xref: /linux/drivers/md/raid10.c (revision 3253aba3408aa4eb2e4e09365eede3e63ef7536b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27 
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *    use_far_sets (stored in bit 17 of layout )
37  *    use_far_sets_bugfixed (stored in bit 18 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.  Each device
40  * is divided into far_copies sections.   In each section, chunks are laid out
41  * in a style similar to raid0, but near_copies copies of each chunk is stored
42  * (each on a different drive).  The starting device for each section is offset
43  * near_copies from the starting device of the previous section.  Thus there
44  * are (near_copies * far_copies) of each chunk, and each is on a different
45  * drive.  near_copies and far_copies must be at least one, and their product
46  * is at most raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of being very far
50  * apart on disk, there are adjacent stripes.
51  *
52  * The far and offset algorithms are handled slightly differently if
53  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
54  * sets that are (near_copies * far_copies) in size.  The far copied stripes
55  * are still shifted by 'near_copies' devices, but this shifting stays confined
56  * to the set rather than the entire array.  This is done to improve the number
57  * of device combinations that can fail without causing the array to fail.
58  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59  * on a device):
60  *    A B C D    A B C D E
61  *      ...         ...
62  *    D A B C    E A B C D
63  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64  *    [A B] [C D]    [A B] [C D E]
65  *    |...| |...|    |...| | ... |
66  *    [B A] [D C]    [B A] [E C D]
67  */
68 
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int _enough(struct r10conf *conf, int previous, int ignore);
72 static int enough(struct r10conf *conf, int ignore);
73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74 				int *skipped);
75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76 static void end_reshape_write(struct bio *bio);
77 static void end_reshape(struct r10conf *conf);
78 
79 #include "raid1-10.c"
80 
81 #define NULL_CMD
82 #define cmd_before(conf, cmd) \
83 	do { \
84 		write_sequnlock_irq(&(conf)->resync_lock); \
85 		cmd; \
86 	} while (0)
87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
88 
89 #define wait_event_barrier_cmd(conf, cond, cmd) \
90 	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
91 		       cmd_after(conf))
92 
93 #define wait_event_barrier(conf, cond) \
94 	wait_event_barrier_cmd(conf, cond, NULL_CMD)
95 
96 /*
97  * for resync bio, r10bio pointer can be retrieved from the per-bio
98  * 'struct resync_pages'.
99  */
100 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
101 {
102 	return get_resync_pages(bio)->raid_bio;
103 }
104 
105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
106 {
107 	struct r10conf *conf = data;
108 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
109 
110 	/* allocate a r10bio with room for raid_disks entries in the
111 	 * bios array */
112 	return kzalloc(size, gfp_flags);
113 }
114 
115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
116 /* amount of memory to reserve for resync requests */
117 #define RESYNC_WINDOW (1024*1024)
118 /* maximum number of concurrent requests, memory permitting */
119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122 
123 /*
124  * When performing a resync, we need to read and compare, so
125  * we need as many pages are there are copies.
126  * When performing a recovery, we need 2 bios, one for read,
127  * one for write (we recover only one drive per r10buf)
128  *
129  */
130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct r10conf *conf = data;
133 	struct r10bio *r10_bio;
134 	struct bio *bio;
135 	int j;
136 	int nalloc, nalloc_rp;
137 	struct resync_pages *rps;
138 
139 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
140 	if (!r10_bio)
141 		return NULL;
142 
143 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
144 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
145 		nalloc = conf->copies; /* resync */
146 	else
147 		nalloc = 2; /* recovery */
148 
149 	/* allocate once for all bios */
150 	if (!conf->have_replacement)
151 		nalloc_rp = nalloc;
152 	else
153 		nalloc_rp = nalloc * 2;
154 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
155 	if (!rps)
156 		goto out_free_r10bio;
157 
158 	/*
159 	 * Allocate bios.
160 	 */
161 	for (j = nalloc ; j-- ; ) {
162 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
163 		if (!bio)
164 			goto out_free_bio;
165 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
166 		r10_bio->devs[j].bio = bio;
167 		if (!conf->have_replacement)
168 			continue;
169 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
170 		if (!bio)
171 			goto out_free_bio;
172 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173 		r10_bio->devs[j].repl_bio = bio;
174 	}
175 	/*
176 	 * Allocate RESYNC_PAGES data pages and attach them
177 	 * where needed.
178 	 */
179 	for (j = 0; j < nalloc; j++) {
180 		struct bio *rbio = r10_bio->devs[j].repl_bio;
181 		struct resync_pages *rp, *rp_repl;
182 
183 		rp = &rps[j];
184 		if (rbio)
185 			rp_repl = &rps[nalloc + j];
186 
187 		bio = r10_bio->devs[j].bio;
188 
189 		if (!j || test_bit(MD_RECOVERY_SYNC,
190 				   &conf->mddev->recovery)) {
191 			if (resync_alloc_pages(rp, gfp_flags))
192 				goto out_free_pages;
193 		} else {
194 			memcpy(rp, &rps[0], sizeof(*rp));
195 			resync_get_all_pages(rp);
196 		}
197 
198 		rp->raid_bio = r10_bio;
199 		bio->bi_private = rp;
200 		if (rbio) {
201 			memcpy(rp_repl, rp, sizeof(*rp));
202 			rbio->bi_private = rp_repl;
203 		}
204 	}
205 
206 	return r10_bio;
207 
208 out_free_pages:
209 	while (--j >= 0)
210 		resync_free_pages(&rps[j]);
211 
212 	j = 0;
213 out_free_bio:
214 	for ( ; j < nalloc; j++) {
215 		if (r10_bio->devs[j].bio)
216 			bio_uninit(r10_bio->devs[j].bio);
217 		kfree(r10_bio->devs[j].bio);
218 		if (r10_bio->devs[j].repl_bio)
219 			bio_uninit(r10_bio->devs[j].repl_bio);
220 		kfree(r10_bio->devs[j].repl_bio);
221 	}
222 	kfree(rps);
223 out_free_r10bio:
224 	rbio_pool_free(r10_bio, conf);
225 	return NULL;
226 }
227 
228 static void r10buf_pool_free(void *__r10_bio, void *data)
229 {
230 	struct r10conf *conf = data;
231 	struct r10bio *r10bio = __r10_bio;
232 	int j;
233 	struct resync_pages *rp = NULL;
234 
235 	for (j = conf->copies; j--; ) {
236 		struct bio *bio = r10bio->devs[j].bio;
237 
238 		if (bio) {
239 			rp = get_resync_pages(bio);
240 			resync_free_pages(rp);
241 			bio_uninit(bio);
242 			kfree(bio);
243 		}
244 
245 		bio = r10bio->devs[j].repl_bio;
246 		if (bio) {
247 			bio_uninit(bio);
248 			kfree(bio);
249 		}
250 	}
251 
252 	/* resync pages array stored in the 1st bio's .bi_private */
253 	kfree(rp);
254 
255 	rbio_pool_free(r10bio, conf);
256 }
257 
258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
259 {
260 	int i;
261 
262 	for (i = 0; i < conf->geo.raid_disks; i++) {
263 		struct bio **bio = & r10_bio->devs[i].bio;
264 		if (!BIO_SPECIAL(*bio))
265 			bio_put(*bio);
266 		*bio = NULL;
267 		bio = &r10_bio->devs[i].repl_bio;
268 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
269 			bio_put(*bio);
270 		*bio = NULL;
271 	}
272 }
273 
274 static void free_r10bio(struct r10bio *r10_bio)
275 {
276 	struct r10conf *conf = r10_bio->mddev->private;
277 
278 	put_all_bios(conf, r10_bio);
279 	mempool_free(r10_bio, &conf->r10bio_pool);
280 }
281 
282 static void put_buf(struct r10bio *r10_bio)
283 {
284 	struct r10conf *conf = r10_bio->mddev->private;
285 
286 	mempool_free(r10_bio, &conf->r10buf_pool);
287 
288 	lower_barrier(conf);
289 }
290 
291 static void wake_up_barrier(struct r10conf *conf)
292 {
293 	if (wq_has_sleeper(&conf->wait_barrier))
294 		wake_up(&conf->wait_barrier);
295 }
296 
297 static void reschedule_retry(struct r10bio *r10_bio)
298 {
299 	unsigned long flags;
300 	struct mddev *mddev = r10_bio->mddev;
301 	struct r10conf *conf = mddev->private;
302 
303 	spin_lock_irqsave(&conf->device_lock, flags);
304 	list_add(&r10_bio->retry_list, &conf->retry_list);
305 	conf->nr_queued ++;
306 	spin_unlock_irqrestore(&conf->device_lock, flags);
307 
308 	/* wake up frozen array... */
309 	wake_up(&conf->wait_barrier);
310 
311 	md_wakeup_thread(mddev->thread);
312 }
313 
314 /*
315  * raid_end_bio_io() is called when we have finished servicing a mirrored
316  * operation and are ready to return a success/failure code to the buffer
317  * cache layer.
318  */
319 static void raid_end_bio_io(struct r10bio *r10_bio)
320 {
321 	struct bio *bio = r10_bio->master_bio;
322 	struct r10conf *conf = r10_bio->mddev->private;
323 
324 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
325 		bio->bi_status = BLK_STS_IOERR;
326 
327 	bio_endio(bio);
328 	/*
329 	 * Wake up any possible resync thread that waits for the device
330 	 * to go idle.
331 	 */
332 	allow_barrier(conf);
333 
334 	free_r10bio(r10_bio);
335 }
336 
337 /*
338  * Update disk head position estimator based on IRQ completion info.
339  */
340 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
341 {
342 	struct r10conf *conf = r10_bio->mddev->private;
343 
344 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
345 		r10_bio->devs[slot].addr + (r10_bio->sectors);
346 }
347 
348 /*
349  * Find the disk number which triggered given bio
350  */
351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
352 			 struct bio *bio, int *slotp, int *replp)
353 {
354 	int slot;
355 	int repl = 0;
356 
357 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
358 		if (r10_bio->devs[slot].bio == bio)
359 			break;
360 		if (r10_bio->devs[slot].repl_bio == bio) {
361 			repl = 1;
362 			break;
363 		}
364 	}
365 
366 	update_head_pos(slot, r10_bio);
367 
368 	if (slotp)
369 		*slotp = slot;
370 	if (replp)
371 		*replp = repl;
372 	return r10_bio->devs[slot].devnum;
373 }
374 
375 static void raid10_end_read_request(struct bio *bio)
376 {
377 	int uptodate = !bio->bi_status;
378 	struct r10bio *r10_bio = bio->bi_private;
379 	int slot;
380 	struct md_rdev *rdev;
381 	struct r10conf *conf = r10_bio->mddev->private;
382 
383 	slot = r10_bio->read_slot;
384 	rdev = r10_bio->devs[slot].rdev;
385 	/*
386 	 * this branch is our 'one mirror IO has finished' event handler:
387 	 */
388 	update_head_pos(slot, r10_bio);
389 
390 	if (uptodate) {
391 		/*
392 		 * Set R10BIO_Uptodate in our master bio, so that
393 		 * we will return a good error code to the higher
394 		 * levels even if IO on some other mirrored buffer fails.
395 		 *
396 		 * The 'master' represents the composite IO operation to
397 		 * user-side. So if something waits for IO, then it will
398 		 * wait for the 'master' bio.
399 		 */
400 		set_bit(R10BIO_Uptodate, &r10_bio->state);
401 	} else {
402 		/* If all other devices that store this block have
403 		 * failed, we want to return the error upwards rather
404 		 * than fail the last device.  Here we redefine
405 		 * "uptodate" to mean "Don't want to retry"
406 		 */
407 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
408 			     rdev->raid_disk))
409 			uptodate = 1;
410 	}
411 	if (uptodate) {
412 		raid_end_bio_io(r10_bio);
413 		rdev_dec_pending(rdev, conf->mddev);
414 	} else {
415 		/*
416 		 * oops, read error - keep the refcount on the rdev
417 		 */
418 		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
419 				   mdname(conf->mddev),
420 				   rdev->bdev,
421 				   (unsigned long long)r10_bio->sector);
422 		set_bit(R10BIO_ReadError, &r10_bio->state);
423 		reschedule_retry(r10_bio);
424 	}
425 }
426 
427 static void close_write(struct r10bio *r10_bio)
428 {
429 	/* clear the bitmap if all writes complete successfully */
430 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
431 			   r10_bio->sectors,
432 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
433 			   0);
434 	md_write_end(r10_bio->mddev);
435 }
436 
437 static void one_write_done(struct r10bio *r10_bio)
438 {
439 	if (atomic_dec_and_test(&r10_bio->remaining)) {
440 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
441 			reschedule_retry(r10_bio);
442 		else {
443 			close_write(r10_bio);
444 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
445 				reschedule_retry(r10_bio);
446 			else
447 				raid_end_bio_io(r10_bio);
448 		}
449 	}
450 }
451 
452 static void raid10_end_write_request(struct bio *bio)
453 {
454 	struct r10bio *r10_bio = bio->bi_private;
455 	int dev;
456 	int dec_rdev = 1;
457 	struct r10conf *conf = r10_bio->mddev->private;
458 	int slot, repl;
459 	struct md_rdev *rdev = NULL;
460 	struct bio *to_put = NULL;
461 	bool discard_error;
462 
463 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
464 
465 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
466 
467 	if (repl)
468 		rdev = conf->mirrors[dev].replacement;
469 	if (!rdev) {
470 		smp_rmb();
471 		repl = 0;
472 		rdev = conf->mirrors[dev].rdev;
473 	}
474 	/*
475 	 * this branch is our 'one mirror IO has finished' event handler:
476 	 */
477 	if (bio->bi_status && !discard_error) {
478 		if (repl)
479 			/* Never record new bad blocks to replacement,
480 			 * just fail it.
481 			 */
482 			md_error(rdev->mddev, rdev);
483 		else {
484 			set_bit(WriteErrorSeen,	&rdev->flags);
485 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
486 				set_bit(MD_RECOVERY_NEEDED,
487 					&rdev->mddev->recovery);
488 
489 			dec_rdev = 0;
490 			if (test_bit(FailFast, &rdev->flags) &&
491 			    (bio->bi_opf & MD_FAILFAST)) {
492 				md_error(rdev->mddev, rdev);
493 			}
494 
495 			/*
496 			 * When the device is faulty, it is not necessary to
497 			 * handle write error.
498 			 */
499 			if (!test_bit(Faulty, &rdev->flags))
500 				set_bit(R10BIO_WriteError, &r10_bio->state);
501 			else {
502 				/* Fail the request */
503 				set_bit(R10BIO_Degraded, &r10_bio->state);
504 				r10_bio->devs[slot].bio = NULL;
505 				to_put = bio;
506 				dec_rdev = 1;
507 			}
508 		}
509 	} else {
510 		/*
511 		 * Set R10BIO_Uptodate in our master bio, so that
512 		 * we will return a good error code for to the higher
513 		 * levels even if IO on some other mirrored buffer fails.
514 		 *
515 		 * The 'master' represents the composite IO operation to
516 		 * user-side. So if something waits for IO, then it will
517 		 * wait for the 'master' bio.
518 		 *
519 		 * Do not set R10BIO_Uptodate if the current device is
520 		 * rebuilding or Faulty. This is because we cannot use
521 		 * such device for properly reading the data back (we could
522 		 * potentially use it, if the current write would have felt
523 		 * before rdev->recovery_offset, but for simplicity we don't
524 		 * check this here.
525 		 */
526 		if (test_bit(In_sync, &rdev->flags) &&
527 		    !test_bit(Faulty, &rdev->flags))
528 			set_bit(R10BIO_Uptodate, &r10_bio->state);
529 
530 		/* Maybe we can clear some bad blocks. */
531 		if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
532 				      r10_bio->sectors) &&
533 		    !discard_error) {
534 			bio_put(bio);
535 			if (repl)
536 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
537 			else
538 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
539 			dec_rdev = 0;
540 			set_bit(R10BIO_MadeGood, &r10_bio->state);
541 		}
542 	}
543 
544 	/*
545 	 *
546 	 * Let's see if all mirrored write operations have finished
547 	 * already.
548 	 */
549 	one_write_done(r10_bio);
550 	if (dec_rdev)
551 		rdev_dec_pending(rdev, conf->mddev);
552 	if (to_put)
553 		bio_put(to_put);
554 }
555 
556 /*
557  * RAID10 layout manager
558  * As well as the chunksize and raid_disks count, there are two
559  * parameters: near_copies and far_copies.
560  * near_copies * far_copies must be <= raid_disks.
561  * Normally one of these will be 1.
562  * If both are 1, we get raid0.
563  * If near_copies == raid_disks, we get raid1.
564  *
565  * Chunks are laid out in raid0 style with near_copies copies of the
566  * first chunk, followed by near_copies copies of the next chunk and
567  * so on.
568  * If far_copies > 1, then after 1/far_copies of the array has been assigned
569  * as described above, we start again with a device offset of near_copies.
570  * So we effectively have another copy of the whole array further down all
571  * the drives, but with blocks on different drives.
572  * With this layout, and block is never stored twice on the one device.
573  *
574  * raid10_find_phys finds the sector offset of a given virtual sector
575  * on each device that it is on.
576  *
577  * raid10_find_virt does the reverse mapping, from a device and a
578  * sector offset to a virtual address
579  */
580 
581 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
582 {
583 	int n,f;
584 	sector_t sector;
585 	sector_t chunk;
586 	sector_t stripe;
587 	int dev;
588 	int slot = 0;
589 	int last_far_set_start, last_far_set_size;
590 
591 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
592 	last_far_set_start *= geo->far_set_size;
593 
594 	last_far_set_size = geo->far_set_size;
595 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
596 
597 	/* now calculate first sector/dev */
598 	chunk = r10bio->sector >> geo->chunk_shift;
599 	sector = r10bio->sector & geo->chunk_mask;
600 
601 	chunk *= geo->near_copies;
602 	stripe = chunk;
603 	dev = sector_div(stripe, geo->raid_disks);
604 	if (geo->far_offset)
605 		stripe *= geo->far_copies;
606 
607 	sector += stripe << geo->chunk_shift;
608 
609 	/* and calculate all the others */
610 	for (n = 0; n < geo->near_copies; n++) {
611 		int d = dev;
612 		int set;
613 		sector_t s = sector;
614 		r10bio->devs[slot].devnum = d;
615 		r10bio->devs[slot].addr = s;
616 		slot++;
617 
618 		for (f = 1; f < geo->far_copies; f++) {
619 			set = d / geo->far_set_size;
620 			d += geo->near_copies;
621 
622 			if ((geo->raid_disks % geo->far_set_size) &&
623 			    (d > last_far_set_start)) {
624 				d -= last_far_set_start;
625 				d %= last_far_set_size;
626 				d += last_far_set_start;
627 			} else {
628 				d %= geo->far_set_size;
629 				d += geo->far_set_size * set;
630 			}
631 			s += geo->stride;
632 			r10bio->devs[slot].devnum = d;
633 			r10bio->devs[slot].addr = s;
634 			slot++;
635 		}
636 		dev++;
637 		if (dev >= geo->raid_disks) {
638 			dev = 0;
639 			sector += (geo->chunk_mask + 1);
640 		}
641 	}
642 }
643 
644 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
645 {
646 	struct geom *geo = &conf->geo;
647 
648 	if (conf->reshape_progress != MaxSector &&
649 	    ((r10bio->sector >= conf->reshape_progress) !=
650 	     conf->mddev->reshape_backwards)) {
651 		set_bit(R10BIO_Previous, &r10bio->state);
652 		geo = &conf->prev;
653 	} else
654 		clear_bit(R10BIO_Previous, &r10bio->state);
655 
656 	__raid10_find_phys(geo, r10bio);
657 }
658 
659 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
660 {
661 	sector_t offset, chunk, vchunk;
662 	/* Never use conf->prev as this is only called during resync
663 	 * or recovery, so reshape isn't happening
664 	 */
665 	struct geom *geo = &conf->geo;
666 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
667 	int far_set_size = geo->far_set_size;
668 	int last_far_set_start;
669 
670 	if (geo->raid_disks % geo->far_set_size) {
671 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
672 		last_far_set_start *= geo->far_set_size;
673 
674 		if (dev >= last_far_set_start) {
675 			far_set_size = geo->far_set_size;
676 			far_set_size += (geo->raid_disks % geo->far_set_size);
677 			far_set_start = last_far_set_start;
678 		}
679 	}
680 
681 	offset = sector & geo->chunk_mask;
682 	if (geo->far_offset) {
683 		int fc;
684 		chunk = sector >> geo->chunk_shift;
685 		fc = sector_div(chunk, geo->far_copies);
686 		dev -= fc * geo->near_copies;
687 		if (dev < far_set_start)
688 			dev += far_set_size;
689 	} else {
690 		while (sector >= geo->stride) {
691 			sector -= geo->stride;
692 			if (dev < (geo->near_copies + far_set_start))
693 				dev += far_set_size - geo->near_copies;
694 			else
695 				dev -= geo->near_copies;
696 		}
697 		chunk = sector >> geo->chunk_shift;
698 	}
699 	vchunk = chunk * geo->raid_disks + dev;
700 	sector_div(vchunk, geo->near_copies);
701 	return (vchunk << geo->chunk_shift) + offset;
702 }
703 
704 /*
705  * This routine returns the disk from which the requested read should
706  * be done. There is a per-array 'next expected sequential IO' sector
707  * number - if this matches on the next IO then we use the last disk.
708  * There is also a per-disk 'last know head position' sector that is
709  * maintained from IRQ contexts, both the normal and the resync IO
710  * completion handlers update this position correctly. If there is no
711  * perfect sequential match then we pick the disk whose head is closest.
712  *
713  * If there are 2 mirrors in the same 2 devices, performance degrades
714  * because position is mirror, not device based.
715  *
716  * The rdev for the device selected will have nr_pending incremented.
717  */
718 
719 /*
720  * FIXME: possibly should rethink readbalancing and do it differently
721  * depending on near_copies / far_copies geometry.
722  */
723 static struct md_rdev *read_balance(struct r10conf *conf,
724 				    struct r10bio *r10_bio,
725 				    int *max_sectors)
726 {
727 	const sector_t this_sector = r10_bio->sector;
728 	int disk, slot;
729 	int sectors = r10_bio->sectors;
730 	int best_good_sectors;
731 	sector_t new_distance, best_dist;
732 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
733 	int do_balance;
734 	int best_dist_slot, best_pending_slot;
735 	bool has_nonrot_disk = false;
736 	unsigned int min_pending;
737 	struct geom *geo = &conf->geo;
738 
739 	raid10_find_phys(conf, r10_bio);
740 	best_dist_slot = -1;
741 	min_pending = UINT_MAX;
742 	best_dist_rdev = NULL;
743 	best_pending_rdev = NULL;
744 	best_dist = MaxSector;
745 	best_good_sectors = 0;
746 	do_balance = 1;
747 	clear_bit(R10BIO_FailFast, &r10_bio->state);
748 
749 	if (raid1_should_read_first(conf->mddev, this_sector, sectors))
750 		do_balance = 0;
751 
752 	for (slot = 0; slot < conf->copies ; slot++) {
753 		sector_t first_bad;
754 		int bad_sectors;
755 		sector_t dev_sector;
756 		unsigned int pending;
757 		bool nonrot;
758 
759 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
760 			continue;
761 		disk = r10_bio->devs[slot].devnum;
762 		rdev = conf->mirrors[disk].replacement;
763 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
764 		    r10_bio->devs[slot].addr + sectors >
765 		    rdev->recovery_offset)
766 			rdev = conf->mirrors[disk].rdev;
767 		if (rdev == NULL ||
768 		    test_bit(Faulty, &rdev->flags))
769 			continue;
770 		if (!test_bit(In_sync, &rdev->flags) &&
771 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
772 			continue;
773 
774 		dev_sector = r10_bio->devs[slot].addr;
775 		if (is_badblock(rdev, dev_sector, sectors,
776 				&first_bad, &bad_sectors)) {
777 			if (best_dist < MaxSector)
778 				/* Already have a better slot */
779 				continue;
780 			if (first_bad <= dev_sector) {
781 				/* Cannot read here.  If this is the
782 				 * 'primary' device, then we must not read
783 				 * beyond 'bad_sectors' from another device.
784 				 */
785 				bad_sectors -= (dev_sector - first_bad);
786 				if (!do_balance && sectors > bad_sectors)
787 					sectors = bad_sectors;
788 				if (best_good_sectors > sectors)
789 					best_good_sectors = sectors;
790 			} else {
791 				sector_t good_sectors =
792 					first_bad - dev_sector;
793 				if (good_sectors > best_good_sectors) {
794 					best_good_sectors = good_sectors;
795 					best_dist_slot = slot;
796 					best_dist_rdev = rdev;
797 				}
798 				if (!do_balance)
799 					/* Must read from here */
800 					break;
801 			}
802 			continue;
803 		} else
804 			best_good_sectors = sectors;
805 
806 		if (!do_balance)
807 			break;
808 
809 		nonrot = bdev_nonrot(rdev->bdev);
810 		has_nonrot_disk |= nonrot;
811 		pending = atomic_read(&rdev->nr_pending);
812 		if (min_pending > pending && nonrot) {
813 			min_pending = pending;
814 			best_pending_slot = slot;
815 			best_pending_rdev = rdev;
816 		}
817 
818 		if (best_dist_slot >= 0)
819 			/* At least 2 disks to choose from so failfast is OK */
820 			set_bit(R10BIO_FailFast, &r10_bio->state);
821 		/* This optimisation is debatable, and completely destroys
822 		 * sequential read speed for 'far copies' arrays.  So only
823 		 * keep it for 'near' arrays, and review those later.
824 		 */
825 		if (geo->near_copies > 1 && !pending)
826 			new_distance = 0;
827 
828 		/* for far > 1 always use the lowest address */
829 		else if (geo->far_copies > 1)
830 			new_distance = r10_bio->devs[slot].addr;
831 		else
832 			new_distance = abs(r10_bio->devs[slot].addr -
833 					   conf->mirrors[disk].head_position);
834 
835 		if (new_distance < best_dist) {
836 			best_dist = new_distance;
837 			best_dist_slot = slot;
838 			best_dist_rdev = rdev;
839 		}
840 	}
841 	if (slot >= conf->copies) {
842 		if (has_nonrot_disk) {
843 			slot = best_pending_slot;
844 			rdev = best_pending_rdev;
845 		} else {
846 			slot = best_dist_slot;
847 			rdev = best_dist_rdev;
848 		}
849 	}
850 
851 	if (slot >= 0) {
852 		atomic_inc(&rdev->nr_pending);
853 		r10_bio->read_slot = slot;
854 	} else
855 		rdev = NULL;
856 	*max_sectors = best_good_sectors;
857 
858 	return rdev;
859 }
860 
861 static void flush_pending_writes(struct r10conf *conf)
862 {
863 	/* Any writes that have been queued but are awaiting
864 	 * bitmap updates get flushed here.
865 	 */
866 	spin_lock_irq(&conf->device_lock);
867 
868 	if (conf->pending_bio_list.head) {
869 		struct blk_plug plug;
870 		struct bio *bio;
871 
872 		bio = bio_list_get(&conf->pending_bio_list);
873 		spin_unlock_irq(&conf->device_lock);
874 
875 		/*
876 		 * As this is called in a wait_event() loop (see freeze_array),
877 		 * current->state might be TASK_UNINTERRUPTIBLE which will
878 		 * cause a warning when we prepare to wait again.  As it is
879 		 * rare that this path is taken, it is perfectly safe to force
880 		 * us to go around the wait_event() loop again, so the warning
881 		 * is a false-positive. Silence the warning by resetting
882 		 * thread state
883 		 */
884 		__set_current_state(TASK_RUNNING);
885 
886 		blk_start_plug(&plug);
887 		raid1_prepare_flush_writes(conf->mddev->bitmap);
888 		wake_up(&conf->wait_barrier);
889 
890 		while (bio) { /* submit pending writes */
891 			struct bio *next = bio->bi_next;
892 
893 			raid1_submit_write(bio);
894 			bio = next;
895 			cond_resched();
896 		}
897 		blk_finish_plug(&plug);
898 	} else
899 		spin_unlock_irq(&conf->device_lock);
900 }
901 
902 /* Barriers....
903  * Sometimes we need to suspend IO while we do something else,
904  * either some resync/recovery, or reconfigure the array.
905  * To do this we raise a 'barrier'.
906  * The 'barrier' is a counter that can be raised multiple times
907  * to count how many activities are happening which preclude
908  * normal IO.
909  * We can only raise the barrier if there is no pending IO.
910  * i.e. if nr_pending == 0.
911  * We choose only to raise the barrier if no-one is waiting for the
912  * barrier to go down.  This means that as soon as an IO request
913  * is ready, no other operations which require a barrier will start
914  * until the IO request has had a chance.
915  *
916  * So: regular IO calls 'wait_barrier'.  When that returns there
917  *    is no backgroup IO happening,  It must arrange to call
918  *    allow_barrier when it has finished its IO.
919  * backgroup IO calls must call raise_barrier.  Once that returns
920  *    there is no normal IO happeing.  It must arrange to call
921  *    lower_barrier when the particular background IO completes.
922  */
923 
924 static void raise_barrier(struct r10conf *conf, int force)
925 {
926 	write_seqlock_irq(&conf->resync_lock);
927 
928 	if (WARN_ON_ONCE(force && !conf->barrier))
929 		force = false;
930 
931 	/* Wait until no block IO is waiting (unless 'force') */
932 	wait_event_barrier(conf, force || !conf->nr_waiting);
933 
934 	/* block any new IO from starting */
935 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
936 
937 	/* Now wait for all pending IO to complete */
938 	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
939 				 conf->barrier < RESYNC_DEPTH);
940 
941 	write_sequnlock_irq(&conf->resync_lock);
942 }
943 
944 static void lower_barrier(struct r10conf *conf)
945 {
946 	unsigned long flags;
947 
948 	write_seqlock_irqsave(&conf->resync_lock, flags);
949 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
950 	write_sequnlock_irqrestore(&conf->resync_lock, flags);
951 	wake_up(&conf->wait_barrier);
952 }
953 
954 static bool stop_waiting_barrier(struct r10conf *conf)
955 {
956 	struct bio_list *bio_list = current->bio_list;
957 	struct md_thread *thread;
958 
959 	/* barrier is dropped */
960 	if (!conf->barrier)
961 		return true;
962 
963 	/*
964 	 * If there are already pending requests (preventing the barrier from
965 	 * rising completely), and the pre-process bio queue isn't empty, then
966 	 * don't wait, as we need to empty that queue to get the nr_pending
967 	 * count down.
968 	 */
969 	if (atomic_read(&conf->nr_pending) && bio_list &&
970 	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
971 		return true;
972 
973 	/* daemon thread must exist while handling io */
974 	thread = rcu_dereference_protected(conf->mddev->thread, true);
975 	/*
976 	 * move on if io is issued from raid10d(), nr_pending is not released
977 	 * from original io(see handle_read_error()). All raise barrier is
978 	 * blocked until this io is done.
979 	 */
980 	if (thread->tsk == current) {
981 		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
982 		return true;
983 	}
984 
985 	return false;
986 }
987 
988 static bool wait_barrier_nolock(struct r10conf *conf)
989 {
990 	unsigned int seq = read_seqbegin(&conf->resync_lock);
991 
992 	if (READ_ONCE(conf->barrier))
993 		return false;
994 
995 	atomic_inc(&conf->nr_pending);
996 	if (!read_seqretry(&conf->resync_lock, seq))
997 		return true;
998 
999 	if (atomic_dec_and_test(&conf->nr_pending))
1000 		wake_up_barrier(conf);
1001 
1002 	return false;
1003 }
1004 
1005 static bool wait_barrier(struct r10conf *conf, bool nowait)
1006 {
1007 	bool ret = true;
1008 
1009 	if (wait_barrier_nolock(conf))
1010 		return true;
1011 
1012 	write_seqlock_irq(&conf->resync_lock);
1013 	if (conf->barrier) {
1014 		/* Return false when nowait flag is set */
1015 		if (nowait) {
1016 			ret = false;
1017 		} else {
1018 			conf->nr_waiting++;
1019 			mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1020 			wait_event_barrier(conf, stop_waiting_barrier(conf));
1021 			conf->nr_waiting--;
1022 		}
1023 		if (!conf->nr_waiting)
1024 			wake_up(&conf->wait_barrier);
1025 	}
1026 	/* Only increment nr_pending when we wait */
1027 	if (ret)
1028 		atomic_inc(&conf->nr_pending);
1029 	write_sequnlock_irq(&conf->resync_lock);
1030 	return ret;
1031 }
1032 
1033 static void allow_barrier(struct r10conf *conf)
1034 {
1035 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1036 			(conf->array_freeze_pending))
1037 		wake_up_barrier(conf);
1038 }
1039 
1040 static void freeze_array(struct r10conf *conf, int extra)
1041 {
1042 	/* stop syncio and normal IO and wait for everything to
1043 	 * go quiet.
1044 	 * We increment barrier and nr_waiting, and then
1045 	 * wait until nr_pending match nr_queued+extra
1046 	 * This is called in the context of one normal IO request
1047 	 * that has failed. Thus any sync request that might be pending
1048 	 * will be blocked by nr_pending, and we need to wait for
1049 	 * pending IO requests to complete or be queued for re-try.
1050 	 * Thus the number queued (nr_queued) plus this request (extra)
1051 	 * must match the number of pending IOs (nr_pending) before
1052 	 * we continue.
1053 	 */
1054 	write_seqlock_irq(&conf->resync_lock);
1055 	conf->array_freeze_pending++;
1056 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1057 	conf->nr_waiting++;
1058 	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1059 			conf->nr_queued + extra, flush_pending_writes(conf));
1060 	conf->array_freeze_pending--;
1061 	write_sequnlock_irq(&conf->resync_lock);
1062 }
1063 
1064 static void unfreeze_array(struct r10conf *conf)
1065 {
1066 	/* reverse the effect of the freeze */
1067 	write_seqlock_irq(&conf->resync_lock);
1068 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1069 	conf->nr_waiting--;
1070 	wake_up(&conf->wait_barrier);
1071 	write_sequnlock_irq(&conf->resync_lock);
1072 }
1073 
1074 static sector_t choose_data_offset(struct r10bio *r10_bio,
1075 				   struct md_rdev *rdev)
1076 {
1077 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1078 	    test_bit(R10BIO_Previous, &r10_bio->state))
1079 		return rdev->data_offset;
1080 	else
1081 		return rdev->new_data_offset;
1082 }
1083 
1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085 {
1086 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1087 	struct mddev *mddev = plug->cb.data;
1088 	struct r10conf *conf = mddev->private;
1089 	struct bio *bio;
1090 
1091 	if (from_schedule) {
1092 		spin_lock_irq(&conf->device_lock);
1093 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1094 		spin_unlock_irq(&conf->device_lock);
1095 		wake_up_barrier(conf);
1096 		md_wakeup_thread(mddev->thread);
1097 		kfree(plug);
1098 		return;
1099 	}
1100 
1101 	/* we aren't scheduling, so we can do the write-out directly. */
1102 	bio = bio_list_get(&plug->pending);
1103 	raid1_prepare_flush_writes(mddev->bitmap);
1104 	wake_up_barrier(conf);
1105 
1106 	while (bio) { /* submit pending writes */
1107 		struct bio *next = bio->bi_next;
1108 
1109 		raid1_submit_write(bio);
1110 		bio = next;
1111 		cond_resched();
1112 	}
1113 	kfree(plug);
1114 }
1115 
1116 /*
1117  * 1. Register the new request and wait if the reconstruction thread has put
1118  * up a bar for new requests. Continue immediately if no resync is active
1119  * currently.
1120  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1121  */
1122 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1123 				 struct bio *bio, sector_t sectors)
1124 {
1125 	/* Bail out if REQ_NOWAIT is set for the bio */
1126 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1127 		bio_wouldblock_error(bio);
1128 		return false;
1129 	}
1130 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1131 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1132 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1133 		allow_barrier(conf);
1134 		if (bio->bi_opf & REQ_NOWAIT) {
1135 			bio_wouldblock_error(bio);
1136 			return false;
1137 		}
1138 		mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1139 		wait_event(conf->wait_barrier,
1140 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1141 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1142 			   sectors);
1143 		wait_barrier(conf, false);
1144 	}
1145 	return true;
1146 }
1147 
1148 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1149 				struct r10bio *r10_bio, bool io_accounting)
1150 {
1151 	struct r10conf *conf = mddev->private;
1152 	struct bio *read_bio;
1153 	const enum req_op op = bio_op(bio);
1154 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1155 	int max_sectors;
1156 	struct md_rdev *rdev;
1157 	char b[BDEVNAME_SIZE];
1158 	int slot = r10_bio->read_slot;
1159 	struct md_rdev *err_rdev = NULL;
1160 	gfp_t gfp = GFP_NOIO;
1161 
1162 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1163 		/*
1164 		 * This is an error retry, but we cannot
1165 		 * safely dereference the rdev in the r10_bio,
1166 		 * we must use the one in conf.
1167 		 * If it has already been disconnected (unlikely)
1168 		 * we lose the device name in error messages.
1169 		 */
1170 		int disk;
1171 		/*
1172 		 * As we are blocking raid10, it is a little safer to
1173 		 * use __GFP_HIGH.
1174 		 */
1175 		gfp = GFP_NOIO | __GFP_HIGH;
1176 
1177 		disk = r10_bio->devs[slot].devnum;
1178 		err_rdev = conf->mirrors[disk].rdev;
1179 		if (err_rdev)
1180 			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1181 		else {
1182 			strcpy(b, "???");
1183 			/* This never gets dereferenced */
1184 			err_rdev = r10_bio->devs[slot].rdev;
1185 		}
1186 	}
1187 
1188 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1189 		return;
1190 	rdev = read_balance(conf, r10_bio, &max_sectors);
1191 	if (!rdev) {
1192 		if (err_rdev) {
1193 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1194 					    mdname(mddev), b,
1195 					    (unsigned long long)r10_bio->sector);
1196 		}
1197 		raid_end_bio_io(r10_bio);
1198 		return;
1199 	}
1200 	if (err_rdev)
1201 		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1202 				   mdname(mddev),
1203 				   rdev->bdev,
1204 				   (unsigned long long)r10_bio->sector);
1205 	if (max_sectors < bio_sectors(bio)) {
1206 		struct bio *split = bio_split(bio, max_sectors,
1207 					      gfp, &conf->bio_split);
1208 		bio_chain(split, bio);
1209 		allow_barrier(conf);
1210 		submit_bio_noacct(bio);
1211 		wait_barrier(conf, false);
1212 		bio = split;
1213 		r10_bio->master_bio = bio;
1214 		r10_bio->sectors = max_sectors;
1215 	}
1216 	slot = r10_bio->read_slot;
1217 
1218 	if (io_accounting) {
1219 		md_account_bio(mddev, &bio);
1220 		r10_bio->master_bio = bio;
1221 	}
1222 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1223 
1224 	r10_bio->devs[slot].bio = read_bio;
1225 	r10_bio->devs[slot].rdev = rdev;
1226 
1227 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1228 		choose_data_offset(r10_bio, rdev);
1229 	read_bio->bi_end_io = raid10_end_read_request;
1230 	read_bio->bi_opf = op | do_sync;
1231 	if (test_bit(FailFast, &rdev->flags) &&
1232 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1233 	        read_bio->bi_opf |= MD_FAILFAST;
1234 	read_bio->bi_private = r10_bio;
1235 	mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1236 	submit_bio_noacct(read_bio);
1237 	return;
1238 }
1239 
1240 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1241 				  struct bio *bio, bool replacement,
1242 				  int n_copy)
1243 {
1244 	const enum req_op op = bio_op(bio);
1245 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1246 	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1247 	unsigned long flags;
1248 	struct r10conf *conf = mddev->private;
1249 	struct md_rdev *rdev;
1250 	int devnum = r10_bio->devs[n_copy].devnum;
1251 	struct bio *mbio;
1252 
1253 	rdev = replacement ? conf->mirrors[devnum].replacement :
1254 			     conf->mirrors[devnum].rdev;
1255 
1256 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1257 	if (replacement)
1258 		r10_bio->devs[n_copy].repl_bio = mbio;
1259 	else
1260 		r10_bio->devs[n_copy].bio = mbio;
1261 
1262 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1263 				   choose_data_offset(r10_bio, rdev));
1264 	mbio->bi_end_io	= raid10_end_write_request;
1265 	mbio->bi_opf = op | do_sync | do_fua;
1266 	if (!replacement && test_bit(FailFast,
1267 				     &conf->mirrors[devnum].rdev->flags)
1268 			 && enough(conf, devnum))
1269 		mbio->bi_opf |= MD_FAILFAST;
1270 	mbio->bi_private = r10_bio;
1271 	mddev_trace_remap(mddev, mbio, r10_bio->sector);
1272 	/* flush_pending_writes() needs access to the rdev so...*/
1273 	mbio->bi_bdev = (void *)rdev;
1274 
1275 	atomic_inc(&r10_bio->remaining);
1276 
1277 	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1278 		spin_lock_irqsave(&conf->device_lock, flags);
1279 		bio_list_add(&conf->pending_bio_list, mbio);
1280 		spin_unlock_irqrestore(&conf->device_lock, flags);
1281 		md_wakeup_thread(mddev->thread);
1282 	}
1283 }
1284 
1285 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1286 {
1287 	int i;
1288 	struct r10conf *conf = mddev->private;
1289 	struct md_rdev *blocked_rdev;
1290 
1291 retry_wait:
1292 	blocked_rdev = NULL;
1293 	for (i = 0; i < conf->copies; i++) {
1294 		struct md_rdev *rdev, *rrdev;
1295 
1296 		rdev = conf->mirrors[i].rdev;
1297 		rrdev = conf->mirrors[i].replacement;
1298 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1299 			atomic_inc(&rdev->nr_pending);
1300 			blocked_rdev = rdev;
1301 			break;
1302 		}
1303 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1304 			atomic_inc(&rrdev->nr_pending);
1305 			blocked_rdev = rrdev;
1306 			break;
1307 		}
1308 
1309 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1310 			sector_t dev_sector = r10_bio->devs[i].addr;
1311 
1312 			/*
1313 			 * Discard request doesn't care the write result
1314 			 * so it doesn't need to wait blocked disk here.
1315 			 */
1316 			if (!r10_bio->sectors)
1317 				continue;
1318 
1319 			if (rdev_has_badblock(rdev, dev_sector,
1320 					      r10_bio->sectors) < 0) {
1321 				/*
1322 				 * Mustn't write here until the bad block
1323 				 * is acknowledged
1324 				 */
1325 				atomic_inc(&rdev->nr_pending);
1326 				set_bit(BlockedBadBlocks, &rdev->flags);
1327 				blocked_rdev = rdev;
1328 				break;
1329 			}
1330 		}
1331 	}
1332 
1333 	if (unlikely(blocked_rdev)) {
1334 		/* Have to wait for this device to get unblocked, then retry */
1335 		allow_barrier(conf);
1336 		mddev_add_trace_msg(conf->mddev,
1337 			"raid10 %s wait rdev %d blocked",
1338 			__func__, blocked_rdev->raid_disk);
1339 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1340 		wait_barrier(conf, false);
1341 		goto retry_wait;
1342 	}
1343 }
1344 
1345 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1346 				 struct r10bio *r10_bio)
1347 {
1348 	struct r10conf *conf = mddev->private;
1349 	int i;
1350 	sector_t sectors;
1351 	int max_sectors;
1352 
1353 	if ((mddev_is_clustered(mddev) &&
1354 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1355 					    bio->bi_iter.bi_sector,
1356 					    bio_end_sector(bio)))) {
1357 		DEFINE_WAIT(w);
1358 		/* Bail out if REQ_NOWAIT is set for the bio */
1359 		if (bio->bi_opf & REQ_NOWAIT) {
1360 			bio_wouldblock_error(bio);
1361 			return;
1362 		}
1363 		for (;;) {
1364 			prepare_to_wait(&conf->wait_barrier,
1365 					&w, TASK_IDLE);
1366 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1367 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1368 				break;
1369 			schedule();
1370 		}
1371 		finish_wait(&conf->wait_barrier, &w);
1372 	}
1373 
1374 	sectors = r10_bio->sectors;
1375 	if (!regular_request_wait(mddev, conf, bio, sectors))
1376 		return;
1377 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1378 	    (mddev->reshape_backwards
1379 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1380 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1381 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1382 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1383 		/* Need to update reshape_position in metadata */
1384 		mddev->reshape_position = conf->reshape_progress;
1385 		set_mask_bits(&mddev->sb_flags, 0,
1386 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1387 		md_wakeup_thread(mddev->thread);
1388 		if (bio->bi_opf & REQ_NOWAIT) {
1389 			allow_barrier(conf);
1390 			bio_wouldblock_error(bio);
1391 			return;
1392 		}
1393 		mddev_add_trace_msg(conf->mddev,
1394 			"raid10 wait reshape metadata");
1395 		wait_event(mddev->sb_wait,
1396 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1397 
1398 		conf->reshape_safe = mddev->reshape_position;
1399 	}
1400 
1401 	/* first select target devices under rcu_lock and
1402 	 * inc refcount on their rdev.  Record them by setting
1403 	 * bios[x] to bio
1404 	 * If there are known/acknowledged bad blocks on any device
1405 	 * on which we have seen a write error, we want to avoid
1406 	 * writing to those blocks.  This potentially requires several
1407 	 * writes to write around the bad blocks.  Each set of writes
1408 	 * gets its own r10_bio with a set of bios attached.
1409 	 */
1410 
1411 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1412 	raid10_find_phys(conf, r10_bio);
1413 
1414 	wait_blocked_dev(mddev, r10_bio);
1415 
1416 	max_sectors = r10_bio->sectors;
1417 
1418 	for (i = 0;  i < conf->copies; i++) {
1419 		int d = r10_bio->devs[i].devnum;
1420 		struct md_rdev *rdev, *rrdev;
1421 
1422 		rdev = conf->mirrors[d].rdev;
1423 		rrdev = conf->mirrors[d].replacement;
1424 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1425 			rdev = NULL;
1426 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1427 			rrdev = NULL;
1428 
1429 		r10_bio->devs[i].bio = NULL;
1430 		r10_bio->devs[i].repl_bio = NULL;
1431 
1432 		if (!rdev && !rrdev) {
1433 			set_bit(R10BIO_Degraded, &r10_bio->state);
1434 			continue;
1435 		}
1436 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1437 			sector_t first_bad;
1438 			sector_t dev_sector = r10_bio->devs[i].addr;
1439 			int bad_sectors;
1440 			int is_bad;
1441 
1442 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1443 					     &first_bad, &bad_sectors);
1444 			if (is_bad && first_bad <= dev_sector) {
1445 				/* Cannot write here at all */
1446 				bad_sectors -= (dev_sector - first_bad);
1447 				if (bad_sectors < max_sectors)
1448 					/* Mustn't write more than bad_sectors
1449 					 * to other devices yet
1450 					 */
1451 					max_sectors = bad_sectors;
1452 				/* We don't set R10BIO_Degraded as that
1453 				 * only applies if the disk is missing,
1454 				 * so it might be re-added, and we want to
1455 				 * know to recover this chunk.
1456 				 * In this case the device is here, and the
1457 				 * fact that this chunk is not in-sync is
1458 				 * recorded in the bad block log.
1459 				 */
1460 				continue;
1461 			}
1462 			if (is_bad) {
1463 				int good_sectors = first_bad - dev_sector;
1464 				if (good_sectors < max_sectors)
1465 					max_sectors = good_sectors;
1466 			}
1467 		}
1468 		if (rdev) {
1469 			r10_bio->devs[i].bio = bio;
1470 			atomic_inc(&rdev->nr_pending);
1471 		}
1472 		if (rrdev) {
1473 			r10_bio->devs[i].repl_bio = bio;
1474 			atomic_inc(&rrdev->nr_pending);
1475 		}
1476 	}
1477 
1478 	if (max_sectors < r10_bio->sectors)
1479 		r10_bio->sectors = max_sectors;
1480 
1481 	if (r10_bio->sectors < bio_sectors(bio)) {
1482 		struct bio *split = bio_split(bio, r10_bio->sectors,
1483 					      GFP_NOIO, &conf->bio_split);
1484 		bio_chain(split, bio);
1485 		allow_barrier(conf);
1486 		submit_bio_noacct(bio);
1487 		wait_barrier(conf, false);
1488 		bio = split;
1489 		r10_bio->master_bio = bio;
1490 	}
1491 
1492 	md_account_bio(mddev, &bio);
1493 	r10_bio->master_bio = bio;
1494 	atomic_set(&r10_bio->remaining, 1);
1495 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1496 
1497 	for (i = 0; i < conf->copies; i++) {
1498 		if (r10_bio->devs[i].bio)
1499 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1500 		if (r10_bio->devs[i].repl_bio)
1501 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1502 	}
1503 	one_write_done(r10_bio);
1504 }
1505 
1506 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1507 {
1508 	struct r10conf *conf = mddev->private;
1509 	struct r10bio *r10_bio;
1510 
1511 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1512 
1513 	r10_bio->master_bio = bio;
1514 	r10_bio->sectors = sectors;
1515 
1516 	r10_bio->mddev = mddev;
1517 	r10_bio->sector = bio->bi_iter.bi_sector;
1518 	r10_bio->state = 0;
1519 	r10_bio->read_slot = -1;
1520 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1521 			conf->geo.raid_disks);
1522 
1523 	if (bio_data_dir(bio) == READ)
1524 		raid10_read_request(mddev, bio, r10_bio, true);
1525 	else
1526 		raid10_write_request(mddev, bio, r10_bio);
1527 }
1528 
1529 static void raid_end_discard_bio(struct r10bio *r10bio)
1530 {
1531 	struct r10conf *conf = r10bio->mddev->private;
1532 	struct r10bio *first_r10bio;
1533 
1534 	while (atomic_dec_and_test(&r10bio->remaining)) {
1535 
1536 		allow_barrier(conf);
1537 
1538 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1539 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1540 			free_r10bio(r10bio);
1541 			r10bio = first_r10bio;
1542 		} else {
1543 			md_write_end(r10bio->mddev);
1544 			bio_endio(r10bio->master_bio);
1545 			free_r10bio(r10bio);
1546 			break;
1547 		}
1548 	}
1549 }
1550 
1551 static void raid10_end_discard_request(struct bio *bio)
1552 {
1553 	struct r10bio *r10_bio = bio->bi_private;
1554 	struct r10conf *conf = r10_bio->mddev->private;
1555 	struct md_rdev *rdev = NULL;
1556 	int dev;
1557 	int slot, repl;
1558 
1559 	/*
1560 	 * We don't care the return value of discard bio
1561 	 */
1562 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1563 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1564 
1565 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1566 	rdev = repl ? conf->mirrors[dev].replacement :
1567 		      conf->mirrors[dev].rdev;
1568 
1569 	raid_end_discard_bio(r10_bio);
1570 	rdev_dec_pending(rdev, conf->mddev);
1571 }
1572 
1573 /*
1574  * There are some limitations to handle discard bio
1575  * 1st, the discard size is bigger than stripe_size*2.
1576  * 2st, if the discard bio spans reshape progress, we use the old way to
1577  * handle discard bio
1578  */
1579 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1580 {
1581 	struct r10conf *conf = mddev->private;
1582 	struct geom *geo = &conf->geo;
1583 	int far_copies = geo->far_copies;
1584 	bool first_copy = true;
1585 	struct r10bio *r10_bio, *first_r10bio;
1586 	struct bio *split;
1587 	int disk;
1588 	sector_t chunk;
1589 	unsigned int stripe_size;
1590 	unsigned int stripe_data_disks;
1591 	sector_t split_size;
1592 	sector_t bio_start, bio_end;
1593 	sector_t first_stripe_index, last_stripe_index;
1594 	sector_t start_disk_offset;
1595 	unsigned int start_disk_index;
1596 	sector_t end_disk_offset;
1597 	unsigned int end_disk_index;
1598 	unsigned int remainder;
1599 
1600 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1601 		return -EAGAIN;
1602 
1603 	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1604 		bio_wouldblock_error(bio);
1605 		return 0;
1606 	}
1607 	wait_barrier(conf, false);
1608 
1609 	/*
1610 	 * Check reshape again to avoid reshape happens after checking
1611 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1612 	 */
1613 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1614 		goto out;
1615 
1616 	if (geo->near_copies)
1617 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1618 					geo->raid_disks % geo->near_copies;
1619 	else
1620 		stripe_data_disks = geo->raid_disks;
1621 
1622 	stripe_size = stripe_data_disks << geo->chunk_shift;
1623 
1624 	bio_start = bio->bi_iter.bi_sector;
1625 	bio_end = bio_end_sector(bio);
1626 
1627 	/*
1628 	 * Maybe one discard bio is smaller than strip size or across one
1629 	 * stripe and discard region is larger than one stripe size. For far
1630 	 * offset layout, if the discard region is not aligned with stripe
1631 	 * size, there is hole when we submit discard bio to member disk.
1632 	 * For simplicity, we only handle discard bio which discard region
1633 	 * is bigger than stripe_size * 2
1634 	 */
1635 	if (bio_sectors(bio) < stripe_size*2)
1636 		goto out;
1637 
1638 	/*
1639 	 * Keep bio aligned with strip size.
1640 	 */
1641 	div_u64_rem(bio_start, stripe_size, &remainder);
1642 	if (remainder) {
1643 		split_size = stripe_size - remainder;
1644 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1645 		bio_chain(split, bio);
1646 		allow_barrier(conf);
1647 		/* Resend the fist split part */
1648 		submit_bio_noacct(split);
1649 		wait_barrier(conf, false);
1650 	}
1651 	div_u64_rem(bio_end, stripe_size, &remainder);
1652 	if (remainder) {
1653 		split_size = bio_sectors(bio) - remainder;
1654 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1655 		bio_chain(split, bio);
1656 		allow_barrier(conf);
1657 		/* Resend the second split part */
1658 		submit_bio_noacct(bio);
1659 		bio = split;
1660 		wait_barrier(conf, false);
1661 	}
1662 
1663 	bio_start = bio->bi_iter.bi_sector;
1664 	bio_end = bio_end_sector(bio);
1665 
1666 	/*
1667 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1668 	 * One stripe contains the chunks from all member disk (one chunk from
1669 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1670 	 */
1671 	chunk = bio_start >> geo->chunk_shift;
1672 	chunk *= geo->near_copies;
1673 	first_stripe_index = chunk;
1674 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1675 	if (geo->far_offset)
1676 		first_stripe_index *= geo->far_copies;
1677 	start_disk_offset = (bio_start & geo->chunk_mask) +
1678 				(first_stripe_index << geo->chunk_shift);
1679 
1680 	chunk = bio_end >> geo->chunk_shift;
1681 	chunk *= geo->near_copies;
1682 	last_stripe_index = chunk;
1683 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1684 	if (geo->far_offset)
1685 		last_stripe_index *= geo->far_copies;
1686 	end_disk_offset = (bio_end & geo->chunk_mask) +
1687 				(last_stripe_index << geo->chunk_shift);
1688 
1689 retry_discard:
1690 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1691 	r10_bio->mddev = mddev;
1692 	r10_bio->state = 0;
1693 	r10_bio->sectors = 0;
1694 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1695 	wait_blocked_dev(mddev, r10_bio);
1696 
1697 	/*
1698 	 * For far layout it needs more than one r10bio to cover all regions.
1699 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1700 	 * to record the discard bio. Other r10bio->master_bio record the first
1701 	 * r10bio. The first r10bio only release after all other r10bios finish.
1702 	 * The discard bio returns only first r10bio finishes
1703 	 */
1704 	if (first_copy) {
1705 		r10_bio->master_bio = bio;
1706 		set_bit(R10BIO_Discard, &r10_bio->state);
1707 		first_copy = false;
1708 		first_r10bio = r10_bio;
1709 	} else
1710 		r10_bio->master_bio = (struct bio *)first_r10bio;
1711 
1712 	/*
1713 	 * first select target devices under rcu_lock and
1714 	 * inc refcount on their rdev.  Record them by setting
1715 	 * bios[x] to bio
1716 	 */
1717 	for (disk = 0; disk < geo->raid_disks; disk++) {
1718 		struct md_rdev *rdev, *rrdev;
1719 
1720 		rdev = conf->mirrors[disk].rdev;
1721 		rrdev = conf->mirrors[disk].replacement;
1722 		r10_bio->devs[disk].bio = NULL;
1723 		r10_bio->devs[disk].repl_bio = NULL;
1724 
1725 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1726 			rdev = NULL;
1727 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1728 			rrdev = NULL;
1729 		if (!rdev && !rrdev)
1730 			continue;
1731 
1732 		if (rdev) {
1733 			r10_bio->devs[disk].bio = bio;
1734 			atomic_inc(&rdev->nr_pending);
1735 		}
1736 		if (rrdev) {
1737 			r10_bio->devs[disk].repl_bio = bio;
1738 			atomic_inc(&rrdev->nr_pending);
1739 		}
1740 	}
1741 
1742 	atomic_set(&r10_bio->remaining, 1);
1743 	for (disk = 0; disk < geo->raid_disks; disk++) {
1744 		sector_t dev_start, dev_end;
1745 		struct bio *mbio, *rbio = NULL;
1746 
1747 		/*
1748 		 * Now start to calculate the start and end address for each disk.
1749 		 * The space between dev_start and dev_end is the discard region.
1750 		 *
1751 		 * For dev_start, it needs to consider three conditions:
1752 		 * 1st, the disk is before start_disk, you can imagine the disk in
1753 		 * the next stripe. So the dev_start is the start address of next
1754 		 * stripe.
1755 		 * 2st, the disk is after start_disk, it means the disk is at the
1756 		 * same stripe of first disk
1757 		 * 3st, the first disk itself, we can use start_disk_offset directly
1758 		 */
1759 		if (disk < start_disk_index)
1760 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1761 		else if (disk > start_disk_index)
1762 			dev_start = first_stripe_index * mddev->chunk_sectors;
1763 		else
1764 			dev_start = start_disk_offset;
1765 
1766 		if (disk < end_disk_index)
1767 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1768 		else if (disk > end_disk_index)
1769 			dev_end = last_stripe_index * mddev->chunk_sectors;
1770 		else
1771 			dev_end = end_disk_offset;
1772 
1773 		/*
1774 		 * It only handles discard bio which size is >= stripe size, so
1775 		 * dev_end > dev_start all the time.
1776 		 * It doesn't need to use rcu lock to get rdev here. We already
1777 		 * add rdev->nr_pending in the first loop.
1778 		 */
1779 		if (r10_bio->devs[disk].bio) {
1780 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1781 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1782 					       &mddev->bio_set);
1783 			mbio->bi_end_io = raid10_end_discard_request;
1784 			mbio->bi_private = r10_bio;
1785 			r10_bio->devs[disk].bio = mbio;
1786 			r10_bio->devs[disk].devnum = disk;
1787 			atomic_inc(&r10_bio->remaining);
1788 			md_submit_discard_bio(mddev, rdev, mbio,
1789 					dev_start + choose_data_offset(r10_bio, rdev),
1790 					dev_end - dev_start);
1791 			bio_endio(mbio);
1792 		}
1793 		if (r10_bio->devs[disk].repl_bio) {
1794 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1795 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1796 					       &mddev->bio_set);
1797 			rbio->bi_end_io = raid10_end_discard_request;
1798 			rbio->bi_private = r10_bio;
1799 			r10_bio->devs[disk].repl_bio = rbio;
1800 			r10_bio->devs[disk].devnum = disk;
1801 			atomic_inc(&r10_bio->remaining);
1802 			md_submit_discard_bio(mddev, rrdev, rbio,
1803 					dev_start + choose_data_offset(r10_bio, rrdev),
1804 					dev_end - dev_start);
1805 			bio_endio(rbio);
1806 		}
1807 	}
1808 
1809 	if (!geo->far_offset && --far_copies) {
1810 		first_stripe_index += geo->stride >> geo->chunk_shift;
1811 		start_disk_offset += geo->stride;
1812 		last_stripe_index += geo->stride >> geo->chunk_shift;
1813 		end_disk_offset += geo->stride;
1814 		atomic_inc(&first_r10bio->remaining);
1815 		raid_end_discard_bio(r10_bio);
1816 		wait_barrier(conf, false);
1817 		goto retry_discard;
1818 	}
1819 
1820 	raid_end_discard_bio(r10_bio);
1821 
1822 	return 0;
1823 out:
1824 	allow_barrier(conf);
1825 	return -EAGAIN;
1826 }
1827 
1828 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1829 {
1830 	struct r10conf *conf = mddev->private;
1831 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1832 	int chunk_sects = chunk_mask + 1;
1833 	int sectors = bio_sectors(bio);
1834 
1835 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1836 	    && md_flush_request(mddev, bio))
1837 		return true;
1838 
1839 	md_write_start(mddev, bio);
1840 
1841 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1842 		if (!raid10_handle_discard(mddev, bio))
1843 			return true;
1844 
1845 	/*
1846 	 * If this request crosses a chunk boundary, we need to split
1847 	 * it.
1848 	 */
1849 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1850 		     sectors > chunk_sects
1851 		     && (conf->geo.near_copies < conf->geo.raid_disks
1852 			 || conf->prev.near_copies <
1853 			 conf->prev.raid_disks)))
1854 		sectors = chunk_sects -
1855 			(bio->bi_iter.bi_sector &
1856 			 (chunk_sects - 1));
1857 	__make_request(mddev, bio, sectors);
1858 
1859 	/* In case raid10d snuck in to freeze_array */
1860 	wake_up_barrier(conf);
1861 	return true;
1862 }
1863 
1864 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1865 {
1866 	struct r10conf *conf = mddev->private;
1867 	int i;
1868 
1869 	lockdep_assert_held(&mddev->lock);
1870 
1871 	if (conf->geo.near_copies < conf->geo.raid_disks)
1872 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1873 	if (conf->geo.near_copies > 1)
1874 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1875 	if (conf->geo.far_copies > 1) {
1876 		if (conf->geo.far_offset)
1877 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1878 		else
1879 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1880 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1881 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1882 	}
1883 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1884 					conf->geo.raid_disks - mddev->degraded);
1885 	for (i = 0; i < conf->geo.raid_disks; i++) {
1886 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1887 
1888 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1889 	}
1890 	seq_printf(seq, "]");
1891 }
1892 
1893 /* check if there are enough drives for
1894  * every block to appear on atleast one.
1895  * Don't consider the device numbered 'ignore'
1896  * as we might be about to remove it.
1897  */
1898 static int _enough(struct r10conf *conf, int previous, int ignore)
1899 {
1900 	int first = 0;
1901 	int has_enough = 0;
1902 	int disks, ncopies;
1903 	if (previous) {
1904 		disks = conf->prev.raid_disks;
1905 		ncopies = conf->prev.near_copies;
1906 	} else {
1907 		disks = conf->geo.raid_disks;
1908 		ncopies = conf->geo.near_copies;
1909 	}
1910 
1911 	do {
1912 		int n = conf->copies;
1913 		int cnt = 0;
1914 		int this = first;
1915 		while (n--) {
1916 			struct md_rdev *rdev;
1917 			if (this != ignore &&
1918 			    (rdev = conf->mirrors[this].rdev) &&
1919 			    test_bit(In_sync, &rdev->flags))
1920 				cnt++;
1921 			this = (this+1) % disks;
1922 		}
1923 		if (cnt == 0)
1924 			goto out;
1925 		first = (first + ncopies) % disks;
1926 	} while (first != 0);
1927 	has_enough = 1;
1928 out:
1929 	return has_enough;
1930 }
1931 
1932 static int enough(struct r10conf *conf, int ignore)
1933 {
1934 	/* when calling 'enough', both 'prev' and 'geo' must
1935 	 * be stable.
1936 	 * This is ensured if ->reconfig_mutex or ->device_lock
1937 	 * is held.
1938 	 */
1939 	return _enough(conf, 0, ignore) &&
1940 		_enough(conf, 1, ignore);
1941 }
1942 
1943 /**
1944  * raid10_error() - RAID10 error handler.
1945  * @mddev: affected md device.
1946  * @rdev: member device to fail.
1947  *
1948  * The routine acknowledges &rdev failure and determines new @mddev state.
1949  * If it failed, then:
1950  *	- &MD_BROKEN flag is set in &mddev->flags.
1951  * Otherwise, it must be degraded:
1952  *	- recovery is interrupted.
1953  *	- &mddev->degraded is bumped.
1954  *
1955  * @rdev is marked as &Faulty excluding case when array is failed and
1956  * &mddev->fail_last_dev is off.
1957  */
1958 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1959 {
1960 	struct r10conf *conf = mddev->private;
1961 	unsigned long flags;
1962 
1963 	spin_lock_irqsave(&conf->device_lock, flags);
1964 
1965 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1966 		set_bit(MD_BROKEN, &mddev->flags);
1967 
1968 		if (!mddev->fail_last_dev) {
1969 			spin_unlock_irqrestore(&conf->device_lock, flags);
1970 			return;
1971 		}
1972 	}
1973 	if (test_and_clear_bit(In_sync, &rdev->flags))
1974 		mddev->degraded++;
1975 
1976 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1977 	set_bit(Blocked, &rdev->flags);
1978 	set_bit(Faulty, &rdev->flags);
1979 	set_mask_bits(&mddev->sb_flags, 0,
1980 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1981 	spin_unlock_irqrestore(&conf->device_lock, flags);
1982 	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
1983 		"md/raid10:%s: Operation continuing on %d devices.\n",
1984 		mdname(mddev), rdev->bdev,
1985 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1986 }
1987 
1988 static void print_conf(struct r10conf *conf)
1989 {
1990 	int i;
1991 	struct md_rdev *rdev;
1992 
1993 	pr_debug("RAID10 conf printout:\n");
1994 	if (!conf) {
1995 		pr_debug("(!conf)\n");
1996 		return;
1997 	}
1998 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1999 		 conf->geo.raid_disks);
2000 
2001 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
2002 	for (i = 0; i < conf->geo.raid_disks; i++) {
2003 		rdev = conf->mirrors[i].rdev;
2004 		if (rdev)
2005 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2006 				 i, !test_bit(In_sync, &rdev->flags),
2007 				 !test_bit(Faulty, &rdev->flags),
2008 				 rdev->bdev);
2009 	}
2010 }
2011 
2012 static void close_sync(struct r10conf *conf)
2013 {
2014 	wait_barrier(conf, false);
2015 	allow_barrier(conf);
2016 
2017 	mempool_exit(&conf->r10buf_pool);
2018 }
2019 
2020 static int raid10_spare_active(struct mddev *mddev)
2021 {
2022 	int i;
2023 	struct r10conf *conf = mddev->private;
2024 	struct raid10_info *tmp;
2025 	int count = 0;
2026 	unsigned long flags;
2027 
2028 	/*
2029 	 * Find all non-in_sync disks within the RAID10 configuration
2030 	 * and mark them in_sync
2031 	 */
2032 	for (i = 0; i < conf->geo.raid_disks; i++) {
2033 		tmp = conf->mirrors + i;
2034 		if (tmp->replacement
2035 		    && tmp->replacement->recovery_offset == MaxSector
2036 		    && !test_bit(Faulty, &tmp->replacement->flags)
2037 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2038 			/* Replacement has just become active */
2039 			if (!tmp->rdev
2040 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2041 				count++;
2042 			if (tmp->rdev) {
2043 				/* Replaced device not technically faulty,
2044 				 * but we need to be sure it gets removed
2045 				 * and never re-added.
2046 				 */
2047 				set_bit(Faulty, &tmp->rdev->flags);
2048 				sysfs_notify_dirent_safe(
2049 					tmp->rdev->sysfs_state);
2050 			}
2051 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2052 		} else if (tmp->rdev
2053 			   && tmp->rdev->recovery_offset == MaxSector
2054 			   && !test_bit(Faulty, &tmp->rdev->flags)
2055 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2056 			count++;
2057 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2058 		}
2059 	}
2060 	spin_lock_irqsave(&conf->device_lock, flags);
2061 	mddev->degraded -= count;
2062 	spin_unlock_irqrestore(&conf->device_lock, flags);
2063 
2064 	print_conf(conf);
2065 	return count;
2066 }
2067 
2068 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2069 {
2070 	struct r10conf *conf = mddev->private;
2071 	int err = -EEXIST;
2072 	int mirror, repl_slot = -1;
2073 	int first = 0;
2074 	int last = conf->geo.raid_disks - 1;
2075 	struct raid10_info *p;
2076 
2077 	if (mddev->recovery_cp < MaxSector)
2078 		/* only hot-add to in-sync arrays, as recovery is
2079 		 * very different from resync
2080 		 */
2081 		return -EBUSY;
2082 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2083 		return -EINVAL;
2084 
2085 	if (md_integrity_add_rdev(rdev, mddev))
2086 		return -ENXIO;
2087 
2088 	if (rdev->raid_disk >= 0)
2089 		first = last = rdev->raid_disk;
2090 
2091 	if (rdev->saved_raid_disk >= first &&
2092 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2093 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2094 		mirror = rdev->saved_raid_disk;
2095 	else
2096 		mirror = first;
2097 	for ( ; mirror <= last ; mirror++) {
2098 		p = &conf->mirrors[mirror];
2099 		if (p->recovery_disabled == mddev->recovery_disabled)
2100 			continue;
2101 		if (p->rdev) {
2102 			if (test_bit(WantReplacement, &p->rdev->flags) &&
2103 			    p->replacement == NULL && repl_slot < 0)
2104 				repl_slot = mirror;
2105 			continue;
2106 		}
2107 
2108 		err = mddev_stack_new_rdev(mddev, rdev);
2109 		if (err)
2110 			return err;
2111 		p->head_position = 0;
2112 		p->recovery_disabled = mddev->recovery_disabled - 1;
2113 		rdev->raid_disk = mirror;
2114 		err = 0;
2115 		if (rdev->saved_raid_disk != mirror)
2116 			conf->fullsync = 1;
2117 		WRITE_ONCE(p->rdev, rdev);
2118 		break;
2119 	}
2120 
2121 	if (err && repl_slot >= 0) {
2122 		p = &conf->mirrors[repl_slot];
2123 		clear_bit(In_sync, &rdev->flags);
2124 		set_bit(Replacement, &rdev->flags);
2125 		rdev->raid_disk = repl_slot;
2126 		err = mddev_stack_new_rdev(mddev, rdev);
2127 		if (err)
2128 			return err;
2129 		conf->fullsync = 1;
2130 		WRITE_ONCE(p->replacement, rdev);
2131 	}
2132 
2133 	print_conf(conf);
2134 	return err;
2135 }
2136 
2137 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2138 {
2139 	struct r10conf *conf = mddev->private;
2140 	int err = 0;
2141 	int number = rdev->raid_disk;
2142 	struct md_rdev **rdevp;
2143 	struct raid10_info *p;
2144 
2145 	print_conf(conf);
2146 	if (unlikely(number >= mddev->raid_disks))
2147 		return 0;
2148 	p = conf->mirrors + number;
2149 	if (rdev == p->rdev)
2150 		rdevp = &p->rdev;
2151 	else if (rdev == p->replacement)
2152 		rdevp = &p->replacement;
2153 	else
2154 		return 0;
2155 
2156 	if (test_bit(In_sync, &rdev->flags) ||
2157 	    atomic_read(&rdev->nr_pending)) {
2158 		err = -EBUSY;
2159 		goto abort;
2160 	}
2161 	/* Only remove non-faulty devices if recovery
2162 	 * is not possible.
2163 	 */
2164 	if (!test_bit(Faulty, &rdev->flags) &&
2165 	    mddev->recovery_disabled != p->recovery_disabled &&
2166 	    (!p->replacement || p->replacement == rdev) &&
2167 	    number < conf->geo.raid_disks &&
2168 	    enough(conf, -1)) {
2169 		err = -EBUSY;
2170 		goto abort;
2171 	}
2172 	WRITE_ONCE(*rdevp, NULL);
2173 	if (p->replacement) {
2174 		/* We must have just cleared 'rdev' */
2175 		WRITE_ONCE(p->rdev, p->replacement);
2176 		clear_bit(Replacement, &p->replacement->flags);
2177 		WRITE_ONCE(p->replacement, NULL);
2178 	}
2179 
2180 	clear_bit(WantReplacement, &rdev->flags);
2181 	err = md_integrity_register(mddev);
2182 
2183 abort:
2184 
2185 	print_conf(conf);
2186 	return err;
2187 }
2188 
2189 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2190 {
2191 	struct r10conf *conf = r10_bio->mddev->private;
2192 
2193 	if (!bio->bi_status)
2194 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2195 	else
2196 		/* The write handler will notice the lack of
2197 		 * R10BIO_Uptodate and record any errors etc
2198 		 */
2199 		atomic_add(r10_bio->sectors,
2200 			   &conf->mirrors[d].rdev->corrected_errors);
2201 
2202 	/* for reconstruct, we always reschedule after a read.
2203 	 * for resync, only after all reads
2204 	 */
2205 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2206 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2207 	    atomic_dec_and_test(&r10_bio->remaining)) {
2208 		/* we have read all the blocks,
2209 		 * do the comparison in process context in raid10d
2210 		 */
2211 		reschedule_retry(r10_bio);
2212 	}
2213 }
2214 
2215 static void end_sync_read(struct bio *bio)
2216 {
2217 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2218 	struct r10conf *conf = r10_bio->mddev->private;
2219 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2220 
2221 	__end_sync_read(r10_bio, bio, d);
2222 }
2223 
2224 static void end_reshape_read(struct bio *bio)
2225 {
2226 	/* reshape read bio isn't allocated from r10buf_pool */
2227 	struct r10bio *r10_bio = bio->bi_private;
2228 
2229 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2230 }
2231 
2232 static void end_sync_request(struct r10bio *r10_bio)
2233 {
2234 	struct mddev *mddev = r10_bio->mddev;
2235 
2236 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2237 		if (r10_bio->master_bio == NULL) {
2238 			/* the primary of several recovery bios */
2239 			sector_t s = r10_bio->sectors;
2240 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2241 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2242 				reschedule_retry(r10_bio);
2243 			else
2244 				put_buf(r10_bio);
2245 			md_done_sync(mddev, s, 1);
2246 			break;
2247 		} else {
2248 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2249 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2250 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2251 				reschedule_retry(r10_bio);
2252 			else
2253 				put_buf(r10_bio);
2254 			r10_bio = r10_bio2;
2255 		}
2256 	}
2257 }
2258 
2259 static void end_sync_write(struct bio *bio)
2260 {
2261 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2262 	struct mddev *mddev = r10_bio->mddev;
2263 	struct r10conf *conf = mddev->private;
2264 	int d;
2265 	int slot;
2266 	int repl;
2267 	struct md_rdev *rdev = NULL;
2268 
2269 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2270 	if (repl)
2271 		rdev = conf->mirrors[d].replacement;
2272 	else
2273 		rdev = conf->mirrors[d].rdev;
2274 
2275 	if (bio->bi_status) {
2276 		if (repl)
2277 			md_error(mddev, rdev);
2278 		else {
2279 			set_bit(WriteErrorSeen, &rdev->flags);
2280 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2281 				set_bit(MD_RECOVERY_NEEDED,
2282 					&rdev->mddev->recovery);
2283 			set_bit(R10BIO_WriteError, &r10_bio->state);
2284 		}
2285 	} else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2286 				     r10_bio->sectors)) {
2287 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2288 	}
2289 
2290 	rdev_dec_pending(rdev, mddev);
2291 
2292 	end_sync_request(r10_bio);
2293 }
2294 
2295 /*
2296  * Note: sync and recover and handled very differently for raid10
2297  * This code is for resync.
2298  * For resync, we read through virtual addresses and read all blocks.
2299  * If there is any error, we schedule a write.  The lowest numbered
2300  * drive is authoritative.
2301  * However requests come for physical address, so we need to map.
2302  * For every physical address there are raid_disks/copies virtual addresses,
2303  * which is always are least one, but is not necessarly an integer.
2304  * This means that a physical address can span multiple chunks, so we may
2305  * have to submit multiple io requests for a single sync request.
2306  */
2307 /*
2308  * We check if all blocks are in-sync and only write to blocks that
2309  * aren't in sync
2310  */
2311 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2312 {
2313 	struct r10conf *conf = mddev->private;
2314 	int i, first;
2315 	struct bio *tbio, *fbio;
2316 	int vcnt;
2317 	struct page **tpages, **fpages;
2318 
2319 	atomic_set(&r10_bio->remaining, 1);
2320 
2321 	/* find the first device with a block */
2322 	for (i=0; i<conf->copies; i++)
2323 		if (!r10_bio->devs[i].bio->bi_status)
2324 			break;
2325 
2326 	if (i == conf->copies)
2327 		goto done;
2328 
2329 	first = i;
2330 	fbio = r10_bio->devs[i].bio;
2331 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2332 	fbio->bi_iter.bi_idx = 0;
2333 	fpages = get_resync_pages(fbio)->pages;
2334 
2335 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2336 	/* now find blocks with errors */
2337 	for (i=0 ; i < conf->copies ; i++) {
2338 		int  j, d;
2339 		struct md_rdev *rdev;
2340 		struct resync_pages *rp;
2341 
2342 		tbio = r10_bio->devs[i].bio;
2343 
2344 		if (tbio->bi_end_io != end_sync_read)
2345 			continue;
2346 		if (i == first)
2347 			continue;
2348 
2349 		tpages = get_resync_pages(tbio)->pages;
2350 		d = r10_bio->devs[i].devnum;
2351 		rdev = conf->mirrors[d].rdev;
2352 		if (!r10_bio->devs[i].bio->bi_status) {
2353 			/* We know that the bi_io_vec layout is the same for
2354 			 * both 'first' and 'i', so we just compare them.
2355 			 * All vec entries are PAGE_SIZE;
2356 			 */
2357 			int sectors = r10_bio->sectors;
2358 			for (j = 0; j < vcnt; j++) {
2359 				int len = PAGE_SIZE;
2360 				if (sectors < (len / 512))
2361 					len = sectors * 512;
2362 				if (memcmp(page_address(fpages[j]),
2363 					   page_address(tpages[j]),
2364 					   len))
2365 					break;
2366 				sectors -= len/512;
2367 			}
2368 			if (j == vcnt)
2369 				continue;
2370 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2371 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2372 				/* Don't fix anything. */
2373 				continue;
2374 		} else if (test_bit(FailFast, &rdev->flags)) {
2375 			/* Just give up on this device */
2376 			md_error(rdev->mddev, rdev);
2377 			continue;
2378 		}
2379 		/* Ok, we need to write this bio, either to correct an
2380 		 * inconsistency or to correct an unreadable block.
2381 		 * First we need to fixup bv_offset, bv_len and
2382 		 * bi_vecs, as the read request might have corrupted these
2383 		 */
2384 		rp = get_resync_pages(tbio);
2385 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2386 
2387 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2388 
2389 		rp->raid_bio = r10_bio;
2390 		tbio->bi_private = rp;
2391 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2392 		tbio->bi_end_io = end_sync_write;
2393 
2394 		bio_copy_data(tbio, fbio);
2395 
2396 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2397 		atomic_inc(&r10_bio->remaining);
2398 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2399 
2400 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2401 			tbio->bi_opf |= MD_FAILFAST;
2402 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2403 		submit_bio_noacct(tbio);
2404 	}
2405 
2406 	/* Now write out to any replacement devices
2407 	 * that are active
2408 	 */
2409 	for (i = 0; i < conf->copies; i++) {
2410 		int d;
2411 
2412 		tbio = r10_bio->devs[i].repl_bio;
2413 		if (!tbio || !tbio->bi_end_io)
2414 			continue;
2415 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2416 		    && r10_bio->devs[i].bio != fbio)
2417 			bio_copy_data(tbio, fbio);
2418 		d = r10_bio->devs[i].devnum;
2419 		atomic_inc(&r10_bio->remaining);
2420 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2421 			     bio_sectors(tbio));
2422 		submit_bio_noacct(tbio);
2423 	}
2424 
2425 done:
2426 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2427 		md_done_sync(mddev, r10_bio->sectors, 1);
2428 		put_buf(r10_bio);
2429 	}
2430 }
2431 
2432 /*
2433  * Now for the recovery code.
2434  * Recovery happens across physical sectors.
2435  * We recover all non-is_sync drives by finding the virtual address of
2436  * each, and then choose a working drive that also has that virt address.
2437  * There is a separate r10_bio for each non-in_sync drive.
2438  * Only the first two slots are in use. The first for reading,
2439  * The second for writing.
2440  *
2441  */
2442 static void fix_recovery_read_error(struct r10bio *r10_bio)
2443 {
2444 	/* We got a read error during recovery.
2445 	 * We repeat the read in smaller page-sized sections.
2446 	 * If a read succeeds, write it to the new device or record
2447 	 * a bad block if we cannot.
2448 	 * If a read fails, record a bad block on both old and
2449 	 * new devices.
2450 	 */
2451 	struct mddev *mddev = r10_bio->mddev;
2452 	struct r10conf *conf = mddev->private;
2453 	struct bio *bio = r10_bio->devs[0].bio;
2454 	sector_t sect = 0;
2455 	int sectors = r10_bio->sectors;
2456 	int idx = 0;
2457 	int dr = r10_bio->devs[0].devnum;
2458 	int dw = r10_bio->devs[1].devnum;
2459 	struct page **pages = get_resync_pages(bio)->pages;
2460 
2461 	while (sectors) {
2462 		int s = sectors;
2463 		struct md_rdev *rdev;
2464 		sector_t addr;
2465 		int ok;
2466 
2467 		if (s > (PAGE_SIZE>>9))
2468 			s = PAGE_SIZE >> 9;
2469 
2470 		rdev = conf->mirrors[dr].rdev;
2471 		addr = r10_bio->devs[0].addr + sect,
2472 		ok = sync_page_io(rdev,
2473 				  addr,
2474 				  s << 9,
2475 				  pages[idx],
2476 				  REQ_OP_READ, false);
2477 		if (ok) {
2478 			rdev = conf->mirrors[dw].rdev;
2479 			addr = r10_bio->devs[1].addr + sect;
2480 			ok = sync_page_io(rdev,
2481 					  addr,
2482 					  s << 9,
2483 					  pages[idx],
2484 					  REQ_OP_WRITE, false);
2485 			if (!ok) {
2486 				set_bit(WriteErrorSeen, &rdev->flags);
2487 				if (!test_and_set_bit(WantReplacement,
2488 						      &rdev->flags))
2489 					set_bit(MD_RECOVERY_NEEDED,
2490 						&rdev->mddev->recovery);
2491 			}
2492 		}
2493 		if (!ok) {
2494 			/* We don't worry if we cannot set a bad block -
2495 			 * it really is bad so there is no loss in not
2496 			 * recording it yet
2497 			 */
2498 			rdev_set_badblocks(rdev, addr, s, 0);
2499 
2500 			if (rdev != conf->mirrors[dw].rdev) {
2501 				/* need bad block on destination too */
2502 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2503 				addr = r10_bio->devs[1].addr + sect;
2504 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2505 				if (!ok) {
2506 					/* just abort the recovery */
2507 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2508 						  mdname(mddev));
2509 
2510 					conf->mirrors[dw].recovery_disabled
2511 						= mddev->recovery_disabled;
2512 					set_bit(MD_RECOVERY_INTR,
2513 						&mddev->recovery);
2514 					break;
2515 				}
2516 			}
2517 		}
2518 
2519 		sectors -= s;
2520 		sect += s;
2521 		idx++;
2522 	}
2523 }
2524 
2525 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2526 {
2527 	struct r10conf *conf = mddev->private;
2528 	int d;
2529 	struct bio *wbio = r10_bio->devs[1].bio;
2530 	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2531 
2532 	/* Need to test wbio2->bi_end_io before we call
2533 	 * submit_bio_noacct as if the former is NULL,
2534 	 * the latter is free to free wbio2.
2535 	 */
2536 	if (wbio2 && !wbio2->bi_end_io)
2537 		wbio2 = NULL;
2538 
2539 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2540 		fix_recovery_read_error(r10_bio);
2541 		if (wbio->bi_end_io)
2542 			end_sync_request(r10_bio);
2543 		if (wbio2)
2544 			end_sync_request(r10_bio);
2545 		return;
2546 	}
2547 
2548 	/*
2549 	 * share the pages with the first bio
2550 	 * and submit the write request
2551 	 */
2552 	d = r10_bio->devs[1].devnum;
2553 	if (wbio->bi_end_io) {
2554 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2555 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2556 		submit_bio_noacct(wbio);
2557 	}
2558 	if (wbio2) {
2559 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2560 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2561 			     bio_sectors(wbio2));
2562 		submit_bio_noacct(wbio2);
2563 	}
2564 }
2565 
2566 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2567 			    int sectors, struct page *page, enum req_op op)
2568 {
2569 	if (rdev_has_badblock(rdev, sector, sectors) &&
2570 	    (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2571 		return -1;
2572 	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2573 		/* success */
2574 		return 1;
2575 	if (op == REQ_OP_WRITE) {
2576 		set_bit(WriteErrorSeen, &rdev->flags);
2577 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2578 			set_bit(MD_RECOVERY_NEEDED,
2579 				&rdev->mddev->recovery);
2580 	}
2581 	/* need to record an error - either for the block or the device */
2582 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2583 		md_error(rdev->mddev, rdev);
2584 	return 0;
2585 }
2586 
2587 /*
2588  * This is a kernel thread which:
2589  *
2590  *	1.	Retries failed read operations on working mirrors.
2591  *	2.	Updates the raid superblock when problems encounter.
2592  *	3.	Performs writes following reads for array synchronising.
2593  */
2594 
2595 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2596 {
2597 	int sect = 0; /* Offset from r10_bio->sector */
2598 	int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2599 	struct md_rdev *rdev;
2600 	int d = r10_bio->devs[slot].devnum;
2601 
2602 	/* still own a reference to this rdev, so it cannot
2603 	 * have been cleared recently.
2604 	 */
2605 	rdev = conf->mirrors[d].rdev;
2606 
2607 	if (test_bit(Faulty, &rdev->flags))
2608 		/* drive has already been failed, just ignore any
2609 		   more fix_read_error() attempts */
2610 		return;
2611 
2612 	if (exceed_read_errors(mddev, rdev)) {
2613 		r10_bio->devs[slot].bio = IO_BLOCKED;
2614 		return;
2615 	}
2616 
2617 	while(sectors) {
2618 		int s = sectors;
2619 		int sl = slot;
2620 		int success = 0;
2621 		int start;
2622 
2623 		if (s > (PAGE_SIZE>>9))
2624 			s = PAGE_SIZE >> 9;
2625 
2626 		do {
2627 			d = r10_bio->devs[sl].devnum;
2628 			rdev = conf->mirrors[d].rdev;
2629 			if (rdev &&
2630 			    test_bit(In_sync, &rdev->flags) &&
2631 			    !test_bit(Faulty, &rdev->flags) &&
2632 			    rdev_has_badblock(rdev,
2633 					      r10_bio->devs[sl].addr + sect,
2634 					      s) == 0) {
2635 				atomic_inc(&rdev->nr_pending);
2636 				success = sync_page_io(rdev,
2637 						       r10_bio->devs[sl].addr +
2638 						       sect,
2639 						       s<<9,
2640 						       conf->tmppage,
2641 						       REQ_OP_READ, false);
2642 				rdev_dec_pending(rdev, mddev);
2643 				if (success)
2644 					break;
2645 			}
2646 			sl++;
2647 			if (sl == conf->copies)
2648 				sl = 0;
2649 		} while (sl != slot);
2650 
2651 		if (!success) {
2652 			/* Cannot read from anywhere, just mark the block
2653 			 * as bad on the first device to discourage future
2654 			 * reads.
2655 			 */
2656 			int dn = r10_bio->devs[slot].devnum;
2657 			rdev = conf->mirrors[dn].rdev;
2658 
2659 			if (!rdev_set_badblocks(
2660 				    rdev,
2661 				    r10_bio->devs[slot].addr
2662 				    + sect,
2663 				    s, 0)) {
2664 				md_error(mddev, rdev);
2665 				r10_bio->devs[slot].bio
2666 					= IO_BLOCKED;
2667 			}
2668 			break;
2669 		}
2670 
2671 		start = sl;
2672 		/* write it back and re-read */
2673 		while (sl != slot) {
2674 			if (sl==0)
2675 				sl = conf->copies;
2676 			sl--;
2677 			d = r10_bio->devs[sl].devnum;
2678 			rdev = conf->mirrors[d].rdev;
2679 			if (!rdev ||
2680 			    test_bit(Faulty, &rdev->flags) ||
2681 			    !test_bit(In_sync, &rdev->flags))
2682 				continue;
2683 
2684 			atomic_inc(&rdev->nr_pending);
2685 			if (r10_sync_page_io(rdev,
2686 					     r10_bio->devs[sl].addr +
2687 					     sect,
2688 					     s, conf->tmppage, REQ_OP_WRITE)
2689 			    == 0) {
2690 				/* Well, this device is dead */
2691 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2692 					  mdname(mddev), s,
2693 					  (unsigned long long)(
2694 						  sect +
2695 						  choose_data_offset(r10_bio,
2696 								     rdev)),
2697 					  rdev->bdev);
2698 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2699 					  mdname(mddev),
2700 					  rdev->bdev);
2701 			}
2702 			rdev_dec_pending(rdev, mddev);
2703 		}
2704 		sl = start;
2705 		while (sl != slot) {
2706 			if (sl==0)
2707 				sl = conf->copies;
2708 			sl--;
2709 			d = r10_bio->devs[sl].devnum;
2710 			rdev = conf->mirrors[d].rdev;
2711 			if (!rdev ||
2712 			    test_bit(Faulty, &rdev->flags) ||
2713 			    !test_bit(In_sync, &rdev->flags))
2714 				continue;
2715 
2716 			atomic_inc(&rdev->nr_pending);
2717 			switch (r10_sync_page_io(rdev,
2718 					     r10_bio->devs[sl].addr +
2719 					     sect,
2720 					     s, conf->tmppage, REQ_OP_READ)) {
2721 			case 0:
2722 				/* Well, this device is dead */
2723 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2724 				       mdname(mddev), s,
2725 				       (unsigned long long)(
2726 					       sect +
2727 					       choose_data_offset(r10_bio, rdev)),
2728 				       rdev->bdev);
2729 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2730 				       mdname(mddev),
2731 				       rdev->bdev);
2732 				break;
2733 			case 1:
2734 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2735 				       mdname(mddev), s,
2736 				       (unsigned long long)(
2737 					       sect +
2738 					       choose_data_offset(r10_bio, rdev)),
2739 				       rdev->bdev);
2740 				atomic_add(s, &rdev->corrected_errors);
2741 			}
2742 
2743 			rdev_dec_pending(rdev, mddev);
2744 		}
2745 
2746 		sectors -= s;
2747 		sect += s;
2748 	}
2749 }
2750 
2751 static int narrow_write_error(struct r10bio *r10_bio, int i)
2752 {
2753 	struct bio *bio = r10_bio->master_bio;
2754 	struct mddev *mddev = r10_bio->mddev;
2755 	struct r10conf *conf = mddev->private;
2756 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2757 	/* bio has the data to be written to slot 'i' where
2758 	 * we just recently had a write error.
2759 	 * We repeatedly clone the bio and trim down to one block,
2760 	 * then try the write.  Where the write fails we record
2761 	 * a bad block.
2762 	 * It is conceivable that the bio doesn't exactly align with
2763 	 * blocks.  We must handle this.
2764 	 *
2765 	 * We currently own a reference to the rdev.
2766 	 */
2767 
2768 	int block_sectors;
2769 	sector_t sector;
2770 	int sectors;
2771 	int sect_to_write = r10_bio->sectors;
2772 	int ok = 1;
2773 
2774 	if (rdev->badblocks.shift < 0)
2775 		return 0;
2776 
2777 	block_sectors = roundup(1 << rdev->badblocks.shift,
2778 				bdev_logical_block_size(rdev->bdev) >> 9);
2779 	sector = r10_bio->sector;
2780 	sectors = ((r10_bio->sector + block_sectors)
2781 		   & ~(sector_t)(block_sectors - 1))
2782 		- sector;
2783 
2784 	while (sect_to_write) {
2785 		struct bio *wbio;
2786 		sector_t wsector;
2787 		if (sectors > sect_to_write)
2788 			sectors = sect_to_write;
2789 		/* Write at 'sector' for 'sectors' */
2790 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2791 				       &mddev->bio_set);
2792 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2793 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2794 		wbio->bi_iter.bi_sector = wsector +
2795 				   choose_data_offset(r10_bio, rdev);
2796 		wbio->bi_opf = REQ_OP_WRITE;
2797 
2798 		if (submit_bio_wait(wbio) < 0)
2799 			/* Failure! */
2800 			ok = rdev_set_badblocks(rdev, wsector,
2801 						sectors, 0)
2802 				&& ok;
2803 
2804 		bio_put(wbio);
2805 		sect_to_write -= sectors;
2806 		sector += sectors;
2807 		sectors = block_sectors;
2808 	}
2809 	return ok;
2810 }
2811 
2812 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2813 {
2814 	int slot = r10_bio->read_slot;
2815 	struct bio *bio;
2816 	struct r10conf *conf = mddev->private;
2817 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2818 
2819 	/* we got a read error. Maybe the drive is bad.  Maybe just
2820 	 * the block and we can fix it.
2821 	 * We freeze all other IO, and try reading the block from
2822 	 * other devices.  When we find one, we re-write
2823 	 * and check it that fixes the read error.
2824 	 * This is all done synchronously while the array is
2825 	 * frozen.
2826 	 */
2827 	bio = r10_bio->devs[slot].bio;
2828 	bio_put(bio);
2829 	r10_bio->devs[slot].bio = NULL;
2830 
2831 	if (mddev->ro)
2832 		r10_bio->devs[slot].bio = IO_BLOCKED;
2833 	else if (!test_bit(FailFast, &rdev->flags)) {
2834 		freeze_array(conf, 1);
2835 		fix_read_error(conf, mddev, r10_bio);
2836 		unfreeze_array(conf);
2837 	} else
2838 		md_error(mddev, rdev);
2839 
2840 	rdev_dec_pending(rdev, mddev);
2841 	r10_bio->state = 0;
2842 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2843 	/*
2844 	 * allow_barrier after re-submit to ensure no sync io
2845 	 * can be issued while regular io pending.
2846 	 */
2847 	allow_barrier(conf);
2848 }
2849 
2850 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2851 {
2852 	/* Some sort of write request has finished and it
2853 	 * succeeded in writing where we thought there was a
2854 	 * bad block.  So forget the bad block.
2855 	 * Or possibly if failed and we need to record
2856 	 * a bad block.
2857 	 */
2858 	int m;
2859 	struct md_rdev *rdev;
2860 
2861 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2862 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2863 		for (m = 0; m < conf->copies; m++) {
2864 			int dev = r10_bio->devs[m].devnum;
2865 			rdev = conf->mirrors[dev].rdev;
2866 			if (r10_bio->devs[m].bio == NULL ||
2867 				r10_bio->devs[m].bio->bi_end_io == NULL)
2868 				continue;
2869 			if (!r10_bio->devs[m].bio->bi_status) {
2870 				rdev_clear_badblocks(
2871 					rdev,
2872 					r10_bio->devs[m].addr,
2873 					r10_bio->sectors, 0);
2874 			} else {
2875 				if (!rdev_set_badblocks(
2876 					    rdev,
2877 					    r10_bio->devs[m].addr,
2878 					    r10_bio->sectors, 0))
2879 					md_error(conf->mddev, rdev);
2880 			}
2881 			rdev = conf->mirrors[dev].replacement;
2882 			if (r10_bio->devs[m].repl_bio == NULL ||
2883 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2884 				continue;
2885 
2886 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2887 				rdev_clear_badblocks(
2888 					rdev,
2889 					r10_bio->devs[m].addr,
2890 					r10_bio->sectors, 0);
2891 			} else {
2892 				if (!rdev_set_badblocks(
2893 					    rdev,
2894 					    r10_bio->devs[m].addr,
2895 					    r10_bio->sectors, 0))
2896 					md_error(conf->mddev, rdev);
2897 			}
2898 		}
2899 		put_buf(r10_bio);
2900 	} else {
2901 		bool fail = false;
2902 		for (m = 0; m < conf->copies; m++) {
2903 			int dev = r10_bio->devs[m].devnum;
2904 			struct bio *bio = r10_bio->devs[m].bio;
2905 			rdev = conf->mirrors[dev].rdev;
2906 			if (bio == IO_MADE_GOOD) {
2907 				rdev_clear_badblocks(
2908 					rdev,
2909 					r10_bio->devs[m].addr,
2910 					r10_bio->sectors, 0);
2911 				rdev_dec_pending(rdev, conf->mddev);
2912 			} else if (bio != NULL && bio->bi_status) {
2913 				fail = true;
2914 				if (!narrow_write_error(r10_bio, m)) {
2915 					md_error(conf->mddev, rdev);
2916 					set_bit(R10BIO_Degraded,
2917 						&r10_bio->state);
2918 				}
2919 				rdev_dec_pending(rdev, conf->mddev);
2920 			}
2921 			bio = r10_bio->devs[m].repl_bio;
2922 			rdev = conf->mirrors[dev].replacement;
2923 			if (rdev && bio == IO_MADE_GOOD) {
2924 				rdev_clear_badblocks(
2925 					rdev,
2926 					r10_bio->devs[m].addr,
2927 					r10_bio->sectors, 0);
2928 				rdev_dec_pending(rdev, conf->mddev);
2929 			}
2930 		}
2931 		if (fail) {
2932 			spin_lock_irq(&conf->device_lock);
2933 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2934 			conf->nr_queued++;
2935 			spin_unlock_irq(&conf->device_lock);
2936 			/*
2937 			 * In case freeze_array() is waiting for condition
2938 			 * nr_pending == nr_queued + extra to be true.
2939 			 */
2940 			wake_up(&conf->wait_barrier);
2941 			md_wakeup_thread(conf->mddev->thread);
2942 		} else {
2943 			if (test_bit(R10BIO_WriteError,
2944 				     &r10_bio->state))
2945 				close_write(r10_bio);
2946 			raid_end_bio_io(r10_bio);
2947 		}
2948 	}
2949 }
2950 
2951 static void raid10d(struct md_thread *thread)
2952 {
2953 	struct mddev *mddev = thread->mddev;
2954 	struct r10bio *r10_bio;
2955 	unsigned long flags;
2956 	struct r10conf *conf = mddev->private;
2957 	struct list_head *head = &conf->retry_list;
2958 	struct blk_plug plug;
2959 
2960 	md_check_recovery(mddev);
2961 
2962 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2963 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2964 		LIST_HEAD(tmp);
2965 		spin_lock_irqsave(&conf->device_lock, flags);
2966 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2967 			while (!list_empty(&conf->bio_end_io_list)) {
2968 				list_move(conf->bio_end_io_list.prev, &tmp);
2969 				conf->nr_queued--;
2970 			}
2971 		}
2972 		spin_unlock_irqrestore(&conf->device_lock, flags);
2973 		while (!list_empty(&tmp)) {
2974 			r10_bio = list_first_entry(&tmp, struct r10bio,
2975 						   retry_list);
2976 			list_del(&r10_bio->retry_list);
2977 			if (mddev->degraded)
2978 				set_bit(R10BIO_Degraded, &r10_bio->state);
2979 
2980 			if (test_bit(R10BIO_WriteError,
2981 				     &r10_bio->state))
2982 				close_write(r10_bio);
2983 			raid_end_bio_io(r10_bio);
2984 		}
2985 	}
2986 
2987 	blk_start_plug(&plug);
2988 	for (;;) {
2989 
2990 		flush_pending_writes(conf);
2991 
2992 		spin_lock_irqsave(&conf->device_lock, flags);
2993 		if (list_empty(head)) {
2994 			spin_unlock_irqrestore(&conf->device_lock, flags);
2995 			break;
2996 		}
2997 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2998 		list_del(head->prev);
2999 		conf->nr_queued--;
3000 		spin_unlock_irqrestore(&conf->device_lock, flags);
3001 
3002 		mddev = r10_bio->mddev;
3003 		conf = mddev->private;
3004 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3005 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3006 			handle_write_completed(conf, r10_bio);
3007 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3008 			reshape_request_write(mddev, r10_bio);
3009 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3010 			sync_request_write(mddev, r10_bio);
3011 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3012 			recovery_request_write(mddev, r10_bio);
3013 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3014 			handle_read_error(mddev, r10_bio);
3015 		else
3016 			WARN_ON_ONCE(1);
3017 
3018 		cond_resched();
3019 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3020 			md_check_recovery(mddev);
3021 	}
3022 	blk_finish_plug(&plug);
3023 }
3024 
3025 static int init_resync(struct r10conf *conf)
3026 {
3027 	int ret, buffs, i;
3028 
3029 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3030 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3031 	conf->have_replacement = 0;
3032 	for (i = 0; i < conf->geo.raid_disks; i++)
3033 		if (conf->mirrors[i].replacement)
3034 			conf->have_replacement = 1;
3035 	ret = mempool_init(&conf->r10buf_pool, buffs,
3036 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3037 	if (ret)
3038 		return ret;
3039 	conf->next_resync = 0;
3040 	return 0;
3041 }
3042 
3043 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3044 {
3045 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3046 	struct rsync_pages *rp;
3047 	struct bio *bio;
3048 	int nalloc;
3049 	int i;
3050 
3051 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3052 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3053 		nalloc = conf->copies; /* resync */
3054 	else
3055 		nalloc = 2; /* recovery */
3056 
3057 	for (i = 0; i < nalloc; i++) {
3058 		bio = r10bio->devs[i].bio;
3059 		rp = bio->bi_private;
3060 		bio_reset(bio, NULL, 0);
3061 		bio->bi_private = rp;
3062 		bio = r10bio->devs[i].repl_bio;
3063 		if (bio) {
3064 			rp = bio->bi_private;
3065 			bio_reset(bio, NULL, 0);
3066 			bio->bi_private = rp;
3067 		}
3068 	}
3069 	return r10bio;
3070 }
3071 
3072 /*
3073  * Set cluster_sync_high since we need other nodes to add the
3074  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3075  */
3076 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3077 {
3078 	sector_t window_size;
3079 	int extra_chunk, chunks;
3080 
3081 	/*
3082 	 * First, here we define "stripe" as a unit which across
3083 	 * all member devices one time, so we get chunks by use
3084 	 * raid_disks / near_copies. Otherwise, if near_copies is
3085 	 * close to raid_disks, then resync window could increases
3086 	 * linearly with the increase of raid_disks, which means
3087 	 * we will suspend a really large IO window while it is not
3088 	 * necessary. If raid_disks is not divisible by near_copies,
3089 	 * an extra chunk is needed to ensure the whole "stripe" is
3090 	 * covered.
3091 	 */
3092 
3093 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3094 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3095 		extra_chunk = 0;
3096 	else
3097 		extra_chunk = 1;
3098 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3099 
3100 	/*
3101 	 * At least use a 32M window to align with raid1's resync window
3102 	 */
3103 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3104 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3105 
3106 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3107 }
3108 
3109 /*
3110  * perform a "sync" on one "block"
3111  *
3112  * We need to make sure that no normal I/O request - particularly write
3113  * requests - conflict with active sync requests.
3114  *
3115  * This is achieved by tracking pending requests and a 'barrier' concept
3116  * that can be installed to exclude normal IO requests.
3117  *
3118  * Resync and recovery are handled very differently.
3119  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3120  *
3121  * For resync, we iterate over virtual addresses, read all copies,
3122  * and update if there are differences.  If only one copy is live,
3123  * skip it.
3124  * For recovery, we iterate over physical addresses, read a good
3125  * value for each non-in_sync drive, and over-write.
3126  *
3127  * So, for recovery we may have several outstanding complex requests for a
3128  * given address, one for each out-of-sync device.  We model this by allocating
3129  * a number of r10_bio structures, one for each out-of-sync device.
3130  * As we setup these structures, we collect all bio's together into a list
3131  * which we then process collectively to add pages, and then process again
3132  * to pass to submit_bio_noacct.
3133  *
3134  * The r10_bio structures are linked using a borrowed master_bio pointer.
3135  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3136  * has its remaining count decremented to 0, the whole complex operation
3137  * is complete.
3138  *
3139  */
3140 
3141 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3142 				    sector_t max_sector, int *skipped)
3143 {
3144 	struct r10conf *conf = mddev->private;
3145 	struct r10bio *r10_bio;
3146 	struct bio *biolist = NULL, *bio;
3147 	sector_t nr_sectors;
3148 	int i;
3149 	int max_sync;
3150 	sector_t sync_blocks;
3151 	sector_t sectors_skipped = 0;
3152 	int chunks_skipped = 0;
3153 	sector_t chunk_mask = conf->geo.chunk_mask;
3154 	int page_idx = 0;
3155 	int error_disk = -1;
3156 
3157 	/*
3158 	 * Allow skipping a full rebuild for incremental assembly
3159 	 * of a clean array, like RAID1 does.
3160 	 */
3161 	if (mddev->bitmap == NULL &&
3162 	    mddev->recovery_cp == MaxSector &&
3163 	    mddev->reshape_position == MaxSector &&
3164 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3165 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3166 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3167 	    conf->fullsync == 0) {
3168 		*skipped = 1;
3169 		return mddev->dev_sectors - sector_nr;
3170 	}
3171 
3172 	if (!mempool_initialized(&conf->r10buf_pool))
3173 		if (init_resync(conf))
3174 			return 0;
3175 
3176  skipped:
3177 	if (sector_nr >= max_sector) {
3178 		conf->cluster_sync_low = 0;
3179 		conf->cluster_sync_high = 0;
3180 
3181 		/* If we aborted, we need to abort the
3182 		 * sync on the 'current' bitmap chucks (there can
3183 		 * be several when recovering multiple devices).
3184 		 * as we may have started syncing it but not finished.
3185 		 * We can find the current address in
3186 		 * mddev->curr_resync, but for recovery,
3187 		 * we need to convert that to several
3188 		 * virtual addresses.
3189 		 */
3190 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3191 			end_reshape(conf);
3192 			close_sync(conf);
3193 			return 0;
3194 		}
3195 
3196 		if (mddev->curr_resync < max_sector) { /* aborted */
3197 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3198 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3199 						   &sync_blocks, 1);
3200 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3201 				sector_t sect =
3202 					raid10_find_virt(conf, mddev->curr_resync, i);
3203 				md_bitmap_end_sync(mddev->bitmap, sect,
3204 						   &sync_blocks, 1);
3205 			}
3206 		} else {
3207 			/* completed sync */
3208 			if ((!mddev->bitmap || conf->fullsync)
3209 			    && conf->have_replacement
3210 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3211 				/* Completed a full sync so the replacements
3212 				 * are now fully recovered.
3213 				 */
3214 				for (i = 0; i < conf->geo.raid_disks; i++) {
3215 					struct md_rdev *rdev =
3216 						conf->mirrors[i].replacement;
3217 
3218 					if (rdev)
3219 						rdev->recovery_offset = MaxSector;
3220 				}
3221 			}
3222 			conf->fullsync = 0;
3223 		}
3224 		md_bitmap_close_sync(mddev->bitmap);
3225 		close_sync(conf);
3226 		*skipped = 1;
3227 		return sectors_skipped;
3228 	}
3229 
3230 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3231 		return reshape_request(mddev, sector_nr, skipped);
3232 
3233 	if (chunks_skipped >= conf->geo.raid_disks) {
3234 		pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3235 			test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3236 		if (error_disk >= 0 &&
3237 		    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3238 			/*
3239 			 * recovery fails, set mirrors.recovery_disabled,
3240 			 * device shouldn't be added to there.
3241 			 */
3242 			conf->mirrors[error_disk].recovery_disabled =
3243 						mddev->recovery_disabled;
3244 			return 0;
3245 		}
3246 		/*
3247 		 * if there has been nothing to do on any drive,
3248 		 * then there is nothing to do at all.
3249 		 */
3250 		*skipped = 1;
3251 		return (max_sector - sector_nr) + sectors_skipped;
3252 	}
3253 
3254 	if (max_sector > mddev->resync_max)
3255 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3256 
3257 	/* make sure whole request will fit in a chunk - if chunks
3258 	 * are meaningful
3259 	 */
3260 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3261 	    max_sector > (sector_nr | chunk_mask))
3262 		max_sector = (sector_nr | chunk_mask) + 1;
3263 
3264 	/*
3265 	 * If there is non-resync activity waiting for a turn, then let it
3266 	 * though before starting on this new sync request.
3267 	 */
3268 	if (conf->nr_waiting)
3269 		schedule_timeout_uninterruptible(1);
3270 
3271 	/* Again, very different code for resync and recovery.
3272 	 * Both must result in an r10bio with a list of bios that
3273 	 * have bi_end_io, bi_sector, bi_bdev set,
3274 	 * and bi_private set to the r10bio.
3275 	 * For recovery, we may actually create several r10bios
3276 	 * with 2 bios in each, that correspond to the bios in the main one.
3277 	 * In this case, the subordinate r10bios link back through a
3278 	 * borrowed master_bio pointer, and the counter in the master
3279 	 * includes a ref from each subordinate.
3280 	 */
3281 	/* First, we decide what to do and set ->bi_end_io
3282 	 * To end_sync_read if we want to read, and
3283 	 * end_sync_write if we will want to write.
3284 	 */
3285 
3286 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3287 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3288 		/* recovery... the complicated one */
3289 		int j;
3290 		r10_bio = NULL;
3291 
3292 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3293 			int still_degraded;
3294 			struct r10bio *rb2;
3295 			sector_t sect;
3296 			int must_sync;
3297 			int any_working;
3298 			struct raid10_info *mirror = &conf->mirrors[i];
3299 			struct md_rdev *mrdev, *mreplace;
3300 
3301 			mrdev = mirror->rdev;
3302 			mreplace = mirror->replacement;
3303 
3304 			if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3305 			    test_bit(In_sync, &mrdev->flags)))
3306 				mrdev = NULL;
3307 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3308 				mreplace = NULL;
3309 
3310 			if (!mrdev && !mreplace)
3311 				continue;
3312 
3313 			still_degraded = 0;
3314 			/* want to reconstruct this device */
3315 			rb2 = r10_bio;
3316 			sect = raid10_find_virt(conf, sector_nr, i);
3317 			if (sect >= mddev->resync_max_sectors)
3318 				/* last stripe is not complete - don't
3319 				 * try to recover this sector.
3320 				 */
3321 				continue;
3322 			/* Unless we are doing a full sync, or a replacement
3323 			 * we only need to recover the block if it is set in
3324 			 * the bitmap
3325 			 */
3326 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3327 							 &sync_blocks, 1);
3328 			if (sync_blocks < max_sync)
3329 				max_sync = sync_blocks;
3330 			if (!must_sync &&
3331 			    mreplace == NULL &&
3332 			    !conf->fullsync) {
3333 				/* yep, skip the sync_blocks here, but don't assume
3334 				 * that there will never be anything to do here
3335 				 */
3336 				chunks_skipped = -1;
3337 				continue;
3338 			}
3339 			if (mrdev)
3340 				atomic_inc(&mrdev->nr_pending);
3341 			if (mreplace)
3342 				atomic_inc(&mreplace->nr_pending);
3343 
3344 			r10_bio = raid10_alloc_init_r10buf(conf);
3345 			r10_bio->state = 0;
3346 			raise_barrier(conf, rb2 != NULL);
3347 			atomic_set(&r10_bio->remaining, 0);
3348 
3349 			r10_bio->master_bio = (struct bio*)rb2;
3350 			if (rb2)
3351 				atomic_inc(&rb2->remaining);
3352 			r10_bio->mddev = mddev;
3353 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3354 			r10_bio->sector = sect;
3355 
3356 			raid10_find_phys(conf, r10_bio);
3357 
3358 			/* Need to check if the array will still be
3359 			 * degraded
3360 			 */
3361 			for (j = 0; j < conf->geo.raid_disks; j++) {
3362 				struct md_rdev *rdev = conf->mirrors[j].rdev;
3363 
3364 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3365 					still_degraded = 1;
3366 					break;
3367 				}
3368 			}
3369 
3370 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3371 							 &sync_blocks, still_degraded);
3372 
3373 			any_working = 0;
3374 			for (j=0; j<conf->copies;j++) {
3375 				int k;
3376 				int d = r10_bio->devs[j].devnum;
3377 				sector_t from_addr, to_addr;
3378 				struct md_rdev *rdev = conf->mirrors[d].rdev;
3379 				sector_t sector, first_bad;
3380 				int bad_sectors;
3381 				if (!rdev ||
3382 				    !test_bit(In_sync, &rdev->flags))
3383 					continue;
3384 				/* This is where we read from */
3385 				any_working = 1;
3386 				sector = r10_bio->devs[j].addr;
3387 
3388 				if (is_badblock(rdev, sector, max_sync,
3389 						&first_bad, &bad_sectors)) {
3390 					if (first_bad > sector)
3391 						max_sync = first_bad - sector;
3392 					else {
3393 						bad_sectors -= (sector
3394 								- first_bad);
3395 						if (max_sync > bad_sectors)
3396 							max_sync = bad_sectors;
3397 						continue;
3398 					}
3399 				}
3400 				bio = r10_bio->devs[0].bio;
3401 				bio->bi_next = biolist;
3402 				biolist = bio;
3403 				bio->bi_end_io = end_sync_read;
3404 				bio->bi_opf = REQ_OP_READ;
3405 				if (test_bit(FailFast, &rdev->flags))
3406 					bio->bi_opf |= MD_FAILFAST;
3407 				from_addr = r10_bio->devs[j].addr;
3408 				bio->bi_iter.bi_sector = from_addr +
3409 					rdev->data_offset;
3410 				bio_set_dev(bio, rdev->bdev);
3411 				atomic_inc(&rdev->nr_pending);
3412 				/* and we write to 'i' (if not in_sync) */
3413 
3414 				for (k=0; k<conf->copies; k++)
3415 					if (r10_bio->devs[k].devnum == i)
3416 						break;
3417 				BUG_ON(k == conf->copies);
3418 				to_addr = r10_bio->devs[k].addr;
3419 				r10_bio->devs[0].devnum = d;
3420 				r10_bio->devs[0].addr = from_addr;
3421 				r10_bio->devs[1].devnum = i;
3422 				r10_bio->devs[1].addr = to_addr;
3423 
3424 				if (mrdev) {
3425 					bio = r10_bio->devs[1].bio;
3426 					bio->bi_next = biolist;
3427 					biolist = bio;
3428 					bio->bi_end_io = end_sync_write;
3429 					bio->bi_opf = REQ_OP_WRITE;
3430 					bio->bi_iter.bi_sector = to_addr
3431 						+ mrdev->data_offset;
3432 					bio_set_dev(bio, mrdev->bdev);
3433 					atomic_inc(&r10_bio->remaining);
3434 				} else
3435 					r10_bio->devs[1].bio->bi_end_io = NULL;
3436 
3437 				/* and maybe write to replacement */
3438 				bio = r10_bio->devs[1].repl_bio;
3439 				if (bio)
3440 					bio->bi_end_io = NULL;
3441 				/* Note: if replace is not NULL, then bio
3442 				 * cannot be NULL as r10buf_pool_alloc will
3443 				 * have allocated it.
3444 				 */
3445 				if (!mreplace)
3446 					break;
3447 				bio->bi_next = biolist;
3448 				biolist = bio;
3449 				bio->bi_end_io = end_sync_write;
3450 				bio->bi_opf = REQ_OP_WRITE;
3451 				bio->bi_iter.bi_sector = to_addr +
3452 					mreplace->data_offset;
3453 				bio_set_dev(bio, mreplace->bdev);
3454 				atomic_inc(&r10_bio->remaining);
3455 				break;
3456 			}
3457 			if (j == conf->copies) {
3458 				/* Cannot recover, so abort the recovery or
3459 				 * record a bad block */
3460 				if (any_working) {
3461 					/* problem is that there are bad blocks
3462 					 * on other device(s)
3463 					 */
3464 					int k;
3465 					for (k = 0; k < conf->copies; k++)
3466 						if (r10_bio->devs[k].devnum == i)
3467 							break;
3468 					if (mrdev && !test_bit(In_sync,
3469 						      &mrdev->flags)
3470 					    && !rdev_set_badblocks(
3471 						    mrdev,
3472 						    r10_bio->devs[k].addr,
3473 						    max_sync, 0))
3474 						any_working = 0;
3475 					if (mreplace &&
3476 					    !rdev_set_badblocks(
3477 						    mreplace,
3478 						    r10_bio->devs[k].addr,
3479 						    max_sync, 0))
3480 						any_working = 0;
3481 				}
3482 				if (!any_working)  {
3483 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3484 							      &mddev->recovery))
3485 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3486 						       mdname(mddev));
3487 					mirror->recovery_disabled
3488 						= mddev->recovery_disabled;
3489 				} else {
3490 					error_disk = i;
3491 				}
3492 				put_buf(r10_bio);
3493 				if (rb2)
3494 					atomic_dec(&rb2->remaining);
3495 				r10_bio = rb2;
3496 				if (mrdev)
3497 					rdev_dec_pending(mrdev, mddev);
3498 				if (mreplace)
3499 					rdev_dec_pending(mreplace, mddev);
3500 				break;
3501 			}
3502 			if (mrdev)
3503 				rdev_dec_pending(mrdev, mddev);
3504 			if (mreplace)
3505 				rdev_dec_pending(mreplace, mddev);
3506 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3507 				/* Only want this if there is elsewhere to
3508 				 * read from. 'j' is currently the first
3509 				 * readable copy.
3510 				 */
3511 				int targets = 1;
3512 				for (; j < conf->copies; j++) {
3513 					int d = r10_bio->devs[j].devnum;
3514 					if (conf->mirrors[d].rdev &&
3515 					    test_bit(In_sync,
3516 						      &conf->mirrors[d].rdev->flags))
3517 						targets++;
3518 				}
3519 				if (targets == 1)
3520 					r10_bio->devs[0].bio->bi_opf
3521 						&= ~MD_FAILFAST;
3522 			}
3523 		}
3524 		if (biolist == NULL) {
3525 			while (r10_bio) {
3526 				struct r10bio *rb2 = r10_bio;
3527 				r10_bio = (struct r10bio*) rb2->master_bio;
3528 				rb2->master_bio = NULL;
3529 				put_buf(rb2);
3530 			}
3531 			goto giveup;
3532 		}
3533 	} else {
3534 		/* resync. Schedule a read for every block at this virt offset */
3535 		int count = 0;
3536 
3537 		/*
3538 		 * Since curr_resync_completed could probably not update in
3539 		 * time, and we will set cluster_sync_low based on it.
3540 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3541 		 * safety reason, which ensures curr_resync_completed is
3542 		 * updated in bitmap_cond_end_sync.
3543 		 */
3544 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3545 					mddev_is_clustered(mddev) &&
3546 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3547 
3548 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3549 					  &sync_blocks, mddev->degraded) &&
3550 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3551 						 &mddev->recovery)) {
3552 			/* We can skip this block */
3553 			*skipped = 1;
3554 			return sync_blocks + sectors_skipped;
3555 		}
3556 		if (sync_blocks < max_sync)
3557 			max_sync = sync_blocks;
3558 		r10_bio = raid10_alloc_init_r10buf(conf);
3559 		r10_bio->state = 0;
3560 
3561 		r10_bio->mddev = mddev;
3562 		atomic_set(&r10_bio->remaining, 0);
3563 		raise_barrier(conf, 0);
3564 		conf->next_resync = sector_nr;
3565 
3566 		r10_bio->master_bio = NULL;
3567 		r10_bio->sector = sector_nr;
3568 		set_bit(R10BIO_IsSync, &r10_bio->state);
3569 		raid10_find_phys(conf, r10_bio);
3570 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3571 
3572 		for (i = 0; i < conf->copies; i++) {
3573 			int d = r10_bio->devs[i].devnum;
3574 			sector_t first_bad, sector;
3575 			int bad_sectors;
3576 			struct md_rdev *rdev;
3577 
3578 			if (r10_bio->devs[i].repl_bio)
3579 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3580 
3581 			bio = r10_bio->devs[i].bio;
3582 			bio->bi_status = BLK_STS_IOERR;
3583 			rdev = conf->mirrors[d].rdev;
3584 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3585 				continue;
3586 
3587 			sector = r10_bio->devs[i].addr;
3588 			if (is_badblock(rdev, sector, max_sync,
3589 					&first_bad, &bad_sectors)) {
3590 				if (first_bad > sector)
3591 					max_sync = first_bad - sector;
3592 				else {
3593 					bad_sectors -= (sector - first_bad);
3594 					if (max_sync > bad_sectors)
3595 						max_sync = bad_sectors;
3596 					continue;
3597 				}
3598 			}
3599 			atomic_inc(&rdev->nr_pending);
3600 			atomic_inc(&r10_bio->remaining);
3601 			bio->bi_next = biolist;
3602 			biolist = bio;
3603 			bio->bi_end_io = end_sync_read;
3604 			bio->bi_opf = REQ_OP_READ;
3605 			if (test_bit(FailFast, &rdev->flags))
3606 				bio->bi_opf |= MD_FAILFAST;
3607 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3608 			bio_set_dev(bio, rdev->bdev);
3609 			count++;
3610 
3611 			rdev = conf->mirrors[d].replacement;
3612 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3613 				continue;
3614 
3615 			atomic_inc(&rdev->nr_pending);
3616 
3617 			/* Need to set up for writing to the replacement */
3618 			bio = r10_bio->devs[i].repl_bio;
3619 			bio->bi_status = BLK_STS_IOERR;
3620 
3621 			sector = r10_bio->devs[i].addr;
3622 			bio->bi_next = biolist;
3623 			biolist = bio;
3624 			bio->bi_end_io = end_sync_write;
3625 			bio->bi_opf = REQ_OP_WRITE;
3626 			if (test_bit(FailFast, &rdev->flags))
3627 				bio->bi_opf |= MD_FAILFAST;
3628 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3629 			bio_set_dev(bio, rdev->bdev);
3630 			count++;
3631 		}
3632 
3633 		if (count < 2) {
3634 			for (i=0; i<conf->copies; i++) {
3635 				int d = r10_bio->devs[i].devnum;
3636 				if (r10_bio->devs[i].bio->bi_end_io)
3637 					rdev_dec_pending(conf->mirrors[d].rdev,
3638 							 mddev);
3639 				if (r10_bio->devs[i].repl_bio &&
3640 				    r10_bio->devs[i].repl_bio->bi_end_io)
3641 					rdev_dec_pending(
3642 						conf->mirrors[d].replacement,
3643 						mddev);
3644 			}
3645 			put_buf(r10_bio);
3646 			biolist = NULL;
3647 			goto giveup;
3648 		}
3649 	}
3650 
3651 	nr_sectors = 0;
3652 	if (sector_nr + max_sync < max_sector)
3653 		max_sector = sector_nr + max_sync;
3654 	do {
3655 		struct page *page;
3656 		int len = PAGE_SIZE;
3657 		if (sector_nr + (len>>9) > max_sector)
3658 			len = (max_sector - sector_nr) << 9;
3659 		if (len == 0)
3660 			break;
3661 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3662 			struct resync_pages *rp = get_resync_pages(bio);
3663 			page = resync_fetch_page(rp, page_idx);
3664 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3665 				bio->bi_status = BLK_STS_RESOURCE;
3666 				bio_endio(bio);
3667 				goto giveup;
3668 			}
3669 		}
3670 		nr_sectors += len>>9;
3671 		sector_nr += len>>9;
3672 	} while (++page_idx < RESYNC_PAGES);
3673 	r10_bio->sectors = nr_sectors;
3674 
3675 	if (mddev_is_clustered(mddev) &&
3676 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3677 		/* It is resync not recovery */
3678 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3679 			conf->cluster_sync_low = mddev->curr_resync_completed;
3680 			raid10_set_cluster_sync_high(conf);
3681 			/* Send resync message */
3682 			md_cluster_ops->resync_info_update(mddev,
3683 						conf->cluster_sync_low,
3684 						conf->cluster_sync_high);
3685 		}
3686 	} else if (mddev_is_clustered(mddev)) {
3687 		/* This is recovery not resync */
3688 		sector_t sect_va1, sect_va2;
3689 		bool broadcast_msg = false;
3690 
3691 		for (i = 0; i < conf->geo.raid_disks; i++) {
3692 			/*
3693 			 * sector_nr is a device address for recovery, so we
3694 			 * need translate it to array address before compare
3695 			 * with cluster_sync_high.
3696 			 */
3697 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3698 
3699 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3700 				broadcast_msg = true;
3701 				/*
3702 				 * curr_resync_completed is similar as
3703 				 * sector_nr, so make the translation too.
3704 				 */
3705 				sect_va2 = raid10_find_virt(conf,
3706 					mddev->curr_resync_completed, i);
3707 
3708 				if (conf->cluster_sync_low == 0 ||
3709 				    conf->cluster_sync_low > sect_va2)
3710 					conf->cluster_sync_low = sect_va2;
3711 			}
3712 		}
3713 		if (broadcast_msg) {
3714 			raid10_set_cluster_sync_high(conf);
3715 			md_cluster_ops->resync_info_update(mddev,
3716 						conf->cluster_sync_low,
3717 						conf->cluster_sync_high);
3718 		}
3719 	}
3720 
3721 	while (biolist) {
3722 		bio = biolist;
3723 		biolist = biolist->bi_next;
3724 
3725 		bio->bi_next = NULL;
3726 		r10_bio = get_resync_r10bio(bio);
3727 		r10_bio->sectors = nr_sectors;
3728 
3729 		if (bio->bi_end_io == end_sync_read) {
3730 			md_sync_acct_bio(bio, nr_sectors);
3731 			bio->bi_status = 0;
3732 			submit_bio_noacct(bio);
3733 		}
3734 	}
3735 
3736 	if (sectors_skipped)
3737 		/* pretend they weren't skipped, it makes
3738 		 * no important difference in this case
3739 		 */
3740 		md_done_sync(mddev, sectors_skipped, 1);
3741 
3742 	return sectors_skipped + nr_sectors;
3743  giveup:
3744 	/* There is nowhere to write, so all non-sync
3745 	 * drives must be failed or in resync, all drives
3746 	 * have a bad block, so try the next chunk...
3747 	 */
3748 	if (sector_nr + max_sync < max_sector)
3749 		max_sector = sector_nr + max_sync;
3750 
3751 	sectors_skipped += (max_sector - sector_nr);
3752 	chunks_skipped ++;
3753 	sector_nr = max_sector;
3754 	goto skipped;
3755 }
3756 
3757 static sector_t
3758 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3759 {
3760 	sector_t size;
3761 	struct r10conf *conf = mddev->private;
3762 
3763 	if (!raid_disks)
3764 		raid_disks = min(conf->geo.raid_disks,
3765 				 conf->prev.raid_disks);
3766 	if (!sectors)
3767 		sectors = conf->dev_sectors;
3768 
3769 	size = sectors >> conf->geo.chunk_shift;
3770 	sector_div(size, conf->geo.far_copies);
3771 	size = size * raid_disks;
3772 	sector_div(size, conf->geo.near_copies);
3773 
3774 	return size << conf->geo.chunk_shift;
3775 }
3776 
3777 static void calc_sectors(struct r10conf *conf, sector_t size)
3778 {
3779 	/* Calculate the number of sectors-per-device that will
3780 	 * actually be used, and set conf->dev_sectors and
3781 	 * conf->stride
3782 	 */
3783 
3784 	size = size >> conf->geo.chunk_shift;
3785 	sector_div(size, conf->geo.far_copies);
3786 	size = size * conf->geo.raid_disks;
3787 	sector_div(size, conf->geo.near_copies);
3788 	/* 'size' is now the number of chunks in the array */
3789 	/* calculate "used chunks per device" */
3790 	size = size * conf->copies;
3791 
3792 	/* We need to round up when dividing by raid_disks to
3793 	 * get the stride size.
3794 	 */
3795 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3796 
3797 	conf->dev_sectors = size << conf->geo.chunk_shift;
3798 
3799 	if (conf->geo.far_offset)
3800 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3801 	else {
3802 		sector_div(size, conf->geo.far_copies);
3803 		conf->geo.stride = size << conf->geo.chunk_shift;
3804 	}
3805 }
3806 
3807 enum geo_type {geo_new, geo_old, geo_start};
3808 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3809 {
3810 	int nc, fc, fo;
3811 	int layout, chunk, disks;
3812 	switch (new) {
3813 	case geo_old:
3814 		layout = mddev->layout;
3815 		chunk = mddev->chunk_sectors;
3816 		disks = mddev->raid_disks - mddev->delta_disks;
3817 		break;
3818 	case geo_new:
3819 		layout = mddev->new_layout;
3820 		chunk = mddev->new_chunk_sectors;
3821 		disks = mddev->raid_disks;
3822 		break;
3823 	default: /* avoid 'may be unused' warnings */
3824 	case geo_start: /* new when starting reshape - raid_disks not
3825 			 * updated yet. */
3826 		layout = mddev->new_layout;
3827 		chunk = mddev->new_chunk_sectors;
3828 		disks = mddev->raid_disks + mddev->delta_disks;
3829 		break;
3830 	}
3831 	if (layout >> 19)
3832 		return -1;
3833 	if (chunk < (PAGE_SIZE >> 9) ||
3834 	    !is_power_of_2(chunk))
3835 		return -2;
3836 	nc = layout & 255;
3837 	fc = (layout >> 8) & 255;
3838 	fo = layout & (1<<16);
3839 	geo->raid_disks = disks;
3840 	geo->near_copies = nc;
3841 	geo->far_copies = fc;
3842 	geo->far_offset = fo;
3843 	switch (layout >> 17) {
3844 	case 0:	/* original layout.  simple but not always optimal */
3845 		geo->far_set_size = disks;
3846 		break;
3847 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3848 		 * actually using this, but leave code here just in case.*/
3849 		geo->far_set_size = disks/fc;
3850 		WARN(geo->far_set_size < fc,
3851 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3852 		break;
3853 	case 2: /* "improved" layout fixed to match documentation */
3854 		geo->far_set_size = fc * nc;
3855 		break;
3856 	default: /* Not a valid layout */
3857 		return -1;
3858 	}
3859 	geo->chunk_mask = chunk - 1;
3860 	geo->chunk_shift = ffz(~chunk);
3861 	return nc*fc;
3862 }
3863 
3864 static void raid10_free_conf(struct r10conf *conf)
3865 {
3866 	if (!conf)
3867 		return;
3868 
3869 	mempool_exit(&conf->r10bio_pool);
3870 	kfree(conf->mirrors);
3871 	kfree(conf->mirrors_old);
3872 	kfree(conf->mirrors_new);
3873 	safe_put_page(conf->tmppage);
3874 	bioset_exit(&conf->bio_split);
3875 	kfree(conf);
3876 }
3877 
3878 static struct r10conf *setup_conf(struct mddev *mddev)
3879 {
3880 	struct r10conf *conf = NULL;
3881 	int err = -EINVAL;
3882 	struct geom geo;
3883 	int copies;
3884 
3885 	copies = setup_geo(&geo, mddev, geo_new);
3886 
3887 	if (copies == -2) {
3888 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3889 			mdname(mddev), PAGE_SIZE);
3890 		goto out;
3891 	}
3892 
3893 	if (copies < 2 || copies > mddev->raid_disks) {
3894 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3895 			mdname(mddev), mddev->new_layout);
3896 		goto out;
3897 	}
3898 
3899 	err = -ENOMEM;
3900 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3901 	if (!conf)
3902 		goto out;
3903 
3904 	/* FIXME calc properly */
3905 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3906 				sizeof(struct raid10_info),
3907 				GFP_KERNEL);
3908 	if (!conf->mirrors)
3909 		goto out;
3910 
3911 	conf->tmppage = alloc_page(GFP_KERNEL);
3912 	if (!conf->tmppage)
3913 		goto out;
3914 
3915 	conf->geo = geo;
3916 	conf->copies = copies;
3917 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3918 			   rbio_pool_free, conf);
3919 	if (err)
3920 		goto out;
3921 
3922 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3923 	if (err)
3924 		goto out;
3925 
3926 	calc_sectors(conf, mddev->dev_sectors);
3927 	if (mddev->reshape_position == MaxSector) {
3928 		conf->prev = conf->geo;
3929 		conf->reshape_progress = MaxSector;
3930 	} else {
3931 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3932 			err = -EINVAL;
3933 			goto out;
3934 		}
3935 		conf->reshape_progress = mddev->reshape_position;
3936 		if (conf->prev.far_offset)
3937 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3938 		else
3939 			/* far_copies must be 1 */
3940 			conf->prev.stride = conf->dev_sectors;
3941 	}
3942 	conf->reshape_safe = conf->reshape_progress;
3943 	spin_lock_init(&conf->device_lock);
3944 	INIT_LIST_HEAD(&conf->retry_list);
3945 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3946 
3947 	seqlock_init(&conf->resync_lock);
3948 	init_waitqueue_head(&conf->wait_barrier);
3949 	atomic_set(&conf->nr_pending, 0);
3950 
3951 	err = -ENOMEM;
3952 	rcu_assign_pointer(conf->thread,
3953 			   md_register_thread(raid10d, mddev, "raid10"));
3954 	if (!conf->thread)
3955 		goto out;
3956 
3957 	conf->mddev = mddev;
3958 	return conf;
3959 
3960  out:
3961 	raid10_free_conf(conf);
3962 	return ERR_PTR(err);
3963 }
3964 
3965 static unsigned int raid10_nr_stripes(struct r10conf *conf)
3966 {
3967 	unsigned int raid_disks = conf->geo.raid_disks;
3968 
3969 	if (conf->geo.raid_disks % conf->geo.near_copies)
3970 		return raid_disks;
3971 	return raid_disks / conf->geo.near_copies;
3972 }
3973 
3974 static int raid10_set_queue_limits(struct mddev *mddev)
3975 {
3976 	struct r10conf *conf = mddev->private;
3977 	struct queue_limits lim;
3978 
3979 	blk_set_stacking_limits(&lim);
3980 	lim.max_write_zeroes_sectors = 0;
3981 	lim.io_min = mddev->chunk_sectors << 9;
3982 	lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
3983 	mddev_stack_rdev_limits(mddev, &lim);
3984 	return queue_limits_set(mddev->gendisk->queue, &lim);
3985 }
3986 
3987 static int raid10_run(struct mddev *mddev)
3988 {
3989 	struct r10conf *conf;
3990 	int i, disk_idx;
3991 	struct raid10_info *disk;
3992 	struct md_rdev *rdev;
3993 	sector_t size;
3994 	sector_t min_offset_diff = 0;
3995 	int first = 1;
3996 	int ret = -EIO;
3997 
3998 	if (mddev->private == NULL) {
3999 		conf = setup_conf(mddev);
4000 		if (IS_ERR(conf))
4001 			return PTR_ERR(conf);
4002 		mddev->private = conf;
4003 	}
4004 	conf = mddev->private;
4005 	if (!conf)
4006 		goto out;
4007 
4008 	rcu_assign_pointer(mddev->thread, conf->thread);
4009 	rcu_assign_pointer(conf->thread, NULL);
4010 
4011 	if (mddev_is_clustered(conf->mddev)) {
4012 		int fc, fo;
4013 
4014 		fc = (mddev->layout >> 8) & 255;
4015 		fo = mddev->layout & (1<<16);
4016 		if (fc > 1 || fo > 0) {
4017 			pr_err("only near layout is supported by clustered"
4018 				" raid10\n");
4019 			goto out_free_conf;
4020 		}
4021 	}
4022 
4023 	rdev_for_each(rdev, mddev) {
4024 		long long diff;
4025 
4026 		disk_idx = rdev->raid_disk;
4027 		if (disk_idx < 0)
4028 			continue;
4029 		if (disk_idx >= conf->geo.raid_disks &&
4030 		    disk_idx >= conf->prev.raid_disks)
4031 			continue;
4032 		disk = conf->mirrors + disk_idx;
4033 
4034 		if (test_bit(Replacement, &rdev->flags)) {
4035 			if (disk->replacement)
4036 				goto out_free_conf;
4037 			disk->replacement = rdev;
4038 		} else {
4039 			if (disk->rdev)
4040 				goto out_free_conf;
4041 			disk->rdev = rdev;
4042 		}
4043 		diff = (rdev->new_data_offset - rdev->data_offset);
4044 		if (!mddev->reshape_backwards)
4045 			diff = -diff;
4046 		if (diff < 0)
4047 			diff = 0;
4048 		if (first || diff < min_offset_diff)
4049 			min_offset_diff = diff;
4050 
4051 		disk->head_position = 0;
4052 		first = 0;
4053 	}
4054 
4055 	if (!mddev_is_dm(conf->mddev)) {
4056 		ret = raid10_set_queue_limits(mddev);
4057 		if (ret)
4058 			goto out_free_conf;
4059 	}
4060 
4061 	/* need to check that every block has at least one working mirror */
4062 	if (!enough(conf, -1)) {
4063 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4064 		       mdname(mddev));
4065 		goto out_free_conf;
4066 	}
4067 
4068 	if (conf->reshape_progress != MaxSector) {
4069 		/* must ensure that shape change is supported */
4070 		if (conf->geo.far_copies != 1 &&
4071 		    conf->geo.far_offset == 0)
4072 			goto out_free_conf;
4073 		if (conf->prev.far_copies != 1 &&
4074 		    conf->prev.far_offset == 0)
4075 			goto out_free_conf;
4076 	}
4077 
4078 	mddev->degraded = 0;
4079 	for (i = 0;
4080 	     i < conf->geo.raid_disks
4081 		     || i < conf->prev.raid_disks;
4082 	     i++) {
4083 
4084 		disk = conf->mirrors + i;
4085 
4086 		if (!disk->rdev && disk->replacement) {
4087 			/* The replacement is all we have - use it */
4088 			disk->rdev = disk->replacement;
4089 			disk->replacement = NULL;
4090 			clear_bit(Replacement, &disk->rdev->flags);
4091 		}
4092 
4093 		if (!disk->rdev ||
4094 		    !test_bit(In_sync, &disk->rdev->flags)) {
4095 			disk->head_position = 0;
4096 			mddev->degraded++;
4097 			if (disk->rdev &&
4098 			    disk->rdev->saved_raid_disk < 0)
4099 				conf->fullsync = 1;
4100 		}
4101 
4102 		if (disk->replacement &&
4103 		    !test_bit(In_sync, &disk->replacement->flags) &&
4104 		    disk->replacement->saved_raid_disk < 0) {
4105 			conf->fullsync = 1;
4106 		}
4107 
4108 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4109 	}
4110 
4111 	if (mddev->recovery_cp != MaxSector)
4112 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4113 			  mdname(mddev));
4114 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4115 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4116 		conf->geo.raid_disks);
4117 	/*
4118 	 * Ok, everything is just fine now
4119 	 */
4120 	mddev->dev_sectors = conf->dev_sectors;
4121 	size = raid10_size(mddev, 0, 0);
4122 	md_set_array_sectors(mddev, size);
4123 	mddev->resync_max_sectors = size;
4124 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4125 
4126 	if (md_integrity_register(mddev))
4127 		goto out_free_conf;
4128 
4129 	if (conf->reshape_progress != MaxSector) {
4130 		unsigned long before_length, after_length;
4131 
4132 		before_length = ((1 << conf->prev.chunk_shift) *
4133 				 conf->prev.far_copies);
4134 		after_length = ((1 << conf->geo.chunk_shift) *
4135 				conf->geo.far_copies);
4136 
4137 		if (max(before_length, after_length) > min_offset_diff) {
4138 			/* This cannot work */
4139 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4140 			goto out_free_conf;
4141 		}
4142 		conf->offset_diff = min_offset_diff;
4143 
4144 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4145 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4146 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4147 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4148 	}
4149 
4150 	return 0;
4151 
4152 out_free_conf:
4153 	md_unregister_thread(mddev, &mddev->thread);
4154 	raid10_free_conf(conf);
4155 	mddev->private = NULL;
4156 out:
4157 	return ret;
4158 }
4159 
4160 static void raid10_free(struct mddev *mddev, void *priv)
4161 {
4162 	raid10_free_conf(priv);
4163 }
4164 
4165 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4166 {
4167 	struct r10conf *conf = mddev->private;
4168 
4169 	if (quiesce)
4170 		raise_barrier(conf, 0);
4171 	else
4172 		lower_barrier(conf);
4173 }
4174 
4175 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4176 {
4177 	/* Resize of 'far' arrays is not supported.
4178 	 * For 'near' and 'offset' arrays we can set the
4179 	 * number of sectors used to be an appropriate multiple
4180 	 * of the chunk size.
4181 	 * For 'offset', this is far_copies*chunksize.
4182 	 * For 'near' the multiplier is the LCM of
4183 	 * near_copies and raid_disks.
4184 	 * So if far_copies > 1 && !far_offset, fail.
4185 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4186 	 * multiply by chunk_size.  Then round to this number.
4187 	 * This is mostly done by raid10_size()
4188 	 */
4189 	struct r10conf *conf = mddev->private;
4190 	sector_t oldsize, size;
4191 
4192 	if (mddev->reshape_position != MaxSector)
4193 		return -EBUSY;
4194 
4195 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4196 		return -EINVAL;
4197 
4198 	oldsize = raid10_size(mddev, 0, 0);
4199 	size = raid10_size(mddev, sectors, 0);
4200 	if (mddev->external_size &&
4201 	    mddev->array_sectors > size)
4202 		return -EINVAL;
4203 	if (mddev->bitmap) {
4204 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4205 		if (ret)
4206 			return ret;
4207 	}
4208 	md_set_array_sectors(mddev, size);
4209 	if (sectors > mddev->dev_sectors &&
4210 	    mddev->recovery_cp > oldsize) {
4211 		mddev->recovery_cp = oldsize;
4212 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4213 	}
4214 	calc_sectors(conf, sectors);
4215 	mddev->dev_sectors = conf->dev_sectors;
4216 	mddev->resync_max_sectors = size;
4217 	return 0;
4218 }
4219 
4220 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4221 {
4222 	struct md_rdev *rdev;
4223 	struct r10conf *conf;
4224 
4225 	if (mddev->degraded > 0) {
4226 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4227 			mdname(mddev));
4228 		return ERR_PTR(-EINVAL);
4229 	}
4230 	sector_div(size, devs);
4231 
4232 	/* Set new parameters */
4233 	mddev->new_level = 10;
4234 	/* new layout: far_copies = 1, near_copies = 2 */
4235 	mddev->new_layout = (1<<8) + 2;
4236 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4237 	mddev->delta_disks = mddev->raid_disks;
4238 	mddev->raid_disks *= 2;
4239 	/* make sure it will be not marked as dirty */
4240 	mddev->recovery_cp = MaxSector;
4241 	mddev->dev_sectors = size;
4242 
4243 	conf = setup_conf(mddev);
4244 	if (!IS_ERR(conf)) {
4245 		rdev_for_each(rdev, mddev)
4246 			if (rdev->raid_disk >= 0) {
4247 				rdev->new_raid_disk = rdev->raid_disk * 2;
4248 				rdev->sectors = size;
4249 			}
4250 	}
4251 
4252 	return conf;
4253 }
4254 
4255 static void *raid10_takeover(struct mddev *mddev)
4256 {
4257 	struct r0conf *raid0_conf;
4258 
4259 	/* raid10 can take over:
4260 	 *  raid0 - providing it has only two drives
4261 	 */
4262 	if (mddev->level == 0) {
4263 		/* for raid0 takeover only one zone is supported */
4264 		raid0_conf = mddev->private;
4265 		if (raid0_conf->nr_strip_zones > 1) {
4266 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4267 				mdname(mddev));
4268 			return ERR_PTR(-EINVAL);
4269 		}
4270 		return raid10_takeover_raid0(mddev,
4271 			raid0_conf->strip_zone->zone_end,
4272 			raid0_conf->strip_zone->nb_dev);
4273 	}
4274 	return ERR_PTR(-EINVAL);
4275 }
4276 
4277 static int raid10_check_reshape(struct mddev *mddev)
4278 {
4279 	/* Called when there is a request to change
4280 	 * - layout (to ->new_layout)
4281 	 * - chunk size (to ->new_chunk_sectors)
4282 	 * - raid_disks (by delta_disks)
4283 	 * or when trying to restart a reshape that was ongoing.
4284 	 *
4285 	 * We need to validate the request and possibly allocate
4286 	 * space if that might be an issue later.
4287 	 *
4288 	 * Currently we reject any reshape of a 'far' mode array,
4289 	 * allow chunk size to change if new is generally acceptable,
4290 	 * allow raid_disks to increase, and allow
4291 	 * a switch between 'near' mode and 'offset' mode.
4292 	 */
4293 	struct r10conf *conf = mddev->private;
4294 	struct geom geo;
4295 
4296 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4297 		return -EINVAL;
4298 
4299 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4300 		/* mustn't change number of copies */
4301 		return -EINVAL;
4302 	if (geo.far_copies > 1 && !geo.far_offset)
4303 		/* Cannot switch to 'far' mode */
4304 		return -EINVAL;
4305 
4306 	if (mddev->array_sectors & geo.chunk_mask)
4307 			/* not factor of array size */
4308 			return -EINVAL;
4309 
4310 	if (!enough(conf, -1))
4311 		return -EINVAL;
4312 
4313 	kfree(conf->mirrors_new);
4314 	conf->mirrors_new = NULL;
4315 	if (mddev->delta_disks > 0) {
4316 		/* allocate new 'mirrors' list */
4317 		conf->mirrors_new =
4318 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4319 				sizeof(struct raid10_info),
4320 				GFP_KERNEL);
4321 		if (!conf->mirrors_new)
4322 			return -ENOMEM;
4323 	}
4324 	return 0;
4325 }
4326 
4327 /*
4328  * Need to check if array has failed when deciding whether to:
4329  *  - start an array
4330  *  - remove non-faulty devices
4331  *  - add a spare
4332  *  - allow a reshape
4333  * This determination is simple when no reshape is happening.
4334  * However if there is a reshape, we need to carefully check
4335  * both the before and after sections.
4336  * This is because some failed devices may only affect one
4337  * of the two sections, and some non-in_sync devices may
4338  * be insync in the section most affected by failed devices.
4339  */
4340 static int calc_degraded(struct r10conf *conf)
4341 {
4342 	int degraded, degraded2;
4343 	int i;
4344 
4345 	degraded = 0;
4346 	/* 'prev' section first */
4347 	for (i = 0; i < conf->prev.raid_disks; i++) {
4348 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4349 
4350 		if (!rdev || test_bit(Faulty, &rdev->flags))
4351 			degraded++;
4352 		else if (!test_bit(In_sync, &rdev->flags))
4353 			/* When we can reduce the number of devices in
4354 			 * an array, this might not contribute to
4355 			 * 'degraded'.  It does now.
4356 			 */
4357 			degraded++;
4358 	}
4359 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4360 		return degraded;
4361 	degraded2 = 0;
4362 	for (i = 0; i < conf->geo.raid_disks; i++) {
4363 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4364 
4365 		if (!rdev || test_bit(Faulty, &rdev->flags))
4366 			degraded2++;
4367 		else if (!test_bit(In_sync, &rdev->flags)) {
4368 			/* If reshape is increasing the number of devices,
4369 			 * this section has already been recovered, so
4370 			 * it doesn't contribute to degraded.
4371 			 * else it does.
4372 			 */
4373 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4374 				degraded2++;
4375 		}
4376 	}
4377 	if (degraded2 > degraded)
4378 		return degraded2;
4379 	return degraded;
4380 }
4381 
4382 static int raid10_start_reshape(struct mddev *mddev)
4383 {
4384 	/* A 'reshape' has been requested. This commits
4385 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4386 	 * This also checks if there are enough spares and adds them
4387 	 * to the array.
4388 	 * We currently require enough spares to make the final
4389 	 * array non-degraded.  We also require that the difference
4390 	 * between old and new data_offset - on each device - is
4391 	 * enough that we never risk over-writing.
4392 	 */
4393 
4394 	unsigned long before_length, after_length;
4395 	sector_t min_offset_diff = 0;
4396 	int first = 1;
4397 	struct geom new;
4398 	struct r10conf *conf = mddev->private;
4399 	struct md_rdev *rdev;
4400 	int spares = 0;
4401 	int ret;
4402 
4403 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4404 		return -EBUSY;
4405 
4406 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4407 		return -EINVAL;
4408 
4409 	before_length = ((1 << conf->prev.chunk_shift) *
4410 			 conf->prev.far_copies);
4411 	after_length = ((1 << conf->geo.chunk_shift) *
4412 			conf->geo.far_copies);
4413 
4414 	rdev_for_each(rdev, mddev) {
4415 		if (!test_bit(In_sync, &rdev->flags)
4416 		    && !test_bit(Faulty, &rdev->flags))
4417 			spares++;
4418 		if (rdev->raid_disk >= 0) {
4419 			long long diff = (rdev->new_data_offset
4420 					  - rdev->data_offset);
4421 			if (!mddev->reshape_backwards)
4422 				diff = -diff;
4423 			if (diff < 0)
4424 				diff = 0;
4425 			if (first || diff < min_offset_diff)
4426 				min_offset_diff = diff;
4427 			first = 0;
4428 		}
4429 	}
4430 
4431 	if (max(before_length, after_length) > min_offset_diff)
4432 		return -EINVAL;
4433 
4434 	if (spares < mddev->delta_disks)
4435 		return -EINVAL;
4436 
4437 	conf->offset_diff = min_offset_diff;
4438 	spin_lock_irq(&conf->device_lock);
4439 	if (conf->mirrors_new) {
4440 		memcpy(conf->mirrors_new, conf->mirrors,
4441 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4442 		smp_mb();
4443 		kfree(conf->mirrors_old);
4444 		conf->mirrors_old = conf->mirrors;
4445 		conf->mirrors = conf->mirrors_new;
4446 		conf->mirrors_new = NULL;
4447 	}
4448 	setup_geo(&conf->geo, mddev, geo_start);
4449 	smp_mb();
4450 	if (mddev->reshape_backwards) {
4451 		sector_t size = raid10_size(mddev, 0, 0);
4452 		if (size < mddev->array_sectors) {
4453 			spin_unlock_irq(&conf->device_lock);
4454 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4455 				mdname(mddev));
4456 			return -EINVAL;
4457 		}
4458 		mddev->resync_max_sectors = size;
4459 		conf->reshape_progress = size;
4460 	} else
4461 		conf->reshape_progress = 0;
4462 	conf->reshape_safe = conf->reshape_progress;
4463 	spin_unlock_irq(&conf->device_lock);
4464 
4465 	if (mddev->delta_disks && mddev->bitmap) {
4466 		struct mdp_superblock_1 *sb = NULL;
4467 		sector_t oldsize, newsize;
4468 
4469 		oldsize = raid10_size(mddev, 0, 0);
4470 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4471 
4472 		if (!mddev_is_clustered(mddev)) {
4473 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4474 			if (ret)
4475 				goto abort;
4476 			else
4477 				goto out;
4478 		}
4479 
4480 		rdev_for_each(rdev, mddev) {
4481 			if (rdev->raid_disk > -1 &&
4482 			    !test_bit(Faulty, &rdev->flags))
4483 				sb = page_address(rdev->sb_page);
4484 		}
4485 
4486 		/*
4487 		 * some node is already performing reshape, and no need to
4488 		 * call md_bitmap_resize again since it should be called when
4489 		 * receiving BITMAP_RESIZE msg
4490 		 */
4491 		if ((sb && (le32_to_cpu(sb->feature_map) &
4492 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4493 			goto out;
4494 
4495 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4496 		if (ret)
4497 			goto abort;
4498 
4499 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4500 		if (ret) {
4501 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4502 			goto abort;
4503 		}
4504 	}
4505 out:
4506 	if (mddev->delta_disks > 0) {
4507 		rdev_for_each(rdev, mddev)
4508 			if (rdev->raid_disk < 0 &&
4509 			    !test_bit(Faulty, &rdev->flags)) {
4510 				if (raid10_add_disk(mddev, rdev) == 0) {
4511 					if (rdev->raid_disk >=
4512 					    conf->prev.raid_disks)
4513 						set_bit(In_sync, &rdev->flags);
4514 					else
4515 						rdev->recovery_offset = 0;
4516 
4517 					/* Failure here is OK */
4518 					sysfs_link_rdev(mddev, rdev);
4519 				}
4520 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4521 				   && !test_bit(Faulty, &rdev->flags)) {
4522 				/* This is a spare that was manually added */
4523 				set_bit(In_sync, &rdev->flags);
4524 			}
4525 	}
4526 	/* When a reshape changes the number of devices,
4527 	 * ->degraded is measured against the larger of the
4528 	 * pre and  post numbers.
4529 	 */
4530 	spin_lock_irq(&conf->device_lock);
4531 	mddev->degraded = calc_degraded(conf);
4532 	spin_unlock_irq(&conf->device_lock);
4533 	mddev->raid_disks = conf->geo.raid_disks;
4534 	mddev->reshape_position = conf->reshape_progress;
4535 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4536 
4537 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4538 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4539 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4540 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4541 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4542 	conf->reshape_checkpoint = jiffies;
4543 	md_new_event();
4544 	return 0;
4545 
4546 abort:
4547 	mddev->recovery = 0;
4548 	spin_lock_irq(&conf->device_lock);
4549 	conf->geo = conf->prev;
4550 	mddev->raid_disks = conf->geo.raid_disks;
4551 	rdev_for_each(rdev, mddev)
4552 		rdev->new_data_offset = rdev->data_offset;
4553 	smp_wmb();
4554 	conf->reshape_progress = MaxSector;
4555 	conf->reshape_safe = MaxSector;
4556 	mddev->reshape_position = MaxSector;
4557 	spin_unlock_irq(&conf->device_lock);
4558 	return ret;
4559 }
4560 
4561 /* Calculate the last device-address that could contain
4562  * any block from the chunk that includes the array-address 's'
4563  * and report the next address.
4564  * i.e. the address returned will be chunk-aligned and after
4565  * any data that is in the chunk containing 's'.
4566  */
4567 static sector_t last_dev_address(sector_t s, struct geom *geo)
4568 {
4569 	s = (s | geo->chunk_mask) + 1;
4570 	s >>= geo->chunk_shift;
4571 	s *= geo->near_copies;
4572 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4573 	s *= geo->far_copies;
4574 	s <<= geo->chunk_shift;
4575 	return s;
4576 }
4577 
4578 /* Calculate the first device-address that could contain
4579  * any block from the chunk that includes the array-address 's'.
4580  * This too will be the start of a chunk
4581  */
4582 static sector_t first_dev_address(sector_t s, struct geom *geo)
4583 {
4584 	s >>= geo->chunk_shift;
4585 	s *= geo->near_copies;
4586 	sector_div(s, geo->raid_disks);
4587 	s *= geo->far_copies;
4588 	s <<= geo->chunk_shift;
4589 	return s;
4590 }
4591 
4592 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4593 				int *skipped)
4594 {
4595 	/* We simply copy at most one chunk (smallest of old and new)
4596 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4597 	 * or we hit a bad block or something.
4598 	 * This might mean we pause for normal IO in the middle of
4599 	 * a chunk, but that is not a problem as mddev->reshape_position
4600 	 * can record any location.
4601 	 *
4602 	 * If we will want to write to a location that isn't
4603 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4604 	 * we need to flush all reshape requests and update the metadata.
4605 	 *
4606 	 * When reshaping forwards (e.g. to more devices), we interpret
4607 	 * 'safe' as the earliest block which might not have been copied
4608 	 * down yet.  We divide this by previous stripe size and multiply
4609 	 * by previous stripe length to get lowest device offset that we
4610 	 * cannot write to yet.
4611 	 * We interpret 'sector_nr' as an address that we want to write to.
4612 	 * From this we use last_device_address() to find where we might
4613 	 * write to, and first_device_address on the  'safe' position.
4614 	 * If this 'next' write position is after the 'safe' position,
4615 	 * we must update the metadata to increase the 'safe' position.
4616 	 *
4617 	 * When reshaping backwards, we round in the opposite direction
4618 	 * and perform the reverse test:  next write position must not be
4619 	 * less than current safe position.
4620 	 *
4621 	 * In all this the minimum difference in data offsets
4622 	 * (conf->offset_diff - always positive) allows a bit of slack,
4623 	 * so next can be after 'safe', but not by more than offset_diff
4624 	 *
4625 	 * We need to prepare all the bios here before we start any IO
4626 	 * to ensure the size we choose is acceptable to all devices.
4627 	 * The means one for each copy for write-out and an extra one for
4628 	 * read-in.
4629 	 * We store the read-in bio in ->master_bio and the others in
4630 	 * ->devs[x].bio and ->devs[x].repl_bio.
4631 	 */
4632 	struct r10conf *conf = mddev->private;
4633 	struct r10bio *r10_bio;
4634 	sector_t next, safe, last;
4635 	int max_sectors;
4636 	int nr_sectors;
4637 	int s;
4638 	struct md_rdev *rdev;
4639 	int need_flush = 0;
4640 	struct bio *blist;
4641 	struct bio *bio, *read_bio;
4642 	int sectors_done = 0;
4643 	struct page **pages;
4644 
4645 	if (sector_nr == 0) {
4646 		/* If restarting in the middle, skip the initial sectors */
4647 		if (mddev->reshape_backwards &&
4648 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4649 			sector_nr = (raid10_size(mddev, 0, 0)
4650 				     - conf->reshape_progress);
4651 		} else if (!mddev->reshape_backwards &&
4652 			   conf->reshape_progress > 0)
4653 			sector_nr = conf->reshape_progress;
4654 		if (sector_nr) {
4655 			mddev->curr_resync_completed = sector_nr;
4656 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4657 			*skipped = 1;
4658 			return sector_nr;
4659 		}
4660 	}
4661 
4662 	/* We don't use sector_nr to track where we are up to
4663 	 * as that doesn't work well for ->reshape_backwards.
4664 	 * So just use ->reshape_progress.
4665 	 */
4666 	if (mddev->reshape_backwards) {
4667 		/* 'next' is the earliest device address that we might
4668 		 * write to for this chunk in the new layout
4669 		 */
4670 		next = first_dev_address(conf->reshape_progress - 1,
4671 					 &conf->geo);
4672 
4673 		/* 'safe' is the last device address that we might read from
4674 		 * in the old layout after a restart
4675 		 */
4676 		safe = last_dev_address(conf->reshape_safe - 1,
4677 					&conf->prev);
4678 
4679 		if (next + conf->offset_diff < safe)
4680 			need_flush = 1;
4681 
4682 		last = conf->reshape_progress - 1;
4683 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4684 					       & conf->prev.chunk_mask);
4685 		if (sector_nr + RESYNC_SECTORS < last)
4686 			sector_nr = last + 1 - RESYNC_SECTORS;
4687 	} else {
4688 		/* 'next' is after the last device address that we
4689 		 * might write to for this chunk in the new layout
4690 		 */
4691 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4692 
4693 		/* 'safe' is the earliest device address that we might
4694 		 * read from in the old layout after a restart
4695 		 */
4696 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4697 
4698 		/* Need to update metadata if 'next' might be beyond 'safe'
4699 		 * as that would possibly corrupt data
4700 		 */
4701 		if (next > safe + conf->offset_diff)
4702 			need_flush = 1;
4703 
4704 		sector_nr = conf->reshape_progress;
4705 		last  = sector_nr | (conf->geo.chunk_mask
4706 				     & conf->prev.chunk_mask);
4707 
4708 		if (sector_nr + RESYNC_SECTORS <= last)
4709 			last = sector_nr + RESYNC_SECTORS - 1;
4710 	}
4711 
4712 	if (need_flush ||
4713 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4714 		/* Need to update reshape_position in metadata */
4715 		wait_barrier(conf, false);
4716 		mddev->reshape_position = conf->reshape_progress;
4717 		if (mddev->reshape_backwards)
4718 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4719 				- conf->reshape_progress;
4720 		else
4721 			mddev->curr_resync_completed = conf->reshape_progress;
4722 		conf->reshape_checkpoint = jiffies;
4723 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4724 		md_wakeup_thread(mddev->thread);
4725 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4726 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4727 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4728 			allow_barrier(conf);
4729 			return sectors_done;
4730 		}
4731 		conf->reshape_safe = mddev->reshape_position;
4732 		allow_barrier(conf);
4733 	}
4734 
4735 	raise_barrier(conf, 0);
4736 read_more:
4737 	/* Now schedule reads for blocks from sector_nr to last */
4738 	r10_bio = raid10_alloc_init_r10buf(conf);
4739 	r10_bio->state = 0;
4740 	raise_barrier(conf, 1);
4741 	atomic_set(&r10_bio->remaining, 0);
4742 	r10_bio->mddev = mddev;
4743 	r10_bio->sector = sector_nr;
4744 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4745 	r10_bio->sectors = last - sector_nr + 1;
4746 	rdev = read_balance(conf, r10_bio, &max_sectors);
4747 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4748 
4749 	if (!rdev) {
4750 		/* Cannot read from here, so need to record bad blocks
4751 		 * on all the target devices.
4752 		 */
4753 		// FIXME
4754 		mempool_free(r10_bio, &conf->r10buf_pool);
4755 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4756 		return sectors_done;
4757 	}
4758 
4759 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4760 				    GFP_KERNEL, &mddev->bio_set);
4761 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4762 			       + rdev->data_offset);
4763 	read_bio->bi_private = r10_bio;
4764 	read_bio->bi_end_io = end_reshape_read;
4765 	r10_bio->master_bio = read_bio;
4766 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4767 
4768 	/*
4769 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4770 	 * write to the region to avoid conflict.
4771 	*/
4772 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4773 		struct mdp_superblock_1 *sb = NULL;
4774 		int sb_reshape_pos = 0;
4775 
4776 		conf->cluster_sync_low = sector_nr;
4777 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4778 		sb = page_address(rdev->sb_page);
4779 		if (sb) {
4780 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4781 			/*
4782 			 * Set cluster_sync_low again if next address for array
4783 			 * reshape is less than cluster_sync_low. Since we can't
4784 			 * update cluster_sync_low until it has finished reshape.
4785 			 */
4786 			if (sb_reshape_pos < conf->cluster_sync_low)
4787 				conf->cluster_sync_low = sb_reshape_pos;
4788 		}
4789 
4790 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4791 							  conf->cluster_sync_high);
4792 	}
4793 
4794 	/* Now find the locations in the new layout */
4795 	__raid10_find_phys(&conf->geo, r10_bio);
4796 
4797 	blist = read_bio;
4798 	read_bio->bi_next = NULL;
4799 
4800 	for (s = 0; s < conf->copies*2; s++) {
4801 		struct bio *b;
4802 		int d = r10_bio->devs[s/2].devnum;
4803 		struct md_rdev *rdev2;
4804 		if (s&1) {
4805 			rdev2 = conf->mirrors[d].replacement;
4806 			b = r10_bio->devs[s/2].repl_bio;
4807 		} else {
4808 			rdev2 = conf->mirrors[d].rdev;
4809 			b = r10_bio->devs[s/2].bio;
4810 		}
4811 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4812 			continue;
4813 
4814 		bio_set_dev(b, rdev2->bdev);
4815 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4816 			rdev2->new_data_offset;
4817 		b->bi_end_io = end_reshape_write;
4818 		b->bi_opf = REQ_OP_WRITE;
4819 		b->bi_next = blist;
4820 		blist = b;
4821 	}
4822 
4823 	/* Now add as many pages as possible to all of these bios. */
4824 
4825 	nr_sectors = 0;
4826 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4827 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4828 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4829 		int len = (max_sectors - s) << 9;
4830 		if (len > PAGE_SIZE)
4831 			len = PAGE_SIZE;
4832 		for (bio = blist; bio ; bio = bio->bi_next) {
4833 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4834 				bio->bi_status = BLK_STS_RESOURCE;
4835 				bio_endio(bio);
4836 				return sectors_done;
4837 			}
4838 		}
4839 		sector_nr += len >> 9;
4840 		nr_sectors += len >> 9;
4841 	}
4842 	r10_bio->sectors = nr_sectors;
4843 
4844 	/* Now submit the read */
4845 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4846 	atomic_inc(&r10_bio->remaining);
4847 	read_bio->bi_next = NULL;
4848 	submit_bio_noacct(read_bio);
4849 	sectors_done += nr_sectors;
4850 	if (sector_nr <= last)
4851 		goto read_more;
4852 
4853 	lower_barrier(conf);
4854 
4855 	/* Now that we have done the whole section we can
4856 	 * update reshape_progress
4857 	 */
4858 	if (mddev->reshape_backwards)
4859 		conf->reshape_progress -= sectors_done;
4860 	else
4861 		conf->reshape_progress += sectors_done;
4862 
4863 	return sectors_done;
4864 }
4865 
4866 static void end_reshape_request(struct r10bio *r10_bio);
4867 static int handle_reshape_read_error(struct mddev *mddev,
4868 				     struct r10bio *r10_bio);
4869 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4870 {
4871 	/* Reshape read completed.  Hopefully we have a block
4872 	 * to write out.
4873 	 * If we got a read error then we do sync 1-page reads from
4874 	 * elsewhere until we find the data - or give up.
4875 	 */
4876 	struct r10conf *conf = mddev->private;
4877 	int s;
4878 
4879 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4880 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4881 			/* Reshape has been aborted */
4882 			md_done_sync(mddev, r10_bio->sectors, 0);
4883 			return;
4884 		}
4885 
4886 	/* We definitely have the data in the pages, schedule the
4887 	 * writes.
4888 	 */
4889 	atomic_set(&r10_bio->remaining, 1);
4890 	for (s = 0; s < conf->copies*2; s++) {
4891 		struct bio *b;
4892 		int d = r10_bio->devs[s/2].devnum;
4893 		struct md_rdev *rdev;
4894 		if (s&1) {
4895 			rdev = conf->mirrors[d].replacement;
4896 			b = r10_bio->devs[s/2].repl_bio;
4897 		} else {
4898 			rdev = conf->mirrors[d].rdev;
4899 			b = r10_bio->devs[s/2].bio;
4900 		}
4901 		if (!rdev || test_bit(Faulty, &rdev->flags))
4902 			continue;
4903 
4904 		atomic_inc(&rdev->nr_pending);
4905 		md_sync_acct_bio(b, r10_bio->sectors);
4906 		atomic_inc(&r10_bio->remaining);
4907 		b->bi_next = NULL;
4908 		submit_bio_noacct(b);
4909 	}
4910 	end_reshape_request(r10_bio);
4911 }
4912 
4913 static void end_reshape(struct r10conf *conf)
4914 {
4915 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4916 		return;
4917 
4918 	spin_lock_irq(&conf->device_lock);
4919 	conf->prev = conf->geo;
4920 	md_finish_reshape(conf->mddev);
4921 	smp_wmb();
4922 	conf->reshape_progress = MaxSector;
4923 	conf->reshape_safe = MaxSector;
4924 	spin_unlock_irq(&conf->device_lock);
4925 
4926 	mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4927 	conf->fullsync = 0;
4928 }
4929 
4930 static void raid10_update_reshape_pos(struct mddev *mddev)
4931 {
4932 	struct r10conf *conf = mddev->private;
4933 	sector_t lo, hi;
4934 
4935 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4936 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4937 	    || mddev->reshape_position == MaxSector)
4938 		conf->reshape_progress = mddev->reshape_position;
4939 	else
4940 		WARN_ON_ONCE(1);
4941 }
4942 
4943 static int handle_reshape_read_error(struct mddev *mddev,
4944 				     struct r10bio *r10_bio)
4945 {
4946 	/* Use sync reads to get the blocks from somewhere else */
4947 	int sectors = r10_bio->sectors;
4948 	struct r10conf *conf = mddev->private;
4949 	struct r10bio *r10b;
4950 	int slot = 0;
4951 	int idx = 0;
4952 	struct page **pages;
4953 
4954 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4955 	if (!r10b) {
4956 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4957 		return -ENOMEM;
4958 	}
4959 
4960 	/* reshape IOs share pages from .devs[0].bio */
4961 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4962 
4963 	r10b->sector = r10_bio->sector;
4964 	__raid10_find_phys(&conf->prev, r10b);
4965 
4966 	while (sectors) {
4967 		int s = sectors;
4968 		int success = 0;
4969 		int first_slot = slot;
4970 
4971 		if (s > (PAGE_SIZE >> 9))
4972 			s = PAGE_SIZE >> 9;
4973 
4974 		while (!success) {
4975 			int d = r10b->devs[slot].devnum;
4976 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4977 			sector_t addr;
4978 			if (rdev == NULL ||
4979 			    test_bit(Faulty, &rdev->flags) ||
4980 			    !test_bit(In_sync, &rdev->flags))
4981 				goto failed;
4982 
4983 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4984 			atomic_inc(&rdev->nr_pending);
4985 			success = sync_page_io(rdev,
4986 					       addr,
4987 					       s << 9,
4988 					       pages[idx],
4989 					       REQ_OP_READ, false);
4990 			rdev_dec_pending(rdev, mddev);
4991 			if (success)
4992 				break;
4993 		failed:
4994 			slot++;
4995 			if (slot >= conf->copies)
4996 				slot = 0;
4997 			if (slot == first_slot)
4998 				break;
4999 		}
5000 		if (!success) {
5001 			/* couldn't read this block, must give up */
5002 			set_bit(MD_RECOVERY_INTR,
5003 				&mddev->recovery);
5004 			kfree(r10b);
5005 			return -EIO;
5006 		}
5007 		sectors -= s;
5008 		idx++;
5009 	}
5010 	kfree(r10b);
5011 	return 0;
5012 }
5013 
5014 static void end_reshape_write(struct bio *bio)
5015 {
5016 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5017 	struct mddev *mddev = r10_bio->mddev;
5018 	struct r10conf *conf = mddev->private;
5019 	int d;
5020 	int slot;
5021 	int repl;
5022 	struct md_rdev *rdev = NULL;
5023 
5024 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5025 	rdev = repl ? conf->mirrors[d].replacement :
5026 		      conf->mirrors[d].rdev;
5027 
5028 	if (bio->bi_status) {
5029 		/* FIXME should record badblock */
5030 		md_error(mddev, rdev);
5031 	}
5032 
5033 	rdev_dec_pending(rdev, mddev);
5034 	end_reshape_request(r10_bio);
5035 }
5036 
5037 static void end_reshape_request(struct r10bio *r10_bio)
5038 {
5039 	if (!atomic_dec_and_test(&r10_bio->remaining))
5040 		return;
5041 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5042 	bio_put(r10_bio->master_bio);
5043 	put_buf(r10_bio);
5044 }
5045 
5046 static void raid10_finish_reshape(struct mddev *mddev)
5047 {
5048 	struct r10conf *conf = mddev->private;
5049 
5050 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5051 		return;
5052 
5053 	if (mddev->delta_disks > 0) {
5054 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5055 			mddev->recovery_cp = mddev->resync_max_sectors;
5056 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5057 		}
5058 		mddev->resync_max_sectors = mddev->array_sectors;
5059 	} else {
5060 		int d;
5061 		for (d = conf->geo.raid_disks ;
5062 		     d < conf->geo.raid_disks - mddev->delta_disks;
5063 		     d++) {
5064 			struct md_rdev *rdev = conf->mirrors[d].rdev;
5065 			if (rdev)
5066 				clear_bit(In_sync, &rdev->flags);
5067 			rdev = conf->mirrors[d].replacement;
5068 			if (rdev)
5069 				clear_bit(In_sync, &rdev->flags);
5070 		}
5071 	}
5072 	mddev->layout = mddev->new_layout;
5073 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5074 	mddev->reshape_position = MaxSector;
5075 	mddev->delta_disks = 0;
5076 	mddev->reshape_backwards = 0;
5077 }
5078 
5079 static struct md_personality raid10_personality =
5080 {
5081 	.name		= "raid10",
5082 	.level		= 10,
5083 	.owner		= THIS_MODULE,
5084 	.make_request	= raid10_make_request,
5085 	.run		= raid10_run,
5086 	.free		= raid10_free,
5087 	.status		= raid10_status,
5088 	.error_handler	= raid10_error,
5089 	.hot_add_disk	= raid10_add_disk,
5090 	.hot_remove_disk= raid10_remove_disk,
5091 	.spare_active	= raid10_spare_active,
5092 	.sync_request	= raid10_sync_request,
5093 	.quiesce	= raid10_quiesce,
5094 	.size		= raid10_size,
5095 	.resize		= raid10_resize,
5096 	.takeover	= raid10_takeover,
5097 	.check_reshape	= raid10_check_reshape,
5098 	.start_reshape	= raid10_start_reshape,
5099 	.finish_reshape	= raid10_finish_reshape,
5100 	.update_reshape_pos = raid10_update_reshape_pos,
5101 };
5102 
5103 static int __init raid_init(void)
5104 {
5105 	return register_md_personality(&raid10_personality);
5106 }
5107 
5108 static void raid_exit(void)
5109 {
5110 	unregister_md_personality(&raid10_personality);
5111 }
5112 
5113 module_init(raid_init);
5114 module_exit(raid_exit);
5115 MODULE_LICENSE("GPL");
5116 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5117 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5118 MODULE_ALIAS("md-raid10");
5119 MODULE_ALIAS("md-level-10");
5120