(&raid10_personality);
5159 }
5160 
5161 static void raid_exit(void)
5162 {
5163 	unregister_md_personality(&raid10_personality);
5164 }
5165 
5166 module_init(raid_init);
5167 module_exit(raid_exit);
5168 MODULE_LICENSE("GPL");
5169 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5170 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5171 MODULE_ALIAS("md-raid10");
5172 MODULE_ALIAS("md-level-10");
5173