xref: /linux/drivers/md/raid10.c (revision 36239c6704b71da7fb8e2a9429e159a84d0c5a3e)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "raid0.h"
28 #include "bitmap.h"
29 
30 /*
31  * RAID10 provides a combination of RAID0 and RAID1 functionality.
32  * The layout of data is defined by
33  *    chunk_size
34  *    raid_disks
35  *    near_copies (stored in low byte of layout)
36  *    far_copies (stored in second byte of layout)
37  *    far_offset (stored in bit 16 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.
40  * Each device is divided into far_copies sections.
41  * In each section, chunks are laid out in a style similar to raid0, but
42  * near_copies copies of each chunk is stored (each on a different drive).
43  * The starting device for each section is offset near_copies from the starting
44  * device of the previous section.
45  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46  * drive.
47  * near_copies and far_copies must be at least one, and their product is at most
48  * raid_disks.
49  *
50  * If far_offset is true, then the far_copies are handled a bit differently.
51  * The copies are still in different stripes, but instead of be very far apart
52  * on disk, there are adjacent stripes.
53  */
54 
55 /*
56  * Number of guaranteed r10bios in case of extreme VM load:
57  */
58 #define	NR_RAID10_BIOS 256
59 
60 static void unplug_slaves(mddev_t *mddev);
61 
62 static void allow_barrier(conf_t *conf);
63 static void lower_barrier(conf_t *conf);
64 
65 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
66 {
67 	conf_t *conf = data;
68 	r10bio_t *r10_bio;
69 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
70 
71 	/* allocate a r10bio with room for raid_disks entries in the bios array */
72 	r10_bio = kzalloc(size, gfp_flags);
73 	if (!r10_bio && conf->mddev)
74 		unplug_slaves(conf->mddev);
75 
76 	return r10_bio;
77 }
78 
79 static void r10bio_pool_free(void *r10_bio, void *data)
80 {
81 	kfree(r10_bio);
82 }
83 
84 /* Maximum size of each resync request */
85 #define RESYNC_BLOCK_SIZE (64*1024)
86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
87 /* amount of memory to reserve for resync requests */
88 #define RESYNC_WINDOW (1024*1024)
89 /* maximum number of concurrent requests, memory permitting */
90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
91 
92 /*
93  * When performing a resync, we need to read and compare, so
94  * we need as many pages are there are copies.
95  * When performing a recovery, we need 2 bios, one for read,
96  * one for write (we recover only one drive per r10buf)
97  *
98  */
99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
100 {
101 	conf_t *conf = data;
102 	struct page *page;
103 	r10bio_t *r10_bio;
104 	struct bio *bio;
105 	int i, j;
106 	int nalloc;
107 
108 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
109 	if (!r10_bio) {
110 		unplug_slaves(conf->mddev);
111 		return NULL;
112 	}
113 
114 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115 		nalloc = conf->copies; /* resync */
116 	else
117 		nalloc = 2; /* recovery */
118 
119 	/*
120 	 * Allocate bios.
121 	 */
122 	for (j = nalloc ; j-- ; ) {
123 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
124 		if (!bio)
125 			goto out_free_bio;
126 		r10_bio->devs[j].bio = bio;
127 	}
128 	/*
129 	 * Allocate RESYNC_PAGES data pages and attach them
130 	 * where needed.
131 	 */
132 	for (j = 0 ; j < nalloc; j++) {
133 		bio = r10_bio->devs[j].bio;
134 		for (i = 0; i < RESYNC_PAGES; i++) {
135 			page = alloc_page(gfp_flags);
136 			if (unlikely(!page))
137 				goto out_free_pages;
138 
139 			bio->bi_io_vec[i].bv_page = page;
140 		}
141 	}
142 
143 	return r10_bio;
144 
145 out_free_pages:
146 	for ( ; i > 0 ; i--)
147 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
148 	while (j--)
149 		for (i = 0; i < RESYNC_PAGES ; i++)
150 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
151 	j = -1;
152 out_free_bio:
153 	while ( ++j < nalloc )
154 		bio_put(r10_bio->devs[j].bio);
155 	r10bio_pool_free(r10_bio, conf);
156 	return NULL;
157 }
158 
159 static void r10buf_pool_free(void *__r10_bio, void *data)
160 {
161 	int i;
162 	conf_t *conf = data;
163 	r10bio_t *r10bio = __r10_bio;
164 	int j;
165 
166 	for (j=0; j < conf->copies; j++) {
167 		struct bio *bio = r10bio->devs[j].bio;
168 		if (bio) {
169 			for (i = 0; i < RESYNC_PAGES; i++) {
170 				safe_put_page(bio->bi_io_vec[i].bv_page);
171 				bio->bi_io_vec[i].bv_page = NULL;
172 			}
173 			bio_put(bio);
174 		}
175 	}
176 	r10bio_pool_free(r10bio, conf);
177 }
178 
179 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->copies; i++) {
184 		struct bio **bio = & r10_bio->devs[i].bio;
185 		if (*bio && *bio != IO_BLOCKED)
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r10bio(r10bio_t *r10_bio)
192 {
193 	conf_t *conf = r10_bio->mddev->private;
194 
195 	/*
196 	 * Wake up any possible resync thread that waits for the device
197 	 * to go idle.
198 	 */
199 	allow_barrier(conf);
200 
201 	put_all_bios(conf, r10_bio);
202 	mempool_free(r10_bio, conf->r10bio_pool);
203 }
204 
205 static void put_buf(r10bio_t *r10_bio)
206 {
207 	conf_t *conf = r10_bio->mddev->private;
208 
209 	mempool_free(r10_bio, conf->r10buf_pool);
210 
211 	lower_barrier(conf);
212 }
213 
214 static void reschedule_retry(r10bio_t *r10_bio)
215 {
216 	unsigned long flags;
217 	mddev_t *mddev = r10_bio->mddev;
218 	conf_t *conf = mddev->private;
219 
220 	spin_lock_irqsave(&conf->device_lock, flags);
221 	list_add(&r10_bio->retry_list, &conf->retry_list);
222 	conf->nr_queued ++;
223 	spin_unlock_irqrestore(&conf->device_lock, flags);
224 
225 	/* wake up frozen array... */
226 	wake_up(&conf->wait_barrier);
227 
228 	md_wakeup_thread(mddev->thread);
229 }
230 
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238 	struct bio *bio = r10_bio->master_bio;
239 
240 	bio_endio(bio,
241 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 	free_r10bio(r10_bio);
243 }
244 
245 /*
246  * Update disk head position estimator based on IRQ completion info.
247  */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250 	conf_t *conf = r10_bio->mddev->private;
251 
252 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 		r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255 
256 static void raid10_end_read_request(struct bio *bio, int error)
257 {
258 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 	r10bio_t *r10_bio = bio->bi_private;
260 	int slot, dev;
261 	conf_t *conf = r10_bio->mddev->private;
262 
263 
264 	slot = r10_bio->read_slot;
265 	dev = r10_bio->devs[slot].devnum;
266 	/*
267 	 * this branch is our 'one mirror IO has finished' event handler:
268 	 */
269 	update_head_pos(slot, r10_bio);
270 
271 	if (uptodate) {
272 		/*
273 		 * Set R10BIO_Uptodate in our master bio, so that
274 		 * we will return a good error code to the higher
275 		 * levels even if IO on some other mirrored buffer fails.
276 		 *
277 		 * The 'master' represents the composite IO operation to
278 		 * user-side. So if something waits for IO, then it will
279 		 * wait for the 'master' bio.
280 		 */
281 		set_bit(R10BIO_Uptodate, &r10_bio->state);
282 		raid_end_bio_io(r10_bio);
283 	} else {
284 		/*
285 		 * oops, read error:
286 		 */
287 		char b[BDEVNAME_SIZE];
288 		if (printk_ratelimit())
289 			printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
290 			       mdname(conf->mddev),
291 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
292 		reschedule_retry(r10_bio);
293 	}
294 
295 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
296 }
297 
298 static void raid10_end_write_request(struct bio *bio, int error)
299 {
300 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
301 	r10bio_t *r10_bio = bio->bi_private;
302 	int slot, dev;
303 	conf_t *conf = r10_bio->mddev->private;
304 
305 	for (slot = 0; slot < conf->copies; slot++)
306 		if (r10_bio->devs[slot].bio == bio)
307 			break;
308 	dev = r10_bio->devs[slot].devnum;
309 
310 	/*
311 	 * this branch is our 'one mirror IO has finished' event handler:
312 	 */
313 	if (!uptodate) {
314 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
315 		/* an I/O failed, we can't clear the bitmap */
316 		set_bit(R10BIO_Degraded, &r10_bio->state);
317 	} else
318 		/*
319 		 * Set R10BIO_Uptodate in our master bio, so that
320 		 * we will return a good error code for to the higher
321 		 * levels even if IO on some other mirrored buffer fails.
322 		 *
323 		 * The 'master' represents the composite IO operation to
324 		 * user-side. So if something waits for IO, then it will
325 		 * wait for the 'master' bio.
326 		 */
327 		set_bit(R10BIO_Uptodate, &r10_bio->state);
328 
329 	update_head_pos(slot, r10_bio);
330 
331 	/*
332 	 *
333 	 * Let's see if all mirrored write operations have finished
334 	 * already.
335 	 */
336 	if (atomic_dec_and_test(&r10_bio->remaining)) {
337 		/* clear the bitmap if all writes complete successfully */
338 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
339 				r10_bio->sectors,
340 				!test_bit(R10BIO_Degraded, &r10_bio->state),
341 				0);
342 		md_write_end(r10_bio->mddev);
343 		raid_end_bio_io(r10_bio);
344 	}
345 
346 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
347 }
348 
349 
350 /*
351  * RAID10 layout manager
352  * Aswell as the chunksize and raid_disks count, there are two
353  * parameters: near_copies and far_copies.
354  * near_copies * far_copies must be <= raid_disks.
355  * Normally one of these will be 1.
356  * If both are 1, we get raid0.
357  * If near_copies == raid_disks, we get raid1.
358  *
359  * Chunks are layed out in raid0 style with near_copies copies of the
360  * first chunk, followed by near_copies copies of the next chunk and
361  * so on.
362  * If far_copies > 1, then after 1/far_copies of the array has been assigned
363  * as described above, we start again with a device offset of near_copies.
364  * So we effectively have another copy of the whole array further down all
365  * the drives, but with blocks on different drives.
366  * With this layout, and block is never stored twice on the one device.
367  *
368  * raid10_find_phys finds the sector offset of a given virtual sector
369  * on each device that it is on.
370  *
371  * raid10_find_virt does the reverse mapping, from a device and a
372  * sector offset to a virtual address
373  */
374 
375 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
376 {
377 	int n,f;
378 	sector_t sector;
379 	sector_t chunk;
380 	sector_t stripe;
381 	int dev;
382 
383 	int slot = 0;
384 
385 	/* now calculate first sector/dev */
386 	chunk = r10bio->sector >> conf->chunk_shift;
387 	sector = r10bio->sector & conf->chunk_mask;
388 
389 	chunk *= conf->near_copies;
390 	stripe = chunk;
391 	dev = sector_div(stripe, conf->raid_disks);
392 	if (conf->far_offset)
393 		stripe *= conf->far_copies;
394 
395 	sector += stripe << conf->chunk_shift;
396 
397 	/* and calculate all the others */
398 	for (n=0; n < conf->near_copies; n++) {
399 		int d = dev;
400 		sector_t s = sector;
401 		r10bio->devs[slot].addr = sector;
402 		r10bio->devs[slot].devnum = d;
403 		slot++;
404 
405 		for (f = 1; f < conf->far_copies; f++) {
406 			d += conf->near_copies;
407 			if (d >= conf->raid_disks)
408 				d -= conf->raid_disks;
409 			s += conf->stride;
410 			r10bio->devs[slot].devnum = d;
411 			r10bio->devs[slot].addr = s;
412 			slot++;
413 		}
414 		dev++;
415 		if (dev >= conf->raid_disks) {
416 			dev = 0;
417 			sector += (conf->chunk_mask + 1);
418 		}
419 	}
420 	BUG_ON(slot != conf->copies);
421 }
422 
423 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
424 {
425 	sector_t offset, chunk, vchunk;
426 
427 	offset = sector & conf->chunk_mask;
428 	if (conf->far_offset) {
429 		int fc;
430 		chunk = sector >> conf->chunk_shift;
431 		fc = sector_div(chunk, conf->far_copies);
432 		dev -= fc * conf->near_copies;
433 		if (dev < 0)
434 			dev += conf->raid_disks;
435 	} else {
436 		while (sector >= conf->stride) {
437 			sector -= conf->stride;
438 			if (dev < conf->near_copies)
439 				dev += conf->raid_disks - conf->near_copies;
440 			else
441 				dev -= conf->near_copies;
442 		}
443 		chunk = sector >> conf->chunk_shift;
444 	}
445 	vchunk = chunk * conf->raid_disks + dev;
446 	sector_div(vchunk, conf->near_copies);
447 	return (vchunk << conf->chunk_shift) + offset;
448 }
449 
450 /**
451  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
452  *	@q: request queue
453  *	@bvm: properties of new bio
454  *	@biovec: the request that could be merged to it.
455  *
456  *	Return amount of bytes we can accept at this offset
457  *      If near_copies == raid_disk, there are no striping issues,
458  *      but in that case, the function isn't called at all.
459  */
460 static int raid10_mergeable_bvec(struct request_queue *q,
461 				 struct bvec_merge_data *bvm,
462 				 struct bio_vec *biovec)
463 {
464 	mddev_t *mddev = q->queuedata;
465 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
466 	int max;
467 	unsigned int chunk_sectors = mddev->chunk_sectors;
468 	unsigned int bio_sectors = bvm->bi_size >> 9;
469 
470 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
471 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
472 	if (max <= biovec->bv_len && bio_sectors == 0)
473 		return biovec->bv_len;
474 	else
475 		return max;
476 }
477 
478 /*
479  * This routine returns the disk from which the requested read should
480  * be done. There is a per-array 'next expected sequential IO' sector
481  * number - if this matches on the next IO then we use the last disk.
482  * There is also a per-disk 'last know head position' sector that is
483  * maintained from IRQ contexts, both the normal and the resync IO
484  * completion handlers update this position correctly. If there is no
485  * perfect sequential match then we pick the disk whose head is closest.
486  *
487  * If there are 2 mirrors in the same 2 devices, performance degrades
488  * because position is mirror, not device based.
489  *
490  * The rdev for the device selected will have nr_pending incremented.
491  */
492 
493 /*
494  * FIXME: possibly should rethink readbalancing and do it differently
495  * depending on near_copies / far_copies geometry.
496  */
497 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
498 {
499 	const sector_t this_sector = r10_bio->sector;
500 	int disk, slot, nslot;
501 	const int sectors = r10_bio->sectors;
502 	sector_t new_distance, current_distance;
503 	mdk_rdev_t *rdev;
504 
505 	raid10_find_phys(conf, r10_bio);
506 	rcu_read_lock();
507 	/*
508 	 * Check if we can balance. We can balance on the whole
509 	 * device if no resync is going on (recovery is ok), or below
510 	 * the resync window. We take the first readable disk when
511 	 * above the resync window.
512 	 */
513 	if (conf->mddev->recovery_cp < MaxSector
514 	    && (this_sector + sectors >= conf->next_resync)) {
515 		/* make sure that disk is operational */
516 		slot = 0;
517 		disk = r10_bio->devs[slot].devnum;
518 
519 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
520 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
521 		       !test_bit(In_sync, &rdev->flags)) {
522 			slot++;
523 			if (slot == conf->copies) {
524 				slot = 0;
525 				disk = -1;
526 				break;
527 			}
528 			disk = r10_bio->devs[slot].devnum;
529 		}
530 		goto rb_out;
531 	}
532 
533 
534 	/* make sure the disk is operational */
535 	slot = 0;
536 	disk = r10_bio->devs[slot].devnum;
537 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
538 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
539 	       !test_bit(In_sync, &rdev->flags)) {
540 		slot ++;
541 		if (slot == conf->copies) {
542 			disk = -1;
543 			goto rb_out;
544 		}
545 		disk = r10_bio->devs[slot].devnum;
546 	}
547 
548 
549 	current_distance = abs(r10_bio->devs[slot].addr -
550 			       conf->mirrors[disk].head_position);
551 
552 	/* Find the disk whose head is closest,
553 	 * or - for far > 1 - find the closest to partition beginning */
554 
555 	for (nslot = slot; nslot < conf->copies; nslot++) {
556 		int ndisk = r10_bio->devs[nslot].devnum;
557 
558 
559 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
560 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
561 		    !test_bit(In_sync, &rdev->flags))
562 			continue;
563 
564 		/* This optimisation is debatable, and completely destroys
565 		 * sequential read speed for 'far copies' arrays.  So only
566 		 * keep it for 'near' arrays, and review those later.
567 		 */
568 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
569 			disk = ndisk;
570 			slot = nslot;
571 			break;
572 		}
573 
574 		/* for far > 1 always use the lowest address */
575 		if (conf->far_copies > 1)
576 			new_distance = r10_bio->devs[nslot].addr;
577 		else
578 			new_distance = abs(r10_bio->devs[nslot].addr -
579 					   conf->mirrors[ndisk].head_position);
580 		if (new_distance < current_distance) {
581 			current_distance = new_distance;
582 			disk = ndisk;
583 			slot = nslot;
584 		}
585 	}
586 
587 rb_out:
588 	r10_bio->read_slot = slot;
589 /*	conf->next_seq_sect = this_sector + sectors;*/
590 
591 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
592 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
593 	else
594 		disk = -1;
595 	rcu_read_unlock();
596 
597 	return disk;
598 }
599 
600 static void unplug_slaves(mddev_t *mddev)
601 {
602 	conf_t *conf = mddev->private;
603 	int i;
604 
605 	rcu_read_lock();
606 	for (i=0; i < conf->raid_disks; i++) {
607 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
608 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
609 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
610 
611 			atomic_inc(&rdev->nr_pending);
612 			rcu_read_unlock();
613 
614 			blk_unplug(r_queue);
615 
616 			rdev_dec_pending(rdev, mddev);
617 			rcu_read_lock();
618 		}
619 	}
620 	rcu_read_unlock();
621 }
622 
623 static void raid10_unplug(struct request_queue *q)
624 {
625 	mddev_t *mddev = q->queuedata;
626 
627 	unplug_slaves(q->queuedata);
628 	md_wakeup_thread(mddev->thread);
629 }
630 
631 static int raid10_congested(void *data, int bits)
632 {
633 	mddev_t *mddev = data;
634 	conf_t *conf = mddev->private;
635 	int i, ret = 0;
636 
637 	if (mddev_congested(mddev, bits))
638 		return 1;
639 	rcu_read_lock();
640 	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
641 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
642 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
643 			struct request_queue *q = bdev_get_queue(rdev->bdev);
644 
645 			ret |= bdi_congested(&q->backing_dev_info, bits);
646 		}
647 	}
648 	rcu_read_unlock();
649 	return ret;
650 }
651 
652 static int flush_pending_writes(conf_t *conf)
653 {
654 	/* Any writes that have been queued but are awaiting
655 	 * bitmap updates get flushed here.
656 	 * We return 1 if any requests were actually submitted.
657 	 */
658 	int rv = 0;
659 
660 	spin_lock_irq(&conf->device_lock);
661 
662 	if (conf->pending_bio_list.head) {
663 		struct bio *bio;
664 		bio = bio_list_get(&conf->pending_bio_list);
665 		blk_remove_plug(conf->mddev->queue);
666 		spin_unlock_irq(&conf->device_lock);
667 		/* flush any pending bitmap writes to disk
668 		 * before proceeding w/ I/O */
669 		bitmap_unplug(conf->mddev->bitmap);
670 
671 		while (bio) { /* submit pending writes */
672 			struct bio *next = bio->bi_next;
673 			bio->bi_next = NULL;
674 			generic_make_request(bio);
675 			bio = next;
676 		}
677 		rv = 1;
678 	} else
679 		spin_unlock_irq(&conf->device_lock);
680 	return rv;
681 }
682 /* Barriers....
683  * Sometimes we need to suspend IO while we do something else,
684  * either some resync/recovery, or reconfigure the array.
685  * To do this we raise a 'barrier'.
686  * The 'barrier' is a counter that can be raised multiple times
687  * to count how many activities are happening which preclude
688  * normal IO.
689  * We can only raise the barrier if there is no pending IO.
690  * i.e. if nr_pending == 0.
691  * We choose only to raise the barrier if no-one is waiting for the
692  * barrier to go down.  This means that as soon as an IO request
693  * is ready, no other operations which require a barrier will start
694  * until the IO request has had a chance.
695  *
696  * So: regular IO calls 'wait_barrier'.  When that returns there
697  *    is no backgroup IO happening,  It must arrange to call
698  *    allow_barrier when it has finished its IO.
699  * backgroup IO calls must call raise_barrier.  Once that returns
700  *    there is no normal IO happeing.  It must arrange to call
701  *    lower_barrier when the particular background IO completes.
702  */
703 
704 static void raise_barrier(conf_t *conf, int force)
705 {
706 	BUG_ON(force && !conf->barrier);
707 	spin_lock_irq(&conf->resync_lock);
708 
709 	/* Wait until no block IO is waiting (unless 'force') */
710 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
711 			    conf->resync_lock,
712 			    raid10_unplug(conf->mddev->queue));
713 
714 	/* block any new IO from starting */
715 	conf->barrier++;
716 
717 	/* No wait for all pending IO to complete */
718 	wait_event_lock_irq(conf->wait_barrier,
719 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
720 			    conf->resync_lock,
721 			    raid10_unplug(conf->mddev->queue));
722 
723 	spin_unlock_irq(&conf->resync_lock);
724 }
725 
726 static void lower_barrier(conf_t *conf)
727 {
728 	unsigned long flags;
729 	spin_lock_irqsave(&conf->resync_lock, flags);
730 	conf->barrier--;
731 	spin_unlock_irqrestore(&conf->resync_lock, flags);
732 	wake_up(&conf->wait_barrier);
733 }
734 
735 static void wait_barrier(conf_t *conf)
736 {
737 	spin_lock_irq(&conf->resync_lock);
738 	if (conf->barrier) {
739 		conf->nr_waiting++;
740 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
741 				    conf->resync_lock,
742 				    raid10_unplug(conf->mddev->queue));
743 		conf->nr_waiting--;
744 	}
745 	conf->nr_pending++;
746 	spin_unlock_irq(&conf->resync_lock);
747 }
748 
749 static void allow_barrier(conf_t *conf)
750 {
751 	unsigned long flags;
752 	spin_lock_irqsave(&conf->resync_lock, flags);
753 	conf->nr_pending--;
754 	spin_unlock_irqrestore(&conf->resync_lock, flags);
755 	wake_up(&conf->wait_barrier);
756 }
757 
758 static void freeze_array(conf_t *conf)
759 {
760 	/* stop syncio and normal IO and wait for everything to
761 	 * go quiet.
762 	 * We increment barrier and nr_waiting, and then
763 	 * wait until nr_pending match nr_queued+1
764 	 * This is called in the context of one normal IO request
765 	 * that has failed. Thus any sync request that might be pending
766 	 * will be blocked by nr_pending, and we need to wait for
767 	 * pending IO requests to complete or be queued for re-try.
768 	 * Thus the number queued (nr_queued) plus this request (1)
769 	 * must match the number of pending IOs (nr_pending) before
770 	 * we continue.
771 	 */
772 	spin_lock_irq(&conf->resync_lock);
773 	conf->barrier++;
774 	conf->nr_waiting++;
775 	wait_event_lock_irq(conf->wait_barrier,
776 			    conf->nr_pending == conf->nr_queued+1,
777 			    conf->resync_lock,
778 			    ({ flush_pending_writes(conf);
779 			       raid10_unplug(conf->mddev->queue); }));
780 	spin_unlock_irq(&conf->resync_lock);
781 }
782 
783 static void unfreeze_array(conf_t *conf)
784 {
785 	/* reverse the effect of the freeze */
786 	spin_lock_irq(&conf->resync_lock);
787 	conf->barrier--;
788 	conf->nr_waiting--;
789 	wake_up(&conf->wait_barrier);
790 	spin_unlock_irq(&conf->resync_lock);
791 }
792 
793 static int make_request(mddev_t *mddev, struct bio * bio)
794 {
795 	conf_t *conf = mddev->private;
796 	mirror_info_t *mirror;
797 	r10bio_t *r10_bio;
798 	struct bio *read_bio;
799 	int i;
800 	int chunk_sects = conf->chunk_mask + 1;
801 	const int rw = bio_data_dir(bio);
802 	const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
803 	struct bio_list bl;
804 	unsigned long flags;
805 	mdk_rdev_t *blocked_rdev;
806 
807 	if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
808 		md_barrier_request(mddev, bio);
809 		return 0;
810 	}
811 
812 	/* If this request crosses a chunk boundary, we need to
813 	 * split it.  This will only happen for 1 PAGE (or less) requests.
814 	 */
815 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
816 		      > chunk_sects &&
817 		    conf->near_copies < conf->raid_disks)) {
818 		struct bio_pair *bp;
819 		/* Sanity check -- queue functions should prevent this happening */
820 		if (bio->bi_vcnt != 1 ||
821 		    bio->bi_idx != 0)
822 			goto bad_map;
823 		/* This is a one page bio that upper layers
824 		 * refuse to split for us, so we need to split it.
825 		 */
826 		bp = bio_split(bio,
827 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
828 		if (make_request(mddev, &bp->bio1))
829 			generic_make_request(&bp->bio1);
830 		if (make_request(mddev, &bp->bio2))
831 			generic_make_request(&bp->bio2);
832 
833 		bio_pair_release(bp);
834 		return 0;
835 	bad_map:
836 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
837 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
838 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
839 
840 		bio_io_error(bio);
841 		return 0;
842 	}
843 
844 	md_write_start(mddev, bio);
845 
846 	/*
847 	 * Register the new request and wait if the reconstruction
848 	 * thread has put up a bar for new requests.
849 	 * Continue immediately if no resync is active currently.
850 	 */
851 	wait_barrier(conf);
852 
853 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
854 
855 	r10_bio->master_bio = bio;
856 	r10_bio->sectors = bio->bi_size >> 9;
857 
858 	r10_bio->mddev = mddev;
859 	r10_bio->sector = bio->bi_sector;
860 	r10_bio->state = 0;
861 
862 	if (rw == READ) {
863 		/*
864 		 * read balancing logic:
865 		 */
866 		int disk = read_balance(conf, r10_bio);
867 		int slot = r10_bio->read_slot;
868 		if (disk < 0) {
869 			raid_end_bio_io(r10_bio);
870 			return 0;
871 		}
872 		mirror = conf->mirrors + disk;
873 
874 		read_bio = bio_clone(bio, GFP_NOIO);
875 
876 		r10_bio->devs[slot].bio = read_bio;
877 
878 		read_bio->bi_sector = r10_bio->devs[slot].addr +
879 			mirror->rdev->data_offset;
880 		read_bio->bi_bdev = mirror->rdev->bdev;
881 		read_bio->bi_end_io = raid10_end_read_request;
882 		read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
883 		read_bio->bi_private = r10_bio;
884 
885 		generic_make_request(read_bio);
886 		return 0;
887 	}
888 
889 	/*
890 	 * WRITE:
891 	 */
892 	/* first select target devices under rcu_lock and
893 	 * inc refcount on their rdev.  Record them by setting
894 	 * bios[x] to bio
895 	 */
896 	raid10_find_phys(conf, r10_bio);
897  retry_write:
898 	blocked_rdev = NULL;
899 	rcu_read_lock();
900 	for (i = 0;  i < conf->copies; i++) {
901 		int d = r10_bio->devs[i].devnum;
902 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
903 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
904 			atomic_inc(&rdev->nr_pending);
905 			blocked_rdev = rdev;
906 			break;
907 		}
908 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
909 			atomic_inc(&rdev->nr_pending);
910 			r10_bio->devs[i].bio = bio;
911 		} else {
912 			r10_bio->devs[i].bio = NULL;
913 			set_bit(R10BIO_Degraded, &r10_bio->state);
914 		}
915 	}
916 	rcu_read_unlock();
917 
918 	if (unlikely(blocked_rdev)) {
919 		/* Have to wait for this device to get unblocked, then retry */
920 		int j;
921 		int d;
922 
923 		for (j = 0; j < i; j++)
924 			if (r10_bio->devs[j].bio) {
925 				d = r10_bio->devs[j].devnum;
926 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
927 			}
928 		allow_barrier(conf);
929 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
930 		wait_barrier(conf);
931 		goto retry_write;
932 	}
933 
934 	atomic_set(&r10_bio->remaining, 0);
935 
936 	bio_list_init(&bl);
937 	for (i = 0; i < conf->copies; i++) {
938 		struct bio *mbio;
939 		int d = r10_bio->devs[i].devnum;
940 		if (!r10_bio->devs[i].bio)
941 			continue;
942 
943 		mbio = bio_clone(bio, GFP_NOIO);
944 		r10_bio->devs[i].bio = mbio;
945 
946 		mbio->bi_sector	= r10_bio->devs[i].addr+
947 			conf->mirrors[d].rdev->data_offset;
948 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
949 		mbio->bi_end_io	= raid10_end_write_request;
950 		mbio->bi_rw = WRITE | (do_sync << BIO_RW_SYNCIO);
951 		mbio->bi_private = r10_bio;
952 
953 		atomic_inc(&r10_bio->remaining);
954 		bio_list_add(&bl, mbio);
955 	}
956 
957 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
958 		/* the array is dead */
959 		md_write_end(mddev);
960 		raid_end_bio_io(r10_bio);
961 		return 0;
962 	}
963 
964 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
965 	spin_lock_irqsave(&conf->device_lock, flags);
966 	bio_list_merge(&conf->pending_bio_list, &bl);
967 	blk_plug_device(mddev->queue);
968 	spin_unlock_irqrestore(&conf->device_lock, flags);
969 
970 	/* In case raid10d snuck in to freeze_array */
971 	wake_up(&conf->wait_barrier);
972 
973 	if (do_sync)
974 		md_wakeup_thread(mddev->thread);
975 
976 	return 0;
977 }
978 
979 static void status(struct seq_file *seq, mddev_t *mddev)
980 {
981 	conf_t *conf = mddev->private;
982 	int i;
983 
984 	if (conf->near_copies < conf->raid_disks)
985 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
986 	if (conf->near_copies > 1)
987 		seq_printf(seq, " %d near-copies", conf->near_copies);
988 	if (conf->far_copies > 1) {
989 		if (conf->far_offset)
990 			seq_printf(seq, " %d offset-copies", conf->far_copies);
991 		else
992 			seq_printf(seq, " %d far-copies", conf->far_copies);
993 	}
994 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
995 					conf->raid_disks - mddev->degraded);
996 	for (i = 0; i < conf->raid_disks; i++)
997 		seq_printf(seq, "%s",
998 			      conf->mirrors[i].rdev &&
999 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1000 	seq_printf(seq, "]");
1001 }
1002 
1003 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1004 {
1005 	char b[BDEVNAME_SIZE];
1006 	conf_t *conf = mddev->private;
1007 
1008 	/*
1009 	 * If it is not operational, then we have already marked it as dead
1010 	 * else if it is the last working disks, ignore the error, let the
1011 	 * next level up know.
1012 	 * else mark the drive as failed
1013 	 */
1014 	if (test_bit(In_sync, &rdev->flags)
1015 	    && conf->raid_disks-mddev->degraded == 1)
1016 		/*
1017 		 * Don't fail the drive, just return an IO error.
1018 		 * The test should really be more sophisticated than
1019 		 * "working_disks == 1", but it isn't critical, and
1020 		 * can wait until we do more sophisticated "is the drive
1021 		 * really dead" tests...
1022 		 */
1023 		return;
1024 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1025 		unsigned long flags;
1026 		spin_lock_irqsave(&conf->device_lock, flags);
1027 		mddev->degraded++;
1028 		spin_unlock_irqrestore(&conf->device_lock, flags);
1029 		/*
1030 		 * if recovery is running, make sure it aborts.
1031 		 */
1032 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1033 	}
1034 	set_bit(Faulty, &rdev->flags);
1035 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1036 	printk(KERN_ALERT "md/raid10:%s: Disk failure on %s, disabling device.\n"
1037 	       KERN_ALERT "md/raid10:%s: Operation continuing on %d devices.\n",
1038 	       mdname(mddev), bdevname(rdev->bdev, b),
1039 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1040 }
1041 
1042 static void print_conf(conf_t *conf)
1043 {
1044 	int i;
1045 	mirror_info_t *tmp;
1046 
1047 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1048 	if (!conf) {
1049 		printk(KERN_DEBUG "(!conf)\n");
1050 		return;
1051 	}
1052 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1053 		conf->raid_disks);
1054 
1055 	for (i = 0; i < conf->raid_disks; i++) {
1056 		char b[BDEVNAME_SIZE];
1057 		tmp = conf->mirrors + i;
1058 		if (tmp->rdev)
1059 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1060 				i, !test_bit(In_sync, &tmp->rdev->flags),
1061 			        !test_bit(Faulty, &tmp->rdev->flags),
1062 				bdevname(tmp->rdev->bdev,b));
1063 	}
1064 }
1065 
1066 static void close_sync(conf_t *conf)
1067 {
1068 	wait_barrier(conf);
1069 	allow_barrier(conf);
1070 
1071 	mempool_destroy(conf->r10buf_pool);
1072 	conf->r10buf_pool = NULL;
1073 }
1074 
1075 /* check if there are enough drives for
1076  * every block to appear on atleast one
1077  */
1078 static int enough(conf_t *conf)
1079 {
1080 	int first = 0;
1081 
1082 	do {
1083 		int n = conf->copies;
1084 		int cnt = 0;
1085 		while (n--) {
1086 			if (conf->mirrors[first].rdev)
1087 				cnt++;
1088 			first = (first+1) % conf->raid_disks;
1089 		}
1090 		if (cnt == 0)
1091 			return 0;
1092 	} while (first != 0);
1093 	return 1;
1094 }
1095 
1096 static int raid10_spare_active(mddev_t *mddev)
1097 {
1098 	int i;
1099 	conf_t *conf = mddev->private;
1100 	mirror_info_t *tmp;
1101 
1102 	/*
1103 	 * Find all non-in_sync disks within the RAID10 configuration
1104 	 * and mark them in_sync
1105 	 */
1106 	for (i = 0; i < conf->raid_disks; i++) {
1107 		tmp = conf->mirrors + i;
1108 		if (tmp->rdev
1109 		    && !test_bit(Faulty, &tmp->rdev->flags)
1110 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1111 			unsigned long flags;
1112 			spin_lock_irqsave(&conf->device_lock, flags);
1113 			mddev->degraded--;
1114 			spin_unlock_irqrestore(&conf->device_lock, flags);
1115 		}
1116 	}
1117 
1118 	print_conf(conf);
1119 	return 0;
1120 }
1121 
1122 
1123 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1124 {
1125 	conf_t *conf = mddev->private;
1126 	int err = -EEXIST;
1127 	int mirror;
1128 	mirror_info_t *p;
1129 	int first = 0;
1130 	int last = conf->raid_disks - 1;
1131 
1132 	if (mddev->recovery_cp < MaxSector)
1133 		/* only hot-add to in-sync arrays, as recovery is
1134 		 * very different from resync
1135 		 */
1136 		return -EBUSY;
1137 	if (!enough(conf))
1138 		return -EINVAL;
1139 
1140 	if (rdev->raid_disk >= 0)
1141 		first = last = rdev->raid_disk;
1142 
1143 	if (rdev->saved_raid_disk >= 0 &&
1144 	    rdev->saved_raid_disk >= first &&
1145 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1146 		mirror = rdev->saved_raid_disk;
1147 	else
1148 		mirror = first;
1149 	for ( ; mirror <= last ; mirror++)
1150 		if ( !(p=conf->mirrors+mirror)->rdev) {
1151 
1152 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1153 					  rdev->data_offset << 9);
1154 			/* as we don't honour merge_bvec_fn, we must
1155 			 * never risk violating it, so limit
1156 			 * ->max_segments to one lying with a single
1157 			 * page, as a one page request is never in
1158 			 * violation.
1159 			 */
1160 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1161 				blk_queue_max_segments(mddev->queue, 1);
1162 				blk_queue_segment_boundary(mddev->queue,
1163 							   PAGE_CACHE_SIZE - 1);
1164 			}
1165 
1166 			p->head_position = 0;
1167 			rdev->raid_disk = mirror;
1168 			err = 0;
1169 			if (rdev->saved_raid_disk != mirror)
1170 				conf->fullsync = 1;
1171 			rcu_assign_pointer(p->rdev, rdev);
1172 			break;
1173 		}
1174 
1175 	md_integrity_add_rdev(rdev, mddev);
1176 	print_conf(conf);
1177 	return err;
1178 }
1179 
1180 static int raid10_remove_disk(mddev_t *mddev, int number)
1181 {
1182 	conf_t *conf = mddev->private;
1183 	int err = 0;
1184 	mdk_rdev_t *rdev;
1185 	mirror_info_t *p = conf->mirrors+ number;
1186 
1187 	print_conf(conf);
1188 	rdev = p->rdev;
1189 	if (rdev) {
1190 		if (test_bit(In_sync, &rdev->flags) ||
1191 		    atomic_read(&rdev->nr_pending)) {
1192 			err = -EBUSY;
1193 			goto abort;
1194 		}
1195 		/* Only remove faulty devices in recovery
1196 		 * is not possible.
1197 		 */
1198 		if (!test_bit(Faulty, &rdev->flags) &&
1199 		    enough(conf)) {
1200 			err = -EBUSY;
1201 			goto abort;
1202 		}
1203 		p->rdev = NULL;
1204 		synchronize_rcu();
1205 		if (atomic_read(&rdev->nr_pending)) {
1206 			/* lost the race, try later */
1207 			err = -EBUSY;
1208 			p->rdev = rdev;
1209 			goto abort;
1210 		}
1211 		md_integrity_register(mddev);
1212 	}
1213 abort:
1214 
1215 	print_conf(conf);
1216 	return err;
1217 }
1218 
1219 
1220 static void end_sync_read(struct bio *bio, int error)
1221 {
1222 	r10bio_t *r10_bio = bio->bi_private;
1223 	conf_t *conf = r10_bio->mddev->private;
1224 	int i,d;
1225 
1226 	for (i=0; i<conf->copies; i++)
1227 		if (r10_bio->devs[i].bio == bio)
1228 			break;
1229 	BUG_ON(i == conf->copies);
1230 	update_head_pos(i, r10_bio);
1231 	d = r10_bio->devs[i].devnum;
1232 
1233 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1234 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1235 	else {
1236 		atomic_add(r10_bio->sectors,
1237 			   &conf->mirrors[d].rdev->corrected_errors);
1238 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1239 			md_error(r10_bio->mddev,
1240 				 conf->mirrors[d].rdev);
1241 	}
1242 
1243 	/* for reconstruct, we always reschedule after a read.
1244 	 * for resync, only after all reads
1245 	 */
1246 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1247 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1248 	    atomic_dec_and_test(&r10_bio->remaining)) {
1249 		/* we have read all the blocks,
1250 		 * do the comparison in process context in raid10d
1251 		 */
1252 		reschedule_retry(r10_bio);
1253 	}
1254 }
1255 
1256 static void end_sync_write(struct bio *bio, int error)
1257 {
1258 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1259 	r10bio_t *r10_bio = bio->bi_private;
1260 	mddev_t *mddev = r10_bio->mddev;
1261 	conf_t *conf = mddev->private;
1262 	int i,d;
1263 
1264 	for (i = 0; i < conf->copies; i++)
1265 		if (r10_bio->devs[i].bio == bio)
1266 			break;
1267 	d = r10_bio->devs[i].devnum;
1268 
1269 	if (!uptodate)
1270 		md_error(mddev, conf->mirrors[d].rdev);
1271 
1272 	update_head_pos(i, r10_bio);
1273 
1274 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1275 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1276 		if (r10_bio->master_bio == NULL) {
1277 			/* the primary of several recovery bios */
1278 			sector_t s = r10_bio->sectors;
1279 			put_buf(r10_bio);
1280 			md_done_sync(mddev, s, 1);
1281 			break;
1282 		} else {
1283 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1284 			put_buf(r10_bio);
1285 			r10_bio = r10_bio2;
1286 		}
1287 	}
1288 }
1289 
1290 /*
1291  * Note: sync and recover and handled very differently for raid10
1292  * This code is for resync.
1293  * For resync, we read through virtual addresses and read all blocks.
1294  * If there is any error, we schedule a write.  The lowest numbered
1295  * drive is authoritative.
1296  * However requests come for physical address, so we need to map.
1297  * For every physical address there are raid_disks/copies virtual addresses,
1298  * which is always are least one, but is not necessarly an integer.
1299  * This means that a physical address can span multiple chunks, so we may
1300  * have to submit multiple io requests for a single sync request.
1301  */
1302 /*
1303  * We check if all blocks are in-sync and only write to blocks that
1304  * aren't in sync
1305  */
1306 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1307 {
1308 	conf_t *conf = mddev->private;
1309 	int i, first;
1310 	struct bio *tbio, *fbio;
1311 
1312 	atomic_set(&r10_bio->remaining, 1);
1313 
1314 	/* find the first device with a block */
1315 	for (i=0; i<conf->copies; i++)
1316 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1317 			break;
1318 
1319 	if (i == conf->copies)
1320 		goto done;
1321 
1322 	first = i;
1323 	fbio = r10_bio->devs[i].bio;
1324 
1325 	/* now find blocks with errors */
1326 	for (i=0 ; i < conf->copies ; i++) {
1327 		int  j, d;
1328 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1329 
1330 		tbio = r10_bio->devs[i].bio;
1331 
1332 		if (tbio->bi_end_io != end_sync_read)
1333 			continue;
1334 		if (i == first)
1335 			continue;
1336 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1337 			/* We know that the bi_io_vec layout is the same for
1338 			 * both 'first' and 'i', so we just compare them.
1339 			 * All vec entries are PAGE_SIZE;
1340 			 */
1341 			for (j = 0; j < vcnt; j++)
1342 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1343 					   page_address(tbio->bi_io_vec[j].bv_page),
1344 					   PAGE_SIZE))
1345 					break;
1346 			if (j == vcnt)
1347 				continue;
1348 			mddev->resync_mismatches += r10_bio->sectors;
1349 		}
1350 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1351 			/* Don't fix anything. */
1352 			continue;
1353 		/* Ok, we need to write this bio
1354 		 * First we need to fixup bv_offset, bv_len and
1355 		 * bi_vecs, as the read request might have corrupted these
1356 		 */
1357 		tbio->bi_vcnt = vcnt;
1358 		tbio->bi_size = r10_bio->sectors << 9;
1359 		tbio->bi_idx = 0;
1360 		tbio->bi_phys_segments = 0;
1361 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1362 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1363 		tbio->bi_next = NULL;
1364 		tbio->bi_rw = WRITE;
1365 		tbio->bi_private = r10_bio;
1366 		tbio->bi_sector = r10_bio->devs[i].addr;
1367 
1368 		for (j=0; j < vcnt ; j++) {
1369 			tbio->bi_io_vec[j].bv_offset = 0;
1370 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1371 
1372 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1373 			       page_address(fbio->bi_io_vec[j].bv_page),
1374 			       PAGE_SIZE);
1375 		}
1376 		tbio->bi_end_io = end_sync_write;
1377 
1378 		d = r10_bio->devs[i].devnum;
1379 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1380 		atomic_inc(&r10_bio->remaining);
1381 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1382 
1383 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1384 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1385 		generic_make_request(tbio);
1386 	}
1387 
1388 done:
1389 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1390 		md_done_sync(mddev, r10_bio->sectors, 1);
1391 		put_buf(r10_bio);
1392 	}
1393 }
1394 
1395 /*
1396  * Now for the recovery code.
1397  * Recovery happens across physical sectors.
1398  * We recover all non-is_sync drives by finding the virtual address of
1399  * each, and then choose a working drive that also has that virt address.
1400  * There is a separate r10_bio for each non-in_sync drive.
1401  * Only the first two slots are in use. The first for reading,
1402  * The second for writing.
1403  *
1404  */
1405 
1406 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1407 {
1408 	conf_t *conf = mddev->private;
1409 	int i, d;
1410 	struct bio *bio, *wbio;
1411 
1412 
1413 	/* move the pages across to the second bio
1414 	 * and submit the write request
1415 	 */
1416 	bio = r10_bio->devs[0].bio;
1417 	wbio = r10_bio->devs[1].bio;
1418 	for (i=0; i < wbio->bi_vcnt; i++) {
1419 		struct page *p = bio->bi_io_vec[i].bv_page;
1420 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1421 		wbio->bi_io_vec[i].bv_page = p;
1422 	}
1423 	d = r10_bio->devs[1].devnum;
1424 
1425 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1426 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1427 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1428 		generic_make_request(wbio);
1429 	else
1430 		bio_endio(wbio, -EIO);
1431 }
1432 
1433 
1434 /*
1435  * Used by fix_read_error() to decay the per rdev read_errors.
1436  * We halve the read error count for every hour that has elapsed
1437  * since the last recorded read error.
1438  *
1439  */
1440 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1441 {
1442 	struct timespec cur_time_mon;
1443 	unsigned long hours_since_last;
1444 	unsigned int read_errors = atomic_read(&rdev->read_errors);
1445 
1446 	ktime_get_ts(&cur_time_mon);
1447 
1448 	if (rdev->last_read_error.tv_sec == 0 &&
1449 	    rdev->last_read_error.tv_nsec == 0) {
1450 		/* first time we've seen a read error */
1451 		rdev->last_read_error = cur_time_mon;
1452 		return;
1453 	}
1454 
1455 	hours_since_last = (cur_time_mon.tv_sec -
1456 			    rdev->last_read_error.tv_sec) / 3600;
1457 
1458 	rdev->last_read_error = cur_time_mon;
1459 
1460 	/*
1461 	 * if hours_since_last is > the number of bits in read_errors
1462 	 * just set read errors to 0. We do this to avoid
1463 	 * overflowing the shift of read_errors by hours_since_last.
1464 	 */
1465 	if (hours_since_last >= 8 * sizeof(read_errors))
1466 		atomic_set(&rdev->read_errors, 0);
1467 	else
1468 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1469 }
1470 
1471 /*
1472  * This is a kernel thread which:
1473  *
1474  *	1.	Retries failed read operations on working mirrors.
1475  *	2.	Updates the raid superblock when problems encounter.
1476  *	3.	Performs writes following reads for array synchronising.
1477  */
1478 
1479 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1480 {
1481 	int sect = 0; /* Offset from r10_bio->sector */
1482 	int sectors = r10_bio->sectors;
1483 	mdk_rdev_t*rdev;
1484 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1485 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
1486 
1487 	rcu_read_lock();
1488 	rdev = rcu_dereference(conf->mirrors[d].rdev);
1489 	if (rdev) { /* If rdev is not NULL */
1490 		char b[BDEVNAME_SIZE];
1491 		int cur_read_error_count = 0;
1492 
1493 		bdevname(rdev->bdev, b);
1494 
1495 		if (test_bit(Faulty, &rdev->flags)) {
1496 			rcu_read_unlock();
1497 			/* drive has already been failed, just ignore any
1498 			   more fix_read_error() attempts */
1499 			return;
1500 		}
1501 
1502 		check_decay_read_errors(mddev, rdev);
1503 		atomic_inc(&rdev->read_errors);
1504 		cur_read_error_count = atomic_read(&rdev->read_errors);
1505 		if (cur_read_error_count > max_read_errors) {
1506 			rcu_read_unlock();
1507 			printk(KERN_NOTICE
1508 			       "md/raid10:%s: %s: Raid device exceeded "
1509 			       "read_error threshold "
1510 			       "[cur %d:max %d]\n",
1511 			       mdname(mddev),
1512 			       b, cur_read_error_count, max_read_errors);
1513 			printk(KERN_NOTICE
1514 			       "md/raid10:%s: %s: Failing raid "
1515 			       "device\n", mdname(mddev), b);
1516 			md_error(mddev, conf->mirrors[d].rdev);
1517 			return;
1518 		}
1519 	}
1520 	rcu_read_unlock();
1521 
1522 	while(sectors) {
1523 		int s = sectors;
1524 		int sl = r10_bio->read_slot;
1525 		int success = 0;
1526 		int start;
1527 
1528 		if (s > (PAGE_SIZE>>9))
1529 			s = PAGE_SIZE >> 9;
1530 
1531 		rcu_read_lock();
1532 		do {
1533 			d = r10_bio->devs[sl].devnum;
1534 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1535 			if (rdev &&
1536 			    test_bit(In_sync, &rdev->flags)) {
1537 				atomic_inc(&rdev->nr_pending);
1538 				rcu_read_unlock();
1539 				success = sync_page_io(rdev->bdev,
1540 						       r10_bio->devs[sl].addr +
1541 						       sect + rdev->data_offset,
1542 						       s<<9,
1543 						       conf->tmppage, READ);
1544 				rdev_dec_pending(rdev, mddev);
1545 				rcu_read_lock();
1546 				if (success)
1547 					break;
1548 			}
1549 			sl++;
1550 			if (sl == conf->copies)
1551 				sl = 0;
1552 		} while (!success && sl != r10_bio->read_slot);
1553 		rcu_read_unlock();
1554 
1555 		if (!success) {
1556 			/* Cannot read from anywhere -- bye bye array */
1557 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1558 			md_error(mddev, conf->mirrors[dn].rdev);
1559 			break;
1560 		}
1561 
1562 		start = sl;
1563 		/* write it back and re-read */
1564 		rcu_read_lock();
1565 		while (sl != r10_bio->read_slot) {
1566 			char b[BDEVNAME_SIZE];
1567 
1568 			if (sl==0)
1569 				sl = conf->copies;
1570 			sl--;
1571 			d = r10_bio->devs[sl].devnum;
1572 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1573 			if (rdev &&
1574 			    test_bit(In_sync, &rdev->flags)) {
1575 				atomic_inc(&rdev->nr_pending);
1576 				rcu_read_unlock();
1577 				atomic_add(s, &rdev->corrected_errors);
1578 				if (sync_page_io(rdev->bdev,
1579 						 r10_bio->devs[sl].addr +
1580 						 sect + rdev->data_offset,
1581 						 s<<9, conf->tmppage, WRITE)
1582 				    == 0) {
1583 					/* Well, this device is dead */
1584 					printk(KERN_NOTICE
1585 					       "md/raid10:%s: read correction "
1586 					       "write failed"
1587 					       " (%d sectors at %llu on %s)\n",
1588 					       mdname(mddev), s,
1589 					       (unsigned long long)(sect+
1590 					       rdev->data_offset),
1591 					       bdevname(rdev->bdev, b));
1592 					printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1593 					       "drive\n",
1594 					       mdname(mddev),
1595 					       bdevname(rdev->bdev, b));
1596 					md_error(mddev, rdev);
1597 				}
1598 				rdev_dec_pending(rdev, mddev);
1599 				rcu_read_lock();
1600 			}
1601 		}
1602 		sl = start;
1603 		while (sl != r10_bio->read_slot) {
1604 
1605 			if (sl==0)
1606 				sl = conf->copies;
1607 			sl--;
1608 			d = r10_bio->devs[sl].devnum;
1609 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1610 			if (rdev &&
1611 			    test_bit(In_sync, &rdev->flags)) {
1612 				char b[BDEVNAME_SIZE];
1613 				atomic_inc(&rdev->nr_pending);
1614 				rcu_read_unlock();
1615 				if (sync_page_io(rdev->bdev,
1616 						 r10_bio->devs[sl].addr +
1617 						 sect + rdev->data_offset,
1618 						 s<<9, conf->tmppage,
1619 						 READ) == 0) {
1620 					/* Well, this device is dead */
1621 					printk(KERN_NOTICE
1622 					       "md/raid10:%s: unable to read back "
1623 					       "corrected sectors"
1624 					       " (%d sectors at %llu on %s)\n",
1625 					       mdname(mddev), s,
1626 					       (unsigned long long)(sect+
1627 						    rdev->data_offset),
1628 					       bdevname(rdev->bdev, b));
1629 					printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1630 					       mdname(mddev),
1631 					       bdevname(rdev->bdev, b));
1632 
1633 					md_error(mddev, rdev);
1634 				} else {
1635 					printk(KERN_INFO
1636 					       "md/raid10:%s: read error corrected"
1637 					       " (%d sectors at %llu on %s)\n",
1638 					       mdname(mddev), s,
1639 					       (unsigned long long)(sect+
1640 					            rdev->data_offset),
1641 					       bdevname(rdev->bdev, b));
1642 				}
1643 
1644 				rdev_dec_pending(rdev, mddev);
1645 				rcu_read_lock();
1646 			}
1647 		}
1648 		rcu_read_unlock();
1649 
1650 		sectors -= s;
1651 		sect += s;
1652 	}
1653 }
1654 
1655 static void raid10d(mddev_t *mddev)
1656 {
1657 	r10bio_t *r10_bio;
1658 	struct bio *bio;
1659 	unsigned long flags;
1660 	conf_t *conf = mddev->private;
1661 	struct list_head *head = &conf->retry_list;
1662 	int unplug=0;
1663 	mdk_rdev_t *rdev;
1664 
1665 	md_check_recovery(mddev);
1666 
1667 	for (;;) {
1668 		char b[BDEVNAME_SIZE];
1669 
1670 		unplug += flush_pending_writes(conf);
1671 
1672 		spin_lock_irqsave(&conf->device_lock, flags);
1673 		if (list_empty(head)) {
1674 			spin_unlock_irqrestore(&conf->device_lock, flags);
1675 			break;
1676 		}
1677 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1678 		list_del(head->prev);
1679 		conf->nr_queued--;
1680 		spin_unlock_irqrestore(&conf->device_lock, flags);
1681 
1682 		mddev = r10_bio->mddev;
1683 		conf = mddev->private;
1684 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1685 			sync_request_write(mddev, r10_bio);
1686 			unplug = 1;
1687 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1688 			recovery_request_write(mddev, r10_bio);
1689 			unplug = 1;
1690 		} else {
1691 			int mirror;
1692 			/* we got a read error. Maybe the drive is bad.  Maybe just
1693 			 * the block and we can fix it.
1694 			 * We freeze all other IO, and try reading the block from
1695 			 * other devices.  When we find one, we re-write
1696 			 * and check it that fixes the read error.
1697 			 * This is all done synchronously while the array is
1698 			 * frozen.
1699 			 */
1700 			if (mddev->ro == 0) {
1701 				freeze_array(conf);
1702 				fix_read_error(conf, mddev, r10_bio);
1703 				unfreeze_array(conf);
1704 			}
1705 
1706 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1707 			r10_bio->devs[r10_bio->read_slot].bio =
1708 				mddev->ro ? IO_BLOCKED : NULL;
1709 			mirror = read_balance(conf, r10_bio);
1710 			if (mirror == -1) {
1711 				printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1712 				       " read error for block %llu\n",
1713 				       mdname(mddev),
1714 				       bdevname(bio->bi_bdev,b),
1715 				       (unsigned long long)r10_bio->sector);
1716 				raid_end_bio_io(r10_bio);
1717 				bio_put(bio);
1718 			} else {
1719 				const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO);
1720 				bio_put(bio);
1721 				rdev = conf->mirrors[mirror].rdev;
1722 				if (printk_ratelimit())
1723 					printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1724 					       " another mirror\n",
1725 					       mdname(mddev),
1726 					       bdevname(rdev->bdev,b),
1727 					       (unsigned long long)r10_bio->sector);
1728 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1729 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1730 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1731 					+ rdev->data_offset;
1732 				bio->bi_bdev = rdev->bdev;
1733 				bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1734 				bio->bi_private = r10_bio;
1735 				bio->bi_end_io = raid10_end_read_request;
1736 				unplug = 1;
1737 				generic_make_request(bio);
1738 			}
1739 		}
1740 		cond_resched();
1741 	}
1742 	if (unplug)
1743 		unplug_slaves(mddev);
1744 }
1745 
1746 
1747 static int init_resync(conf_t *conf)
1748 {
1749 	int buffs;
1750 
1751 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1752 	BUG_ON(conf->r10buf_pool);
1753 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1754 	if (!conf->r10buf_pool)
1755 		return -ENOMEM;
1756 	conf->next_resync = 0;
1757 	return 0;
1758 }
1759 
1760 /*
1761  * perform a "sync" on one "block"
1762  *
1763  * We need to make sure that no normal I/O request - particularly write
1764  * requests - conflict with active sync requests.
1765  *
1766  * This is achieved by tracking pending requests and a 'barrier' concept
1767  * that can be installed to exclude normal IO requests.
1768  *
1769  * Resync and recovery are handled very differently.
1770  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1771  *
1772  * For resync, we iterate over virtual addresses, read all copies,
1773  * and update if there are differences.  If only one copy is live,
1774  * skip it.
1775  * For recovery, we iterate over physical addresses, read a good
1776  * value for each non-in_sync drive, and over-write.
1777  *
1778  * So, for recovery we may have several outstanding complex requests for a
1779  * given address, one for each out-of-sync device.  We model this by allocating
1780  * a number of r10_bio structures, one for each out-of-sync device.
1781  * As we setup these structures, we collect all bio's together into a list
1782  * which we then process collectively to add pages, and then process again
1783  * to pass to generic_make_request.
1784  *
1785  * The r10_bio structures are linked using a borrowed master_bio pointer.
1786  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1787  * has its remaining count decremented to 0, the whole complex operation
1788  * is complete.
1789  *
1790  */
1791 
1792 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1793 {
1794 	conf_t *conf = mddev->private;
1795 	r10bio_t *r10_bio;
1796 	struct bio *biolist = NULL, *bio;
1797 	sector_t max_sector, nr_sectors;
1798 	int disk;
1799 	int i;
1800 	int max_sync;
1801 	int sync_blocks;
1802 
1803 	sector_t sectors_skipped = 0;
1804 	int chunks_skipped = 0;
1805 
1806 	if (!conf->r10buf_pool)
1807 		if (init_resync(conf))
1808 			return 0;
1809 
1810  skipped:
1811 	max_sector = mddev->dev_sectors;
1812 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1813 		max_sector = mddev->resync_max_sectors;
1814 	if (sector_nr >= max_sector) {
1815 		/* If we aborted, we need to abort the
1816 		 * sync on the 'current' bitmap chucks (there can
1817 		 * be several when recovering multiple devices).
1818 		 * as we may have started syncing it but not finished.
1819 		 * We can find the current address in
1820 		 * mddev->curr_resync, but for recovery,
1821 		 * we need to convert that to several
1822 		 * virtual addresses.
1823 		 */
1824 		if (mddev->curr_resync < max_sector) { /* aborted */
1825 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1826 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1827 						&sync_blocks, 1);
1828 			else for (i=0; i<conf->raid_disks; i++) {
1829 				sector_t sect =
1830 					raid10_find_virt(conf, mddev->curr_resync, i);
1831 				bitmap_end_sync(mddev->bitmap, sect,
1832 						&sync_blocks, 1);
1833 			}
1834 		} else /* completed sync */
1835 			conf->fullsync = 0;
1836 
1837 		bitmap_close_sync(mddev->bitmap);
1838 		close_sync(conf);
1839 		*skipped = 1;
1840 		return sectors_skipped;
1841 	}
1842 	if (chunks_skipped >= conf->raid_disks) {
1843 		/* if there has been nothing to do on any drive,
1844 		 * then there is nothing to do at all..
1845 		 */
1846 		*skipped = 1;
1847 		return (max_sector - sector_nr) + sectors_skipped;
1848 	}
1849 
1850 	if (max_sector > mddev->resync_max)
1851 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1852 
1853 	/* make sure whole request will fit in a chunk - if chunks
1854 	 * are meaningful
1855 	 */
1856 	if (conf->near_copies < conf->raid_disks &&
1857 	    max_sector > (sector_nr | conf->chunk_mask))
1858 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1859 	/*
1860 	 * If there is non-resync activity waiting for us then
1861 	 * put in a delay to throttle resync.
1862 	 */
1863 	if (!go_faster && conf->nr_waiting)
1864 		msleep_interruptible(1000);
1865 
1866 	/* Again, very different code for resync and recovery.
1867 	 * Both must result in an r10bio with a list of bios that
1868 	 * have bi_end_io, bi_sector, bi_bdev set,
1869 	 * and bi_private set to the r10bio.
1870 	 * For recovery, we may actually create several r10bios
1871 	 * with 2 bios in each, that correspond to the bios in the main one.
1872 	 * In this case, the subordinate r10bios link back through a
1873 	 * borrowed master_bio pointer, and the counter in the master
1874 	 * includes a ref from each subordinate.
1875 	 */
1876 	/* First, we decide what to do and set ->bi_end_io
1877 	 * To end_sync_read if we want to read, and
1878 	 * end_sync_write if we will want to write.
1879 	 */
1880 
1881 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1882 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1883 		/* recovery... the complicated one */
1884 		int j, k;
1885 		r10_bio = NULL;
1886 
1887 		for (i=0 ; i<conf->raid_disks; i++)
1888 			if (conf->mirrors[i].rdev &&
1889 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1890 				int still_degraded = 0;
1891 				/* want to reconstruct this device */
1892 				r10bio_t *rb2 = r10_bio;
1893 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1894 				int must_sync;
1895 				/* Unless we are doing a full sync, we only need
1896 				 * to recover the block if it is set in the bitmap
1897 				 */
1898 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1899 							      &sync_blocks, 1);
1900 				if (sync_blocks < max_sync)
1901 					max_sync = sync_blocks;
1902 				if (!must_sync &&
1903 				    !conf->fullsync) {
1904 					/* yep, skip the sync_blocks here, but don't assume
1905 					 * that there will never be anything to do here
1906 					 */
1907 					chunks_skipped = -1;
1908 					continue;
1909 				}
1910 
1911 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1912 				raise_barrier(conf, rb2 != NULL);
1913 				atomic_set(&r10_bio->remaining, 0);
1914 
1915 				r10_bio->master_bio = (struct bio*)rb2;
1916 				if (rb2)
1917 					atomic_inc(&rb2->remaining);
1918 				r10_bio->mddev = mddev;
1919 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1920 				r10_bio->sector = sect;
1921 
1922 				raid10_find_phys(conf, r10_bio);
1923 
1924 				/* Need to check if the array will still be
1925 				 * degraded
1926 				 */
1927 				for (j=0; j<conf->raid_disks; j++)
1928 					if (conf->mirrors[j].rdev == NULL ||
1929 					    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1930 						still_degraded = 1;
1931 						break;
1932 					}
1933 
1934 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1935 							      &sync_blocks, still_degraded);
1936 
1937 				for (j=0; j<conf->copies;j++) {
1938 					int d = r10_bio->devs[j].devnum;
1939 					if (conf->mirrors[d].rdev &&
1940 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1941 						/* This is where we read from */
1942 						bio = r10_bio->devs[0].bio;
1943 						bio->bi_next = biolist;
1944 						biolist = bio;
1945 						bio->bi_private = r10_bio;
1946 						bio->bi_end_io = end_sync_read;
1947 						bio->bi_rw = READ;
1948 						bio->bi_sector = r10_bio->devs[j].addr +
1949 							conf->mirrors[d].rdev->data_offset;
1950 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1951 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1952 						atomic_inc(&r10_bio->remaining);
1953 						/* and we write to 'i' */
1954 
1955 						for (k=0; k<conf->copies; k++)
1956 							if (r10_bio->devs[k].devnum == i)
1957 								break;
1958 						BUG_ON(k == conf->copies);
1959 						bio = r10_bio->devs[1].bio;
1960 						bio->bi_next = biolist;
1961 						biolist = bio;
1962 						bio->bi_private = r10_bio;
1963 						bio->bi_end_io = end_sync_write;
1964 						bio->bi_rw = WRITE;
1965 						bio->bi_sector = r10_bio->devs[k].addr +
1966 							conf->mirrors[i].rdev->data_offset;
1967 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1968 
1969 						r10_bio->devs[0].devnum = d;
1970 						r10_bio->devs[1].devnum = i;
1971 
1972 						break;
1973 					}
1974 				}
1975 				if (j == conf->copies) {
1976 					/* Cannot recover, so abort the recovery */
1977 					put_buf(r10_bio);
1978 					if (rb2)
1979 						atomic_dec(&rb2->remaining);
1980 					r10_bio = rb2;
1981 					if (!test_and_set_bit(MD_RECOVERY_INTR,
1982 							      &mddev->recovery))
1983 						printk(KERN_INFO "md/raid10:%s: insufficient "
1984 						       "working devices for recovery.\n",
1985 						       mdname(mddev));
1986 					break;
1987 				}
1988 			}
1989 		if (biolist == NULL) {
1990 			while (r10_bio) {
1991 				r10bio_t *rb2 = r10_bio;
1992 				r10_bio = (r10bio_t*) rb2->master_bio;
1993 				rb2->master_bio = NULL;
1994 				put_buf(rb2);
1995 			}
1996 			goto giveup;
1997 		}
1998 	} else {
1999 		/* resync. Schedule a read for every block at this virt offset */
2000 		int count = 0;
2001 
2002 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2003 
2004 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2005 				       &sync_blocks, mddev->degraded) &&
2006 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2007 			/* We can skip this block */
2008 			*skipped = 1;
2009 			return sync_blocks + sectors_skipped;
2010 		}
2011 		if (sync_blocks < max_sync)
2012 			max_sync = sync_blocks;
2013 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2014 
2015 		r10_bio->mddev = mddev;
2016 		atomic_set(&r10_bio->remaining, 0);
2017 		raise_barrier(conf, 0);
2018 		conf->next_resync = sector_nr;
2019 
2020 		r10_bio->master_bio = NULL;
2021 		r10_bio->sector = sector_nr;
2022 		set_bit(R10BIO_IsSync, &r10_bio->state);
2023 		raid10_find_phys(conf, r10_bio);
2024 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2025 
2026 		for (i=0; i<conf->copies; i++) {
2027 			int d = r10_bio->devs[i].devnum;
2028 			bio = r10_bio->devs[i].bio;
2029 			bio->bi_end_io = NULL;
2030 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
2031 			if (conf->mirrors[d].rdev == NULL ||
2032 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2033 				continue;
2034 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2035 			atomic_inc(&r10_bio->remaining);
2036 			bio->bi_next = biolist;
2037 			biolist = bio;
2038 			bio->bi_private = r10_bio;
2039 			bio->bi_end_io = end_sync_read;
2040 			bio->bi_rw = READ;
2041 			bio->bi_sector = r10_bio->devs[i].addr +
2042 				conf->mirrors[d].rdev->data_offset;
2043 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2044 			count++;
2045 		}
2046 
2047 		if (count < 2) {
2048 			for (i=0; i<conf->copies; i++) {
2049 				int d = r10_bio->devs[i].devnum;
2050 				if (r10_bio->devs[i].bio->bi_end_io)
2051 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2052 			}
2053 			put_buf(r10_bio);
2054 			biolist = NULL;
2055 			goto giveup;
2056 		}
2057 	}
2058 
2059 	for (bio = biolist; bio ; bio=bio->bi_next) {
2060 
2061 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2062 		if (bio->bi_end_io)
2063 			bio->bi_flags |= 1 << BIO_UPTODATE;
2064 		bio->bi_vcnt = 0;
2065 		bio->bi_idx = 0;
2066 		bio->bi_phys_segments = 0;
2067 		bio->bi_size = 0;
2068 	}
2069 
2070 	nr_sectors = 0;
2071 	if (sector_nr + max_sync < max_sector)
2072 		max_sector = sector_nr + max_sync;
2073 	do {
2074 		struct page *page;
2075 		int len = PAGE_SIZE;
2076 		disk = 0;
2077 		if (sector_nr + (len>>9) > max_sector)
2078 			len = (max_sector - sector_nr) << 9;
2079 		if (len == 0)
2080 			break;
2081 		for (bio= biolist ; bio ; bio=bio->bi_next) {
2082 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2083 			if (bio_add_page(bio, page, len, 0) == 0) {
2084 				/* stop here */
2085 				struct bio *bio2;
2086 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2087 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2088 					/* remove last page from this bio */
2089 					bio2->bi_vcnt--;
2090 					bio2->bi_size -= len;
2091 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2092 				}
2093 				goto bio_full;
2094 			}
2095 			disk = i;
2096 		}
2097 		nr_sectors += len>>9;
2098 		sector_nr += len>>9;
2099 	} while (biolist->bi_vcnt < RESYNC_PAGES);
2100  bio_full:
2101 	r10_bio->sectors = nr_sectors;
2102 
2103 	while (biolist) {
2104 		bio = biolist;
2105 		biolist = biolist->bi_next;
2106 
2107 		bio->bi_next = NULL;
2108 		r10_bio = bio->bi_private;
2109 		r10_bio->sectors = nr_sectors;
2110 
2111 		if (bio->bi_end_io == end_sync_read) {
2112 			md_sync_acct(bio->bi_bdev, nr_sectors);
2113 			generic_make_request(bio);
2114 		}
2115 	}
2116 
2117 	if (sectors_skipped)
2118 		/* pretend they weren't skipped, it makes
2119 		 * no important difference in this case
2120 		 */
2121 		md_done_sync(mddev, sectors_skipped, 1);
2122 
2123 	return sectors_skipped + nr_sectors;
2124  giveup:
2125 	/* There is nowhere to write, so all non-sync
2126 	 * drives must be failed, so try the next chunk...
2127 	 */
2128 	if (sector_nr + max_sync < max_sector)
2129 		max_sector = sector_nr + max_sync;
2130 
2131 	sectors_skipped += (max_sector - sector_nr);
2132 	chunks_skipped ++;
2133 	sector_nr = max_sector;
2134 	goto skipped;
2135 }
2136 
2137 static sector_t
2138 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2139 {
2140 	sector_t size;
2141 	conf_t *conf = mddev->private;
2142 
2143 	if (!raid_disks)
2144 		raid_disks = conf->raid_disks;
2145 	if (!sectors)
2146 		sectors = conf->dev_sectors;
2147 
2148 	size = sectors >> conf->chunk_shift;
2149 	sector_div(size, conf->far_copies);
2150 	size = size * raid_disks;
2151 	sector_div(size, conf->near_copies);
2152 
2153 	return size << conf->chunk_shift;
2154 }
2155 
2156 
2157 static conf_t *setup_conf(mddev_t *mddev)
2158 {
2159 	conf_t *conf = NULL;
2160 	int nc, fc, fo;
2161 	sector_t stride, size;
2162 	int err = -EINVAL;
2163 
2164 	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2165 	    !is_power_of_2(mddev->new_chunk_sectors)) {
2166 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
2167 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2168 		       mdname(mddev), PAGE_SIZE);
2169 		goto out;
2170 	}
2171 
2172 	nc = mddev->new_layout & 255;
2173 	fc = (mddev->new_layout >> 8) & 255;
2174 	fo = mddev->new_layout & (1<<16);
2175 
2176 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2177 	    (mddev->new_layout >> 17)) {
2178 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2179 		       mdname(mddev), mddev->new_layout);
2180 		goto out;
2181 	}
2182 
2183 	err = -ENOMEM;
2184 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2185 	if (!conf)
2186 		goto out;
2187 
2188 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2189 				GFP_KERNEL);
2190 	if (!conf->mirrors)
2191 		goto out;
2192 
2193 	conf->tmppage = alloc_page(GFP_KERNEL);
2194 	if (!conf->tmppage)
2195 		goto out;
2196 
2197 
2198 	conf->raid_disks = mddev->raid_disks;
2199 	conf->near_copies = nc;
2200 	conf->far_copies = fc;
2201 	conf->copies = nc*fc;
2202 	conf->far_offset = fo;
2203 	conf->chunk_mask = mddev->new_chunk_sectors - 1;
2204 	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2205 
2206 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2207 					   r10bio_pool_free, conf);
2208 	if (!conf->r10bio_pool)
2209 		goto out;
2210 
2211 	size = mddev->dev_sectors >> conf->chunk_shift;
2212 	sector_div(size, fc);
2213 	size = size * conf->raid_disks;
2214 	sector_div(size, nc);
2215 	/* 'size' is now the number of chunks in the array */
2216 	/* calculate "used chunks per device" in 'stride' */
2217 	stride = size * conf->copies;
2218 
2219 	/* We need to round up when dividing by raid_disks to
2220 	 * get the stride size.
2221 	 */
2222 	stride += conf->raid_disks - 1;
2223 	sector_div(stride, conf->raid_disks);
2224 
2225 	conf->dev_sectors = stride << conf->chunk_shift;
2226 
2227 	if (fo)
2228 		stride = 1;
2229 	else
2230 		sector_div(stride, fc);
2231 	conf->stride = stride << conf->chunk_shift;
2232 
2233 
2234 	spin_lock_init(&conf->device_lock);
2235 	INIT_LIST_HEAD(&conf->retry_list);
2236 
2237 	spin_lock_init(&conf->resync_lock);
2238 	init_waitqueue_head(&conf->wait_barrier);
2239 
2240 	conf->thread = md_register_thread(raid10d, mddev, NULL);
2241 	if (!conf->thread)
2242 		goto out;
2243 
2244 	conf->mddev = mddev;
2245 	return conf;
2246 
2247  out:
2248 	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2249 	       mdname(mddev));
2250 	if (conf) {
2251 		if (conf->r10bio_pool)
2252 			mempool_destroy(conf->r10bio_pool);
2253 		kfree(conf->mirrors);
2254 		safe_put_page(conf->tmppage);
2255 		kfree(conf);
2256 	}
2257 	return ERR_PTR(err);
2258 }
2259 
2260 static int run(mddev_t *mddev)
2261 {
2262 	conf_t *conf;
2263 	int i, disk_idx, chunk_size;
2264 	mirror_info_t *disk;
2265 	mdk_rdev_t *rdev;
2266 	sector_t size;
2267 
2268 	/*
2269 	 * copy the already verified devices into our private RAID10
2270 	 * bookkeeping area. [whatever we allocate in run(),
2271 	 * should be freed in stop()]
2272 	 */
2273 
2274 	if (mddev->private == NULL) {
2275 		conf = setup_conf(mddev);
2276 		if (IS_ERR(conf))
2277 			return PTR_ERR(conf);
2278 		mddev->private = conf;
2279 	}
2280 	conf = mddev->private;
2281 	if (!conf)
2282 		goto out;
2283 
2284 	mddev->queue->queue_lock = &conf->device_lock;
2285 
2286 	mddev->thread = conf->thread;
2287 	conf->thread = NULL;
2288 
2289 	chunk_size = mddev->chunk_sectors << 9;
2290 	blk_queue_io_min(mddev->queue, chunk_size);
2291 	if (conf->raid_disks % conf->near_copies)
2292 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2293 	else
2294 		blk_queue_io_opt(mddev->queue, chunk_size *
2295 				 (conf->raid_disks / conf->near_copies));
2296 
2297 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2298 		disk_idx = rdev->raid_disk;
2299 		if (disk_idx >= conf->raid_disks
2300 		    || disk_idx < 0)
2301 			continue;
2302 		disk = conf->mirrors + disk_idx;
2303 
2304 		disk->rdev = rdev;
2305 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2306 				  rdev->data_offset << 9);
2307 		/* as we don't honour merge_bvec_fn, we must never risk
2308 		 * violating it, so limit max_segments to 1 lying
2309 		 * within a single page.
2310 		 */
2311 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2312 			blk_queue_max_segments(mddev->queue, 1);
2313 			blk_queue_segment_boundary(mddev->queue,
2314 						   PAGE_CACHE_SIZE - 1);
2315 		}
2316 
2317 		disk->head_position = 0;
2318 	}
2319 	/* need to check that every block has at least one working mirror */
2320 	if (!enough(conf)) {
2321 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2322 		       mdname(mddev));
2323 		goto out_free_conf;
2324 	}
2325 
2326 	mddev->degraded = 0;
2327 	for (i = 0; i < conf->raid_disks; i++) {
2328 
2329 		disk = conf->mirrors + i;
2330 
2331 		if (!disk->rdev ||
2332 		    !test_bit(In_sync, &disk->rdev->flags)) {
2333 			disk->head_position = 0;
2334 			mddev->degraded++;
2335 			if (disk->rdev)
2336 				conf->fullsync = 1;
2337 		}
2338 	}
2339 
2340 	if (mddev->recovery_cp != MaxSector)
2341 		printk(KERN_NOTICE "md/raid10:%s: not clean"
2342 		       " -- starting background reconstruction\n",
2343 		       mdname(mddev));
2344 	printk(KERN_INFO
2345 		"md/raid10:%s: active with %d out of %d devices\n",
2346 		mdname(mddev), conf->raid_disks - mddev->degraded,
2347 		conf->raid_disks);
2348 	/*
2349 	 * Ok, everything is just fine now
2350 	 */
2351 	mddev->dev_sectors = conf->dev_sectors;
2352 	size = raid10_size(mddev, 0, 0);
2353 	md_set_array_sectors(mddev, size);
2354 	mddev->resync_max_sectors = size;
2355 
2356 	mddev->queue->unplug_fn = raid10_unplug;
2357 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2358 	mddev->queue->backing_dev_info.congested_data = mddev;
2359 
2360 	/* Calculate max read-ahead size.
2361 	 * We need to readahead at least twice a whole stripe....
2362 	 * maybe...
2363 	 */
2364 	{
2365 		int stripe = conf->raid_disks *
2366 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
2367 		stripe /= conf->near_copies;
2368 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2369 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2370 	}
2371 
2372 	if (conf->near_copies < conf->raid_disks)
2373 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2374 	md_integrity_register(mddev);
2375 	return 0;
2376 
2377 out_free_conf:
2378 	if (conf->r10bio_pool)
2379 		mempool_destroy(conf->r10bio_pool);
2380 	safe_put_page(conf->tmppage);
2381 	kfree(conf->mirrors);
2382 	kfree(conf);
2383 	mddev->private = NULL;
2384 	md_unregister_thread(mddev->thread);
2385 out:
2386 	return -EIO;
2387 }
2388 
2389 static int stop(mddev_t *mddev)
2390 {
2391 	conf_t *conf = mddev->private;
2392 
2393 	raise_barrier(conf, 0);
2394 	lower_barrier(conf);
2395 
2396 	md_unregister_thread(mddev->thread);
2397 	mddev->thread = NULL;
2398 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2399 	if (conf->r10bio_pool)
2400 		mempool_destroy(conf->r10bio_pool);
2401 	kfree(conf->mirrors);
2402 	kfree(conf);
2403 	mddev->private = NULL;
2404 	return 0;
2405 }
2406 
2407 static void raid10_quiesce(mddev_t *mddev, int state)
2408 {
2409 	conf_t *conf = mddev->private;
2410 
2411 	switch(state) {
2412 	case 1:
2413 		raise_barrier(conf, 0);
2414 		break;
2415 	case 0:
2416 		lower_barrier(conf);
2417 		break;
2418 	}
2419 }
2420 
2421 static void *raid10_takeover_raid0(mddev_t *mddev)
2422 {
2423 	mdk_rdev_t *rdev;
2424 	conf_t *conf;
2425 
2426 	if (mddev->degraded > 0) {
2427 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2428 		       mdname(mddev));
2429 		return ERR_PTR(-EINVAL);
2430 	}
2431 
2432 	/* Set new parameters */
2433 	mddev->new_level = 10;
2434 	/* new layout: far_copies = 1, near_copies = 2 */
2435 	mddev->new_layout = (1<<8) + 2;
2436 	mddev->new_chunk_sectors = mddev->chunk_sectors;
2437 	mddev->delta_disks = mddev->raid_disks;
2438 	mddev->raid_disks *= 2;
2439 	/* make sure it will be not marked as dirty */
2440 	mddev->recovery_cp = MaxSector;
2441 
2442 	conf = setup_conf(mddev);
2443 	if (!IS_ERR(conf))
2444 		list_for_each_entry(rdev, &mddev->disks, same_set)
2445 			if (rdev->raid_disk >= 0)
2446 				rdev->new_raid_disk = rdev->raid_disk * 2;
2447 
2448 	return conf;
2449 }
2450 
2451 static void *raid10_takeover(mddev_t *mddev)
2452 {
2453 	struct raid0_private_data *raid0_priv;
2454 
2455 	/* raid10 can take over:
2456 	 *  raid0 - providing it has only two drives
2457 	 */
2458 	if (mddev->level == 0) {
2459 		/* for raid0 takeover only one zone is supported */
2460 		raid0_priv = mddev->private;
2461 		if (raid0_priv->nr_strip_zones > 1) {
2462 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2463 			       " with more than one zone.\n",
2464 			       mdname(mddev));
2465 			return ERR_PTR(-EINVAL);
2466 		}
2467 		return raid10_takeover_raid0(mddev);
2468 	}
2469 	return ERR_PTR(-EINVAL);
2470 }
2471 
2472 static struct mdk_personality raid10_personality =
2473 {
2474 	.name		= "raid10",
2475 	.level		= 10,
2476 	.owner		= THIS_MODULE,
2477 	.make_request	= make_request,
2478 	.run		= run,
2479 	.stop		= stop,
2480 	.status		= status,
2481 	.error_handler	= error,
2482 	.hot_add_disk	= raid10_add_disk,
2483 	.hot_remove_disk= raid10_remove_disk,
2484 	.spare_active	= raid10_spare_active,
2485 	.sync_request	= sync_request,
2486 	.quiesce	= raid10_quiesce,
2487 	.size		= raid10_size,
2488 	.takeover	= raid10_takeover,
2489 };
2490 
2491 static int __init raid_init(void)
2492 {
2493 	return register_md_personality(&raid10_personality);
2494 }
2495 
2496 static void raid_exit(void)
2497 {
2498 	unregister_md_personality(&raid10_personality);
2499 }
2500 
2501 module_init(raid_init);
2502 module_exit(raid_exit);
2503 MODULE_LICENSE("GPL");
2504 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2505 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2506 MODULE_ALIAS("md-raid10");
2507 MODULE_ALIAS("md-level-10");
2508