1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/delay.h> 22 #include <linux/blkdev.h> 23 #include <linux/seq_file.h> 24 #include "md.h" 25 #include "raid10.h" 26 #include "bitmap.h" 27 28 /* 29 * RAID10 provides a combination of RAID0 and RAID1 functionality. 30 * The layout of data is defined by 31 * chunk_size 32 * raid_disks 33 * near_copies (stored in low byte of layout) 34 * far_copies (stored in second byte of layout) 35 * far_offset (stored in bit 16 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. 38 * Each device is divided into far_copies sections. 39 * In each section, chunks are laid out in a style similar to raid0, but 40 * near_copies copies of each chunk is stored (each on a different drive). 41 * The starting device for each section is offset near_copies from the starting 42 * device of the previous section. 43 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 44 * drive. 45 * near_copies and far_copies must be at least one, and their product is at most 46 * raid_disks. 47 * 48 * If far_offset is true, then the far_copies are handled a bit differently. 49 * The copies are still in different stripes, but instead of be very far apart 50 * on disk, there are adjacent stripes. 51 */ 52 53 /* 54 * Number of guaranteed r10bios in case of extreme VM load: 55 */ 56 #define NR_RAID10_BIOS 256 57 58 static void unplug_slaves(mddev_t *mddev); 59 60 static void allow_barrier(conf_t *conf); 61 static void lower_barrier(conf_t *conf); 62 63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 64 { 65 conf_t *conf = data; 66 r10bio_t *r10_bio; 67 int size = offsetof(struct r10bio_s, devs[conf->copies]); 68 69 /* allocate a r10bio with room for raid_disks entries in the bios array */ 70 r10_bio = kzalloc(size, gfp_flags); 71 if (!r10_bio) 72 unplug_slaves(conf->mddev); 73 74 return r10_bio; 75 } 76 77 static void r10bio_pool_free(void *r10_bio, void *data) 78 { 79 kfree(r10_bio); 80 } 81 82 /* Maximum size of each resync request */ 83 #define RESYNC_BLOCK_SIZE (64*1024) 84 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 85 /* amount of memory to reserve for resync requests */ 86 #define RESYNC_WINDOW (1024*1024) 87 /* maximum number of concurrent requests, memory permitting */ 88 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 89 90 /* 91 * When performing a resync, we need to read and compare, so 92 * we need as many pages are there are copies. 93 * When performing a recovery, we need 2 bios, one for read, 94 * one for write (we recover only one drive per r10buf) 95 * 96 */ 97 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 98 { 99 conf_t *conf = data; 100 struct page *page; 101 r10bio_t *r10_bio; 102 struct bio *bio; 103 int i, j; 104 int nalloc; 105 106 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 107 if (!r10_bio) { 108 unplug_slaves(conf->mddev); 109 return NULL; 110 } 111 112 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 113 nalloc = conf->copies; /* resync */ 114 else 115 nalloc = 2; /* recovery */ 116 117 /* 118 * Allocate bios. 119 */ 120 for (j = nalloc ; j-- ; ) { 121 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 122 if (!bio) 123 goto out_free_bio; 124 r10_bio->devs[j].bio = bio; 125 } 126 /* 127 * Allocate RESYNC_PAGES data pages and attach them 128 * where needed. 129 */ 130 for (j = 0 ; j < nalloc; j++) { 131 bio = r10_bio->devs[j].bio; 132 for (i = 0; i < RESYNC_PAGES; i++) { 133 page = alloc_page(gfp_flags); 134 if (unlikely(!page)) 135 goto out_free_pages; 136 137 bio->bi_io_vec[i].bv_page = page; 138 } 139 } 140 141 return r10_bio; 142 143 out_free_pages: 144 for ( ; i > 0 ; i--) 145 safe_put_page(bio->bi_io_vec[i-1].bv_page); 146 while (j--) 147 for (i = 0; i < RESYNC_PAGES ; i++) 148 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 149 j = -1; 150 out_free_bio: 151 while ( ++j < nalloc ) 152 bio_put(r10_bio->devs[j].bio); 153 r10bio_pool_free(r10_bio, conf); 154 return NULL; 155 } 156 157 static void r10buf_pool_free(void *__r10_bio, void *data) 158 { 159 int i; 160 conf_t *conf = data; 161 r10bio_t *r10bio = __r10_bio; 162 int j; 163 164 for (j=0; j < conf->copies; j++) { 165 struct bio *bio = r10bio->devs[j].bio; 166 if (bio) { 167 for (i = 0; i < RESYNC_PAGES; i++) { 168 safe_put_page(bio->bi_io_vec[i].bv_page); 169 bio->bi_io_vec[i].bv_page = NULL; 170 } 171 bio_put(bio); 172 } 173 } 174 r10bio_pool_free(r10bio, conf); 175 } 176 177 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 178 { 179 int i; 180 181 for (i = 0; i < conf->copies; i++) { 182 struct bio **bio = & r10_bio->devs[i].bio; 183 if (*bio && *bio != IO_BLOCKED) 184 bio_put(*bio); 185 *bio = NULL; 186 } 187 } 188 189 static void free_r10bio(r10bio_t *r10_bio) 190 { 191 conf_t *conf = r10_bio->mddev->private; 192 193 /* 194 * Wake up any possible resync thread that waits for the device 195 * to go idle. 196 */ 197 allow_barrier(conf); 198 199 put_all_bios(conf, r10_bio); 200 mempool_free(r10_bio, conf->r10bio_pool); 201 } 202 203 static void put_buf(r10bio_t *r10_bio) 204 { 205 conf_t *conf = r10_bio->mddev->private; 206 207 mempool_free(r10_bio, conf->r10buf_pool); 208 209 lower_barrier(conf); 210 } 211 212 static void reschedule_retry(r10bio_t *r10_bio) 213 { 214 unsigned long flags; 215 mddev_t *mddev = r10_bio->mddev; 216 conf_t *conf = mddev->private; 217 218 spin_lock_irqsave(&conf->device_lock, flags); 219 list_add(&r10_bio->retry_list, &conf->retry_list); 220 conf->nr_queued ++; 221 spin_unlock_irqrestore(&conf->device_lock, flags); 222 223 /* wake up frozen array... */ 224 wake_up(&conf->wait_barrier); 225 226 md_wakeup_thread(mddev->thread); 227 } 228 229 /* 230 * raid_end_bio_io() is called when we have finished servicing a mirrored 231 * operation and are ready to return a success/failure code to the buffer 232 * cache layer. 233 */ 234 static void raid_end_bio_io(r10bio_t *r10_bio) 235 { 236 struct bio *bio = r10_bio->master_bio; 237 238 bio_endio(bio, 239 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 240 free_r10bio(r10_bio); 241 } 242 243 /* 244 * Update disk head position estimator based on IRQ completion info. 245 */ 246 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 247 { 248 conf_t *conf = r10_bio->mddev->private; 249 250 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 251 r10_bio->devs[slot].addr + (r10_bio->sectors); 252 } 253 254 static void raid10_end_read_request(struct bio *bio, int error) 255 { 256 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 257 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 258 int slot, dev; 259 conf_t *conf = r10_bio->mddev->private; 260 261 262 slot = r10_bio->read_slot; 263 dev = r10_bio->devs[slot].devnum; 264 /* 265 * this branch is our 'one mirror IO has finished' event handler: 266 */ 267 update_head_pos(slot, r10_bio); 268 269 if (uptodate) { 270 /* 271 * Set R10BIO_Uptodate in our master bio, so that 272 * we will return a good error code to the higher 273 * levels even if IO on some other mirrored buffer fails. 274 * 275 * The 'master' represents the composite IO operation to 276 * user-side. So if something waits for IO, then it will 277 * wait for the 'master' bio. 278 */ 279 set_bit(R10BIO_Uptodate, &r10_bio->state); 280 raid_end_bio_io(r10_bio); 281 } else { 282 /* 283 * oops, read error: 284 */ 285 char b[BDEVNAME_SIZE]; 286 if (printk_ratelimit()) 287 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 288 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 289 reschedule_retry(r10_bio); 290 } 291 292 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 293 } 294 295 static void raid10_end_write_request(struct bio *bio, int error) 296 { 297 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 298 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 299 int slot, dev; 300 conf_t *conf = r10_bio->mddev->private; 301 302 for (slot = 0; slot < conf->copies; slot++) 303 if (r10_bio->devs[slot].bio == bio) 304 break; 305 dev = r10_bio->devs[slot].devnum; 306 307 /* 308 * this branch is our 'one mirror IO has finished' event handler: 309 */ 310 if (!uptodate) { 311 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 312 /* an I/O failed, we can't clear the bitmap */ 313 set_bit(R10BIO_Degraded, &r10_bio->state); 314 } else 315 /* 316 * Set R10BIO_Uptodate in our master bio, so that 317 * we will return a good error code for to the higher 318 * levels even if IO on some other mirrored buffer fails. 319 * 320 * The 'master' represents the composite IO operation to 321 * user-side. So if something waits for IO, then it will 322 * wait for the 'master' bio. 323 */ 324 set_bit(R10BIO_Uptodate, &r10_bio->state); 325 326 update_head_pos(slot, r10_bio); 327 328 /* 329 * 330 * Let's see if all mirrored write operations have finished 331 * already. 332 */ 333 if (atomic_dec_and_test(&r10_bio->remaining)) { 334 /* clear the bitmap if all writes complete successfully */ 335 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 336 r10_bio->sectors, 337 !test_bit(R10BIO_Degraded, &r10_bio->state), 338 0); 339 md_write_end(r10_bio->mddev); 340 raid_end_bio_io(r10_bio); 341 } 342 343 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 344 } 345 346 347 /* 348 * RAID10 layout manager 349 * Aswell as the chunksize and raid_disks count, there are two 350 * parameters: near_copies and far_copies. 351 * near_copies * far_copies must be <= raid_disks. 352 * Normally one of these will be 1. 353 * If both are 1, we get raid0. 354 * If near_copies == raid_disks, we get raid1. 355 * 356 * Chunks are layed out in raid0 style with near_copies copies of the 357 * first chunk, followed by near_copies copies of the next chunk and 358 * so on. 359 * If far_copies > 1, then after 1/far_copies of the array has been assigned 360 * as described above, we start again with a device offset of near_copies. 361 * So we effectively have another copy of the whole array further down all 362 * the drives, but with blocks on different drives. 363 * With this layout, and block is never stored twice on the one device. 364 * 365 * raid10_find_phys finds the sector offset of a given virtual sector 366 * on each device that it is on. 367 * 368 * raid10_find_virt does the reverse mapping, from a device and a 369 * sector offset to a virtual address 370 */ 371 372 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 373 { 374 int n,f; 375 sector_t sector; 376 sector_t chunk; 377 sector_t stripe; 378 int dev; 379 380 int slot = 0; 381 382 /* now calculate first sector/dev */ 383 chunk = r10bio->sector >> conf->chunk_shift; 384 sector = r10bio->sector & conf->chunk_mask; 385 386 chunk *= conf->near_copies; 387 stripe = chunk; 388 dev = sector_div(stripe, conf->raid_disks); 389 if (conf->far_offset) 390 stripe *= conf->far_copies; 391 392 sector += stripe << conf->chunk_shift; 393 394 /* and calculate all the others */ 395 for (n=0; n < conf->near_copies; n++) { 396 int d = dev; 397 sector_t s = sector; 398 r10bio->devs[slot].addr = sector; 399 r10bio->devs[slot].devnum = d; 400 slot++; 401 402 for (f = 1; f < conf->far_copies; f++) { 403 d += conf->near_copies; 404 if (d >= conf->raid_disks) 405 d -= conf->raid_disks; 406 s += conf->stride; 407 r10bio->devs[slot].devnum = d; 408 r10bio->devs[slot].addr = s; 409 slot++; 410 } 411 dev++; 412 if (dev >= conf->raid_disks) { 413 dev = 0; 414 sector += (conf->chunk_mask + 1); 415 } 416 } 417 BUG_ON(slot != conf->copies); 418 } 419 420 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 421 { 422 sector_t offset, chunk, vchunk; 423 424 offset = sector & conf->chunk_mask; 425 if (conf->far_offset) { 426 int fc; 427 chunk = sector >> conf->chunk_shift; 428 fc = sector_div(chunk, conf->far_copies); 429 dev -= fc * conf->near_copies; 430 if (dev < 0) 431 dev += conf->raid_disks; 432 } else { 433 while (sector >= conf->stride) { 434 sector -= conf->stride; 435 if (dev < conf->near_copies) 436 dev += conf->raid_disks - conf->near_copies; 437 else 438 dev -= conf->near_copies; 439 } 440 chunk = sector >> conf->chunk_shift; 441 } 442 vchunk = chunk * conf->raid_disks + dev; 443 sector_div(vchunk, conf->near_copies); 444 return (vchunk << conf->chunk_shift) + offset; 445 } 446 447 /** 448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 449 * @q: request queue 450 * @bvm: properties of new bio 451 * @biovec: the request that could be merged to it. 452 * 453 * Return amount of bytes we can accept at this offset 454 * If near_copies == raid_disk, there are no striping issues, 455 * but in that case, the function isn't called at all. 456 */ 457 static int raid10_mergeable_bvec(struct request_queue *q, 458 struct bvec_merge_data *bvm, 459 struct bio_vec *biovec) 460 { 461 mddev_t *mddev = q->queuedata; 462 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 463 int max; 464 unsigned int chunk_sectors = mddev->chunk_sectors; 465 unsigned int bio_sectors = bvm->bi_size >> 9; 466 467 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 468 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 469 if (max <= biovec->bv_len && bio_sectors == 0) 470 return biovec->bv_len; 471 else 472 return max; 473 } 474 475 /* 476 * This routine returns the disk from which the requested read should 477 * be done. There is a per-array 'next expected sequential IO' sector 478 * number - if this matches on the next IO then we use the last disk. 479 * There is also a per-disk 'last know head position' sector that is 480 * maintained from IRQ contexts, both the normal and the resync IO 481 * completion handlers update this position correctly. If there is no 482 * perfect sequential match then we pick the disk whose head is closest. 483 * 484 * If there are 2 mirrors in the same 2 devices, performance degrades 485 * because position is mirror, not device based. 486 * 487 * The rdev for the device selected will have nr_pending incremented. 488 */ 489 490 /* 491 * FIXME: possibly should rethink readbalancing and do it differently 492 * depending on near_copies / far_copies geometry. 493 */ 494 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 495 { 496 const unsigned long this_sector = r10_bio->sector; 497 int disk, slot, nslot; 498 const int sectors = r10_bio->sectors; 499 sector_t new_distance, current_distance; 500 mdk_rdev_t *rdev; 501 502 raid10_find_phys(conf, r10_bio); 503 rcu_read_lock(); 504 /* 505 * Check if we can balance. We can balance on the whole 506 * device if no resync is going on (recovery is ok), or below 507 * the resync window. We take the first readable disk when 508 * above the resync window. 509 */ 510 if (conf->mddev->recovery_cp < MaxSector 511 && (this_sector + sectors >= conf->next_resync)) { 512 /* make sure that disk is operational */ 513 slot = 0; 514 disk = r10_bio->devs[slot].devnum; 515 516 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 517 r10_bio->devs[slot].bio == IO_BLOCKED || 518 !test_bit(In_sync, &rdev->flags)) { 519 slot++; 520 if (slot == conf->copies) { 521 slot = 0; 522 disk = -1; 523 break; 524 } 525 disk = r10_bio->devs[slot].devnum; 526 } 527 goto rb_out; 528 } 529 530 531 /* make sure the disk is operational */ 532 slot = 0; 533 disk = r10_bio->devs[slot].devnum; 534 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 535 r10_bio->devs[slot].bio == IO_BLOCKED || 536 !test_bit(In_sync, &rdev->flags)) { 537 slot ++; 538 if (slot == conf->copies) { 539 disk = -1; 540 goto rb_out; 541 } 542 disk = r10_bio->devs[slot].devnum; 543 } 544 545 546 current_distance = abs(r10_bio->devs[slot].addr - 547 conf->mirrors[disk].head_position); 548 549 /* Find the disk whose head is closest, 550 * or - for far > 1 - find the closest to partition beginning */ 551 552 for (nslot = slot; nslot < conf->copies; nslot++) { 553 int ndisk = r10_bio->devs[nslot].devnum; 554 555 556 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 557 r10_bio->devs[nslot].bio == IO_BLOCKED || 558 !test_bit(In_sync, &rdev->flags)) 559 continue; 560 561 /* This optimisation is debatable, and completely destroys 562 * sequential read speed for 'far copies' arrays. So only 563 * keep it for 'near' arrays, and review those later. 564 */ 565 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 566 disk = ndisk; 567 slot = nslot; 568 break; 569 } 570 571 /* for far > 1 always use the lowest address */ 572 if (conf->far_copies > 1) 573 new_distance = r10_bio->devs[nslot].addr; 574 else 575 new_distance = abs(r10_bio->devs[nslot].addr - 576 conf->mirrors[ndisk].head_position); 577 if (new_distance < current_distance) { 578 current_distance = new_distance; 579 disk = ndisk; 580 slot = nslot; 581 } 582 } 583 584 rb_out: 585 r10_bio->read_slot = slot; 586 /* conf->next_seq_sect = this_sector + sectors;*/ 587 588 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 589 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 590 else 591 disk = -1; 592 rcu_read_unlock(); 593 594 return disk; 595 } 596 597 static void unplug_slaves(mddev_t *mddev) 598 { 599 conf_t *conf = mddev->private; 600 int i; 601 602 rcu_read_lock(); 603 for (i=0; i<mddev->raid_disks; i++) { 604 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 605 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 606 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 607 608 atomic_inc(&rdev->nr_pending); 609 rcu_read_unlock(); 610 611 blk_unplug(r_queue); 612 613 rdev_dec_pending(rdev, mddev); 614 rcu_read_lock(); 615 } 616 } 617 rcu_read_unlock(); 618 } 619 620 static void raid10_unplug(struct request_queue *q) 621 { 622 mddev_t *mddev = q->queuedata; 623 624 unplug_slaves(q->queuedata); 625 md_wakeup_thread(mddev->thread); 626 } 627 628 static int raid10_congested(void *data, int bits) 629 { 630 mddev_t *mddev = data; 631 conf_t *conf = mddev->private; 632 int i, ret = 0; 633 634 rcu_read_lock(); 635 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 636 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 637 if (rdev && !test_bit(Faulty, &rdev->flags)) { 638 struct request_queue *q = bdev_get_queue(rdev->bdev); 639 640 ret |= bdi_congested(&q->backing_dev_info, bits); 641 } 642 } 643 rcu_read_unlock(); 644 return ret; 645 } 646 647 static int flush_pending_writes(conf_t *conf) 648 { 649 /* Any writes that have been queued but are awaiting 650 * bitmap updates get flushed here. 651 * We return 1 if any requests were actually submitted. 652 */ 653 int rv = 0; 654 655 spin_lock_irq(&conf->device_lock); 656 657 if (conf->pending_bio_list.head) { 658 struct bio *bio; 659 bio = bio_list_get(&conf->pending_bio_list); 660 blk_remove_plug(conf->mddev->queue); 661 spin_unlock_irq(&conf->device_lock); 662 /* flush any pending bitmap writes to disk 663 * before proceeding w/ I/O */ 664 bitmap_unplug(conf->mddev->bitmap); 665 666 while (bio) { /* submit pending writes */ 667 struct bio *next = bio->bi_next; 668 bio->bi_next = NULL; 669 generic_make_request(bio); 670 bio = next; 671 } 672 rv = 1; 673 } else 674 spin_unlock_irq(&conf->device_lock); 675 return rv; 676 } 677 /* Barriers.... 678 * Sometimes we need to suspend IO while we do something else, 679 * either some resync/recovery, or reconfigure the array. 680 * To do this we raise a 'barrier'. 681 * The 'barrier' is a counter that can be raised multiple times 682 * to count how many activities are happening which preclude 683 * normal IO. 684 * We can only raise the barrier if there is no pending IO. 685 * i.e. if nr_pending == 0. 686 * We choose only to raise the barrier if no-one is waiting for the 687 * barrier to go down. This means that as soon as an IO request 688 * is ready, no other operations which require a barrier will start 689 * until the IO request has had a chance. 690 * 691 * So: regular IO calls 'wait_barrier'. When that returns there 692 * is no backgroup IO happening, It must arrange to call 693 * allow_barrier when it has finished its IO. 694 * backgroup IO calls must call raise_barrier. Once that returns 695 * there is no normal IO happeing. It must arrange to call 696 * lower_barrier when the particular background IO completes. 697 */ 698 699 static void raise_barrier(conf_t *conf, int force) 700 { 701 BUG_ON(force && !conf->barrier); 702 spin_lock_irq(&conf->resync_lock); 703 704 /* Wait until no block IO is waiting (unless 'force') */ 705 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 706 conf->resync_lock, 707 raid10_unplug(conf->mddev->queue)); 708 709 /* block any new IO from starting */ 710 conf->barrier++; 711 712 /* No wait for all pending IO to complete */ 713 wait_event_lock_irq(conf->wait_barrier, 714 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 715 conf->resync_lock, 716 raid10_unplug(conf->mddev->queue)); 717 718 spin_unlock_irq(&conf->resync_lock); 719 } 720 721 static void lower_barrier(conf_t *conf) 722 { 723 unsigned long flags; 724 spin_lock_irqsave(&conf->resync_lock, flags); 725 conf->barrier--; 726 spin_unlock_irqrestore(&conf->resync_lock, flags); 727 wake_up(&conf->wait_barrier); 728 } 729 730 static void wait_barrier(conf_t *conf) 731 { 732 spin_lock_irq(&conf->resync_lock); 733 if (conf->barrier) { 734 conf->nr_waiting++; 735 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 736 conf->resync_lock, 737 raid10_unplug(conf->mddev->queue)); 738 conf->nr_waiting--; 739 } 740 conf->nr_pending++; 741 spin_unlock_irq(&conf->resync_lock); 742 } 743 744 static void allow_barrier(conf_t *conf) 745 { 746 unsigned long flags; 747 spin_lock_irqsave(&conf->resync_lock, flags); 748 conf->nr_pending--; 749 spin_unlock_irqrestore(&conf->resync_lock, flags); 750 wake_up(&conf->wait_barrier); 751 } 752 753 static void freeze_array(conf_t *conf) 754 { 755 /* stop syncio and normal IO and wait for everything to 756 * go quiet. 757 * We increment barrier and nr_waiting, and then 758 * wait until nr_pending match nr_queued+1 759 * This is called in the context of one normal IO request 760 * that has failed. Thus any sync request that might be pending 761 * will be blocked by nr_pending, and we need to wait for 762 * pending IO requests to complete or be queued for re-try. 763 * Thus the number queued (nr_queued) plus this request (1) 764 * must match the number of pending IOs (nr_pending) before 765 * we continue. 766 */ 767 spin_lock_irq(&conf->resync_lock); 768 conf->barrier++; 769 conf->nr_waiting++; 770 wait_event_lock_irq(conf->wait_barrier, 771 conf->nr_pending == conf->nr_queued+1, 772 conf->resync_lock, 773 ({ flush_pending_writes(conf); 774 raid10_unplug(conf->mddev->queue); })); 775 spin_unlock_irq(&conf->resync_lock); 776 } 777 778 static void unfreeze_array(conf_t *conf) 779 { 780 /* reverse the effect of the freeze */ 781 spin_lock_irq(&conf->resync_lock); 782 conf->barrier--; 783 conf->nr_waiting--; 784 wake_up(&conf->wait_barrier); 785 spin_unlock_irq(&conf->resync_lock); 786 } 787 788 static int make_request(struct request_queue *q, struct bio * bio) 789 { 790 mddev_t *mddev = q->queuedata; 791 conf_t *conf = mddev->private; 792 mirror_info_t *mirror; 793 r10bio_t *r10_bio; 794 struct bio *read_bio; 795 int cpu; 796 int i; 797 int chunk_sects = conf->chunk_mask + 1; 798 const int rw = bio_data_dir(bio); 799 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 800 struct bio_list bl; 801 unsigned long flags; 802 mdk_rdev_t *blocked_rdev; 803 804 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { 805 bio_endio(bio, -EOPNOTSUPP); 806 return 0; 807 } 808 809 /* If this request crosses a chunk boundary, we need to 810 * split it. This will only happen for 1 PAGE (or less) requests. 811 */ 812 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 813 > chunk_sects && 814 conf->near_copies < conf->raid_disks)) { 815 struct bio_pair *bp; 816 /* Sanity check -- queue functions should prevent this happening */ 817 if (bio->bi_vcnt != 1 || 818 bio->bi_idx != 0) 819 goto bad_map; 820 /* This is a one page bio that upper layers 821 * refuse to split for us, so we need to split it. 822 */ 823 bp = bio_split(bio, 824 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 825 if (make_request(q, &bp->bio1)) 826 generic_make_request(&bp->bio1); 827 if (make_request(q, &bp->bio2)) 828 generic_make_request(&bp->bio2); 829 830 bio_pair_release(bp); 831 return 0; 832 bad_map: 833 printk("raid10_make_request bug: can't convert block across chunks" 834 " or bigger than %dk %llu %d\n", chunk_sects/2, 835 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 836 837 bio_io_error(bio); 838 return 0; 839 } 840 841 md_write_start(mddev, bio); 842 843 /* 844 * Register the new request and wait if the reconstruction 845 * thread has put up a bar for new requests. 846 * Continue immediately if no resync is active currently. 847 */ 848 wait_barrier(conf); 849 850 cpu = part_stat_lock(); 851 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 852 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 853 bio_sectors(bio)); 854 part_stat_unlock(); 855 856 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 857 858 r10_bio->master_bio = bio; 859 r10_bio->sectors = bio->bi_size >> 9; 860 861 r10_bio->mddev = mddev; 862 r10_bio->sector = bio->bi_sector; 863 r10_bio->state = 0; 864 865 if (rw == READ) { 866 /* 867 * read balancing logic: 868 */ 869 int disk = read_balance(conf, r10_bio); 870 int slot = r10_bio->read_slot; 871 if (disk < 0) { 872 raid_end_bio_io(r10_bio); 873 return 0; 874 } 875 mirror = conf->mirrors + disk; 876 877 read_bio = bio_clone(bio, GFP_NOIO); 878 879 r10_bio->devs[slot].bio = read_bio; 880 881 read_bio->bi_sector = r10_bio->devs[slot].addr + 882 mirror->rdev->data_offset; 883 read_bio->bi_bdev = mirror->rdev->bdev; 884 read_bio->bi_end_io = raid10_end_read_request; 885 read_bio->bi_rw = READ | do_sync; 886 read_bio->bi_private = r10_bio; 887 888 generic_make_request(read_bio); 889 return 0; 890 } 891 892 /* 893 * WRITE: 894 */ 895 /* first select target devices under rcu_lock and 896 * inc refcount on their rdev. Record them by setting 897 * bios[x] to bio 898 */ 899 raid10_find_phys(conf, r10_bio); 900 retry_write: 901 blocked_rdev = NULL; 902 rcu_read_lock(); 903 for (i = 0; i < conf->copies; i++) { 904 int d = r10_bio->devs[i].devnum; 905 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 906 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 907 atomic_inc(&rdev->nr_pending); 908 blocked_rdev = rdev; 909 break; 910 } 911 if (rdev && !test_bit(Faulty, &rdev->flags)) { 912 atomic_inc(&rdev->nr_pending); 913 r10_bio->devs[i].bio = bio; 914 } else { 915 r10_bio->devs[i].bio = NULL; 916 set_bit(R10BIO_Degraded, &r10_bio->state); 917 } 918 } 919 rcu_read_unlock(); 920 921 if (unlikely(blocked_rdev)) { 922 /* Have to wait for this device to get unblocked, then retry */ 923 int j; 924 int d; 925 926 for (j = 0; j < i; j++) 927 if (r10_bio->devs[j].bio) { 928 d = r10_bio->devs[j].devnum; 929 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 930 } 931 allow_barrier(conf); 932 md_wait_for_blocked_rdev(blocked_rdev, mddev); 933 wait_barrier(conf); 934 goto retry_write; 935 } 936 937 atomic_set(&r10_bio->remaining, 0); 938 939 bio_list_init(&bl); 940 for (i = 0; i < conf->copies; i++) { 941 struct bio *mbio; 942 int d = r10_bio->devs[i].devnum; 943 if (!r10_bio->devs[i].bio) 944 continue; 945 946 mbio = bio_clone(bio, GFP_NOIO); 947 r10_bio->devs[i].bio = mbio; 948 949 mbio->bi_sector = r10_bio->devs[i].addr+ 950 conf->mirrors[d].rdev->data_offset; 951 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 952 mbio->bi_end_io = raid10_end_write_request; 953 mbio->bi_rw = WRITE | do_sync; 954 mbio->bi_private = r10_bio; 955 956 atomic_inc(&r10_bio->remaining); 957 bio_list_add(&bl, mbio); 958 } 959 960 if (unlikely(!atomic_read(&r10_bio->remaining))) { 961 /* the array is dead */ 962 md_write_end(mddev); 963 raid_end_bio_io(r10_bio); 964 return 0; 965 } 966 967 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 968 spin_lock_irqsave(&conf->device_lock, flags); 969 bio_list_merge(&conf->pending_bio_list, &bl); 970 blk_plug_device(mddev->queue); 971 spin_unlock_irqrestore(&conf->device_lock, flags); 972 973 /* In case raid10d snuck in to freeze_array */ 974 wake_up(&conf->wait_barrier); 975 976 if (do_sync) 977 md_wakeup_thread(mddev->thread); 978 979 return 0; 980 } 981 982 static void status(struct seq_file *seq, mddev_t *mddev) 983 { 984 conf_t *conf = mddev->private; 985 int i; 986 987 if (conf->near_copies < conf->raid_disks) 988 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 989 if (conf->near_copies > 1) 990 seq_printf(seq, " %d near-copies", conf->near_copies); 991 if (conf->far_copies > 1) { 992 if (conf->far_offset) 993 seq_printf(seq, " %d offset-copies", conf->far_copies); 994 else 995 seq_printf(seq, " %d far-copies", conf->far_copies); 996 } 997 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 998 conf->raid_disks - mddev->degraded); 999 for (i = 0; i < conf->raid_disks; i++) 1000 seq_printf(seq, "%s", 1001 conf->mirrors[i].rdev && 1002 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1003 seq_printf(seq, "]"); 1004 } 1005 1006 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1007 { 1008 char b[BDEVNAME_SIZE]; 1009 conf_t *conf = mddev->private; 1010 1011 /* 1012 * If it is not operational, then we have already marked it as dead 1013 * else if it is the last working disks, ignore the error, let the 1014 * next level up know. 1015 * else mark the drive as failed 1016 */ 1017 if (test_bit(In_sync, &rdev->flags) 1018 && conf->raid_disks-mddev->degraded == 1) 1019 /* 1020 * Don't fail the drive, just return an IO error. 1021 * The test should really be more sophisticated than 1022 * "working_disks == 1", but it isn't critical, and 1023 * can wait until we do more sophisticated "is the drive 1024 * really dead" tests... 1025 */ 1026 return; 1027 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1028 unsigned long flags; 1029 spin_lock_irqsave(&conf->device_lock, flags); 1030 mddev->degraded++; 1031 spin_unlock_irqrestore(&conf->device_lock, flags); 1032 /* 1033 * if recovery is running, make sure it aborts. 1034 */ 1035 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1036 } 1037 set_bit(Faulty, &rdev->flags); 1038 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1039 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n" 1040 "raid10: Operation continuing on %d devices.\n", 1041 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1042 } 1043 1044 static void print_conf(conf_t *conf) 1045 { 1046 int i; 1047 mirror_info_t *tmp; 1048 1049 printk("RAID10 conf printout:\n"); 1050 if (!conf) { 1051 printk("(!conf)\n"); 1052 return; 1053 } 1054 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1055 conf->raid_disks); 1056 1057 for (i = 0; i < conf->raid_disks; i++) { 1058 char b[BDEVNAME_SIZE]; 1059 tmp = conf->mirrors + i; 1060 if (tmp->rdev) 1061 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1062 i, !test_bit(In_sync, &tmp->rdev->flags), 1063 !test_bit(Faulty, &tmp->rdev->flags), 1064 bdevname(tmp->rdev->bdev,b)); 1065 } 1066 } 1067 1068 static void close_sync(conf_t *conf) 1069 { 1070 wait_barrier(conf); 1071 allow_barrier(conf); 1072 1073 mempool_destroy(conf->r10buf_pool); 1074 conf->r10buf_pool = NULL; 1075 } 1076 1077 /* check if there are enough drives for 1078 * every block to appear on atleast one 1079 */ 1080 static int enough(conf_t *conf) 1081 { 1082 int first = 0; 1083 1084 do { 1085 int n = conf->copies; 1086 int cnt = 0; 1087 while (n--) { 1088 if (conf->mirrors[first].rdev) 1089 cnt++; 1090 first = (first+1) % conf->raid_disks; 1091 } 1092 if (cnt == 0) 1093 return 0; 1094 } while (first != 0); 1095 return 1; 1096 } 1097 1098 static int raid10_spare_active(mddev_t *mddev) 1099 { 1100 int i; 1101 conf_t *conf = mddev->private; 1102 mirror_info_t *tmp; 1103 1104 /* 1105 * Find all non-in_sync disks within the RAID10 configuration 1106 * and mark them in_sync 1107 */ 1108 for (i = 0; i < conf->raid_disks; i++) { 1109 tmp = conf->mirrors + i; 1110 if (tmp->rdev 1111 && !test_bit(Faulty, &tmp->rdev->flags) 1112 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1113 unsigned long flags; 1114 spin_lock_irqsave(&conf->device_lock, flags); 1115 mddev->degraded--; 1116 spin_unlock_irqrestore(&conf->device_lock, flags); 1117 } 1118 } 1119 1120 print_conf(conf); 1121 return 0; 1122 } 1123 1124 1125 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1126 { 1127 conf_t *conf = mddev->private; 1128 int err = -EEXIST; 1129 int mirror; 1130 mirror_info_t *p; 1131 int first = 0; 1132 int last = mddev->raid_disks - 1; 1133 1134 if (mddev->recovery_cp < MaxSector) 1135 /* only hot-add to in-sync arrays, as recovery is 1136 * very different from resync 1137 */ 1138 return -EBUSY; 1139 if (!enough(conf)) 1140 return -EINVAL; 1141 1142 if (rdev->raid_disk >= 0) 1143 first = last = rdev->raid_disk; 1144 1145 if (rdev->saved_raid_disk >= 0 && 1146 rdev->saved_raid_disk >= first && 1147 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1148 mirror = rdev->saved_raid_disk; 1149 else 1150 mirror = first; 1151 for ( ; mirror <= last ; mirror++) 1152 if ( !(p=conf->mirrors+mirror)->rdev) { 1153 1154 disk_stack_limits(mddev->gendisk, rdev->bdev, 1155 rdev->data_offset << 9); 1156 /* as we don't honour merge_bvec_fn, we must never risk 1157 * violating it, so limit ->max_sector to one PAGE, as 1158 * a one page request is never in violation. 1159 */ 1160 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1161 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9)) 1162 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1163 1164 p->head_position = 0; 1165 rdev->raid_disk = mirror; 1166 err = 0; 1167 if (rdev->saved_raid_disk != mirror) 1168 conf->fullsync = 1; 1169 rcu_assign_pointer(p->rdev, rdev); 1170 break; 1171 } 1172 1173 md_integrity_add_rdev(rdev, mddev); 1174 print_conf(conf); 1175 return err; 1176 } 1177 1178 static int raid10_remove_disk(mddev_t *mddev, int number) 1179 { 1180 conf_t *conf = mddev->private; 1181 int err = 0; 1182 mdk_rdev_t *rdev; 1183 mirror_info_t *p = conf->mirrors+ number; 1184 1185 print_conf(conf); 1186 rdev = p->rdev; 1187 if (rdev) { 1188 if (test_bit(In_sync, &rdev->flags) || 1189 atomic_read(&rdev->nr_pending)) { 1190 err = -EBUSY; 1191 goto abort; 1192 } 1193 /* Only remove faulty devices in recovery 1194 * is not possible. 1195 */ 1196 if (!test_bit(Faulty, &rdev->flags) && 1197 enough(conf)) { 1198 err = -EBUSY; 1199 goto abort; 1200 } 1201 p->rdev = NULL; 1202 synchronize_rcu(); 1203 if (atomic_read(&rdev->nr_pending)) { 1204 /* lost the race, try later */ 1205 err = -EBUSY; 1206 p->rdev = rdev; 1207 goto abort; 1208 } 1209 md_integrity_register(mddev); 1210 } 1211 abort: 1212 1213 print_conf(conf); 1214 return err; 1215 } 1216 1217 1218 static void end_sync_read(struct bio *bio, int error) 1219 { 1220 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1221 conf_t *conf = r10_bio->mddev->private; 1222 int i,d; 1223 1224 for (i=0; i<conf->copies; i++) 1225 if (r10_bio->devs[i].bio == bio) 1226 break; 1227 BUG_ON(i == conf->copies); 1228 update_head_pos(i, r10_bio); 1229 d = r10_bio->devs[i].devnum; 1230 1231 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1232 set_bit(R10BIO_Uptodate, &r10_bio->state); 1233 else { 1234 atomic_add(r10_bio->sectors, 1235 &conf->mirrors[d].rdev->corrected_errors); 1236 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1237 md_error(r10_bio->mddev, 1238 conf->mirrors[d].rdev); 1239 } 1240 1241 /* for reconstruct, we always reschedule after a read. 1242 * for resync, only after all reads 1243 */ 1244 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1245 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1246 atomic_dec_and_test(&r10_bio->remaining)) { 1247 /* we have read all the blocks, 1248 * do the comparison in process context in raid10d 1249 */ 1250 reschedule_retry(r10_bio); 1251 } 1252 } 1253 1254 static void end_sync_write(struct bio *bio, int error) 1255 { 1256 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1257 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1258 mddev_t *mddev = r10_bio->mddev; 1259 conf_t *conf = mddev->private; 1260 int i,d; 1261 1262 for (i = 0; i < conf->copies; i++) 1263 if (r10_bio->devs[i].bio == bio) 1264 break; 1265 d = r10_bio->devs[i].devnum; 1266 1267 if (!uptodate) 1268 md_error(mddev, conf->mirrors[d].rdev); 1269 1270 update_head_pos(i, r10_bio); 1271 1272 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1273 while (atomic_dec_and_test(&r10_bio->remaining)) { 1274 if (r10_bio->master_bio == NULL) { 1275 /* the primary of several recovery bios */ 1276 sector_t s = r10_bio->sectors; 1277 put_buf(r10_bio); 1278 md_done_sync(mddev, s, 1); 1279 break; 1280 } else { 1281 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1282 put_buf(r10_bio); 1283 r10_bio = r10_bio2; 1284 } 1285 } 1286 } 1287 1288 /* 1289 * Note: sync and recover and handled very differently for raid10 1290 * This code is for resync. 1291 * For resync, we read through virtual addresses and read all blocks. 1292 * If there is any error, we schedule a write. The lowest numbered 1293 * drive is authoritative. 1294 * However requests come for physical address, so we need to map. 1295 * For every physical address there are raid_disks/copies virtual addresses, 1296 * which is always are least one, but is not necessarly an integer. 1297 * This means that a physical address can span multiple chunks, so we may 1298 * have to submit multiple io requests for a single sync request. 1299 */ 1300 /* 1301 * We check if all blocks are in-sync and only write to blocks that 1302 * aren't in sync 1303 */ 1304 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1305 { 1306 conf_t *conf = mddev->private; 1307 int i, first; 1308 struct bio *tbio, *fbio; 1309 1310 atomic_set(&r10_bio->remaining, 1); 1311 1312 /* find the first device with a block */ 1313 for (i=0; i<conf->copies; i++) 1314 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1315 break; 1316 1317 if (i == conf->copies) 1318 goto done; 1319 1320 first = i; 1321 fbio = r10_bio->devs[i].bio; 1322 1323 /* now find blocks with errors */ 1324 for (i=0 ; i < conf->copies ; i++) { 1325 int j, d; 1326 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1327 1328 tbio = r10_bio->devs[i].bio; 1329 1330 if (tbio->bi_end_io != end_sync_read) 1331 continue; 1332 if (i == first) 1333 continue; 1334 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1335 /* We know that the bi_io_vec layout is the same for 1336 * both 'first' and 'i', so we just compare them. 1337 * All vec entries are PAGE_SIZE; 1338 */ 1339 for (j = 0; j < vcnt; j++) 1340 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1341 page_address(tbio->bi_io_vec[j].bv_page), 1342 PAGE_SIZE)) 1343 break; 1344 if (j == vcnt) 1345 continue; 1346 mddev->resync_mismatches += r10_bio->sectors; 1347 } 1348 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1349 /* Don't fix anything. */ 1350 continue; 1351 /* Ok, we need to write this bio 1352 * First we need to fixup bv_offset, bv_len and 1353 * bi_vecs, as the read request might have corrupted these 1354 */ 1355 tbio->bi_vcnt = vcnt; 1356 tbio->bi_size = r10_bio->sectors << 9; 1357 tbio->bi_idx = 0; 1358 tbio->bi_phys_segments = 0; 1359 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1360 tbio->bi_flags |= 1 << BIO_UPTODATE; 1361 tbio->bi_next = NULL; 1362 tbio->bi_rw = WRITE; 1363 tbio->bi_private = r10_bio; 1364 tbio->bi_sector = r10_bio->devs[i].addr; 1365 1366 for (j=0; j < vcnt ; j++) { 1367 tbio->bi_io_vec[j].bv_offset = 0; 1368 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1369 1370 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1371 page_address(fbio->bi_io_vec[j].bv_page), 1372 PAGE_SIZE); 1373 } 1374 tbio->bi_end_io = end_sync_write; 1375 1376 d = r10_bio->devs[i].devnum; 1377 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1378 atomic_inc(&r10_bio->remaining); 1379 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1380 1381 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1382 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1383 generic_make_request(tbio); 1384 } 1385 1386 done: 1387 if (atomic_dec_and_test(&r10_bio->remaining)) { 1388 md_done_sync(mddev, r10_bio->sectors, 1); 1389 put_buf(r10_bio); 1390 } 1391 } 1392 1393 /* 1394 * Now for the recovery code. 1395 * Recovery happens across physical sectors. 1396 * We recover all non-is_sync drives by finding the virtual address of 1397 * each, and then choose a working drive that also has that virt address. 1398 * There is a separate r10_bio for each non-in_sync drive. 1399 * Only the first two slots are in use. The first for reading, 1400 * The second for writing. 1401 * 1402 */ 1403 1404 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1405 { 1406 conf_t *conf = mddev->private; 1407 int i, d; 1408 struct bio *bio, *wbio; 1409 1410 1411 /* move the pages across to the second bio 1412 * and submit the write request 1413 */ 1414 bio = r10_bio->devs[0].bio; 1415 wbio = r10_bio->devs[1].bio; 1416 for (i=0; i < wbio->bi_vcnt; i++) { 1417 struct page *p = bio->bi_io_vec[i].bv_page; 1418 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1419 wbio->bi_io_vec[i].bv_page = p; 1420 } 1421 d = r10_bio->devs[1].devnum; 1422 1423 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1424 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1425 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1426 generic_make_request(wbio); 1427 else 1428 bio_endio(wbio, -EIO); 1429 } 1430 1431 1432 /* 1433 * This is a kernel thread which: 1434 * 1435 * 1. Retries failed read operations on working mirrors. 1436 * 2. Updates the raid superblock when problems encounter. 1437 * 3. Performs writes following reads for array synchronising. 1438 */ 1439 1440 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1441 { 1442 int sect = 0; /* Offset from r10_bio->sector */ 1443 int sectors = r10_bio->sectors; 1444 mdk_rdev_t*rdev; 1445 while(sectors) { 1446 int s = sectors; 1447 int sl = r10_bio->read_slot; 1448 int success = 0; 1449 int start; 1450 1451 if (s > (PAGE_SIZE>>9)) 1452 s = PAGE_SIZE >> 9; 1453 1454 rcu_read_lock(); 1455 do { 1456 int d = r10_bio->devs[sl].devnum; 1457 rdev = rcu_dereference(conf->mirrors[d].rdev); 1458 if (rdev && 1459 test_bit(In_sync, &rdev->flags)) { 1460 atomic_inc(&rdev->nr_pending); 1461 rcu_read_unlock(); 1462 success = sync_page_io(rdev->bdev, 1463 r10_bio->devs[sl].addr + 1464 sect + rdev->data_offset, 1465 s<<9, 1466 conf->tmppage, READ); 1467 rdev_dec_pending(rdev, mddev); 1468 rcu_read_lock(); 1469 if (success) 1470 break; 1471 } 1472 sl++; 1473 if (sl == conf->copies) 1474 sl = 0; 1475 } while (!success && sl != r10_bio->read_slot); 1476 rcu_read_unlock(); 1477 1478 if (!success) { 1479 /* Cannot read from anywhere -- bye bye array */ 1480 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1481 md_error(mddev, conf->mirrors[dn].rdev); 1482 break; 1483 } 1484 1485 start = sl; 1486 /* write it back and re-read */ 1487 rcu_read_lock(); 1488 while (sl != r10_bio->read_slot) { 1489 int d; 1490 if (sl==0) 1491 sl = conf->copies; 1492 sl--; 1493 d = r10_bio->devs[sl].devnum; 1494 rdev = rcu_dereference(conf->mirrors[d].rdev); 1495 if (rdev && 1496 test_bit(In_sync, &rdev->flags)) { 1497 atomic_inc(&rdev->nr_pending); 1498 rcu_read_unlock(); 1499 atomic_add(s, &rdev->corrected_errors); 1500 if (sync_page_io(rdev->bdev, 1501 r10_bio->devs[sl].addr + 1502 sect + rdev->data_offset, 1503 s<<9, conf->tmppage, WRITE) 1504 == 0) 1505 /* Well, this device is dead */ 1506 md_error(mddev, rdev); 1507 rdev_dec_pending(rdev, mddev); 1508 rcu_read_lock(); 1509 } 1510 } 1511 sl = start; 1512 while (sl != r10_bio->read_slot) { 1513 int d; 1514 if (sl==0) 1515 sl = conf->copies; 1516 sl--; 1517 d = r10_bio->devs[sl].devnum; 1518 rdev = rcu_dereference(conf->mirrors[d].rdev); 1519 if (rdev && 1520 test_bit(In_sync, &rdev->flags)) { 1521 char b[BDEVNAME_SIZE]; 1522 atomic_inc(&rdev->nr_pending); 1523 rcu_read_unlock(); 1524 if (sync_page_io(rdev->bdev, 1525 r10_bio->devs[sl].addr + 1526 sect + rdev->data_offset, 1527 s<<9, conf->tmppage, READ) == 0) 1528 /* Well, this device is dead */ 1529 md_error(mddev, rdev); 1530 else 1531 printk(KERN_INFO 1532 "raid10:%s: read error corrected" 1533 " (%d sectors at %llu on %s)\n", 1534 mdname(mddev), s, 1535 (unsigned long long)(sect+ 1536 rdev->data_offset), 1537 bdevname(rdev->bdev, b)); 1538 1539 rdev_dec_pending(rdev, mddev); 1540 rcu_read_lock(); 1541 } 1542 } 1543 rcu_read_unlock(); 1544 1545 sectors -= s; 1546 sect += s; 1547 } 1548 } 1549 1550 static void raid10d(mddev_t *mddev) 1551 { 1552 r10bio_t *r10_bio; 1553 struct bio *bio; 1554 unsigned long flags; 1555 conf_t *conf = mddev->private; 1556 struct list_head *head = &conf->retry_list; 1557 int unplug=0; 1558 mdk_rdev_t *rdev; 1559 1560 md_check_recovery(mddev); 1561 1562 for (;;) { 1563 char b[BDEVNAME_SIZE]; 1564 1565 unplug += flush_pending_writes(conf); 1566 1567 spin_lock_irqsave(&conf->device_lock, flags); 1568 if (list_empty(head)) { 1569 spin_unlock_irqrestore(&conf->device_lock, flags); 1570 break; 1571 } 1572 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1573 list_del(head->prev); 1574 conf->nr_queued--; 1575 spin_unlock_irqrestore(&conf->device_lock, flags); 1576 1577 mddev = r10_bio->mddev; 1578 conf = mddev->private; 1579 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1580 sync_request_write(mddev, r10_bio); 1581 unplug = 1; 1582 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1583 recovery_request_write(mddev, r10_bio); 1584 unplug = 1; 1585 } else { 1586 int mirror; 1587 /* we got a read error. Maybe the drive is bad. Maybe just 1588 * the block and we can fix it. 1589 * We freeze all other IO, and try reading the block from 1590 * other devices. When we find one, we re-write 1591 * and check it that fixes the read error. 1592 * This is all done synchronously while the array is 1593 * frozen. 1594 */ 1595 if (mddev->ro == 0) { 1596 freeze_array(conf); 1597 fix_read_error(conf, mddev, r10_bio); 1598 unfreeze_array(conf); 1599 } 1600 1601 bio = r10_bio->devs[r10_bio->read_slot].bio; 1602 r10_bio->devs[r10_bio->read_slot].bio = 1603 mddev->ro ? IO_BLOCKED : NULL; 1604 mirror = read_balance(conf, r10_bio); 1605 if (mirror == -1) { 1606 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1607 " read error for block %llu\n", 1608 bdevname(bio->bi_bdev,b), 1609 (unsigned long long)r10_bio->sector); 1610 raid_end_bio_io(r10_bio); 1611 bio_put(bio); 1612 } else { 1613 const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO); 1614 bio_put(bio); 1615 rdev = conf->mirrors[mirror].rdev; 1616 if (printk_ratelimit()) 1617 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1618 " another mirror\n", 1619 bdevname(rdev->bdev,b), 1620 (unsigned long long)r10_bio->sector); 1621 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1622 r10_bio->devs[r10_bio->read_slot].bio = bio; 1623 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1624 + rdev->data_offset; 1625 bio->bi_bdev = rdev->bdev; 1626 bio->bi_rw = READ | do_sync; 1627 bio->bi_private = r10_bio; 1628 bio->bi_end_io = raid10_end_read_request; 1629 unplug = 1; 1630 generic_make_request(bio); 1631 } 1632 } 1633 } 1634 if (unplug) 1635 unplug_slaves(mddev); 1636 } 1637 1638 1639 static int init_resync(conf_t *conf) 1640 { 1641 int buffs; 1642 1643 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1644 BUG_ON(conf->r10buf_pool); 1645 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1646 if (!conf->r10buf_pool) 1647 return -ENOMEM; 1648 conf->next_resync = 0; 1649 return 0; 1650 } 1651 1652 /* 1653 * perform a "sync" on one "block" 1654 * 1655 * We need to make sure that no normal I/O request - particularly write 1656 * requests - conflict with active sync requests. 1657 * 1658 * This is achieved by tracking pending requests and a 'barrier' concept 1659 * that can be installed to exclude normal IO requests. 1660 * 1661 * Resync and recovery are handled very differently. 1662 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1663 * 1664 * For resync, we iterate over virtual addresses, read all copies, 1665 * and update if there are differences. If only one copy is live, 1666 * skip it. 1667 * For recovery, we iterate over physical addresses, read a good 1668 * value for each non-in_sync drive, and over-write. 1669 * 1670 * So, for recovery we may have several outstanding complex requests for a 1671 * given address, one for each out-of-sync device. We model this by allocating 1672 * a number of r10_bio structures, one for each out-of-sync device. 1673 * As we setup these structures, we collect all bio's together into a list 1674 * which we then process collectively to add pages, and then process again 1675 * to pass to generic_make_request. 1676 * 1677 * The r10_bio structures are linked using a borrowed master_bio pointer. 1678 * This link is counted in ->remaining. When the r10_bio that points to NULL 1679 * has its remaining count decremented to 0, the whole complex operation 1680 * is complete. 1681 * 1682 */ 1683 1684 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1685 { 1686 conf_t *conf = mddev->private; 1687 r10bio_t *r10_bio; 1688 struct bio *biolist = NULL, *bio; 1689 sector_t max_sector, nr_sectors; 1690 int disk; 1691 int i; 1692 int max_sync; 1693 int sync_blocks; 1694 1695 sector_t sectors_skipped = 0; 1696 int chunks_skipped = 0; 1697 1698 if (!conf->r10buf_pool) 1699 if (init_resync(conf)) 1700 return 0; 1701 1702 skipped: 1703 max_sector = mddev->dev_sectors; 1704 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1705 max_sector = mddev->resync_max_sectors; 1706 if (sector_nr >= max_sector) { 1707 /* If we aborted, we need to abort the 1708 * sync on the 'current' bitmap chucks (there can 1709 * be several when recovering multiple devices). 1710 * as we may have started syncing it but not finished. 1711 * We can find the current address in 1712 * mddev->curr_resync, but for recovery, 1713 * we need to convert that to several 1714 * virtual addresses. 1715 */ 1716 if (mddev->curr_resync < max_sector) { /* aborted */ 1717 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1718 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1719 &sync_blocks, 1); 1720 else for (i=0; i<conf->raid_disks; i++) { 1721 sector_t sect = 1722 raid10_find_virt(conf, mddev->curr_resync, i); 1723 bitmap_end_sync(mddev->bitmap, sect, 1724 &sync_blocks, 1); 1725 } 1726 } else /* completed sync */ 1727 conf->fullsync = 0; 1728 1729 bitmap_close_sync(mddev->bitmap); 1730 close_sync(conf); 1731 *skipped = 1; 1732 return sectors_skipped; 1733 } 1734 if (chunks_skipped >= conf->raid_disks) { 1735 /* if there has been nothing to do on any drive, 1736 * then there is nothing to do at all.. 1737 */ 1738 *skipped = 1; 1739 return (max_sector - sector_nr) + sectors_skipped; 1740 } 1741 1742 if (max_sector > mddev->resync_max) 1743 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1744 1745 /* make sure whole request will fit in a chunk - if chunks 1746 * are meaningful 1747 */ 1748 if (conf->near_copies < conf->raid_disks && 1749 max_sector > (sector_nr | conf->chunk_mask)) 1750 max_sector = (sector_nr | conf->chunk_mask) + 1; 1751 /* 1752 * If there is non-resync activity waiting for us then 1753 * put in a delay to throttle resync. 1754 */ 1755 if (!go_faster && conf->nr_waiting) 1756 msleep_interruptible(1000); 1757 1758 /* Again, very different code for resync and recovery. 1759 * Both must result in an r10bio with a list of bios that 1760 * have bi_end_io, bi_sector, bi_bdev set, 1761 * and bi_private set to the r10bio. 1762 * For recovery, we may actually create several r10bios 1763 * with 2 bios in each, that correspond to the bios in the main one. 1764 * In this case, the subordinate r10bios link back through a 1765 * borrowed master_bio pointer, and the counter in the master 1766 * includes a ref from each subordinate. 1767 */ 1768 /* First, we decide what to do and set ->bi_end_io 1769 * To end_sync_read if we want to read, and 1770 * end_sync_write if we will want to write. 1771 */ 1772 1773 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1774 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1775 /* recovery... the complicated one */ 1776 int i, j, k; 1777 r10_bio = NULL; 1778 1779 for (i=0 ; i<conf->raid_disks; i++) 1780 if (conf->mirrors[i].rdev && 1781 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1782 int still_degraded = 0; 1783 /* want to reconstruct this device */ 1784 r10bio_t *rb2 = r10_bio; 1785 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1786 int must_sync; 1787 /* Unless we are doing a full sync, we only need 1788 * to recover the block if it is set in the bitmap 1789 */ 1790 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1791 &sync_blocks, 1); 1792 if (sync_blocks < max_sync) 1793 max_sync = sync_blocks; 1794 if (!must_sync && 1795 !conf->fullsync) { 1796 /* yep, skip the sync_blocks here, but don't assume 1797 * that there will never be anything to do here 1798 */ 1799 chunks_skipped = -1; 1800 continue; 1801 } 1802 1803 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1804 raise_barrier(conf, rb2 != NULL); 1805 atomic_set(&r10_bio->remaining, 0); 1806 1807 r10_bio->master_bio = (struct bio*)rb2; 1808 if (rb2) 1809 atomic_inc(&rb2->remaining); 1810 r10_bio->mddev = mddev; 1811 set_bit(R10BIO_IsRecover, &r10_bio->state); 1812 r10_bio->sector = sect; 1813 1814 raid10_find_phys(conf, r10_bio); 1815 1816 /* Need to check if the array will still be 1817 * degraded 1818 */ 1819 for (j=0; j<conf->raid_disks; j++) 1820 if (conf->mirrors[j].rdev == NULL || 1821 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 1822 still_degraded = 1; 1823 break; 1824 } 1825 1826 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1827 &sync_blocks, still_degraded); 1828 1829 for (j=0; j<conf->copies;j++) { 1830 int d = r10_bio->devs[j].devnum; 1831 if (conf->mirrors[d].rdev && 1832 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1833 /* This is where we read from */ 1834 bio = r10_bio->devs[0].bio; 1835 bio->bi_next = biolist; 1836 biolist = bio; 1837 bio->bi_private = r10_bio; 1838 bio->bi_end_io = end_sync_read; 1839 bio->bi_rw = READ; 1840 bio->bi_sector = r10_bio->devs[j].addr + 1841 conf->mirrors[d].rdev->data_offset; 1842 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1843 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1844 atomic_inc(&r10_bio->remaining); 1845 /* and we write to 'i' */ 1846 1847 for (k=0; k<conf->copies; k++) 1848 if (r10_bio->devs[k].devnum == i) 1849 break; 1850 BUG_ON(k == conf->copies); 1851 bio = r10_bio->devs[1].bio; 1852 bio->bi_next = biolist; 1853 biolist = bio; 1854 bio->bi_private = r10_bio; 1855 bio->bi_end_io = end_sync_write; 1856 bio->bi_rw = WRITE; 1857 bio->bi_sector = r10_bio->devs[k].addr + 1858 conf->mirrors[i].rdev->data_offset; 1859 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1860 1861 r10_bio->devs[0].devnum = d; 1862 r10_bio->devs[1].devnum = i; 1863 1864 break; 1865 } 1866 } 1867 if (j == conf->copies) { 1868 /* Cannot recover, so abort the recovery */ 1869 put_buf(r10_bio); 1870 if (rb2) 1871 atomic_dec(&rb2->remaining); 1872 r10_bio = rb2; 1873 if (!test_and_set_bit(MD_RECOVERY_INTR, 1874 &mddev->recovery)) 1875 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1876 mdname(mddev)); 1877 break; 1878 } 1879 } 1880 if (biolist == NULL) { 1881 while (r10_bio) { 1882 r10bio_t *rb2 = r10_bio; 1883 r10_bio = (r10bio_t*) rb2->master_bio; 1884 rb2->master_bio = NULL; 1885 put_buf(rb2); 1886 } 1887 goto giveup; 1888 } 1889 } else { 1890 /* resync. Schedule a read for every block at this virt offset */ 1891 int count = 0; 1892 1893 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1894 1895 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1896 &sync_blocks, mddev->degraded) && 1897 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1898 /* We can skip this block */ 1899 *skipped = 1; 1900 return sync_blocks + sectors_skipped; 1901 } 1902 if (sync_blocks < max_sync) 1903 max_sync = sync_blocks; 1904 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1905 1906 r10_bio->mddev = mddev; 1907 atomic_set(&r10_bio->remaining, 0); 1908 raise_barrier(conf, 0); 1909 conf->next_resync = sector_nr; 1910 1911 r10_bio->master_bio = NULL; 1912 r10_bio->sector = sector_nr; 1913 set_bit(R10BIO_IsSync, &r10_bio->state); 1914 raid10_find_phys(conf, r10_bio); 1915 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1916 1917 for (i=0; i<conf->copies; i++) { 1918 int d = r10_bio->devs[i].devnum; 1919 bio = r10_bio->devs[i].bio; 1920 bio->bi_end_io = NULL; 1921 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1922 if (conf->mirrors[d].rdev == NULL || 1923 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1924 continue; 1925 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1926 atomic_inc(&r10_bio->remaining); 1927 bio->bi_next = biolist; 1928 biolist = bio; 1929 bio->bi_private = r10_bio; 1930 bio->bi_end_io = end_sync_read; 1931 bio->bi_rw = READ; 1932 bio->bi_sector = r10_bio->devs[i].addr + 1933 conf->mirrors[d].rdev->data_offset; 1934 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1935 count++; 1936 } 1937 1938 if (count < 2) { 1939 for (i=0; i<conf->copies; i++) { 1940 int d = r10_bio->devs[i].devnum; 1941 if (r10_bio->devs[i].bio->bi_end_io) 1942 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1943 } 1944 put_buf(r10_bio); 1945 biolist = NULL; 1946 goto giveup; 1947 } 1948 } 1949 1950 for (bio = biolist; bio ; bio=bio->bi_next) { 1951 1952 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1953 if (bio->bi_end_io) 1954 bio->bi_flags |= 1 << BIO_UPTODATE; 1955 bio->bi_vcnt = 0; 1956 bio->bi_idx = 0; 1957 bio->bi_phys_segments = 0; 1958 bio->bi_size = 0; 1959 } 1960 1961 nr_sectors = 0; 1962 if (sector_nr + max_sync < max_sector) 1963 max_sector = sector_nr + max_sync; 1964 do { 1965 struct page *page; 1966 int len = PAGE_SIZE; 1967 disk = 0; 1968 if (sector_nr + (len>>9) > max_sector) 1969 len = (max_sector - sector_nr) << 9; 1970 if (len == 0) 1971 break; 1972 for (bio= biolist ; bio ; bio=bio->bi_next) { 1973 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1974 if (bio_add_page(bio, page, len, 0) == 0) { 1975 /* stop here */ 1976 struct bio *bio2; 1977 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1978 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1979 /* remove last page from this bio */ 1980 bio2->bi_vcnt--; 1981 bio2->bi_size -= len; 1982 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1983 } 1984 goto bio_full; 1985 } 1986 disk = i; 1987 } 1988 nr_sectors += len>>9; 1989 sector_nr += len>>9; 1990 } while (biolist->bi_vcnt < RESYNC_PAGES); 1991 bio_full: 1992 r10_bio->sectors = nr_sectors; 1993 1994 while (biolist) { 1995 bio = biolist; 1996 biolist = biolist->bi_next; 1997 1998 bio->bi_next = NULL; 1999 r10_bio = bio->bi_private; 2000 r10_bio->sectors = nr_sectors; 2001 2002 if (bio->bi_end_io == end_sync_read) { 2003 md_sync_acct(bio->bi_bdev, nr_sectors); 2004 generic_make_request(bio); 2005 } 2006 } 2007 2008 if (sectors_skipped) 2009 /* pretend they weren't skipped, it makes 2010 * no important difference in this case 2011 */ 2012 md_done_sync(mddev, sectors_skipped, 1); 2013 2014 return sectors_skipped + nr_sectors; 2015 giveup: 2016 /* There is nowhere to write, so all non-sync 2017 * drives must be failed, so try the next chunk... 2018 */ 2019 if (sector_nr + max_sync < max_sector) 2020 max_sector = sector_nr + max_sync; 2021 2022 sectors_skipped += (max_sector - sector_nr); 2023 chunks_skipped ++; 2024 sector_nr = max_sector; 2025 goto skipped; 2026 } 2027 2028 static sector_t 2029 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks) 2030 { 2031 sector_t size; 2032 conf_t *conf = mddev->private; 2033 2034 if (!raid_disks) 2035 raid_disks = mddev->raid_disks; 2036 if (!sectors) 2037 sectors = mddev->dev_sectors; 2038 2039 size = sectors >> conf->chunk_shift; 2040 sector_div(size, conf->far_copies); 2041 size = size * raid_disks; 2042 sector_div(size, conf->near_copies); 2043 2044 return size << conf->chunk_shift; 2045 } 2046 2047 static int run(mddev_t *mddev) 2048 { 2049 conf_t *conf; 2050 int i, disk_idx, chunk_size; 2051 mirror_info_t *disk; 2052 mdk_rdev_t *rdev; 2053 int nc, fc, fo; 2054 sector_t stride, size; 2055 2056 if (mddev->chunk_sectors < (PAGE_SIZE >> 9) || 2057 !is_power_of_2(mddev->chunk_sectors)) { 2058 printk(KERN_ERR "md/raid10: chunk size must be " 2059 "at least PAGE_SIZE(%ld) and be a power of 2.\n", PAGE_SIZE); 2060 return -EINVAL; 2061 } 2062 2063 nc = mddev->layout & 255; 2064 fc = (mddev->layout >> 8) & 255; 2065 fo = mddev->layout & (1<<16); 2066 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2067 (mddev->layout >> 17)) { 2068 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 2069 mdname(mddev), mddev->layout); 2070 goto out; 2071 } 2072 /* 2073 * copy the already verified devices into our private RAID10 2074 * bookkeeping area. [whatever we allocate in run(), 2075 * should be freed in stop()] 2076 */ 2077 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2078 mddev->private = conf; 2079 if (!conf) { 2080 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2081 mdname(mddev)); 2082 goto out; 2083 } 2084 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2085 GFP_KERNEL); 2086 if (!conf->mirrors) { 2087 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2088 mdname(mddev)); 2089 goto out_free_conf; 2090 } 2091 2092 conf->tmppage = alloc_page(GFP_KERNEL); 2093 if (!conf->tmppage) 2094 goto out_free_conf; 2095 2096 conf->mddev = mddev; 2097 conf->raid_disks = mddev->raid_disks; 2098 conf->near_copies = nc; 2099 conf->far_copies = fc; 2100 conf->copies = nc*fc; 2101 conf->far_offset = fo; 2102 conf->chunk_mask = mddev->chunk_sectors - 1; 2103 conf->chunk_shift = ffz(~mddev->chunk_sectors); 2104 size = mddev->dev_sectors >> conf->chunk_shift; 2105 sector_div(size, fc); 2106 size = size * conf->raid_disks; 2107 sector_div(size, nc); 2108 /* 'size' is now the number of chunks in the array */ 2109 /* calculate "used chunks per device" in 'stride' */ 2110 stride = size * conf->copies; 2111 2112 /* We need to round up when dividing by raid_disks to 2113 * get the stride size. 2114 */ 2115 stride += conf->raid_disks - 1; 2116 sector_div(stride, conf->raid_disks); 2117 mddev->dev_sectors = stride << conf->chunk_shift; 2118 2119 if (fo) 2120 stride = 1; 2121 else 2122 sector_div(stride, fc); 2123 conf->stride = stride << conf->chunk_shift; 2124 2125 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2126 r10bio_pool_free, conf); 2127 if (!conf->r10bio_pool) { 2128 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2129 mdname(mddev)); 2130 goto out_free_conf; 2131 } 2132 2133 spin_lock_init(&conf->device_lock); 2134 mddev->queue->queue_lock = &conf->device_lock; 2135 2136 chunk_size = mddev->chunk_sectors << 9; 2137 blk_queue_io_min(mddev->queue, chunk_size); 2138 if (conf->raid_disks % conf->near_copies) 2139 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 2140 else 2141 blk_queue_io_opt(mddev->queue, chunk_size * 2142 (conf->raid_disks / conf->near_copies)); 2143 2144 list_for_each_entry(rdev, &mddev->disks, same_set) { 2145 disk_idx = rdev->raid_disk; 2146 if (disk_idx >= mddev->raid_disks 2147 || disk_idx < 0) 2148 continue; 2149 disk = conf->mirrors + disk_idx; 2150 2151 disk->rdev = rdev; 2152 disk_stack_limits(mddev->gendisk, rdev->bdev, 2153 rdev->data_offset << 9); 2154 /* as we don't honour merge_bvec_fn, we must never risk 2155 * violating it, so limit ->max_sector to one PAGE, as 2156 * a one page request is never in violation. 2157 */ 2158 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2159 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9)) 2160 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 2161 2162 disk->head_position = 0; 2163 } 2164 INIT_LIST_HEAD(&conf->retry_list); 2165 2166 spin_lock_init(&conf->resync_lock); 2167 init_waitqueue_head(&conf->wait_barrier); 2168 2169 /* need to check that every block has at least one working mirror */ 2170 if (!enough(conf)) { 2171 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2172 mdname(mddev)); 2173 goto out_free_conf; 2174 } 2175 2176 mddev->degraded = 0; 2177 for (i = 0; i < conf->raid_disks; i++) { 2178 2179 disk = conf->mirrors + i; 2180 2181 if (!disk->rdev || 2182 !test_bit(In_sync, &disk->rdev->flags)) { 2183 disk->head_position = 0; 2184 mddev->degraded++; 2185 if (disk->rdev) 2186 conf->fullsync = 1; 2187 } 2188 } 2189 2190 2191 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2192 if (!mddev->thread) { 2193 printk(KERN_ERR 2194 "raid10: couldn't allocate thread for %s\n", 2195 mdname(mddev)); 2196 goto out_free_conf; 2197 } 2198 2199 if (mddev->recovery_cp != MaxSector) 2200 printk(KERN_NOTICE "raid10: %s is not clean" 2201 " -- starting background reconstruction\n", 2202 mdname(mddev)); 2203 printk(KERN_INFO 2204 "raid10: raid set %s active with %d out of %d devices\n", 2205 mdname(mddev), mddev->raid_disks - mddev->degraded, 2206 mddev->raid_disks); 2207 /* 2208 * Ok, everything is just fine now 2209 */ 2210 md_set_array_sectors(mddev, raid10_size(mddev, 0, 0)); 2211 mddev->resync_max_sectors = raid10_size(mddev, 0, 0); 2212 2213 mddev->queue->unplug_fn = raid10_unplug; 2214 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2215 mddev->queue->backing_dev_info.congested_data = mddev; 2216 2217 /* Calculate max read-ahead size. 2218 * We need to readahead at least twice a whole stripe.... 2219 * maybe... 2220 */ 2221 { 2222 int stripe = conf->raid_disks * 2223 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 2224 stripe /= conf->near_copies; 2225 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2226 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2227 } 2228 2229 if (conf->near_copies < mddev->raid_disks) 2230 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2231 md_integrity_register(mddev); 2232 return 0; 2233 2234 out_free_conf: 2235 if (conf->r10bio_pool) 2236 mempool_destroy(conf->r10bio_pool); 2237 safe_put_page(conf->tmppage); 2238 kfree(conf->mirrors); 2239 kfree(conf); 2240 mddev->private = NULL; 2241 out: 2242 return -EIO; 2243 } 2244 2245 static int stop(mddev_t *mddev) 2246 { 2247 conf_t *conf = mddev->private; 2248 2249 raise_barrier(conf, 0); 2250 lower_barrier(conf); 2251 2252 md_unregister_thread(mddev->thread); 2253 mddev->thread = NULL; 2254 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2255 if (conf->r10bio_pool) 2256 mempool_destroy(conf->r10bio_pool); 2257 kfree(conf->mirrors); 2258 kfree(conf); 2259 mddev->private = NULL; 2260 return 0; 2261 } 2262 2263 static void raid10_quiesce(mddev_t *mddev, int state) 2264 { 2265 conf_t *conf = mddev->private; 2266 2267 switch(state) { 2268 case 1: 2269 raise_barrier(conf, 0); 2270 break; 2271 case 0: 2272 lower_barrier(conf); 2273 break; 2274 } 2275 if (mddev->thread) { 2276 if (mddev->bitmap) 2277 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2278 else 2279 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2280 md_wakeup_thread(mddev->thread); 2281 } 2282 } 2283 2284 static struct mdk_personality raid10_personality = 2285 { 2286 .name = "raid10", 2287 .level = 10, 2288 .owner = THIS_MODULE, 2289 .make_request = make_request, 2290 .run = run, 2291 .stop = stop, 2292 .status = status, 2293 .error_handler = error, 2294 .hot_add_disk = raid10_add_disk, 2295 .hot_remove_disk= raid10_remove_disk, 2296 .spare_active = raid10_spare_active, 2297 .sync_request = sync_request, 2298 .quiesce = raid10_quiesce, 2299 .size = raid10_size, 2300 }; 2301 2302 static int __init raid_init(void) 2303 { 2304 return register_md_personality(&raid10_personality); 2305 } 2306 2307 static void raid_exit(void) 2308 { 2309 unregister_md_personality(&raid10_personality); 2310 } 2311 2312 module_init(raid_init); 2313 module_exit(raid_exit); 2314 MODULE_LICENSE("GPL"); 2315 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2316 MODULE_ALIAS("md-raid10"); 2317 MODULE_ALIAS("md-level-10"); 2318