xref: /linux/drivers/md/raid10.c (revision 312b62b6610cabea4cb535fd4889c41e9a84afca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->copies]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 		if (!bio)
150 			goto out_free_bio;
151 		r10_bio->devs[j].bio = bio;
152 		if (!conf->have_replacement)
153 			continue;
154 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 		if (!bio)
156 			goto out_free_bio;
157 		r10_bio->devs[j].repl_bio = bio;
158 	}
159 	/*
160 	 * Allocate RESYNC_PAGES data pages and attach them
161 	 * where needed.
162 	 */
163 	for (j = 0; j < nalloc; j++) {
164 		struct bio *rbio = r10_bio->devs[j].repl_bio;
165 		struct resync_pages *rp, *rp_repl;
166 
167 		rp = &rps[j];
168 		if (rbio)
169 			rp_repl = &rps[nalloc + j];
170 
171 		bio = r10_bio->devs[j].bio;
172 
173 		if (!j || test_bit(MD_RECOVERY_SYNC,
174 				   &conf->mddev->recovery)) {
175 			if (resync_alloc_pages(rp, gfp_flags))
176 				goto out_free_pages;
177 		} else {
178 			memcpy(rp, &rps[0], sizeof(*rp));
179 			resync_get_all_pages(rp);
180 		}
181 
182 		rp->raid_bio = r10_bio;
183 		bio->bi_private = rp;
184 		if (rbio) {
185 			memcpy(rp_repl, rp, sizeof(*rp));
186 			rbio->bi_private = rp_repl;
187 		}
188 	}
189 
190 	return r10_bio;
191 
192 out_free_pages:
193 	while (--j >= 0)
194 		resync_free_pages(&rps[j]);
195 
196 	j = 0;
197 out_free_bio:
198 	for ( ; j < nalloc; j++) {
199 		if (r10_bio->devs[j].bio)
200 			bio_put(r10_bio->devs[j].bio);
201 		if (r10_bio->devs[j].repl_bio)
202 			bio_put(r10_bio->devs[j].repl_bio);
203 	}
204 	kfree(rps);
205 out_free_r10bio:
206 	rbio_pool_free(r10_bio, conf);
207 	return NULL;
208 }
209 
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 	struct r10conf *conf = data;
213 	struct r10bio *r10bio = __r10_bio;
214 	int j;
215 	struct resync_pages *rp = NULL;
216 
217 	for (j = conf->copies; j--; ) {
218 		struct bio *bio = r10bio->devs[j].bio;
219 
220 		if (bio) {
221 			rp = get_resync_pages(bio);
222 			resync_free_pages(rp);
223 			bio_put(bio);
224 		}
225 
226 		bio = r10bio->devs[j].repl_bio;
227 		if (bio)
228 			bio_put(bio);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r10bio, conf);
235 }
236 
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->copies; i++) {
242 		struct bio **bio = & r10_bio->devs[i].bio;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 		bio = &r10_bio->devs[i].repl_bio;
247 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 	struct r10conf *conf = r10_bio->mddev->private;
256 
257 	put_all_bios(conf, r10_bio);
258 	mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260 
261 static void put_buf(struct r10bio *r10_bio)
262 {
263 	struct r10conf *conf = r10_bio->mddev->private;
264 
265 	mempool_free(r10_bio, &conf->r10buf_pool);
266 
267 	lower_barrier(conf);
268 }
269 
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 	unsigned long flags;
273 	struct mddev *mddev = r10_bio->mddev;
274 	struct r10conf *conf = mddev->private;
275 
276 	spin_lock_irqsave(&conf->device_lock, flags);
277 	list_add(&r10_bio->retry_list, &conf->retry_list);
278 	conf->nr_queued ++;
279 	spin_unlock_irqrestore(&conf->device_lock, flags);
280 
281 	/* wake up frozen array... */
282 	wake_up(&conf->wait_barrier);
283 
284 	md_wakeup_thread(mddev->thread);
285 }
286 
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 	struct bio *bio = r10_bio->master_bio;
295 	struct r10conf *conf = r10_bio->mddev->private;
296 
297 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 		bio->bi_status = BLK_STS_IOERR;
299 
300 	bio_endio(bio);
301 	/*
302 	 * Wake up any possible resync thread that waits for the device
303 	 * to go idle.
304 	 */
305 	allow_barrier(conf);
306 
307 	free_r10bio(r10_bio);
308 }
309 
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315 	struct r10conf *conf = r10_bio->mddev->private;
316 
317 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318 		r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320 
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325 			 struct bio *bio, int *slotp, int *replp)
326 {
327 	int slot;
328 	int repl = 0;
329 
330 	for (slot = 0; slot < conf->copies; slot++) {
331 		if (r10_bio->devs[slot].bio == bio)
332 			break;
333 		if (r10_bio->devs[slot].repl_bio == bio) {
334 			repl = 1;
335 			break;
336 		}
337 	}
338 
339 	BUG_ON(slot == conf->copies);
340 	update_head_pos(slot, r10_bio);
341 
342 	if (slotp)
343 		*slotp = slot;
344 	if (replp)
345 		*replp = repl;
346 	return r10_bio->devs[slot].devnum;
347 }
348 
349 static void raid10_end_read_request(struct bio *bio)
350 {
351 	int uptodate = !bio->bi_status;
352 	struct r10bio *r10_bio = bio->bi_private;
353 	int slot;
354 	struct md_rdev *rdev;
355 	struct r10conf *conf = r10_bio->mddev->private;
356 
357 	slot = r10_bio->read_slot;
358 	rdev = r10_bio->devs[slot].rdev;
359 	/*
360 	 * this branch is our 'one mirror IO has finished' event handler:
361 	 */
362 	update_head_pos(slot, r10_bio);
363 
364 	if (uptodate) {
365 		/*
366 		 * Set R10BIO_Uptodate in our master bio, so that
367 		 * we will return a good error code to the higher
368 		 * levels even if IO on some other mirrored buffer fails.
369 		 *
370 		 * The 'master' represents the composite IO operation to
371 		 * user-side. So if something waits for IO, then it will
372 		 * wait for the 'master' bio.
373 		 */
374 		set_bit(R10BIO_Uptodate, &r10_bio->state);
375 	} else {
376 		/* If all other devices that store this block have
377 		 * failed, we want to return the error upwards rather
378 		 * than fail the last device.  Here we redefine
379 		 * "uptodate" to mean "Don't want to retry"
380 		 */
381 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382 			     rdev->raid_disk))
383 			uptodate = 1;
384 	}
385 	if (uptodate) {
386 		raid_end_bio_io(r10_bio);
387 		rdev_dec_pending(rdev, conf->mddev);
388 	} else {
389 		/*
390 		 * oops, read error - keep the refcount on the rdev
391 		 */
392 		char b[BDEVNAME_SIZE];
393 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394 				   mdname(conf->mddev),
395 				   bdevname(rdev->bdev, b),
396 				   (unsigned long long)r10_bio->sector);
397 		set_bit(R10BIO_ReadError, &r10_bio->state);
398 		reschedule_retry(r10_bio);
399 	}
400 }
401 
402 static void close_write(struct r10bio *r10_bio)
403 {
404 	/* clear the bitmap if all writes complete successfully */
405 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406 			   r10_bio->sectors,
407 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
408 			   0);
409 	md_write_end(r10_bio->mddev);
410 }
411 
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414 	if (atomic_dec_and_test(&r10_bio->remaining)) {
415 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
416 			reschedule_retry(r10_bio);
417 		else {
418 			close_write(r10_bio);
419 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420 				reschedule_retry(r10_bio);
421 			else
422 				raid_end_bio_io(r10_bio);
423 		}
424 	}
425 }
426 
427 static void raid10_end_write_request(struct bio *bio)
428 {
429 	struct r10bio *r10_bio = bio->bi_private;
430 	int dev;
431 	int dec_rdev = 1;
432 	struct r10conf *conf = r10_bio->mddev->private;
433 	int slot, repl;
434 	struct md_rdev *rdev = NULL;
435 	struct bio *to_put = NULL;
436 	bool discard_error;
437 
438 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439 
440 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441 
442 	if (repl)
443 		rdev = conf->mirrors[dev].replacement;
444 	if (!rdev) {
445 		smp_rmb();
446 		repl = 0;
447 		rdev = conf->mirrors[dev].rdev;
448 	}
449 	/*
450 	 * this branch is our 'one mirror IO has finished' event handler:
451 	 */
452 	if (bio->bi_status && !discard_error) {
453 		if (repl)
454 			/* Never record new bad blocks to replacement,
455 			 * just fail it.
456 			 */
457 			md_error(rdev->mddev, rdev);
458 		else {
459 			set_bit(WriteErrorSeen,	&rdev->flags);
460 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
461 				set_bit(MD_RECOVERY_NEEDED,
462 					&rdev->mddev->recovery);
463 
464 			dec_rdev = 0;
465 			if (test_bit(FailFast, &rdev->flags) &&
466 			    (bio->bi_opf & MD_FAILFAST)) {
467 				md_error(rdev->mddev, rdev);
468 			}
469 
470 			/*
471 			 * When the device is faulty, it is not necessary to
472 			 * handle write error.
473 			 * For failfast, this is the only remaining device,
474 			 * We need to retry the write without FailFast.
475 			 */
476 			if (!test_bit(Faulty, &rdev->flags))
477 				set_bit(R10BIO_WriteError, &r10_bio->state);
478 			else {
479 				r10_bio->devs[slot].bio = NULL;
480 				to_put = bio;
481 				dec_rdev = 1;
482 			}
483 		}
484 	} else {
485 		/*
486 		 * Set R10BIO_Uptodate in our master bio, so that
487 		 * we will return a good error code for to the higher
488 		 * levels even if IO on some other mirrored buffer fails.
489 		 *
490 		 * The 'master' represents the composite IO operation to
491 		 * user-side. So if something waits for IO, then it will
492 		 * wait for the 'master' bio.
493 		 */
494 		sector_t first_bad;
495 		int bad_sectors;
496 
497 		/*
498 		 * Do not set R10BIO_Uptodate if the current device is
499 		 * rebuilding or Faulty. This is because we cannot use
500 		 * such device for properly reading the data back (we could
501 		 * potentially use it, if the current write would have felt
502 		 * before rdev->recovery_offset, but for simplicity we don't
503 		 * check this here.
504 		 */
505 		if (test_bit(In_sync, &rdev->flags) &&
506 		    !test_bit(Faulty, &rdev->flags))
507 			set_bit(R10BIO_Uptodate, &r10_bio->state);
508 
509 		/* Maybe we can clear some bad blocks. */
510 		if (is_badblock(rdev,
511 				r10_bio->devs[slot].addr,
512 				r10_bio->sectors,
513 				&first_bad, &bad_sectors) && !discard_error) {
514 			bio_put(bio);
515 			if (repl)
516 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517 			else
518 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
519 			dec_rdev = 0;
520 			set_bit(R10BIO_MadeGood, &r10_bio->state);
521 		}
522 	}
523 
524 	/*
525 	 *
526 	 * Let's see if all mirrored write operations have finished
527 	 * already.
528 	 */
529 	one_write_done(r10_bio);
530 	if (dec_rdev)
531 		rdev_dec_pending(rdev, conf->mddev);
532 	if (to_put)
533 		bio_put(to_put);
534 }
535 
536 /*
537  * RAID10 layout manager
538  * As well as the chunksize and raid_disks count, there are two
539  * parameters: near_copies and far_copies.
540  * near_copies * far_copies must be <= raid_disks.
541  * Normally one of these will be 1.
542  * If both are 1, we get raid0.
543  * If near_copies == raid_disks, we get raid1.
544  *
545  * Chunks are laid out in raid0 style with near_copies copies of the
546  * first chunk, followed by near_copies copies of the next chunk and
547  * so on.
548  * If far_copies > 1, then after 1/far_copies of the array has been assigned
549  * as described above, we start again with a device offset of near_copies.
550  * So we effectively have another copy of the whole array further down all
551  * the drives, but with blocks on different drives.
552  * With this layout, and block is never stored twice on the one device.
553  *
554  * raid10_find_phys finds the sector offset of a given virtual sector
555  * on each device that it is on.
556  *
557  * raid10_find_virt does the reverse mapping, from a device and a
558  * sector offset to a virtual address
559  */
560 
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563 	int n,f;
564 	sector_t sector;
565 	sector_t chunk;
566 	sector_t stripe;
567 	int dev;
568 	int slot = 0;
569 	int last_far_set_start, last_far_set_size;
570 
571 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572 	last_far_set_start *= geo->far_set_size;
573 
574 	last_far_set_size = geo->far_set_size;
575 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
576 
577 	/* now calculate first sector/dev */
578 	chunk = r10bio->sector >> geo->chunk_shift;
579 	sector = r10bio->sector & geo->chunk_mask;
580 
581 	chunk *= geo->near_copies;
582 	stripe = chunk;
583 	dev = sector_div(stripe, geo->raid_disks);
584 	if (geo->far_offset)
585 		stripe *= geo->far_copies;
586 
587 	sector += stripe << geo->chunk_shift;
588 
589 	/* and calculate all the others */
590 	for (n = 0; n < geo->near_copies; n++) {
591 		int d = dev;
592 		int set;
593 		sector_t s = sector;
594 		r10bio->devs[slot].devnum = d;
595 		r10bio->devs[slot].addr = s;
596 		slot++;
597 
598 		for (f = 1; f < geo->far_copies; f++) {
599 			set = d / geo->far_set_size;
600 			d += geo->near_copies;
601 
602 			if ((geo->raid_disks % geo->far_set_size) &&
603 			    (d > last_far_set_start)) {
604 				d -= last_far_set_start;
605 				d %= last_far_set_size;
606 				d += last_far_set_start;
607 			} else {
608 				d %= geo->far_set_size;
609 				d += geo->far_set_size * set;
610 			}
611 			s += geo->stride;
612 			r10bio->devs[slot].devnum = d;
613 			r10bio->devs[slot].addr = s;
614 			slot++;
615 		}
616 		dev++;
617 		if (dev >= geo->raid_disks) {
618 			dev = 0;
619 			sector += (geo->chunk_mask + 1);
620 		}
621 	}
622 }
623 
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626 	struct geom *geo = &conf->geo;
627 
628 	if (conf->reshape_progress != MaxSector &&
629 	    ((r10bio->sector >= conf->reshape_progress) !=
630 	     conf->mddev->reshape_backwards)) {
631 		set_bit(R10BIO_Previous, &r10bio->state);
632 		geo = &conf->prev;
633 	} else
634 		clear_bit(R10BIO_Previous, &r10bio->state);
635 
636 	__raid10_find_phys(geo, r10bio);
637 }
638 
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641 	sector_t offset, chunk, vchunk;
642 	/* Never use conf->prev as this is only called during resync
643 	 * or recovery, so reshape isn't happening
644 	 */
645 	struct geom *geo = &conf->geo;
646 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647 	int far_set_size = geo->far_set_size;
648 	int last_far_set_start;
649 
650 	if (geo->raid_disks % geo->far_set_size) {
651 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652 		last_far_set_start *= geo->far_set_size;
653 
654 		if (dev >= last_far_set_start) {
655 			far_set_size = geo->far_set_size;
656 			far_set_size += (geo->raid_disks % geo->far_set_size);
657 			far_set_start = last_far_set_start;
658 		}
659 	}
660 
661 	offset = sector & geo->chunk_mask;
662 	if (geo->far_offset) {
663 		int fc;
664 		chunk = sector >> geo->chunk_shift;
665 		fc = sector_div(chunk, geo->far_copies);
666 		dev -= fc * geo->near_copies;
667 		if (dev < far_set_start)
668 			dev += far_set_size;
669 	} else {
670 		while (sector >= geo->stride) {
671 			sector -= geo->stride;
672 			if (dev < (geo->near_copies + far_set_start))
673 				dev += far_set_size - geo->near_copies;
674 			else
675 				dev -= geo->near_copies;
676 		}
677 		chunk = sector >> geo->chunk_shift;
678 	}
679 	vchunk = chunk * geo->raid_disks + dev;
680 	sector_div(vchunk, geo->near_copies);
681 	return (vchunk << geo->chunk_shift) + offset;
682 }
683 
684 /*
685  * This routine returns the disk from which the requested read should
686  * be done. There is a per-array 'next expected sequential IO' sector
687  * number - if this matches on the next IO then we use the last disk.
688  * There is also a per-disk 'last know head position' sector that is
689  * maintained from IRQ contexts, both the normal and the resync IO
690  * completion handlers update this position correctly. If there is no
691  * perfect sequential match then we pick the disk whose head is closest.
692  *
693  * If there are 2 mirrors in the same 2 devices, performance degrades
694  * because position is mirror, not device based.
695  *
696  * The rdev for the device selected will have nr_pending incremented.
697  */
698 
699 /*
700  * FIXME: possibly should rethink readbalancing and do it differently
701  * depending on near_copies / far_copies geometry.
702  */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704 				    struct r10bio *r10_bio,
705 				    int *max_sectors)
706 {
707 	const sector_t this_sector = r10_bio->sector;
708 	int disk, slot;
709 	int sectors = r10_bio->sectors;
710 	int best_good_sectors;
711 	sector_t new_distance, best_dist;
712 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713 	int do_balance;
714 	int best_dist_slot, best_pending_slot;
715 	bool has_nonrot_disk = false;
716 	unsigned int min_pending;
717 	struct geom *geo = &conf->geo;
718 
719 	raid10_find_phys(conf, r10_bio);
720 	rcu_read_lock();
721 	best_dist_slot = -1;
722 	min_pending = UINT_MAX;
723 	best_dist_rdev = NULL;
724 	best_pending_rdev = NULL;
725 	best_dist = MaxSector;
726 	best_good_sectors = 0;
727 	do_balance = 1;
728 	clear_bit(R10BIO_FailFast, &r10_bio->state);
729 	/*
730 	 * Check if we can balance. We can balance on the whole
731 	 * device if no resync is going on (recovery is ok), or below
732 	 * the resync window. We take the first readable disk when
733 	 * above the resync window.
734 	 */
735 	if ((conf->mddev->recovery_cp < MaxSector
736 	     && (this_sector + sectors >= conf->next_resync)) ||
737 	    (mddev_is_clustered(conf->mddev) &&
738 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739 					    this_sector + sectors)))
740 		do_balance = 0;
741 
742 	for (slot = 0; slot < conf->copies ; slot++) {
743 		sector_t first_bad;
744 		int bad_sectors;
745 		sector_t dev_sector;
746 		unsigned int pending;
747 		bool nonrot;
748 
749 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 			continue;
751 		disk = r10_bio->devs[slot].devnum;
752 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
756 		if (rdev == NULL ||
757 		    test_bit(Faulty, &rdev->flags))
758 			continue;
759 		if (!test_bit(In_sync, &rdev->flags) &&
760 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761 			continue;
762 
763 		dev_sector = r10_bio->devs[slot].addr;
764 		if (is_badblock(rdev, dev_sector, sectors,
765 				&first_bad, &bad_sectors)) {
766 			if (best_dist < MaxSector)
767 				/* Already have a better slot */
768 				continue;
769 			if (first_bad <= dev_sector) {
770 				/* Cannot read here.  If this is the
771 				 * 'primary' device, then we must not read
772 				 * beyond 'bad_sectors' from another device.
773 				 */
774 				bad_sectors -= (dev_sector - first_bad);
775 				if (!do_balance && sectors > bad_sectors)
776 					sectors = bad_sectors;
777 				if (best_good_sectors > sectors)
778 					best_good_sectors = sectors;
779 			} else {
780 				sector_t good_sectors =
781 					first_bad - dev_sector;
782 				if (good_sectors > best_good_sectors) {
783 					best_good_sectors = good_sectors;
784 					best_dist_slot = slot;
785 					best_dist_rdev = rdev;
786 				}
787 				if (!do_balance)
788 					/* Must read from here */
789 					break;
790 			}
791 			continue;
792 		} else
793 			best_good_sectors = sectors;
794 
795 		if (!do_balance)
796 			break;
797 
798 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799 		has_nonrot_disk |= nonrot;
800 		pending = atomic_read(&rdev->nr_pending);
801 		if (min_pending > pending && nonrot) {
802 			min_pending = pending;
803 			best_pending_slot = slot;
804 			best_pending_rdev = rdev;
805 		}
806 
807 		if (best_dist_slot >= 0)
808 			/* At least 2 disks to choose from so failfast is OK */
809 			set_bit(R10BIO_FailFast, &r10_bio->state);
810 		/* This optimisation is debatable, and completely destroys
811 		 * sequential read speed for 'far copies' arrays.  So only
812 		 * keep it for 'near' arrays, and review those later.
813 		 */
814 		if (geo->near_copies > 1 && !pending)
815 			new_distance = 0;
816 
817 		/* for far > 1 always use the lowest address */
818 		else if (geo->far_copies > 1)
819 			new_distance = r10_bio->devs[slot].addr;
820 		else
821 			new_distance = abs(r10_bio->devs[slot].addr -
822 					   conf->mirrors[disk].head_position);
823 
824 		if (new_distance < best_dist) {
825 			best_dist = new_distance;
826 			best_dist_slot = slot;
827 			best_dist_rdev = rdev;
828 		}
829 	}
830 	if (slot >= conf->copies) {
831 		if (has_nonrot_disk) {
832 			slot = best_pending_slot;
833 			rdev = best_pending_rdev;
834 		} else {
835 			slot = best_dist_slot;
836 			rdev = best_dist_rdev;
837 		}
838 	}
839 
840 	if (slot >= 0) {
841 		atomic_inc(&rdev->nr_pending);
842 		r10_bio->read_slot = slot;
843 	} else
844 		rdev = NULL;
845 	rcu_read_unlock();
846 	*max_sectors = best_good_sectors;
847 
848 	return rdev;
849 }
850 
851 static int raid10_congested(struct mddev *mddev, int bits)
852 {
853 	struct r10conf *conf = mddev->private;
854 	int i, ret = 0;
855 
856 	if ((bits & (1 << WB_async_congested)) &&
857 	    conf->pending_count >= max_queued_requests)
858 		return 1;
859 
860 	rcu_read_lock();
861 	for (i = 0;
862 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
863 		     && ret == 0;
864 	     i++) {
865 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
866 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
867 			struct request_queue *q = bdev_get_queue(rdev->bdev);
868 
869 			ret |= bdi_congested(q->backing_dev_info, bits);
870 		}
871 	}
872 	rcu_read_unlock();
873 	return ret;
874 }
875 
876 static void flush_pending_writes(struct r10conf *conf)
877 {
878 	/* Any writes that have been queued but are awaiting
879 	 * bitmap updates get flushed here.
880 	 */
881 	spin_lock_irq(&conf->device_lock);
882 
883 	if (conf->pending_bio_list.head) {
884 		struct blk_plug plug;
885 		struct bio *bio;
886 
887 		bio = bio_list_get(&conf->pending_bio_list);
888 		conf->pending_count = 0;
889 		spin_unlock_irq(&conf->device_lock);
890 
891 		/*
892 		 * As this is called in a wait_event() loop (see freeze_array),
893 		 * current->state might be TASK_UNINTERRUPTIBLE which will
894 		 * cause a warning when we prepare to wait again.  As it is
895 		 * rare that this path is taken, it is perfectly safe to force
896 		 * us to go around the wait_event() loop again, so the warning
897 		 * is a false-positive. Silence the warning by resetting
898 		 * thread state
899 		 */
900 		__set_current_state(TASK_RUNNING);
901 
902 		blk_start_plug(&plug);
903 		/* flush any pending bitmap writes to disk
904 		 * before proceeding w/ I/O */
905 		md_bitmap_unplug(conf->mddev->bitmap);
906 		wake_up(&conf->wait_barrier);
907 
908 		while (bio) { /* submit pending writes */
909 			struct bio *next = bio->bi_next;
910 			struct md_rdev *rdev = (void*)bio->bi_disk;
911 			bio->bi_next = NULL;
912 			bio_set_dev(bio, rdev->bdev);
913 			if (test_bit(Faulty, &rdev->flags)) {
914 				bio_io_error(bio);
915 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
916 					    !blk_queue_discard(bio->bi_disk->queue)))
917 				/* Just ignore it */
918 				bio_endio(bio);
919 			else
920 				generic_make_request(bio);
921 			bio = next;
922 		}
923 		blk_finish_plug(&plug);
924 	} else
925 		spin_unlock_irq(&conf->device_lock);
926 }
927 
928 /* Barriers....
929  * Sometimes we need to suspend IO while we do something else,
930  * either some resync/recovery, or reconfigure the array.
931  * To do this we raise a 'barrier'.
932  * The 'barrier' is a counter that can be raised multiple times
933  * to count how many activities are happening which preclude
934  * normal IO.
935  * We can only raise the barrier if there is no pending IO.
936  * i.e. if nr_pending == 0.
937  * We choose only to raise the barrier if no-one is waiting for the
938  * barrier to go down.  This means that as soon as an IO request
939  * is ready, no other operations which require a barrier will start
940  * until the IO request has had a chance.
941  *
942  * So: regular IO calls 'wait_barrier'.  When that returns there
943  *    is no backgroup IO happening,  It must arrange to call
944  *    allow_barrier when it has finished its IO.
945  * backgroup IO calls must call raise_barrier.  Once that returns
946  *    there is no normal IO happeing.  It must arrange to call
947  *    lower_barrier when the particular background IO completes.
948  */
949 
950 static void raise_barrier(struct r10conf *conf, int force)
951 {
952 	BUG_ON(force && !conf->barrier);
953 	spin_lock_irq(&conf->resync_lock);
954 
955 	/* Wait until no block IO is waiting (unless 'force') */
956 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
957 			    conf->resync_lock);
958 
959 	/* block any new IO from starting */
960 	conf->barrier++;
961 
962 	/* Now wait for all pending IO to complete */
963 	wait_event_lock_irq(conf->wait_barrier,
964 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
965 			    conf->resync_lock);
966 
967 	spin_unlock_irq(&conf->resync_lock);
968 }
969 
970 static void lower_barrier(struct r10conf *conf)
971 {
972 	unsigned long flags;
973 	spin_lock_irqsave(&conf->resync_lock, flags);
974 	conf->barrier--;
975 	spin_unlock_irqrestore(&conf->resync_lock, flags);
976 	wake_up(&conf->wait_barrier);
977 }
978 
979 static void wait_barrier(struct r10conf *conf)
980 {
981 	spin_lock_irq(&conf->resync_lock);
982 	if (conf->barrier) {
983 		conf->nr_waiting++;
984 		/* Wait for the barrier to drop.
985 		 * However if there are already pending
986 		 * requests (preventing the barrier from
987 		 * rising completely), and the
988 		 * pre-process bio queue isn't empty,
989 		 * then don't wait, as we need to empty
990 		 * that queue to get the nr_pending
991 		 * count down.
992 		 */
993 		raid10_log(conf->mddev, "wait barrier");
994 		wait_event_lock_irq(conf->wait_barrier,
995 				    !conf->barrier ||
996 				    (atomic_read(&conf->nr_pending) &&
997 				     current->bio_list &&
998 				     (!bio_list_empty(&current->bio_list[0]) ||
999 				      !bio_list_empty(&current->bio_list[1]))),
1000 				    conf->resync_lock);
1001 		conf->nr_waiting--;
1002 		if (!conf->nr_waiting)
1003 			wake_up(&conf->wait_barrier);
1004 	}
1005 	atomic_inc(&conf->nr_pending);
1006 	spin_unlock_irq(&conf->resync_lock);
1007 }
1008 
1009 static void allow_barrier(struct r10conf *conf)
1010 {
1011 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1012 			(conf->array_freeze_pending))
1013 		wake_up(&conf->wait_barrier);
1014 }
1015 
1016 static void freeze_array(struct r10conf *conf, int extra)
1017 {
1018 	/* stop syncio and normal IO and wait for everything to
1019 	 * go quiet.
1020 	 * We increment barrier and nr_waiting, and then
1021 	 * wait until nr_pending match nr_queued+extra
1022 	 * This is called in the context of one normal IO request
1023 	 * that has failed. Thus any sync request that might be pending
1024 	 * will be blocked by nr_pending, and we need to wait for
1025 	 * pending IO requests to complete or be queued for re-try.
1026 	 * Thus the number queued (nr_queued) plus this request (extra)
1027 	 * must match the number of pending IOs (nr_pending) before
1028 	 * we continue.
1029 	 */
1030 	spin_lock_irq(&conf->resync_lock);
1031 	conf->array_freeze_pending++;
1032 	conf->barrier++;
1033 	conf->nr_waiting++;
1034 	wait_event_lock_irq_cmd(conf->wait_barrier,
1035 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1036 				conf->resync_lock,
1037 				flush_pending_writes(conf));
1038 
1039 	conf->array_freeze_pending--;
1040 	spin_unlock_irq(&conf->resync_lock);
1041 }
1042 
1043 static void unfreeze_array(struct r10conf *conf)
1044 {
1045 	/* reverse the effect of the freeze */
1046 	spin_lock_irq(&conf->resync_lock);
1047 	conf->barrier--;
1048 	conf->nr_waiting--;
1049 	wake_up(&conf->wait_barrier);
1050 	spin_unlock_irq(&conf->resync_lock);
1051 }
1052 
1053 static sector_t choose_data_offset(struct r10bio *r10_bio,
1054 				   struct md_rdev *rdev)
1055 {
1056 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1057 	    test_bit(R10BIO_Previous, &r10_bio->state))
1058 		return rdev->data_offset;
1059 	else
1060 		return rdev->new_data_offset;
1061 }
1062 
1063 struct raid10_plug_cb {
1064 	struct blk_plug_cb	cb;
1065 	struct bio_list		pending;
1066 	int			pending_cnt;
1067 };
1068 
1069 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1070 {
1071 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1072 						   cb);
1073 	struct mddev *mddev = plug->cb.data;
1074 	struct r10conf *conf = mddev->private;
1075 	struct bio *bio;
1076 
1077 	if (from_schedule || current->bio_list) {
1078 		spin_lock_irq(&conf->device_lock);
1079 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1080 		conf->pending_count += plug->pending_cnt;
1081 		spin_unlock_irq(&conf->device_lock);
1082 		wake_up(&conf->wait_barrier);
1083 		md_wakeup_thread(mddev->thread);
1084 		kfree(plug);
1085 		return;
1086 	}
1087 
1088 	/* we aren't scheduling, so we can do the write-out directly. */
1089 	bio = bio_list_get(&plug->pending);
1090 	md_bitmap_unplug(mddev->bitmap);
1091 	wake_up(&conf->wait_barrier);
1092 
1093 	while (bio) { /* submit pending writes */
1094 		struct bio *next = bio->bi_next;
1095 		struct md_rdev *rdev = (void*)bio->bi_disk;
1096 		bio->bi_next = NULL;
1097 		bio_set_dev(bio, rdev->bdev);
1098 		if (test_bit(Faulty, &rdev->flags)) {
1099 			bio_io_error(bio);
1100 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1101 				    !blk_queue_discard(bio->bi_disk->queue)))
1102 			/* Just ignore it */
1103 			bio_endio(bio);
1104 		else
1105 			generic_make_request(bio);
1106 		bio = next;
1107 	}
1108 	kfree(plug);
1109 }
1110 
1111 /*
1112  * 1. Register the new request and wait if the reconstruction thread has put
1113  * up a bar for new requests. Continue immediately if no resync is active
1114  * currently.
1115  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1116  */
1117 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1118 				 struct bio *bio, sector_t sectors)
1119 {
1120 	wait_barrier(conf);
1121 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1122 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1123 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1124 		raid10_log(conf->mddev, "wait reshape");
1125 		allow_barrier(conf);
1126 		wait_event(conf->wait_barrier,
1127 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1128 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1129 			   sectors);
1130 		wait_barrier(conf);
1131 	}
1132 }
1133 
1134 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1135 				struct r10bio *r10_bio)
1136 {
1137 	struct r10conf *conf = mddev->private;
1138 	struct bio *read_bio;
1139 	const int op = bio_op(bio);
1140 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1141 	int max_sectors;
1142 	struct md_rdev *rdev;
1143 	char b[BDEVNAME_SIZE];
1144 	int slot = r10_bio->read_slot;
1145 	struct md_rdev *err_rdev = NULL;
1146 	gfp_t gfp = GFP_NOIO;
1147 
1148 	if (r10_bio->devs[slot].rdev) {
1149 		/*
1150 		 * This is an error retry, but we cannot
1151 		 * safely dereference the rdev in the r10_bio,
1152 		 * we must use the one in conf.
1153 		 * If it has already been disconnected (unlikely)
1154 		 * we lose the device name in error messages.
1155 		 */
1156 		int disk;
1157 		/*
1158 		 * As we are blocking raid10, it is a little safer to
1159 		 * use __GFP_HIGH.
1160 		 */
1161 		gfp = GFP_NOIO | __GFP_HIGH;
1162 
1163 		rcu_read_lock();
1164 		disk = r10_bio->devs[slot].devnum;
1165 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1166 		if (err_rdev)
1167 			bdevname(err_rdev->bdev, b);
1168 		else {
1169 			strcpy(b, "???");
1170 			/* This never gets dereferenced */
1171 			err_rdev = r10_bio->devs[slot].rdev;
1172 		}
1173 		rcu_read_unlock();
1174 	}
1175 
1176 	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1177 	rdev = read_balance(conf, r10_bio, &max_sectors);
1178 	if (!rdev) {
1179 		if (err_rdev) {
1180 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1181 					    mdname(mddev), b,
1182 					    (unsigned long long)r10_bio->sector);
1183 		}
1184 		raid_end_bio_io(r10_bio);
1185 		return;
1186 	}
1187 	if (err_rdev)
1188 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1189 				   mdname(mddev),
1190 				   bdevname(rdev->bdev, b),
1191 				   (unsigned long long)r10_bio->sector);
1192 	if (max_sectors < bio_sectors(bio)) {
1193 		struct bio *split = bio_split(bio, max_sectors,
1194 					      gfp, &conf->bio_split);
1195 		bio_chain(split, bio);
1196 		allow_barrier(conf);
1197 		generic_make_request(bio);
1198 		wait_barrier(conf);
1199 		bio = split;
1200 		r10_bio->master_bio = bio;
1201 		r10_bio->sectors = max_sectors;
1202 	}
1203 	slot = r10_bio->read_slot;
1204 
1205 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1206 
1207 	r10_bio->devs[slot].bio = read_bio;
1208 	r10_bio->devs[slot].rdev = rdev;
1209 
1210 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1211 		choose_data_offset(r10_bio, rdev);
1212 	bio_set_dev(read_bio, rdev->bdev);
1213 	read_bio->bi_end_io = raid10_end_read_request;
1214 	bio_set_op_attrs(read_bio, op, do_sync);
1215 	if (test_bit(FailFast, &rdev->flags) &&
1216 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1217 	        read_bio->bi_opf |= MD_FAILFAST;
1218 	read_bio->bi_private = r10_bio;
1219 
1220 	if (mddev->gendisk)
1221 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1222 	                              read_bio, disk_devt(mddev->gendisk),
1223 	                              r10_bio->sector);
1224 	generic_make_request(read_bio);
1225 	return;
1226 }
1227 
1228 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1229 				  struct bio *bio, bool replacement,
1230 				  int n_copy)
1231 {
1232 	const int op = bio_op(bio);
1233 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1234 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1235 	unsigned long flags;
1236 	struct blk_plug_cb *cb;
1237 	struct raid10_plug_cb *plug = NULL;
1238 	struct r10conf *conf = mddev->private;
1239 	struct md_rdev *rdev;
1240 	int devnum = r10_bio->devs[n_copy].devnum;
1241 	struct bio *mbio;
1242 
1243 	if (replacement) {
1244 		rdev = conf->mirrors[devnum].replacement;
1245 		if (rdev == NULL) {
1246 			/* Replacement just got moved to main 'rdev' */
1247 			smp_mb();
1248 			rdev = conf->mirrors[devnum].rdev;
1249 		}
1250 	} else
1251 		rdev = conf->mirrors[devnum].rdev;
1252 
1253 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1254 	if (replacement)
1255 		r10_bio->devs[n_copy].repl_bio = mbio;
1256 	else
1257 		r10_bio->devs[n_copy].bio = mbio;
1258 
1259 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1260 				   choose_data_offset(r10_bio, rdev));
1261 	bio_set_dev(mbio, rdev->bdev);
1262 	mbio->bi_end_io	= raid10_end_write_request;
1263 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1264 	if (!replacement && test_bit(FailFast,
1265 				     &conf->mirrors[devnum].rdev->flags)
1266 			 && enough(conf, devnum))
1267 		mbio->bi_opf |= MD_FAILFAST;
1268 	mbio->bi_private = r10_bio;
1269 
1270 	if (conf->mddev->gendisk)
1271 		trace_block_bio_remap(mbio->bi_disk->queue,
1272 				      mbio, disk_devt(conf->mddev->gendisk),
1273 				      r10_bio->sector);
1274 	/* flush_pending_writes() needs access to the rdev so...*/
1275 	mbio->bi_disk = (void *)rdev;
1276 
1277 	atomic_inc(&r10_bio->remaining);
1278 
1279 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1280 	if (cb)
1281 		plug = container_of(cb, struct raid10_plug_cb, cb);
1282 	else
1283 		plug = NULL;
1284 	if (plug) {
1285 		bio_list_add(&plug->pending, mbio);
1286 		plug->pending_cnt++;
1287 	} else {
1288 		spin_lock_irqsave(&conf->device_lock, flags);
1289 		bio_list_add(&conf->pending_bio_list, mbio);
1290 		conf->pending_count++;
1291 		spin_unlock_irqrestore(&conf->device_lock, flags);
1292 		md_wakeup_thread(mddev->thread);
1293 	}
1294 }
1295 
1296 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1297 				 struct r10bio *r10_bio)
1298 {
1299 	struct r10conf *conf = mddev->private;
1300 	int i;
1301 	struct md_rdev *blocked_rdev;
1302 	sector_t sectors;
1303 	int max_sectors;
1304 
1305 	if ((mddev_is_clustered(mddev) &&
1306 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1307 					    bio->bi_iter.bi_sector,
1308 					    bio_end_sector(bio)))) {
1309 		DEFINE_WAIT(w);
1310 		for (;;) {
1311 			prepare_to_wait(&conf->wait_barrier,
1312 					&w, TASK_IDLE);
1313 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1314 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1315 				break;
1316 			schedule();
1317 		}
1318 		finish_wait(&conf->wait_barrier, &w);
1319 	}
1320 
1321 	sectors = r10_bio->sectors;
1322 	regular_request_wait(mddev, conf, bio, sectors);
1323 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1324 	    (mddev->reshape_backwards
1325 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1326 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1327 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1328 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1329 		/* Need to update reshape_position in metadata */
1330 		mddev->reshape_position = conf->reshape_progress;
1331 		set_mask_bits(&mddev->sb_flags, 0,
1332 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1333 		md_wakeup_thread(mddev->thread);
1334 		raid10_log(conf->mddev, "wait reshape metadata");
1335 		wait_event(mddev->sb_wait,
1336 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1337 
1338 		conf->reshape_safe = mddev->reshape_position;
1339 	}
1340 
1341 	if (conf->pending_count >= max_queued_requests) {
1342 		md_wakeup_thread(mddev->thread);
1343 		raid10_log(mddev, "wait queued");
1344 		wait_event(conf->wait_barrier,
1345 			   conf->pending_count < max_queued_requests);
1346 	}
1347 	/* first select target devices under rcu_lock and
1348 	 * inc refcount on their rdev.  Record them by setting
1349 	 * bios[x] to bio
1350 	 * If there are known/acknowledged bad blocks on any device
1351 	 * on which we have seen a write error, we want to avoid
1352 	 * writing to those blocks.  This potentially requires several
1353 	 * writes to write around the bad blocks.  Each set of writes
1354 	 * gets its own r10_bio with a set of bios attached.
1355 	 */
1356 
1357 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1358 	raid10_find_phys(conf, r10_bio);
1359 retry_write:
1360 	blocked_rdev = NULL;
1361 	rcu_read_lock();
1362 	max_sectors = r10_bio->sectors;
1363 
1364 	for (i = 0;  i < conf->copies; i++) {
1365 		int d = r10_bio->devs[i].devnum;
1366 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1367 		struct md_rdev *rrdev = rcu_dereference(
1368 			conf->mirrors[d].replacement);
1369 		if (rdev == rrdev)
1370 			rrdev = NULL;
1371 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372 			atomic_inc(&rdev->nr_pending);
1373 			blocked_rdev = rdev;
1374 			break;
1375 		}
1376 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1377 			atomic_inc(&rrdev->nr_pending);
1378 			blocked_rdev = rrdev;
1379 			break;
1380 		}
1381 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1382 			rdev = NULL;
1383 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1384 			rrdev = NULL;
1385 
1386 		r10_bio->devs[i].bio = NULL;
1387 		r10_bio->devs[i].repl_bio = NULL;
1388 
1389 		if (!rdev && !rrdev) {
1390 			set_bit(R10BIO_Degraded, &r10_bio->state);
1391 			continue;
1392 		}
1393 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1394 			sector_t first_bad;
1395 			sector_t dev_sector = r10_bio->devs[i].addr;
1396 			int bad_sectors;
1397 			int is_bad;
1398 
1399 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1400 					     &first_bad, &bad_sectors);
1401 			if (is_bad < 0) {
1402 				/* Mustn't write here until the bad block
1403 				 * is acknowledged
1404 				 */
1405 				atomic_inc(&rdev->nr_pending);
1406 				set_bit(BlockedBadBlocks, &rdev->flags);
1407 				blocked_rdev = rdev;
1408 				break;
1409 			}
1410 			if (is_bad && first_bad <= dev_sector) {
1411 				/* Cannot write here at all */
1412 				bad_sectors -= (dev_sector - first_bad);
1413 				if (bad_sectors < max_sectors)
1414 					/* Mustn't write more than bad_sectors
1415 					 * to other devices yet
1416 					 */
1417 					max_sectors = bad_sectors;
1418 				/* We don't set R10BIO_Degraded as that
1419 				 * only applies if the disk is missing,
1420 				 * so it might be re-added, and we want to
1421 				 * know to recover this chunk.
1422 				 * In this case the device is here, and the
1423 				 * fact that this chunk is not in-sync is
1424 				 * recorded in the bad block log.
1425 				 */
1426 				continue;
1427 			}
1428 			if (is_bad) {
1429 				int good_sectors = first_bad - dev_sector;
1430 				if (good_sectors < max_sectors)
1431 					max_sectors = good_sectors;
1432 			}
1433 		}
1434 		if (rdev) {
1435 			r10_bio->devs[i].bio = bio;
1436 			atomic_inc(&rdev->nr_pending);
1437 		}
1438 		if (rrdev) {
1439 			r10_bio->devs[i].repl_bio = bio;
1440 			atomic_inc(&rrdev->nr_pending);
1441 		}
1442 	}
1443 	rcu_read_unlock();
1444 
1445 	if (unlikely(blocked_rdev)) {
1446 		/* Have to wait for this device to get unblocked, then retry */
1447 		int j;
1448 		int d;
1449 
1450 		for (j = 0; j < i; j++) {
1451 			if (r10_bio->devs[j].bio) {
1452 				d = r10_bio->devs[j].devnum;
1453 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1454 			}
1455 			if (r10_bio->devs[j].repl_bio) {
1456 				struct md_rdev *rdev;
1457 				d = r10_bio->devs[j].devnum;
1458 				rdev = conf->mirrors[d].replacement;
1459 				if (!rdev) {
1460 					/* Race with remove_disk */
1461 					smp_mb();
1462 					rdev = conf->mirrors[d].rdev;
1463 				}
1464 				rdev_dec_pending(rdev, mddev);
1465 			}
1466 		}
1467 		allow_barrier(conf);
1468 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1469 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1470 		wait_barrier(conf);
1471 		goto retry_write;
1472 	}
1473 
1474 	if (max_sectors < r10_bio->sectors)
1475 		r10_bio->sectors = max_sectors;
1476 
1477 	if (r10_bio->sectors < bio_sectors(bio)) {
1478 		struct bio *split = bio_split(bio, r10_bio->sectors,
1479 					      GFP_NOIO, &conf->bio_split);
1480 		bio_chain(split, bio);
1481 		allow_barrier(conf);
1482 		generic_make_request(bio);
1483 		wait_barrier(conf);
1484 		bio = split;
1485 		r10_bio->master_bio = bio;
1486 	}
1487 
1488 	atomic_set(&r10_bio->remaining, 1);
1489 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1490 
1491 	for (i = 0; i < conf->copies; i++) {
1492 		if (r10_bio->devs[i].bio)
1493 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1494 		if (r10_bio->devs[i].repl_bio)
1495 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1496 	}
1497 	one_write_done(r10_bio);
1498 }
1499 
1500 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1501 {
1502 	struct r10conf *conf = mddev->private;
1503 	struct r10bio *r10_bio;
1504 
1505 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1506 
1507 	r10_bio->master_bio = bio;
1508 	r10_bio->sectors = sectors;
1509 
1510 	r10_bio->mddev = mddev;
1511 	r10_bio->sector = bio->bi_iter.bi_sector;
1512 	r10_bio->state = 0;
1513 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1514 
1515 	if (bio_data_dir(bio) == READ)
1516 		raid10_read_request(mddev, bio, r10_bio);
1517 	else
1518 		raid10_write_request(mddev, bio, r10_bio);
1519 }
1520 
1521 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1522 {
1523 	struct r10conf *conf = mddev->private;
1524 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1525 	int chunk_sects = chunk_mask + 1;
1526 	int sectors = bio_sectors(bio);
1527 
1528 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1529 	    && md_flush_request(mddev, bio))
1530 		return true;
1531 
1532 	if (!md_write_start(mddev, bio))
1533 		return false;
1534 
1535 	/*
1536 	 * If this request crosses a chunk boundary, we need to split
1537 	 * it.
1538 	 */
1539 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1540 		     sectors > chunk_sects
1541 		     && (conf->geo.near_copies < conf->geo.raid_disks
1542 			 || conf->prev.near_copies <
1543 			 conf->prev.raid_disks)))
1544 		sectors = chunk_sects -
1545 			(bio->bi_iter.bi_sector &
1546 			 (chunk_sects - 1));
1547 	__make_request(mddev, bio, sectors);
1548 
1549 	/* In case raid10d snuck in to freeze_array */
1550 	wake_up(&conf->wait_barrier);
1551 	return true;
1552 }
1553 
1554 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1555 {
1556 	struct r10conf *conf = mddev->private;
1557 	int i;
1558 
1559 	if (conf->geo.near_copies < conf->geo.raid_disks)
1560 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1561 	if (conf->geo.near_copies > 1)
1562 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1563 	if (conf->geo.far_copies > 1) {
1564 		if (conf->geo.far_offset)
1565 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1566 		else
1567 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1568 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1569 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1570 	}
1571 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1572 					conf->geo.raid_disks - mddev->degraded);
1573 	rcu_read_lock();
1574 	for (i = 0; i < conf->geo.raid_disks; i++) {
1575 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1576 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1577 	}
1578 	rcu_read_unlock();
1579 	seq_printf(seq, "]");
1580 }
1581 
1582 /* check if there are enough drives for
1583  * every block to appear on atleast one.
1584  * Don't consider the device numbered 'ignore'
1585  * as we might be about to remove it.
1586  */
1587 static int _enough(struct r10conf *conf, int previous, int ignore)
1588 {
1589 	int first = 0;
1590 	int has_enough = 0;
1591 	int disks, ncopies;
1592 	if (previous) {
1593 		disks = conf->prev.raid_disks;
1594 		ncopies = conf->prev.near_copies;
1595 	} else {
1596 		disks = conf->geo.raid_disks;
1597 		ncopies = conf->geo.near_copies;
1598 	}
1599 
1600 	rcu_read_lock();
1601 	do {
1602 		int n = conf->copies;
1603 		int cnt = 0;
1604 		int this = first;
1605 		while (n--) {
1606 			struct md_rdev *rdev;
1607 			if (this != ignore &&
1608 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1609 			    test_bit(In_sync, &rdev->flags))
1610 				cnt++;
1611 			this = (this+1) % disks;
1612 		}
1613 		if (cnt == 0)
1614 			goto out;
1615 		first = (first + ncopies) % disks;
1616 	} while (first != 0);
1617 	has_enough = 1;
1618 out:
1619 	rcu_read_unlock();
1620 	return has_enough;
1621 }
1622 
1623 static int enough(struct r10conf *conf, int ignore)
1624 {
1625 	/* when calling 'enough', both 'prev' and 'geo' must
1626 	 * be stable.
1627 	 * This is ensured if ->reconfig_mutex or ->device_lock
1628 	 * is held.
1629 	 */
1630 	return _enough(conf, 0, ignore) &&
1631 		_enough(conf, 1, ignore);
1632 }
1633 
1634 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1635 {
1636 	char b[BDEVNAME_SIZE];
1637 	struct r10conf *conf = mddev->private;
1638 	unsigned long flags;
1639 
1640 	/*
1641 	 * If it is not operational, then we have already marked it as dead
1642 	 * else if it is the last working disks with "fail_last_dev == false",
1643 	 * ignore the error, let the next level up know.
1644 	 * else mark the drive as failed
1645 	 */
1646 	spin_lock_irqsave(&conf->device_lock, flags);
1647 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1648 	    && !enough(conf, rdev->raid_disk)) {
1649 		/*
1650 		 * Don't fail the drive, just return an IO error.
1651 		 */
1652 		spin_unlock_irqrestore(&conf->device_lock, flags);
1653 		return;
1654 	}
1655 	if (test_and_clear_bit(In_sync, &rdev->flags))
1656 		mddev->degraded++;
1657 	/*
1658 	 * If recovery is running, make sure it aborts.
1659 	 */
1660 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1661 	set_bit(Blocked, &rdev->flags);
1662 	set_bit(Faulty, &rdev->flags);
1663 	set_mask_bits(&mddev->sb_flags, 0,
1664 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1665 	spin_unlock_irqrestore(&conf->device_lock, flags);
1666 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1667 		"md/raid10:%s: Operation continuing on %d devices.\n",
1668 		mdname(mddev), bdevname(rdev->bdev, b),
1669 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1670 }
1671 
1672 static void print_conf(struct r10conf *conf)
1673 {
1674 	int i;
1675 	struct md_rdev *rdev;
1676 
1677 	pr_debug("RAID10 conf printout:\n");
1678 	if (!conf) {
1679 		pr_debug("(!conf)\n");
1680 		return;
1681 	}
1682 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1683 		 conf->geo.raid_disks);
1684 
1685 	/* This is only called with ->reconfix_mutex held, so
1686 	 * rcu protection of rdev is not needed */
1687 	for (i = 0; i < conf->geo.raid_disks; i++) {
1688 		char b[BDEVNAME_SIZE];
1689 		rdev = conf->mirrors[i].rdev;
1690 		if (rdev)
1691 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1692 				 i, !test_bit(In_sync, &rdev->flags),
1693 				 !test_bit(Faulty, &rdev->flags),
1694 				 bdevname(rdev->bdev,b));
1695 	}
1696 }
1697 
1698 static void close_sync(struct r10conf *conf)
1699 {
1700 	wait_barrier(conf);
1701 	allow_barrier(conf);
1702 
1703 	mempool_exit(&conf->r10buf_pool);
1704 }
1705 
1706 static int raid10_spare_active(struct mddev *mddev)
1707 {
1708 	int i;
1709 	struct r10conf *conf = mddev->private;
1710 	struct raid10_info *tmp;
1711 	int count = 0;
1712 	unsigned long flags;
1713 
1714 	/*
1715 	 * Find all non-in_sync disks within the RAID10 configuration
1716 	 * and mark them in_sync
1717 	 */
1718 	for (i = 0; i < conf->geo.raid_disks; i++) {
1719 		tmp = conf->mirrors + i;
1720 		if (tmp->replacement
1721 		    && tmp->replacement->recovery_offset == MaxSector
1722 		    && !test_bit(Faulty, &tmp->replacement->flags)
1723 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1724 			/* Replacement has just become active */
1725 			if (!tmp->rdev
1726 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1727 				count++;
1728 			if (tmp->rdev) {
1729 				/* Replaced device not technically faulty,
1730 				 * but we need to be sure it gets removed
1731 				 * and never re-added.
1732 				 */
1733 				set_bit(Faulty, &tmp->rdev->flags);
1734 				sysfs_notify_dirent_safe(
1735 					tmp->rdev->sysfs_state);
1736 			}
1737 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1738 		} else if (tmp->rdev
1739 			   && tmp->rdev->recovery_offset == MaxSector
1740 			   && !test_bit(Faulty, &tmp->rdev->flags)
1741 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1742 			count++;
1743 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1744 		}
1745 	}
1746 	spin_lock_irqsave(&conf->device_lock, flags);
1747 	mddev->degraded -= count;
1748 	spin_unlock_irqrestore(&conf->device_lock, flags);
1749 
1750 	print_conf(conf);
1751 	return count;
1752 }
1753 
1754 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1755 {
1756 	struct r10conf *conf = mddev->private;
1757 	int err = -EEXIST;
1758 	int mirror;
1759 	int first = 0;
1760 	int last = conf->geo.raid_disks - 1;
1761 
1762 	if (mddev->recovery_cp < MaxSector)
1763 		/* only hot-add to in-sync arrays, as recovery is
1764 		 * very different from resync
1765 		 */
1766 		return -EBUSY;
1767 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1768 		return -EINVAL;
1769 
1770 	if (md_integrity_add_rdev(rdev, mddev))
1771 		return -ENXIO;
1772 
1773 	if (rdev->raid_disk >= 0)
1774 		first = last = rdev->raid_disk;
1775 
1776 	if (rdev->saved_raid_disk >= first &&
1777 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1778 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1779 		mirror = rdev->saved_raid_disk;
1780 	else
1781 		mirror = first;
1782 	for ( ; mirror <= last ; mirror++) {
1783 		struct raid10_info *p = &conf->mirrors[mirror];
1784 		if (p->recovery_disabled == mddev->recovery_disabled)
1785 			continue;
1786 		if (p->rdev) {
1787 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1788 			    p->replacement != NULL)
1789 				continue;
1790 			clear_bit(In_sync, &rdev->flags);
1791 			set_bit(Replacement, &rdev->flags);
1792 			rdev->raid_disk = mirror;
1793 			err = 0;
1794 			if (mddev->gendisk)
1795 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1796 						  rdev->data_offset << 9);
1797 			conf->fullsync = 1;
1798 			rcu_assign_pointer(p->replacement, rdev);
1799 			break;
1800 		}
1801 
1802 		if (mddev->gendisk)
1803 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1804 					  rdev->data_offset << 9);
1805 
1806 		p->head_position = 0;
1807 		p->recovery_disabled = mddev->recovery_disabled - 1;
1808 		rdev->raid_disk = mirror;
1809 		err = 0;
1810 		if (rdev->saved_raid_disk != mirror)
1811 			conf->fullsync = 1;
1812 		rcu_assign_pointer(p->rdev, rdev);
1813 		break;
1814 	}
1815 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1816 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1817 
1818 	print_conf(conf);
1819 	return err;
1820 }
1821 
1822 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1823 {
1824 	struct r10conf *conf = mddev->private;
1825 	int err = 0;
1826 	int number = rdev->raid_disk;
1827 	struct md_rdev **rdevp;
1828 	struct raid10_info *p = conf->mirrors + number;
1829 
1830 	print_conf(conf);
1831 	if (rdev == p->rdev)
1832 		rdevp = &p->rdev;
1833 	else if (rdev == p->replacement)
1834 		rdevp = &p->replacement;
1835 	else
1836 		return 0;
1837 
1838 	if (test_bit(In_sync, &rdev->flags) ||
1839 	    atomic_read(&rdev->nr_pending)) {
1840 		err = -EBUSY;
1841 		goto abort;
1842 	}
1843 	/* Only remove non-faulty devices if recovery
1844 	 * is not possible.
1845 	 */
1846 	if (!test_bit(Faulty, &rdev->flags) &&
1847 	    mddev->recovery_disabled != p->recovery_disabled &&
1848 	    (!p->replacement || p->replacement == rdev) &&
1849 	    number < conf->geo.raid_disks &&
1850 	    enough(conf, -1)) {
1851 		err = -EBUSY;
1852 		goto abort;
1853 	}
1854 	*rdevp = NULL;
1855 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1856 		synchronize_rcu();
1857 		if (atomic_read(&rdev->nr_pending)) {
1858 			/* lost the race, try later */
1859 			err = -EBUSY;
1860 			*rdevp = rdev;
1861 			goto abort;
1862 		}
1863 	}
1864 	if (p->replacement) {
1865 		/* We must have just cleared 'rdev' */
1866 		p->rdev = p->replacement;
1867 		clear_bit(Replacement, &p->replacement->flags);
1868 		smp_mb(); /* Make sure other CPUs may see both as identical
1869 			   * but will never see neither -- if they are careful.
1870 			   */
1871 		p->replacement = NULL;
1872 	}
1873 
1874 	clear_bit(WantReplacement, &rdev->flags);
1875 	err = md_integrity_register(mddev);
1876 
1877 abort:
1878 
1879 	print_conf(conf);
1880 	return err;
1881 }
1882 
1883 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1884 {
1885 	struct r10conf *conf = r10_bio->mddev->private;
1886 
1887 	if (!bio->bi_status)
1888 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1889 	else
1890 		/* The write handler will notice the lack of
1891 		 * R10BIO_Uptodate and record any errors etc
1892 		 */
1893 		atomic_add(r10_bio->sectors,
1894 			   &conf->mirrors[d].rdev->corrected_errors);
1895 
1896 	/* for reconstruct, we always reschedule after a read.
1897 	 * for resync, only after all reads
1898 	 */
1899 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1900 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1901 	    atomic_dec_and_test(&r10_bio->remaining)) {
1902 		/* we have read all the blocks,
1903 		 * do the comparison in process context in raid10d
1904 		 */
1905 		reschedule_retry(r10_bio);
1906 	}
1907 }
1908 
1909 static void end_sync_read(struct bio *bio)
1910 {
1911 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1912 	struct r10conf *conf = r10_bio->mddev->private;
1913 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1914 
1915 	__end_sync_read(r10_bio, bio, d);
1916 }
1917 
1918 static void end_reshape_read(struct bio *bio)
1919 {
1920 	/* reshape read bio isn't allocated from r10buf_pool */
1921 	struct r10bio *r10_bio = bio->bi_private;
1922 
1923 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1924 }
1925 
1926 static void end_sync_request(struct r10bio *r10_bio)
1927 {
1928 	struct mddev *mddev = r10_bio->mddev;
1929 
1930 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1931 		if (r10_bio->master_bio == NULL) {
1932 			/* the primary of several recovery bios */
1933 			sector_t s = r10_bio->sectors;
1934 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1935 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1936 				reschedule_retry(r10_bio);
1937 			else
1938 				put_buf(r10_bio);
1939 			md_done_sync(mddev, s, 1);
1940 			break;
1941 		} else {
1942 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1943 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1944 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1945 				reschedule_retry(r10_bio);
1946 			else
1947 				put_buf(r10_bio);
1948 			r10_bio = r10_bio2;
1949 		}
1950 	}
1951 }
1952 
1953 static void end_sync_write(struct bio *bio)
1954 {
1955 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1956 	struct mddev *mddev = r10_bio->mddev;
1957 	struct r10conf *conf = mddev->private;
1958 	int d;
1959 	sector_t first_bad;
1960 	int bad_sectors;
1961 	int slot;
1962 	int repl;
1963 	struct md_rdev *rdev = NULL;
1964 
1965 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1966 	if (repl)
1967 		rdev = conf->mirrors[d].replacement;
1968 	else
1969 		rdev = conf->mirrors[d].rdev;
1970 
1971 	if (bio->bi_status) {
1972 		if (repl)
1973 			md_error(mddev, rdev);
1974 		else {
1975 			set_bit(WriteErrorSeen, &rdev->flags);
1976 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1977 				set_bit(MD_RECOVERY_NEEDED,
1978 					&rdev->mddev->recovery);
1979 			set_bit(R10BIO_WriteError, &r10_bio->state);
1980 		}
1981 	} else if (is_badblock(rdev,
1982 			     r10_bio->devs[slot].addr,
1983 			     r10_bio->sectors,
1984 			     &first_bad, &bad_sectors))
1985 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1986 
1987 	rdev_dec_pending(rdev, mddev);
1988 
1989 	end_sync_request(r10_bio);
1990 }
1991 
1992 /*
1993  * Note: sync and recover and handled very differently for raid10
1994  * This code is for resync.
1995  * For resync, we read through virtual addresses and read all blocks.
1996  * If there is any error, we schedule a write.  The lowest numbered
1997  * drive is authoritative.
1998  * However requests come for physical address, so we need to map.
1999  * For every physical address there are raid_disks/copies virtual addresses,
2000  * which is always are least one, but is not necessarly an integer.
2001  * This means that a physical address can span multiple chunks, so we may
2002  * have to submit multiple io requests for a single sync request.
2003  */
2004 /*
2005  * We check if all blocks are in-sync and only write to blocks that
2006  * aren't in sync
2007  */
2008 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2009 {
2010 	struct r10conf *conf = mddev->private;
2011 	int i, first;
2012 	struct bio *tbio, *fbio;
2013 	int vcnt;
2014 	struct page **tpages, **fpages;
2015 
2016 	atomic_set(&r10_bio->remaining, 1);
2017 
2018 	/* find the first device with a block */
2019 	for (i=0; i<conf->copies; i++)
2020 		if (!r10_bio->devs[i].bio->bi_status)
2021 			break;
2022 
2023 	if (i == conf->copies)
2024 		goto done;
2025 
2026 	first = i;
2027 	fbio = r10_bio->devs[i].bio;
2028 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2029 	fbio->bi_iter.bi_idx = 0;
2030 	fpages = get_resync_pages(fbio)->pages;
2031 
2032 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2033 	/* now find blocks with errors */
2034 	for (i=0 ; i < conf->copies ; i++) {
2035 		int  j, d;
2036 		struct md_rdev *rdev;
2037 		struct resync_pages *rp;
2038 
2039 		tbio = r10_bio->devs[i].bio;
2040 
2041 		if (tbio->bi_end_io != end_sync_read)
2042 			continue;
2043 		if (i == first)
2044 			continue;
2045 
2046 		tpages = get_resync_pages(tbio)->pages;
2047 		d = r10_bio->devs[i].devnum;
2048 		rdev = conf->mirrors[d].rdev;
2049 		if (!r10_bio->devs[i].bio->bi_status) {
2050 			/* We know that the bi_io_vec layout is the same for
2051 			 * both 'first' and 'i', so we just compare them.
2052 			 * All vec entries are PAGE_SIZE;
2053 			 */
2054 			int sectors = r10_bio->sectors;
2055 			for (j = 0; j < vcnt; j++) {
2056 				int len = PAGE_SIZE;
2057 				if (sectors < (len / 512))
2058 					len = sectors * 512;
2059 				if (memcmp(page_address(fpages[j]),
2060 					   page_address(tpages[j]),
2061 					   len))
2062 					break;
2063 				sectors -= len/512;
2064 			}
2065 			if (j == vcnt)
2066 				continue;
2067 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2068 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2069 				/* Don't fix anything. */
2070 				continue;
2071 		} else if (test_bit(FailFast, &rdev->flags)) {
2072 			/* Just give up on this device */
2073 			md_error(rdev->mddev, rdev);
2074 			continue;
2075 		}
2076 		/* Ok, we need to write this bio, either to correct an
2077 		 * inconsistency or to correct an unreadable block.
2078 		 * First we need to fixup bv_offset, bv_len and
2079 		 * bi_vecs, as the read request might have corrupted these
2080 		 */
2081 		rp = get_resync_pages(tbio);
2082 		bio_reset(tbio);
2083 
2084 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2085 
2086 		rp->raid_bio = r10_bio;
2087 		tbio->bi_private = rp;
2088 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2089 		tbio->bi_end_io = end_sync_write;
2090 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2091 
2092 		bio_copy_data(tbio, fbio);
2093 
2094 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2095 		atomic_inc(&r10_bio->remaining);
2096 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2097 
2098 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2099 			tbio->bi_opf |= MD_FAILFAST;
2100 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2101 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2102 		generic_make_request(tbio);
2103 	}
2104 
2105 	/* Now write out to any replacement devices
2106 	 * that are active
2107 	 */
2108 	for (i = 0; i < conf->copies; i++) {
2109 		int d;
2110 
2111 		tbio = r10_bio->devs[i].repl_bio;
2112 		if (!tbio || !tbio->bi_end_io)
2113 			continue;
2114 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2115 		    && r10_bio->devs[i].bio != fbio)
2116 			bio_copy_data(tbio, fbio);
2117 		d = r10_bio->devs[i].devnum;
2118 		atomic_inc(&r10_bio->remaining);
2119 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2120 			     bio_sectors(tbio));
2121 		generic_make_request(tbio);
2122 	}
2123 
2124 done:
2125 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2126 		md_done_sync(mddev, r10_bio->sectors, 1);
2127 		put_buf(r10_bio);
2128 	}
2129 }
2130 
2131 /*
2132  * Now for the recovery code.
2133  * Recovery happens across physical sectors.
2134  * We recover all non-is_sync drives by finding the virtual address of
2135  * each, and then choose a working drive that also has that virt address.
2136  * There is a separate r10_bio for each non-in_sync drive.
2137  * Only the first two slots are in use. The first for reading,
2138  * The second for writing.
2139  *
2140  */
2141 static void fix_recovery_read_error(struct r10bio *r10_bio)
2142 {
2143 	/* We got a read error during recovery.
2144 	 * We repeat the read in smaller page-sized sections.
2145 	 * If a read succeeds, write it to the new device or record
2146 	 * a bad block if we cannot.
2147 	 * If a read fails, record a bad block on both old and
2148 	 * new devices.
2149 	 */
2150 	struct mddev *mddev = r10_bio->mddev;
2151 	struct r10conf *conf = mddev->private;
2152 	struct bio *bio = r10_bio->devs[0].bio;
2153 	sector_t sect = 0;
2154 	int sectors = r10_bio->sectors;
2155 	int idx = 0;
2156 	int dr = r10_bio->devs[0].devnum;
2157 	int dw = r10_bio->devs[1].devnum;
2158 	struct page **pages = get_resync_pages(bio)->pages;
2159 
2160 	while (sectors) {
2161 		int s = sectors;
2162 		struct md_rdev *rdev;
2163 		sector_t addr;
2164 		int ok;
2165 
2166 		if (s > (PAGE_SIZE>>9))
2167 			s = PAGE_SIZE >> 9;
2168 
2169 		rdev = conf->mirrors[dr].rdev;
2170 		addr = r10_bio->devs[0].addr + sect,
2171 		ok = sync_page_io(rdev,
2172 				  addr,
2173 				  s << 9,
2174 				  pages[idx],
2175 				  REQ_OP_READ, 0, false);
2176 		if (ok) {
2177 			rdev = conf->mirrors[dw].rdev;
2178 			addr = r10_bio->devs[1].addr + sect;
2179 			ok = sync_page_io(rdev,
2180 					  addr,
2181 					  s << 9,
2182 					  pages[idx],
2183 					  REQ_OP_WRITE, 0, false);
2184 			if (!ok) {
2185 				set_bit(WriteErrorSeen, &rdev->flags);
2186 				if (!test_and_set_bit(WantReplacement,
2187 						      &rdev->flags))
2188 					set_bit(MD_RECOVERY_NEEDED,
2189 						&rdev->mddev->recovery);
2190 			}
2191 		}
2192 		if (!ok) {
2193 			/* We don't worry if we cannot set a bad block -
2194 			 * it really is bad so there is no loss in not
2195 			 * recording it yet
2196 			 */
2197 			rdev_set_badblocks(rdev, addr, s, 0);
2198 
2199 			if (rdev != conf->mirrors[dw].rdev) {
2200 				/* need bad block on destination too */
2201 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2202 				addr = r10_bio->devs[1].addr + sect;
2203 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2204 				if (!ok) {
2205 					/* just abort the recovery */
2206 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2207 						  mdname(mddev));
2208 
2209 					conf->mirrors[dw].recovery_disabled
2210 						= mddev->recovery_disabled;
2211 					set_bit(MD_RECOVERY_INTR,
2212 						&mddev->recovery);
2213 					break;
2214 				}
2215 			}
2216 		}
2217 
2218 		sectors -= s;
2219 		sect += s;
2220 		idx++;
2221 	}
2222 }
2223 
2224 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2225 {
2226 	struct r10conf *conf = mddev->private;
2227 	int d;
2228 	struct bio *wbio, *wbio2;
2229 
2230 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2231 		fix_recovery_read_error(r10_bio);
2232 		end_sync_request(r10_bio);
2233 		return;
2234 	}
2235 
2236 	/*
2237 	 * share the pages with the first bio
2238 	 * and submit the write request
2239 	 */
2240 	d = r10_bio->devs[1].devnum;
2241 	wbio = r10_bio->devs[1].bio;
2242 	wbio2 = r10_bio->devs[1].repl_bio;
2243 	/* Need to test wbio2->bi_end_io before we call
2244 	 * generic_make_request as if the former is NULL,
2245 	 * the latter is free to free wbio2.
2246 	 */
2247 	if (wbio2 && !wbio2->bi_end_io)
2248 		wbio2 = NULL;
2249 	if (wbio->bi_end_io) {
2250 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2251 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2252 		generic_make_request(wbio);
2253 	}
2254 	if (wbio2) {
2255 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2256 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2257 			     bio_sectors(wbio2));
2258 		generic_make_request(wbio2);
2259 	}
2260 }
2261 
2262 /*
2263  * Used by fix_read_error() to decay the per rdev read_errors.
2264  * We halve the read error count for every hour that has elapsed
2265  * since the last recorded read error.
2266  *
2267  */
2268 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2269 {
2270 	long cur_time_mon;
2271 	unsigned long hours_since_last;
2272 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2273 
2274 	cur_time_mon = ktime_get_seconds();
2275 
2276 	if (rdev->last_read_error == 0) {
2277 		/* first time we've seen a read error */
2278 		rdev->last_read_error = cur_time_mon;
2279 		return;
2280 	}
2281 
2282 	hours_since_last = (long)(cur_time_mon -
2283 			    rdev->last_read_error) / 3600;
2284 
2285 	rdev->last_read_error = cur_time_mon;
2286 
2287 	/*
2288 	 * if hours_since_last is > the number of bits in read_errors
2289 	 * just set read errors to 0. We do this to avoid
2290 	 * overflowing the shift of read_errors by hours_since_last.
2291 	 */
2292 	if (hours_since_last >= 8 * sizeof(read_errors))
2293 		atomic_set(&rdev->read_errors, 0);
2294 	else
2295 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2296 }
2297 
2298 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2299 			    int sectors, struct page *page, int rw)
2300 {
2301 	sector_t first_bad;
2302 	int bad_sectors;
2303 
2304 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2305 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2306 		return -1;
2307 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2308 		/* success */
2309 		return 1;
2310 	if (rw == WRITE) {
2311 		set_bit(WriteErrorSeen, &rdev->flags);
2312 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2313 			set_bit(MD_RECOVERY_NEEDED,
2314 				&rdev->mddev->recovery);
2315 	}
2316 	/* need to record an error - either for the block or the device */
2317 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2318 		md_error(rdev->mddev, rdev);
2319 	return 0;
2320 }
2321 
2322 /*
2323  * This is a kernel thread which:
2324  *
2325  *	1.	Retries failed read operations on working mirrors.
2326  *	2.	Updates the raid superblock when problems encounter.
2327  *	3.	Performs writes following reads for array synchronising.
2328  */
2329 
2330 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2331 {
2332 	int sect = 0; /* Offset from r10_bio->sector */
2333 	int sectors = r10_bio->sectors;
2334 	struct md_rdev *rdev;
2335 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2336 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2337 
2338 	/* still own a reference to this rdev, so it cannot
2339 	 * have been cleared recently.
2340 	 */
2341 	rdev = conf->mirrors[d].rdev;
2342 
2343 	if (test_bit(Faulty, &rdev->flags))
2344 		/* drive has already been failed, just ignore any
2345 		   more fix_read_error() attempts */
2346 		return;
2347 
2348 	check_decay_read_errors(mddev, rdev);
2349 	atomic_inc(&rdev->read_errors);
2350 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2351 		char b[BDEVNAME_SIZE];
2352 		bdevname(rdev->bdev, b);
2353 
2354 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2355 			  mdname(mddev), b,
2356 			  atomic_read(&rdev->read_errors), max_read_errors);
2357 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2358 			  mdname(mddev), b);
2359 		md_error(mddev, rdev);
2360 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2361 		return;
2362 	}
2363 
2364 	while(sectors) {
2365 		int s = sectors;
2366 		int sl = r10_bio->read_slot;
2367 		int success = 0;
2368 		int start;
2369 
2370 		if (s > (PAGE_SIZE>>9))
2371 			s = PAGE_SIZE >> 9;
2372 
2373 		rcu_read_lock();
2374 		do {
2375 			sector_t first_bad;
2376 			int bad_sectors;
2377 
2378 			d = r10_bio->devs[sl].devnum;
2379 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2380 			if (rdev &&
2381 			    test_bit(In_sync, &rdev->flags) &&
2382 			    !test_bit(Faulty, &rdev->flags) &&
2383 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2384 					&first_bad, &bad_sectors) == 0) {
2385 				atomic_inc(&rdev->nr_pending);
2386 				rcu_read_unlock();
2387 				success = sync_page_io(rdev,
2388 						       r10_bio->devs[sl].addr +
2389 						       sect,
2390 						       s<<9,
2391 						       conf->tmppage,
2392 						       REQ_OP_READ, 0, false);
2393 				rdev_dec_pending(rdev, mddev);
2394 				rcu_read_lock();
2395 				if (success)
2396 					break;
2397 			}
2398 			sl++;
2399 			if (sl == conf->copies)
2400 				sl = 0;
2401 		} while (!success && sl != r10_bio->read_slot);
2402 		rcu_read_unlock();
2403 
2404 		if (!success) {
2405 			/* Cannot read from anywhere, just mark the block
2406 			 * as bad on the first device to discourage future
2407 			 * reads.
2408 			 */
2409 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2410 			rdev = conf->mirrors[dn].rdev;
2411 
2412 			if (!rdev_set_badblocks(
2413 				    rdev,
2414 				    r10_bio->devs[r10_bio->read_slot].addr
2415 				    + sect,
2416 				    s, 0)) {
2417 				md_error(mddev, rdev);
2418 				r10_bio->devs[r10_bio->read_slot].bio
2419 					= IO_BLOCKED;
2420 			}
2421 			break;
2422 		}
2423 
2424 		start = sl;
2425 		/* write it back and re-read */
2426 		rcu_read_lock();
2427 		while (sl != r10_bio->read_slot) {
2428 			char b[BDEVNAME_SIZE];
2429 
2430 			if (sl==0)
2431 				sl = conf->copies;
2432 			sl--;
2433 			d = r10_bio->devs[sl].devnum;
2434 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2435 			if (!rdev ||
2436 			    test_bit(Faulty, &rdev->flags) ||
2437 			    !test_bit(In_sync, &rdev->flags))
2438 				continue;
2439 
2440 			atomic_inc(&rdev->nr_pending);
2441 			rcu_read_unlock();
2442 			if (r10_sync_page_io(rdev,
2443 					     r10_bio->devs[sl].addr +
2444 					     sect,
2445 					     s, conf->tmppage, WRITE)
2446 			    == 0) {
2447 				/* Well, this device is dead */
2448 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2449 					  mdname(mddev), s,
2450 					  (unsigned long long)(
2451 						  sect +
2452 						  choose_data_offset(r10_bio,
2453 								     rdev)),
2454 					  bdevname(rdev->bdev, b));
2455 				pr_notice("md/raid10:%s: %s: failing drive\n",
2456 					  mdname(mddev),
2457 					  bdevname(rdev->bdev, b));
2458 			}
2459 			rdev_dec_pending(rdev, mddev);
2460 			rcu_read_lock();
2461 		}
2462 		sl = start;
2463 		while (sl != r10_bio->read_slot) {
2464 			char b[BDEVNAME_SIZE];
2465 
2466 			if (sl==0)
2467 				sl = conf->copies;
2468 			sl--;
2469 			d = r10_bio->devs[sl].devnum;
2470 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2471 			if (!rdev ||
2472 			    test_bit(Faulty, &rdev->flags) ||
2473 			    !test_bit(In_sync, &rdev->flags))
2474 				continue;
2475 
2476 			atomic_inc(&rdev->nr_pending);
2477 			rcu_read_unlock();
2478 			switch (r10_sync_page_io(rdev,
2479 					     r10_bio->devs[sl].addr +
2480 					     sect,
2481 					     s, conf->tmppage,
2482 						 READ)) {
2483 			case 0:
2484 				/* Well, this device is dead */
2485 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2486 				       mdname(mddev), s,
2487 				       (unsigned long long)(
2488 					       sect +
2489 					       choose_data_offset(r10_bio, rdev)),
2490 				       bdevname(rdev->bdev, b));
2491 				pr_notice("md/raid10:%s: %s: failing drive\n",
2492 				       mdname(mddev),
2493 				       bdevname(rdev->bdev, b));
2494 				break;
2495 			case 1:
2496 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2497 				       mdname(mddev), s,
2498 				       (unsigned long long)(
2499 					       sect +
2500 					       choose_data_offset(r10_bio, rdev)),
2501 				       bdevname(rdev->bdev, b));
2502 				atomic_add(s, &rdev->corrected_errors);
2503 			}
2504 
2505 			rdev_dec_pending(rdev, mddev);
2506 			rcu_read_lock();
2507 		}
2508 		rcu_read_unlock();
2509 
2510 		sectors -= s;
2511 		sect += s;
2512 	}
2513 }
2514 
2515 static int narrow_write_error(struct r10bio *r10_bio, int i)
2516 {
2517 	struct bio *bio = r10_bio->master_bio;
2518 	struct mddev *mddev = r10_bio->mddev;
2519 	struct r10conf *conf = mddev->private;
2520 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2521 	/* bio has the data to be written to slot 'i' where
2522 	 * we just recently had a write error.
2523 	 * We repeatedly clone the bio and trim down to one block,
2524 	 * then try the write.  Where the write fails we record
2525 	 * a bad block.
2526 	 * It is conceivable that the bio doesn't exactly align with
2527 	 * blocks.  We must handle this.
2528 	 *
2529 	 * We currently own a reference to the rdev.
2530 	 */
2531 
2532 	int block_sectors;
2533 	sector_t sector;
2534 	int sectors;
2535 	int sect_to_write = r10_bio->sectors;
2536 	int ok = 1;
2537 
2538 	if (rdev->badblocks.shift < 0)
2539 		return 0;
2540 
2541 	block_sectors = roundup(1 << rdev->badblocks.shift,
2542 				bdev_logical_block_size(rdev->bdev) >> 9);
2543 	sector = r10_bio->sector;
2544 	sectors = ((r10_bio->sector + block_sectors)
2545 		   & ~(sector_t)(block_sectors - 1))
2546 		- sector;
2547 
2548 	while (sect_to_write) {
2549 		struct bio *wbio;
2550 		sector_t wsector;
2551 		if (sectors > sect_to_write)
2552 			sectors = sect_to_write;
2553 		/* Write at 'sector' for 'sectors' */
2554 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2555 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2556 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2557 		wbio->bi_iter.bi_sector = wsector +
2558 				   choose_data_offset(r10_bio, rdev);
2559 		bio_set_dev(wbio, rdev->bdev);
2560 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2561 
2562 		if (submit_bio_wait(wbio) < 0)
2563 			/* Failure! */
2564 			ok = rdev_set_badblocks(rdev, wsector,
2565 						sectors, 0)
2566 				&& ok;
2567 
2568 		bio_put(wbio);
2569 		sect_to_write -= sectors;
2570 		sector += sectors;
2571 		sectors = block_sectors;
2572 	}
2573 	return ok;
2574 }
2575 
2576 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2577 {
2578 	int slot = r10_bio->read_slot;
2579 	struct bio *bio;
2580 	struct r10conf *conf = mddev->private;
2581 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2582 
2583 	/* we got a read error. Maybe the drive is bad.  Maybe just
2584 	 * the block and we can fix it.
2585 	 * We freeze all other IO, and try reading the block from
2586 	 * other devices.  When we find one, we re-write
2587 	 * and check it that fixes the read error.
2588 	 * This is all done synchronously while the array is
2589 	 * frozen.
2590 	 */
2591 	bio = r10_bio->devs[slot].bio;
2592 	bio_put(bio);
2593 	r10_bio->devs[slot].bio = NULL;
2594 
2595 	if (mddev->ro)
2596 		r10_bio->devs[slot].bio = IO_BLOCKED;
2597 	else if (!test_bit(FailFast, &rdev->flags)) {
2598 		freeze_array(conf, 1);
2599 		fix_read_error(conf, mddev, r10_bio);
2600 		unfreeze_array(conf);
2601 	} else
2602 		md_error(mddev, rdev);
2603 
2604 	rdev_dec_pending(rdev, mddev);
2605 	allow_barrier(conf);
2606 	r10_bio->state = 0;
2607 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2608 }
2609 
2610 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2611 {
2612 	/* Some sort of write request has finished and it
2613 	 * succeeded in writing where we thought there was a
2614 	 * bad block.  So forget the bad block.
2615 	 * Or possibly if failed and we need to record
2616 	 * a bad block.
2617 	 */
2618 	int m;
2619 	struct md_rdev *rdev;
2620 
2621 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2622 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2623 		for (m = 0; m < conf->copies; m++) {
2624 			int dev = r10_bio->devs[m].devnum;
2625 			rdev = conf->mirrors[dev].rdev;
2626 			if (r10_bio->devs[m].bio == NULL ||
2627 				r10_bio->devs[m].bio->bi_end_io == NULL)
2628 				continue;
2629 			if (!r10_bio->devs[m].bio->bi_status) {
2630 				rdev_clear_badblocks(
2631 					rdev,
2632 					r10_bio->devs[m].addr,
2633 					r10_bio->sectors, 0);
2634 			} else {
2635 				if (!rdev_set_badblocks(
2636 					    rdev,
2637 					    r10_bio->devs[m].addr,
2638 					    r10_bio->sectors, 0))
2639 					md_error(conf->mddev, rdev);
2640 			}
2641 			rdev = conf->mirrors[dev].replacement;
2642 			if (r10_bio->devs[m].repl_bio == NULL ||
2643 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2644 				continue;
2645 
2646 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2647 				rdev_clear_badblocks(
2648 					rdev,
2649 					r10_bio->devs[m].addr,
2650 					r10_bio->sectors, 0);
2651 			} else {
2652 				if (!rdev_set_badblocks(
2653 					    rdev,
2654 					    r10_bio->devs[m].addr,
2655 					    r10_bio->sectors, 0))
2656 					md_error(conf->mddev, rdev);
2657 			}
2658 		}
2659 		put_buf(r10_bio);
2660 	} else {
2661 		bool fail = false;
2662 		for (m = 0; m < conf->copies; m++) {
2663 			int dev = r10_bio->devs[m].devnum;
2664 			struct bio *bio = r10_bio->devs[m].bio;
2665 			rdev = conf->mirrors[dev].rdev;
2666 			if (bio == IO_MADE_GOOD) {
2667 				rdev_clear_badblocks(
2668 					rdev,
2669 					r10_bio->devs[m].addr,
2670 					r10_bio->sectors, 0);
2671 				rdev_dec_pending(rdev, conf->mddev);
2672 			} else if (bio != NULL && bio->bi_status) {
2673 				fail = true;
2674 				if (!narrow_write_error(r10_bio, m)) {
2675 					md_error(conf->mddev, rdev);
2676 					set_bit(R10BIO_Degraded,
2677 						&r10_bio->state);
2678 				}
2679 				rdev_dec_pending(rdev, conf->mddev);
2680 			}
2681 			bio = r10_bio->devs[m].repl_bio;
2682 			rdev = conf->mirrors[dev].replacement;
2683 			if (rdev && bio == IO_MADE_GOOD) {
2684 				rdev_clear_badblocks(
2685 					rdev,
2686 					r10_bio->devs[m].addr,
2687 					r10_bio->sectors, 0);
2688 				rdev_dec_pending(rdev, conf->mddev);
2689 			}
2690 		}
2691 		if (fail) {
2692 			spin_lock_irq(&conf->device_lock);
2693 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2694 			conf->nr_queued++;
2695 			spin_unlock_irq(&conf->device_lock);
2696 			/*
2697 			 * In case freeze_array() is waiting for condition
2698 			 * nr_pending == nr_queued + extra to be true.
2699 			 */
2700 			wake_up(&conf->wait_barrier);
2701 			md_wakeup_thread(conf->mddev->thread);
2702 		} else {
2703 			if (test_bit(R10BIO_WriteError,
2704 				     &r10_bio->state))
2705 				close_write(r10_bio);
2706 			raid_end_bio_io(r10_bio);
2707 		}
2708 	}
2709 }
2710 
2711 static void raid10d(struct md_thread *thread)
2712 {
2713 	struct mddev *mddev = thread->mddev;
2714 	struct r10bio *r10_bio;
2715 	unsigned long flags;
2716 	struct r10conf *conf = mddev->private;
2717 	struct list_head *head = &conf->retry_list;
2718 	struct blk_plug plug;
2719 
2720 	md_check_recovery(mddev);
2721 
2722 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2723 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2724 		LIST_HEAD(tmp);
2725 		spin_lock_irqsave(&conf->device_lock, flags);
2726 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2727 			while (!list_empty(&conf->bio_end_io_list)) {
2728 				list_move(conf->bio_end_io_list.prev, &tmp);
2729 				conf->nr_queued--;
2730 			}
2731 		}
2732 		spin_unlock_irqrestore(&conf->device_lock, flags);
2733 		while (!list_empty(&tmp)) {
2734 			r10_bio = list_first_entry(&tmp, struct r10bio,
2735 						   retry_list);
2736 			list_del(&r10_bio->retry_list);
2737 			if (mddev->degraded)
2738 				set_bit(R10BIO_Degraded, &r10_bio->state);
2739 
2740 			if (test_bit(R10BIO_WriteError,
2741 				     &r10_bio->state))
2742 				close_write(r10_bio);
2743 			raid_end_bio_io(r10_bio);
2744 		}
2745 	}
2746 
2747 	blk_start_plug(&plug);
2748 	for (;;) {
2749 
2750 		flush_pending_writes(conf);
2751 
2752 		spin_lock_irqsave(&conf->device_lock, flags);
2753 		if (list_empty(head)) {
2754 			spin_unlock_irqrestore(&conf->device_lock, flags);
2755 			break;
2756 		}
2757 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2758 		list_del(head->prev);
2759 		conf->nr_queued--;
2760 		spin_unlock_irqrestore(&conf->device_lock, flags);
2761 
2762 		mddev = r10_bio->mddev;
2763 		conf = mddev->private;
2764 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2765 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2766 			handle_write_completed(conf, r10_bio);
2767 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2768 			reshape_request_write(mddev, r10_bio);
2769 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2770 			sync_request_write(mddev, r10_bio);
2771 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2772 			recovery_request_write(mddev, r10_bio);
2773 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2774 			handle_read_error(mddev, r10_bio);
2775 		else
2776 			WARN_ON_ONCE(1);
2777 
2778 		cond_resched();
2779 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2780 			md_check_recovery(mddev);
2781 	}
2782 	blk_finish_plug(&plug);
2783 }
2784 
2785 static int init_resync(struct r10conf *conf)
2786 {
2787 	int ret, buffs, i;
2788 
2789 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2790 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2791 	conf->have_replacement = 0;
2792 	for (i = 0; i < conf->geo.raid_disks; i++)
2793 		if (conf->mirrors[i].replacement)
2794 			conf->have_replacement = 1;
2795 	ret = mempool_init(&conf->r10buf_pool, buffs,
2796 			   r10buf_pool_alloc, r10buf_pool_free, conf);
2797 	if (ret)
2798 		return ret;
2799 	conf->next_resync = 0;
2800 	return 0;
2801 }
2802 
2803 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2804 {
2805 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2806 	struct rsync_pages *rp;
2807 	struct bio *bio;
2808 	int nalloc;
2809 	int i;
2810 
2811 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2812 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2813 		nalloc = conf->copies; /* resync */
2814 	else
2815 		nalloc = 2; /* recovery */
2816 
2817 	for (i = 0; i < nalloc; i++) {
2818 		bio = r10bio->devs[i].bio;
2819 		rp = bio->bi_private;
2820 		bio_reset(bio);
2821 		bio->bi_private = rp;
2822 		bio = r10bio->devs[i].repl_bio;
2823 		if (bio) {
2824 			rp = bio->bi_private;
2825 			bio_reset(bio);
2826 			bio->bi_private = rp;
2827 		}
2828 	}
2829 	return r10bio;
2830 }
2831 
2832 /*
2833  * Set cluster_sync_high since we need other nodes to add the
2834  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2835  */
2836 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2837 {
2838 	sector_t window_size;
2839 	int extra_chunk, chunks;
2840 
2841 	/*
2842 	 * First, here we define "stripe" as a unit which across
2843 	 * all member devices one time, so we get chunks by use
2844 	 * raid_disks / near_copies. Otherwise, if near_copies is
2845 	 * close to raid_disks, then resync window could increases
2846 	 * linearly with the increase of raid_disks, which means
2847 	 * we will suspend a really large IO window while it is not
2848 	 * necessary. If raid_disks is not divisible by near_copies,
2849 	 * an extra chunk is needed to ensure the whole "stripe" is
2850 	 * covered.
2851 	 */
2852 
2853 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2854 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2855 		extra_chunk = 0;
2856 	else
2857 		extra_chunk = 1;
2858 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2859 
2860 	/*
2861 	 * At least use a 32M window to align with raid1's resync window
2862 	 */
2863 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2864 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2865 
2866 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2867 }
2868 
2869 /*
2870  * perform a "sync" on one "block"
2871  *
2872  * We need to make sure that no normal I/O request - particularly write
2873  * requests - conflict with active sync requests.
2874  *
2875  * This is achieved by tracking pending requests and a 'barrier' concept
2876  * that can be installed to exclude normal IO requests.
2877  *
2878  * Resync and recovery are handled very differently.
2879  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2880  *
2881  * For resync, we iterate over virtual addresses, read all copies,
2882  * and update if there are differences.  If only one copy is live,
2883  * skip it.
2884  * For recovery, we iterate over physical addresses, read a good
2885  * value for each non-in_sync drive, and over-write.
2886  *
2887  * So, for recovery we may have several outstanding complex requests for a
2888  * given address, one for each out-of-sync device.  We model this by allocating
2889  * a number of r10_bio structures, one for each out-of-sync device.
2890  * As we setup these structures, we collect all bio's together into a list
2891  * which we then process collectively to add pages, and then process again
2892  * to pass to generic_make_request.
2893  *
2894  * The r10_bio structures are linked using a borrowed master_bio pointer.
2895  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2896  * has its remaining count decremented to 0, the whole complex operation
2897  * is complete.
2898  *
2899  */
2900 
2901 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2902 			     int *skipped)
2903 {
2904 	struct r10conf *conf = mddev->private;
2905 	struct r10bio *r10_bio;
2906 	struct bio *biolist = NULL, *bio;
2907 	sector_t max_sector, nr_sectors;
2908 	int i;
2909 	int max_sync;
2910 	sector_t sync_blocks;
2911 	sector_t sectors_skipped = 0;
2912 	int chunks_skipped = 0;
2913 	sector_t chunk_mask = conf->geo.chunk_mask;
2914 	int page_idx = 0;
2915 
2916 	if (!mempool_initialized(&conf->r10buf_pool))
2917 		if (init_resync(conf))
2918 			return 0;
2919 
2920 	/*
2921 	 * Allow skipping a full rebuild for incremental assembly
2922 	 * of a clean array, like RAID1 does.
2923 	 */
2924 	if (mddev->bitmap == NULL &&
2925 	    mddev->recovery_cp == MaxSector &&
2926 	    mddev->reshape_position == MaxSector &&
2927 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2928 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2929 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2930 	    conf->fullsync == 0) {
2931 		*skipped = 1;
2932 		return mddev->dev_sectors - sector_nr;
2933 	}
2934 
2935  skipped:
2936 	max_sector = mddev->dev_sectors;
2937 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2938 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2939 		max_sector = mddev->resync_max_sectors;
2940 	if (sector_nr >= max_sector) {
2941 		conf->cluster_sync_low = 0;
2942 		conf->cluster_sync_high = 0;
2943 
2944 		/* If we aborted, we need to abort the
2945 		 * sync on the 'current' bitmap chucks (there can
2946 		 * be several when recovering multiple devices).
2947 		 * as we may have started syncing it but not finished.
2948 		 * We can find the current address in
2949 		 * mddev->curr_resync, but for recovery,
2950 		 * we need to convert that to several
2951 		 * virtual addresses.
2952 		 */
2953 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2954 			end_reshape(conf);
2955 			close_sync(conf);
2956 			return 0;
2957 		}
2958 
2959 		if (mddev->curr_resync < max_sector) { /* aborted */
2960 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2961 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2962 						   &sync_blocks, 1);
2963 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2964 				sector_t sect =
2965 					raid10_find_virt(conf, mddev->curr_resync, i);
2966 				md_bitmap_end_sync(mddev->bitmap, sect,
2967 						   &sync_blocks, 1);
2968 			}
2969 		} else {
2970 			/* completed sync */
2971 			if ((!mddev->bitmap || conf->fullsync)
2972 			    && conf->have_replacement
2973 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2974 				/* Completed a full sync so the replacements
2975 				 * are now fully recovered.
2976 				 */
2977 				rcu_read_lock();
2978 				for (i = 0; i < conf->geo.raid_disks; i++) {
2979 					struct md_rdev *rdev =
2980 						rcu_dereference(conf->mirrors[i].replacement);
2981 					if (rdev)
2982 						rdev->recovery_offset = MaxSector;
2983 				}
2984 				rcu_read_unlock();
2985 			}
2986 			conf->fullsync = 0;
2987 		}
2988 		md_bitmap_close_sync(mddev->bitmap);
2989 		close_sync(conf);
2990 		*skipped = 1;
2991 		return sectors_skipped;
2992 	}
2993 
2994 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2995 		return reshape_request(mddev, sector_nr, skipped);
2996 
2997 	if (chunks_skipped >= conf->geo.raid_disks) {
2998 		/* if there has been nothing to do on any drive,
2999 		 * then there is nothing to do at all..
3000 		 */
3001 		*skipped = 1;
3002 		return (max_sector - sector_nr) + sectors_skipped;
3003 	}
3004 
3005 	if (max_sector > mddev->resync_max)
3006 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3007 
3008 	/* make sure whole request will fit in a chunk - if chunks
3009 	 * are meaningful
3010 	 */
3011 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3012 	    max_sector > (sector_nr | chunk_mask))
3013 		max_sector = (sector_nr | chunk_mask) + 1;
3014 
3015 	/*
3016 	 * If there is non-resync activity waiting for a turn, then let it
3017 	 * though before starting on this new sync request.
3018 	 */
3019 	if (conf->nr_waiting)
3020 		schedule_timeout_uninterruptible(1);
3021 
3022 	/* Again, very different code for resync and recovery.
3023 	 * Both must result in an r10bio with a list of bios that
3024 	 * have bi_end_io, bi_sector, bi_disk set,
3025 	 * and bi_private set to the r10bio.
3026 	 * For recovery, we may actually create several r10bios
3027 	 * with 2 bios in each, that correspond to the bios in the main one.
3028 	 * In this case, the subordinate r10bios link back through a
3029 	 * borrowed master_bio pointer, and the counter in the master
3030 	 * includes a ref from each subordinate.
3031 	 */
3032 	/* First, we decide what to do and set ->bi_end_io
3033 	 * To end_sync_read if we want to read, and
3034 	 * end_sync_write if we will want to write.
3035 	 */
3036 
3037 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3038 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3039 		/* recovery... the complicated one */
3040 		int j;
3041 		r10_bio = NULL;
3042 
3043 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3044 			int still_degraded;
3045 			struct r10bio *rb2;
3046 			sector_t sect;
3047 			int must_sync;
3048 			int any_working;
3049 			int need_recover = 0;
3050 			int need_replace = 0;
3051 			struct raid10_info *mirror = &conf->mirrors[i];
3052 			struct md_rdev *mrdev, *mreplace;
3053 
3054 			rcu_read_lock();
3055 			mrdev = rcu_dereference(mirror->rdev);
3056 			mreplace = rcu_dereference(mirror->replacement);
3057 
3058 			if (mrdev != NULL &&
3059 			    !test_bit(Faulty, &mrdev->flags) &&
3060 			    !test_bit(In_sync, &mrdev->flags))
3061 				need_recover = 1;
3062 			if (mreplace != NULL &&
3063 			    !test_bit(Faulty, &mreplace->flags))
3064 				need_replace = 1;
3065 
3066 			if (!need_recover && !need_replace) {
3067 				rcu_read_unlock();
3068 				continue;
3069 			}
3070 
3071 			still_degraded = 0;
3072 			/* want to reconstruct this device */
3073 			rb2 = r10_bio;
3074 			sect = raid10_find_virt(conf, sector_nr, i);
3075 			if (sect >= mddev->resync_max_sectors) {
3076 				/* last stripe is not complete - don't
3077 				 * try to recover this sector.
3078 				 */
3079 				rcu_read_unlock();
3080 				continue;
3081 			}
3082 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3083 				mreplace = NULL;
3084 			/* Unless we are doing a full sync, or a replacement
3085 			 * we only need to recover the block if it is set in
3086 			 * the bitmap
3087 			 */
3088 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3089 							 &sync_blocks, 1);
3090 			if (sync_blocks < max_sync)
3091 				max_sync = sync_blocks;
3092 			if (!must_sync &&
3093 			    mreplace == NULL &&
3094 			    !conf->fullsync) {
3095 				/* yep, skip the sync_blocks here, but don't assume
3096 				 * that there will never be anything to do here
3097 				 */
3098 				chunks_skipped = -1;
3099 				rcu_read_unlock();
3100 				continue;
3101 			}
3102 			atomic_inc(&mrdev->nr_pending);
3103 			if (mreplace)
3104 				atomic_inc(&mreplace->nr_pending);
3105 			rcu_read_unlock();
3106 
3107 			r10_bio = raid10_alloc_init_r10buf(conf);
3108 			r10_bio->state = 0;
3109 			raise_barrier(conf, rb2 != NULL);
3110 			atomic_set(&r10_bio->remaining, 0);
3111 
3112 			r10_bio->master_bio = (struct bio*)rb2;
3113 			if (rb2)
3114 				atomic_inc(&rb2->remaining);
3115 			r10_bio->mddev = mddev;
3116 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3117 			r10_bio->sector = sect;
3118 
3119 			raid10_find_phys(conf, r10_bio);
3120 
3121 			/* Need to check if the array will still be
3122 			 * degraded
3123 			 */
3124 			rcu_read_lock();
3125 			for (j = 0; j < conf->geo.raid_disks; j++) {
3126 				struct md_rdev *rdev = rcu_dereference(
3127 					conf->mirrors[j].rdev);
3128 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3129 					still_degraded = 1;
3130 					break;
3131 				}
3132 			}
3133 
3134 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3135 							 &sync_blocks, still_degraded);
3136 
3137 			any_working = 0;
3138 			for (j=0; j<conf->copies;j++) {
3139 				int k;
3140 				int d = r10_bio->devs[j].devnum;
3141 				sector_t from_addr, to_addr;
3142 				struct md_rdev *rdev =
3143 					rcu_dereference(conf->mirrors[d].rdev);
3144 				sector_t sector, first_bad;
3145 				int bad_sectors;
3146 				if (!rdev ||
3147 				    !test_bit(In_sync, &rdev->flags))
3148 					continue;
3149 				/* This is where we read from */
3150 				any_working = 1;
3151 				sector = r10_bio->devs[j].addr;
3152 
3153 				if (is_badblock(rdev, sector, max_sync,
3154 						&first_bad, &bad_sectors)) {
3155 					if (first_bad > sector)
3156 						max_sync = first_bad - sector;
3157 					else {
3158 						bad_sectors -= (sector
3159 								- first_bad);
3160 						if (max_sync > bad_sectors)
3161 							max_sync = bad_sectors;
3162 						continue;
3163 					}
3164 				}
3165 				bio = r10_bio->devs[0].bio;
3166 				bio->bi_next = biolist;
3167 				biolist = bio;
3168 				bio->bi_end_io = end_sync_read;
3169 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3170 				if (test_bit(FailFast, &rdev->flags))
3171 					bio->bi_opf |= MD_FAILFAST;
3172 				from_addr = r10_bio->devs[j].addr;
3173 				bio->bi_iter.bi_sector = from_addr +
3174 					rdev->data_offset;
3175 				bio_set_dev(bio, rdev->bdev);
3176 				atomic_inc(&rdev->nr_pending);
3177 				/* and we write to 'i' (if not in_sync) */
3178 
3179 				for (k=0; k<conf->copies; k++)
3180 					if (r10_bio->devs[k].devnum == i)
3181 						break;
3182 				BUG_ON(k == conf->copies);
3183 				to_addr = r10_bio->devs[k].addr;
3184 				r10_bio->devs[0].devnum = d;
3185 				r10_bio->devs[0].addr = from_addr;
3186 				r10_bio->devs[1].devnum = i;
3187 				r10_bio->devs[1].addr = to_addr;
3188 
3189 				if (need_recover) {
3190 					bio = r10_bio->devs[1].bio;
3191 					bio->bi_next = biolist;
3192 					biolist = bio;
3193 					bio->bi_end_io = end_sync_write;
3194 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3195 					bio->bi_iter.bi_sector = to_addr
3196 						+ mrdev->data_offset;
3197 					bio_set_dev(bio, mrdev->bdev);
3198 					atomic_inc(&r10_bio->remaining);
3199 				} else
3200 					r10_bio->devs[1].bio->bi_end_io = NULL;
3201 
3202 				/* and maybe write to replacement */
3203 				bio = r10_bio->devs[1].repl_bio;
3204 				if (bio)
3205 					bio->bi_end_io = NULL;
3206 				/* Note: if need_replace, then bio
3207 				 * cannot be NULL as r10buf_pool_alloc will
3208 				 * have allocated it.
3209 				 */
3210 				if (!need_replace)
3211 					break;
3212 				bio->bi_next = biolist;
3213 				biolist = bio;
3214 				bio->bi_end_io = end_sync_write;
3215 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3216 				bio->bi_iter.bi_sector = to_addr +
3217 					mreplace->data_offset;
3218 				bio_set_dev(bio, mreplace->bdev);
3219 				atomic_inc(&r10_bio->remaining);
3220 				break;
3221 			}
3222 			rcu_read_unlock();
3223 			if (j == conf->copies) {
3224 				/* Cannot recover, so abort the recovery or
3225 				 * record a bad block */
3226 				if (any_working) {
3227 					/* problem is that there are bad blocks
3228 					 * on other device(s)
3229 					 */
3230 					int k;
3231 					for (k = 0; k < conf->copies; k++)
3232 						if (r10_bio->devs[k].devnum == i)
3233 							break;
3234 					if (!test_bit(In_sync,
3235 						      &mrdev->flags)
3236 					    && !rdev_set_badblocks(
3237 						    mrdev,
3238 						    r10_bio->devs[k].addr,
3239 						    max_sync, 0))
3240 						any_working = 0;
3241 					if (mreplace &&
3242 					    !rdev_set_badblocks(
3243 						    mreplace,
3244 						    r10_bio->devs[k].addr,
3245 						    max_sync, 0))
3246 						any_working = 0;
3247 				}
3248 				if (!any_working)  {
3249 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3250 							      &mddev->recovery))
3251 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3252 						       mdname(mddev));
3253 					mirror->recovery_disabled
3254 						= mddev->recovery_disabled;
3255 				}
3256 				put_buf(r10_bio);
3257 				if (rb2)
3258 					atomic_dec(&rb2->remaining);
3259 				r10_bio = rb2;
3260 				rdev_dec_pending(mrdev, mddev);
3261 				if (mreplace)
3262 					rdev_dec_pending(mreplace, mddev);
3263 				break;
3264 			}
3265 			rdev_dec_pending(mrdev, mddev);
3266 			if (mreplace)
3267 				rdev_dec_pending(mreplace, mddev);
3268 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3269 				/* Only want this if there is elsewhere to
3270 				 * read from. 'j' is currently the first
3271 				 * readable copy.
3272 				 */
3273 				int targets = 1;
3274 				for (; j < conf->copies; j++) {
3275 					int d = r10_bio->devs[j].devnum;
3276 					if (conf->mirrors[d].rdev &&
3277 					    test_bit(In_sync,
3278 						      &conf->mirrors[d].rdev->flags))
3279 						targets++;
3280 				}
3281 				if (targets == 1)
3282 					r10_bio->devs[0].bio->bi_opf
3283 						&= ~MD_FAILFAST;
3284 			}
3285 		}
3286 		if (biolist == NULL) {
3287 			while (r10_bio) {
3288 				struct r10bio *rb2 = r10_bio;
3289 				r10_bio = (struct r10bio*) rb2->master_bio;
3290 				rb2->master_bio = NULL;
3291 				put_buf(rb2);
3292 			}
3293 			goto giveup;
3294 		}
3295 	} else {
3296 		/* resync. Schedule a read for every block at this virt offset */
3297 		int count = 0;
3298 
3299 		/*
3300 		 * Since curr_resync_completed could probably not update in
3301 		 * time, and we will set cluster_sync_low based on it.
3302 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3303 		 * safety reason, which ensures curr_resync_completed is
3304 		 * updated in bitmap_cond_end_sync.
3305 		 */
3306 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3307 					mddev_is_clustered(mddev) &&
3308 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3309 
3310 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3311 					  &sync_blocks, mddev->degraded) &&
3312 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3313 						 &mddev->recovery)) {
3314 			/* We can skip this block */
3315 			*skipped = 1;
3316 			return sync_blocks + sectors_skipped;
3317 		}
3318 		if (sync_blocks < max_sync)
3319 			max_sync = sync_blocks;
3320 		r10_bio = raid10_alloc_init_r10buf(conf);
3321 		r10_bio->state = 0;
3322 
3323 		r10_bio->mddev = mddev;
3324 		atomic_set(&r10_bio->remaining, 0);
3325 		raise_barrier(conf, 0);
3326 		conf->next_resync = sector_nr;
3327 
3328 		r10_bio->master_bio = NULL;
3329 		r10_bio->sector = sector_nr;
3330 		set_bit(R10BIO_IsSync, &r10_bio->state);
3331 		raid10_find_phys(conf, r10_bio);
3332 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3333 
3334 		for (i = 0; i < conf->copies; i++) {
3335 			int d = r10_bio->devs[i].devnum;
3336 			sector_t first_bad, sector;
3337 			int bad_sectors;
3338 			struct md_rdev *rdev;
3339 
3340 			if (r10_bio->devs[i].repl_bio)
3341 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3342 
3343 			bio = r10_bio->devs[i].bio;
3344 			bio->bi_status = BLK_STS_IOERR;
3345 			rcu_read_lock();
3346 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3347 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3348 				rcu_read_unlock();
3349 				continue;
3350 			}
3351 			sector = r10_bio->devs[i].addr;
3352 			if (is_badblock(rdev, sector, max_sync,
3353 					&first_bad, &bad_sectors)) {
3354 				if (first_bad > sector)
3355 					max_sync = first_bad - sector;
3356 				else {
3357 					bad_sectors -= (sector - first_bad);
3358 					if (max_sync > bad_sectors)
3359 						max_sync = bad_sectors;
3360 					rcu_read_unlock();
3361 					continue;
3362 				}
3363 			}
3364 			atomic_inc(&rdev->nr_pending);
3365 			atomic_inc(&r10_bio->remaining);
3366 			bio->bi_next = biolist;
3367 			biolist = bio;
3368 			bio->bi_end_io = end_sync_read;
3369 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3370 			if (test_bit(FailFast, &rdev->flags))
3371 				bio->bi_opf |= MD_FAILFAST;
3372 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3373 			bio_set_dev(bio, rdev->bdev);
3374 			count++;
3375 
3376 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3377 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3378 				rcu_read_unlock();
3379 				continue;
3380 			}
3381 			atomic_inc(&rdev->nr_pending);
3382 
3383 			/* Need to set up for writing to the replacement */
3384 			bio = r10_bio->devs[i].repl_bio;
3385 			bio->bi_status = BLK_STS_IOERR;
3386 
3387 			sector = r10_bio->devs[i].addr;
3388 			bio->bi_next = biolist;
3389 			biolist = bio;
3390 			bio->bi_end_io = end_sync_write;
3391 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3392 			if (test_bit(FailFast, &rdev->flags))
3393 				bio->bi_opf |= MD_FAILFAST;
3394 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3395 			bio_set_dev(bio, rdev->bdev);
3396 			count++;
3397 			rcu_read_unlock();
3398 		}
3399 
3400 		if (count < 2) {
3401 			for (i=0; i<conf->copies; i++) {
3402 				int d = r10_bio->devs[i].devnum;
3403 				if (r10_bio->devs[i].bio->bi_end_io)
3404 					rdev_dec_pending(conf->mirrors[d].rdev,
3405 							 mddev);
3406 				if (r10_bio->devs[i].repl_bio &&
3407 				    r10_bio->devs[i].repl_bio->bi_end_io)
3408 					rdev_dec_pending(
3409 						conf->mirrors[d].replacement,
3410 						mddev);
3411 			}
3412 			put_buf(r10_bio);
3413 			biolist = NULL;
3414 			goto giveup;
3415 		}
3416 	}
3417 
3418 	nr_sectors = 0;
3419 	if (sector_nr + max_sync < max_sector)
3420 		max_sector = sector_nr + max_sync;
3421 	do {
3422 		struct page *page;
3423 		int len = PAGE_SIZE;
3424 		if (sector_nr + (len>>9) > max_sector)
3425 			len = (max_sector - sector_nr) << 9;
3426 		if (len == 0)
3427 			break;
3428 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3429 			struct resync_pages *rp = get_resync_pages(bio);
3430 			page = resync_fetch_page(rp, page_idx);
3431 			/*
3432 			 * won't fail because the vec table is big enough
3433 			 * to hold all these pages
3434 			 */
3435 			bio_add_page(bio, page, len, 0);
3436 		}
3437 		nr_sectors += len>>9;
3438 		sector_nr += len>>9;
3439 	} while (++page_idx < RESYNC_PAGES);
3440 	r10_bio->sectors = nr_sectors;
3441 
3442 	if (mddev_is_clustered(mddev) &&
3443 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3444 		/* It is resync not recovery */
3445 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3446 			conf->cluster_sync_low = mddev->curr_resync_completed;
3447 			raid10_set_cluster_sync_high(conf);
3448 			/* Send resync message */
3449 			md_cluster_ops->resync_info_update(mddev,
3450 						conf->cluster_sync_low,
3451 						conf->cluster_sync_high);
3452 		}
3453 	} else if (mddev_is_clustered(mddev)) {
3454 		/* This is recovery not resync */
3455 		sector_t sect_va1, sect_va2;
3456 		bool broadcast_msg = false;
3457 
3458 		for (i = 0; i < conf->geo.raid_disks; i++) {
3459 			/*
3460 			 * sector_nr is a device address for recovery, so we
3461 			 * need translate it to array address before compare
3462 			 * with cluster_sync_high.
3463 			 */
3464 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3465 
3466 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3467 				broadcast_msg = true;
3468 				/*
3469 				 * curr_resync_completed is similar as
3470 				 * sector_nr, so make the translation too.
3471 				 */
3472 				sect_va2 = raid10_find_virt(conf,
3473 					mddev->curr_resync_completed, i);
3474 
3475 				if (conf->cluster_sync_low == 0 ||
3476 				    conf->cluster_sync_low > sect_va2)
3477 					conf->cluster_sync_low = sect_va2;
3478 			}
3479 		}
3480 		if (broadcast_msg) {
3481 			raid10_set_cluster_sync_high(conf);
3482 			md_cluster_ops->resync_info_update(mddev,
3483 						conf->cluster_sync_low,
3484 						conf->cluster_sync_high);
3485 		}
3486 	}
3487 
3488 	while (biolist) {
3489 		bio = biolist;
3490 		biolist = biolist->bi_next;
3491 
3492 		bio->bi_next = NULL;
3493 		r10_bio = get_resync_r10bio(bio);
3494 		r10_bio->sectors = nr_sectors;
3495 
3496 		if (bio->bi_end_io == end_sync_read) {
3497 			md_sync_acct_bio(bio, nr_sectors);
3498 			bio->bi_status = 0;
3499 			generic_make_request(bio);
3500 		}
3501 	}
3502 
3503 	if (sectors_skipped)
3504 		/* pretend they weren't skipped, it makes
3505 		 * no important difference in this case
3506 		 */
3507 		md_done_sync(mddev, sectors_skipped, 1);
3508 
3509 	return sectors_skipped + nr_sectors;
3510  giveup:
3511 	/* There is nowhere to write, so all non-sync
3512 	 * drives must be failed or in resync, all drives
3513 	 * have a bad block, so try the next chunk...
3514 	 */
3515 	if (sector_nr + max_sync < max_sector)
3516 		max_sector = sector_nr + max_sync;
3517 
3518 	sectors_skipped += (max_sector - sector_nr);
3519 	chunks_skipped ++;
3520 	sector_nr = max_sector;
3521 	goto skipped;
3522 }
3523 
3524 static sector_t
3525 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3526 {
3527 	sector_t size;
3528 	struct r10conf *conf = mddev->private;
3529 
3530 	if (!raid_disks)
3531 		raid_disks = min(conf->geo.raid_disks,
3532 				 conf->prev.raid_disks);
3533 	if (!sectors)
3534 		sectors = conf->dev_sectors;
3535 
3536 	size = sectors >> conf->geo.chunk_shift;
3537 	sector_div(size, conf->geo.far_copies);
3538 	size = size * raid_disks;
3539 	sector_div(size, conf->geo.near_copies);
3540 
3541 	return size << conf->geo.chunk_shift;
3542 }
3543 
3544 static void calc_sectors(struct r10conf *conf, sector_t size)
3545 {
3546 	/* Calculate the number of sectors-per-device that will
3547 	 * actually be used, and set conf->dev_sectors and
3548 	 * conf->stride
3549 	 */
3550 
3551 	size = size >> conf->geo.chunk_shift;
3552 	sector_div(size, conf->geo.far_copies);
3553 	size = size * conf->geo.raid_disks;
3554 	sector_div(size, conf->geo.near_copies);
3555 	/* 'size' is now the number of chunks in the array */
3556 	/* calculate "used chunks per device" */
3557 	size = size * conf->copies;
3558 
3559 	/* We need to round up when dividing by raid_disks to
3560 	 * get the stride size.
3561 	 */
3562 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3563 
3564 	conf->dev_sectors = size << conf->geo.chunk_shift;
3565 
3566 	if (conf->geo.far_offset)
3567 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3568 	else {
3569 		sector_div(size, conf->geo.far_copies);
3570 		conf->geo.stride = size << conf->geo.chunk_shift;
3571 	}
3572 }
3573 
3574 enum geo_type {geo_new, geo_old, geo_start};
3575 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3576 {
3577 	int nc, fc, fo;
3578 	int layout, chunk, disks;
3579 	switch (new) {
3580 	case geo_old:
3581 		layout = mddev->layout;
3582 		chunk = mddev->chunk_sectors;
3583 		disks = mddev->raid_disks - mddev->delta_disks;
3584 		break;
3585 	case geo_new:
3586 		layout = mddev->new_layout;
3587 		chunk = mddev->new_chunk_sectors;
3588 		disks = mddev->raid_disks;
3589 		break;
3590 	default: /* avoid 'may be unused' warnings */
3591 	case geo_start: /* new when starting reshape - raid_disks not
3592 			 * updated yet. */
3593 		layout = mddev->new_layout;
3594 		chunk = mddev->new_chunk_sectors;
3595 		disks = mddev->raid_disks + mddev->delta_disks;
3596 		break;
3597 	}
3598 	if (layout >> 19)
3599 		return -1;
3600 	if (chunk < (PAGE_SIZE >> 9) ||
3601 	    !is_power_of_2(chunk))
3602 		return -2;
3603 	nc = layout & 255;
3604 	fc = (layout >> 8) & 255;
3605 	fo = layout & (1<<16);
3606 	geo->raid_disks = disks;
3607 	geo->near_copies = nc;
3608 	geo->far_copies = fc;
3609 	geo->far_offset = fo;
3610 	switch (layout >> 17) {
3611 	case 0:	/* original layout.  simple but not always optimal */
3612 		geo->far_set_size = disks;
3613 		break;
3614 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3615 		 * actually using this, but leave code here just in case.*/
3616 		geo->far_set_size = disks/fc;
3617 		WARN(geo->far_set_size < fc,
3618 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3619 		break;
3620 	case 2: /* "improved" layout fixed to match documentation */
3621 		geo->far_set_size = fc * nc;
3622 		break;
3623 	default: /* Not a valid layout */
3624 		return -1;
3625 	}
3626 	geo->chunk_mask = chunk - 1;
3627 	geo->chunk_shift = ffz(~chunk);
3628 	return nc*fc;
3629 }
3630 
3631 static struct r10conf *setup_conf(struct mddev *mddev)
3632 {
3633 	struct r10conf *conf = NULL;
3634 	int err = -EINVAL;
3635 	struct geom geo;
3636 	int copies;
3637 
3638 	copies = setup_geo(&geo, mddev, geo_new);
3639 
3640 	if (copies == -2) {
3641 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3642 			mdname(mddev), PAGE_SIZE);
3643 		goto out;
3644 	}
3645 
3646 	if (copies < 2 || copies > mddev->raid_disks) {
3647 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3648 			mdname(mddev), mddev->new_layout);
3649 		goto out;
3650 	}
3651 
3652 	err = -ENOMEM;
3653 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3654 	if (!conf)
3655 		goto out;
3656 
3657 	/* FIXME calc properly */
3658 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3659 				sizeof(struct raid10_info),
3660 				GFP_KERNEL);
3661 	if (!conf->mirrors)
3662 		goto out;
3663 
3664 	conf->tmppage = alloc_page(GFP_KERNEL);
3665 	if (!conf->tmppage)
3666 		goto out;
3667 
3668 	conf->geo = geo;
3669 	conf->copies = copies;
3670 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3671 			   rbio_pool_free, conf);
3672 	if (err)
3673 		goto out;
3674 
3675 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3676 	if (err)
3677 		goto out;
3678 
3679 	calc_sectors(conf, mddev->dev_sectors);
3680 	if (mddev->reshape_position == MaxSector) {
3681 		conf->prev = conf->geo;
3682 		conf->reshape_progress = MaxSector;
3683 	} else {
3684 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3685 			err = -EINVAL;
3686 			goto out;
3687 		}
3688 		conf->reshape_progress = mddev->reshape_position;
3689 		if (conf->prev.far_offset)
3690 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3691 		else
3692 			/* far_copies must be 1 */
3693 			conf->prev.stride = conf->dev_sectors;
3694 	}
3695 	conf->reshape_safe = conf->reshape_progress;
3696 	spin_lock_init(&conf->device_lock);
3697 	INIT_LIST_HEAD(&conf->retry_list);
3698 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3699 
3700 	spin_lock_init(&conf->resync_lock);
3701 	init_waitqueue_head(&conf->wait_barrier);
3702 	atomic_set(&conf->nr_pending, 0);
3703 
3704 	err = -ENOMEM;
3705 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3706 	if (!conf->thread)
3707 		goto out;
3708 
3709 	conf->mddev = mddev;
3710 	return conf;
3711 
3712  out:
3713 	if (conf) {
3714 		mempool_exit(&conf->r10bio_pool);
3715 		kfree(conf->mirrors);
3716 		safe_put_page(conf->tmppage);
3717 		bioset_exit(&conf->bio_split);
3718 		kfree(conf);
3719 	}
3720 	return ERR_PTR(err);
3721 }
3722 
3723 static int raid10_run(struct mddev *mddev)
3724 {
3725 	struct r10conf *conf;
3726 	int i, disk_idx, chunk_size;
3727 	struct raid10_info *disk;
3728 	struct md_rdev *rdev;
3729 	sector_t size;
3730 	sector_t min_offset_diff = 0;
3731 	int first = 1;
3732 	bool discard_supported = false;
3733 
3734 	if (mddev_init_writes_pending(mddev) < 0)
3735 		return -ENOMEM;
3736 
3737 	if (mddev->private == NULL) {
3738 		conf = setup_conf(mddev);
3739 		if (IS_ERR(conf))
3740 			return PTR_ERR(conf);
3741 		mddev->private = conf;
3742 	}
3743 	conf = mddev->private;
3744 	if (!conf)
3745 		goto out;
3746 
3747 	if (mddev_is_clustered(conf->mddev)) {
3748 		int fc, fo;
3749 
3750 		fc = (mddev->layout >> 8) & 255;
3751 		fo = mddev->layout & (1<<16);
3752 		if (fc > 1 || fo > 0) {
3753 			pr_err("only near layout is supported by clustered"
3754 				" raid10\n");
3755 			goto out_free_conf;
3756 		}
3757 	}
3758 
3759 	mddev->thread = conf->thread;
3760 	conf->thread = NULL;
3761 
3762 	chunk_size = mddev->chunk_sectors << 9;
3763 	if (mddev->queue) {
3764 		blk_queue_max_discard_sectors(mddev->queue,
3765 					      mddev->chunk_sectors);
3766 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3767 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3768 		blk_queue_io_min(mddev->queue, chunk_size);
3769 		if (conf->geo.raid_disks % conf->geo.near_copies)
3770 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3771 		else
3772 			blk_queue_io_opt(mddev->queue, chunk_size *
3773 					 (conf->geo.raid_disks / conf->geo.near_copies));
3774 	}
3775 
3776 	rdev_for_each(rdev, mddev) {
3777 		long long diff;
3778 
3779 		disk_idx = rdev->raid_disk;
3780 		if (disk_idx < 0)
3781 			continue;
3782 		if (disk_idx >= conf->geo.raid_disks &&
3783 		    disk_idx >= conf->prev.raid_disks)
3784 			continue;
3785 		disk = conf->mirrors + disk_idx;
3786 
3787 		if (test_bit(Replacement, &rdev->flags)) {
3788 			if (disk->replacement)
3789 				goto out_free_conf;
3790 			disk->replacement = rdev;
3791 		} else {
3792 			if (disk->rdev)
3793 				goto out_free_conf;
3794 			disk->rdev = rdev;
3795 		}
3796 		diff = (rdev->new_data_offset - rdev->data_offset);
3797 		if (!mddev->reshape_backwards)
3798 			diff = -diff;
3799 		if (diff < 0)
3800 			diff = 0;
3801 		if (first || diff < min_offset_diff)
3802 			min_offset_diff = diff;
3803 
3804 		if (mddev->gendisk)
3805 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3806 					  rdev->data_offset << 9);
3807 
3808 		disk->head_position = 0;
3809 
3810 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3811 			discard_supported = true;
3812 		first = 0;
3813 	}
3814 
3815 	if (mddev->queue) {
3816 		if (discard_supported)
3817 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3818 						mddev->queue);
3819 		else
3820 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3821 						  mddev->queue);
3822 	}
3823 	/* need to check that every block has at least one working mirror */
3824 	if (!enough(conf, -1)) {
3825 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3826 		       mdname(mddev));
3827 		goto out_free_conf;
3828 	}
3829 
3830 	if (conf->reshape_progress != MaxSector) {
3831 		/* must ensure that shape change is supported */
3832 		if (conf->geo.far_copies != 1 &&
3833 		    conf->geo.far_offset == 0)
3834 			goto out_free_conf;
3835 		if (conf->prev.far_copies != 1 &&
3836 		    conf->prev.far_offset == 0)
3837 			goto out_free_conf;
3838 	}
3839 
3840 	mddev->degraded = 0;
3841 	for (i = 0;
3842 	     i < conf->geo.raid_disks
3843 		     || i < conf->prev.raid_disks;
3844 	     i++) {
3845 
3846 		disk = conf->mirrors + i;
3847 
3848 		if (!disk->rdev && disk->replacement) {
3849 			/* The replacement is all we have - use it */
3850 			disk->rdev = disk->replacement;
3851 			disk->replacement = NULL;
3852 			clear_bit(Replacement, &disk->rdev->flags);
3853 		}
3854 
3855 		if (!disk->rdev ||
3856 		    !test_bit(In_sync, &disk->rdev->flags)) {
3857 			disk->head_position = 0;
3858 			mddev->degraded++;
3859 			if (disk->rdev &&
3860 			    disk->rdev->saved_raid_disk < 0)
3861 				conf->fullsync = 1;
3862 		}
3863 
3864 		if (disk->replacement &&
3865 		    !test_bit(In_sync, &disk->replacement->flags) &&
3866 		    disk->replacement->saved_raid_disk < 0) {
3867 			conf->fullsync = 1;
3868 		}
3869 
3870 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3871 	}
3872 
3873 	if (mddev->recovery_cp != MaxSector)
3874 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3875 			  mdname(mddev));
3876 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3877 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3878 		conf->geo.raid_disks);
3879 	/*
3880 	 * Ok, everything is just fine now
3881 	 */
3882 	mddev->dev_sectors = conf->dev_sectors;
3883 	size = raid10_size(mddev, 0, 0);
3884 	md_set_array_sectors(mddev, size);
3885 	mddev->resync_max_sectors = size;
3886 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3887 
3888 	if (mddev->queue) {
3889 		int stripe = conf->geo.raid_disks *
3890 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3891 
3892 		/* Calculate max read-ahead size.
3893 		 * We need to readahead at least twice a whole stripe....
3894 		 * maybe...
3895 		 */
3896 		stripe /= conf->geo.near_copies;
3897 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3898 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3899 	}
3900 
3901 	if (md_integrity_register(mddev))
3902 		goto out_free_conf;
3903 
3904 	if (conf->reshape_progress != MaxSector) {
3905 		unsigned long before_length, after_length;
3906 
3907 		before_length = ((1 << conf->prev.chunk_shift) *
3908 				 conf->prev.far_copies);
3909 		after_length = ((1 << conf->geo.chunk_shift) *
3910 				conf->geo.far_copies);
3911 
3912 		if (max(before_length, after_length) > min_offset_diff) {
3913 			/* This cannot work */
3914 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3915 			goto out_free_conf;
3916 		}
3917 		conf->offset_diff = min_offset_diff;
3918 
3919 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3920 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3921 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3922 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3923 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3924 							"reshape");
3925 		if (!mddev->sync_thread)
3926 			goto out_free_conf;
3927 	}
3928 
3929 	return 0;
3930 
3931 out_free_conf:
3932 	md_unregister_thread(&mddev->thread);
3933 	mempool_exit(&conf->r10bio_pool);
3934 	safe_put_page(conf->tmppage);
3935 	kfree(conf->mirrors);
3936 	kfree(conf);
3937 	mddev->private = NULL;
3938 out:
3939 	return -EIO;
3940 }
3941 
3942 static void raid10_free(struct mddev *mddev, void *priv)
3943 {
3944 	struct r10conf *conf = priv;
3945 
3946 	mempool_exit(&conf->r10bio_pool);
3947 	safe_put_page(conf->tmppage);
3948 	kfree(conf->mirrors);
3949 	kfree(conf->mirrors_old);
3950 	kfree(conf->mirrors_new);
3951 	bioset_exit(&conf->bio_split);
3952 	kfree(conf);
3953 }
3954 
3955 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3956 {
3957 	struct r10conf *conf = mddev->private;
3958 
3959 	if (quiesce)
3960 		raise_barrier(conf, 0);
3961 	else
3962 		lower_barrier(conf);
3963 }
3964 
3965 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3966 {
3967 	/* Resize of 'far' arrays is not supported.
3968 	 * For 'near' and 'offset' arrays we can set the
3969 	 * number of sectors used to be an appropriate multiple
3970 	 * of the chunk size.
3971 	 * For 'offset', this is far_copies*chunksize.
3972 	 * For 'near' the multiplier is the LCM of
3973 	 * near_copies and raid_disks.
3974 	 * So if far_copies > 1 && !far_offset, fail.
3975 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3976 	 * multiply by chunk_size.  Then round to this number.
3977 	 * This is mostly done by raid10_size()
3978 	 */
3979 	struct r10conf *conf = mddev->private;
3980 	sector_t oldsize, size;
3981 
3982 	if (mddev->reshape_position != MaxSector)
3983 		return -EBUSY;
3984 
3985 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3986 		return -EINVAL;
3987 
3988 	oldsize = raid10_size(mddev, 0, 0);
3989 	size = raid10_size(mddev, sectors, 0);
3990 	if (mddev->external_size &&
3991 	    mddev->array_sectors > size)
3992 		return -EINVAL;
3993 	if (mddev->bitmap) {
3994 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3995 		if (ret)
3996 			return ret;
3997 	}
3998 	md_set_array_sectors(mddev, size);
3999 	if (sectors > mddev->dev_sectors &&
4000 	    mddev->recovery_cp > oldsize) {
4001 		mddev->recovery_cp = oldsize;
4002 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4003 	}
4004 	calc_sectors(conf, sectors);
4005 	mddev->dev_sectors = conf->dev_sectors;
4006 	mddev->resync_max_sectors = size;
4007 	return 0;
4008 }
4009 
4010 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4011 {
4012 	struct md_rdev *rdev;
4013 	struct r10conf *conf;
4014 
4015 	if (mddev->degraded > 0) {
4016 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4017 			mdname(mddev));
4018 		return ERR_PTR(-EINVAL);
4019 	}
4020 	sector_div(size, devs);
4021 
4022 	/* Set new parameters */
4023 	mddev->new_level = 10;
4024 	/* new layout: far_copies = 1, near_copies = 2 */
4025 	mddev->new_layout = (1<<8) + 2;
4026 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4027 	mddev->delta_disks = mddev->raid_disks;
4028 	mddev->raid_disks *= 2;
4029 	/* make sure it will be not marked as dirty */
4030 	mddev->recovery_cp = MaxSector;
4031 	mddev->dev_sectors = size;
4032 
4033 	conf = setup_conf(mddev);
4034 	if (!IS_ERR(conf)) {
4035 		rdev_for_each(rdev, mddev)
4036 			if (rdev->raid_disk >= 0) {
4037 				rdev->new_raid_disk = rdev->raid_disk * 2;
4038 				rdev->sectors = size;
4039 			}
4040 		conf->barrier = 1;
4041 	}
4042 
4043 	return conf;
4044 }
4045 
4046 static void *raid10_takeover(struct mddev *mddev)
4047 {
4048 	struct r0conf *raid0_conf;
4049 
4050 	/* raid10 can take over:
4051 	 *  raid0 - providing it has only two drives
4052 	 */
4053 	if (mddev->level == 0) {
4054 		/* for raid0 takeover only one zone is supported */
4055 		raid0_conf = mddev->private;
4056 		if (raid0_conf->nr_strip_zones > 1) {
4057 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4058 				mdname(mddev));
4059 			return ERR_PTR(-EINVAL);
4060 		}
4061 		return raid10_takeover_raid0(mddev,
4062 			raid0_conf->strip_zone->zone_end,
4063 			raid0_conf->strip_zone->nb_dev);
4064 	}
4065 	return ERR_PTR(-EINVAL);
4066 }
4067 
4068 static int raid10_check_reshape(struct mddev *mddev)
4069 {
4070 	/* Called when there is a request to change
4071 	 * - layout (to ->new_layout)
4072 	 * - chunk size (to ->new_chunk_sectors)
4073 	 * - raid_disks (by delta_disks)
4074 	 * or when trying to restart a reshape that was ongoing.
4075 	 *
4076 	 * We need to validate the request and possibly allocate
4077 	 * space if that might be an issue later.
4078 	 *
4079 	 * Currently we reject any reshape of a 'far' mode array,
4080 	 * allow chunk size to change if new is generally acceptable,
4081 	 * allow raid_disks to increase, and allow
4082 	 * a switch between 'near' mode and 'offset' mode.
4083 	 */
4084 	struct r10conf *conf = mddev->private;
4085 	struct geom geo;
4086 
4087 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4088 		return -EINVAL;
4089 
4090 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4091 		/* mustn't change number of copies */
4092 		return -EINVAL;
4093 	if (geo.far_copies > 1 && !geo.far_offset)
4094 		/* Cannot switch to 'far' mode */
4095 		return -EINVAL;
4096 
4097 	if (mddev->array_sectors & geo.chunk_mask)
4098 			/* not factor of array size */
4099 			return -EINVAL;
4100 
4101 	if (!enough(conf, -1))
4102 		return -EINVAL;
4103 
4104 	kfree(conf->mirrors_new);
4105 	conf->mirrors_new = NULL;
4106 	if (mddev->delta_disks > 0) {
4107 		/* allocate new 'mirrors' list */
4108 		conf->mirrors_new =
4109 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4110 				sizeof(struct raid10_info),
4111 				GFP_KERNEL);
4112 		if (!conf->mirrors_new)
4113 			return -ENOMEM;
4114 	}
4115 	return 0;
4116 }
4117 
4118 /*
4119  * Need to check if array has failed when deciding whether to:
4120  *  - start an array
4121  *  - remove non-faulty devices
4122  *  - add a spare
4123  *  - allow a reshape
4124  * This determination is simple when no reshape is happening.
4125  * However if there is a reshape, we need to carefully check
4126  * both the before and after sections.
4127  * This is because some failed devices may only affect one
4128  * of the two sections, and some non-in_sync devices may
4129  * be insync in the section most affected by failed devices.
4130  */
4131 static int calc_degraded(struct r10conf *conf)
4132 {
4133 	int degraded, degraded2;
4134 	int i;
4135 
4136 	rcu_read_lock();
4137 	degraded = 0;
4138 	/* 'prev' section first */
4139 	for (i = 0; i < conf->prev.raid_disks; i++) {
4140 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4141 		if (!rdev || test_bit(Faulty, &rdev->flags))
4142 			degraded++;
4143 		else if (!test_bit(In_sync, &rdev->flags))
4144 			/* When we can reduce the number of devices in
4145 			 * an array, this might not contribute to
4146 			 * 'degraded'.  It does now.
4147 			 */
4148 			degraded++;
4149 	}
4150 	rcu_read_unlock();
4151 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4152 		return degraded;
4153 	rcu_read_lock();
4154 	degraded2 = 0;
4155 	for (i = 0; i < conf->geo.raid_disks; i++) {
4156 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4157 		if (!rdev || test_bit(Faulty, &rdev->flags))
4158 			degraded2++;
4159 		else if (!test_bit(In_sync, &rdev->flags)) {
4160 			/* If reshape is increasing the number of devices,
4161 			 * this section has already been recovered, so
4162 			 * it doesn't contribute to degraded.
4163 			 * else it does.
4164 			 */
4165 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4166 				degraded2++;
4167 		}
4168 	}
4169 	rcu_read_unlock();
4170 	if (degraded2 > degraded)
4171 		return degraded2;
4172 	return degraded;
4173 }
4174 
4175 static int raid10_start_reshape(struct mddev *mddev)
4176 {
4177 	/* A 'reshape' has been requested. This commits
4178 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4179 	 * This also checks if there are enough spares and adds them
4180 	 * to the array.
4181 	 * We currently require enough spares to make the final
4182 	 * array non-degraded.  We also require that the difference
4183 	 * between old and new data_offset - on each device - is
4184 	 * enough that we never risk over-writing.
4185 	 */
4186 
4187 	unsigned long before_length, after_length;
4188 	sector_t min_offset_diff = 0;
4189 	int first = 1;
4190 	struct geom new;
4191 	struct r10conf *conf = mddev->private;
4192 	struct md_rdev *rdev;
4193 	int spares = 0;
4194 	int ret;
4195 
4196 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4197 		return -EBUSY;
4198 
4199 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4200 		return -EINVAL;
4201 
4202 	before_length = ((1 << conf->prev.chunk_shift) *
4203 			 conf->prev.far_copies);
4204 	after_length = ((1 << conf->geo.chunk_shift) *
4205 			conf->geo.far_copies);
4206 
4207 	rdev_for_each(rdev, mddev) {
4208 		if (!test_bit(In_sync, &rdev->flags)
4209 		    && !test_bit(Faulty, &rdev->flags))
4210 			spares++;
4211 		if (rdev->raid_disk >= 0) {
4212 			long long diff = (rdev->new_data_offset
4213 					  - rdev->data_offset);
4214 			if (!mddev->reshape_backwards)
4215 				diff = -diff;
4216 			if (diff < 0)
4217 				diff = 0;
4218 			if (first || diff < min_offset_diff)
4219 				min_offset_diff = diff;
4220 			first = 0;
4221 		}
4222 	}
4223 
4224 	if (max(before_length, after_length) > min_offset_diff)
4225 		return -EINVAL;
4226 
4227 	if (spares < mddev->delta_disks)
4228 		return -EINVAL;
4229 
4230 	conf->offset_diff = min_offset_diff;
4231 	spin_lock_irq(&conf->device_lock);
4232 	if (conf->mirrors_new) {
4233 		memcpy(conf->mirrors_new, conf->mirrors,
4234 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4235 		smp_mb();
4236 		kfree(conf->mirrors_old);
4237 		conf->mirrors_old = conf->mirrors;
4238 		conf->mirrors = conf->mirrors_new;
4239 		conf->mirrors_new = NULL;
4240 	}
4241 	setup_geo(&conf->geo, mddev, geo_start);
4242 	smp_mb();
4243 	if (mddev->reshape_backwards) {
4244 		sector_t size = raid10_size(mddev, 0, 0);
4245 		if (size < mddev->array_sectors) {
4246 			spin_unlock_irq(&conf->device_lock);
4247 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4248 				mdname(mddev));
4249 			return -EINVAL;
4250 		}
4251 		mddev->resync_max_sectors = size;
4252 		conf->reshape_progress = size;
4253 	} else
4254 		conf->reshape_progress = 0;
4255 	conf->reshape_safe = conf->reshape_progress;
4256 	spin_unlock_irq(&conf->device_lock);
4257 
4258 	if (mddev->delta_disks && mddev->bitmap) {
4259 		struct mdp_superblock_1 *sb = NULL;
4260 		sector_t oldsize, newsize;
4261 
4262 		oldsize = raid10_size(mddev, 0, 0);
4263 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4264 
4265 		if (!mddev_is_clustered(mddev)) {
4266 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4267 			if (ret)
4268 				goto abort;
4269 			else
4270 				goto out;
4271 		}
4272 
4273 		rdev_for_each(rdev, mddev) {
4274 			if (rdev->raid_disk > -1 &&
4275 			    !test_bit(Faulty, &rdev->flags))
4276 				sb = page_address(rdev->sb_page);
4277 		}
4278 
4279 		/*
4280 		 * some node is already performing reshape, and no need to
4281 		 * call md_bitmap_resize again since it should be called when
4282 		 * receiving BITMAP_RESIZE msg
4283 		 */
4284 		if ((sb && (le32_to_cpu(sb->feature_map) &
4285 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4286 			goto out;
4287 
4288 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4289 		if (ret)
4290 			goto abort;
4291 
4292 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4293 		if (ret) {
4294 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4295 			goto abort;
4296 		}
4297 	}
4298 out:
4299 	if (mddev->delta_disks > 0) {
4300 		rdev_for_each(rdev, mddev)
4301 			if (rdev->raid_disk < 0 &&
4302 			    !test_bit(Faulty, &rdev->flags)) {
4303 				if (raid10_add_disk(mddev, rdev) == 0) {
4304 					if (rdev->raid_disk >=
4305 					    conf->prev.raid_disks)
4306 						set_bit(In_sync, &rdev->flags);
4307 					else
4308 						rdev->recovery_offset = 0;
4309 
4310 					if (sysfs_link_rdev(mddev, rdev))
4311 						/* Failure here  is OK */;
4312 				}
4313 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4314 				   && !test_bit(Faulty, &rdev->flags)) {
4315 				/* This is a spare that was manually added */
4316 				set_bit(In_sync, &rdev->flags);
4317 			}
4318 	}
4319 	/* When a reshape changes the number of devices,
4320 	 * ->degraded is measured against the larger of the
4321 	 * pre and  post numbers.
4322 	 */
4323 	spin_lock_irq(&conf->device_lock);
4324 	mddev->degraded = calc_degraded(conf);
4325 	spin_unlock_irq(&conf->device_lock);
4326 	mddev->raid_disks = conf->geo.raid_disks;
4327 	mddev->reshape_position = conf->reshape_progress;
4328 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4329 
4330 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4331 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4332 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4333 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4334 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4335 
4336 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4337 						"reshape");
4338 	if (!mddev->sync_thread) {
4339 		ret = -EAGAIN;
4340 		goto abort;
4341 	}
4342 	conf->reshape_checkpoint = jiffies;
4343 	md_wakeup_thread(mddev->sync_thread);
4344 	md_new_event(mddev);
4345 	return 0;
4346 
4347 abort:
4348 	mddev->recovery = 0;
4349 	spin_lock_irq(&conf->device_lock);
4350 	conf->geo = conf->prev;
4351 	mddev->raid_disks = conf->geo.raid_disks;
4352 	rdev_for_each(rdev, mddev)
4353 		rdev->new_data_offset = rdev->data_offset;
4354 	smp_wmb();
4355 	conf->reshape_progress = MaxSector;
4356 	conf->reshape_safe = MaxSector;
4357 	mddev->reshape_position = MaxSector;
4358 	spin_unlock_irq(&conf->device_lock);
4359 	return ret;
4360 }
4361 
4362 /* Calculate the last device-address that could contain
4363  * any block from the chunk that includes the array-address 's'
4364  * and report the next address.
4365  * i.e. the address returned will be chunk-aligned and after
4366  * any data that is in the chunk containing 's'.
4367  */
4368 static sector_t last_dev_address(sector_t s, struct geom *geo)
4369 {
4370 	s = (s | geo->chunk_mask) + 1;
4371 	s >>= geo->chunk_shift;
4372 	s *= geo->near_copies;
4373 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4374 	s *= geo->far_copies;
4375 	s <<= geo->chunk_shift;
4376 	return s;
4377 }
4378 
4379 /* Calculate the first device-address that could contain
4380  * any block from the chunk that includes the array-address 's'.
4381  * This too will be the start of a chunk
4382  */
4383 static sector_t first_dev_address(sector_t s, struct geom *geo)
4384 {
4385 	s >>= geo->chunk_shift;
4386 	s *= geo->near_copies;
4387 	sector_div(s, geo->raid_disks);
4388 	s *= geo->far_copies;
4389 	s <<= geo->chunk_shift;
4390 	return s;
4391 }
4392 
4393 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4394 				int *skipped)
4395 {
4396 	/* We simply copy at most one chunk (smallest of old and new)
4397 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4398 	 * or we hit a bad block or something.
4399 	 * This might mean we pause for normal IO in the middle of
4400 	 * a chunk, but that is not a problem as mddev->reshape_position
4401 	 * can record any location.
4402 	 *
4403 	 * If we will want to write to a location that isn't
4404 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4405 	 * we need to flush all reshape requests and update the metadata.
4406 	 *
4407 	 * When reshaping forwards (e.g. to more devices), we interpret
4408 	 * 'safe' as the earliest block which might not have been copied
4409 	 * down yet.  We divide this by previous stripe size and multiply
4410 	 * by previous stripe length to get lowest device offset that we
4411 	 * cannot write to yet.
4412 	 * We interpret 'sector_nr' as an address that we want to write to.
4413 	 * From this we use last_device_address() to find where we might
4414 	 * write to, and first_device_address on the  'safe' position.
4415 	 * If this 'next' write position is after the 'safe' position,
4416 	 * we must update the metadata to increase the 'safe' position.
4417 	 *
4418 	 * When reshaping backwards, we round in the opposite direction
4419 	 * and perform the reverse test:  next write position must not be
4420 	 * less than current safe position.
4421 	 *
4422 	 * In all this the minimum difference in data offsets
4423 	 * (conf->offset_diff - always positive) allows a bit of slack,
4424 	 * so next can be after 'safe', but not by more than offset_diff
4425 	 *
4426 	 * We need to prepare all the bios here before we start any IO
4427 	 * to ensure the size we choose is acceptable to all devices.
4428 	 * The means one for each copy for write-out and an extra one for
4429 	 * read-in.
4430 	 * We store the read-in bio in ->master_bio and the others in
4431 	 * ->devs[x].bio and ->devs[x].repl_bio.
4432 	 */
4433 	struct r10conf *conf = mddev->private;
4434 	struct r10bio *r10_bio;
4435 	sector_t next, safe, last;
4436 	int max_sectors;
4437 	int nr_sectors;
4438 	int s;
4439 	struct md_rdev *rdev;
4440 	int need_flush = 0;
4441 	struct bio *blist;
4442 	struct bio *bio, *read_bio;
4443 	int sectors_done = 0;
4444 	struct page **pages;
4445 
4446 	if (sector_nr == 0) {
4447 		/* If restarting in the middle, skip the initial sectors */
4448 		if (mddev->reshape_backwards &&
4449 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4450 			sector_nr = (raid10_size(mddev, 0, 0)
4451 				     - conf->reshape_progress);
4452 		} else if (!mddev->reshape_backwards &&
4453 			   conf->reshape_progress > 0)
4454 			sector_nr = conf->reshape_progress;
4455 		if (sector_nr) {
4456 			mddev->curr_resync_completed = sector_nr;
4457 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4458 			*skipped = 1;
4459 			return sector_nr;
4460 		}
4461 	}
4462 
4463 	/* We don't use sector_nr to track where we are up to
4464 	 * as that doesn't work well for ->reshape_backwards.
4465 	 * So just use ->reshape_progress.
4466 	 */
4467 	if (mddev->reshape_backwards) {
4468 		/* 'next' is the earliest device address that we might
4469 		 * write to for this chunk in the new layout
4470 		 */
4471 		next = first_dev_address(conf->reshape_progress - 1,
4472 					 &conf->geo);
4473 
4474 		/* 'safe' is the last device address that we might read from
4475 		 * in the old layout after a restart
4476 		 */
4477 		safe = last_dev_address(conf->reshape_safe - 1,
4478 					&conf->prev);
4479 
4480 		if (next + conf->offset_diff < safe)
4481 			need_flush = 1;
4482 
4483 		last = conf->reshape_progress - 1;
4484 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4485 					       & conf->prev.chunk_mask);
4486 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4487 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4488 	} else {
4489 		/* 'next' is after the last device address that we
4490 		 * might write to for this chunk in the new layout
4491 		 */
4492 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4493 
4494 		/* 'safe' is the earliest device address that we might
4495 		 * read from in the old layout after a restart
4496 		 */
4497 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4498 
4499 		/* Need to update metadata if 'next' might be beyond 'safe'
4500 		 * as that would possibly corrupt data
4501 		 */
4502 		if (next > safe + conf->offset_diff)
4503 			need_flush = 1;
4504 
4505 		sector_nr = conf->reshape_progress;
4506 		last  = sector_nr | (conf->geo.chunk_mask
4507 				     & conf->prev.chunk_mask);
4508 
4509 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4510 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4511 	}
4512 
4513 	if (need_flush ||
4514 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4515 		/* Need to update reshape_position in metadata */
4516 		wait_barrier(conf);
4517 		mddev->reshape_position = conf->reshape_progress;
4518 		if (mddev->reshape_backwards)
4519 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4520 				- conf->reshape_progress;
4521 		else
4522 			mddev->curr_resync_completed = conf->reshape_progress;
4523 		conf->reshape_checkpoint = jiffies;
4524 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4525 		md_wakeup_thread(mddev->thread);
4526 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4527 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4528 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4529 			allow_barrier(conf);
4530 			return sectors_done;
4531 		}
4532 		conf->reshape_safe = mddev->reshape_position;
4533 		allow_barrier(conf);
4534 	}
4535 
4536 	raise_barrier(conf, 0);
4537 read_more:
4538 	/* Now schedule reads for blocks from sector_nr to last */
4539 	r10_bio = raid10_alloc_init_r10buf(conf);
4540 	r10_bio->state = 0;
4541 	raise_barrier(conf, 1);
4542 	atomic_set(&r10_bio->remaining, 0);
4543 	r10_bio->mddev = mddev;
4544 	r10_bio->sector = sector_nr;
4545 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4546 	r10_bio->sectors = last - sector_nr + 1;
4547 	rdev = read_balance(conf, r10_bio, &max_sectors);
4548 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4549 
4550 	if (!rdev) {
4551 		/* Cannot read from here, so need to record bad blocks
4552 		 * on all the target devices.
4553 		 */
4554 		// FIXME
4555 		mempool_free(r10_bio, &conf->r10buf_pool);
4556 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4557 		return sectors_done;
4558 	}
4559 
4560 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4561 
4562 	bio_set_dev(read_bio, rdev->bdev);
4563 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4564 			       + rdev->data_offset);
4565 	read_bio->bi_private = r10_bio;
4566 	read_bio->bi_end_io = end_reshape_read;
4567 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4568 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4569 	read_bio->bi_status = 0;
4570 	read_bio->bi_vcnt = 0;
4571 	read_bio->bi_iter.bi_size = 0;
4572 	r10_bio->master_bio = read_bio;
4573 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4574 
4575 	/*
4576 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4577 	 * write to the region to avoid conflict.
4578 	*/
4579 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4580 		struct mdp_superblock_1 *sb = NULL;
4581 		int sb_reshape_pos = 0;
4582 
4583 		conf->cluster_sync_low = sector_nr;
4584 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4585 		sb = page_address(rdev->sb_page);
4586 		if (sb) {
4587 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4588 			/*
4589 			 * Set cluster_sync_low again if next address for array
4590 			 * reshape is less than cluster_sync_low. Since we can't
4591 			 * update cluster_sync_low until it has finished reshape.
4592 			 */
4593 			if (sb_reshape_pos < conf->cluster_sync_low)
4594 				conf->cluster_sync_low = sb_reshape_pos;
4595 		}
4596 
4597 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4598 							  conf->cluster_sync_high);
4599 	}
4600 
4601 	/* Now find the locations in the new layout */
4602 	__raid10_find_phys(&conf->geo, r10_bio);
4603 
4604 	blist = read_bio;
4605 	read_bio->bi_next = NULL;
4606 
4607 	rcu_read_lock();
4608 	for (s = 0; s < conf->copies*2; s++) {
4609 		struct bio *b;
4610 		int d = r10_bio->devs[s/2].devnum;
4611 		struct md_rdev *rdev2;
4612 		if (s&1) {
4613 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4614 			b = r10_bio->devs[s/2].repl_bio;
4615 		} else {
4616 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4617 			b = r10_bio->devs[s/2].bio;
4618 		}
4619 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4620 			continue;
4621 
4622 		bio_set_dev(b, rdev2->bdev);
4623 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4624 			rdev2->new_data_offset;
4625 		b->bi_end_io = end_reshape_write;
4626 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4627 		b->bi_next = blist;
4628 		blist = b;
4629 	}
4630 
4631 	/* Now add as many pages as possible to all of these bios. */
4632 
4633 	nr_sectors = 0;
4634 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4635 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4636 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4637 		int len = (max_sectors - s) << 9;
4638 		if (len > PAGE_SIZE)
4639 			len = PAGE_SIZE;
4640 		for (bio = blist; bio ; bio = bio->bi_next) {
4641 			/*
4642 			 * won't fail because the vec table is big enough
4643 			 * to hold all these pages
4644 			 */
4645 			bio_add_page(bio, page, len, 0);
4646 		}
4647 		sector_nr += len >> 9;
4648 		nr_sectors += len >> 9;
4649 	}
4650 	rcu_read_unlock();
4651 	r10_bio->sectors = nr_sectors;
4652 
4653 	/* Now submit the read */
4654 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4655 	atomic_inc(&r10_bio->remaining);
4656 	read_bio->bi_next = NULL;
4657 	generic_make_request(read_bio);
4658 	sectors_done += nr_sectors;
4659 	if (sector_nr <= last)
4660 		goto read_more;
4661 
4662 	lower_barrier(conf);
4663 
4664 	/* Now that we have done the whole section we can
4665 	 * update reshape_progress
4666 	 */
4667 	if (mddev->reshape_backwards)
4668 		conf->reshape_progress -= sectors_done;
4669 	else
4670 		conf->reshape_progress += sectors_done;
4671 
4672 	return sectors_done;
4673 }
4674 
4675 static void end_reshape_request(struct r10bio *r10_bio);
4676 static int handle_reshape_read_error(struct mddev *mddev,
4677 				     struct r10bio *r10_bio);
4678 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4679 {
4680 	/* Reshape read completed.  Hopefully we have a block
4681 	 * to write out.
4682 	 * If we got a read error then we do sync 1-page reads from
4683 	 * elsewhere until we find the data - or give up.
4684 	 */
4685 	struct r10conf *conf = mddev->private;
4686 	int s;
4687 
4688 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4689 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4690 			/* Reshape has been aborted */
4691 			md_done_sync(mddev, r10_bio->sectors, 0);
4692 			return;
4693 		}
4694 
4695 	/* We definitely have the data in the pages, schedule the
4696 	 * writes.
4697 	 */
4698 	atomic_set(&r10_bio->remaining, 1);
4699 	for (s = 0; s < conf->copies*2; s++) {
4700 		struct bio *b;
4701 		int d = r10_bio->devs[s/2].devnum;
4702 		struct md_rdev *rdev;
4703 		rcu_read_lock();
4704 		if (s&1) {
4705 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4706 			b = r10_bio->devs[s/2].repl_bio;
4707 		} else {
4708 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4709 			b = r10_bio->devs[s/2].bio;
4710 		}
4711 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4712 			rcu_read_unlock();
4713 			continue;
4714 		}
4715 		atomic_inc(&rdev->nr_pending);
4716 		rcu_read_unlock();
4717 		md_sync_acct_bio(b, r10_bio->sectors);
4718 		atomic_inc(&r10_bio->remaining);
4719 		b->bi_next = NULL;
4720 		generic_make_request(b);
4721 	}
4722 	end_reshape_request(r10_bio);
4723 }
4724 
4725 static void end_reshape(struct r10conf *conf)
4726 {
4727 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4728 		return;
4729 
4730 	spin_lock_irq(&conf->device_lock);
4731 	conf->prev = conf->geo;
4732 	md_finish_reshape(conf->mddev);
4733 	smp_wmb();
4734 	conf->reshape_progress = MaxSector;
4735 	conf->reshape_safe = MaxSector;
4736 	spin_unlock_irq(&conf->device_lock);
4737 
4738 	/* read-ahead size must cover two whole stripes, which is
4739 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4740 	 */
4741 	if (conf->mddev->queue) {
4742 		int stripe = conf->geo.raid_disks *
4743 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4744 		stripe /= conf->geo.near_copies;
4745 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4746 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4747 	}
4748 	conf->fullsync = 0;
4749 }
4750 
4751 static void raid10_update_reshape_pos(struct mddev *mddev)
4752 {
4753 	struct r10conf *conf = mddev->private;
4754 	sector_t lo, hi;
4755 
4756 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4757 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4758 	    || mddev->reshape_position == MaxSector)
4759 		conf->reshape_progress = mddev->reshape_position;
4760 	else
4761 		WARN_ON_ONCE(1);
4762 }
4763 
4764 static int handle_reshape_read_error(struct mddev *mddev,
4765 				     struct r10bio *r10_bio)
4766 {
4767 	/* Use sync reads to get the blocks from somewhere else */
4768 	int sectors = r10_bio->sectors;
4769 	struct r10conf *conf = mddev->private;
4770 	struct r10bio *r10b;
4771 	int slot = 0;
4772 	int idx = 0;
4773 	struct page **pages;
4774 
4775 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4776 	if (!r10b) {
4777 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4778 		return -ENOMEM;
4779 	}
4780 
4781 	/* reshape IOs share pages from .devs[0].bio */
4782 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4783 
4784 	r10b->sector = r10_bio->sector;
4785 	__raid10_find_phys(&conf->prev, r10b);
4786 
4787 	while (sectors) {
4788 		int s = sectors;
4789 		int success = 0;
4790 		int first_slot = slot;
4791 
4792 		if (s > (PAGE_SIZE >> 9))
4793 			s = PAGE_SIZE >> 9;
4794 
4795 		rcu_read_lock();
4796 		while (!success) {
4797 			int d = r10b->devs[slot].devnum;
4798 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4799 			sector_t addr;
4800 			if (rdev == NULL ||
4801 			    test_bit(Faulty, &rdev->flags) ||
4802 			    !test_bit(In_sync, &rdev->flags))
4803 				goto failed;
4804 
4805 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4806 			atomic_inc(&rdev->nr_pending);
4807 			rcu_read_unlock();
4808 			success = sync_page_io(rdev,
4809 					       addr,
4810 					       s << 9,
4811 					       pages[idx],
4812 					       REQ_OP_READ, 0, false);
4813 			rdev_dec_pending(rdev, mddev);
4814 			rcu_read_lock();
4815 			if (success)
4816 				break;
4817 		failed:
4818 			slot++;
4819 			if (slot >= conf->copies)
4820 				slot = 0;
4821 			if (slot == first_slot)
4822 				break;
4823 		}
4824 		rcu_read_unlock();
4825 		if (!success) {
4826 			/* couldn't read this block, must give up */
4827 			set_bit(MD_RECOVERY_INTR,
4828 				&mddev->recovery);
4829 			kfree(r10b);
4830 			return -EIO;
4831 		}
4832 		sectors -= s;
4833 		idx++;
4834 	}
4835 	kfree(r10b);
4836 	return 0;
4837 }
4838 
4839 static void end_reshape_write(struct bio *bio)
4840 {
4841 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4842 	struct mddev *mddev = r10_bio->mddev;
4843 	struct r10conf *conf = mddev->private;
4844 	int d;
4845 	int slot;
4846 	int repl;
4847 	struct md_rdev *rdev = NULL;
4848 
4849 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4850 	if (repl)
4851 		rdev = conf->mirrors[d].replacement;
4852 	if (!rdev) {
4853 		smp_mb();
4854 		rdev = conf->mirrors[d].rdev;
4855 	}
4856 
4857 	if (bio->bi_status) {
4858 		/* FIXME should record badblock */
4859 		md_error(mddev, rdev);
4860 	}
4861 
4862 	rdev_dec_pending(rdev, mddev);
4863 	end_reshape_request(r10_bio);
4864 }
4865 
4866 static void end_reshape_request(struct r10bio *r10_bio)
4867 {
4868 	if (!atomic_dec_and_test(&r10_bio->remaining))
4869 		return;
4870 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4871 	bio_put(r10_bio->master_bio);
4872 	put_buf(r10_bio);
4873 }
4874 
4875 static void raid10_finish_reshape(struct mddev *mddev)
4876 {
4877 	struct r10conf *conf = mddev->private;
4878 
4879 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4880 		return;
4881 
4882 	if (mddev->delta_disks > 0) {
4883 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4884 			mddev->recovery_cp = mddev->resync_max_sectors;
4885 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4886 		}
4887 		mddev->resync_max_sectors = mddev->array_sectors;
4888 	} else {
4889 		int d;
4890 		rcu_read_lock();
4891 		for (d = conf->geo.raid_disks ;
4892 		     d < conf->geo.raid_disks - mddev->delta_disks;
4893 		     d++) {
4894 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4895 			if (rdev)
4896 				clear_bit(In_sync, &rdev->flags);
4897 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4898 			if (rdev)
4899 				clear_bit(In_sync, &rdev->flags);
4900 		}
4901 		rcu_read_unlock();
4902 	}
4903 	mddev->layout = mddev->new_layout;
4904 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4905 	mddev->reshape_position = MaxSector;
4906 	mddev->delta_disks = 0;
4907 	mddev->reshape_backwards = 0;
4908 }
4909 
4910 static struct md_personality raid10_personality =
4911 {
4912 	.name		= "raid10",
4913 	.level		= 10,
4914 	.owner		= THIS_MODULE,
4915 	.make_request	= raid10_make_request,
4916 	.run		= raid10_run,
4917 	.free		= raid10_free,
4918 	.status		= raid10_status,
4919 	.error_handler	= raid10_error,
4920 	.hot_add_disk	= raid10_add_disk,
4921 	.hot_remove_disk= raid10_remove_disk,
4922 	.spare_active	= raid10_spare_active,
4923 	.sync_request	= raid10_sync_request,
4924 	.quiesce	= raid10_quiesce,
4925 	.size		= raid10_size,
4926 	.resize		= raid10_resize,
4927 	.takeover	= raid10_takeover,
4928 	.check_reshape	= raid10_check_reshape,
4929 	.start_reshape	= raid10_start_reshape,
4930 	.finish_reshape	= raid10_finish_reshape,
4931 	.update_reshape_pos = raid10_update_reshape_pos,
4932 	.congested	= raid10_congested,
4933 };
4934 
4935 static int __init raid_init(void)
4936 {
4937 	return register_md_personality(&raid10_personality);
4938 }
4939 
4940 static void raid_exit(void)
4941 {
4942 	unregister_md_personality(&raid10_personality);
4943 }
4944 
4945 module_init(raid_init);
4946 module_exit(raid_exit);
4947 MODULE_LICENSE("GPL");
4948 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4949 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4950 MODULE_ALIAS("md-raid10");
4951 MODULE_ALIAS("md-level-10");
4952 
4953 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4954