1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/seq_file.h> 25 #include "md.h" 26 #include "raid10.h" 27 #include "raid0.h" 28 #include "bitmap.h" 29 30 /* 31 * RAID10 provides a combination of RAID0 and RAID1 functionality. 32 * The layout of data is defined by 33 * chunk_size 34 * raid_disks 35 * near_copies (stored in low byte of layout) 36 * far_copies (stored in second byte of layout) 37 * far_offset (stored in bit 16 of layout ) 38 * 39 * The data to be stored is divided into chunks using chunksize. 40 * Each device is divided into far_copies sections. 41 * In each section, chunks are laid out in a style similar to raid0, but 42 * near_copies copies of each chunk is stored (each on a different drive). 43 * The starting device for each section is offset near_copies from the starting 44 * device of the previous section. 45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 46 * drive. 47 * near_copies and far_copies must be at least one, and their product is at most 48 * raid_disks. 49 * 50 * If far_offset is true, then the far_copies are handled a bit differently. 51 * The copies are still in different stripes, but instead of be very far apart 52 * on disk, there are adjacent stripes. 53 */ 54 55 /* 56 * Number of guaranteed r10bios in case of extreme VM load: 57 */ 58 #define NR_RAID10_BIOS 256 59 60 static void unplug_slaves(mddev_t *mddev); 61 62 static void allow_barrier(conf_t *conf); 63 static void lower_barrier(conf_t *conf); 64 65 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 66 { 67 conf_t *conf = data; 68 r10bio_t *r10_bio; 69 int size = offsetof(struct r10bio_s, devs[conf->copies]); 70 71 /* allocate a r10bio with room for raid_disks entries in the bios array */ 72 r10_bio = kzalloc(size, gfp_flags); 73 if (!r10_bio && conf->mddev) 74 unplug_slaves(conf->mddev); 75 76 return r10_bio; 77 } 78 79 static void r10bio_pool_free(void *r10_bio, void *data) 80 { 81 kfree(r10_bio); 82 } 83 84 /* Maximum size of each resync request */ 85 #define RESYNC_BLOCK_SIZE (64*1024) 86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 87 /* amount of memory to reserve for resync requests */ 88 #define RESYNC_WINDOW (1024*1024) 89 /* maximum number of concurrent requests, memory permitting */ 90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 91 92 /* 93 * When performing a resync, we need to read and compare, so 94 * we need as many pages are there are copies. 95 * When performing a recovery, we need 2 bios, one for read, 96 * one for write (we recover only one drive per r10buf) 97 * 98 */ 99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 100 { 101 conf_t *conf = data; 102 struct page *page; 103 r10bio_t *r10_bio; 104 struct bio *bio; 105 int i, j; 106 int nalloc; 107 108 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 109 if (!r10_bio) { 110 unplug_slaves(conf->mddev); 111 return NULL; 112 } 113 114 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 115 nalloc = conf->copies; /* resync */ 116 else 117 nalloc = 2; /* recovery */ 118 119 /* 120 * Allocate bios. 121 */ 122 for (j = nalloc ; j-- ; ) { 123 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 124 if (!bio) 125 goto out_free_bio; 126 r10_bio->devs[j].bio = bio; 127 } 128 /* 129 * Allocate RESYNC_PAGES data pages and attach them 130 * where needed. 131 */ 132 for (j = 0 ; j < nalloc; j++) { 133 bio = r10_bio->devs[j].bio; 134 for (i = 0; i < RESYNC_PAGES; i++) { 135 page = alloc_page(gfp_flags); 136 if (unlikely(!page)) 137 goto out_free_pages; 138 139 bio->bi_io_vec[i].bv_page = page; 140 } 141 } 142 143 return r10_bio; 144 145 out_free_pages: 146 for ( ; i > 0 ; i--) 147 safe_put_page(bio->bi_io_vec[i-1].bv_page); 148 while (j--) 149 for (i = 0; i < RESYNC_PAGES ; i++) 150 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 151 j = -1; 152 out_free_bio: 153 while ( ++j < nalloc ) 154 bio_put(r10_bio->devs[j].bio); 155 r10bio_pool_free(r10_bio, conf); 156 return NULL; 157 } 158 159 static void r10buf_pool_free(void *__r10_bio, void *data) 160 { 161 int i; 162 conf_t *conf = data; 163 r10bio_t *r10bio = __r10_bio; 164 int j; 165 166 for (j=0; j < conf->copies; j++) { 167 struct bio *bio = r10bio->devs[j].bio; 168 if (bio) { 169 for (i = 0; i < RESYNC_PAGES; i++) { 170 safe_put_page(bio->bi_io_vec[i].bv_page); 171 bio->bi_io_vec[i].bv_page = NULL; 172 } 173 bio_put(bio); 174 } 175 } 176 r10bio_pool_free(r10bio, conf); 177 } 178 179 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 180 { 181 int i; 182 183 for (i = 0; i < conf->copies; i++) { 184 struct bio **bio = & r10_bio->devs[i].bio; 185 if (*bio && *bio != IO_BLOCKED) 186 bio_put(*bio); 187 *bio = NULL; 188 } 189 } 190 191 static void free_r10bio(r10bio_t *r10_bio) 192 { 193 conf_t *conf = r10_bio->mddev->private; 194 195 /* 196 * Wake up any possible resync thread that waits for the device 197 * to go idle. 198 */ 199 allow_barrier(conf); 200 201 put_all_bios(conf, r10_bio); 202 mempool_free(r10_bio, conf->r10bio_pool); 203 } 204 205 static void put_buf(r10bio_t *r10_bio) 206 { 207 conf_t *conf = r10_bio->mddev->private; 208 209 mempool_free(r10_bio, conf->r10buf_pool); 210 211 lower_barrier(conf); 212 } 213 214 static void reschedule_retry(r10bio_t *r10_bio) 215 { 216 unsigned long flags; 217 mddev_t *mddev = r10_bio->mddev; 218 conf_t *conf = mddev->private; 219 220 spin_lock_irqsave(&conf->device_lock, flags); 221 list_add(&r10_bio->retry_list, &conf->retry_list); 222 conf->nr_queued ++; 223 spin_unlock_irqrestore(&conf->device_lock, flags); 224 225 /* wake up frozen array... */ 226 wake_up(&conf->wait_barrier); 227 228 md_wakeup_thread(mddev->thread); 229 } 230 231 /* 232 * raid_end_bio_io() is called when we have finished servicing a mirrored 233 * operation and are ready to return a success/failure code to the buffer 234 * cache layer. 235 */ 236 static void raid_end_bio_io(r10bio_t *r10_bio) 237 { 238 struct bio *bio = r10_bio->master_bio; 239 240 bio_endio(bio, 241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 242 free_r10bio(r10_bio); 243 } 244 245 /* 246 * Update disk head position estimator based on IRQ completion info. 247 */ 248 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 249 { 250 conf_t *conf = r10_bio->mddev->private; 251 252 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 253 r10_bio->devs[slot].addr + (r10_bio->sectors); 254 } 255 256 static void raid10_end_read_request(struct bio *bio, int error) 257 { 258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 259 r10bio_t *r10_bio = bio->bi_private; 260 int slot, dev; 261 conf_t *conf = r10_bio->mddev->private; 262 263 264 slot = r10_bio->read_slot; 265 dev = r10_bio->devs[slot].devnum; 266 /* 267 * this branch is our 'one mirror IO has finished' event handler: 268 */ 269 update_head_pos(slot, r10_bio); 270 271 if (uptodate) { 272 /* 273 * Set R10BIO_Uptodate in our master bio, so that 274 * we will return a good error code to the higher 275 * levels even if IO on some other mirrored buffer fails. 276 * 277 * The 'master' represents the composite IO operation to 278 * user-side. So if something waits for IO, then it will 279 * wait for the 'master' bio. 280 */ 281 set_bit(R10BIO_Uptodate, &r10_bio->state); 282 raid_end_bio_io(r10_bio); 283 } else { 284 /* 285 * oops, read error: 286 */ 287 char b[BDEVNAME_SIZE]; 288 if (printk_ratelimit()) 289 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n", 290 mdname(conf->mddev), 291 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 292 reschedule_retry(r10_bio); 293 } 294 295 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 296 } 297 298 static void raid10_end_write_request(struct bio *bio, int error) 299 { 300 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 301 r10bio_t *r10_bio = bio->bi_private; 302 int slot, dev; 303 conf_t *conf = r10_bio->mddev->private; 304 305 for (slot = 0; slot < conf->copies; slot++) 306 if (r10_bio->devs[slot].bio == bio) 307 break; 308 dev = r10_bio->devs[slot].devnum; 309 310 /* 311 * this branch is our 'one mirror IO has finished' event handler: 312 */ 313 if (!uptodate) { 314 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 315 /* an I/O failed, we can't clear the bitmap */ 316 set_bit(R10BIO_Degraded, &r10_bio->state); 317 } else 318 /* 319 * Set R10BIO_Uptodate in our master bio, so that 320 * we will return a good error code for to the higher 321 * levels even if IO on some other mirrored buffer fails. 322 * 323 * The 'master' represents the composite IO operation to 324 * user-side. So if something waits for IO, then it will 325 * wait for the 'master' bio. 326 */ 327 set_bit(R10BIO_Uptodate, &r10_bio->state); 328 329 update_head_pos(slot, r10_bio); 330 331 /* 332 * 333 * Let's see if all mirrored write operations have finished 334 * already. 335 */ 336 if (atomic_dec_and_test(&r10_bio->remaining)) { 337 /* clear the bitmap if all writes complete successfully */ 338 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 339 r10_bio->sectors, 340 !test_bit(R10BIO_Degraded, &r10_bio->state), 341 0); 342 md_write_end(r10_bio->mddev); 343 raid_end_bio_io(r10_bio); 344 } 345 346 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 347 } 348 349 350 /* 351 * RAID10 layout manager 352 * Aswell as the chunksize and raid_disks count, there are two 353 * parameters: near_copies and far_copies. 354 * near_copies * far_copies must be <= raid_disks. 355 * Normally one of these will be 1. 356 * If both are 1, we get raid0. 357 * If near_copies == raid_disks, we get raid1. 358 * 359 * Chunks are layed out in raid0 style with near_copies copies of the 360 * first chunk, followed by near_copies copies of the next chunk and 361 * so on. 362 * If far_copies > 1, then after 1/far_copies of the array has been assigned 363 * as described above, we start again with a device offset of near_copies. 364 * So we effectively have another copy of the whole array further down all 365 * the drives, but with blocks on different drives. 366 * With this layout, and block is never stored twice on the one device. 367 * 368 * raid10_find_phys finds the sector offset of a given virtual sector 369 * on each device that it is on. 370 * 371 * raid10_find_virt does the reverse mapping, from a device and a 372 * sector offset to a virtual address 373 */ 374 375 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 376 { 377 int n,f; 378 sector_t sector; 379 sector_t chunk; 380 sector_t stripe; 381 int dev; 382 383 int slot = 0; 384 385 /* now calculate first sector/dev */ 386 chunk = r10bio->sector >> conf->chunk_shift; 387 sector = r10bio->sector & conf->chunk_mask; 388 389 chunk *= conf->near_copies; 390 stripe = chunk; 391 dev = sector_div(stripe, conf->raid_disks); 392 if (conf->far_offset) 393 stripe *= conf->far_copies; 394 395 sector += stripe << conf->chunk_shift; 396 397 /* and calculate all the others */ 398 for (n=0; n < conf->near_copies; n++) { 399 int d = dev; 400 sector_t s = sector; 401 r10bio->devs[slot].addr = sector; 402 r10bio->devs[slot].devnum = d; 403 slot++; 404 405 for (f = 1; f < conf->far_copies; f++) { 406 d += conf->near_copies; 407 if (d >= conf->raid_disks) 408 d -= conf->raid_disks; 409 s += conf->stride; 410 r10bio->devs[slot].devnum = d; 411 r10bio->devs[slot].addr = s; 412 slot++; 413 } 414 dev++; 415 if (dev >= conf->raid_disks) { 416 dev = 0; 417 sector += (conf->chunk_mask + 1); 418 } 419 } 420 BUG_ON(slot != conf->copies); 421 } 422 423 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 424 { 425 sector_t offset, chunk, vchunk; 426 427 offset = sector & conf->chunk_mask; 428 if (conf->far_offset) { 429 int fc; 430 chunk = sector >> conf->chunk_shift; 431 fc = sector_div(chunk, conf->far_copies); 432 dev -= fc * conf->near_copies; 433 if (dev < 0) 434 dev += conf->raid_disks; 435 } else { 436 while (sector >= conf->stride) { 437 sector -= conf->stride; 438 if (dev < conf->near_copies) 439 dev += conf->raid_disks - conf->near_copies; 440 else 441 dev -= conf->near_copies; 442 } 443 chunk = sector >> conf->chunk_shift; 444 } 445 vchunk = chunk * conf->raid_disks + dev; 446 sector_div(vchunk, conf->near_copies); 447 return (vchunk << conf->chunk_shift) + offset; 448 } 449 450 /** 451 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 452 * @q: request queue 453 * @bvm: properties of new bio 454 * @biovec: the request that could be merged to it. 455 * 456 * Return amount of bytes we can accept at this offset 457 * If near_copies == raid_disk, there are no striping issues, 458 * but in that case, the function isn't called at all. 459 */ 460 static int raid10_mergeable_bvec(struct request_queue *q, 461 struct bvec_merge_data *bvm, 462 struct bio_vec *biovec) 463 { 464 mddev_t *mddev = q->queuedata; 465 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 466 int max; 467 unsigned int chunk_sectors = mddev->chunk_sectors; 468 unsigned int bio_sectors = bvm->bi_size >> 9; 469 470 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 471 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 472 if (max <= biovec->bv_len && bio_sectors == 0) 473 return biovec->bv_len; 474 else 475 return max; 476 } 477 478 /* 479 * This routine returns the disk from which the requested read should 480 * be done. There is a per-array 'next expected sequential IO' sector 481 * number - if this matches on the next IO then we use the last disk. 482 * There is also a per-disk 'last know head position' sector that is 483 * maintained from IRQ contexts, both the normal and the resync IO 484 * completion handlers update this position correctly. If there is no 485 * perfect sequential match then we pick the disk whose head is closest. 486 * 487 * If there are 2 mirrors in the same 2 devices, performance degrades 488 * because position is mirror, not device based. 489 * 490 * The rdev for the device selected will have nr_pending incremented. 491 */ 492 493 /* 494 * FIXME: possibly should rethink readbalancing and do it differently 495 * depending on near_copies / far_copies geometry. 496 */ 497 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 498 { 499 const sector_t this_sector = r10_bio->sector; 500 int disk, slot, nslot; 501 const int sectors = r10_bio->sectors; 502 sector_t new_distance, current_distance; 503 mdk_rdev_t *rdev; 504 505 raid10_find_phys(conf, r10_bio); 506 rcu_read_lock(); 507 /* 508 * Check if we can balance. We can balance on the whole 509 * device if no resync is going on (recovery is ok), or below 510 * the resync window. We take the first readable disk when 511 * above the resync window. 512 */ 513 if (conf->mddev->recovery_cp < MaxSector 514 && (this_sector + sectors >= conf->next_resync)) { 515 /* make sure that disk is operational */ 516 slot = 0; 517 disk = r10_bio->devs[slot].devnum; 518 519 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 520 r10_bio->devs[slot].bio == IO_BLOCKED || 521 !test_bit(In_sync, &rdev->flags)) { 522 slot++; 523 if (slot == conf->copies) { 524 slot = 0; 525 disk = -1; 526 break; 527 } 528 disk = r10_bio->devs[slot].devnum; 529 } 530 goto rb_out; 531 } 532 533 534 /* make sure the disk is operational */ 535 slot = 0; 536 disk = r10_bio->devs[slot].devnum; 537 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 538 r10_bio->devs[slot].bio == IO_BLOCKED || 539 !test_bit(In_sync, &rdev->flags)) { 540 slot ++; 541 if (slot == conf->copies) { 542 disk = -1; 543 goto rb_out; 544 } 545 disk = r10_bio->devs[slot].devnum; 546 } 547 548 549 current_distance = abs(r10_bio->devs[slot].addr - 550 conf->mirrors[disk].head_position); 551 552 /* Find the disk whose head is closest, 553 * or - for far > 1 - find the closest to partition beginning */ 554 555 for (nslot = slot; nslot < conf->copies; nslot++) { 556 int ndisk = r10_bio->devs[nslot].devnum; 557 558 559 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 560 r10_bio->devs[nslot].bio == IO_BLOCKED || 561 !test_bit(In_sync, &rdev->flags)) 562 continue; 563 564 /* This optimisation is debatable, and completely destroys 565 * sequential read speed for 'far copies' arrays. So only 566 * keep it for 'near' arrays, and review those later. 567 */ 568 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 569 disk = ndisk; 570 slot = nslot; 571 break; 572 } 573 574 /* for far > 1 always use the lowest address */ 575 if (conf->far_copies > 1) 576 new_distance = r10_bio->devs[nslot].addr; 577 else 578 new_distance = abs(r10_bio->devs[nslot].addr - 579 conf->mirrors[ndisk].head_position); 580 if (new_distance < current_distance) { 581 current_distance = new_distance; 582 disk = ndisk; 583 slot = nslot; 584 } 585 } 586 587 rb_out: 588 r10_bio->read_slot = slot; 589 /* conf->next_seq_sect = this_sector + sectors;*/ 590 591 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 592 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 593 else 594 disk = -1; 595 rcu_read_unlock(); 596 597 return disk; 598 } 599 600 static void unplug_slaves(mddev_t *mddev) 601 { 602 conf_t *conf = mddev->private; 603 int i; 604 605 rcu_read_lock(); 606 for (i=0; i < conf->raid_disks; i++) { 607 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 608 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 609 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 610 611 atomic_inc(&rdev->nr_pending); 612 rcu_read_unlock(); 613 614 blk_unplug(r_queue); 615 616 rdev_dec_pending(rdev, mddev); 617 rcu_read_lock(); 618 } 619 } 620 rcu_read_unlock(); 621 } 622 623 static void raid10_unplug(struct request_queue *q) 624 { 625 mddev_t *mddev = q->queuedata; 626 627 unplug_slaves(q->queuedata); 628 md_wakeup_thread(mddev->thread); 629 } 630 631 static int raid10_congested(void *data, int bits) 632 { 633 mddev_t *mddev = data; 634 conf_t *conf = mddev->private; 635 int i, ret = 0; 636 637 if (mddev_congested(mddev, bits)) 638 return 1; 639 rcu_read_lock(); 640 for (i = 0; i < conf->raid_disks && ret == 0; i++) { 641 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 642 if (rdev && !test_bit(Faulty, &rdev->flags)) { 643 struct request_queue *q = bdev_get_queue(rdev->bdev); 644 645 ret |= bdi_congested(&q->backing_dev_info, bits); 646 } 647 } 648 rcu_read_unlock(); 649 return ret; 650 } 651 652 static int flush_pending_writes(conf_t *conf) 653 { 654 /* Any writes that have been queued but are awaiting 655 * bitmap updates get flushed here. 656 * We return 1 if any requests were actually submitted. 657 */ 658 int rv = 0; 659 660 spin_lock_irq(&conf->device_lock); 661 662 if (conf->pending_bio_list.head) { 663 struct bio *bio; 664 bio = bio_list_get(&conf->pending_bio_list); 665 blk_remove_plug(conf->mddev->queue); 666 spin_unlock_irq(&conf->device_lock); 667 /* flush any pending bitmap writes to disk 668 * before proceeding w/ I/O */ 669 bitmap_unplug(conf->mddev->bitmap); 670 671 while (bio) { /* submit pending writes */ 672 struct bio *next = bio->bi_next; 673 bio->bi_next = NULL; 674 generic_make_request(bio); 675 bio = next; 676 } 677 rv = 1; 678 } else 679 spin_unlock_irq(&conf->device_lock); 680 return rv; 681 } 682 /* Barriers.... 683 * Sometimes we need to suspend IO while we do something else, 684 * either some resync/recovery, or reconfigure the array. 685 * To do this we raise a 'barrier'. 686 * The 'barrier' is a counter that can be raised multiple times 687 * to count how many activities are happening which preclude 688 * normal IO. 689 * We can only raise the barrier if there is no pending IO. 690 * i.e. if nr_pending == 0. 691 * We choose only to raise the barrier if no-one is waiting for the 692 * barrier to go down. This means that as soon as an IO request 693 * is ready, no other operations which require a barrier will start 694 * until the IO request has had a chance. 695 * 696 * So: regular IO calls 'wait_barrier'. When that returns there 697 * is no backgroup IO happening, It must arrange to call 698 * allow_barrier when it has finished its IO. 699 * backgroup IO calls must call raise_barrier. Once that returns 700 * there is no normal IO happeing. It must arrange to call 701 * lower_barrier when the particular background IO completes. 702 */ 703 704 static void raise_barrier(conf_t *conf, int force) 705 { 706 BUG_ON(force && !conf->barrier); 707 spin_lock_irq(&conf->resync_lock); 708 709 /* Wait until no block IO is waiting (unless 'force') */ 710 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 711 conf->resync_lock, 712 raid10_unplug(conf->mddev->queue)); 713 714 /* block any new IO from starting */ 715 conf->barrier++; 716 717 /* No wait for all pending IO to complete */ 718 wait_event_lock_irq(conf->wait_barrier, 719 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 720 conf->resync_lock, 721 raid10_unplug(conf->mddev->queue)); 722 723 spin_unlock_irq(&conf->resync_lock); 724 } 725 726 static void lower_barrier(conf_t *conf) 727 { 728 unsigned long flags; 729 spin_lock_irqsave(&conf->resync_lock, flags); 730 conf->barrier--; 731 spin_unlock_irqrestore(&conf->resync_lock, flags); 732 wake_up(&conf->wait_barrier); 733 } 734 735 static void wait_barrier(conf_t *conf) 736 { 737 spin_lock_irq(&conf->resync_lock); 738 if (conf->barrier) { 739 conf->nr_waiting++; 740 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 741 conf->resync_lock, 742 raid10_unplug(conf->mddev->queue)); 743 conf->nr_waiting--; 744 } 745 conf->nr_pending++; 746 spin_unlock_irq(&conf->resync_lock); 747 } 748 749 static void allow_barrier(conf_t *conf) 750 { 751 unsigned long flags; 752 spin_lock_irqsave(&conf->resync_lock, flags); 753 conf->nr_pending--; 754 spin_unlock_irqrestore(&conf->resync_lock, flags); 755 wake_up(&conf->wait_barrier); 756 } 757 758 static void freeze_array(conf_t *conf) 759 { 760 /* stop syncio and normal IO and wait for everything to 761 * go quiet. 762 * We increment barrier and nr_waiting, and then 763 * wait until nr_pending match nr_queued+1 764 * This is called in the context of one normal IO request 765 * that has failed. Thus any sync request that might be pending 766 * will be blocked by nr_pending, and we need to wait for 767 * pending IO requests to complete or be queued for re-try. 768 * Thus the number queued (nr_queued) plus this request (1) 769 * must match the number of pending IOs (nr_pending) before 770 * we continue. 771 */ 772 spin_lock_irq(&conf->resync_lock); 773 conf->barrier++; 774 conf->nr_waiting++; 775 wait_event_lock_irq(conf->wait_barrier, 776 conf->nr_pending == conf->nr_queued+1, 777 conf->resync_lock, 778 ({ flush_pending_writes(conf); 779 raid10_unplug(conf->mddev->queue); })); 780 spin_unlock_irq(&conf->resync_lock); 781 } 782 783 static void unfreeze_array(conf_t *conf) 784 { 785 /* reverse the effect of the freeze */ 786 spin_lock_irq(&conf->resync_lock); 787 conf->barrier--; 788 conf->nr_waiting--; 789 wake_up(&conf->wait_barrier); 790 spin_unlock_irq(&conf->resync_lock); 791 } 792 793 static int make_request(mddev_t *mddev, struct bio * bio) 794 { 795 conf_t *conf = mddev->private; 796 mirror_info_t *mirror; 797 r10bio_t *r10_bio; 798 struct bio *read_bio; 799 int i; 800 int chunk_sects = conf->chunk_mask + 1; 801 const int rw = bio_data_dir(bio); 802 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 803 struct bio_list bl; 804 unsigned long flags; 805 mdk_rdev_t *blocked_rdev; 806 807 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { 808 md_barrier_request(mddev, bio); 809 return 0; 810 } 811 812 /* If this request crosses a chunk boundary, we need to 813 * split it. This will only happen for 1 PAGE (or less) requests. 814 */ 815 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 816 > chunk_sects && 817 conf->near_copies < conf->raid_disks)) { 818 struct bio_pair *bp; 819 /* Sanity check -- queue functions should prevent this happening */ 820 if (bio->bi_vcnt != 1 || 821 bio->bi_idx != 0) 822 goto bad_map; 823 /* This is a one page bio that upper layers 824 * refuse to split for us, so we need to split it. 825 */ 826 bp = bio_split(bio, 827 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 828 if (make_request(mddev, &bp->bio1)) 829 generic_make_request(&bp->bio1); 830 if (make_request(mddev, &bp->bio2)) 831 generic_make_request(&bp->bio2); 832 833 bio_pair_release(bp); 834 return 0; 835 bad_map: 836 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 837 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 838 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 839 840 bio_io_error(bio); 841 return 0; 842 } 843 844 md_write_start(mddev, bio); 845 846 /* 847 * Register the new request and wait if the reconstruction 848 * thread has put up a bar for new requests. 849 * Continue immediately if no resync is active currently. 850 */ 851 wait_barrier(conf); 852 853 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 854 855 r10_bio->master_bio = bio; 856 r10_bio->sectors = bio->bi_size >> 9; 857 858 r10_bio->mddev = mddev; 859 r10_bio->sector = bio->bi_sector; 860 r10_bio->state = 0; 861 862 if (rw == READ) { 863 /* 864 * read balancing logic: 865 */ 866 int disk = read_balance(conf, r10_bio); 867 int slot = r10_bio->read_slot; 868 if (disk < 0) { 869 raid_end_bio_io(r10_bio); 870 return 0; 871 } 872 mirror = conf->mirrors + disk; 873 874 read_bio = bio_clone(bio, GFP_NOIO); 875 876 r10_bio->devs[slot].bio = read_bio; 877 878 read_bio->bi_sector = r10_bio->devs[slot].addr + 879 mirror->rdev->data_offset; 880 read_bio->bi_bdev = mirror->rdev->bdev; 881 read_bio->bi_end_io = raid10_end_read_request; 882 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 883 read_bio->bi_private = r10_bio; 884 885 generic_make_request(read_bio); 886 return 0; 887 } 888 889 /* 890 * WRITE: 891 */ 892 /* first select target devices under rcu_lock and 893 * inc refcount on their rdev. Record them by setting 894 * bios[x] to bio 895 */ 896 raid10_find_phys(conf, r10_bio); 897 retry_write: 898 blocked_rdev = NULL; 899 rcu_read_lock(); 900 for (i = 0; i < conf->copies; i++) { 901 int d = r10_bio->devs[i].devnum; 902 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 903 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 904 atomic_inc(&rdev->nr_pending); 905 blocked_rdev = rdev; 906 break; 907 } 908 if (rdev && !test_bit(Faulty, &rdev->flags)) { 909 atomic_inc(&rdev->nr_pending); 910 r10_bio->devs[i].bio = bio; 911 } else { 912 r10_bio->devs[i].bio = NULL; 913 set_bit(R10BIO_Degraded, &r10_bio->state); 914 } 915 } 916 rcu_read_unlock(); 917 918 if (unlikely(blocked_rdev)) { 919 /* Have to wait for this device to get unblocked, then retry */ 920 int j; 921 int d; 922 923 for (j = 0; j < i; j++) 924 if (r10_bio->devs[j].bio) { 925 d = r10_bio->devs[j].devnum; 926 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 927 } 928 allow_barrier(conf); 929 md_wait_for_blocked_rdev(blocked_rdev, mddev); 930 wait_barrier(conf); 931 goto retry_write; 932 } 933 934 atomic_set(&r10_bio->remaining, 0); 935 936 bio_list_init(&bl); 937 for (i = 0; i < conf->copies; i++) { 938 struct bio *mbio; 939 int d = r10_bio->devs[i].devnum; 940 if (!r10_bio->devs[i].bio) 941 continue; 942 943 mbio = bio_clone(bio, GFP_NOIO); 944 r10_bio->devs[i].bio = mbio; 945 946 mbio->bi_sector = r10_bio->devs[i].addr+ 947 conf->mirrors[d].rdev->data_offset; 948 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 949 mbio->bi_end_io = raid10_end_write_request; 950 mbio->bi_rw = WRITE | (do_sync << BIO_RW_SYNCIO); 951 mbio->bi_private = r10_bio; 952 953 atomic_inc(&r10_bio->remaining); 954 bio_list_add(&bl, mbio); 955 } 956 957 if (unlikely(!atomic_read(&r10_bio->remaining))) { 958 /* the array is dead */ 959 md_write_end(mddev); 960 raid_end_bio_io(r10_bio); 961 return 0; 962 } 963 964 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 965 spin_lock_irqsave(&conf->device_lock, flags); 966 bio_list_merge(&conf->pending_bio_list, &bl); 967 blk_plug_device(mddev->queue); 968 spin_unlock_irqrestore(&conf->device_lock, flags); 969 970 /* In case raid10d snuck in to freeze_array */ 971 wake_up(&conf->wait_barrier); 972 973 if (do_sync) 974 md_wakeup_thread(mddev->thread); 975 976 return 0; 977 } 978 979 static void status(struct seq_file *seq, mddev_t *mddev) 980 { 981 conf_t *conf = mddev->private; 982 int i; 983 984 if (conf->near_copies < conf->raid_disks) 985 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 986 if (conf->near_copies > 1) 987 seq_printf(seq, " %d near-copies", conf->near_copies); 988 if (conf->far_copies > 1) { 989 if (conf->far_offset) 990 seq_printf(seq, " %d offset-copies", conf->far_copies); 991 else 992 seq_printf(seq, " %d far-copies", conf->far_copies); 993 } 994 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 995 conf->raid_disks - mddev->degraded); 996 for (i = 0; i < conf->raid_disks; i++) 997 seq_printf(seq, "%s", 998 conf->mirrors[i].rdev && 999 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1000 seq_printf(seq, "]"); 1001 } 1002 1003 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1004 { 1005 char b[BDEVNAME_SIZE]; 1006 conf_t *conf = mddev->private; 1007 1008 /* 1009 * If it is not operational, then we have already marked it as dead 1010 * else if it is the last working disks, ignore the error, let the 1011 * next level up know. 1012 * else mark the drive as failed 1013 */ 1014 if (test_bit(In_sync, &rdev->flags) 1015 && conf->raid_disks-mddev->degraded == 1) 1016 /* 1017 * Don't fail the drive, just return an IO error. 1018 * The test should really be more sophisticated than 1019 * "working_disks == 1", but it isn't critical, and 1020 * can wait until we do more sophisticated "is the drive 1021 * really dead" tests... 1022 */ 1023 return; 1024 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1025 unsigned long flags; 1026 spin_lock_irqsave(&conf->device_lock, flags); 1027 mddev->degraded++; 1028 spin_unlock_irqrestore(&conf->device_lock, flags); 1029 /* 1030 * if recovery is running, make sure it aborts. 1031 */ 1032 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1033 } 1034 set_bit(Faulty, &rdev->flags); 1035 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1036 printk(KERN_ALERT "md/raid10:%s: Disk failure on %s, disabling device.\n" 1037 KERN_ALERT "md/raid10:%s: Operation continuing on %d devices.\n", 1038 mdname(mddev), bdevname(rdev->bdev, b), 1039 mdname(mddev), conf->raid_disks - mddev->degraded); 1040 } 1041 1042 static void print_conf(conf_t *conf) 1043 { 1044 int i; 1045 mirror_info_t *tmp; 1046 1047 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1048 if (!conf) { 1049 printk(KERN_DEBUG "(!conf)\n"); 1050 return; 1051 } 1052 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1053 conf->raid_disks); 1054 1055 for (i = 0; i < conf->raid_disks; i++) { 1056 char b[BDEVNAME_SIZE]; 1057 tmp = conf->mirrors + i; 1058 if (tmp->rdev) 1059 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1060 i, !test_bit(In_sync, &tmp->rdev->flags), 1061 !test_bit(Faulty, &tmp->rdev->flags), 1062 bdevname(tmp->rdev->bdev,b)); 1063 } 1064 } 1065 1066 static void close_sync(conf_t *conf) 1067 { 1068 wait_barrier(conf); 1069 allow_barrier(conf); 1070 1071 mempool_destroy(conf->r10buf_pool); 1072 conf->r10buf_pool = NULL; 1073 } 1074 1075 /* check if there are enough drives for 1076 * every block to appear on atleast one 1077 */ 1078 static int enough(conf_t *conf) 1079 { 1080 int first = 0; 1081 1082 do { 1083 int n = conf->copies; 1084 int cnt = 0; 1085 while (n--) { 1086 if (conf->mirrors[first].rdev) 1087 cnt++; 1088 first = (first+1) % conf->raid_disks; 1089 } 1090 if (cnt == 0) 1091 return 0; 1092 } while (first != 0); 1093 return 1; 1094 } 1095 1096 static int raid10_spare_active(mddev_t *mddev) 1097 { 1098 int i; 1099 conf_t *conf = mddev->private; 1100 mirror_info_t *tmp; 1101 1102 /* 1103 * Find all non-in_sync disks within the RAID10 configuration 1104 * and mark them in_sync 1105 */ 1106 for (i = 0; i < conf->raid_disks; i++) { 1107 tmp = conf->mirrors + i; 1108 if (tmp->rdev 1109 && !test_bit(Faulty, &tmp->rdev->flags) 1110 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1111 unsigned long flags; 1112 spin_lock_irqsave(&conf->device_lock, flags); 1113 mddev->degraded--; 1114 spin_unlock_irqrestore(&conf->device_lock, flags); 1115 } 1116 } 1117 1118 print_conf(conf); 1119 return 0; 1120 } 1121 1122 1123 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1124 { 1125 conf_t *conf = mddev->private; 1126 int err = -EEXIST; 1127 int mirror; 1128 mirror_info_t *p; 1129 int first = 0; 1130 int last = conf->raid_disks - 1; 1131 1132 if (mddev->recovery_cp < MaxSector) 1133 /* only hot-add to in-sync arrays, as recovery is 1134 * very different from resync 1135 */ 1136 return -EBUSY; 1137 if (!enough(conf)) 1138 return -EINVAL; 1139 1140 if (rdev->raid_disk >= 0) 1141 first = last = rdev->raid_disk; 1142 1143 if (rdev->saved_raid_disk >= 0 && 1144 rdev->saved_raid_disk >= first && 1145 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1146 mirror = rdev->saved_raid_disk; 1147 else 1148 mirror = first; 1149 for ( ; mirror <= last ; mirror++) 1150 if ( !(p=conf->mirrors+mirror)->rdev) { 1151 1152 disk_stack_limits(mddev->gendisk, rdev->bdev, 1153 rdev->data_offset << 9); 1154 /* as we don't honour merge_bvec_fn, we must 1155 * never risk violating it, so limit 1156 * ->max_segments to one lying with a single 1157 * page, as a one page request is never in 1158 * violation. 1159 */ 1160 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1161 blk_queue_max_segments(mddev->queue, 1); 1162 blk_queue_segment_boundary(mddev->queue, 1163 PAGE_CACHE_SIZE - 1); 1164 } 1165 1166 p->head_position = 0; 1167 rdev->raid_disk = mirror; 1168 err = 0; 1169 if (rdev->saved_raid_disk != mirror) 1170 conf->fullsync = 1; 1171 rcu_assign_pointer(p->rdev, rdev); 1172 break; 1173 } 1174 1175 md_integrity_add_rdev(rdev, mddev); 1176 print_conf(conf); 1177 return err; 1178 } 1179 1180 static int raid10_remove_disk(mddev_t *mddev, int number) 1181 { 1182 conf_t *conf = mddev->private; 1183 int err = 0; 1184 mdk_rdev_t *rdev; 1185 mirror_info_t *p = conf->mirrors+ number; 1186 1187 print_conf(conf); 1188 rdev = p->rdev; 1189 if (rdev) { 1190 if (test_bit(In_sync, &rdev->flags) || 1191 atomic_read(&rdev->nr_pending)) { 1192 err = -EBUSY; 1193 goto abort; 1194 } 1195 /* Only remove faulty devices in recovery 1196 * is not possible. 1197 */ 1198 if (!test_bit(Faulty, &rdev->flags) && 1199 enough(conf)) { 1200 err = -EBUSY; 1201 goto abort; 1202 } 1203 p->rdev = NULL; 1204 synchronize_rcu(); 1205 if (atomic_read(&rdev->nr_pending)) { 1206 /* lost the race, try later */ 1207 err = -EBUSY; 1208 p->rdev = rdev; 1209 goto abort; 1210 } 1211 md_integrity_register(mddev); 1212 } 1213 abort: 1214 1215 print_conf(conf); 1216 return err; 1217 } 1218 1219 1220 static void end_sync_read(struct bio *bio, int error) 1221 { 1222 r10bio_t *r10_bio = bio->bi_private; 1223 conf_t *conf = r10_bio->mddev->private; 1224 int i,d; 1225 1226 for (i=0; i<conf->copies; i++) 1227 if (r10_bio->devs[i].bio == bio) 1228 break; 1229 BUG_ON(i == conf->copies); 1230 update_head_pos(i, r10_bio); 1231 d = r10_bio->devs[i].devnum; 1232 1233 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1234 set_bit(R10BIO_Uptodate, &r10_bio->state); 1235 else { 1236 atomic_add(r10_bio->sectors, 1237 &conf->mirrors[d].rdev->corrected_errors); 1238 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1239 md_error(r10_bio->mddev, 1240 conf->mirrors[d].rdev); 1241 } 1242 1243 /* for reconstruct, we always reschedule after a read. 1244 * for resync, only after all reads 1245 */ 1246 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1247 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1248 atomic_dec_and_test(&r10_bio->remaining)) { 1249 /* we have read all the blocks, 1250 * do the comparison in process context in raid10d 1251 */ 1252 reschedule_retry(r10_bio); 1253 } 1254 } 1255 1256 static void end_sync_write(struct bio *bio, int error) 1257 { 1258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1259 r10bio_t *r10_bio = bio->bi_private; 1260 mddev_t *mddev = r10_bio->mddev; 1261 conf_t *conf = mddev->private; 1262 int i,d; 1263 1264 for (i = 0; i < conf->copies; i++) 1265 if (r10_bio->devs[i].bio == bio) 1266 break; 1267 d = r10_bio->devs[i].devnum; 1268 1269 if (!uptodate) 1270 md_error(mddev, conf->mirrors[d].rdev); 1271 1272 update_head_pos(i, r10_bio); 1273 1274 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1275 while (atomic_dec_and_test(&r10_bio->remaining)) { 1276 if (r10_bio->master_bio == NULL) { 1277 /* the primary of several recovery bios */ 1278 sector_t s = r10_bio->sectors; 1279 put_buf(r10_bio); 1280 md_done_sync(mddev, s, 1); 1281 break; 1282 } else { 1283 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1284 put_buf(r10_bio); 1285 r10_bio = r10_bio2; 1286 } 1287 } 1288 } 1289 1290 /* 1291 * Note: sync and recover and handled very differently for raid10 1292 * This code is for resync. 1293 * For resync, we read through virtual addresses and read all blocks. 1294 * If there is any error, we schedule a write. The lowest numbered 1295 * drive is authoritative. 1296 * However requests come for physical address, so we need to map. 1297 * For every physical address there are raid_disks/copies virtual addresses, 1298 * which is always are least one, but is not necessarly an integer. 1299 * This means that a physical address can span multiple chunks, so we may 1300 * have to submit multiple io requests for a single sync request. 1301 */ 1302 /* 1303 * We check if all blocks are in-sync and only write to blocks that 1304 * aren't in sync 1305 */ 1306 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1307 { 1308 conf_t *conf = mddev->private; 1309 int i, first; 1310 struct bio *tbio, *fbio; 1311 1312 atomic_set(&r10_bio->remaining, 1); 1313 1314 /* find the first device with a block */ 1315 for (i=0; i<conf->copies; i++) 1316 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1317 break; 1318 1319 if (i == conf->copies) 1320 goto done; 1321 1322 first = i; 1323 fbio = r10_bio->devs[i].bio; 1324 1325 /* now find blocks with errors */ 1326 for (i=0 ; i < conf->copies ; i++) { 1327 int j, d; 1328 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1329 1330 tbio = r10_bio->devs[i].bio; 1331 1332 if (tbio->bi_end_io != end_sync_read) 1333 continue; 1334 if (i == first) 1335 continue; 1336 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1337 /* We know that the bi_io_vec layout is the same for 1338 * both 'first' and 'i', so we just compare them. 1339 * All vec entries are PAGE_SIZE; 1340 */ 1341 for (j = 0; j < vcnt; j++) 1342 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1343 page_address(tbio->bi_io_vec[j].bv_page), 1344 PAGE_SIZE)) 1345 break; 1346 if (j == vcnt) 1347 continue; 1348 mddev->resync_mismatches += r10_bio->sectors; 1349 } 1350 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1351 /* Don't fix anything. */ 1352 continue; 1353 /* Ok, we need to write this bio 1354 * First we need to fixup bv_offset, bv_len and 1355 * bi_vecs, as the read request might have corrupted these 1356 */ 1357 tbio->bi_vcnt = vcnt; 1358 tbio->bi_size = r10_bio->sectors << 9; 1359 tbio->bi_idx = 0; 1360 tbio->bi_phys_segments = 0; 1361 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1362 tbio->bi_flags |= 1 << BIO_UPTODATE; 1363 tbio->bi_next = NULL; 1364 tbio->bi_rw = WRITE; 1365 tbio->bi_private = r10_bio; 1366 tbio->bi_sector = r10_bio->devs[i].addr; 1367 1368 for (j=0; j < vcnt ; j++) { 1369 tbio->bi_io_vec[j].bv_offset = 0; 1370 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1371 1372 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1373 page_address(fbio->bi_io_vec[j].bv_page), 1374 PAGE_SIZE); 1375 } 1376 tbio->bi_end_io = end_sync_write; 1377 1378 d = r10_bio->devs[i].devnum; 1379 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1380 atomic_inc(&r10_bio->remaining); 1381 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1382 1383 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1384 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1385 generic_make_request(tbio); 1386 } 1387 1388 done: 1389 if (atomic_dec_and_test(&r10_bio->remaining)) { 1390 md_done_sync(mddev, r10_bio->sectors, 1); 1391 put_buf(r10_bio); 1392 } 1393 } 1394 1395 /* 1396 * Now for the recovery code. 1397 * Recovery happens across physical sectors. 1398 * We recover all non-is_sync drives by finding the virtual address of 1399 * each, and then choose a working drive that also has that virt address. 1400 * There is a separate r10_bio for each non-in_sync drive. 1401 * Only the first two slots are in use. The first for reading, 1402 * The second for writing. 1403 * 1404 */ 1405 1406 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1407 { 1408 conf_t *conf = mddev->private; 1409 int i, d; 1410 struct bio *bio, *wbio; 1411 1412 1413 /* move the pages across to the second bio 1414 * and submit the write request 1415 */ 1416 bio = r10_bio->devs[0].bio; 1417 wbio = r10_bio->devs[1].bio; 1418 for (i=0; i < wbio->bi_vcnt; i++) { 1419 struct page *p = bio->bi_io_vec[i].bv_page; 1420 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1421 wbio->bi_io_vec[i].bv_page = p; 1422 } 1423 d = r10_bio->devs[1].devnum; 1424 1425 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1426 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1427 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1428 generic_make_request(wbio); 1429 else 1430 bio_endio(wbio, -EIO); 1431 } 1432 1433 1434 /* 1435 * Used by fix_read_error() to decay the per rdev read_errors. 1436 * We halve the read error count for every hour that has elapsed 1437 * since the last recorded read error. 1438 * 1439 */ 1440 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev) 1441 { 1442 struct timespec cur_time_mon; 1443 unsigned long hours_since_last; 1444 unsigned int read_errors = atomic_read(&rdev->read_errors); 1445 1446 ktime_get_ts(&cur_time_mon); 1447 1448 if (rdev->last_read_error.tv_sec == 0 && 1449 rdev->last_read_error.tv_nsec == 0) { 1450 /* first time we've seen a read error */ 1451 rdev->last_read_error = cur_time_mon; 1452 return; 1453 } 1454 1455 hours_since_last = (cur_time_mon.tv_sec - 1456 rdev->last_read_error.tv_sec) / 3600; 1457 1458 rdev->last_read_error = cur_time_mon; 1459 1460 /* 1461 * if hours_since_last is > the number of bits in read_errors 1462 * just set read errors to 0. We do this to avoid 1463 * overflowing the shift of read_errors by hours_since_last. 1464 */ 1465 if (hours_since_last >= 8 * sizeof(read_errors)) 1466 atomic_set(&rdev->read_errors, 0); 1467 else 1468 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 1469 } 1470 1471 /* 1472 * This is a kernel thread which: 1473 * 1474 * 1. Retries failed read operations on working mirrors. 1475 * 2. Updates the raid superblock when problems encounter. 1476 * 3. Performs writes following reads for array synchronising. 1477 */ 1478 1479 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1480 { 1481 int sect = 0; /* Offset from r10_bio->sector */ 1482 int sectors = r10_bio->sectors; 1483 mdk_rdev_t*rdev; 1484 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 1485 int d = r10_bio->devs[r10_bio->read_slot].devnum; 1486 1487 rcu_read_lock(); 1488 rdev = rcu_dereference(conf->mirrors[d].rdev); 1489 if (rdev) { /* If rdev is not NULL */ 1490 char b[BDEVNAME_SIZE]; 1491 int cur_read_error_count = 0; 1492 1493 bdevname(rdev->bdev, b); 1494 1495 if (test_bit(Faulty, &rdev->flags)) { 1496 rcu_read_unlock(); 1497 /* drive has already been failed, just ignore any 1498 more fix_read_error() attempts */ 1499 return; 1500 } 1501 1502 check_decay_read_errors(mddev, rdev); 1503 atomic_inc(&rdev->read_errors); 1504 cur_read_error_count = atomic_read(&rdev->read_errors); 1505 if (cur_read_error_count > max_read_errors) { 1506 rcu_read_unlock(); 1507 printk(KERN_NOTICE 1508 "md/raid10:%s: %s: Raid device exceeded " 1509 "read_error threshold " 1510 "[cur %d:max %d]\n", 1511 mdname(mddev), 1512 b, cur_read_error_count, max_read_errors); 1513 printk(KERN_NOTICE 1514 "md/raid10:%s: %s: Failing raid " 1515 "device\n", mdname(mddev), b); 1516 md_error(mddev, conf->mirrors[d].rdev); 1517 return; 1518 } 1519 } 1520 rcu_read_unlock(); 1521 1522 while(sectors) { 1523 int s = sectors; 1524 int sl = r10_bio->read_slot; 1525 int success = 0; 1526 int start; 1527 1528 if (s > (PAGE_SIZE>>9)) 1529 s = PAGE_SIZE >> 9; 1530 1531 rcu_read_lock(); 1532 do { 1533 d = r10_bio->devs[sl].devnum; 1534 rdev = rcu_dereference(conf->mirrors[d].rdev); 1535 if (rdev && 1536 test_bit(In_sync, &rdev->flags)) { 1537 atomic_inc(&rdev->nr_pending); 1538 rcu_read_unlock(); 1539 success = sync_page_io(rdev->bdev, 1540 r10_bio->devs[sl].addr + 1541 sect + rdev->data_offset, 1542 s<<9, 1543 conf->tmppage, READ); 1544 rdev_dec_pending(rdev, mddev); 1545 rcu_read_lock(); 1546 if (success) 1547 break; 1548 } 1549 sl++; 1550 if (sl == conf->copies) 1551 sl = 0; 1552 } while (!success && sl != r10_bio->read_slot); 1553 rcu_read_unlock(); 1554 1555 if (!success) { 1556 /* Cannot read from anywhere -- bye bye array */ 1557 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1558 md_error(mddev, conf->mirrors[dn].rdev); 1559 break; 1560 } 1561 1562 start = sl; 1563 /* write it back and re-read */ 1564 rcu_read_lock(); 1565 while (sl != r10_bio->read_slot) { 1566 char b[BDEVNAME_SIZE]; 1567 1568 if (sl==0) 1569 sl = conf->copies; 1570 sl--; 1571 d = r10_bio->devs[sl].devnum; 1572 rdev = rcu_dereference(conf->mirrors[d].rdev); 1573 if (rdev && 1574 test_bit(In_sync, &rdev->flags)) { 1575 atomic_inc(&rdev->nr_pending); 1576 rcu_read_unlock(); 1577 atomic_add(s, &rdev->corrected_errors); 1578 if (sync_page_io(rdev->bdev, 1579 r10_bio->devs[sl].addr + 1580 sect + rdev->data_offset, 1581 s<<9, conf->tmppage, WRITE) 1582 == 0) { 1583 /* Well, this device is dead */ 1584 printk(KERN_NOTICE 1585 "md/raid10:%s: read correction " 1586 "write failed" 1587 " (%d sectors at %llu on %s)\n", 1588 mdname(mddev), s, 1589 (unsigned long long)(sect+ 1590 rdev->data_offset), 1591 bdevname(rdev->bdev, b)); 1592 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 1593 "drive\n", 1594 mdname(mddev), 1595 bdevname(rdev->bdev, b)); 1596 md_error(mddev, rdev); 1597 } 1598 rdev_dec_pending(rdev, mddev); 1599 rcu_read_lock(); 1600 } 1601 } 1602 sl = start; 1603 while (sl != r10_bio->read_slot) { 1604 1605 if (sl==0) 1606 sl = conf->copies; 1607 sl--; 1608 d = r10_bio->devs[sl].devnum; 1609 rdev = rcu_dereference(conf->mirrors[d].rdev); 1610 if (rdev && 1611 test_bit(In_sync, &rdev->flags)) { 1612 char b[BDEVNAME_SIZE]; 1613 atomic_inc(&rdev->nr_pending); 1614 rcu_read_unlock(); 1615 if (sync_page_io(rdev->bdev, 1616 r10_bio->devs[sl].addr + 1617 sect + rdev->data_offset, 1618 s<<9, conf->tmppage, 1619 READ) == 0) { 1620 /* Well, this device is dead */ 1621 printk(KERN_NOTICE 1622 "md/raid10:%s: unable to read back " 1623 "corrected sectors" 1624 " (%d sectors at %llu on %s)\n", 1625 mdname(mddev), s, 1626 (unsigned long long)(sect+ 1627 rdev->data_offset), 1628 bdevname(rdev->bdev, b)); 1629 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n", 1630 mdname(mddev), 1631 bdevname(rdev->bdev, b)); 1632 1633 md_error(mddev, rdev); 1634 } else { 1635 printk(KERN_INFO 1636 "md/raid10:%s: read error corrected" 1637 " (%d sectors at %llu on %s)\n", 1638 mdname(mddev), s, 1639 (unsigned long long)(sect+ 1640 rdev->data_offset), 1641 bdevname(rdev->bdev, b)); 1642 } 1643 1644 rdev_dec_pending(rdev, mddev); 1645 rcu_read_lock(); 1646 } 1647 } 1648 rcu_read_unlock(); 1649 1650 sectors -= s; 1651 sect += s; 1652 } 1653 } 1654 1655 static void raid10d(mddev_t *mddev) 1656 { 1657 r10bio_t *r10_bio; 1658 struct bio *bio; 1659 unsigned long flags; 1660 conf_t *conf = mddev->private; 1661 struct list_head *head = &conf->retry_list; 1662 int unplug=0; 1663 mdk_rdev_t *rdev; 1664 1665 md_check_recovery(mddev); 1666 1667 for (;;) { 1668 char b[BDEVNAME_SIZE]; 1669 1670 unplug += flush_pending_writes(conf); 1671 1672 spin_lock_irqsave(&conf->device_lock, flags); 1673 if (list_empty(head)) { 1674 spin_unlock_irqrestore(&conf->device_lock, flags); 1675 break; 1676 } 1677 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1678 list_del(head->prev); 1679 conf->nr_queued--; 1680 spin_unlock_irqrestore(&conf->device_lock, flags); 1681 1682 mddev = r10_bio->mddev; 1683 conf = mddev->private; 1684 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1685 sync_request_write(mddev, r10_bio); 1686 unplug = 1; 1687 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1688 recovery_request_write(mddev, r10_bio); 1689 unplug = 1; 1690 } else { 1691 int mirror; 1692 /* we got a read error. Maybe the drive is bad. Maybe just 1693 * the block and we can fix it. 1694 * We freeze all other IO, and try reading the block from 1695 * other devices. When we find one, we re-write 1696 * and check it that fixes the read error. 1697 * This is all done synchronously while the array is 1698 * frozen. 1699 */ 1700 if (mddev->ro == 0) { 1701 freeze_array(conf); 1702 fix_read_error(conf, mddev, r10_bio); 1703 unfreeze_array(conf); 1704 } 1705 1706 bio = r10_bio->devs[r10_bio->read_slot].bio; 1707 r10_bio->devs[r10_bio->read_slot].bio = 1708 mddev->ro ? IO_BLOCKED : NULL; 1709 mirror = read_balance(conf, r10_bio); 1710 if (mirror == -1) { 1711 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 1712 " read error for block %llu\n", 1713 mdname(mddev), 1714 bdevname(bio->bi_bdev,b), 1715 (unsigned long long)r10_bio->sector); 1716 raid_end_bio_io(r10_bio); 1717 bio_put(bio); 1718 } else { 1719 const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO); 1720 bio_put(bio); 1721 rdev = conf->mirrors[mirror].rdev; 1722 if (printk_ratelimit()) 1723 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to" 1724 " another mirror\n", 1725 mdname(mddev), 1726 bdevname(rdev->bdev,b), 1727 (unsigned long long)r10_bio->sector); 1728 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1729 r10_bio->devs[r10_bio->read_slot].bio = bio; 1730 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1731 + rdev->data_offset; 1732 bio->bi_bdev = rdev->bdev; 1733 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 1734 bio->bi_private = r10_bio; 1735 bio->bi_end_io = raid10_end_read_request; 1736 unplug = 1; 1737 generic_make_request(bio); 1738 } 1739 } 1740 cond_resched(); 1741 } 1742 if (unplug) 1743 unplug_slaves(mddev); 1744 } 1745 1746 1747 static int init_resync(conf_t *conf) 1748 { 1749 int buffs; 1750 1751 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1752 BUG_ON(conf->r10buf_pool); 1753 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1754 if (!conf->r10buf_pool) 1755 return -ENOMEM; 1756 conf->next_resync = 0; 1757 return 0; 1758 } 1759 1760 /* 1761 * perform a "sync" on one "block" 1762 * 1763 * We need to make sure that no normal I/O request - particularly write 1764 * requests - conflict with active sync requests. 1765 * 1766 * This is achieved by tracking pending requests and a 'barrier' concept 1767 * that can be installed to exclude normal IO requests. 1768 * 1769 * Resync and recovery are handled very differently. 1770 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1771 * 1772 * For resync, we iterate over virtual addresses, read all copies, 1773 * and update if there are differences. If only one copy is live, 1774 * skip it. 1775 * For recovery, we iterate over physical addresses, read a good 1776 * value for each non-in_sync drive, and over-write. 1777 * 1778 * So, for recovery we may have several outstanding complex requests for a 1779 * given address, one for each out-of-sync device. We model this by allocating 1780 * a number of r10_bio structures, one for each out-of-sync device. 1781 * As we setup these structures, we collect all bio's together into a list 1782 * which we then process collectively to add pages, and then process again 1783 * to pass to generic_make_request. 1784 * 1785 * The r10_bio structures are linked using a borrowed master_bio pointer. 1786 * This link is counted in ->remaining. When the r10_bio that points to NULL 1787 * has its remaining count decremented to 0, the whole complex operation 1788 * is complete. 1789 * 1790 */ 1791 1792 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1793 { 1794 conf_t *conf = mddev->private; 1795 r10bio_t *r10_bio; 1796 struct bio *biolist = NULL, *bio; 1797 sector_t max_sector, nr_sectors; 1798 int disk; 1799 int i; 1800 int max_sync; 1801 int sync_blocks; 1802 1803 sector_t sectors_skipped = 0; 1804 int chunks_skipped = 0; 1805 1806 if (!conf->r10buf_pool) 1807 if (init_resync(conf)) 1808 return 0; 1809 1810 skipped: 1811 max_sector = mddev->dev_sectors; 1812 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1813 max_sector = mddev->resync_max_sectors; 1814 if (sector_nr >= max_sector) { 1815 /* If we aborted, we need to abort the 1816 * sync on the 'current' bitmap chucks (there can 1817 * be several when recovering multiple devices). 1818 * as we may have started syncing it but not finished. 1819 * We can find the current address in 1820 * mddev->curr_resync, but for recovery, 1821 * we need to convert that to several 1822 * virtual addresses. 1823 */ 1824 if (mddev->curr_resync < max_sector) { /* aborted */ 1825 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1826 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1827 &sync_blocks, 1); 1828 else for (i=0; i<conf->raid_disks; i++) { 1829 sector_t sect = 1830 raid10_find_virt(conf, mddev->curr_resync, i); 1831 bitmap_end_sync(mddev->bitmap, sect, 1832 &sync_blocks, 1); 1833 } 1834 } else /* completed sync */ 1835 conf->fullsync = 0; 1836 1837 bitmap_close_sync(mddev->bitmap); 1838 close_sync(conf); 1839 *skipped = 1; 1840 return sectors_skipped; 1841 } 1842 if (chunks_skipped >= conf->raid_disks) { 1843 /* if there has been nothing to do on any drive, 1844 * then there is nothing to do at all.. 1845 */ 1846 *skipped = 1; 1847 return (max_sector - sector_nr) + sectors_skipped; 1848 } 1849 1850 if (max_sector > mddev->resync_max) 1851 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1852 1853 /* make sure whole request will fit in a chunk - if chunks 1854 * are meaningful 1855 */ 1856 if (conf->near_copies < conf->raid_disks && 1857 max_sector > (sector_nr | conf->chunk_mask)) 1858 max_sector = (sector_nr | conf->chunk_mask) + 1; 1859 /* 1860 * If there is non-resync activity waiting for us then 1861 * put in a delay to throttle resync. 1862 */ 1863 if (!go_faster && conf->nr_waiting) 1864 msleep_interruptible(1000); 1865 1866 /* Again, very different code for resync and recovery. 1867 * Both must result in an r10bio with a list of bios that 1868 * have bi_end_io, bi_sector, bi_bdev set, 1869 * and bi_private set to the r10bio. 1870 * For recovery, we may actually create several r10bios 1871 * with 2 bios in each, that correspond to the bios in the main one. 1872 * In this case, the subordinate r10bios link back through a 1873 * borrowed master_bio pointer, and the counter in the master 1874 * includes a ref from each subordinate. 1875 */ 1876 /* First, we decide what to do and set ->bi_end_io 1877 * To end_sync_read if we want to read, and 1878 * end_sync_write if we will want to write. 1879 */ 1880 1881 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1882 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1883 /* recovery... the complicated one */ 1884 int j, k; 1885 r10_bio = NULL; 1886 1887 for (i=0 ; i<conf->raid_disks; i++) 1888 if (conf->mirrors[i].rdev && 1889 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1890 int still_degraded = 0; 1891 /* want to reconstruct this device */ 1892 r10bio_t *rb2 = r10_bio; 1893 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1894 int must_sync; 1895 /* Unless we are doing a full sync, we only need 1896 * to recover the block if it is set in the bitmap 1897 */ 1898 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1899 &sync_blocks, 1); 1900 if (sync_blocks < max_sync) 1901 max_sync = sync_blocks; 1902 if (!must_sync && 1903 !conf->fullsync) { 1904 /* yep, skip the sync_blocks here, but don't assume 1905 * that there will never be anything to do here 1906 */ 1907 chunks_skipped = -1; 1908 continue; 1909 } 1910 1911 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1912 raise_barrier(conf, rb2 != NULL); 1913 atomic_set(&r10_bio->remaining, 0); 1914 1915 r10_bio->master_bio = (struct bio*)rb2; 1916 if (rb2) 1917 atomic_inc(&rb2->remaining); 1918 r10_bio->mddev = mddev; 1919 set_bit(R10BIO_IsRecover, &r10_bio->state); 1920 r10_bio->sector = sect; 1921 1922 raid10_find_phys(conf, r10_bio); 1923 1924 /* Need to check if the array will still be 1925 * degraded 1926 */ 1927 for (j=0; j<conf->raid_disks; j++) 1928 if (conf->mirrors[j].rdev == NULL || 1929 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 1930 still_degraded = 1; 1931 break; 1932 } 1933 1934 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1935 &sync_blocks, still_degraded); 1936 1937 for (j=0; j<conf->copies;j++) { 1938 int d = r10_bio->devs[j].devnum; 1939 if (conf->mirrors[d].rdev && 1940 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1941 /* This is where we read from */ 1942 bio = r10_bio->devs[0].bio; 1943 bio->bi_next = biolist; 1944 biolist = bio; 1945 bio->bi_private = r10_bio; 1946 bio->bi_end_io = end_sync_read; 1947 bio->bi_rw = READ; 1948 bio->bi_sector = r10_bio->devs[j].addr + 1949 conf->mirrors[d].rdev->data_offset; 1950 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1951 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1952 atomic_inc(&r10_bio->remaining); 1953 /* and we write to 'i' */ 1954 1955 for (k=0; k<conf->copies; k++) 1956 if (r10_bio->devs[k].devnum == i) 1957 break; 1958 BUG_ON(k == conf->copies); 1959 bio = r10_bio->devs[1].bio; 1960 bio->bi_next = biolist; 1961 biolist = bio; 1962 bio->bi_private = r10_bio; 1963 bio->bi_end_io = end_sync_write; 1964 bio->bi_rw = WRITE; 1965 bio->bi_sector = r10_bio->devs[k].addr + 1966 conf->mirrors[i].rdev->data_offset; 1967 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1968 1969 r10_bio->devs[0].devnum = d; 1970 r10_bio->devs[1].devnum = i; 1971 1972 break; 1973 } 1974 } 1975 if (j == conf->copies) { 1976 /* Cannot recover, so abort the recovery */ 1977 put_buf(r10_bio); 1978 if (rb2) 1979 atomic_dec(&rb2->remaining); 1980 r10_bio = rb2; 1981 if (!test_and_set_bit(MD_RECOVERY_INTR, 1982 &mddev->recovery)) 1983 printk(KERN_INFO "md/raid10:%s: insufficient " 1984 "working devices for recovery.\n", 1985 mdname(mddev)); 1986 break; 1987 } 1988 } 1989 if (biolist == NULL) { 1990 while (r10_bio) { 1991 r10bio_t *rb2 = r10_bio; 1992 r10_bio = (r10bio_t*) rb2->master_bio; 1993 rb2->master_bio = NULL; 1994 put_buf(rb2); 1995 } 1996 goto giveup; 1997 } 1998 } else { 1999 /* resync. Schedule a read for every block at this virt offset */ 2000 int count = 0; 2001 2002 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2003 2004 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2005 &sync_blocks, mddev->degraded) && 2006 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2007 /* We can skip this block */ 2008 *skipped = 1; 2009 return sync_blocks + sectors_skipped; 2010 } 2011 if (sync_blocks < max_sync) 2012 max_sync = sync_blocks; 2013 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2014 2015 r10_bio->mddev = mddev; 2016 atomic_set(&r10_bio->remaining, 0); 2017 raise_barrier(conf, 0); 2018 conf->next_resync = sector_nr; 2019 2020 r10_bio->master_bio = NULL; 2021 r10_bio->sector = sector_nr; 2022 set_bit(R10BIO_IsSync, &r10_bio->state); 2023 raid10_find_phys(conf, r10_bio); 2024 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 2025 2026 for (i=0; i<conf->copies; i++) { 2027 int d = r10_bio->devs[i].devnum; 2028 bio = r10_bio->devs[i].bio; 2029 bio->bi_end_io = NULL; 2030 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2031 if (conf->mirrors[d].rdev == NULL || 2032 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 2033 continue; 2034 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2035 atomic_inc(&r10_bio->remaining); 2036 bio->bi_next = biolist; 2037 biolist = bio; 2038 bio->bi_private = r10_bio; 2039 bio->bi_end_io = end_sync_read; 2040 bio->bi_rw = READ; 2041 bio->bi_sector = r10_bio->devs[i].addr + 2042 conf->mirrors[d].rdev->data_offset; 2043 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2044 count++; 2045 } 2046 2047 if (count < 2) { 2048 for (i=0; i<conf->copies; i++) { 2049 int d = r10_bio->devs[i].devnum; 2050 if (r10_bio->devs[i].bio->bi_end_io) 2051 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 2052 } 2053 put_buf(r10_bio); 2054 biolist = NULL; 2055 goto giveup; 2056 } 2057 } 2058 2059 for (bio = biolist; bio ; bio=bio->bi_next) { 2060 2061 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 2062 if (bio->bi_end_io) 2063 bio->bi_flags |= 1 << BIO_UPTODATE; 2064 bio->bi_vcnt = 0; 2065 bio->bi_idx = 0; 2066 bio->bi_phys_segments = 0; 2067 bio->bi_size = 0; 2068 } 2069 2070 nr_sectors = 0; 2071 if (sector_nr + max_sync < max_sector) 2072 max_sector = sector_nr + max_sync; 2073 do { 2074 struct page *page; 2075 int len = PAGE_SIZE; 2076 disk = 0; 2077 if (sector_nr + (len>>9) > max_sector) 2078 len = (max_sector - sector_nr) << 9; 2079 if (len == 0) 2080 break; 2081 for (bio= biolist ; bio ; bio=bio->bi_next) { 2082 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2083 if (bio_add_page(bio, page, len, 0) == 0) { 2084 /* stop here */ 2085 struct bio *bio2; 2086 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2087 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 2088 /* remove last page from this bio */ 2089 bio2->bi_vcnt--; 2090 bio2->bi_size -= len; 2091 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 2092 } 2093 goto bio_full; 2094 } 2095 disk = i; 2096 } 2097 nr_sectors += len>>9; 2098 sector_nr += len>>9; 2099 } while (biolist->bi_vcnt < RESYNC_PAGES); 2100 bio_full: 2101 r10_bio->sectors = nr_sectors; 2102 2103 while (biolist) { 2104 bio = biolist; 2105 biolist = biolist->bi_next; 2106 2107 bio->bi_next = NULL; 2108 r10_bio = bio->bi_private; 2109 r10_bio->sectors = nr_sectors; 2110 2111 if (bio->bi_end_io == end_sync_read) { 2112 md_sync_acct(bio->bi_bdev, nr_sectors); 2113 generic_make_request(bio); 2114 } 2115 } 2116 2117 if (sectors_skipped) 2118 /* pretend they weren't skipped, it makes 2119 * no important difference in this case 2120 */ 2121 md_done_sync(mddev, sectors_skipped, 1); 2122 2123 return sectors_skipped + nr_sectors; 2124 giveup: 2125 /* There is nowhere to write, so all non-sync 2126 * drives must be failed, so try the next chunk... 2127 */ 2128 if (sector_nr + max_sync < max_sector) 2129 max_sector = sector_nr + max_sync; 2130 2131 sectors_skipped += (max_sector - sector_nr); 2132 chunks_skipped ++; 2133 sector_nr = max_sector; 2134 goto skipped; 2135 } 2136 2137 static sector_t 2138 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks) 2139 { 2140 sector_t size; 2141 conf_t *conf = mddev->private; 2142 2143 if (!raid_disks) 2144 raid_disks = conf->raid_disks; 2145 if (!sectors) 2146 sectors = conf->dev_sectors; 2147 2148 size = sectors >> conf->chunk_shift; 2149 sector_div(size, conf->far_copies); 2150 size = size * raid_disks; 2151 sector_div(size, conf->near_copies); 2152 2153 return size << conf->chunk_shift; 2154 } 2155 2156 2157 static conf_t *setup_conf(mddev_t *mddev) 2158 { 2159 conf_t *conf = NULL; 2160 int nc, fc, fo; 2161 sector_t stride, size; 2162 int err = -EINVAL; 2163 2164 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || 2165 !is_power_of_2(mddev->new_chunk_sectors)) { 2166 printk(KERN_ERR "md/raid10:%s: chunk size must be " 2167 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 2168 mdname(mddev), PAGE_SIZE); 2169 goto out; 2170 } 2171 2172 nc = mddev->new_layout & 255; 2173 fc = (mddev->new_layout >> 8) & 255; 2174 fo = mddev->new_layout & (1<<16); 2175 2176 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2177 (mddev->new_layout >> 17)) { 2178 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 2179 mdname(mddev), mddev->new_layout); 2180 goto out; 2181 } 2182 2183 err = -ENOMEM; 2184 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2185 if (!conf) 2186 goto out; 2187 2188 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2189 GFP_KERNEL); 2190 if (!conf->mirrors) 2191 goto out; 2192 2193 conf->tmppage = alloc_page(GFP_KERNEL); 2194 if (!conf->tmppage) 2195 goto out; 2196 2197 2198 conf->raid_disks = mddev->raid_disks; 2199 conf->near_copies = nc; 2200 conf->far_copies = fc; 2201 conf->copies = nc*fc; 2202 conf->far_offset = fo; 2203 conf->chunk_mask = mddev->new_chunk_sectors - 1; 2204 conf->chunk_shift = ffz(~mddev->new_chunk_sectors); 2205 2206 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2207 r10bio_pool_free, conf); 2208 if (!conf->r10bio_pool) 2209 goto out; 2210 2211 size = mddev->dev_sectors >> conf->chunk_shift; 2212 sector_div(size, fc); 2213 size = size * conf->raid_disks; 2214 sector_div(size, nc); 2215 /* 'size' is now the number of chunks in the array */ 2216 /* calculate "used chunks per device" in 'stride' */ 2217 stride = size * conf->copies; 2218 2219 /* We need to round up when dividing by raid_disks to 2220 * get the stride size. 2221 */ 2222 stride += conf->raid_disks - 1; 2223 sector_div(stride, conf->raid_disks); 2224 2225 conf->dev_sectors = stride << conf->chunk_shift; 2226 2227 if (fo) 2228 stride = 1; 2229 else 2230 sector_div(stride, fc); 2231 conf->stride = stride << conf->chunk_shift; 2232 2233 2234 spin_lock_init(&conf->device_lock); 2235 INIT_LIST_HEAD(&conf->retry_list); 2236 2237 spin_lock_init(&conf->resync_lock); 2238 init_waitqueue_head(&conf->wait_barrier); 2239 2240 conf->thread = md_register_thread(raid10d, mddev, NULL); 2241 if (!conf->thread) 2242 goto out; 2243 2244 conf->mddev = mddev; 2245 return conf; 2246 2247 out: 2248 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 2249 mdname(mddev)); 2250 if (conf) { 2251 if (conf->r10bio_pool) 2252 mempool_destroy(conf->r10bio_pool); 2253 kfree(conf->mirrors); 2254 safe_put_page(conf->tmppage); 2255 kfree(conf); 2256 } 2257 return ERR_PTR(err); 2258 } 2259 2260 static int run(mddev_t *mddev) 2261 { 2262 conf_t *conf; 2263 int i, disk_idx, chunk_size; 2264 mirror_info_t *disk; 2265 mdk_rdev_t *rdev; 2266 sector_t size; 2267 2268 /* 2269 * copy the already verified devices into our private RAID10 2270 * bookkeeping area. [whatever we allocate in run(), 2271 * should be freed in stop()] 2272 */ 2273 2274 if (mddev->private == NULL) { 2275 conf = setup_conf(mddev); 2276 if (IS_ERR(conf)) 2277 return PTR_ERR(conf); 2278 mddev->private = conf; 2279 } 2280 conf = mddev->private; 2281 if (!conf) 2282 goto out; 2283 2284 mddev->queue->queue_lock = &conf->device_lock; 2285 2286 mddev->thread = conf->thread; 2287 conf->thread = NULL; 2288 2289 chunk_size = mddev->chunk_sectors << 9; 2290 blk_queue_io_min(mddev->queue, chunk_size); 2291 if (conf->raid_disks % conf->near_copies) 2292 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 2293 else 2294 blk_queue_io_opt(mddev->queue, chunk_size * 2295 (conf->raid_disks / conf->near_copies)); 2296 2297 list_for_each_entry(rdev, &mddev->disks, same_set) { 2298 disk_idx = rdev->raid_disk; 2299 if (disk_idx >= conf->raid_disks 2300 || disk_idx < 0) 2301 continue; 2302 disk = conf->mirrors + disk_idx; 2303 2304 disk->rdev = rdev; 2305 disk_stack_limits(mddev->gendisk, rdev->bdev, 2306 rdev->data_offset << 9); 2307 /* as we don't honour merge_bvec_fn, we must never risk 2308 * violating it, so limit max_segments to 1 lying 2309 * within a single page. 2310 */ 2311 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2312 blk_queue_max_segments(mddev->queue, 1); 2313 blk_queue_segment_boundary(mddev->queue, 2314 PAGE_CACHE_SIZE - 1); 2315 } 2316 2317 disk->head_position = 0; 2318 } 2319 /* need to check that every block has at least one working mirror */ 2320 if (!enough(conf)) { 2321 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 2322 mdname(mddev)); 2323 goto out_free_conf; 2324 } 2325 2326 mddev->degraded = 0; 2327 for (i = 0; i < conf->raid_disks; i++) { 2328 2329 disk = conf->mirrors + i; 2330 2331 if (!disk->rdev || 2332 !test_bit(In_sync, &disk->rdev->flags)) { 2333 disk->head_position = 0; 2334 mddev->degraded++; 2335 if (disk->rdev) 2336 conf->fullsync = 1; 2337 } 2338 } 2339 2340 if (mddev->recovery_cp != MaxSector) 2341 printk(KERN_NOTICE "md/raid10:%s: not clean" 2342 " -- starting background reconstruction\n", 2343 mdname(mddev)); 2344 printk(KERN_INFO 2345 "md/raid10:%s: active with %d out of %d devices\n", 2346 mdname(mddev), conf->raid_disks - mddev->degraded, 2347 conf->raid_disks); 2348 /* 2349 * Ok, everything is just fine now 2350 */ 2351 mddev->dev_sectors = conf->dev_sectors; 2352 size = raid10_size(mddev, 0, 0); 2353 md_set_array_sectors(mddev, size); 2354 mddev->resync_max_sectors = size; 2355 2356 mddev->queue->unplug_fn = raid10_unplug; 2357 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2358 mddev->queue->backing_dev_info.congested_data = mddev; 2359 2360 /* Calculate max read-ahead size. 2361 * We need to readahead at least twice a whole stripe.... 2362 * maybe... 2363 */ 2364 { 2365 int stripe = conf->raid_disks * 2366 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 2367 stripe /= conf->near_copies; 2368 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2369 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2370 } 2371 2372 if (conf->near_copies < conf->raid_disks) 2373 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2374 md_integrity_register(mddev); 2375 return 0; 2376 2377 out_free_conf: 2378 if (conf->r10bio_pool) 2379 mempool_destroy(conf->r10bio_pool); 2380 safe_put_page(conf->tmppage); 2381 kfree(conf->mirrors); 2382 kfree(conf); 2383 mddev->private = NULL; 2384 md_unregister_thread(mddev->thread); 2385 out: 2386 return -EIO; 2387 } 2388 2389 static int stop(mddev_t *mddev) 2390 { 2391 conf_t *conf = mddev->private; 2392 2393 raise_barrier(conf, 0); 2394 lower_barrier(conf); 2395 2396 md_unregister_thread(mddev->thread); 2397 mddev->thread = NULL; 2398 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2399 if (conf->r10bio_pool) 2400 mempool_destroy(conf->r10bio_pool); 2401 kfree(conf->mirrors); 2402 kfree(conf); 2403 mddev->private = NULL; 2404 return 0; 2405 } 2406 2407 static void raid10_quiesce(mddev_t *mddev, int state) 2408 { 2409 conf_t *conf = mddev->private; 2410 2411 switch(state) { 2412 case 1: 2413 raise_barrier(conf, 0); 2414 break; 2415 case 0: 2416 lower_barrier(conf); 2417 break; 2418 } 2419 } 2420 2421 static void *raid10_takeover_raid0(mddev_t *mddev) 2422 { 2423 mdk_rdev_t *rdev; 2424 conf_t *conf; 2425 2426 if (mddev->degraded > 0) { 2427 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 2428 mdname(mddev)); 2429 return ERR_PTR(-EINVAL); 2430 } 2431 2432 /* Set new parameters */ 2433 mddev->new_level = 10; 2434 /* new layout: far_copies = 1, near_copies = 2 */ 2435 mddev->new_layout = (1<<8) + 2; 2436 mddev->new_chunk_sectors = mddev->chunk_sectors; 2437 mddev->delta_disks = mddev->raid_disks; 2438 mddev->raid_disks *= 2; 2439 /* make sure it will be not marked as dirty */ 2440 mddev->recovery_cp = MaxSector; 2441 2442 conf = setup_conf(mddev); 2443 if (!IS_ERR(conf)) 2444 list_for_each_entry(rdev, &mddev->disks, same_set) 2445 if (rdev->raid_disk >= 0) 2446 rdev->new_raid_disk = rdev->raid_disk * 2; 2447 2448 return conf; 2449 } 2450 2451 static void *raid10_takeover(mddev_t *mddev) 2452 { 2453 struct raid0_private_data *raid0_priv; 2454 2455 /* raid10 can take over: 2456 * raid0 - providing it has only two drives 2457 */ 2458 if (mddev->level == 0) { 2459 /* for raid0 takeover only one zone is supported */ 2460 raid0_priv = mddev->private; 2461 if (raid0_priv->nr_strip_zones > 1) { 2462 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 2463 " with more than one zone.\n", 2464 mdname(mddev)); 2465 return ERR_PTR(-EINVAL); 2466 } 2467 return raid10_takeover_raid0(mddev); 2468 } 2469 return ERR_PTR(-EINVAL); 2470 } 2471 2472 static struct mdk_personality raid10_personality = 2473 { 2474 .name = "raid10", 2475 .level = 10, 2476 .owner = THIS_MODULE, 2477 .make_request = make_request, 2478 .run = run, 2479 .stop = stop, 2480 .status = status, 2481 .error_handler = error, 2482 .hot_add_disk = raid10_add_disk, 2483 .hot_remove_disk= raid10_remove_disk, 2484 .spare_active = raid10_spare_active, 2485 .sync_request = sync_request, 2486 .quiesce = raid10_quiesce, 2487 .size = raid10_size, 2488 .takeover = raid10_takeover, 2489 }; 2490 2491 static int __init raid_init(void) 2492 { 2493 return register_md_personality(&raid10_personality); 2494 } 2495 2496 static void raid_exit(void) 2497 { 2498 unregister_md_personality(&raid10_personality); 2499 } 2500 2501 module_init(raid_init); 2502 module_exit(raid_exit); 2503 MODULE_LICENSE("GPL"); 2504 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 2505 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2506 MODULE_ALIAS("md-raid10"); 2507 MODULE_ALIAS("md-level-10"); 2508