1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * 42 * The data to be stored is divided into chunks using chunksize. 43 * Each device is divided into far_copies sections. 44 * In each section, chunks are laid out in a style similar to raid0, but 45 * near_copies copies of each chunk is stored (each on a different drive). 46 * The starting device for each section is offset near_copies from the starting 47 * device of the previous section. 48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 49 * drive. 50 * near_copies and far_copies must be at least one, and their product is at most 51 * raid_disks. 52 * 53 * If far_offset is true, then the far_copies are handled a bit differently. 54 * The copies are still in different stripes, but instead of be very far apart 55 * on disk, there are adjacent stripes. 56 */ 57 58 /* 59 * Number of guaranteed r10bios in case of extreme VM load: 60 */ 61 #define NR_RAID10_BIOS 256 62 63 /* when we get a read error on a read-only array, we redirect to another 64 * device without failing the first device, or trying to over-write to 65 * correct the read error. To keep track of bad blocks on a per-bio 66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 67 */ 68 #define IO_BLOCKED ((struct bio *)1) 69 /* When we successfully write to a known bad-block, we need to remove the 70 * bad-block marking which must be done from process context. So we record 71 * the success by setting devs[n].bio to IO_MADE_GOOD 72 */ 73 #define IO_MADE_GOOD ((struct bio *)2) 74 75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 76 77 /* When there are this many requests queued to be written by 78 * the raid10 thread, we become 'congested' to provide back-pressure 79 * for writeback. 80 */ 81 static int max_queued_requests = 1024; 82 83 static void allow_barrier(struct r10conf *conf); 84 static void lower_barrier(struct r10conf *conf); 85 static int enough(struct r10conf *conf, int ignore); 86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 87 int *skipped); 88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 89 static void end_reshape_write(struct bio *bio, int error); 90 static void end_reshape(struct r10conf *conf); 91 92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 struct r10conf *conf = data; 95 int size = offsetof(struct r10bio, devs[conf->copies]); 96 97 /* allocate a r10bio with room for raid_disks entries in the 98 * bios array */ 99 return kzalloc(size, gfp_flags); 100 } 101 102 static void r10bio_pool_free(void *r10_bio, void *data) 103 { 104 kfree(r10_bio); 105 } 106 107 /* Maximum size of each resync request */ 108 #define RESYNC_BLOCK_SIZE (64*1024) 109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 110 /* amount of memory to reserve for resync requests */ 111 #define RESYNC_WINDOW (1024*1024) 112 /* maximum number of concurrent requests, memory permitting */ 113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 114 115 /* 116 * When performing a resync, we need to read and compare, so 117 * we need as many pages are there are copies. 118 * When performing a recovery, we need 2 bios, one for read, 119 * one for write (we recover only one drive per r10buf) 120 * 121 */ 122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 123 { 124 struct r10conf *conf = data; 125 struct page *page; 126 struct r10bio *r10_bio; 127 struct bio *bio; 128 int i, j; 129 int nalloc; 130 131 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 132 if (!r10_bio) 133 return NULL; 134 135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 137 nalloc = conf->copies; /* resync */ 138 else 139 nalloc = 2; /* recovery */ 140 141 /* 142 * Allocate bios. 143 */ 144 for (j = nalloc ; j-- ; ) { 145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 146 if (!bio) 147 goto out_free_bio; 148 r10_bio->devs[j].bio = bio; 149 if (!conf->have_replacement) 150 continue; 151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 152 if (!bio) 153 goto out_free_bio; 154 r10_bio->devs[j].repl_bio = bio; 155 } 156 /* 157 * Allocate RESYNC_PAGES data pages and attach them 158 * where needed. 159 */ 160 for (j = 0 ; j < nalloc; j++) { 161 struct bio *rbio = r10_bio->devs[j].repl_bio; 162 bio = r10_bio->devs[j].bio; 163 for (i = 0; i < RESYNC_PAGES; i++) { 164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 165 &conf->mddev->recovery)) { 166 /* we can share bv_page's during recovery 167 * and reshape */ 168 struct bio *rbio = r10_bio->devs[0].bio; 169 page = rbio->bi_io_vec[i].bv_page; 170 get_page(page); 171 } else 172 page = alloc_page(gfp_flags); 173 if (unlikely(!page)) 174 goto out_free_pages; 175 176 bio->bi_io_vec[i].bv_page = page; 177 if (rbio) 178 rbio->bi_io_vec[i].bv_page = page; 179 } 180 } 181 182 return r10_bio; 183 184 out_free_pages: 185 for ( ; i > 0 ; i--) 186 safe_put_page(bio->bi_io_vec[i-1].bv_page); 187 while (j--) 188 for (i = 0; i < RESYNC_PAGES ; i++) 189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 190 j = 0; 191 out_free_bio: 192 for ( ; j < nalloc; j++) { 193 if (r10_bio->devs[j].bio) 194 bio_put(r10_bio->devs[j].bio); 195 if (r10_bio->devs[j].repl_bio) 196 bio_put(r10_bio->devs[j].repl_bio); 197 } 198 r10bio_pool_free(r10_bio, conf); 199 return NULL; 200 } 201 202 static void r10buf_pool_free(void *__r10_bio, void *data) 203 { 204 int i; 205 struct r10conf *conf = data; 206 struct r10bio *r10bio = __r10_bio; 207 int j; 208 209 for (j=0; j < conf->copies; j++) { 210 struct bio *bio = r10bio->devs[j].bio; 211 if (bio) { 212 for (i = 0; i < RESYNC_PAGES; i++) { 213 safe_put_page(bio->bi_io_vec[i].bv_page); 214 bio->bi_io_vec[i].bv_page = NULL; 215 } 216 bio_put(bio); 217 } 218 bio = r10bio->devs[j].repl_bio; 219 if (bio) 220 bio_put(bio); 221 } 222 r10bio_pool_free(r10bio, conf); 223 } 224 225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 226 { 227 int i; 228 229 for (i = 0; i < conf->copies; i++) { 230 struct bio **bio = & r10_bio->devs[i].bio; 231 if (!BIO_SPECIAL(*bio)) 232 bio_put(*bio); 233 *bio = NULL; 234 bio = &r10_bio->devs[i].repl_bio; 235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 236 bio_put(*bio); 237 *bio = NULL; 238 } 239 } 240 241 static void free_r10bio(struct r10bio *r10_bio) 242 { 243 struct r10conf *conf = r10_bio->mddev->private; 244 245 put_all_bios(conf, r10_bio); 246 mempool_free(r10_bio, conf->r10bio_pool); 247 } 248 249 static void put_buf(struct r10bio *r10_bio) 250 { 251 struct r10conf *conf = r10_bio->mddev->private; 252 253 mempool_free(r10_bio, conf->r10buf_pool); 254 255 lower_barrier(conf); 256 } 257 258 static void reschedule_retry(struct r10bio *r10_bio) 259 { 260 unsigned long flags; 261 struct mddev *mddev = r10_bio->mddev; 262 struct r10conf *conf = mddev->private; 263 264 spin_lock_irqsave(&conf->device_lock, flags); 265 list_add(&r10_bio->retry_list, &conf->retry_list); 266 conf->nr_queued ++; 267 spin_unlock_irqrestore(&conf->device_lock, flags); 268 269 /* wake up frozen array... */ 270 wake_up(&conf->wait_barrier); 271 272 md_wakeup_thread(mddev->thread); 273 } 274 275 /* 276 * raid_end_bio_io() is called when we have finished servicing a mirrored 277 * operation and are ready to return a success/failure code to the buffer 278 * cache layer. 279 */ 280 static void raid_end_bio_io(struct r10bio *r10_bio) 281 { 282 struct bio *bio = r10_bio->master_bio; 283 int done; 284 struct r10conf *conf = r10_bio->mddev->private; 285 286 if (bio->bi_phys_segments) { 287 unsigned long flags; 288 spin_lock_irqsave(&conf->device_lock, flags); 289 bio->bi_phys_segments--; 290 done = (bio->bi_phys_segments == 0); 291 spin_unlock_irqrestore(&conf->device_lock, flags); 292 } else 293 done = 1; 294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 295 clear_bit(BIO_UPTODATE, &bio->bi_flags); 296 if (done) { 297 bio_endio(bio, 0); 298 /* 299 * Wake up any possible resync thread that waits for the device 300 * to go idle. 301 */ 302 allow_barrier(conf); 303 } 304 free_r10bio(r10_bio); 305 } 306 307 /* 308 * Update disk head position estimator based on IRQ completion info. 309 */ 310 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 311 { 312 struct r10conf *conf = r10_bio->mddev->private; 313 314 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 315 r10_bio->devs[slot].addr + (r10_bio->sectors); 316 } 317 318 /* 319 * Find the disk number which triggered given bio 320 */ 321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 322 struct bio *bio, int *slotp, int *replp) 323 { 324 int slot; 325 int repl = 0; 326 327 for (slot = 0; slot < conf->copies; slot++) { 328 if (r10_bio->devs[slot].bio == bio) 329 break; 330 if (r10_bio->devs[slot].repl_bio == bio) { 331 repl = 1; 332 break; 333 } 334 } 335 336 BUG_ON(slot == conf->copies); 337 update_head_pos(slot, r10_bio); 338 339 if (slotp) 340 *slotp = slot; 341 if (replp) 342 *replp = repl; 343 return r10_bio->devs[slot].devnum; 344 } 345 346 static void raid10_end_read_request(struct bio *bio, int error) 347 { 348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 349 struct r10bio *r10_bio = bio->bi_private; 350 int slot, dev; 351 struct md_rdev *rdev; 352 struct r10conf *conf = r10_bio->mddev->private; 353 354 355 slot = r10_bio->read_slot; 356 dev = r10_bio->devs[slot].devnum; 357 rdev = r10_bio->devs[slot].rdev; 358 /* 359 * this branch is our 'one mirror IO has finished' event handler: 360 */ 361 update_head_pos(slot, r10_bio); 362 363 if (uptodate) { 364 /* 365 * Set R10BIO_Uptodate in our master bio, so that 366 * we will return a good error code to the higher 367 * levels even if IO on some other mirrored buffer fails. 368 * 369 * The 'master' represents the composite IO operation to 370 * user-side. So if something waits for IO, then it will 371 * wait for the 'master' bio. 372 */ 373 set_bit(R10BIO_Uptodate, &r10_bio->state); 374 } else { 375 /* If all other devices that store this block have 376 * failed, we want to return the error upwards rather 377 * than fail the last device. Here we redefine 378 * "uptodate" to mean "Don't want to retry" 379 */ 380 unsigned long flags; 381 spin_lock_irqsave(&conf->device_lock, flags); 382 if (!enough(conf, rdev->raid_disk)) 383 uptodate = 1; 384 spin_unlock_irqrestore(&conf->device_lock, flags); 385 } 386 if (uptodate) { 387 raid_end_bio_io(r10_bio); 388 rdev_dec_pending(rdev, conf->mddev); 389 } else { 390 /* 391 * oops, read error - keep the refcount on the rdev 392 */ 393 char b[BDEVNAME_SIZE]; 394 printk_ratelimited(KERN_ERR 395 "md/raid10:%s: %s: rescheduling sector %llu\n", 396 mdname(conf->mddev), 397 bdevname(rdev->bdev, b), 398 (unsigned long long)r10_bio->sector); 399 set_bit(R10BIO_ReadError, &r10_bio->state); 400 reschedule_retry(r10_bio); 401 } 402 } 403 404 static void close_write(struct r10bio *r10_bio) 405 { 406 /* clear the bitmap if all writes complete successfully */ 407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 408 r10_bio->sectors, 409 !test_bit(R10BIO_Degraded, &r10_bio->state), 410 0); 411 md_write_end(r10_bio->mddev); 412 } 413 414 static void one_write_done(struct r10bio *r10_bio) 415 { 416 if (atomic_dec_and_test(&r10_bio->remaining)) { 417 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 418 reschedule_retry(r10_bio); 419 else { 420 close_write(r10_bio); 421 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 422 reschedule_retry(r10_bio); 423 else 424 raid_end_bio_io(r10_bio); 425 } 426 } 427 } 428 429 static void raid10_end_write_request(struct bio *bio, int error) 430 { 431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 432 struct r10bio *r10_bio = bio->bi_private; 433 int dev; 434 int dec_rdev = 1; 435 struct r10conf *conf = r10_bio->mddev->private; 436 int slot, repl; 437 struct md_rdev *rdev = NULL; 438 439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 440 441 if (repl) 442 rdev = conf->mirrors[dev].replacement; 443 if (!rdev) { 444 smp_rmb(); 445 repl = 0; 446 rdev = conf->mirrors[dev].rdev; 447 } 448 /* 449 * this branch is our 'one mirror IO has finished' event handler: 450 */ 451 if (!uptodate) { 452 if (repl) 453 /* Never record new bad blocks to replacement, 454 * just fail it. 455 */ 456 md_error(rdev->mddev, rdev); 457 else { 458 set_bit(WriteErrorSeen, &rdev->flags); 459 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 460 set_bit(MD_RECOVERY_NEEDED, 461 &rdev->mddev->recovery); 462 set_bit(R10BIO_WriteError, &r10_bio->state); 463 dec_rdev = 0; 464 } 465 } else { 466 /* 467 * Set R10BIO_Uptodate in our master bio, so that 468 * we will return a good error code for to the higher 469 * levels even if IO on some other mirrored buffer fails. 470 * 471 * The 'master' represents the composite IO operation to 472 * user-side. So if something waits for IO, then it will 473 * wait for the 'master' bio. 474 */ 475 sector_t first_bad; 476 int bad_sectors; 477 478 set_bit(R10BIO_Uptodate, &r10_bio->state); 479 480 /* Maybe we can clear some bad blocks. */ 481 if (is_badblock(rdev, 482 r10_bio->devs[slot].addr, 483 r10_bio->sectors, 484 &first_bad, &bad_sectors)) { 485 bio_put(bio); 486 if (repl) 487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 488 else 489 r10_bio->devs[slot].bio = IO_MADE_GOOD; 490 dec_rdev = 0; 491 set_bit(R10BIO_MadeGood, &r10_bio->state); 492 } 493 } 494 495 /* 496 * 497 * Let's see if all mirrored write operations have finished 498 * already. 499 */ 500 one_write_done(r10_bio); 501 if (dec_rdev) 502 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 503 } 504 505 /* 506 * RAID10 layout manager 507 * As well as the chunksize and raid_disks count, there are two 508 * parameters: near_copies and far_copies. 509 * near_copies * far_copies must be <= raid_disks. 510 * Normally one of these will be 1. 511 * If both are 1, we get raid0. 512 * If near_copies == raid_disks, we get raid1. 513 * 514 * Chunks are laid out in raid0 style with near_copies copies of the 515 * first chunk, followed by near_copies copies of the next chunk and 516 * so on. 517 * If far_copies > 1, then after 1/far_copies of the array has been assigned 518 * as described above, we start again with a device offset of near_copies. 519 * So we effectively have another copy of the whole array further down all 520 * the drives, but with blocks on different drives. 521 * With this layout, and block is never stored twice on the one device. 522 * 523 * raid10_find_phys finds the sector offset of a given virtual sector 524 * on each device that it is on. 525 * 526 * raid10_find_virt does the reverse mapping, from a device and a 527 * sector offset to a virtual address 528 */ 529 530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 531 { 532 int n,f; 533 sector_t sector; 534 sector_t chunk; 535 sector_t stripe; 536 int dev; 537 int slot = 0; 538 539 /* now calculate first sector/dev */ 540 chunk = r10bio->sector >> geo->chunk_shift; 541 sector = r10bio->sector & geo->chunk_mask; 542 543 chunk *= geo->near_copies; 544 stripe = chunk; 545 dev = sector_div(stripe, geo->raid_disks); 546 if (geo->far_offset) 547 stripe *= geo->far_copies; 548 549 sector += stripe << geo->chunk_shift; 550 551 /* and calculate all the others */ 552 for (n = 0; n < geo->near_copies; n++) { 553 int d = dev; 554 sector_t s = sector; 555 r10bio->devs[slot].addr = sector; 556 r10bio->devs[slot].devnum = d; 557 slot++; 558 559 for (f = 1; f < geo->far_copies; f++) { 560 d += geo->near_copies; 561 if (d >= geo->raid_disks) 562 d -= geo->raid_disks; 563 s += geo->stride; 564 r10bio->devs[slot].devnum = d; 565 r10bio->devs[slot].addr = s; 566 slot++; 567 } 568 dev++; 569 if (dev >= geo->raid_disks) { 570 dev = 0; 571 sector += (geo->chunk_mask + 1); 572 } 573 } 574 } 575 576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 577 { 578 struct geom *geo = &conf->geo; 579 580 if (conf->reshape_progress != MaxSector && 581 ((r10bio->sector >= conf->reshape_progress) != 582 conf->mddev->reshape_backwards)) { 583 set_bit(R10BIO_Previous, &r10bio->state); 584 geo = &conf->prev; 585 } else 586 clear_bit(R10BIO_Previous, &r10bio->state); 587 588 __raid10_find_phys(geo, r10bio); 589 } 590 591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 592 { 593 sector_t offset, chunk, vchunk; 594 /* Never use conf->prev as this is only called during resync 595 * or recovery, so reshape isn't happening 596 */ 597 struct geom *geo = &conf->geo; 598 599 offset = sector & geo->chunk_mask; 600 if (geo->far_offset) { 601 int fc; 602 chunk = sector >> geo->chunk_shift; 603 fc = sector_div(chunk, geo->far_copies); 604 dev -= fc * geo->near_copies; 605 if (dev < 0) 606 dev += geo->raid_disks; 607 } else { 608 while (sector >= geo->stride) { 609 sector -= geo->stride; 610 if (dev < geo->near_copies) 611 dev += geo->raid_disks - geo->near_copies; 612 else 613 dev -= geo->near_copies; 614 } 615 chunk = sector >> geo->chunk_shift; 616 } 617 vchunk = chunk * geo->raid_disks + dev; 618 sector_div(vchunk, geo->near_copies); 619 return (vchunk << geo->chunk_shift) + offset; 620 } 621 622 /** 623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 624 * @q: request queue 625 * @bvm: properties of new bio 626 * @biovec: the request that could be merged to it. 627 * 628 * Return amount of bytes we can accept at this offset 629 * This requires checking for end-of-chunk if near_copies != raid_disks, 630 * and for subordinate merge_bvec_fns if merge_check_needed. 631 */ 632 static int raid10_mergeable_bvec(struct request_queue *q, 633 struct bvec_merge_data *bvm, 634 struct bio_vec *biovec) 635 { 636 struct mddev *mddev = q->queuedata; 637 struct r10conf *conf = mddev->private; 638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 639 int max; 640 unsigned int chunk_sectors; 641 unsigned int bio_sectors = bvm->bi_size >> 9; 642 struct geom *geo = &conf->geo; 643 644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 645 if (conf->reshape_progress != MaxSector && 646 ((sector >= conf->reshape_progress) != 647 conf->mddev->reshape_backwards)) 648 geo = &conf->prev; 649 650 if (geo->near_copies < geo->raid_disks) { 651 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 652 + bio_sectors)) << 9; 653 if (max < 0) 654 /* bio_add cannot handle a negative return */ 655 max = 0; 656 if (max <= biovec->bv_len && bio_sectors == 0) 657 return biovec->bv_len; 658 } else 659 max = biovec->bv_len; 660 661 if (mddev->merge_check_needed) { 662 struct r10bio r10_bio; 663 int s; 664 if (conf->reshape_progress != MaxSector) { 665 /* Cannot give any guidance during reshape */ 666 if (max <= biovec->bv_len && bio_sectors == 0) 667 return biovec->bv_len; 668 return 0; 669 } 670 r10_bio.sector = sector; 671 raid10_find_phys(conf, &r10_bio); 672 rcu_read_lock(); 673 for (s = 0; s < conf->copies; s++) { 674 int disk = r10_bio.devs[s].devnum; 675 struct md_rdev *rdev = rcu_dereference( 676 conf->mirrors[disk].rdev); 677 if (rdev && !test_bit(Faulty, &rdev->flags)) { 678 struct request_queue *q = 679 bdev_get_queue(rdev->bdev); 680 if (q->merge_bvec_fn) { 681 bvm->bi_sector = r10_bio.devs[s].addr 682 + rdev->data_offset; 683 bvm->bi_bdev = rdev->bdev; 684 max = min(max, q->merge_bvec_fn( 685 q, bvm, biovec)); 686 } 687 } 688 rdev = rcu_dereference(conf->mirrors[disk].replacement); 689 if (rdev && !test_bit(Faulty, &rdev->flags)) { 690 struct request_queue *q = 691 bdev_get_queue(rdev->bdev); 692 if (q->merge_bvec_fn) { 693 bvm->bi_sector = r10_bio.devs[s].addr 694 + rdev->data_offset; 695 bvm->bi_bdev = rdev->bdev; 696 max = min(max, q->merge_bvec_fn( 697 q, bvm, biovec)); 698 } 699 } 700 } 701 rcu_read_unlock(); 702 } 703 return max; 704 } 705 706 /* 707 * This routine returns the disk from which the requested read should 708 * be done. There is a per-array 'next expected sequential IO' sector 709 * number - if this matches on the next IO then we use the last disk. 710 * There is also a per-disk 'last know head position' sector that is 711 * maintained from IRQ contexts, both the normal and the resync IO 712 * completion handlers update this position correctly. If there is no 713 * perfect sequential match then we pick the disk whose head is closest. 714 * 715 * If there are 2 mirrors in the same 2 devices, performance degrades 716 * because position is mirror, not device based. 717 * 718 * The rdev for the device selected will have nr_pending incremented. 719 */ 720 721 /* 722 * FIXME: possibly should rethink readbalancing and do it differently 723 * depending on near_copies / far_copies geometry. 724 */ 725 static struct md_rdev *read_balance(struct r10conf *conf, 726 struct r10bio *r10_bio, 727 int *max_sectors) 728 { 729 const sector_t this_sector = r10_bio->sector; 730 int disk, slot; 731 int sectors = r10_bio->sectors; 732 int best_good_sectors; 733 sector_t new_distance, best_dist; 734 struct md_rdev *best_rdev, *rdev = NULL; 735 int do_balance; 736 int best_slot; 737 struct geom *geo = &conf->geo; 738 739 raid10_find_phys(conf, r10_bio); 740 rcu_read_lock(); 741 retry: 742 sectors = r10_bio->sectors; 743 best_slot = -1; 744 best_rdev = NULL; 745 best_dist = MaxSector; 746 best_good_sectors = 0; 747 do_balance = 1; 748 /* 749 * Check if we can balance. We can balance on the whole 750 * device if no resync is going on (recovery is ok), or below 751 * the resync window. We take the first readable disk when 752 * above the resync window. 753 */ 754 if (conf->mddev->recovery_cp < MaxSector 755 && (this_sector + sectors >= conf->next_resync)) 756 do_balance = 0; 757 758 for (slot = 0; slot < conf->copies ; slot++) { 759 sector_t first_bad; 760 int bad_sectors; 761 sector_t dev_sector; 762 763 if (r10_bio->devs[slot].bio == IO_BLOCKED) 764 continue; 765 disk = r10_bio->devs[slot].devnum; 766 rdev = rcu_dereference(conf->mirrors[disk].replacement); 767 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 768 test_bit(Unmerged, &rdev->flags) || 769 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 770 rdev = rcu_dereference(conf->mirrors[disk].rdev); 771 if (rdev == NULL || 772 test_bit(Faulty, &rdev->flags) || 773 test_bit(Unmerged, &rdev->flags)) 774 continue; 775 if (!test_bit(In_sync, &rdev->flags) && 776 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 777 continue; 778 779 dev_sector = r10_bio->devs[slot].addr; 780 if (is_badblock(rdev, dev_sector, sectors, 781 &first_bad, &bad_sectors)) { 782 if (best_dist < MaxSector) 783 /* Already have a better slot */ 784 continue; 785 if (first_bad <= dev_sector) { 786 /* Cannot read here. If this is the 787 * 'primary' device, then we must not read 788 * beyond 'bad_sectors' from another device. 789 */ 790 bad_sectors -= (dev_sector - first_bad); 791 if (!do_balance && sectors > bad_sectors) 792 sectors = bad_sectors; 793 if (best_good_sectors > sectors) 794 best_good_sectors = sectors; 795 } else { 796 sector_t good_sectors = 797 first_bad - dev_sector; 798 if (good_sectors > best_good_sectors) { 799 best_good_sectors = good_sectors; 800 best_slot = slot; 801 best_rdev = rdev; 802 } 803 if (!do_balance) 804 /* Must read from here */ 805 break; 806 } 807 continue; 808 } else 809 best_good_sectors = sectors; 810 811 if (!do_balance) 812 break; 813 814 /* This optimisation is debatable, and completely destroys 815 * sequential read speed for 'far copies' arrays. So only 816 * keep it for 'near' arrays, and review those later. 817 */ 818 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 819 break; 820 821 /* for far > 1 always use the lowest address */ 822 if (geo->far_copies > 1) 823 new_distance = r10_bio->devs[slot].addr; 824 else 825 new_distance = abs(r10_bio->devs[slot].addr - 826 conf->mirrors[disk].head_position); 827 if (new_distance < best_dist) { 828 best_dist = new_distance; 829 best_slot = slot; 830 best_rdev = rdev; 831 } 832 } 833 if (slot >= conf->copies) { 834 slot = best_slot; 835 rdev = best_rdev; 836 } 837 838 if (slot >= 0) { 839 atomic_inc(&rdev->nr_pending); 840 if (test_bit(Faulty, &rdev->flags)) { 841 /* Cannot risk returning a device that failed 842 * before we inc'ed nr_pending 843 */ 844 rdev_dec_pending(rdev, conf->mddev); 845 goto retry; 846 } 847 r10_bio->read_slot = slot; 848 } else 849 rdev = NULL; 850 rcu_read_unlock(); 851 *max_sectors = best_good_sectors; 852 853 return rdev; 854 } 855 856 int md_raid10_congested(struct mddev *mddev, int bits) 857 { 858 struct r10conf *conf = mddev->private; 859 int i, ret = 0; 860 861 if ((bits & (1 << BDI_async_congested)) && 862 conf->pending_count >= max_queued_requests) 863 return 1; 864 865 rcu_read_lock(); 866 for (i = 0; 867 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 868 && ret == 0; 869 i++) { 870 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 871 if (rdev && !test_bit(Faulty, &rdev->flags)) { 872 struct request_queue *q = bdev_get_queue(rdev->bdev); 873 874 ret |= bdi_congested(&q->backing_dev_info, bits); 875 } 876 } 877 rcu_read_unlock(); 878 return ret; 879 } 880 EXPORT_SYMBOL_GPL(md_raid10_congested); 881 882 static int raid10_congested(void *data, int bits) 883 { 884 struct mddev *mddev = data; 885 886 return mddev_congested(mddev, bits) || 887 md_raid10_congested(mddev, bits); 888 } 889 890 static void flush_pending_writes(struct r10conf *conf) 891 { 892 /* Any writes that have been queued but are awaiting 893 * bitmap updates get flushed here. 894 */ 895 spin_lock_irq(&conf->device_lock); 896 897 if (conf->pending_bio_list.head) { 898 struct bio *bio; 899 bio = bio_list_get(&conf->pending_bio_list); 900 conf->pending_count = 0; 901 spin_unlock_irq(&conf->device_lock); 902 /* flush any pending bitmap writes to disk 903 * before proceeding w/ I/O */ 904 bitmap_unplug(conf->mddev->bitmap); 905 wake_up(&conf->wait_barrier); 906 907 while (bio) { /* submit pending writes */ 908 struct bio *next = bio->bi_next; 909 bio->bi_next = NULL; 910 generic_make_request(bio); 911 bio = next; 912 } 913 } else 914 spin_unlock_irq(&conf->device_lock); 915 } 916 917 /* Barriers.... 918 * Sometimes we need to suspend IO while we do something else, 919 * either some resync/recovery, or reconfigure the array. 920 * To do this we raise a 'barrier'. 921 * The 'barrier' is a counter that can be raised multiple times 922 * to count how many activities are happening which preclude 923 * normal IO. 924 * We can only raise the barrier if there is no pending IO. 925 * i.e. if nr_pending == 0. 926 * We choose only to raise the barrier if no-one is waiting for the 927 * barrier to go down. This means that as soon as an IO request 928 * is ready, no other operations which require a barrier will start 929 * until the IO request has had a chance. 930 * 931 * So: regular IO calls 'wait_barrier'. When that returns there 932 * is no backgroup IO happening, It must arrange to call 933 * allow_barrier when it has finished its IO. 934 * backgroup IO calls must call raise_barrier. Once that returns 935 * there is no normal IO happeing. It must arrange to call 936 * lower_barrier when the particular background IO completes. 937 */ 938 939 static void raise_barrier(struct r10conf *conf, int force) 940 { 941 BUG_ON(force && !conf->barrier); 942 spin_lock_irq(&conf->resync_lock); 943 944 /* Wait until no block IO is waiting (unless 'force') */ 945 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 946 conf->resync_lock, ); 947 948 /* block any new IO from starting */ 949 conf->barrier++; 950 951 /* Now wait for all pending IO to complete */ 952 wait_event_lock_irq(conf->wait_barrier, 953 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 954 conf->resync_lock, ); 955 956 spin_unlock_irq(&conf->resync_lock); 957 } 958 959 static void lower_barrier(struct r10conf *conf) 960 { 961 unsigned long flags; 962 spin_lock_irqsave(&conf->resync_lock, flags); 963 conf->barrier--; 964 spin_unlock_irqrestore(&conf->resync_lock, flags); 965 wake_up(&conf->wait_barrier); 966 } 967 968 static void wait_barrier(struct r10conf *conf) 969 { 970 spin_lock_irq(&conf->resync_lock); 971 if (conf->barrier) { 972 conf->nr_waiting++; 973 /* Wait for the barrier to drop. 974 * However if there are already pending 975 * requests (preventing the barrier from 976 * rising completely), and the 977 * pre-process bio queue isn't empty, 978 * then don't wait, as we need to empty 979 * that queue to get the nr_pending 980 * count down. 981 */ 982 wait_event_lock_irq(conf->wait_barrier, 983 !conf->barrier || 984 (conf->nr_pending && 985 current->bio_list && 986 !bio_list_empty(current->bio_list)), 987 conf->resync_lock, 988 ); 989 conf->nr_waiting--; 990 } 991 conf->nr_pending++; 992 spin_unlock_irq(&conf->resync_lock); 993 } 994 995 static void allow_barrier(struct r10conf *conf) 996 { 997 unsigned long flags; 998 spin_lock_irqsave(&conf->resync_lock, flags); 999 conf->nr_pending--; 1000 spin_unlock_irqrestore(&conf->resync_lock, flags); 1001 wake_up(&conf->wait_barrier); 1002 } 1003 1004 static void freeze_array(struct r10conf *conf) 1005 { 1006 /* stop syncio and normal IO and wait for everything to 1007 * go quiet. 1008 * We increment barrier and nr_waiting, and then 1009 * wait until nr_pending match nr_queued+1 1010 * This is called in the context of one normal IO request 1011 * that has failed. Thus any sync request that might be pending 1012 * will be blocked by nr_pending, and we need to wait for 1013 * pending IO requests to complete or be queued for re-try. 1014 * Thus the number queued (nr_queued) plus this request (1) 1015 * must match the number of pending IOs (nr_pending) before 1016 * we continue. 1017 */ 1018 spin_lock_irq(&conf->resync_lock); 1019 conf->barrier++; 1020 conf->nr_waiting++; 1021 wait_event_lock_irq(conf->wait_barrier, 1022 conf->nr_pending == conf->nr_queued+1, 1023 conf->resync_lock, 1024 flush_pending_writes(conf)); 1025 1026 spin_unlock_irq(&conf->resync_lock); 1027 } 1028 1029 static void unfreeze_array(struct r10conf *conf) 1030 { 1031 /* reverse the effect of the freeze */ 1032 spin_lock_irq(&conf->resync_lock); 1033 conf->barrier--; 1034 conf->nr_waiting--; 1035 wake_up(&conf->wait_barrier); 1036 spin_unlock_irq(&conf->resync_lock); 1037 } 1038 1039 static sector_t choose_data_offset(struct r10bio *r10_bio, 1040 struct md_rdev *rdev) 1041 { 1042 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1043 test_bit(R10BIO_Previous, &r10_bio->state)) 1044 return rdev->data_offset; 1045 else 1046 return rdev->new_data_offset; 1047 } 1048 1049 static void make_request(struct mddev *mddev, struct bio * bio) 1050 { 1051 struct r10conf *conf = mddev->private; 1052 struct r10bio *r10_bio; 1053 struct bio *read_bio; 1054 int i; 1055 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1056 int chunk_sects = chunk_mask + 1; 1057 const int rw = bio_data_dir(bio); 1058 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1059 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1060 unsigned long flags; 1061 struct md_rdev *blocked_rdev; 1062 int sectors_handled; 1063 int max_sectors; 1064 int sectors; 1065 1066 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1067 md_flush_request(mddev, bio); 1068 return; 1069 } 1070 1071 /* If this request crosses a chunk boundary, we need to 1072 * split it. This will only happen for 1 PAGE (or less) requests. 1073 */ 1074 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9) 1075 > chunk_sects 1076 && (conf->geo.near_copies < conf->geo.raid_disks 1077 || conf->prev.near_copies < conf->prev.raid_disks))) { 1078 struct bio_pair *bp; 1079 /* Sanity check -- queue functions should prevent this happening */ 1080 if (bio->bi_vcnt != 1 || 1081 bio->bi_idx != 0) 1082 goto bad_map; 1083 /* This is a one page bio that upper layers 1084 * refuse to split for us, so we need to split it. 1085 */ 1086 bp = bio_split(bio, 1087 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1088 1089 /* Each of these 'make_request' calls will call 'wait_barrier'. 1090 * If the first succeeds but the second blocks due to the resync 1091 * thread raising the barrier, we will deadlock because the 1092 * IO to the underlying device will be queued in generic_make_request 1093 * and will never complete, so will never reduce nr_pending. 1094 * So increment nr_waiting here so no new raise_barriers will 1095 * succeed, and so the second wait_barrier cannot block. 1096 */ 1097 spin_lock_irq(&conf->resync_lock); 1098 conf->nr_waiting++; 1099 spin_unlock_irq(&conf->resync_lock); 1100 1101 make_request(mddev, &bp->bio1); 1102 make_request(mddev, &bp->bio2); 1103 1104 spin_lock_irq(&conf->resync_lock); 1105 conf->nr_waiting--; 1106 wake_up(&conf->wait_barrier); 1107 spin_unlock_irq(&conf->resync_lock); 1108 1109 bio_pair_release(bp); 1110 return; 1111 bad_map: 1112 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1113 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1114 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 1115 1116 bio_io_error(bio); 1117 return; 1118 } 1119 1120 md_write_start(mddev, bio); 1121 1122 /* 1123 * Register the new request and wait if the reconstruction 1124 * thread has put up a bar for new requests. 1125 * Continue immediately if no resync is active currently. 1126 */ 1127 wait_barrier(conf); 1128 1129 sectors = bio->bi_size >> 9; 1130 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1131 bio->bi_sector < conf->reshape_progress && 1132 bio->bi_sector + sectors > conf->reshape_progress) { 1133 /* IO spans the reshape position. Need to wait for 1134 * reshape to pass 1135 */ 1136 allow_barrier(conf); 1137 wait_event(conf->wait_barrier, 1138 conf->reshape_progress <= bio->bi_sector || 1139 conf->reshape_progress >= bio->bi_sector + sectors); 1140 wait_barrier(conf); 1141 } 1142 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1143 bio_data_dir(bio) == WRITE && 1144 (mddev->reshape_backwards 1145 ? (bio->bi_sector < conf->reshape_safe && 1146 bio->bi_sector + sectors > conf->reshape_progress) 1147 : (bio->bi_sector + sectors > conf->reshape_safe && 1148 bio->bi_sector < conf->reshape_progress))) { 1149 /* Need to update reshape_position in metadata */ 1150 mddev->reshape_position = conf->reshape_progress; 1151 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1152 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1153 md_wakeup_thread(mddev->thread); 1154 wait_event(mddev->sb_wait, 1155 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1156 1157 conf->reshape_safe = mddev->reshape_position; 1158 } 1159 1160 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1161 1162 r10_bio->master_bio = bio; 1163 r10_bio->sectors = sectors; 1164 1165 r10_bio->mddev = mddev; 1166 r10_bio->sector = bio->bi_sector; 1167 r10_bio->state = 0; 1168 1169 /* We might need to issue multiple reads to different 1170 * devices if there are bad blocks around, so we keep 1171 * track of the number of reads in bio->bi_phys_segments. 1172 * If this is 0, there is only one r10_bio and no locking 1173 * will be needed when the request completes. If it is 1174 * non-zero, then it is the number of not-completed requests. 1175 */ 1176 bio->bi_phys_segments = 0; 1177 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1178 1179 if (rw == READ) { 1180 /* 1181 * read balancing logic: 1182 */ 1183 struct md_rdev *rdev; 1184 int slot; 1185 1186 read_again: 1187 rdev = read_balance(conf, r10_bio, &max_sectors); 1188 if (!rdev) { 1189 raid_end_bio_io(r10_bio); 1190 return; 1191 } 1192 slot = r10_bio->read_slot; 1193 1194 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1195 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1196 max_sectors); 1197 1198 r10_bio->devs[slot].bio = read_bio; 1199 r10_bio->devs[slot].rdev = rdev; 1200 1201 read_bio->bi_sector = r10_bio->devs[slot].addr + 1202 choose_data_offset(r10_bio, rdev); 1203 read_bio->bi_bdev = rdev->bdev; 1204 read_bio->bi_end_io = raid10_end_read_request; 1205 read_bio->bi_rw = READ | do_sync; 1206 read_bio->bi_private = r10_bio; 1207 1208 if (max_sectors < r10_bio->sectors) { 1209 /* Could not read all from this device, so we will 1210 * need another r10_bio. 1211 */ 1212 sectors_handled = (r10_bio->sectors + max_sectors 1213 - bio->bi_sector); 1214 r10_bio->sectors = max_sectors; 1215 spin_lock_irq(&conf->device_lock); 1216 if (bio->bi_phys_segments == 0) 1217 bio->bi_phys_segments = 2; 1218 else 1219 bio->bi_phys_segments++; 1220 spin_unlock(&conf->device_lock); 1221 /* Cannot call generic_make_request directly 1222 * as that will be queued in __generic_make_request 1223 * and subsequent mempool_alloc might block 1224 * waiting for it. so hand bio over to raid10d. 1225 */ 1226 reschedule_retry(r10_bio); 1227 1228 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1229 1230 r10_bio->master_bio = bio; 1231 r10_bio->sectors = ((bio->bi_size >> 9) 1232 - sectors_handled); 1233 r10_bio->state = 0; 1234 r10_bio->mddev = mddev; 1235 r10_bio->sector = bio->bi_sector + sectors_handled; 1236 goto read_again; 1237 } else 1238 generic_make_request(read_bio); 1239 return; 1240 } 1241 1242 /* 1243 * WRITE: 1244 */ 1245 if (conf->pending_count >= max_queued_requests) { 1246 md_wakeup_thread(mddev->thread); 1247 wait_event(conf->wait_barrier, 1248 conf->pending_count < max_queued_requests); 1249 } 1250 /* first select target devices under rcu_lock and 1251 * inc refcount on their rdev. Record them by setting 1252 * bios[x] to bio 1253 * If there are known/acknowledged bad blocks on any device 1254 * on which we have seen a write error, we want to avoid 1255 * writing to those blocks. This potentially requires several 1256 * writes to write around the bad blocks. Each set of writes 1257 * gets its own r10_bio with a set of bios attached. The number 1258 * of r10_bios is recored in bio->bi_phys_segments just as with 1259 * the read case. 1260 */ 1261 1262 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1263 raid10_find_phys(conf, r10_bio); 1264 retry_write: 1265 blocked_rdev = NULL; 1266 rcu_read_lock(); 1267 max_sectors = r10_bio->sectors; 1268 1269 for (i = 0; i < conf->copies; i++) { 1270 int d = r10_bio->devs[i].devnum; 1271 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1272 struct md_rdev *rrdev = rcu_dereference( 1273 conf->mirrors[d].replacement); 1274 if (rdev == rrdev) 1275 rrdev = NULL; 1276 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1277 atomic_inc(&rdev->nr_pending); 1278 blocked_rdev = rdev; 1279 break; 1280 } 1281 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1282 atomic_inc(&rrdev->nr_pending); 1283 blocked_rdev = rrdev; 1284 break; 1285 } 1286 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1287 || test_bit(Unmerged, &rrdev->flags))) 1288 rrdev = NULL; 1289 1290 r10_bio->devs[i].bio = NULL; 1291 r10_bio->devs[i].repl_bio = NULL; 1292 if (!rdev || test_bit(Faulty, &rdev->flags) || 1293 test_bit(Unmerged, &rdev->flags)) { 1294 set_bit(R10BIO_Degraded, &r10_bio->state); 1295 continue; 1296 } 1297 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1298 sector_t first_bad; 1299 sector_t dev_sector = r10_bio->devs[i].addr; 1300 int bad_sectors; 1301 int is_bad; 1302 1303 is_bad = is_badblock(rdev, dev_sector, 1304 max_sectors, 1305 &first_bad, &bad_sectors); 1306 if (is_bad < 0) { 1307 /* Mustn't write here until the bad block 1308 * is acknowledged 1309 */ 1310 atomic_inc(&rdev->nr_pending); 1311 set_bit(BlockedBadBlocks, &rdev->flags); 1312 blocked_rdev = rdev; 1313 break; 1314 } 1315 if (is_bad && first_bad <= dev_sector) { 1316 /* Cannot write here at all */ 1317 bad_sectors -= (dev_sector - first_bad); 1318 if (bad_sectors < max_sectors) 1319 /* Mustn't write more than bad_sectors 1320 * to other devices yet 1321 */ 1322 max_sectors = bad_sectors; 1323 /* We don't set R10BIO_Degraded as that 1324 * only applies if the disk is missing, 1325 * so it might be re-added, and we want to 1326 * know to recover this chunk. 1327 * In this case the device is here, and the 1328 * fact that this chunk is not in-sync is 1329 * recorded in the bad block log. 1330 */ 1331 continue; 1332 } 1333 if (is_bad) { 1334 int good_sectors = first_bad - dev_sector; 1335 if (good_sectors < max_sectors) 1336 max_sectors = good_sectors; 1337 } 1338 } 1339 r10_bio->devs[i].bio = bio; 1340 atomic_inc(&rdev->nr_pending); 1341 if (rrdev) { 1342 r10_bio->devs[i].repl_bio = bio; 1343 atomic_inc(&rrdev->nr_pending); 1344 } 1345 } 1346 rcu_read_unlock(); 1347 1348 if (unlikely(blocked_rdev)) { 1349 /* Have to wait for this device to get unblocked, then retry */ 1350 int j; 1351 int d; 1352 1353 for (j = 0; j < i; j++) { 1354 if (r10_bio->devs[j].bio) { 1355 d = r10_bio->devs[j].devnum; 1356 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1357 } 1358 if (r10_bio->devs[j].repl_bio) { 1359 struct md_rdev *rdev; 1360 d = r10_bio->devs[j].devnum; 1361 rdev = conf->mirrors[d].replacement; 1362 if (!rdev) { 1363 /* Race with remove_disk */ 1364 smp_mb(); 1365 rdev = conf->mirrors[d].rdev; 1366 } 1367 rdev_dec_pending(rdev, mddev); 1368 } 1369 } 1370 allow_barrier(conf); 1371 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1372 wait_barrier(conf); 1373 goto retry_write; 1374 } 1375 1376 if (max_sectors < r10_bio->sectors) { 1377 /* We are splitting this into multiple parts, so 1378 * we need to prepare for allocating another r10_bio. 1379 */ 1380 r10_bio->sectors = max_sectors; 1381 spin_lock_irq(&conf->device_lock); 1382 if (bio->bi_phys_segments == 0) 1383 bio->bi_phys_segments = 2; 1384 else 1385 bio->bi_phys_segments++; 1386 spin_unlock_irq(&conf->device_lock); 1387 } 1388 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1389 1390 atomic_set(&r10_bio->remaining, 1); 1391 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1392 1393 for (i = 0; i < conf->copies; i++) { 1394 struct bio *mbio; 1395 int d = r10_bio->devs[i].devnum; 1396 if (!r10_bio->devs[i].bio) 1397 continue; 1398 1399 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1400 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1401 max_sectors); 1402 r10_bio->devs[i].bio = mbio; 1403 1404 mbio->bi_sector = (r10_bio->devs[i].addr+ 1405 choose_data_offset(r10_bio, 1406 conf->mirrors[d].rdev)); 1407 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1408 mbio->bi_end_io = raid10_end_write_request; 1409 mbio->bi_rw = WRITE | do_sync | do_fua; 1410 mbio->bi_private = r10_bio; 1411 1412 atomic_inc(&r10_bio->remaining); 1413 spin_lock_irqsave(&conf->device_lock, flags); 1414 bio_list_add(&conf->pending_bio_list, mbio); 1415 conf->pending_count++; 1416 spin_unlock_irqrestore(&conf->device_lock, flags); 1417 if (!mddev_check_plugged(mddev)) 1418 md_wakeup_thread(mddev->thread); 1419 1420 if (!r10_bio->devs[i].repl_bio) 1421 continue; 1422 1423 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1424 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1425 max_sectors); 1426 r10_bio->devs[i].repl_bio = mbio; 1427 1428 /* We are actively writing to the original device 1429 * so it cannot disappear, so the replacement cannot 1430 * become NULL here 1431 */ 1432 mbio->bi_sector = (r10_bio->devs[i].addr + 1433 choose_data_offset( 1434 r10_bio, 1435 conf->mirrors[d].replacement)); 1436 mbio->bi_bdev = conf->mirrors[d].replacement->bdev; 1437 mbio->bi_end_io = raid10_end_write_request; 1438 mbio->bi_rw = WRITE | do_sync | do_fua; 1439 mbio->bi_private = r10_bio; 1440 1441 atomic_inc(&r10_bio->remaining); 1442 spin_lock_irqsave(&conf->device_lock, flags); 1443 bio_list_add(&conf->pending_bio_list, mbio); 1444 conf->pending_count++; 1445 spin_unlock_irqrestore(&conf->device_lock, flags); 1446 if (!mddev_check_plugged(mddev)) 1447 md_wakeup_thread(mddev->thread); 1448 } 1449 1450 /* Don't remove the bias on 'remaining' (one_write_done) until 1451 * after checking if we need to go around again. 1452 */ 1453 1454 if (sectors_handled < (bio->bi_size >> 9)) { 1455 one_write_done(r10_bio); 1456 /* We need another r10_bio. It has already been counted 1457 * in bio->bi_phys_segments. 1458 */ 1459 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1460 1461 r10_bio->master_bio = bio; 1462 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1463 1464 r10_bio->mddev = mddev; 1465 r10_bio->sector = bio->bi_sector + sectors_handled; 1466 r10_bio->state = 0; 1467 goto retry_write; 1468 } 1469 one_write_done(r10_bio); 1470 1471 /* In case raid10d snuck in to freeze_array */ 1472 wake_up(&conf->wait_barrier); 1473 } 1474 1475 static void status(struct seq_file *seq, struct mddev *mddev) 1476 { 1477 struct r10conf *conf = mddev->private; 1478 int i; 1479 1480 if (conf->geo.near_copies < conf->geo.raid_disks) 1481 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1482 if (conf->geo.near_copies > 1) 1483 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1484 if (conf->geo.far_copies > 1) { 1485 if (conf->geo.far_offset) 1486 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1487 else 1488 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1489 } 1490 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1491 conf->geo.raid_disks - mddev->degraded); 1492 for (i = 0; i < conf->geo.raid_disks; i++) 1493 seq_printf(seq, "%s", 1494 conf->mirrors[i].rdev && 1495 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1496 seq_printf(seq, "]"); 1497 } 1498 1499 /* check if there are enough drives for 1500 * every block to appear on atleast one. 1501 * Don't consider the device numbered 'ignore' 1502 * as we might be about to remove it. 1503 */ 1504 static int _enough(struct r10conf *conf, struct geom *geo, int ignore) 1505 { 1506 int first = 0; 1507 1508 do { 1509 int n = conf->copies; 1510 int cnt = 0; 1511 while (n--) { 1512 if (conf->mirrors[first].rdev && 1513 first != ignore) 1514 cnt++; 1515 first = (first+1) % geo->raid_disks; 1516 } 1517 if (cnt == 0) 1518 return 0; 1519 } while (first != 0); 1520 return 1; 1521 } 1522 1523 static int enough(struct r10conf *conf, int ignore) 1524 { 1525 return _enough(conf, &conf->geo, ignore) && 1526 _enough(conf, &conf->prev, ignore); 1527 } 1528 1529 static void error(struct mddev *mddev, struct md_rdev *rdev) 1530 { 1531 char b[BDEVNAME_SIZE]; 1532 struct r10conf *conf = mddev->private; 1533 1534 /* 1535 * If it is not operational, then we have already marked it as dead 1536 * else if it is the last working disks, ignore the error, let the 1537 * next level up know. 1538 * else mark the drive as failed 1539 */ 1540 if (test_bit(In_sync, &rdev->flags) 1541 && !enough(conf, rdev->raid_disk)) 1542 /* 1543 * Don't fail the drive, just return an IO error. 1544 */ 1545 return; 1546 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1547 unsigned long flags; 1548 spin_lock_irqsave(&conf->device_lock, flags); 1549 mddev->degraded++; 1550 spin_unlock_irqrestore(&conf->device_lock, flags); 1551 /* 1552 * if recovery is running, make sure it aborts. 1553 */ 1554 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1555 } 1556 set_bit(Blocked, &rdev->flags); 1557 set_bit(Faulty, &rdev->flags); 1558 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1559 printk(KERN_ALERT 1560 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1561 "md/raid10:%s: Operation continuing on %d devices.\n", 1562 mdname(mddev), bdevname(rdev->bdev, b), 1563 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1564 } 1565 1566 static void print_conf(struct r10conf *conf) 1567 { 1568 int i; 1569 struct raid10_info *tmp; 1570 1571 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1572 if (!conf) { 1573 printk(KERN_DEBUG "(!conf)\n"); 1574 return; 1575 } 1576 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1577 conf->geo.raid_disks); 1578 1579 for (i = 0; i < conf->geo.raid_disks; i++) { 1580 char b[BDEVNAME_SIZE]; 1581 tmp = conf->mirrors + i; 1582 if (tmp->rdev) 1583 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1584 i, !test_bit(In_sync, &tmp->rdev->flags), 1585 !test_bit(Faulty, &tmp->rdev->flags), 1586 bdevname(tmp->rdev->bdev,b)); 1587 } 1588 } 1589 1590 static void close_sync(struct r10conf *conf) 1591 { 1592 wait_barrier(conf); 1593 allow_barrier(conf); 1594 1595 mempool_destroy(conf->r10buf_pool); 1596 conf->r10buf_pool = NULL; 1597 } 1598 1599 static int raid10_spare_active(struct mddev *mddev) 1600 { 1601 int i; 1602 struct r10conf *conf = mddev->private; 1603 struct raid10_info *tmp; 1604 int count = 0; 1605 unsigned long flags; 1606 1607 /* 1608 * Find all non-in_sync disks within the RAID10 configuration 1609 * and mark them in_sync 1610 */ 1611 for (i = 0; i < conf->geo.raid_disks; i++) { 1612 tmp = conf->mirrors + i; 1613 if (tmp->replacement 1614 && tmp->replacement->recovery_offset == MaxSector 1615 && !test_bit(Faulty, &tmp->replacement->flags) 1616 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1617 /* Replacement has just become active */ 1618 if (!tmp->rdev 1619 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1620 count++; 1621 if (tmp->rdev) { 1622 /* Replaced device not technically faulty, 1623 * but we need to be sure it gets removed 1624 * and never re-added. 1625 */ 1626 set_bit(Faulty, &tmp->rdev->flags); 1627 sysfs_notify_dirent_safe( 1628 tmp->rdev->sysfs_state); 1629 } 1630 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1631 } else if (tmp->rdev 1632 && !test_bit(Faulty, &tmp->rdev->flags) 1633 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1634 count++; 1635 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1636 } 1637 } 1638 spin_lock_irqsave(&conf->device_lock, flags); 1639 mddev->degraded -= count; 1640 spin_unlock_irqrestore(&conf->device_lock, flags); 1641 1642 print_conf(conf); 1643 return count; 1644 } 1645 1646 1647 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1648 { 1649 struct r10conf *conf = mddev->private; 1650 int err = -EEXIST; 1651 int mirror; 1652 int first = 0; 1653 int last = conf->geo.raid_disks - 1; 1654 struct request_queue *q = bdev_get_queue(rdev->bdev); 1655 1656 if (mddev->recovery_cp < MaxSector) 1657 /* only hot-add to in-sync arrays, as recovery is 1658 * very different from resync 1659 */ 1660 return -EBUSY; 1661 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) 1662 return -EINVAL; 1663 1664 if (rdev->raid_disk >= 0) 1665 first = last = rdev->raid_disk; 1666 1667 if (q->merge_bvec_fn) { 1668 set_bit(Unmerged, &rdev->flags); 1669 mddev->merge_check_needed = 1; 1670 } 1671 1672 if (rdev->saved_raid_disk >= first && 1673 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1674 mirror = rdev->saved_raid_disk; 1675 else 1676 mirror = first; 1677 for ( ; mirror <= last ; mirror++) { 1678 struct raid10_info *p = &conf->mirrors[mirror]; 1679 if (p->recovery_disabled == mddev->recovery_disabled) 1680 continue; 1681 if (p->rdev) { 1682 if (!test_bit(WantReplacement, &p->rdev->flags) || 1683 p->replacement != NULL) 1684 continue; 1685 clear_bit(In_sync, &rdev->flags); 1686 set_bit(Replacement, &rdev->flags); 1687 rdev->raid_disk = mirror; 1688 err = 0; 1689 disk_stack_limits(mddev->gendisk, rdev->bdev, 1690 rdev->data_offset << 9); 1691 conf->fullsync = 1; 1692 rcu_assign_pointer(p->replacement, rdev); 1693 break; 1694 } 1695 1696 disk_stack_limits(mddev->gendisk, rdev->bdev, 1697 rdev->data_offset << 9); 1698 1699 p->head_position = 0; 1700 p->recovery_disabled = mddev->recovery_disabled - 1; 1701 rdev->raid_disk = mirror; 1702 err = 0; 1703 if (rdev->saved_raid_disk != mirror) 1704 conf->fullsync = 1; 1705 rcu_assign_pointer(p->rdev, rdev); 1706 break; 1707 } 1708 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1709 /* Some requests might not have seen this new 1710 * merge_bvec_fn. We must wait for them to complete 1711 * before merging the device fully. 1712 * First we make sure any code which has tested 1713 * our function has submitted the request, then 1714 * we wait for all outstanding requests to complete. 1715 */ 1716 synchronize_sched(); 1717 raise_barrier(conf, 0); 1718 lower_barrier(conf); 1719 clear_bit(Unmerged, &rdev->flags); 1720 } 1721 md_integrity_add_rdev(rdev, mddev); 1722 print_conf(conf); 1723 return err; 1724 } 1725 1726 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1727 { 1728 struct r10conf *conf = mddev->private; 1729 int err = 0; 1730 int number = rdev->raid_disk; 1731 struct md_rdev **rdevp; 1732 struct raid10_info *p = conf->mirrors + number; 1733 1734 print_conf(conf); 1735 if (rdev == p->rdev) 1736 rdevp = &p->rdev; 1737 else if (rdev == p->replacement) 1738 rdevp = &p->replacement; 1739 else 1740 return 0; 1741 1742 if (test_bit(In_sync, &rdev->flags) || 1743 atomic_read(&rdev->nr_pending)) { 1744 err = -EBUSY; 1745 goto abort; 1746 } 1747 /* Only remove faulty devices if recovery 1748 * is not possible. 1749 */ 1750 if (!test_bit(Faulty, &rdev->flags) && 1751 mddev->recovery_disabled != p->recovery_disabled && 1752 (!p->replacement || p->replacement == rdev) && 1753 number < conf->geo.raid_disks && 1754 enough(conf, -1)) { 1755 err = -EBUSY; 1756 goto abort; 1757 } 1758 *rdevp = NULL; 1759 synchronize_rcu(); 1760 if (atomic_read(&rdev->nr_pending)) { 1761 /* lost the race, try later */ 1762 err = -EBUSY; 1763 *rdevp = rdev; 1764 goto abort; 1765 } else if (p->replacement) { 1766 /* We must have just cleared 'rdev' */ 1767 p->rdev = p->replacement; 1768 clear_bit(Replacement, &p->replacement->flags); 1769 smp_mb(); /* Make sure other CPUs may see both as identical 1770 * but will never see neither -- if they are careful. 1771 */ 1772 p->replacement = NULL; 1773 clear_bit(WantReplacement, &rdev->flags); 1774 } else 1775 /* We might have just remove the Replacement as faulty 1776 * Clear the flag just in case 1777 */ 1778 clear_bit(WantReplacement, &rdev->flags); 1779 1780 err = md_integrity_register(mddev); 1781 1782 abort: 1783 1784 print_conf(conf); 1785 return err; 1786 } 1787 1788 1789 static void end_sync_read(struct bio *bio, int error) 1790 { 1791 struct r10bio *r10_bio = bio->bi_private; 1792 struct r10conf *conf = r10_bio->mddev->private; 1793 int d; 1794 1795 if (bio == r10_bio->master_bio) { 1796 /* this is a reshape read */ 1797 d = r10_bio->read_slot; /* really the read dev */ 1798 } else 1799 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1800 1801 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1802 set_bit(R10BIO_Uptodate, &r10_bio->state); 1803 else 1804 /* The write handler will notice the lack of 1805 * R10BIO_Uptodate and record any errors etc 1806 */ 1807 atomic_add(r10_bio->sectors, 1808 &conf->mirrors[d].rdev->corrected_errors); 1809 1810 /* for reconstruct, we always reschedule after a read. 1811 * for resync, only after all reads 1812 */ 1813 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1814 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1815 atomic_dec_and_test(&r10_bio->remaining)) { 1816 /* we have read all the blocks, 1817 * do the comparison in process context in raid10d 1818 */ 1819 reschedule_retry(r10_bio); 1820 } 1821 } 1822 1823 static void end_sync_request(struct r10bio *r10_bio) 1824 { 1825 struct mddev *mddev = r10_bio->mddev; 1826 1827 while (atomic_dec_and_test(&r10_bio->remaining)) { 1828 if (r10_bio->master_bio == NULL) { 1829 /* the primary of several recovery bios */ 1830 sector_t s = r10_bio->sectors; 1831 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1832 test_bit(R10BIO_WriteError, &r10_bio->state)) 1833 reschedule_retry(r10_bio); 1834 else 1835 put_buf(r10_bio); 1836 md_done_sync(mddev, s, 1); 1837 break; 1838 } else { 1839 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1840 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1841 test_bit(R10BIO_WriteError, &r10_bio->state)) 1842 reschedule_retry(r10_bio); 1843 else 1844 put_buf(r10_bio); 1845 r10_bio = r10_bio2; 1846 } 1847 } 1848 } 1849 1850 static void end_sync_write(struct bio *bio, int error) 1851 { 1852 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1853 struct r10bio *r10_bio = bio->bi_private; 1854 struct mddev *mddev = r10_bio->mddev; 1855 struct r10conf *conf = mddev->private; 1856 int d; 1857 sector_t first_bad; 1858 int bad_sectors; 1859 int slot; 1860 int repl; 1861 struct md_rdev *rdev = NULL; 1862 1863 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1864 if (repl) 1865 rdev = conf->mirrors[d].replacement; 1866 else 1867 rdev = conf->mirrors[d].rdev; 1868 1869 if (!uptodate) { 1870 if (repl) 1871 md_error(mddev, rdev); 1872 else { 1873 set_bit(WriteErrorSeen, &rdev->flags); 1874 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1875 set_bit(MD_RECOVERY_NEEDED, 1876 &rdev->mddev->recovery); 1877 set_bit(R10BIO_WriteError, &r10_bio->state); 1878 } 1879 } else if (is_badblock(rdev, 1880 r10_bio->devs[slot].addr, 1881 r10_bio->sectors, 1882 &first_bad, &bad_sectors)) 1883 set_bit(R10BIO_MadeGood, &r10_bio->state); 1884 1885 rdev_dec_pending(rdev, mddev); 1886 1887 end_sync_request(r10_bio); 1888 } 1889 1890 /* 1891 * Note: sync and recover and handled very differently for raid10 1892 * This code is for resync. 1893 * For resync, we read through virtual addresses and read all blocks. 1894 * If there is any error, we schedule a write. The lowest numbered 1895 * drive is authoritative. 1896 * However requests come for physical address, so we need to map. 1897 * For every physical address there are raid_disks/copies virtual addresses, 1898 * which is always are least one, but is not necessarly an integer. 1899 * This means that a physical address can span multiple chunks, so we may 1900 * have to submit multiple io requests for a single sync request. 1901 */ 1902 /* 1903 * We check if all blocks are in-sync and only write to blocks that 1904 * aren't in sync 1905 */ 1906 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1907 { 1908 struct r10conf *conf = mddev->private; 1909 int i, first; 1910 struct bio *tbio, *fbio; 1911 int vcnt; 1912 1913 atomic_set(&r10_bio->remaining, 1); 1914 1915 /* find the first device with a block */ 1916 for (i=0; i<conf->copies; i++) 1917 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1918 break; 1919 1920 if (i == conf->copies) 1921 goto done; 1922 1923 first = i; 1924 fbio = r10_bio->devs[i].bio; 1925 1926 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 1927 /* now find blocks with errors */ 1928 for (i=0 ; i < conf->copies ; i++) { 1929 int j, d; 1930 1931 tbio = r10_bio->devs[i].bio; 1932 1933 if (tbio->bi_end_io != end_sync_read) 1934 continue; 1935 if (i == first) 1936 continue; 1937 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1938 /* We know that the bi_io_vec layout is the same for 1939 * both 'first' and 'i', so we just compare them. 1940 * All vec entries are PAGE_SIZE; 1941 */ 1942 for (j = 0; j < vcnt; j++) 1943 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1944 page_address(tbio->bi_io_vec[j].bv_page), 1945 fbio->bi_io_vec[j].bv_len)) 1946 break; 1947 if (j == vcnt) 1948 continue; 1949 mddev->resync_mismatches += r10_bio->sectors; 1950 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1951 /* Don't fix anything. */ 1952 continue; 1953 } 1954 /* Ok, we need to write this bio, either to correct an 1955 * inconsistency or to correct an unreadable block. 1956 * First we need to fixup bv_offset, bv_len and 1957 * bi_vecs, as the read request might have corrupted these 1958 */ 1959 tbio->bi_vcnt = vcnt; 1960 tbio->bi_size = r10_bio->sectors << 9; 1961 tbio->bi_idx = 0; 1962 tbio->bi_phys_segments = 0; 1963 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1964 tbio->bi_flags |= 1 << BIO_UPTODATE; 1965 tbio->bi_next = NULL; 1966 tbio->bi_rw = WRITE; 1967 tbio->bi_private = r10_bio; 1968 tbio->bi_sector = r10_bio->devs[i].addr; 1969 1970 for (j=0; j < vcnt ; j++) { 1971 tbio->bi_io_vec[j].bv_offset = 0; 1972 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1973 1974 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1975 page_address(fbio->bi_io_vec[j].bv_page), 1976 PAGE_SIZE); 1977 } 1978 tbio->bi_end_io = end_sync_write; 1979 1980 d = r10_bio->devs[i].devnum; 1981 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1982 atomic_inc(&r10_bio->remaining); 1983 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1984 1985 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1986 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1987 generic_make_request(tbio); 1988 } 1989 1990 /* Now write out to any replacement devices 1991 * that are active 1992 */ 1993 for (i = 0; i < conf->copies; i++) { 1994 int j, d; 1995 1996 tbio = r10_bio->devs[i].repl_bio; 1997 if (!tbio || !tbio->bi_end_io) 1998 continue; 1999 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2000 && r10_bio->devs[i].bio != fbio) 2001 for (j = 0; j < vcnt; j++) 2002 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2003 page_address(fbio->bi_io_vec[j].bv_page), 2004 PAGE_SIZE); 2005 d = r10_bio->devs[i].devnum; 2006 atomic_inc(&r10_bio->remaining); 2007 md_sync_acct(conf->mirrors[d].replacement->bdev, 2008 tbio->bi_size >> 9); 2009 generic_make_request(tbio); 2010 } 2011 2012 done: 2013 if (atomic_dec_and_test(&r10_bio->remaining)) { 2014 md_done_sync(mddev, r10_bio->sectors, 1); 2015 put_buf(r10_bio); 2016 } 2017 } 2018 2019 /* 2020 * Now for the recovery code. 2021 * Recovery happens across physical sectors. 2022 * We recover all non-is_sync drives by finding the virtual address of 2023 * each, and then choose a working drive that also has that virt address. 2024 * There is a separate r10_bio for each non-in_sync drive. 2025 * Only the first two slots are in use. The first for reading, 2026 * The second for writing. 2027 * 2028 */ 2029 static void fix_recovery_read_error(struct r10bio *r10_bio) 2030 { 2031 /* We got a read error during recovery. 2032 * We repeat the read in smaller page-sized sections. 2033 * If a read succeeds, write it to the new device or record 2034 * a bad block if we cannot. 2035 * If a read fails, record a bad block on both old and 2036 * new devices. 2037 */ 2038 struct mddev *mddev = r10_bio->mddev; 2039 struct r10conf *conf = mddev->private; 2040 struct bio *bio = r10_bio->devs[0].bio; 2041 sector_t sect = 0; 2042 int sectors = r10_bio->sectors; 2043 int idx = 0; 2044 int dr = r10_bio->devs[0].devnum; 2045 int dw = r10_bio->devs[1].devnum; 2046 2047 while (sectors) { 2048 int s = sectors; 2049 struct md_rdev *rdev; 2050 sector_t addr; 2051 int ok; 2052 2053 if (s > (PAGE_SIZE>>9)) 2054 s = PAGE_SIZE >> 9; 2055 2056 rdev = conf->mirrors[dr].rdev; 2057 addr = r10_bio->devs[0].addr + sect, 2058 ok = sync_page_io(rdev, 2059 addr, 2060 s << 9, 2061 bio->bi_io_vec[idx].bv_page, 2062 READ, false); 2063 if (ok) { 2064 rdev = conf->mirrors[dw].rdev; 2065 addr = r10_bio->devs[1].addr + sect; 2066 ok = sync_page_io(rdev, 2067 addr, 2068 s << 9, 2069 bio->bi_io_vec[idx].bv_page, 2070 WRITE, false); 2071 if (!ok) { 2072 set_bit(WriteErrorSeen, &rdev->flags); 2073 if (!test_and_set_bit(WantReplacement, 2074 &rdev->flags)) 2075 set_bit(MD_RECOVERY_NEEDED, 2076 &rdev->mddev->recovery); 2077 } 2078 } 2079 if (!ok) { 2080 /* We don't worry if we cannot set a bad block - 2081 * it really is bad so there is no loss in not 2082 * recording it yet 2083 */ 2084 rdev_set_badblocks(rdev, addr, s, 0); 2085 2086 if (rdev != conf->mirrors[dw].rdev) { 2087 /* need bad block on destination too */ 2088 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2089 addr = r10_bio->devs[1].addr + sect; 2090 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2091 if (!ok) { 2092 /* just abort the recovery */ 2093 printk(KERN_NOTICE 2094 "md/raid10:%s: recovery aborted" 2095 " due to read error\n", 2096 mdname(mddev)); 2097 2098 conf->mirrors[dw].recovery_disabled 2099 = mddev->recovery_disabled; 2100 set_bit(MD_RECOVERY_INTR, 2101 &mddev->recovery); 2102 break; 2103 } 2104 } 2105 } 2106 2107 sectors -= s; 2108 sect += s; 2109 idx++; 2110 } 2111 } 2112 2113 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2114 { 2115 struct r10conf *conf = mddev->private; 2116 int d; 2117 struct bio *wbio, *wbio2; 2118 2119 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2120 fix_recovery_read_error(r10_bio); 2121 end_sync_request(r10_bio); 2122 return; 2123 } 2124 2125 /* 2126 * share the pages with the first bio 2127 * and submit the write request 2128 */ 2129 d = r10_bio->devs[1].devnum; 2130 wbio = r10_bio->devs[1].bio; 2131 wbio2 = r10_bio->devs[1].repl_bio; 2132 if (wbio->bi_end_io) { 2133 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2134 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 2135 generic_make_request(wbio); 2136 } 2137 if (wbio2 && wbio2->bi_end_io) { 2138 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2139 md_sync_acct(conf->mirrors[d].replacement->bdev, 2140 wbio2->bi_size >> 9); 2141 generic_make_request(wbio2); 2142 } 2143 } 2144 2145 2146 /* 2147 * Used by fix_read_error() to decay the per rdev read_errors. 2148 * We halve the read error count for every hour that has elapsed 2149 * since the last recorded read error. 2150 * 2151 */ 2152 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2153 { 2154 struct timespec cur_time_mon; 2155 unsigned long hours_since_last; 2156 unsigned int read_errors = atomic_read(&rdev->read_errors); 2157 2158 ktime_get_ts(&cur_time_mon); 2159 2160 if (rdev->last_read_error.tv_sec == 0 && 2161 rdev->last_read_error.tv_nsec == 0) { 2162 /* first time we've seen a read error */ 2163 rdev->last_read_error = cur_time_mon; 2164 return; 2165 } 2166 2167 hours_since_last = (cur_time_mon.tv_sec - 2168 rdev->last_read_error.tv_sec) / 3600; 2169 2170 rdev->last_read_error = cur_time_mon; 2171 2172 /* 2173 * if hours_since_last is > the number of bits in read_errors 2174 * just set read errors to 0. We do this to avoid 2175 * overflowing the shift of read_errors by hours_since_last. 2176 */ 2177 if (hours_since_last >= 8 * sizeof(read_errors)) 2178 atomic_set(&rdev->read_errors, 0); 2179 else 2180 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2181 } 2182 2183 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2184 int sectors, struct page *page, int rw) 2185 { 2186 sector_t first_bad; 2187 int bad_sectors; 2188 2189 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2190 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2191 return -1; 2192 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2193 /* success */ 2194 return 1; 2195 if (rw == WRITE) { 2196 set_bit(WriteErrorSeen, &rdev->flags); 2197 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2198 set_bit(MD_RECOVERY_NEEDED, 2199 &rdev->mddev->recovery); 2200 } 2201 /* need to record an error - either for the block or the device */ 2202 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2203 md_error(rdev->mddev, rdev); 2204 return 0; 2205 } 2206 2207 /* 2208 * This is a kernel thread which: 2209 * 2210 * 1. Retries failed read operations on working mirrors. 2211 * 2. Updates the raid superblock when problems encounter. 2212 * 3. Performs writes following reads for array synchronising. 2213 */ 2214 2215 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2216 { 2217 int sect = 0; /* Offset from r10_bio->sector */ 2218 int sectors = r10_bio->sectors; 2219 struct md_rdev*rdev; 2220 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2221 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2222 2223 /* still own a reference to this rdev, so it cannot 2224 * have been cleared recently. 2225 */ 2226 rdev = conf->mirrors[d].rdev; 2227 2228 if (test_bit(Faulty, &rdev->flags)) 2229 /* drive has already been failed, just ignore any 2230 more fix_read_error() attempts */ 2231 return; 2232 2233 check_decay_read_errors(mddev, rdev); 2234 atomic_inc(&rdev->read_errors); 2235 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2236 char b[BDEVNAME_SIZE]; 2237 bdevname(rdev->bdev, b); 2238 2239 printk(KERN_NOTICE 2240 "md/raid10:%s: %s: Raid device exceeded " 2241 "read_error threshold [cur %d:max %d]\n", 2242 mdname(mddev), b, 2243 atomic_read(&rdev->read_errors), max_read_errors); 2244 printk(KERN_NOTICE 2245 "md/raid10:%s: %s: Failing raid device\n", 2246 mdname(mddev), b); 2247 md_error(mddev, conf->mirrors[d].rdev); 2248 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2249 return; 2250 } 2251 2252 while(sectors) { 2253 int s = sectors; 2254 int sl = r10_bio->read_slot; 2255 int success = 0; 2256 int start; 2257 2258 if (s > (PAGE_SIZE>>9)) 2259 s = PAGE_SIZE >> 9; 2260 2261 rcu_read_lock(); 2262 do { 2263 sector_t first_bad; 2264 int bad_sectors; 2265 2266 d = r10_bio->devs[sl].devnum; 2267 rdev = rcu_dereference(conf->mirrors[d].rdev); 2268 if (rdev && 2269 !test_bit(Unmerged, &rdev->flags) && 2270 test_bit(In_sync, &rdev->flags) && 2271 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2272 &first_bad, &bad_sectors) == 0) { 2273 atomic_inc(&rdev->nr_pending); 2274 rcu_read_unlock(); 2275 success = sync_page_io(rdev, 2276 r10_bio->devs[sl].addr + 2277 sect, 2278 s<<9, 2279 conf->tmppage, READ, false); 2280 rdev_dec_pending(rdev, mddev); 2281 rcu_read_lock(); 2282 if (success) 2283 break; 2284 } 2285 sl++; 2286 if (sl == conf->copies) 2287 sl = 0; 2288 } while (!success && sl != r10_bio->read_slot); 2289 rcu_read_unlock(); 2290 2291 if (!success) { 2292 /* Cannot read from anywhere, just mark the block 2293 * as bad on the first device to discourage future 2294 * reads. 2295 */ 2296 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2297 rdev = conf->mirrors[dn].rdev; 2298 2299 if (!rdev_set_badblocks( 2300 rdev, 2301 r10_bio->devs[r10_bio->read_slot].addr 2302 + sect, 2303 s, 0)) { 2304 md_error(mddev, rdev); 2305 r10_bio->devs[r10_bio->read_slot].bio 2306 = IO_BLOCKED; 2307 } 2308 break; 2309 } 2310 2311 start = sl; 2312 /* write it back and re-read */ 2313 rcu_read_lock(); 2314 while (sl != r10_bio->read_slot) { 2315 char b[BDEVNAME_SIZE]; 2316 2317 if (sl==0) 2318 sl = conf->copies; 2319 sl--; 2320 d = r10_bio->devs[sl].devnum; 2321 rdev = rcu_dereference(conf->mirrors[d].rdev); 2322 if (!rdev || 2323 test_bit(Unmerged, &rdev->flags) || 2324 !test_bit(In_sync, &rdev->flags)) 2325 continue; 2326 2327 atomic_inc(&rdev->nr_pending); 2328 rcu_read_unlock(); 2329 if (r10_sync_page_io(rdev, 2330 r10_bio->devs[sl].addr + 2331 sect, 2332 s, conf->tmppage, WRITE) 2333 == 0) { 2334 /* Well, this device is dead */ 2335 printk(KERN_NOTICE 2336 "md/raid10:%s: read correction " 2337 "write failed" 2338 " (%d sectors at %llu on %s)\n", 2339 mdname(mddev), s, 2340 (unsigned long long)( 2341 sect + 2342 choose_data_offset(r10_bio, 2343 rdev)), 2344 bdevname(rdev->bdev, b)); 2345 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2346 "drive\n", 2347 mdname(mddev), 2348 bdevname(rdev->bdev, b)); 2349 } 2350 rdev_dec_pending(rdev, mddev); 2351 rcu_read_lock(); 2352 } 2353 sl = start; 2354 while (sl != r10_bio->read_slot) { 2355 char b[BDEVNAME_SIZE]; 2356 2357 if (sl==0) 2358 sl = conf->copies; 2359 sl--; 2360 d = r10_bio->devs[sl].devnum; 2361 rdev = rcu_dereference(conf->mirrors[d].rdev); 2362 if (!rdev || 2363 !test_bit(In_sync, &rdev->flags)) 2364 continue; 2365 2366 atomic_inc(&rdev->nr_pending); 2367 rcu_read_unlock(); 2368 switch (r10_sync_page_io(rdev, 2369 r10_bio->devs[sl].addr + 2370 sect, 2371 s, conf->tmppage, 2372 READ)) { 2373 case 0: 2374 /* Well, this device is dead */ 2375 printk(KERN_NOTICE 2376 "md/raid10:%s: unable to read back " 2377 "corrected sectors" 2378 " (%d sectors at %llu on %s)\n", 2379 mdname(mddev), s, 2380 (unsigned long long)( 2381 sect + 2382 choose_data_offset(r10_bio, rdev)), 2383 bdevname(rdev->bdev, b)); 2384 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2385 "drive\n", 2386 mdname(mddev), 2387 bdevname(rdev->bdev, b)); 2388 break; 2389 case 1: 2390 printk(KERN_INFO 2391 "md/raid10:%s: read error corrected" 2392 " (%d sectors at %llu on %s)\n", 2393 mdname(mddev), s, 2394 (unsigned long long)( 2395 sect + 2396 choose_data_offset(r10_bio, rdev)), 2397 bdevname(rdev->bdev, b)); 2398 atomic_add(s, &rdev->corrected_errors); 2399 } 2400 2401 rdev_dec_pending(rdev, mddev); 2402 rcu_read_lock(); 2403 } 2404 rcu_read_unlock(); 2405 2406 sectors -= s; 2407 sect += s; 2408 } 2409 } 2410 2411 static void bi_complete(struct bio *bio, int error) 2412 { 2413 complete((struct completion *)bio->bi_private); 2414 } 2415 2416 static int submit_bio_wait(int rw, struct bio *bio) 2417 { 2418 struct completion event; 2419 rw |= REQ_SYNC; 2420 2421 init_completion(&event); 2422 bio->bi_private = &event; 2423 bio->bi_end_io = bi_complete; 2424 submit_bio(rw, bio); 2425 wait_for_completion(&event); 2426 2427 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2428 } 2429 2430 static int narrow_write_error(struct r10bio *r10_bio, int i) 2431 { 2432 struct bio *bio = r10_bio->master_bio; 2433 struct mddev *mddev = r10_bio->mddev; 2434 struct r10conf *conf = mddev->private; 2435 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2436 /* bio has the data to be written to slot 'i' where 2437 * we just recently had a write error. 2438 * We repeatedly clone the bio and trim down to one block, 2439 * then try the write. Where the write fails we record 2440 * a bad block. 2441 * It is conceivable that the bio doesn't exactly align with 2442 * blocks. We must handle this. 2443 * 2444 * We currently own a reference to the rdev. 2445 */ 2446 2447 int block_sectors; 2448 sector_t sector; 2449 int sectors; 2450 int sect_to_write = r10_bio->sectors; 2451 int ok = 1; 2452 2453 if (rdev->badblocks.shift < 0) 2454 return 0; 2455 2456 block_sectors = 1 << rdev->badblocks.shift; 2457 sector = r10_bio->sector; 2458 sectors = ((r10_bio->sector + block_sectors) 2459 & ~(sector_t)(block_sectors - 1)) 2460 - sector; 2461 2462 while (sect_to_write) { 2463 struct bio *wbio; 2464 if (sectors > sect_to_write) 2465 sectors = sect_to_write; 2466 /* Write at 'sector' for 'sectors' */ 2467 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2468 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2469 wbio->bi_sector = (r10_bio->devs[i].addr+ 2470 choose_data_offset(r10_bio, rdev) + 2471 (sector - r10_bio->sector)); 2472 wbio->bi_bdev = rdev->bdev; 2473 if (submit_bio_wait(WRITE, wbio) == 0) 2474 /* Failure! */ 2475 ok = rdev_set_badblocks(rdev, sector, 2476 sectors, 0) 2477 && ok; 2478 2479 bio_put(wbio); 2480 sect_to_write -= sectors; 2481 sector += sectors; 2482 sectors = block_sectors; 2483 } 2484 return ok; 2485 } 2486 2487 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2488 { 2489 int slot = r10_bio->read_slot; 2490 struct bio *bio; 2491 struct r10conf *conf = mddev->private; 2492 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2493 char b[BDEVNAME_SIZE]; 2494 unsigned long do_sync; 2495 int max_sectors; 2496 2497 /* we got a read error. Maybe the drive is bad. Maybe just 2498 * the block and we can fix it. 2499 * We freeze all other IO, and try reading the block from 2500 * other devices. When we find one, we re-write 2501 * and check it that fixes the read error. 2502 * This is all done synchronously while the array is 2503 * frozen. 2504 */ 2505 bio = r10_bio->devs[slot].bio; 2506 bdevname(bio->bi_bdev, b); 2507 bio_put(bio); 2508 r10_bio->devs[slot].bio = NULL; 2509 2510 if (mddev->ro == 0) { 2511 freeze_array(conf); 2512 fix_read_error(conf, mddev, r10_bio); 2513 unfreeze_array(conf); 2514 } else 2515 r10_bio->devs[slot].bio = IO_BLOCKED; 2516 2517 rdev_dec_pending(rdev, mddev); 2518 2519 read_more: 2520 rdev = read_balance(conf, r10_bio, &max_sectors); 2521 if (rdev == NULL) { 2522 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2523 " read error for block %llu\n", 2524 mdname(mddev), b, 2525 (unsigned long long)r10_bio->sector); 2526 raid_end_bio_io(r10_bio); 2527 return; 2528 } 2529 2530 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2531 slot = r10_bio->read_slot; 2532 printk_ratelimited( 2533 KERN_ERR 2534 "md/raid10:%s: %s: redirecting " 2535 "sector %llu to another mirror\n", 2536 mdname(mddev), 2537 bdevname(rdev->bdev, b), 2538 (unsigned long long)r10_bio->sector); 2539 bio = bio_clone_mddev(r10_bio->master_bio, 2540 GFP_NOIO, mddev); 2541 md_trim_bio(bio, 2542 r10_bio->sector - bio->bi_sector, 2543 max_sectors); 2544 r10_bio->devs[slot].bio = bio; 2545 r10_bio->devs[slot].rdev = rdev; 2546 bio->bi_sector = r10_bio->devs[slot].addr 2547 + choose_data_offset(r10_bio, rdev); 2548 bio->bi_bdev = rdev->bdev; 2549 bio->bi_rw = READ | do_sync; 2550 bio->bi_private = r10_bio; 2551 bio->bi_end_io = raid10_end_read_request; 2552 if (max_sectors < r10_bio->sectors) { 2553 /* Drat - have to split this up more */ 2554 struct bio *mbio = r10_bio->master_bio; 2555 int sectors_handled = 2556 r10_bio->sector + max_sectors 2557 - mbio->bi_sector; 2558 r10_bio->sectors = max_sectors; 2559 spin_lock_irq(&conf->device_lock); 2560 if (mbio->bi_phys_segments == 0) 2561 mbio->bi_phys_segments = 2; 2562 else 2563 mbio->bi_phys_segments++; 2564 spin_unlock_irq(&conf->device_lock); 2565 generic_make_request(bio); 2566 2567 r10_bio = mempool_alloc(conf->r10bio_pool, 2568 GFP_NOIO); 2569 r10_bio->master_bio = mbio; 2570 r10_bio->sectors = (mbio->bi_size >> 9) 2571 - sectors_handled; 2572 r10_bio->state = 0; 2573 set_bit(R10BIO_ReadError, 2574 &r10_bio->state); 2575 r10_bio->mddev = mddev; 2576 r10_bio->sector = mbio->bi_sector 2577 + sectors_handled; 2578 2579 goto read_more; 2580 } else 2581 generic_make_request(bio); 2582 } 2583 2584 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2585 { 2586 /* Some sort of write request has finished and it 2587 * succeeded in writing where we thought there was a 2588 * bad block. So forget the bad block. 2589 * Or possibly if failed and we need to record 2590 * a bad block. 2591 */ 2592 int m; 2593 struct md_rdev *rdev; 2594 2595 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2596 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2597 for (m = 0; m < conf->copies; m++) { 2598 int dev = r10_bio->devs[m].devnum; 2599 rdev = conf->mirrors[dev].rdev; 2600 if (r10_bio->devs[m].bio == NULL) 2601 continue; 2602 if (test_bit(BIO_UPTODATE, 2603 &r10_bio->devs[m].bio->bi_flags)) { 2604 rdev_clear_badblocks( 2605 rdev, 2606 r10_bio->devs[m].addr, 2607 r10_bio->sectors, 0); 2608 } else { 2609 if (!rdev_set_badblocks( 2610 rdev, 2611 r10_bio->devs[m].addr, 2612 r10_bio->sectors, 0)) 2613 md_error(conf->mddev, rdev); 2614 } 2615 rdev = conf->mirrors[dev].replacement; 2616 if (r10_bio->devs[m].repl_bio == NULL) 2617 continue; 2618 if (test_bit(BIO_UPTODATE, 2619 &r10_bio->devs[m].repl_bio->bi_flags)) { 2620 rdev_clear_badblocks( 2621 rdev, 2622 r10_bio->devs[m].addr, 2623 r10_bio->sectors, 0); 2624 } else { 2625 if (!rdev_set_badblocks( 2626 rdev, 2627 r10_bio->devs[m].addr, 2628 r10_bio->sectors, 0)) 2629 md_error(conf->mddev, rdev); 2630 } 2631 } 2632 put_buf(r10_bio); 2633 } else { 2634 for (m = 0; m < conf->copies; m++) { 2635 int dev = r10_bio->devs[m].devnum; 2636 struct bio *bio = r10_bio->devs[m].bio; 2637 rdev = conf->mirrors[dev].rdev; 2638 if (bio == IO_MADE_GOOD) { 2639 rdev_clear_badblocks( 2640 rdev, 2641 r10_bio->devs[m].addr, 2642 r10_bio->sectors, 0); 2643 rdev_dec_pending(rdev, conf->mddev); 2644 } else if (bio != NULL && 2645 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2646 if (!narrow_write_error(r10_bio, m)) { 2647 md_error(conf->mddev, rdev); 2648 set_bit(R10BIO_Degraded, 2649 &r10_bio->state); 2650 } 2651 rdev_dec_pending(rdev, conf->mddev); 2652 } 2653 bio = r10_bio->devs[m].repl_bio; 2654 rdev = conf->mirrors[dev].replacement; 2655 if (rdev && bio == IO_MADE_GOOD) { 2656 rdev_clear_badblocks( 2657 rdev, 2658 r10_bio->devs[m].addr, 2659 r10_bio->sectors, 0); 2660 rdev_dec_pending(rdev, conf->mddev); 2661 } 2662 } 2663 if (test_bit(R10BIO_WriteError, 2664 &r10_bio->state)) 2665 close_write(r10_bio); 2666 raid_end_bio_io(r10_bio); 2667 } 2668 } 2669 2670 static void raid10d(struct mddev *mddev) 2671 { 2672 struct r10bio *r10_bio; 2673 unsigned long flags; 2674 struct r10conf *conf = mddev->private; 2675 struct list_head *head = &conf->retry_list; 2676 struct blk_plug plug; 2677 2678 md_check_recovery(mddev); 2679 2680 blk_start_plug(&plug); 2681 for (;;) { 2682 2683 flush_pending_writes(conf); 2684 2685 spin_lock_irqsave(&conf->device_lock, flags); 2686 if (list_empty(head)) { 2687 spin_unlock_irqrestore(&conf->device_lock, flags); 2688 break; 2689 } 2690 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2691 list_del(head->prev); 2692 conf->nr_queued--; 2693 spin_unlock_irqrestore(&conf->device_lock, flags); 2694 2695 mddev = r10_bio->mddev; 2696 conf = mddev->private; 2697 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2698 test_bit(R10BIO_WriteError, &r10_bio->state)) 2699 handle_write_completed(conf, r10_bio); 2700 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2701 reshape_request_write(mddev, r10_bio); 2702 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2703 sync_request_write(mddev, r10_bio); 2704 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2705 recovery_request_write(mddev, r10_bio); 2706 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2707 handle_read_error(mddev, r10_bio); 2708 else { 2709 /* just a partial read to be scheduled from a 2710 * separate context 2711 */ 2712 int slot = r10_bio->read_slot; 2713 generic_make_request(r10_bio->devs[slot].bio); 2714 } 2715 2716 cond_resched(); 2717 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2718 md_check_recovery(mddev); 2719 } 2720 blk_finish_plug(&plug); 2721 } 2722 2723 2724 static int init_resync(struct r10conf *conf) 2725 { 2726 int buffs; 2727 int i; 2728 2729 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2730 BUG_ON(conf->r10buf_pool); 2731 conf->have_replacement = 0; 2732 for (i = 0; i < conf->geo.raid_disks; i++) 2733 if (conf->mirrors[i].replacement) 2734 conf->have_replacement = 1; 2735 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2736 if (!conf->r10buf_pool) 2737 return -ENOMEM; 2738 conf->next_resync = 0; 2739 return 0; 2740 } 2741 2742 /* 2743 * perform a "sync" on one "block" 2744 * 2745 * We need to make sure that no normal I/O request - particularly write 2746 * requests - conflict with active sync requests. 2747 * 2748 * This is achieved by tracking pending requests and a 'barrier' concept 2749 * that can be installed to exclude normal IO requests. 2750 * 2751 * Resync and recovery are handled very differently. 2752 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2753 * 2754 * For resync, we iterate over virtual addresses, read all copies, 2755 * and update if there are differences. If only one copy is live, 2756 * skip it. 2757 * For recovery, we iterate over physical addresses, read a good 2758 * value for each non-in_sync drive, and over-write. 2759 * 2760 * So, for recovery we may have several outstanding complex requests for a 2761 * given address, one for each out-of-sync device. We model this by allocating 2762 * a number of r10_bio structures, one for each out-of-sync device. 2763 * As we setup these structures, we collect all bio's together into a list 2764 * which we then process collectively to add pages, and then process again 2765 * to pass to generic_make_request. 2766 * 2767 * The r10_bio structures are linked using a borrowed master_bio pointer. 2768 * This link is counted in ->remaining. When the r10_bio that points to NULL 2769 * has its remaining count decremented to 0, the whole complex operation 2770 * is complete. 2771 * 2772 */ 2773 2774 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2775 int *skipped, int go_faster) 2776 { 2777 struct r10conf *conf = mddev->private; 2778 struct r10bio *r10_bio; 2779 struct bio *biolist = NULL, *bio; 2780 sector_t max_sector, nr_sectors; 2781 int i; 2782 int max_sync; 2783 sector_t sync_blocks; 2784 sector_t sectors_skipped = 0; 2785 int chunks_skipped = 0; 2786 sector_t chunk_mask = conf->geo.chunk_mask; 2787 2788 if (!conf->r10buf_pool) 2789 if (init_resync(conf)) 2790 return 0; 2791 2792 skipped: 2793 max_sector = mddev->dev_sectors; 2794 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2795 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2796 max_sector = mddev->resync_max_sectors; 2797 if (sector_nr >= max_sector) { 2798 /* If we aborted, we need to abort the 2799 * sync on the 'current' bitmap chucks (there can 2800 * be several when recovering multiple devices). 2801 * as we may have started syncing it but not finished. 2802 * We can find the current address in 2803 * mddev->curr_resync, but for recovery, 2804 * we need to convert that to several 2805 * virtual addresses. 2806 */ 2807 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2808 end_reshape(conf); 2809 return 0; 2810 } 2811 2812 if (mddev->curr_resync < max_sector) { /* aborted */ 2813 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2814 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2815 &sync_blocks, 1); 2816 else for (i = 0; i < conf->geo.raid_disks; i++) { 2817 sector_t sect = 2818 raid10_find_virt(conf, mddev->curr_resync, i); 2819 bitmap_end_sync(mddev->bitmap, sect, 2820 &sync_blocks, 1); 2821 } 2822 } else { 2823 /* completed sync */ 2824 if ((!mddev->bitmap || conf->fullsync) 2825 && conf->have_replacement 2826 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2827 /* Completed a full sync so the replacements 2828 * are now fully recovered. 2829 */ 2830 for (i = 0; i < conf->geo.raid_disks; i++) 2831 if (conf->mirrors[i].replacement) 2832 conf->mirrors[i].replacement 2833 ->recovery_offset 2834 = MaxSector; 2835 } 2836 conf->fullsync = 0; 2837 } 2838 bitmap_close_sync(mddev->bitmap); 2839 close_sync(conf); 2840 *skipped = 1; 2841 return sectors_skipped; 2842 } 2843 2844 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2845 return reshape_request(mddev, sector_nr, skipped); 2846 2847 if (chunks_skipped >= conf->geo.raid_disks) { 2848 /* if there has been nothing to do on any drive, 2849 * then there is nothing to do at all.. 2850 */ 2851 *skipped = 1; 2852 return (max_sector - sector_nr) + sectors_skipped; 2853 } 2854 2855 if (max_sector > mddev->resync_max) 2856 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2857 2858 /* make sure whole request will fit in a chunk - if chunks 2859 * are meaningful 2860 */ 2861 if (conf->geo.near_copies < conf->geo.raid_disks && 2862 max_sector > (sector_nr | chunk_mask)) 2863 max_sector = (sector_nr | chunk_mask) + 1; 2864 /* 2865 * If there is non-resync activity waiting for us then 2866 * put in a delay to throttle resync. 2867 */ 2868 if (!go_faster && conf->nr_waiting) 2869 msleep_interruptible(1000); 2870 2871 /* Again, very different code for resync and recovery. 2872 * Both must result in an r10bio with a list of bios that 2873 * have bi_end_io, bi_sector, bi_bdev set, 2874 * and bi_private set to the r10bio. 2875 * For recovery, we may actually create several r10bios 2876 * with 2 bios in each, that correspond to the bios in the main one. 2877 * In this case, the subordinate r10bios link back through a 2878 * borrowed master_bio pointer, and the counter in the master 2879 * includes a ref from each subordinate. 2880 */ 2881 /* First, we decide what to do and set ->bi_end_io 2882 * To end_sync_read if we want to read, and 2883 * end_sync_write if we will want to write. 2884 */ 2885 2886 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2887 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2888 /* recovery... the complicated one */ 2889 int j; 2890 r10_bio = NULL; 2891 2892 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2893 int still_degraded; 2894 struct r10bio *rb2; 2895 sector_t sect; 2896 int must_sync; 2897 int any_working; 2898 struct raid10_info *mirror = &conf->mirrors[i]; 2899 2900 if ((mirror->rdev == NULL || 2901 test_bit(In_sync, &mirror->rdev->flags)) 2902 && 2903 (mirror->replacement == NULL || 2904 test_bit(Faulty, 2905 &mirror->replacement->flags))) 2906 continue; 2907 2908 still_degraded = 0; 2909 /* want to reconstruct this device */ 2910 rb2 = r10_bio; 2911 sect = raid10_find_virt(conf, sector_nr, i); 2912 if (sect >= mddev->resync_max_sectors) { 2913 /* last stripe is not complete - don't 2914 * try to recover this sector. 2915 */ 2916 continue; 2917 } 2918 /* Unless we are doing a full sync, or a replacement 2919 * we only need to recover the block if it is set in 2920 * the bitmap 2921 */ 2922 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2923 &sync_blocks, 1); 2924 if (sync_blocks < max_sync) 2925 max_sync = sync_blocks; 2926 if (!must_sync && 2927 mirror->replacement == NULL && 2928 !conf->fullsync) { 2929 /* yep, skip the sync_blocks here, but don't assume 2930 * that there will never be anything to do here 2931 */ 2932 chunks_skipped = -1; 2933 continue; 2934 } 2935 2936 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2937 raise_barrier(conf, rb2 != NULL); 2938 atomic_set(&r10_bio->remaining, 0); 2939 2940 r10_bio->master_bio = (struct bio*)rb2; 2941 if (rb2) 2942 atomic_inc(&rb2->remaining); 2943 r10_bio->mddev = mddev; 2944 set_bit(R10BIO_IsRecover, &r10_bio->state); 2945 r10_bio->sector = sect; 2946 2947 raid10_find_phys(conf, r10_bio); 2948 2949 /* Need to check if the array will still be 2950 * degraded 2951 */ 2952 for (j = 0; j < conf->geo.raid_disks; j++) 2953 if (conf->mirrors[j].rdev == NULL || 2954 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2955 still_degraded = 1; 2956 break; 2957 } 2958 2959 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2960 &sync_blocks, still_degraded); 2961 2962 any_working = 0; 2963 for (j=0; j<conf->copies;j++) { 2964 int k; 2965 int d = r10_bio->devs[j].devnum; 2966 sector_t from_addr, to_addr; 2967 struct md_rdev *rdev; 2968 sector_t sector, first_bad; 2969 int bad_sectors; 2970 if (!conf->mirrors[d].rdev || 2971 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 2972 continue; 2973 /* This is where we read from */ 2974 any_working = 1; 2975 rdev = conf->mirrors[d].rdev; 2976 sector = r10_bio->devs[j].addr; 2977 2978 if (is_badblock(rdev, sector, max_sync, 2979 &first_bad, &bad_sectors)) { 2980 if (first_bad > sector) 2981 max_sync = first_bad - sector; 2982 else { 2983 bad_sectors -= (sector 2984 - first_bad); 2985 if (max_sync > bad_sectors) 2986 max_sync = bad_sectors; 2987 continue; 2988 } 2989 } 2990 bio = r10_bio->devs[0].bio; 2991 bio->bi_next = biolist; 2992 biolist = bio; 2993 bio->bi_private = r10_bio; 2994 bio->bi_end_io = end_sync_read; 2995 bio->bi_rw = READ; 2996 from_addr = r10_bio->devs[j].addr; 2997 bio->bi_sector = from_addr + rdev->data_offset; 2998 bio->bi_bdev = rdev->bdev; 2999 atomic_inc(&rdev->nr_pending); 3000 /* and we write to 'i' (if not in_sync) */ 3001 3002 for (k=0; k<conf->copies; k++) 3003 if (r10_bio->devs[k].devnum == i) 3004 break; 3005 BUG_ON(k == conf->copies); 3006 to_addr = r10_bio->devs[k].addr; 3007 r10_bio->devs[0].devnum = d; 3008 r10_bio->devs[0].addr = from_addr; 3009 r10_bio->devs[1].devnum = i; 3010 r10_bio->devs[1].addr = to_addr; 3011 3012 rdev = mirror->rdev; 3013 if (!test_bit(In_sync, &rdev->flags)) { 3014 bio = r10_bio->devs[1].bio; 3015 bio->bi_next = biolist; 3016 biolist = bio; 3017 bio->bi_private = r10_bio; 3018 bio->bi_end_io = end_sync_write; 3019 bio->bi_rw = WRITE; 3020 bio->bi_sector = to_addr 3021 + rdev->data_offset; 3022 bio->bi_bdev = rdev->bdev; 3023 atomic_inc(&r10_bio->remaining); 3024 } else 3025 r10_bio->devs[1].bio->bi_end_io = NULL; 3026 3027 /* and maybe write to replacement */ 3028 bio = r10_bio->devs[1].repl_bio; 3029 if (bio) 3030 bio->bi_end_io = NULL; 3031 rdev = mirror->replacement; 3032 /* Note: if rdev != NULL, then bio 3033 * cannot be NULL as r10buf_pool_alloc will 3034 * have allocated it. 3035 * So the second test here is pointless. 3036 * But it keeps semantic-checkers happy, and 3037 * this comment keeps human reviewers 3038 * happy. 3039 */ 3040 if (rdev == NULL || bio == NULL || 3041 test_bit(Faulty, &rdev->flags)) 3042 break; 3043 bio->bi_next = biolist; 3044 biolist = bio; 3045 bio->bi_private = r10_bio; 3046 bio->bi_end_io = end_sync_write; 3047 bio->bi_rw = WRITE; 3048 bio->bi_sector = to_addr + rdev->data_offset; 3049 bio->bi_bdev = rdev->bdev; 3050 atomic_inc(&r10_bio->remaining); 3051 break; 3052 } 3053 if (j == conf->copies) { 3054 /* Cannot recover, so abort the recovery or 3055 * record a bad block */ 3056 put_buf(r10_bio); 3057 if (rb2) 3058 atomic_dec(&rb2->remaining); 3059 r10_bio = rb2; 3060 if (any_working) { 3061 /* problem is that there are bad blocks 3062 * on other device(s) 3063 */ 3064 int k; 3065 for (k = 0; k < conf->copies; k++) 3066 if (r10_bio->devs[k].devnum == i) 3067 break; 3068 if (!test_bit(In_sync, 3069 &mirror->rdev->flags) 3070 && !rdev_set_badblocks( 3071 mirror->rdev, 3072 r10_bio->devs[k].addr, 3073 max_sync, 0)) 3074 any_working = 0; 3075 if (mirror->replacement && 3076 !rdev_set_badblocks( 3077 mirror->replacement, 3078 r10_bio->devs[k].addr, 3079 max_sync, 0)) 3080 any_working = 0; 3081 } 3082 if (!any_working) { 3083 if (!test_and_set_bit(MD_RECOVERY_INTR, 3084 &mddev->recovery)) 3085 printk(KERN_INFO "md/raid10:%s: insufficient " 3086 "working devices for recovery.\n", 3087 mdname(mddev)); 3088 mirror->recovery_disabled 3089 = mddev->recovery_disabled; 3090 } 3091 break; 3092 } 3093 } 3094 if (biolist == NULL) { 3095 while (r10_bio) { 3096 struct r10bio *rb2 = r10_bio; 3097 r10_bio = (struct r10bio*) rb2->master_bio; 3098 rb2->master_bio = NULL; 3099 put_buf(rb2); 3100 } 3101 goto giveup; 3102 } 3103 } else { 3104 /* resync. Schedule a read for every block at this virt offset */ 3105 int count = 0; 3106 3107 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3108 3109 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3110 &sync_blocks, mddev->degraded) && 3111 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3112 &mddev->recovery)) { 3113 /* We can skip this block */ 3114 *skipped = 1; 3115 return sync_blocks + sectors_skipped; 3116 } 3117 if (sync_blocks < max_sync) 3118 max_sync = sync_blocks; 3119 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3120 3121 r10_bio->mddev = mddev; 3122 atomic_set(&r10_bio->remaining, 0); 3123 raise_barrier(conf, 0); 3124 conf->next_resync = sector_nr; 3125 3126 r10_bio->master_bio = NULL; 3127 r10_bio->sector = sector_nr; 3128 set_bit(R10BIO_IsSync, &r10_bio->state); 3129 raid10_find_phys(conf, r10_bio); 3130 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3131 3132 for (i = 0; i < conf->copies; i++) { 3133 int d = r10_bio->devs[i].devnum; 3134 sector_t first_bad, sector; 3135 int bad_sectors; 3136 3137 if (r10_bio->devs[i].repl_bio) 3138 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3139 3140 bio = r10_bio->devs[i].bio; 3141 bio->bi_end_io = NULL; 3142 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3143 if (conf->mirrors[d].rdev == NULL || 3144 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3145 continue; 3146 sector = r10_bio->devs[i].addr; 3147 if (is_badblock(conf->mirrors[d].rdev, 3148 sector, max_sync, 3149 &first_bad, &bad_sectors)) { 3150 if (first_bad > sector) 3151 max_sync = first_bad - sector; 3152 else { 3153 bad_sectors -= (sector - first_bad); 3154 if (max_sync > bad_sectors) 3155 max_sync = max_sync; 3156 continue; 3157 } 3158 } 3159 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3160 atomic_inc(&r10_bio->remaining); 3161 bio->bi_next = biolist; 3162 biolist = bio; 3163 bio->bi_private = r10_bio; 3164 bio->bi_end_io = end_sync_read; 3165 bio->bi_rw = READ; 3166 bio->bi_sector = sector + 3167 conf->mirrors[d].rdev->data_offset; 3168 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3169 count++; 3170 3171 if (conf->mirrors[d].replacement == NULL || 3172 test_bit(Faulty, 3173 &conf->mirrors[d].replacement->flags)) 3174 continue; 3175 3176 /* Need to set up for writing to the replacement */ 3177 bio = r10_bio->devs[i].repl_bio; 3178 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3179 3180 sector = r10_bio->devs[i].addr; 3181 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3182 bio->bi_next = biolist; 3183 biolist = bio; 3184 bio->bi_private = r10_bio; 3185 bio->bi_end_io = end_sync_write; 3186 bio->bi_rw = WRITE; 3187 bio->bi_sector = sector + 3188 conf->mirrors[d].replacement->data_offset; 3189 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3190 count++; 3191 } 3192 3193 if (count < 2) { 3194 for (i=0; i<conf->copies; i++) { 3195 int d = r10_bio->devs[i].devnum; 3196 if (r10_bio->devs[i].bio->bi_end_io) 3197 rdev_dec_pending(conf->mirrors[d].rdev, 3198 mddev); 3199 if (r10_bio->devs[i].repl_bio && 3200 r10_bio->devs[i].repl_bio->bi_end_io) 3201 rdev_dec_pending( 3202 conf->mirrors[d].replacement, 3203 mddev); 3204 } 3205 put_buf(r10_bio); 3206 biolist = NULL; 3207 goto giveup; 3208 } 3209 } 3210 3211 for (bio = biolist; bio ; bio=bio->bi_next) { 3212 3213 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 3214 if (bio->bi_end_io) 3215 bio->bi_flags |= 1 << BIO_UPTODATE; 3216 bio->bi_vcnt = 0; 3217 bio->bi_idx = 0; 3218 bio->bi_phys_segments = 0; 3219 bio->bi_size = 0; 3220 } 3221 3222 nr_sectors = 0; 3223 if (sector_nr + max_sync < max_sector) 3224 max_sector = sector_nr + max_sync; 3225 do { 3226 struct page *page; 3227 int len = PAGE_SIZE; 3228 if (sector_nr + (len>>9) > max_sector) 3229 len = (max_sector - sector_nr) << 9; 3230 if (len == 0) 3231 break; 3232 for (bio= biolist ; bio ; bio=bio->bi_next) { 3233 struct bio *bio2; 3234 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3235 if (bio_add_page(bio, page, len, 0)) 3236 continue; 3237 3238 /* stop here */ 3239 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3240 for (bio2 = biolist; 3241 bio2 && bio2 != bio; 3242 bio2 = bio2->bi_next) { 3243 /* remove last page from this bio */ 3244 bio2->bi_vcnt--; 3245 bio2->bi_size -= len; 3246 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3247 } 3248 goto bio_full; 3249 } 3250 nr_sectors += len>>9; 3251 sector_nr += len>>9; 3252 } while (biolist->bi_vcnt < RESYNC_PAGES); 3253 bio_full: 3254 r10_bio->sectors = nr_sectors; 3255 3256 while (biolist) { 3257 bio = biolist; 3258 biolist = biolist->bi_next; 3259 3260 bio->bi_next = NULL; 3261 r10_bio = bio->bi_private; 3262 r10_bio->sectors = nr_sectors; 3263 3264 if (bio->bi_end_io == end_sync_read) { 3265 md_sync_acct(bio->bi_bdev, nr_sectors); 3266 generic_make_request(bio); 3267 } 3268 } 3269 3270 if (sectors_skipped) 3271 /* pretend they weren't skipped, it makes 3272 * no important difference in this case 3273 */ 3274 md_done_sync(mddev, sectors_skipped, 1); 3275 3276 return sectors_skipped + nr_sectors; 3277 giveup: 3278 /* There is nowhere to write, so all non-sync 3279 * drives must be failed or in resync, all drives 3280 * have a bad block, so try the next chunk... 3281 */ 3282 if (sector_nr + max_sync < max_sector) 3283 max_sector = sector_nr + max_sync; 3284 3285 sectors_skipped += (max_sector - sector_nr); 3286 chunks_skipped ++; 3287 sector_nr = max_sector; 3288 goto skipped; 3289 } 3290 3291 static sector_t 3292 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3293 { 3294 sector_t size; 3295 struct r10conf *conf = mddev->private; 3296 3297 if (!raid_disks) 3298 raid_disks = min(conf->geo.raid_disks, 3299 conf->prev.raid_disks); 3300 if (!sectors) 3301 sectors = conf->dev_sectors; 3302 3303 size = sectors >> conf->geo.chunk_shift; 3304 sector_div(size, conf->geo.far_copies); 3305 size = size * raid_disks; 3306 sector_div(size, conf->geo.near_copies); 3307 3308 return size << conf->geo.chunk_shift; 3309 } 3310 3311 static void calc_sectors(struct r10conf *conf, sector_t size) 3312 { 3313 /* Calculate the number of sectors-per-device that will 3314 * actually be used, and set conf->dev_sectors and 3315 * conf->stride 3316 */ 3317 3318 size = size >> conf->geo.chunk_shift; 3319 sector_div(size, conf->geo.far_copies); 3320 size = size * conf->geo.raid_disks; 3321 sector_div(size, conf->geo.near_copies); 3322 /* 'size' is now the number of chunks in the array */ 3323 /* calculate "used chunks per device" */ 3324 size = size * conf->copies; 3325 3326 /* We need to round up when dividing by raid_disks to 3327 * get the stride size. 3328 */ 3329 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3330 3331 conf->dev_sectors = size << conf->geo.chunk_shift; 3332 3333 if (conf->geo.far_offset) 3334 conf->geo.stride = 1 << conf->geo.chunk_shift; 3335 else { 3336 sector_div(size, conf->geo.far_copies); 3337 conf->geo.stride = size << conf->geo.chunk_shift; 3338 } 3339 } 3340 3341 enum geo_type {geo_new, geo_old, geo_start}; 3342 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3343 { 3344 int nc, fc, fo; 3345 int layout, chunk, disks; 3346 switch (new) { 3347 case geo_old: 3348 layout = mddev->layout; 3349 chunk = mddev->chunk_sectors; 3350 disks = mddev->raid_disks - mddev->delta_disks; 3351 break; 3352 case geo_new: 3353 layout = mddev->new_layout; 3354 chunk = mddev->new_chunk_sectors; 3355 disks = mddev->raid_disks; 3356 break; 3357 default: /* avoid 'may be unused' warnings */ 3358 case geo_start: /* new when starting reshape - raid_disks not 3359 * updated yet. */ 3360 layout = mddev->new_layout; 3361 chunk = mddev->new_chunk_sectors; 3362 disks = mddev->raid_disks + mddev->delta_disks; 3363 break; 3364 } 3365 if (layout >> 17) 3366 return -1; 3367 if (chunk < (PAGE_SIZE >> 9) || 3368 !is_power_of_2(chunk)) 3369 return -2; 3370 nc = layout & 255; 3371 fc = (layout >> 8) & 255; 3372 fo = layout & (1<<16); 3373 geo->raid_disks = disks; 3374 geo->near_copies = nc; 3375 geo->far_copies = fc; 3376 geo->far_offset = fo; 3377 geo->chunk_mask = chunk - 1; 3378 geo->chunk_shift = ffz(~chunk); 3379 return nc*fc; 3380 } 3381 3382 static struct r10conf *setup_conf(struct mddev *mddev) 3383 { 3384 struct r10conf *conf = NULL; 3385 int err = -EINVAL; 3386 struct geom geo; 3387 int copies; 3388 3389 copies = setup_geo(&geo, mddev, geo_new); 3390 3391 if (copies == -2) { 3392 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3393 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3394 mdname(mddev), PAGE_SIZE); 3395 goto out; 3396 } 3397 3398 if (copies < 2 || copies > mddev->raid_disks) { 3399 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3400 mdname(mddev), mddev->new_layout); 3401 goto out; 3402 } 3403 3404 err = -ENOMEM; 3405 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3406 if (!conf) 3407 goto out; 3408 3409 /* FIXME calc properly */ 3410 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3411 max(0,mddev->delta_disks)), 3412 GFP_KERNEL); 3413 if (!conf->mirrors) 3414 goto out; 3415 3416 conf->tmppage = alloc_page(GFP_KERNEL); 3417 if (!conf->tmppage) 3418 goto out; 3419 3420 conf->geo = geo; 3421 conf->copies = copies; 3422 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3423 r10bio_pool_free, conf); 3424 if (!conf->r10bio_pool) 3425 goto out; 3426 3427 calc_sectors(conf, mddev->dev_sectors); 3428 if (mddev->reshape_position == MaxSector) { 3429 conf->prev = conf->geo; 3430 conf->reshape_progress = MaxSector; 3431 } else { 3432 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3433 err = -EINVAL; 3434 goto out; 3435 } 3436 conf->reshape_progress = mddev->reshape_position; 3437 if (conf->prev.far_offset) 3438 conf->prev.stride = 1 << conf->prev.chunk_shift; 3439 else 3440 /* far_copies must be 1 */ 3441 conf->prev.stride = conf->dev_sectors; 3442 } 3443 spin_lock_init(&conf->device_lock); 3444 INIT_LIST_HEAD(&conf->retry_list); 3445 3446 spin_lock_init(&conf->resync_lock); 3447 init_waitqueue_head(&conf->wait_barrier); 3448 3449 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3450 if (!conf->thread) 3451 goto out; 3452 3453 conf->mddev = mddev; 3454 return conf; 3455 3456 out: 3457 if (err == -ENOMEM) 3458 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3459 mdname(mddev)); 3460 if (conf) { 3461 if (conf->r10bio_pool) 3462 mempool_destroy(conf->r10bio_pool); 3463 kfree(conf->mirrors); 3464 safe_put_page(conf->tmppage); 3465 kfree(conf); 3466 } 3467 return ERR_PTR(err); 3468 } 3469 3470 static int run(struct mddev *mddev) 3471 { 3472 struct r10conf *conf; 3473 int i, disk_idx, chunk_size; 3474 struct raid10_info *disk; 3475 struct md_rdev *rdev; 3476 sector_t size; 3477 sector_t min_offset_diff = 0; 3478 int first = 1; 3479 3480 if (mddev->private == NULL) { 3481 conf = setup_conf(mddev); 3482 if (IS_ERR(conf)) 3483 return PTR_ERR(conf); 3484 mddev->private = conf; 3485 } 3486 conf = mddev->private; 3487 if (!conf) 3488 goto out; 3489 3490 mddev->thread = conf->thread; 3491 conf->thread = NULL; 3492 3493 chunk_size = mddev->chunk_sectors << 9; 3494 if (mddev->queue) { 3495 blk_queue_io_min(mddev->queue, chunk_size); 3496 if (conf->geo.raid_disks % conf->geo.near_copies) 3497 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3498 else 3499 blk_queue_io_opt(mddev->queue, chunk_size * 3500 (conf->geo.raid_disks / conf->geo.near_copies)); 3501 } 3502 3503 rdev_for_each(rdev, mddev) { 3504 long long diff; 3505 struct request_queue *q; 3506 3507 disk_idx = rdev->raid_disk; 3508 if (disk_idx < 0) 3509 continue; 3510 if (disk_idx >= conf->geo.raid_disks && 3511 disk_idx >= conf->prev.raid_disks) 3512 continue; 3513 disk = conf->mirrors + disk_idx; 3514 3515 if (test_bit(Replacement, &rdev->flags)) { 3516 if (disk->replacement) 3517 goto out_free_conf; 3518 disk->replacement = rdev; 3519 } else { 3520 if (disk->rdev) 3521 goto out_free_conf; 3522 disk->rdev = rdev; 3523 } 3524 q = bdev_get_queue(rdev->bdev); 3525 if (q->merge_bvec_fn) 3526 mddev->merge_check_needed = 1; 3527 diff = (rdev->new_data_offset - rdev->data_offset); 3528 if (!mddev->reshape_backwards) 3529 diff = -diff; 3530 if (diff < 0) 3531 diff = 0; 3532 if (first || diff < min_offset_diff) 3533 min_offset_diff = diff; 3534 3535 if (mddev->gendisk) 3536 disk_stack_limits(mddev->gendisk, rdev->bdev, 3537 rdev->data_offset << 9); 3538 3539 disk->head_position = 0; 3540 } 3541 3542 /* need to check that every block has at least one working mirror */ 3543 if (!enough(conf, -1)) { 3544 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3545 mdname(mddev)); 3546 goto out_free_conf; 3547 } 3548 3549 if (conf->reshape_progress != MaxSector) { 3550 /* must ensure that shape change is supported */ 3551 if (conf->geo.far_copies != 1 && 3552 conf->geo.far_offset == 0) 3553 goto out_free_conf; 3554 if (conf->prev.far_copies != 1 && 3555 conf->geo.far_offset == 0) 3556 goto out_free_conf; 3557 } 3558 3559 mddev->degraded = 0; 3560 for (i = 0; 3561 i < conf->geo.raid_disks 3562 || i < conf->prev.raid_disks; 3563 i++) { 3564 3565 disk = conf->mirrors + i; 3566 3567 if (!disk->rdev && disk->replacement) { 3568 /* The replacement is all we have - use it */ 3569 disk->rdev = disk->replacement; 3570 disk->replacement = NULL; 3571 clear_bit(Replacement, &disk->rdev->flags); 3572 } 3573 3574 if (!disk->rdev || 3575 !test_bit(In_sync, &disk->rdev->flags)) { 3576 disk->head_position = 0; 3577 mddev->degraded++; 3578 if (disk->rdev) 3579 conf->fullsync = 1; 3580 } 3581 disk->recovery_disabled = mddev->recovery_disabled - 1; 3582 } 3583 3584 if (mddev->recovery_cp != MaxSector) 3585 printk(KERN_NOTICE "md/raid10:%s: not clean" 3586 " -- starting background reconstruction\n", 3587 mdname(mddev)); 3588 printk(KERN_INFO 3589 "md/raid10:%s: active with %d out of %d devices\n", 3590 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3591 conf->geo.raid_disks); 3592 /* 3593 * Ok, everything is just fine now 3594 */ 3595 mddev->dev_sectors = conf->dev_sectors; 3596 size = raid10_size(mddev, 0, 0); 3597 md_set_array_sectors(mddev, size); 3598 mddev->resync_max_sectors = size; 3599 3600 if (mddev->queue) { 3601 int stripe = conf->geo.raid_disks * 3602 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3603 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3604 mddev->queue->backing_dev_info.congested_data = mddev; 3605 3606 /* Calculate max read-ahead size. 3607 * We need to readahead at least twice a whole stripe.... 3608 * maybe... 3609 */ 3610 stripe /= conf->geo.near_copies; 3611 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3612 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3613 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3614 } 3615 3616 3617 if (md_integrity_register(mddev)) 3618 goto out_free_conf; 3619 3620 if (conf->reshape_progress != MaxSector) { 3621 unsigned long before_length, after_length; 3622 3623 before_length = ((1 << conf->prev.chunk_shift) * 3624 conf->prev.far_copies); 3625 after_length = ((1 << conf->geo.chunk_shift) * 3626 conf->geo.far_copies); 3627 3628 if (max(before_length, after_length) > min_offset_diff) { 3629 /* This cannot work */ 3630 printk("md/raid10: offset difference not enough to continue reshape\n"); 3631 goto out_free_conf; 3632 } 3633 conf->offset_diff = min_offset_diff; 3634 3635 conf->reshape_safe = conf->reshape_progress; 3636 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3637 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3638 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3639 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3640 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3641 "reshape"); 3642 } 3643 3644 return 0; 3645 3646 out_free_conf: 3647 md_unregister_thread(&mddev->thread); 3648 if (conf->r10bio_pool) 3649 mempool_destroy(conf->r10bio_pool); 3650 safe_put_page(conf->tmppage); 3651 kfree(conf->mirrors); 3652 kfree(conf); 3653 mddev->private = NULL; 3654 out: 3655 return -EIO; 3656 } 3657 3658 static int stop(struct mddev *mddev) 3659 { 3660 struct r10conf *conf = mddev->private; 3661 3662 raise_barrier(conf, 0); 3663 lower_barrier(conf); 3664 3665 md_unregister_thread(&mddev->thread); 3666 if (mddev->queue) 3667 /* the unplug fn references 'conf'*/ 3668 blk_sync_queue(mddev->queue); 3669 3670 if (conf->r10bio_pool) 3671 mempool_destroy(conf->r10bio_pool); 3672 kfree(conf->mirrors); 3673 kfree(conf); 3674 mddev->private = NULL; 3675 return 0; 3676 } 3677 3678 static void raid10_quiesce(struct mddev *mddev, int state) 3679 { 3680 struct r10conf *conf = mddev->private; 3681 3682 switch(state) { 3683 case 1: 3684 raise_barrier(conf, 0); 3685 break; 3686 case 0: 3687 lower_barrier(conf); 3688 break; 3689 } 3690 } 3691 3692 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3693 { 3694 /* Resize of 'far' arrays is not supported. 3695 * For 'near' and 'offset' arrays we can set the 3696 * number of sectors used to be an appropriate multiple 3697 * of the chunk size. 3698 * For 'offset', this is far_copies*chunksize. 3699 * For 'near' the multiplier is the LCM of 3700 * near_copies and raid_disks. 3701 * So if far_copies > 1 && !far_offset, fail. 3702 * Else find LCM(raid_disks, near_copy)*far_copies and 3703 * multiply by chunk_size. Then round to this number. 3704 * This is mostly done by raid10_size() 3705 */ 3706 struct r10conf *conf = mddev->private; 3707 sector_t oldsize, size; 3708 3709 if (mddev->reshape_position != MaxSector) 3710 return -EBUSY; 3711 3712 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3713 return -EINVAL; 3714 3715 oldsize = raid10_size(mddev, 0, 0); 3716 size = raid10_size(mddev, sectors, 0); 3717 if (mddev->external_size && 3718 mddev->array_sectors > size) 3719 return -EINVAL; 3720 if (mddev->bitmap) { 3721 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3722 if (ret) 3723 return ret; 3724 } 3725 md_set_array_sectors(mddev, size); 3726 set_capacity(mddev->gendisk, mddev->array_sectors); 3727 revalidate_disk(mddev->gendisk); 3728 if (sectors > mddev->dev_sectors && 3729 mddev->recovery_cp > oldsize) { 3730 mddev->recovery_cp = oldsize; 3731 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3732 } 3733 calc_sectors(conf, sectors); 3734 mddev->dev_sectors = conf->dev_sectors; 3735 mddev->resync_max_sectors = size; 3736 return 0; 3737 } 3738 3739 static void *raid10_takeover_raid0(struct mddev *mddev) 3740 { 3741 struct md_rdev *rdev; 3742 struct r10conf *conf; 3743 3744 if (mddev->degraded > 0) { 3745 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3746 mdname(mddev)); 3747 return ERR_PTR(-EINVAL); 3748 } 3749 3750 /* Set new parameters */ 3751 mddev->new_level = 10; 3752 /* new layout: far_copies = 1, near_copies = 2 */ 3753 mddev->new_layout = (1<<8) + 2; 3754 mddev->new_chunk_sectors = mddev->chunk_sectors; 3755 mddev->delta_disks = mddev->raid_disks; 3756 mddev->raid_disks *= 2; 3757 /* make sure it will be not marked as dirty */ 3758 mddev->recovery_cp = MaxSector; 3759 3760 conf = setup_conf(mddev); 3761 if (!IS_ERR(conf)) { 3762 rdev_for_each(rdev, mddev) 3763 if (rdev->raid_disk >= 0) 3764 rdev->new_raid_disk = rdev->raid_disk * 2; 3765 conf->barrier = 1; 3766 } 3767 3768 return conf; 3769 } 3770 3771 static void *raid10_takeover(struct mddev *mddev) 3772 { 3773 struct r0conf *raid0_conf; 3774 3775 /* raid10 can take over: 3776 * raid0 - providing it has only two drives 3777 */ 3778 if (mddev->level == 0) { 3779 /* for raid0 takeover only one zone is supported */ 3780 raid0_conf = mddev->private; 3781 if (raid0_conf->nr_strip_zones > 1) { 3782 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3783 " with more than one zone.\n", 3784 mdname(mddev)); 3785 return ERR_PTR(-EINVAL); 3786 } 3787 return raid10_takeover_raid0(mddev); 3788 } 3789 return ERR_PTR(-EINVAL); 3790 } 3791 3792 static int raid10_check_reshape(struct mddev *mddev) 3793 { 3794 /* Called when there is a request to change 3795 * - layout (to ->new_layout) 3796 * - chunk size (to ->new_chunk_sectors) 3797 * - raid_disks (by delta_disks) 3798 * or when trying to restart a reshape that was ongoing. 3799 * 3800 * We need to validate the request and possibly allocate 3801 * space if that might be an issue later. 3802 * 3803 * Currently we reject any reshape of a 'far' mode array, 3804 * allow chunk size to change if new is generally acceptable, 3805 * allow raid_disks to increase, and allow 3806 * a switch between 'near' mode and 'offset' mode. 3807 */ 3808 struct r10conf *conf = mddev->private; 3809 struct geom geo; 3810 3811 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3812 return -EINVAL; 3813 3814 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3815 /* mustn't change number of copies */ 3816 return -EINVAL; 3817 if (geo.far_copies > 1 && !geo.far_offset) 3818 /* Cannot switch to 'far' mode */ 3819 return -EINVAL; 3820 3821 if (mddev->array_sectors & geo.chunk_mask) 3822 /* not factor of array size */ 3823 return -EINVAL; 3824 3825 if (!enough(conf, -1)) 3826 return -EINVAL; 3827 3828 kfree(conf->mirrors_new); 3829 conf->mirrors_new = NULL; 3830 if (mddev->delta_disks > 0) { 3831 /* allocate new 'mirrors' list */ 3832 conf->mirrors_new = kzalloc( 3833 sizeof(struct raid10_info) 3834 *(mddev->raid_disks + 3835 mddev->delta_disks), 3836 GFP_KERNEL); 3837 if (!conf->mirrors_new) 3838 return -ENOMEM; 3839 } 3840 return 0; 3841 } 3842 3843 /* 3844 * Need to check if array has failed when deciding whether to: 3845 * - start an array 3846 * - remove non-faulty devices 3847 * - add a spare 3848 * - allow a reshape 3849 * This determination is simple when no reshape is happening. 3850 * However if there is a reshape, we need to carefully check 3851 * both the before and after sections. 3852 * This is because some failed devices may only affect one 3853 * of the two sections, and some non-in_sync devices may 3854 * be insync in the section most affected by failed devices. 3855 */ 3856 static int calc_degraded(struct r10conf *conf) 3857 { 3858 int degraded, degraded2; 3859 int i; 3860 3861 rcu_read_lock(); 3862 degraded = 0; 3863 /* 'prev' section first */ 3864 for (i = 0; i < conf->prev.raid_disks; i++) { 3865 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3866 if (!rdev || test_bit(Faulty, &rdev->flags)) 3867 degraded++; 3868 else if (!test_bit(In_sync, &rdev->flags)) 3869 /* When we can reduce the number of devices in 3870 * an array, this might not contribute to 3871 * 'degraded'. It does now. 3872 */ 3873 degraded++; 3874 } 3875 rcu_read_unlock(); 3876 if (conf->geo.raid_disks == conf->prev.raid_disks) 3877 return degraded; 3878 rcu_read_lock(); 3879 degraded2 = 0; 3880 for (i = 0; i < conf->geo.raid_disks; i++) { 3881 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3882 if (!rdev || test_bit(Faulty, &rdev->flags)) 3883 degraded2++; 3884 else if (!test_bit(In_sync, &rdev->flags)) { 3885 /* If reshape is increasing the number of devices, 3886 * this section has already been recovered, so 3887 * it doesn't contribute to degraded. 3888 * else it does. 3889 */ 3890 if (conf->geo.raid_disks <= conf->prev.raid_disks) 3891 degraded2++; 3892 } 3893 } 3894 rcu_read_unlock(); 3895 if (degraded2 > degraded) 3896 return degraded2; 3897 return degraded; 3898 } 3899 3900 static int raid10_start_reshape(struct mddev *mddev) 3901 { 3902 /* A 'reshape' has been requested. This commits 3903 * the various 'new' fields and sets MD_RECOVER_RESHAPE 3904 * This also checks if there are enough spares and adds them 3905 * to the array. 3906 * We currently require enough spares to make the final 3907 * array non-degraded. We also require that the difference 3908 * between old and new data_offset - on each device - is 3909 * enough that we never risk over-writing. 3910 */ 3911 3912 unsigned long before_length, after_length; 3913 sector_t min_offset_diff = 0; 3914 int first = 1; 3915 struct geom new; 3916 struct r10conf *conf = mddev->private; 3917 struct md_rdev *rdev; 3918 int spares = 0; 3919 int ret; 3920 3921 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3922 return -EBUSY; 3923 3924 if (setup_geo(&new, mddev, geo_start) != conf->copies) 3925 return -EINVAL; 3926 3927 before_length = ((1 << conf->prev.chunk_shift) * 3928 conf->prev.far_copies); 3929 after_length = ((1 << conf->geo.chunk_shift) * 3930 conf->geo.far_copies); 3931 3932 rdev_for_each(rdev, mddev) { 3933 if (!test_bit(In_sync, &rdev->flags) 3934 && !test_bit(Faulty, &rdev->flags)) 3935 spares++; 3936 if (rdev->raid_disk >= 0) { 3937 long long diff = (rdev->new_data_offset 3938 - rdev->data_offset); 3939 if (!mddev->reshape_backwards) 3940 diff = -diff; 3941 if (diff < 0) 3942 diff = 0; 3943 if (first || diff < min_offset_diff) 3944 min_offset_diff = diff; 3945 } 3946 } 3947 3948 if (max(before_length, after_length) > min_offset_diff) 3949 return -EINVAL; 3950 3951 if (spares < mddev->delta_disks) 3952 return -EINVAL; 3953 3954 conf->offset_diff = min_offset_diff; 3955 spin_lock_irq(&conf->device_lock); 3956 if (conf->mirrors_new) { 3957 memcpy(conf->mirrors_new, conf->mirrors, 3958 sizeof(struct raid10_info)*conf->prev.raid_disks); 3959 smp_mb(); 3960 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 3961 conf->mirrors_old = conf->mirrors; 3962 conf->mirrors = conf->mirrors_new; 3963 conf->mirrors_new = NULL; 3964 } 3965 setup_geo(&conf->geo, mddev, geo_start); 3966 smp_mb(); 3967 if (mddev->reshape_backwards) { 3968 sector_t size = raid10_size(mddev, 0, 0); 3969 if (size < mddev->array_sectors) { 3970 spin_unlock_irq(&conf->device_lock); 3971 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 3972 mdname(mddev)); 3973 return -EINVAL; 3974 } 3975 mddev->resync_max_sectors = size; 3976 conf->reshape_progress = size; 3977 } else 3978 conf->reshape_progress = 0; 3979 spin_unlock_irq(&conf->device_lock); 3980 3981 if (mddev->delta_disks && mddev->bitmap) { 3982 ret = bitmap_resize(mddev->bitmap, 3983 raid10_size(mddev, 0, 3984 conf->geo.raid_disks), 3985 0, 0); 3986 if (ret) 3987 goto abort; 3988 } 3989 if (mddev->delta_disks > 0) { 3990 rdev_for_each(rdev, mddev) 3991 if (rdev->raid_disk < 0 && 3992 !test_bit(Faulty, &rdev->flags)) { 3993 if (raid10_add_disk(mddev, rdev) == 0) { 3994 if (rdev->raid_disk >= 3995 conf->prev.raid_disks) 3996 set_bit(In_sync, &rdev->flags); 3997 else 3998 rdev->recovery_offset = 0; 3999 4000 if (sysfs_link_rdev(mddev, rdev)) 4001 /* Failure here is OK */; 4002 } 4003 } else if (rdev->raid_disk >= conf->prev.raid_disks 4004 && !test_bit(Faulty, &rdev->flags)) { 4005 /* This is a spare that was manually added */ 4006 set_bit(In_sync, &rdev->flags); 4007 } 4008 } 4009 /* When a reshape changes the number of devices, 4010 * ->degraded is measured against the larger of the 4011 * pre and post numbers. 4012 */ 4013 spin_lock_irq(&conf->device_lock); 4014 mddev->degraded = calc_degraded(conf); 4015 spin_unlock_irq(&conf->device_lock); 4016 mddev->raid_disks = conf->geo.raid_disks; 4017 mddev->reshape_position = conf->reshape_progress; 4018 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4019 4020 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4021 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4022 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4023 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4024 4025 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4026 "reshape"); 4027 if (!mddev->sync_thread) { 4028 ret = -EAGAIN; 4029 goto abort; 4030 } 4031 conf->reshape_checkpoint = jiffies; 4032 md_wakeup_thread(mddev->sync_thread); 4033 md_new_event(mddev); 4034 return 0; 4035 4036 abort: 4037 mddev->recovery = 0; 4038 spin_lock_irq(&conf->device_lock); 4039 conf->geo = conf->prev; 4040 mddev->raid_disks = conf->geo.raid_disks; 4041 rdev_for_each(rdev, mddev) 4042 rdev->new_data_offset = rdev->data_offset; 4043 smp_wmb(); 4044 conf->reshape_progress = MaxSector; 4045 mddev->reshape_position = MaxSector; 4046 spin_unlock_irq(&conf->device_lock); 4047 return ret; 4048 } 4049 4050 /* Calculate the last device-address that could contain 4051 * any block from the chunk that includes the array-address 's' 4052 * and report the next address. 4053 * i.e. the address returned will be chunk-aligned and after 4054 * any data that is in the chunk containing 's'. 4055 */ 4056 static sector_t last_dev_address(sector_t s, struct geom *geo) 4057 { 4058 s = (s | geo->chunk_mask) + 1; 4059 s >>= geo->chunk_shift; 4060 s *= geo->near_copies; 4061 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4062 s *= geo->far_copies; 4063 s <<= geo->chunk_shift; 4064 return s; 4065 } 4066 4067 /* Calculate the first device-address that could contain 4068 * any block from the chunk that includes the array-address 's'. 4069 * This too will be the start of a chunk 4070 */ 4071 static sector_t first_dev_address(sector_t s, struct geom *geo) 4072 { 4073 s >>= geo->chunk_shift; 4074 s *= geo->near_copies; 4075 sector_div(s, geo->raid_disks); 4076 s *= geo->far_copies; 4077 s <<= geo->chunk_shift; 4078 return s; 4079 } 4080 4081 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4082 int *skipped) 4083 { 4084 /* We simply copy at most one chunk (smallest of old and new) 4085 * at a time, possibly less if that exceeds RESYNC_PAGES, 4086 * or we hit a bad block or something. 4087 * This might mean we pause for normal IO in the middle of 4088 * a chunk, but that is not a problem was mddev->reshape_position 4089 * can record any location. 4090 * 4091 * If we will want to write to a location that isn't 4092 * yet recorded as 'safe' (i.e. in metadata on disk) then 4093 * we need to flush all reshape requests and update the metadata. 4094 * 4095 * When reshaping forwards (e.g. to more devices), we interpret 4096 * 'safe' as the earliest block which might not have been copied 4097 * down yet. We divide this by previous stripe size and multiply 4098 * by previous stripe length to get lowest device offset that we 4099 * cannot write to yet. 4100 * We interpret 'sector_nr' as an address that we want to write to. 4101 * From this we use last_device_address() to find where we might 4102 * write to, and first_device_address on the 'safe' position. 4103 * If this 'next' write position is after the 'safe' position, 4104 * we must update the metadata to increase the 'safe' position. 4105 * 4106 * When reshaping backwards, we round in the opposite direction 4107 * and perform the reverse test: next write position must not be 4108 * less than current safe position. 4109 * 4110 * In all this the minimum difference in data offsets 4111 * (conf->offset_diff - always positive) allows a bit of slack, 4112 * so next can be after 'safe', but not by more than offset_disk 4113 * 4114 * We need to prepare all the bios here before we start any IO 4115 * to ensure the size we choose is acceptable to all devices. 4116 * The means one for each copy for write-out and an extra one for 4117 * read-in. 4118 * We store the read-in bio in ->master_bio and the others in 4119 * ->devs[x].bio and ->devs[x].repl_bio. 4120 */ 4121 struct r10conf *conf = mddev->private; 4122 struct r10bio *r10_bio; 4123 sector_t next, safe, last; 4124 int max_sectors; 4125 int nr_sectors; 4126 int s; 4127 struct md_rdev *rdev; 4128 int need_flush = 0; 4129 struct bio *blist; 4130 struct bio *bio, *read_bio; 4131 int sectors_done = 0; 4132 4133 if (sector_nr == 0) { 4134 /* If restarting in the middle, skip the initial sectors */ 4135 if (mddev->reshape_backwards && 4136 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4137 sector_nr = (raid10_size(mddev, 0, 0) 4138 - conf->reshape_progress); 4139 } else if (!mddev->reshape_backwards && 4140 conf->reshape_progress > 0) 4141 sector_nr = conf->reshape_progress; 4142 if (sector_nr) { 4143 mddev->curr_resync_completed = sector_nr; 4144 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4145 *skipped = 1; 4146 return sector_nr; 4147 } 4148 } 4149 4150 /* We don't use sector_nr to track where we are up to 4151 * as that doesn't work well for ->reshape_backwards. 4152 * So just use ->reshape_progress. 4153 */ 4154 if (mddev->reshape_backwards) { 4155 /* 'next' is the earliest device address that we might 4156 * write to for this chunk in the new layout 4157 */ 4158 next = first_dev_address(conf->reshape_progress - 1, 4159 &conf->geo); 4160 4161 /* 'safe' is the last device address that we might read from 4162 * in the old layout after a restart 4163 */ 4164 safe = last_dev_address(conf->reshape_safe - 1, 4165 &conf->prev); 4166 4167 if (next + conf->offset_diff < safe) 4168 need_flush = 1; 4169 4170 last = conf->reshape_progress - 1; 4171 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4172 & conf->prev.chunk_mask); 4173 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4174 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4175 } else { 4176 /* 'next' is after the last device address that we 4177 * might write to for this chunk in the new layout 4178 */ 4179 next = last_dev_address(conf->reshape_progress, &conf->geo); 4180 4181 /* 'safe' is the earliest device address that we might 4182 * read from in the old layout after a restart 4183 */ 4184 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4185 4186 /* Need to update metadata if 'next' might be beyond 'safe' 4187 * as that would possibly corrupt data 4188 */ 4189 if (next > safe + conf->offset_diff) 4190 need_flush = 1; 4191 4192 sector_nr = conf->reshape_progress; 4193 last = sector_nr | (conf->geo.chunk_mask 4194 & conf->prev.chunk_mask); 4195 4196 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4197 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4198 } 4199 4200 if (need_flush || 4201 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4202 /* Need to update reshape_position in metadata */ 4203 wait_barrier(conf); 4204 mddev->reshape_position = conf->reshape_progress; 4205 if (mddev->reshape_backwards) 4206 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4207 - conf->reshape_progress; 4208 else 4209 mddev->curr_resync_completed = conf->reshape_progress; 4210 conf->reshape_checkpoint = jiffies; 4211 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4212 md_wakeup_thread(mddev->thread); 4213 wait_event(mddev->sb_wait, mddev->flags == 0 || 4214 kthread_should_stop()); 4215 conf->reshape_safe = mddev->reshape_position; 4216 allow_barrier(conf); 4217 } 4218 4219 read_more: 4220 /* Now schedule reads for blocks from sector_nr to last */ 4221 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4222 raise_barrier(conf, sectors_done != 0); 4223 atomic_set(&r10_bio->remaining, 0); 4224 r10_bio->mddev = mddev; 4225 r10_bio->sector = sector_nr; 4226 set_bit(R10BIO_IsReshape, &r10_bio->state); 4227 r10_bio->sectors = last - sector_nr + 1; 4228 rdev = read_balance(conf, r10_bio, &max_sectors); 4229 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4230 4231 if (!rdev) { 4232 /* Cannot read from here, so need to record bad blocks 4233 * on all the target devices. 4234 */ 4235 // FIXME 4236 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4237 return sectors_done; 4238 } 4239 4240 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4241 4242 read_bio->bi_bdev = rdev->bdev; 4243 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4244 + rdev->data_offset); 4245 read_bio->bi_private = r10_bio; 4246 read_bio->bi_end_io = end_sync_read; 4247 read_bio->bi_rw = READ; 4248 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4249 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4250 read_bio->bi_vcnt = 0; 4251 read_bio->bi_idx = 0; 4252 read_bio->bi_size = 0; 4253 r10_bio->master_bio = read_bio; 4254 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4255 4256 /* Now find the locations in the new layout */ 4257 __raid10_find_phys(&conf->geo, r10_bio); 4258 4259 blist = read_bio; 4260 read_bio->bi_next = NULL; 4261 4262 for (s = 0; s < conf->copies*2; s++) { 4263 struct bio *b; 4264 int d = r10_bio->devs[s/2].devnum; 4265 struct md_rdev *rdev2; 4266 if (s&1) { 4267 rdev2 = conf->mirrors[d].replacement; 4268 b = r10_bio->devs[s/2].repl_bio; 4269 } else { 4270 rdev2 = conf->mirrors[d].rdev; 4271 b = r10_bio->devs[s/2].bio; 4272 } 4273 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4274 continue; 4275 b->bi_bdev = rdev2->bdev; 4276 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4277 b->bi_private = r10_bio; 4278 b->bi_end_io = end_reshape_write; 4279 b->bi_rw = WRITE; 4280 b->bi_flags &= ~(BIO_POOL_MASK - 1); 4281 b->bi_flags |= 1 << BIO_UPTODATE; 4282 b->bi_next = blist; 4283 b->bi_vcnt = 0; 4284 b->bi_idx = 0; 4285 b->bi_size = 0; 4286 blist = b; 4287 } 4288 4289 /* Now add as many pages as possible to all of these bios. */ 4290 4291 nr_sectors = 0; 4292 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4293 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4294 int len = (max_sectors - s) << 9; 4295 if (len > PAGE_SIZE) 4296 len = PAGE_SIZE; 4297 for (bio = blist; bio ; bio = bio->bi_next) { 4298 struct bio *bio2; 4299 if (bio_add_page(bio, page, len, 0)) 4300 continue; 4301 4302 /* Didn't fit, must stop */ 4303 for (bio2 = blist; 4304 bio2 && bio2 != bio; 4305 bio2 = bio2->bi_next) { 4306 /* Remove last page from this bio */ 4307 bio2->bi_vcnt--; 4308 bio2->bi_size -= len; 4309 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4310 } 4311 goto bio_full; 4312 } 4313 sector_nr += len >> 9; 4314 nr_sectors += len >> 9; 4315 } 4316 bio_full: 4317 r10_bio->sectors = nr_sectors; 4318 4319 /* Now submit the read */ 4320 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4321 atomic_inc(&r10_bio->remaining); 4322 read_bio->bi_next = NULL; 4323 generic_make_request(read_bio); 4324 sector_nr += nr_sectors; 4325 sectors_done += nr_sectors; 4326 if (sector_nr <= last) 4327 goto read_more; 4328 4329 /* Now that we have done the whole section we can 4330 * update reshape_progress 4331 */ 4332 if (mddev->reshape_backwards) 4333 conf->reshape_progress -= sectors_done; 4334 else 4335 conf->reshape_progress += sectors_done; 4336 4337 return sectors_done; 4338 } 4339 4340 static void end_reshape_request(struct r10bio *r10_bio); 4341 static int handle_reshape_read_error(struct mddev *mddev, 4342 struct r10bio *r10_bio); 4343 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4344 { 4345 /* Reshape read completed. Hopefully we have a block 4346 * to write out. 4347 * If we got a read error then we do sync 1-page reads from 4348 * elsewhere until we find the data - or give up. 4349 */ 4350 struct r10conf *conf = mddev->private; 4351 int s; 4352 4353 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4354 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4355 /* Reshape has been aborted */ 4356 md_done_sync(mddev, r10_bio->sectors, 0); 4357 return; 4358 } 4359 4360 /* We definitely have the data in the pages, schedule the 4361 * writes. 4362 */ 4363 atomic_set(&r10_bio->remaining, 1); 4364 for (s = 0; s < conf->copies*2; s++) { 4365 struct bio *b; 4366 int d = r10_bio->devs[s/2].devnum; 4367 struct md_rdev *rdev; 4368 if (s&1) { 4369 rdev = conf->mirrors[d].replacement; 4370 b = r10_bio->devs[s/2].repl_bio; 4371 } else { 4372 rdev = conf->mirrors[d].rdev; 4373 b = r10_bio->devs[s/2].bio; 4374 } 4375 if (!rdev || test_bit(Faulty, &rdev->flags)) 4376 continue; 4377 atomic_inc(&rdev->nr_pending); 4378 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4379 atomic_inc(&r10_bio->remaining); 4380 b->bi_next = NULL; 4381 generic_make_request(b); 4382 } 4383 end_reshape_request(r10_bio); 4384 } 4385 4386 static void end_reshape(struct r10conf *conf) 4387 { 4388 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4389 return; 4390 4391 spin_lock_irq(&conf->device_lock); 4392 conf->prev = conf->geo; 4393 md_finish_reshape(conf->mddev); 4394 smp_wmb(); 4395 conf->reshape_progress = MaxSector; 4396 spin_unlock_irq(&conf->device_lock); 4397 4398 /* read-ahead size must cover two whole stripes, which is 4399 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4400 */ 4401 if (conf->mddev->queue) { 4402 int stripe = conf->geo.raid_disks * 4403 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4404 stripe /= conf->geo.near_copies; 4405 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4406 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4407 } 4408 conf->fullsync = 0; 4409 } 4410 4411 4412 static int handle_reshape_read_error(struct mddev *mddev, 4413 struct r10bio *r10_bio) 4414 { 4415 /* Use sync reads to get the blocks from somewhere else */ 4416 int sectors = r10_bio->sectors; 4417 struct r10bio r10b; 4418 struct r10conf *conf = mddev->private; 4419 int slot = 0; 4420 int idx = 0; 4421 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4422 4423 r10b.sector = r10_bio->sector; 4424 __raid10_find_phys(&conf->prev, &r10b); 4425 4426 while (sectors) { 4427 int s = sectors; 4428 int success = 0; 4429 int first_slot = slot; 4430 4431 if (s > (PAGE_SIZE >> 9)) 4432 s = PAGE_SIZE >> 9; 4433 4434 while (!success) { 4435 int d = r10b.devs[slot].devnum; 4436 struct md_rdev *rdev = conf->mirrors[d].rdev; 4437 sector_t addr; 4438 if (rdev == NULL || 4439 test_bit(Faulty, &rdev->flags) || 4440 !test_bit(In_sync, &rdev->flags)) 4441 goto failed; 4442 4443 addr = r10b.devs[slot].addr + idx * PAGE_SIZE; 4444 success = sync_page_io(rdev, 4445 addr, 4446 s << 9, 4447 bvec[idx].bv_page, 4448 READ, false); 4449 if (success) 4450 break; 4451 failed: 4452 slot++; 4453 if (slot >= conf->copies) 4454 slot = 0; 4455 if (slot == first_slot) 4456 break; 4457 } 4458 if (!success) { 4459 /* couldn't read this block, must give up */ 4460 set_bit(MD_RECOVERY_INTR, 4461 &mddev->recovery); 4462 return -EIO; 4463 } 4464 sectors -= s; 4465 idx++; 4466 } 4467 return 0; 4468 } 4469 4470 static void end_reshape_write(struct bio *bio, int error) 4471 { 4472 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4473 struct r10bio *r10_bio = bio->bi_private; 4474 struct mddev *mddev = r10_bio->mddev; 4475 struct r10conf *conf = mddev->private; 4476 int d; 4477 int slot; 4478 int repl; 4479 struct md_rdev *rdev = NULL; 4480 4481 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4482 if (repl) 4483 rdev = conf->mirrors[d].replacement; 4484 if (!rdev) { 4485 smp_mb(); 4486 rdev = conf->mirrors[d].rdev; 4487 } 4488 4489 if (!uptodate) { 4490 /* FIXME should record badblock */ 4491 md_error(mddev, rdev); 4492 } 4493 4494 rdev_dec_pending(rdev, mddev); 4495 end_reshape_request(r10_bio); 4496 } 4497 4498 static void end_reshape_request(struct r10bio *r10_bio) 4499 { 4500 if (!atomic_dec_and_test(&r10_bio->remaining)) 4501 return; 4502 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4503 bio_put(r10_bio->master_bio); 4504 put_buf(r10_bio); 4505 } 4506 4507 static void raid10_finish_reshape(struct mddev *mddev) 4508 { 4509 struct r10conf *conf = mddev->private; 4510 4511 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4512 return; 4513 4514 if (mddev->delta_disks > 0) { 4515 sector_t size = raid10_size(mddev, 0, 0); 4516 md_set_array_sectors(mddev, size); 4517 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4518 mddev->recovery_cp = mddev->resync_max_sectors; 4519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4520 } 4521 mddev->resync_max_sectors = size; 4522 set_capacity(mddev->gendisk, mddev->array_sectors); 4523 revalidate_disk(mddev->gendisk); 4524 } else { 4525 int d; 4526 for (d = conf->geo.raid_disks ; 4527 d < conf->geo.raid_disks - mddev->delta_disks; 4528 d++) { 4529 struct md_rdev *rdev = conf->mirrors[d].rdev; 4530 if (rdev) 4531 clear_bit(In_sync, &rdev->flags); 4532 rdev = conf->mirrors[d].replacement; 4533 if (rdev) 4534 clear_bit(In_sync, &rdev->flags); 4535 } 4536 } 4537 mddev->layout = mddev->new_layout; 4538 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4539 mddev->reshape_position = MaxSector; 4540 mddev->delta_disks = 0; 4541 mddev->reshape_backwards = 0; 4542 } 4543 4544 static struct md_personality raid10_personality = 4545 { 4546 .name = "raid10", 4547 .level = 10, 4548 .owner = THIS_MODULE, 4549 .make_request = make_request, 4550 .run = run, 4551 .stop = stop, 4552 .status = status, 4553 .error_handler = error, 4554 .hot_add_disk = raid10_add_disk, 4555 .hot_remove_disk= raid10_remove_disk, 4556 .spare_active = raid10_spare_active, 4557 .sync_request = sync_request, 4558 .quiesce = raid10_quiesce, 4559 .size = raid10_size, 4560 .resize = raid10_resize, 4561 .takeover = raid10_takeover, 4562 .check_reshape = raid10_check_reshape, 4563 .start_reshape = raid10_start_reshape, 4564 .finish_reshape = raid10_finish_reshape, 4565 }; 4566 4567 static int __init raid_init(void) 4568 { 4569 return register_md_personality(&raid10_personality); 4570 } 4571 4572 static void raid_exit(void) 4573 { 4574 unregister_md_personality(&raid10_personality); 4575 } 4576 4577 module_init(raid_init); 4578 module_exit(raid_exit); 4579 MODULE_LICENSE("GPL"); 4580 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4581 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4582 MODULE_ALIAS("md-raid10"); 4583 MODULE_ALIAS("md-level-10"); 4584 4585 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4586