1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) { 103 unplug_slaves(conf->mddev); 104 return NULL; 105 } 106 107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 108 nalloc = conf->copies; /* resync */ 109 else 110 nalloc = 2; /* recovery */ 111 112 /* 113 * Allocate bios. 114 */ 115 for (j = nalloc ; j-- ; ) { 116 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 117 if (!bio) 118 goto out_free_bio; 119 r10_bio->devs[j].bio = bio; 120 } 121 /* 122 * Allocate RESYNC_PAGES data pages and attach them 123 * where needed. 124 */ 125 for (j = 0 ; j < nalloc; j++) { 126 bio = r10_bio->devs[j].bio; 127 for (i = 0; i < RESYNC_PAGES; i++) { 128 page = alloc_page(gfp_flags); 129 if (unlikely(!page)) 130 goto out_free_pages; 131 132 bio->bi_io_vec[i].bv_page = page; 133 } 134 } 135 136 return r10_bio; 137 138 out_free_pages: 139 for ( ; i > 0 ; i--) 140 safe_put_page(bio->bi_io_vec[i-1].bv_page); 141 while (j--) 142 for (i = 0; i < RESYNC_PAGES ; i++) 143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < nalloc ) 147 bio_put(r10_bio->devs[j].bio); 148 r10bio_pool_free(r10_bio, conf); 149 return NULL; 150 } 151 152 static void r10buf_pool_free(void *__r10_bio, void *data) 153 { 154 int i; 155 conf_t *conf = data; 156 r10bio_t *r10bio = __r10_bio; 157 int j; 158 159 for (j=0; j < conf->copies; j++) { 160 struct bio *bio = r10bio->devs[j].bio; 161 if (bio) { 162 for (i = 0; i < RESYNC_PAGES; i++) { 163 safe_put_page(bio->bi_io_vec[i].bv_page); 164 bio->bi_io_vec[i].bv_page = NULL; 165 } 166 bio_put(bio); 167 } 168 } 169 r10bio_pool_free(r10bio, conf); 170 } 171 172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->copies; i++) { 177 struct bio **bio = & r10_bio->devs[i].bio; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r10bio(r10bio_t *r10_bio) 185 { 186 conf_t *conf = mddev_to_conf(r10_bio->mddev); 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r10_bio); 195 mempool_free(r10_bio, conf->r10bio_pool); 196 } 197 198 static void put_buf(r10bio_t *r10_bio) 199 { 200 conf_t *conf = mddev_to_conf(r10_bio->mddev); 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 lower_barrier(conf); 205 } 206 207 static void reschedule_retry(r10bio_t *r10_bio) 208 { 209 unsigned long flags; 210 mddev_t *mddev = r10_bio->mddev; 211 conf_t *conf = mddev_to_conf(mddev); 212 213 spin_lock_irqsave(&conf->device_lock, flags); 214 list_add(&r10_bio->retry_list, &conf->retry_list); 215 conf->nr_queued ++; 216 spin_unlock_irqrestore(&conf->device_lock, flags); 217 218 md_wakeup_thread(mddev->thread); 219 } 220 221 /* 222 * raid_end_bio_io() is called when we have finished servicing a mirrored 223 * operation and are ready to return a success/failure code to the buffer 224 * cache layer. 225 */ 226 static void raid_end_bio_io(r10bio_t *r10_bio) 227 { 228 struct bio *bio = r10_bio->master_bio; 229 230 bio_endio(bio, 231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 232 free_r10bio(r10_bio); 233 } 234 235 /* 236 * Update disk head position estimator based on IRQ completion info. 237 */ 238 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 239 { 240 conf_t *conf = mddev_to_conf(r10_bio->mddev); 241 242 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 243 r10_bio->devs[slot].addr + (r10_bio->sectors); 244 } 245 246 static void raid10_end_read_request(struct bio *bio, int error) 247 { 248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 250 int slot, dev; 251 conf_t *conf = mddev_to_conf(r10_bio->mddev); 252 253 254 slot = r10_bio->read_slot; 255 dev = r10_bio->devs[slot].devnum; 256 /* 257 * this branch is our 'one mirror IO has finished' event handler: 258 */ 259 update_head_pos(slot, r10_bio); 260 261 if (uptodate) { 262 /* 263 * Set R10BIO_Uptodate in our master bio, so that 264 * we will return a good error code to the higher 265 * levels even if IO on some other mirrored buffer fails. 266 * 267 * The 'master' represents the composite IO operation to 268 * user-side. So if something waits for IO, then it will 269 * wait for the 'master' bio. 270 */ 271 set_bit(R10BIO_Uptodate, &r10_bio->state); 272 raid_end_bio_io(r10_bio); 273 } else { 274 /* 275 * oops, read error: 276 */ 277 char b[BDEVNAME_SIZE]; 278 if (printk_ratelimit()) 279 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 280 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 281 reschedule_retry(r10_bio); 282 } 283 284 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 285 } 286 287 static void raid10_end_write_request(struct bio *bio, int error) 288 { 289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 291 int slot, dev; 292 conf_t *conf = mddev_to_conf(r10_bio->mddev); 293 294 for (slot = 0; slot < conf->copies; slot++) 295 if (r10_bio->devs[slot].bio == bio) 296 break; 297 dev = r10_bio->devs[slot].devnum; 298 299 /* 300 * this branch is our 'one mirror IO has finished' event handler: 301 */ 302 if (!uptodate) { 303 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 304 /* an I/O failed, we can't clear the bitmap */ 305 set_bit(R10BIO_Degraded, &r10_bio->state); 306 } else 307 /* 308 * Set R10BIO_Uptodate in our master bio, so that 309 * we will return a good error code for to the higher 310 * levels even if IO on some other mirrored buffer fails. 311 * 312 * The 'master' represents the composite IO operation to 313 * user-side. So if something waits for IO, then it will 314 * wait for the 'master' bio. 315 */ 316 set_bit(R10BIO_Uptodate, &r10_bio->state); 317 318 update_head_pos(slot, r10_bio); 319 320 /* 321 * 322 * Let's see if all mirrored write operations have finished 323 * already. 324 */ 325 if (atomic_dec_and_test(&r10_bio->remaining)) { 326 /* clear the bitmap if all writes complete successfully */ 327 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 328 r10_bio->sectors, 329 !test_bit(R10BIO_Degraded, &r10_bio->state), 330 0); 331 md_write_end(r10_bio->mddev); 332 raid_end_bio_io(r10_bio); 333 } 334 335 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 336 } 337 338 339 /* 340 * RAID10 layout manager 341 * Aswell as the chunksize and raid_disks count, there are two 342 * parameters: near_copies and far_copies. 343 * near_copies * far_copies must be <= raid_disks. 344 * Normally one of these will be 1. 345 * If both are 1, we get raid0. 346 * If near_copies == raid_disks, we get raid1. 347 * 348 * Chunks are layed out in raid0 style with near_copies copies of the 349 * first chunk, followed by near_copies copies of the next chunk and 350 * so on. 351 * If far_copies > 1, then after 1/far_copies of the array has been assigned 352 * as described above, we start again with a device offset of near_copies. 353 * So we effectively have another copy of the whole array further down all 354 * the drives, but with blocks on different drives. 355 * With this layout, and block is never stored twice on the one device. 356 * 357 * raid10_find_phys finds the sector offset of a given virtual sector 358 * on each device that it is on. 359 * 360 * raid10_find_virt does the reverse mapping, from a device and a 361 * sector offset to a virtual address 362 */ 363 364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 365 { 366 int n,f; 367 sector_t sector; 368 sector_t chunk; 369 sector_t stripe; 370 int dev; 371 372 int slot = 0; 373 374 /* now calculate first sector/dev */ 375 chunk = r10bio->sector >> conf->chunk_shift; 376 sector = r10bio->sector & conf->chunk_mask; 377 378 chunk *= conf->near_copies; 379 stripe = chunk; 380 dev = sector_div(stripe, conf->raid_disks); 381 if (conf->far_offset) 382 stripe *= conf->far_copies; 383 384 sector += stripe << conf->chunk_shift; 385 386 /* and calculate all the others */ 387 for (n=0; n < conf->near_copies; n++) { 388 int d = dev; 389 sector_t s = sector; 390 r10bio->devs[slot].addr = sector; 391 r10bio->devs[slot].devnum = d; 392 slot++; 393 394 for (f = 1; f < conf->far_copies; f++) { 395 d += conf->near_copies; 396 if (d >= conf->raid_disks) 397 d -= conf->raid_disks; 398 s += conf->stride; 399 r10bio->devs[slot].devnum = d; 400 r10bio->devs[slot].addr = s; 401 slot++; 402 } 403 dev++; 404 if (dev >= conf->raid_disks) { 405 dev = 0; 406 sector += (conf->chunk_mask + 1); 407 } 408 } 409 BUG_ON(slot != conf->copies); 410 } 411 412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 413 { 414 sector_t offset, chunk, vchunk; 415 416 offset = sector & conf->chunk_mask; 417 if (conf->far_offset) { 418 int fc; 419 chunk = sector >> conf->chunk_shift; 420 fc = sector_div(chunk, conf->far_copies); 421 dev -= fc * conf->near_copies; 422 if (dev < 0) 423 dev += conf->raid_disks; 424 } else { 425 while (sector >= conf->stride) { 426 sector -= conf->stride; 427 if (dev < conf->near_copies) 428 dev += conf->raid_disks - conf->near_copies; 429 else 430 dev -= conf->near_copies; 431 } 432 chunk = sector >> conf->chunk_shift; 433 } 434 vchunk = chunk * conf->raid_disks + dev; 435 sector_div(vchunk, conf->near_copies); 436 return (vchunk << conf->chunk_shift) + offset; 437 } 438 439 /** 440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 441 * @q: request queue 442 * @bio: the buffer head that's been built up so far 443 * @biovec: the request that could be merged to it. 444 * 445 * Return amount of bytes we can accept at this offset 446 * If near_copies == raid_disk, there are no striping issues, 447 * but in that case, the function isn't called at all. 448 */ 449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio, 450 struct bio_vec *bio_vec) 451 { 452 mddev_t *mddev = q->queuedata; 453 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 454 int max; 455 unsigned int chunk_sectors = mddev->chunk_size >> 9; 456 unsigned int bio_sectors = bio->bi_size >> 9; 457 458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 459 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 460 if (max <= bio_vec->bv_len && bio_sectors == 0) 461 return bio_vec->bv_len; 462 else 463 return max; 464 } 465 466 /* 467 * This routine returns the disk from which the requested read should 468 * be done. There is a per-array 'next expected sequential IO' sector 469 * number - if this matches on the next IO then we use the last disk. 470 * There is also a per-disk 'last know head position' sector that is 471 * maintained from IRQ contexts, both the normal and the resync IO 472 * completion handlers update this position correctly. If there is no 473 * perfect sequential match then we pick the disk whose head is closest. 474 * 475 * If there are 2 mirrors in the same 2 devices, performance degrades 476 * because position is mirror, not device based. 477 * 478 * The rdev for the device selected will have nr_pending incremented. 479 */ 480 481 /* 482 * FIXME: possibly should rethink readbalancing and do it differently 483 * depending on near_copies / far_copies geometry. 484 */ 485 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 486 { 487 const unsigned long this_sector = r10_bio->sector; 488 int disk, slot, nslot; 489 const int sectors = r10_bio->sectors; 490 sector_t new_distance, current_distance; 491 mdk_rdev_t *rdev; 492 493 raid10_find_phys(conf, r10_bio); 494 rcu_read_lock(); 495 /* 496 * Check if we can balance. We can balance on the whole 497 * device if no resync is going on (recovery is ok), or below 498 * the resync window. We take the first readable disk when 499 * above the resync window. 500 */ 501 if (conf->mddev->recovery_cp < MaxSector 502 && (this_sector + sectors >= conf->next_resync)) { 503 /* make sure that disk is operational */ 504 slot = 0; 505 disk = r10_bio->devs[slot].devnum; 506 507 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 508 r10_bio->devs[slot].bio == IO_BLOCKED || 509 !test_bit(In_sync, &rdev->flags)) { 510 slot++; 511 if (slot == conf->copies) { 512 slot = 0; 513 disk = -1; 514 break; 515 } 516 disk = r10_bio->devs[slot].devnum; 517 } 518 goto rb_out; 519 } 520 521 522 /* make sure the disk is operational */ 523 slot = 0; 524 disk = r10_bio->devs[slot].devnum; 525 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 526 r10_bio->devs[slot].bio == IO_BLOCKED || 527 !test_bit(In_sync, &rdev->flags)) { 528 slot ++; 529 if (slot == conf->copies) { 530 disk = -1; 531 goto rb_out; 532 } 533 disk = r10_bio->devs[slot].devnum; 534 } 535 536 537 current_distance = abs(r10_bio->devs[slot].addr - 538 conf->mirrors[disk].head_position); 539 540 /* Find the disk whose head is closest */ 541 542 for (nslot = slot; nslot < conf->copies; nslot++) { 543 int ndisk = r10_bio->devs[nslot].devnum; 544 545 546 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 547 r10_bio->devs[nslot].bio == IO_BLOCKED || 548 !test_bit(In_sync, &rdev->flags)) 549 continue; 550 551 /* This optimisation is debatable, and completely destroys 552 * sequential read speed for 'far copies' arrays. So only 553 * keep it for 'near' arrays, and review those later. 554 */ 555 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 556 disk = ndisk; 557 slot = nslot; 558 break; 559 } 560 new_distance = abs(r10_bio->devs[nslot].addr - 561 conf->mirrors[ndisk].head_position); 562 if (new_distance < current_distance) { 563 current_distance = new_distance; 564 disk = ndisk; 565 slot = nslot; 566 } 567 } 568 569 rb_out: 570 r10_bio->read_slot = slot; 571 /* conf->next_seq_sect = this_sector + sectors;*/ 572 573 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 574 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 575 else 576 disk = -1; 577 rcu_read_unlock(); 578 579 return disk; 580 } 581 582 static void unplug_slaves(mddev_t *mddev) 583 { 584 conf_t *conf = mddev_to_conf(mddev); 585 int i; 586 587 rcu_read_lock(); 588 for (i=0; i<mddev->raid_disks; i++) { 589 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 590 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 591 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 592 593 atomic_inc(&rdev->nr_pending); 594 rcu_read_unlock(); 595 596 if (r_queue->unplug_fn) 597 r_queue->unplug_fn(r_queue); 598 599 rdev_dec_pending(rdev, mddev); 600 rcu_read_lock(); 601 } 602 } 603 rcu_read_unlock(); 604 } 605 606 static void raid10_unplug(struct request_queue *q) 607 { 608 mddev_t *mddev = q->queuedata; 609 610 unplug_slaves(q->queuedata); 611 md_wakeup_thread(mddev->thread); 612 } 613 614 static int raid10_issue_flush(struct request_queue *q, struct gendisk *disk, 615 sector_t *error_sector) 616 { 617 mddev_t *mddev = q->queuedata; 618 conf_t *conf = mddev_to_conf(mddev); 619 int i, ret = 0; 620 621 rcu_read_lock(); 622 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 623 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 624 if (rdev && !test_bit(Faulty, &rdev->flags)) { 625 struct block_device *bdev = rdev->bdev; 626 struct request_queue *r_queue = bdev_get_queue(bdev); 627 628 if (!r_queue->issue_flush_fn) 629 ret = -EOPNOTSUPP; 630 else { 631 atomic_inc(&rdev->nr_pending); 632 rcu_read_unlock(); 633 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 634 error_sector); 635 rdev_dec_pending(rdev, mddev); 636 rcu_read_lock(); 637 } 638 } 639 } 640 rcu_read_unlock(); 641 return ret; 642 } 643 644 static int raid10_congested(void *data, int bits) 645 { 646 mddev_t *mddev = data; 647 conf_t *conf = mddev_to_conf(mddev); 648 int i, ret = 0; 649 650 rcu_read_lock(); 651 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 652 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 653 if (rdev && !test_bit(Faulty, &rdev->flags)) { 654 struct request_queue *q = bdev_get_queue(rdev->bdev); 655 656 ret |= bdi_congested(&q->backing_dev_info, bits); 657 } 658 } 659 rcu_read_unlock(); 660 return ret; 661 } 662 663 664 /* Barriers.... 665 * Sometimes we need to suspend IO while we do something else, 666 * either some resync/recovery, or reconfigure the array. 667 * To do this we raise a 'barrier'. 668 * The 'barrier' is a counter that can be raised multiple times 669 * to count how many activities are happening which preclude 670 * normal IO. 671 * We can only raise the barrier if there is no pending IO. 672 * i.e. if nr_pending == 0. 673 * We choose only to raise the barrier if no-one is waiting for the 674 * barrier to go down. This means that as soon as an IO request 675 * is ready, no other operations which require a barrier will start 676 * until the IO request has had a chance. 677 * 678 * So: regular IO calls 'wait_barrier'. When that returns there 679 * is no backgroup IO happening, It must arrange to call 680 * allow_barrier when it has finished its IO. 681 * backgroup IO calls must call raise_barrier. Once that returns 682 * there is no normal IO happeing. It must arrange to call 683 * lower_barrier when the particular background IO completes. 684 */ 685 #define RESYNC_DEPTH 32 686 687 static void raise_barrier(conf_t *conf, int force) 688 { 689 BUG_ON(force && !conf->barrier); 690 spin_lock_irq(&conf->resync_lock); 691 692 /* Wait until no block IO is waiting (unless 'force') */ 693 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 694 conf->resync_lock, 695 raid10_unplug(conf->mddev->queue)); 696 697 /* block any new IO from starting */ 698 conf->barrier++; 699 700 /* No wait for all pending IO to complete */ 701 wait_event_lock_irq(conf->wait_barrier, 702 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 703 conf->resync_lock, 704 raid10_unplug(conf->mddev->queue)); 705 706 spin_unlock_irq(&conf->resync_lock); 707 } 708 709 static void lower_barrier(conf_t *conf) 710 { 711 unsigned long flags; 712 spin_lock_irqsave(&conf->resync_lock, flags); 713 conf->barrier--; 714 spin_unlock_irqrestore(&conf->resync_lock, flags); 715 wake_up(&conf->wait_barrier); 716 } 717 718 static void wait_barrier(conf_t *conf) 719 { 720 spin_lock_irq(&conf->resync_lock); 721 if (conf->barrier) { 722 conf->nr_waiting++; 723 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 724 conf->resync_lock, 725 raid10_unplug(conf->mddev->queue)); 726 conf->nr_waiting--; 727 } 728 conf->nr_pending++; 729 spin_unlock_irq(&conf->resync_lock); 730 } 731 732 static void allow_barrier(conf_t *conf) 733 { 734 unsigned long flags; 735 spin_lock_irqsave(&conf->resync_lock, flags); 736 conf->nr_pending--; 737 spin_unlock_irqrestore(&conf->resync_lock, flags); 738 wake_up(&conf->wait_barrier); 739 } 740 741 static void freeze_array(conf_t *conf) 742 { 743 /* stop syncio and normal IO and wait for everything to 744 * go quiet. 745 * We increment barrier and nr_waiting, and then 746 * wait until barrier+nr_pending match nr_queued+2 747 */ 748 spin_lock_irq(&conf->resync_lock); 749 conf->barrier++; 750 conf->nr_waiting++; 751 wait_event_lock_irq(conf->wait_barrier, 752 conf->barrier+conf->nr_pending == conf->nr_queued+2, 753 conf->resync_lock, 754 raid10_unplug(conf->mddev->queue)); 755 spin_unlock_irq(&conf->resync_lock); 756 } 757 758 static void unfreeze_array(conf_t *conf) 759 { 760 /* reverse the effect of the freeze */ 761 spin_lock_irq(&conf->resync_lock); 762 conf->barrier--; 763 conf->nr_waiting--; 764 wake_up(&conf->wait_barrier); 765 spin_unlock_irq(&conf->resync_lock); 766 } 767 768 static int make_request(struct request_queue *q, struct bio * bio) 769 { 770 mddev_t *mddev = q->queuedata; 771 conf_t *conf = mddev_to_conf(mddev); 772 mirror_info_t *mirror; 773 r10bio_t *r10_bio; 774 struct bio *read_bio; 775 int i; 776 int chunk_sects = conf->chunk_mask + 1; 777 const int rw = bio_data_dir(bio); 778 const int do_sync = bio_sync(bio); 779 struct bio_list bl; 780 unsigned long flags; 781 782 if (unlikely(bio_barrier(bio))) { 783 bio_endio(bio, -EOPNOTSUPP); 784 return 0; 785 } 786 787 /* If this request crosses a chunk boundary, we need to 788 * split it. This will only happen for 1 PAGE (or less) requests. 789 */ 790 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 791 > chunk_sects && 792 conf->near_copies < conf->raid_disks)) { 793 struct bio_pair *bp; 794 /* Sanity check -- queue functions should prevent this happening */ 795 if (bio->bi_vcnt != 1 || 796 bio->bi_idx != 0) 797 goto bad_map; 798 /* This is a one page bio that upper layers 799 * refuse to split for us, so we need to split it. 800 */ 801 bp = bio_split(bio, bio_split_pool, 802 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 803 if (make_request(q, &bp->bio1)) 804 generic_make_request(&bp->bio1); 805 if (make_request(q, &bp->bio2)) 806 generic_make_request(&bp->bio2); 807 808 bio_pair_release(bp); 809 return 0; 810 bad_map: 811 printk("raid10_make_request bug: can't convert block across chunks" 812 " or bigger than %dk %llu %d\n", chunk_sects/2, 813 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 814 815 bio_io_error(bio); 816 return 0; 817 } 818 819 md_write_start(mddev, bio); 820 821 /* 822 * Register the new request and wait if the reconstruction 823 * thread has put up a bar for new requests. 824 * Continue immediately if no resync is active currently. 825 */ 826 wait_barrier(conf); 827 828 disk_stat_inc(mddev->gendisk, ios[rw]); 829 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 830 831 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 832 833 r10_bio->master_bio = bio; 834 r10_bio->sectors = bio->bi_size >> 9; 835 836 r10_bio->mddev = mddev; 837 r10_bio->sector = bio->bi_sector; 838 r10_bio->state = 0; 839 840 if (rw == READ) { 841 /* 842 * read balancing logic: 843 */ 844 int disk = read_balance(conf, r10_bio); 845 int slot = r10_bio->read_slot; 846 if (disk < 0) { 847 raid_end_bio_io(r10_bio); 848 return 0; 849 } 850 mirror = conf->mirrors + disk; 851 852 read_bio = bio_clone(bio, GFP_NOIO); 853 854 r10_bio->devs[slot].bio = read_bio; 855 856 read_bio->bi_sector = r10_bio->devs[slot].addr + 857 mirror->rdev->data_offset; 858 read_bio->bi_bdev = mirror->rdev->bdev; 859 read_bio->bi_end_io = raid10_end_read_request; 860 read_bio->bi_rw = READ | do_sync; 861 read_bio->bi_private = r10_bio; 862 863 generic_make_request(read_bio); 864 return 0; 865 } 866 867 /* 868 * WRITE: 869 */ 870 /* first select target devices under spinlock and 871 * inc refcount on their rdev. Record them by setting 872 * bios[x] to bio 873 */ 874 raid10_find_phys(conf, r10_bio); 875 rcu_read_lock(); 876 for (i = 0; i < conf->copies; i++) { 877 int d = r10_bio->devs[i].devnum; 878 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 879 if (rdev && 880 !test_bit(Faulty, &rdev->flags)) { 881 atomic_inc(&rdev->nr_pending); 882 r10_bio->devs[i].bio = bio; 883 } else { 884 r10_bio->devs[i].bio = NULL; 885 set_bit(R10BIO_Degraded, &r10_bio->state); 886 } 887 } 888 rcu_read_unlock(); 889 890 atomic_set(&r10_bio->remaining, 0); 891 892 bio_list_init(&bl); 893 for (i = 0; i < conf->copies; i++) { 894 struct bio *mbio; 895 int d = r10_bio->devs[i].devnum; 896 if (!r10_bio->devs[i].bio) 897 continue; 898 899 mbio = bio_clone(bio, GFP_NOIO); 900 r10_bio->devs[i].bio = mbio; 901 902 mbio->bi_sector = r10_bio->devs[i].addr+ 903 conf->mirrors[d].rdev->data_offset; 904 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 905 mbio->bi_end_io = raid10_end_write_request; 906 mbio->bi_rw = WRITE | do_sync; 907 mbio->bi_private = r10_bio; 908 909 atomic_inc(&r10_bio->remaining); 910 bio_list_add(&bl, mbio); 911 } 912 913 if (unlikely(!atomic_read(&r10_bio->remaining))) { 914 /* the array is dead */ 915 md_write_end(mddev); 916 raid_end_bio_io(r10_bio); 917 return 0; 918 } 919 920 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 921 spin_lock_irqsave(&conf->device_lock, flags); 922 bio_list_merge(&conf->pending_bio_list, &bl); 923 blk_plug_device(mddev->queue); 924 spin_unlock_irqrestore(&conf->device_lock, flags); 925 926 if (do_sync) 927 md_wakeup_thread(mddev->thread); 928 929 return 0; 930 } 931 932 static void status(struct seq_file *seq, mddev_t *mddev) 933 { 934 conf_t *conf = mddev_to_conf(mddev); 935 int i; 936 937 if (conf->near_copies < conf->raid_disks) 938 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 939 if (conf->near_copies > 1) 940 seq_printf(seq, " %d near-copies", conf->near_copies); 941 if (conf->far_copies > 1) { 942 if (conf->far_offset) 943 seq_printf(seq, " %d offset-copies", conf->far_copies); 944 else 945 seq_printf(seq, " %d far-copies", conf->far_copies); 946 } 947 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 948 conf->raid_disks - mddev->degraded); 949 for (i = 0; i < conf->raid_disks; i++) 950 seq_printf(seq, "%s", 951 conf->mirrors[i].rdev && 952 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 953 seq_printf(seq, "]"); 954 } 955 956 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 957 { 958 char b[BDEVNAME_SIZE]; 959 conf_t *conf = mddev_to_conf(mddev); 960 961 /* 962 * If it is not operational, then we have already marked it as dead 963 * else if it is the last working disks, ignore the error, let the 964 * next level up know. 965 * else mark the drive as failed 966 */ 967 if (test_bit(In_sync, &rdev->flags) 968 && conf->raid_disks-mddev->degraded == 1) 969 /* 970 * Don't fail the drive, just return an IO error. 971 * The test should really be more sophisticated than 972 * "working_disks == 1", but it isn't critical, and 973 * can wait until we do more sophisticated "is the drive 974 * really dead" tests... 975 */ 976 return; 977 if (test_and_clear_bit(In_sync, &rdev->flags)) { 978 unsigned long flags; 979 spin_lock_irqsave(&conf->device_lock, flags); 980 mddev->degraded++; 981 spin_unlock_irqrestore(&conf->device_lock, flags); 982 /* 983 * if recovery is running, make sure it aborts. 984 */ 985 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 986 } 987 set_bit(Faulty, &rdev->flags); 988 set_bit(MD_CHANGE_DEVS, &mddev->flags); 989 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 990 " Operation continuing on %d devices\n", 991 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 992 } 993 994 static void print_conf(conf_t *conf) 995 { 996 int i; 997 mirror_info_t *tmp; 998 999 printk("RAID10 conf printout:\n"); 1000 if (!conf) { 1001 printk("(!conf)\n"); 1002 return; 1003 } 1004 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1005 conf->raid_disks); 1006 1007 for (i = 0; i < conf->raid_disks; i++) { 1008 char b[BDEVNAME_SIZE]; 1009 tmp = conf->mirrors + i; 1010 if (tmp->rdev) 1011 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1012 i, !test_bit(In_sync, &tmp->rdev->flags), 1013 !test_bit(Faulty, &tmp->rdev->flags), 1014 bdevname(tmp->rdev->bdev,b)); 1015 } 1016 } 1017 1018 static void close_sync(conf_t *conf) 1019 { 1020 wait_barrier(conf); 1021 allow_barrier(conf); 1022 1023 mempool_destroy(conf->r10buf_pool); 1024 conf->r10buf_pool = NULL; 1025 } 1026 1027 /* check if there are enough drives for 1028 * every block to appear on atleast one 1029 */ 1030 static int enough(conf_t *conf) 1031 { 1032 int first = 0; 1033 1034 do { 1035 int n = conf->copies; 1036 int cnt = 0; 1037 while (n--) { 1038 if (conf->mirrors[first].rdev) 1039 cnt++; 1040 first = (first+1) % conf->raid_disks; 1041 } 1042 if (cnt == 0) 1043 return 0; 1044 } while (first != 0); 1045 return 1; 1046 } 1047 1048 static int raid10_spare_active(mddev_t *mddev) 1049 { 1050 int i; 1051 conf_t *conf = mddev->private; 1052 mirror_info_t *tmp; 1053 1054 /* 1055 * Find all non-in_sync disks within the RAID10 configuration 1056 * and mark them in_sync 1057 */ 1058 for (i = 0; i < conf->raid_disks; i++) { 1059 tmp = conf->mirrors + i; 1060 if (tmp->rdev 1061 && !test_bit(Faulty, &tmp->rdev->flags) 1062 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1063 unsigned long flags; 1064 spin_lock_irqsave(&conf->device_lock, flags); 1065 mddev->degraded--; 1066 spin_unlock_irqrestore(&conf->device_lock, flags); 1067 } 1068 } 1069 1070 print_conf(conf); 1071 return 0; 1072 } 1073 1074 1075 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1076 { 1077 conf_t *conf = mddev->private; 1078 int found = 0; 1079 int mirror; 1080 mirror_info_t *p; 1081 1082 if (mddev->recovery_cp < MaxSector) 1083 /* only hot-add to in-sync arrays, as recovery is 1084 * very different from resync 1085 */ 1086 return 0; 1087 if (!enough(conf)) 1088 return 0; 1089 1090 if (rdev->saved_raid_disk >= 0 && 1091 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1092 mirror = rdev->saved_raid_disk; 1093 else 1094 mirror = 0; 1095 for ( ; mirror < mddev->raid_disks; mirror++) 1096 if ( !(p=conf->mirrors+mirror)->rdev) { 1097 1098 blk_queue_stack_limits(mddev->queue, 1099 rdev->bdev->bd_disk->queue); 1100 /* as we don't honour merge_bvec_fn, we must never risk 1101 * violating it, so limit ->max_sector to one PAGE, as 1102 * a one page request is never in violation. 1103 */ 1104 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1105 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1106 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1107 1108 p->head_position = 0; 1109 rdev->raid_disk = mirror; 1110 found = 1; 1111 if (rdev->saved_raid_disk != mirror) 1112 conf->fullsync = 1; 1113 rcu_assign_pointer(p->rdev, rdev); 1114 break; 1115 } 1116 1117 print_conf(conf); 1118 return found; 1119 } 1120 1121 static int raid10_remove_disk(mddev_t *mddev, int number) 1122 { 1123 conf_t *conf = mddev->private; 1124 int err = 0; 1125 mdk_rdev_t *rdev; 1126 mirror_info_t *p = conf->mirrors+ number; 1127 1128 print_conf(conf); 1129 rdev = p->rdev; 1130 if (rdev) { 1131 if (test_bit(In_sync, &rdev->flags) || 1132 atomic_read(&rdev->nr_pending)) { 1133 err = -EBUSY; 1134 goto abort; 1135 } 1136 p->rdev = NULL; 1137 synchronize_rcu(); 1138 if (atomic_read(&rdev->nr_pending)) { 1139 /* lost the race, try later */ 1140 err = -EBUSY; 1141 p->rdev = rdev; 1142 } 1143 } 1144 abort: 1145 1146 print_conf(conf); 1147 return err; 1148 } 1149 1150 1151 static void end_sync_read(struct bio *bio, int error) 1152 { 1153 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1154 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1155 int i,d; 1156 1157 for (i=0; i<conf->copies; i++) 1158 if (r10_bio->devs[i].bio == bio) 1159 break; 1160 BUG_ON(i == conf->copies); 1161 update_head_pos(i, r10_bio); 1162 d = r10_bio->devs[i].devnum; 1163 1164 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1165 set_bit(R10BIO_Uptodate, &r10_bio->state); 1166 else { 1167 atomic_add(r10_bio->sectors, 1168 &conf->mirrors[d].rdev->corrected_errors); 1169 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1170 md_error(r10_bio->mddev, 1171 conf->mirrors[d].rdev); 1172 } 1173 1174 /* for reconstruct, we always reschedule after a read. 1175 * for resync, only after all reads 1176 */ 1177 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1178 atomic_dec_and_test(&r10_bio->remaining)) { 1179 /* we have read all the blocks, 1180 * do the comparison in process context in raid10d 1181 */ 1182 reschedule_retry(r10_bio); 1183 } 1184 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1185 } 1186 1187 static void end_sync_write(struct bio *bio, int error) 1188 { 1189 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1190 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1191 mddev_t *mddev = r10_bio->mddev; 1192 conf_t *conf = mddev_to_conf(mddev); 1193 int i,d; 1194 1195 for (i = 0; i < conf->copies; i++) 1196 if (r10_bio->devs[i].bio == bio) 1197 break; 1198 d = r10_bio->devs[i].devnum; 1199 1200 if (!uptodate) 1201 md_error(mddev, conf->mirrors[d].rdev); 1202 update_head_pos(i, r10_bio); 1203 1204 while (atomic_dec_and_test(&r10_bio->remaining)) { 1205 if (r10_bio->master_bio == NULL) { 1206 /* the primary of several recovery bios */ 1207 md_done_sync(mddev, r10_bio->sectors, 1); 1208 put_buf(r10_bio); 1209 break; 1210 } else { 1211 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1212 put_buf(r10_bio); 1213 r10_bio = r10_bio2; 1214 } 1215 } 1216 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1217 } 1218 1219 /* 1220 * Note: sync and recover and handled very differently for raid10 1221 * This code is for resync. 1222 * For resync, we read through virtual addresses and read all blocks. 1223 * If there is any error, we schedule a write. The lowest numbered 1224 * drive is authoritative. 1225 * However requests come for physical address, so we need to map. 1226 * For every physical address there are raid_disks/copies virtual addresses, 1227 * which is always are least one, but is not necessarly an integer. 1228 * This means that a physical address can span multiple chunks, so we may 1229 * have to submit multiple io requests for a single sync request. 1230 */ 1231 /* 1232 * We check if all blocks are in-sync and only write to blocks that 1233 * aren't in sync 1234 */ 1235 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1236 { 1237 conf_t *conf = mddev_to_conf(mddev); 1238 int i, first; 1239 struct bio *tbio, *fbio; 1240 1241 atomic_set(&r10_bio->remaining, 1); 1242 1243 /* find the first device with a block */ 1244 for (i=0; i<conf->copies; i++) 1245 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1246 break; 1247 1248 if (i == conf->copies) 1249 goto done; 1250 1251 first = i; 1252 fbio = r10_bio->devs[i].bio; 1253 1254 /* now find blocks with errors */ 1255 for (i=0 ; i < conf->copies ; i++) { 1256 int j, d; 1257 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1258 1259 tbio = r10_bio->devs[i].bio; 1260 1261 if (tbio->bi_end_io != end_sync_read) 1262 continue; 1263 if (i == first) 1264 continue; 1265 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1266 /* We know that the bi_io_vec layout is the same for 1267 * both 'first' and 'i', so we just compare them. 1268 * All vec entries are PAGE_SIZE; 1269 */ 1270 for (j = 0; j < vcnt; j++) 1271 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1272 page_address(tbio->bi_io_vec[j].bv_page), 1273 PAGE_SIZE)) 1274 break; 1275 if (j == vcnt) 1276 continue; 1277 mddev->resync_mismatches += r10_bio->sectors; 1278 } 1279 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1280 /* Don't fix anything. */ 1281 continue; 1282 /* Ok, we need to write this bio 1283 * First we need to fixup bv_offset, bv_len and 1284 * bi_vecs, as the read request might have corrupted these 1285 */ 1286 tbio->bi_vcnt = vcnt; 1287 tbio->bi_size = r10_bio->sectors << 9; 1288 tbio->bi_idx = 0; 1289 tbio->bi_phys_segments = 0; 1290 tbio->bi_hw_segments = 0; 1291 tbio->bi_hw_front_size = 0; 1292 tbio->bi_hw_back_size = 0; 1293 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1294 tbio->bi_flags |= 1 << BIO_UPTODATE; 1295 tbio->bi_next = NULL; 1296 tbio->bi_rw = WRITE; 1297 tbio->bi_private = r10_bio; 1298 tbio->bi_sector = r10_bio->devs[i].addr; 1299 1300 for (j=0; j < vcnt ; j++) { 1301 tbio->bi_io_vec[j].bv_offset = 0; 1302 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1303 1304 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1305 page_address(fbio->bi_io_vec[j].bv_page), 1306 PAGE_SIZE); 1307 } 1308 tbio->bi_end_io = end_sync_write; 1309 1310 d = r10_bio->devs[i].devnum; 1311 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1312 atomic_inc(&r10_bio->remaining); 1313 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1314 1315 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1316 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1317 generic_make_request(tbio); 1318 } 1319 1320 done: 1321 if (atomic_dec_and_test(&r10_bio->remaining)) { 1322 md_done_sync(mddev, r10_bio->sectors, 1); 1323 put_buf(r10_bio); 1324 } 1325 } 1326 1327 /* 1328 * Now for the recovery code. 1329 * Recovery happens across physical sectors. 1330 * We recover all non-is_sync drives by finding the virtual address of 1331 * each, and then choose a working drive that also has that virt address. 1332 * There is a separate r10_bio for each non-in_sync drive. 1333 * Only the first two slots are in use. The first for reading, 1334 * The second for writing. 1335 * 1336 */ 1337 1338 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1339 { 1340 conf_t *conf = mddev_to_conf(mddev); 1341 int i, d; 1342 struct bio *bio, *wbio; 1343 1344 1345 /* move the pages across to the second bio 1346 * and submit the write request 1347 */ 1348 bio = r10_bio->devs[0].bio; 1349 wbio = r10_bio->devs[1].bio; 1350 for (i=0; i < wbio->bi_vcnt; i++) { 1351 struct page *p = bio->bi_io_vec[i].bv_page; 1352 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1353 wbio->bi_io_vec[i].bv_page = p; 1354 } 1355 d = r10_bio->devs[1].devnum; 1356 1357 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1358 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1359 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1360 generic_make_request(wbio); 1361 else 1362 bio_endio(wbio, -EIO); 1363 } 1364 1365 1366 /* 1367 * This is a kernel thread which: 1368 * 1369 * 1. Retries failed read operations on working mirrors. 1370 * 2. Updates the raid superblock when problems encounter. 1371 * 3. Performs writes following reads for array synchronising. 1372 */ 1373 1374 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1375 { 1376 int sect = 0; /* Offset from r10_bio->sector */ 1377 int sectors = r10_bio->sectors; 1378 mdk_rdev_t*rdev; 1379 while(sectors) { 1380 int s = sectors; 1381 int sl = r10_bio->read_slot; 1382 int success = 0; 1383 int start; 1384 1385 if (s > (PAGE_SIZE>>9)) 1386 s = PAGE_SIZE >> 9; 1387 1388 rcu_read_lock(); 1389 do { 1390 int d = r10_bio->devs[sl].devnum; 1391 rdev = rcu_dereference(conf->mirrors[d].rdev); 1392 if (rdev && 1393 test_bit(In_sync, &rdev->flags)) { 1394 atomic_inc(&rdev->nr_pending); 1395 rcu_read_unlock(); 1396 success = sync_page_io(rdev->bdev, 1397 r10_bio->devs[sl].addr + 1398 sect + rdev->data_offset, 1399 s<<9, 1400 conf->tmppage, READ); 1401 rdev_dec_pending(rdev, mddev); 1402 rcu_read_lock(); 1403 if (success) 1404 break; 1405 } 1406 sl++; 1407 if (sl == conf->copies) 1408 sl = 0; 1409 } while (!success && sl != r10_bio->read_slot); 1410 rcu_read_unlock(); 1411 1412 if (!success) { 1413 /* Cannot read from anywhere -- bye bye array */ 1414 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1415 md_error(mddev, conf->mirrors[dn].rdev); 1416 break; 1417 } 1418 1419 start = sl; 1420 /* write it back and re-read */ 1421 rcu_read_lock(); 1422 while (sl != r10_bio->read_slot) { 1423 int d; 1424 if (sl==0) 1425 sl = conf->copies; 1426 sl--; 1427 d = r10_bio->devs[sl].devnum; 1428 rdev = rcu_dereference(conf->mirrors[d].rdev); 1429 if (rdev && 1430 test_bit(In_sync, &rdev->flags)) { 1431 atomic_inc(&rdev->nr_pending); 1432 rcu_read_unlock(); 1433 atomic_add(s, &rdev->corrected_errors); 1434 if (sync_page_io(rdev->bdev, 1435 r10_bio->devs[sl].addr + 1436 sect + rdev->data_offset, 1437 s<<9, conf->tmppage, WRITE) 1438 == 0) 1439 /* Well, this device is dead */ 1440 md_error(mddev, rdev); 1441 rdev_dec_pending(rdev, mddev); 1442 rcu_read_lock(); 1443 } 1444 } 1445 sl = start; 1446 while (sl != r10_bio->read_slot) { 1447 int d; 1448 if (sl==0) 1449 sl = conf->copies; 1450 sl--; 1451 d = r10_bio->devs[sl].devnum; 1452 rdev = rcu_dereference(conf->mirrors[d].rdev); 1453 if (rdev && 1454 test_bit(In_sync, &rdev->flags)) { 1455 char b[BDEVNAME_SIZE]; 1456 atomic_inc(&rdev->nr_pending); 1457 rcu_read_unlock(); 1458 if (sync_page_io(rdev->bdev, 1459 r10_bio->devs[sl].addr + 1460 sect + rdev->data_offset, 1461 s<<9, conf->tmppage, READ) == 0) 1462 /* Well, this device is dead */ 1463 md_error(mddev, rdev); 1464 else 1465 printk(KERN_INFO 1466 "raid10:%s: read error corrected" 1467 " (%d sectors at %llu on %s)\n", 1468 mdname(mddev), s, 1469 (unsigned long long)(sect+ 1470 rdev->data_offset), 1471 bdevname(rdev->bdev, b)); 1472 1473 rdev_dec_pending(rdev, mddev); 1474 rcu_read_lock(); 1475 } 1476 } 1477 rcu_read_unlock(); 1478 1479 sectors -= s; 1480 sect += s; 1481 } 1482 } 1483 1484 static void raid10d(mddev_t *mddev) 1485 { 1486 r10bio_t *r10_bio; 1487 struct bio *bio; 1488 unsigned long flags; 1489 conf_t *conf = mddev_to_conf(mddev); 1490 struct list_head *head = &conf->retry_list; 1491 int unplug=0; 1492 mdk_rdev_t *rdev; 1493 1494 md_check_recovery(mddev); 1495 1496 for (;;) { 1497 char b[BDEVNAME_SIZE]; 1498 spin_lock_irqsave(&conf->device_lock, flags); 1499 1500 if (conf->pending_bio_list.head) { 1501 bio = bio_list_get(&conf->pending_bio_list); 1502 blk_remove_plug(mddev->queue); 1503 spin_unlock_irqrestore(&conf->device_lock, flags); 1504 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1505 bitmap_unplug(mddev->bitmap); 1506 1507 while (bio) { /* submit pending writes */ 1508 struct bio *next = bio->bi_next; 1509 bio->bi_next = NULL; 1510 generic_make_request(bio); 1511 bio = next; 1512 } 1513 unplug = 1; 1514 1515 continue; 1516 } 1517 1518 if (list_empty(head)) 1519 break; 1520 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1521 list_del(head->prev); 1522 conf->nr_queued--; 1523 spin_unlock_irqrestore(&conf->device_lock, flags); 1524 1525 mddev = r10_bio->mddev; 1526 conf = mddev_to_conf(mddev); 1527 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1528 sync_request_write(mddev, r10_bio); 1529 unplug = 1; 1530 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1531 recovery_request_write(mddev, r10_bio); 1532 unplug = 1; 1533 } else { 1534 int mirror; 1535 /* we got a read error. Maybe the drive is bad. Maybe just 1536 * the block and we can fix it. 1537 * We freeze all other IO, and try reading the block from 1538 * other devices. When we find one, we re-write 1539 * and check it that fixes the read error. 1540 * This is all done synchronously while the array is 1541 * frozen. 1542 */ 1543 if (mddev->ro == 0) { 1544 freeze_array(conf); 1545 fix_read_error(conf, mddev, r10_bio); 1546 unfreeze_array(conf); 1547 } 1548 1549 bio = r10_bio->devs[r10_bio->read_slot].bio; 1550 r10_bio->devs[r10_bio->read_slot].bio = 1551 mddev->ro ? IO_BLOCKED : NULL; 1552 mirror = read_balance(conf, r10_bio); 1553 if (mirror == -1) { 1554 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1555 " read error for block %llu\n", 1556 bdevname(bio->bi_bdev,b), 1557 (unsigned long long)r10_bio->sector); 1558 raid_end_bio_io(r10_bio); 1559 bio_put(bio); 1560 } else { 1561 const int do_sync = bio_sync(r10_bio->master_bio); 1562 bio_put(bio); 1563 rdev = conf->mirrors[mirror].rdev; 1564 if (printk_ratelimit()) 1565 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1566 " another mirror\n", 1567 bdevname(rdev->bdev,b), 1568 (unsigned long long)r10_bio->sector); 1569 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1570 r10_bio->devs[r10_bio->read_slot].bio = bio; 1571 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1572 + rdev->data_offset; 1573 bio->bi_bdev = rdev->bdev; 1574 bio->bi_rw = READ | do_sync; 1575 bio->bi_private = r10_bio; 1576 bio->bi_end_io = raid10_end_read_request; 1577 unplug = 1; 1578 generic_make_request(bio); 1579 } 1580 } 1581 } 1582 spin_unlock_irqrestore(&conf->device_lock, flags); 1583 if (unplug) 1584 unplug_slaves(mddev); 1585 } 1586 1587 1588 static int init_resync(conf_t *conf) 1589 { 1590 int buffs; 1591 1592 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1593 BUG_ON(conf->r10buf_pool); 1594 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1595 if (!conf->r10buf_pool) 1596 return -ENOMEM; 1597 conf->next_resync = 0; 1598 return 0; 1599 } 1600 1601 /* 1602 * perform a "sync" on one "block" 1603 * 1604 * We need to make sure that no normal I/O request - particularly write 1605 * requests - conflict with active sync requests. 1606 * 1607 * This is achieved by tracking pending requests and a 'barrier' concept 1608 * that can be installed to exclude normal IO requests. 1609 * 1610 * Resync and recovery are handled very differently. 1611 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1612 * 1613 * For resync, we iterate over virtual addresses, read all copies, 1614 * and update if there are differences. If only one copy is live, 1615 * skip it. 1616 * For recovery, we iterate over physical addresses, read a good 1617 * value for each non-in_sync drive, and over-write. 1618 * 1619 * So, for recovery we may have several outstanding complex requests for a 1620 * given address, one for each out-of-sync device. We model this by allocating 1621 * a number of r10_bio structures, one for each out-of-sync device. 1622 * As we setup these structures, we collect all bio's together into a list 1623 * which we then process collectively to add pages, and then process again 1624 * to pass to generic_make_request. 1625 * 1626 * The r10_bio structures are linked using a borrowed master_bio pointer. 1627 * This link is counted in ->remaining. When the r10_bio that points to NULL 1628 * has its remaining count decremented to 0, the whole complex operation 1629 * is complete. 1630 * 1631 */ 1632 1633 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1634 { 1635 conf_t *conf = mddev_to_conf(mddev); 1636 r10bio_t *r10_bio; 1637 struct bio *biolist = NULL, *bio; 1638 sector_t max_sector, nr_sectors; 1639 int disk; 1640 int i; 1641 int max_sync; 1642 int sync_blocks; 1643 1644 sector_t sectors_skipped = 0; 1645 int chunks_skipped = 0; 1646 1647 if (!conf->r10buf_pool) 1648 if (init_resync(conf)) 1649 return 0; 1650 1651 skipped: 1652 max_sector = mddev->size << 1; 1653 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1654 max_sector = mddev->resync_max_sectors; 1655 if (sector_nr >= max_sector) { 1656 /* If we aborted, we need to abort the 1657 * sync on the 'current' bitmap chucks (there can 1658 * be several when recovering multiple devices). 1659 * as we may have started syncing it but not finished. 1660 * We can find the current address in 1661 * mddev->curr_resync, but for recovery, 1662 * we need to convert that to several 1663 * virtual addresses. 1664 */ 1665 if (mddev->curr_resync < max_sector) { /* aborted */ 1666 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1667 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1668 &sync_blocks, 1); 1669 else for (i=0; i<conf->raid_disks; i++) { 1670 sector_t sect = 1671 raid10_find_virt(conf, mddev->curr_resync, i); 1672 bitmap_end_sync(mddev->bitmap, sect, 1673 &sync_blocks, 1); 1674 } 1675 } else /* completed sync */ 1676 conf->fullsync = 0; 1677 1678 bitmap_close_sync(mddev->bitmap); 1679 close_sync(conf); 1680 *skipped = 1; 1681 return sectors_skipped; 1682 } 1683 if (chunks_skipped >= conf->raid_disks) { 1684 /* if there has been nothing to do on any drive, 1685 * then there is nothing to do at all.. 1686 */ 1687 *skipped = 1; 1688 return (max_sector - sector_nr) + sectors_skipped; 1689 } 1690 1691 /* make sure whole request will fit in a chunk - if chunks 1692 * are meaningful 1693 */ 1694 if (conf->near_copies < conf->raid_disks && 1695 max_sector > (sector_nr | conf->chunk_mask)) 1696 max_sector = (sector_nr | conf->chunk_mask) + 1; 1697 /* 1698 * If there is non-resync activity waiting for us then 1699 * put in a delay to throttle resync. 1700 */ 1701 if (!go_faster && conf->nr_waiting) 1702 msleep_interruptible(1000); 1703 1704 /* Again, very different code for resync and recovery. 1705 * Both must result in an r10bio with a list of bios that 1706 * have bi_end_io, bi_sector, bi_bdev set, 1707 * and bi_private set to the r10bio. 1708 * For recovery, we may actually create several r10bios 1709 * with 2 bios in each, that correspond to the bios in the main one. 1710 * In this case, the subordinate r10bios link back through a 1711 * borrowed master_bio pointer, and the counter in the master 1712 * includes a ref from each subordinate. 1713 */ 1714 /* First, we decide what to do and set ->bi_end_io 1715 * To end_sync_read if we want to read, and 1716 * end_sync_write if we will want to write. 1717 */ 1718 1719 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1720 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1721 /* recovery... the complicated one */ 1722 int i, j, k; 1723 r10_bio = NULL; 1724 1725 for (i=0 ; i<conf->raid_disks; i++) 1726 if (conf->mirrors[i].rdev && 1727 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1728 int still_degraded = 0; 1729 /* want to reconstruct this device */ 1730 r10bio_t *rb2 = r10_bio; 1731 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1732 int must_sync; 1733 /* Unless we are doing a full sync, we only need 1734 * to recover the block if it is set in the bitmap 1735 */ 1736 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1737 &sync_blocks, 1); 1738 if (sync_blocks < max_sync) 1739 max_sync = sync_blocks; 1740 if (!must_sync && 1741 !conf->fullsync) { 1742 /* yep, skip the sync_blocks here, but don't assume 1743 * that there will never be anything to do here 1744 */ 1745 chunks_skipped = -1; 1746 continue; 1747 } 1748 1749 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1750 raise_barrier(conf, rb2 != NULL); 1751 atomic_set(&r10_bio->remaining, 0); 1752 1753 r10_bio->master_bio = (struct bio*)rb2; 1754 if (rb2) 1755 atomic_inc(&rb2->remaining); 1756 r10_bio->mddev = mddev; 1757 set_bit(R10BIO_IsRecover, &r10_bio->state); 1758 r10_bio->sector = sect; 1759 1760 raid10_find_phys(conf, r10_bio); 1761 /* Need to check if this section will still be 1762 * degraded 1763 */ 1764 for (j=0; j<conf->copies;j++) { 1765 int d = r10_bio->devs[j].devnum; 1766 if (conf->mirrors[d].rdev == NULL || 1767 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1768 still_degraded = 1; 1769 break; 1770 } 1771 } 1772 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1773 &sync_blocks, still_degraded); 1774 1775 for (j=0; j<conf->copies;j++) { 1776 int d = r10_bio->devs[j].devnum; 1777 if (conf->mirrors[d].rdev && 1778 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1779 /* This is where we read from */ 1780 bio = r10_bio->devs[0].bio; 1781 bio->bi_next = biolist; 1782 biolist = bio; 1783 bio->bi_private = r10_bio; 1784 bio->bi_end_io = end_sync_read; 1785 bio->bi_rw = READ; 1786 bio->bi_sector = r10_bio->devs[j].addr + 1787 conf->mirrors[d].rdev->data_offset; 1788 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1789 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1790 atomic_inc(&r10_bio->remaining); 1791 /* and we write to 'i' */ 1792 1793 for (k=0; k<conf->copies; k++) 1794 if (r10_bio->devs[k].devnum == i) 1795 break; 1796 BUG_ON(k == conf->copies); 1797 bio = r10_bio->devs[1].bio; 1798 bio->bi_next = biolist; 1799 biolist = bio; 1800 bio->bi_private = r10_bio; 1801 bio->bi_end_io = end_sync_write; 1802 bio->bi_rw = WRITE; 1803 bio->bi_sector = r10_bio->devs[k].addr + 1804 conf->mirrors[i].rdev->data_offset; 1805 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1806 1807 r10_bio->devs[0].devnum = d; 1808 r10_bio->devs[1].devnum = i; 1809 1810 break; 1811 } 1812 } 1813 if (j == conf->copies) { 1814 /* Cannot recover, so abort the recovery */ 1815 put_buf(r10_bio); 1816 r10_bio = rb2; 1817 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) 1818 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1819 mdname(mddev)); 1820 break; 1821 } 1822 } 1823 if (biolist == NULL) { 1824 while (r10_bio) { 1825 r10bio_t *rb2 = r10_bio; 1826 r10_bio = (r10bio_t*) rb2->master_bio; 1827 rb2->master_bio = NULL; 1828 put_buf(rb2); 1829 } 1830 goto giveup; 1831 } 1832 } else { 1833 /* resync. Schedule a read for every block at this virt offset */ 1834 int count = 0; 1835 1836 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1837 &sync_blocks, mddev->degraded) && 1838 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1839 /* We can skip this block */ 1840 *skipped = 1; 1841 return sync_blocks + sectors_skipped; 1842 } 1843 if (sync_blocks < max_sync) 1844 max_sync = sync_blocks; 1845 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1846 1847 r10_bio->mddev = mddev; 1848 atomic_set(&r10_bio->remaining, 0); 1849 raise_barrier(conf, 0); 1850 conf->next_resync = sector_nr; 1851 1852 r10_bio->master_bio = NULL; 1853 r10_bio->sector = sector_nr; 1854 set_bit(R10BIO_IsSync, &r10_bio->state); 1855 raid10_find_phys(conf, r10_bio); 1856 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1857 1858 for (i=0; i<conf->copies; i++) { 1859 int d = r10_bio->devs[i].devnum; 1860 bio = r10_bio->devs[i].bio; 1861 bio->bi_end_io = NULL; 1862 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1863 if (conf->mirrors[d].rdev == NULL || 1864 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1865 continue; 1866 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1867 atomic_inc(&r10_bio->remaining); 1868 bio->bi_next = biolist; 1869 biolist = bio; 1870 bio->bi_private = r10_bio; 1871 bio->bi_end_io = end_sync_read; 1872 bio->bi_rw = READ; 1873 bio->bi_sector = r10_bio->devs[i].addr + 1874 conf->mirrors[d].rdev->data_offset; 1875 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1876 count++; 1877 } 1878 1879 if (count < 2) { 1880 for (i=0; i<conf->copies; i++) { 1881 int d = r10_bio->devs[i].devnum; 1882 if (r10_bio->devs[i].bio->bi_end_io) 1883 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1884 } 1885 put_buf(r10_bio); 1886 biolist = NULL; 1887 goto giveup; 1888 } 1889 } 1890 1891 for (bio = biolist; bio ; bio=bio->bi_next) { 1892 1893 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1894 if (bio->bi_end_io) 1895 bio->bi_flags |= 1 << BIO_UPTODATE; 1896 bio->bi_vcnt = 0; 1897 bio->bi_idx = 0; 1898 bio->bi_phys_segments = 0; 1899 bio->bi_hw_segments = 0; 1900 bio->bi_size = 0; 1901 } 1902 1903 nr_sectors = 0; 1904 if (sector_nr + max_sync < max_sector) 1905 max_sector = sector_nr + max_sync; 1906 do { 1907 struct page *page; 1908 int len = PAGE_SIZE; 1909 disk = 0; 1910 if (sector_nr + (len>>9) > max_sector) 1911 len = (max_sector - sector_nr) << 9; 1912 if (len == 0) 1913 break; 1914 for (bio= biolist ; bio ; bio=bio->bi_next) { 1915 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1916 if (bio_add_page(bio, page, len, 0) == 0) { 1917 /* stop here */ 1918 struct bio *bio2; 1919 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1920 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1921 /* remove last page from this bio */ 1922 bio2->bi_vcnt--; 1923 bio2->bi_size -= len; 1924 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1925 } 1926 goto bio_full; 1927 } 1928 disk = i; 1929 } 1930 nr_sectors += len>>9; 1931 sector_nr += len>>9; 1932 } while (biolist->bi_vcnt < RESYNC_PAGES); 1933 bio_full: 1934 r10_bio->sectors = nr_sectors; 1935 1936 while (biolist) { 1937 bio = biolist; 1938 biolist = biolist->bi_next; 1939 1940 bio->bi_next = NULL; 1941 r10_bio = bio->bi_private; 1942 r10_bio->sectors = nr_sectors; 1943 1944 if (bio->bi_end_io == end_sync_read) { 1945 md_sync_acct(bio->bi_bdev, nr_sectors); 1946 generic_make_request(bio); 1947 } 1948 } 1949 1950 if (sectors_skipped) 1951 /* pretend they weren't skipped, it makes 1952 * no important difference in this case 1953 */ 1954 md_done_sync(mddev, sectors_skipped, 1); 1955 1956 return sectors_skipped + nr_sectors; 1957 giveup: 1958 /* There is nowhere to write, so all non-sync 1959 * drives must be failed, so try the next chunk... 1960 */ 1961 { 1962 sector_t sec = max_sector - sector_nr; 1963 sectors_skipped += sec; 1964 chunks_skipped ++; 1965 sector_nr = max_sector; 1966 goto skipped; 1967 } 1968 } 1969 1970 static int run(mddev_t *mddev) 1971 { 1972 conf_t *conf; 1973 int i, disk_idx; 1974 mirror_info_t *disk; 1975 mdk_rdev_t *rdev; 1976 struct list_head *tmp; 1977 int nc, fc, fo; 1978 sector_t stride, size; 1979 1980 if (mddev->chunk_size == 0) { 1981 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 1982 return -EINVAL; 1983 } 1984 1985 nc = mddev->layout & 255; 1986 fc = (mddev->layout >> 8) & 255; 1987 fo = mddev->layout & (1<<16); 1988 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 1989 (mddev->layout >> 17)) { 1990 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 1991 mdname(mddev), mddev->layout); 1992 goto out; 1993 } 1994 /* 1995 * copy the already verified devices into our private RAID10 1996 * bookkeeping area. [whatever we allocate in run(), 1997 * should be freed in stop()] 1998 */ 1999 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2000 mddev->private = conf; 2001 if (!conf) { 2002 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2003 mdname(mddev)); 2004 goto out; 2005 } 2006 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2007 GFP_KERNEL); 2008 if (!conf->mirrors) { 2009 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2010 mdname(mddev)); 2011 goto out_free_conf; 2012 } 2013 2014 conf->tmppage = alloc_page(GFP_KERNEL); 2015 if (!conf->tmppage) 2016 goto out_free_conf; 2017 2018 conf->mddev = mddev; 2019 conf->raid_disks = mddev->raid_disks; 2020 conf->near_copies = nc; 2021 conf->far_copies = fc; 2022 conf->copies = nc*fc; 2023 conf->far_offset = fo; 2024 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 2025 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 2026 size = mddev->size >> (conf->chunk_shift-1); 2027 sector_div(size, fc); 2028 size = size * conf->raid_disks; 2029 sector_div(size, nc); 2030 /* 'size' is now the number of chunks in the array */ 2031 /* calculate "used chunks per device" in 'stride' */ 2032 stride = size * conf->copies; 2033 2034 /* We need to round up when dividing by raid_disks to 2035 * get the stride size. 2036 */ 2037 stride += conf->raid_disks - 1; 2038 sector_div(stride, conf->raid_disks); 2039 mddev->size = stride << (conf->chunk_shift-1); 2040 2041 if (fo) 2042 stride = 1; 2043 else 2044 sector_div(stride, fc); 2045 conf->stride = stride << conf->chunk_shift; 2046 2047 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2048 r10bio_pool_free, conf); 2049 if (!conf->r10bio_pool) { 2050 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2051 mdname(mddev)); 2052 goto out_free_conf; 2053 } 2054 2055 ITERATE_RDEV(mddev, rdev, tmp) { 2056 disk_idx = rdev->raid_disk; 2057 if (disk_idx >= mddev->raid_disks 2058 || disk_idx < 0) 2059 continue; 2060 disk = conf->mirrors + disk_idx; 2061 2062 disk->rdev = rdev; 2063 2064 blk_queue_stack_limits(mddev->queue, 2065 rdev->bdev->bd_disk->queue); 2066 /* as we don't honour merge_bvec_fn, we must never risk 2067 * violating it, so limit ->max_sector to one PAGE, as 2068 * a one page request is never in violation. 2069 */ 2070 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2071 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2072 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2073 2074 disk->head_position = 0; 2075 } 2076 spin_lock_init(&conf->device_lock); 2077 INIT_LIST_HEAD(&conf->retry_list); 2078 2079 spin_lock_init(&conf->resync_lock); 2080 init_waitqueue_head(&conf->wait_barrier); 2081 2082 /* need to check that every block has at least one working mirror */ 2083 if (!enough(conf)) { 2084 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2085 mdname(mddev)); 2086 goto out_free_conf; 2087 } 2088 2089 mddev->degraded = 0; 2090 for (i = 0; i < conf->raid_disks; i++) { 2091 2092 disk = conf->mirrors + i; 2093 2094 if (!disk->rdev || 2095 !test_bit(In_sync, &disk->rdev->flags)) { 2096 disk->head_position = 0; 2097 mddev->degraded++; 2098 } 2099 } 2100 2101 2102 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2103 if (!mddev->thread) { 2104 printk(KERN_ERR 2105 "raid10: couldn't allocate thread for %s\n", 2106 mdname(mddev)); 2107 goto out_free_conf; 2108 } 2109 2110 printk(KERN_INFO 2111 "raid10: raid set %s active with %d out of %d devices\n", 2112 mdname(mddev), mddev->raid_disks - mddev->degraded, 2113 mddev->raid_disks); 2114 /* 2115 * Ok, everything is just fine now 2116 */ 2117 mddev->array_size = size << (conf->chunk_shift-1); 2118 mddev->resync_max_sectors = size << conf->chunk_shift; 2119 2120 mddev->queue->unplug_fn = raid10_unplug; 2121 mddev->queue->issue_flush_fn = raid10_issue_flush; 2122 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2123 mddev->queue->backing_dev_info.congested_data = mddev; 2124 2125 /* Calculate max read-ahead size. 2126 * We need to readahead at least twice a whole stripe.... 2127 * maybe... 2128 */ 2129 { 2130 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2131 stripe /= conf->near_copies; 2132 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2133 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2134 } 2135 2136 if (conf->near_copies < mddev->raid_disks) 2137 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2138 return 0; 2139 2140 out_free_conf: 2141 if (conf->r10bio_pool) 2142 mempool_destroy(conf->r10bio_pool); 2143 safe_put_page(conf->tmppage); 2144 kfree(conf->mirrors); 2145 kfree(conf); 2146 mddev->private = NULL; 2147 out: 2148 return -EIO; 2149 } 2150 2151 static int stop(mddev_t *mddev) 2152 { 2153 conf_t *conf = mddev_to_conf(mddev); 2154 2155 md_unregister_thread(mddev->thread); 2156 mddev->thread = NULL; 2157 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2158 if (conf->r10bio_pool) 2159 mempool_destroy(conf->r10bio_pool); 2160 kfree(conf->mirrors); 2161 kfree(conf); 2162 mddev->private = NULL; 2163 return 0; 2164 } 2165 2166 static void raid10_quiesce(mddev_t *mddev, int state) 2167 { 2168 conf_t *conf = mddev_to_conf(mddev); 2169 2170 switch(state) { 2171 case 1: 2172 raise_barrier(conf, 0); 2173 break; 2174 case 0: 2175 lower_barrier(conf); 2176 break; 2177 } 2178 if (mddev->thread) { 2179 if (mddev->bitmap) 2180 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2181 else 2182 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2183 md_wakeup_thread(mddev->thread); 2184 } 2185 } 2186 2187 static struct mdk_personality raid10_personality = 2188 { 2189 .name = "raid10", 2190 .level = 10, 2191 .owner = THIS_MODULE, 2192 .make_request = make_request, 2193 .run = run, 2194 .stop = stop, 2195 .status = status, 2196 .error_handler = error, 2197 .hot_add_disk = raid10_add_disk, 2198 .hot_remove_disk= raid10_remove_disk, 2199 .spare_active = raid10_spare_active, 2200 .sync_request = sync_request, 2201 .quiesce = raid10_quiesce, 2202 }; 2203 2204 static int __init raid_init(void) 2205 { 2206 return register_md_personality(&raid10_personality); 2207 } 2208 2209 static void raid_exit(void) 2210 { 2211 unregister_md_personality(&raid10_personality); 2212 } 2213 2214 module_init(raid_init); 2215 module_exit(raid_exit); 2216 MODULE_LICENSE("GPL"); 2217 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2218 MODULE_ALIAS("md-raid10"); 2219 MODULE_ALIAS("md-level-10"); 2220