xref: /linux/drivers/md/raid10.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *
42  * The data to be stored is divided into chunks using chunksize.
43  * Each device is divided into far_copies sections.
44  * In each section, chunks are laid out in a style similar to raid0, but
45  * near_copies copies of each chunk is stored (each on a different drive).
46  * The starting device for each section is offset near_copies from the starting
47  * device of the previous section.
48  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49  * drive.
50  * near_copies and far_copies must be at least one, and their product is at most
51  * raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of be very far apart
55  * on disk, there are adjacent stripes.
56  */
57 
58 /*
59  * Number of guaranteed r10bios in case of extreme VM load:
60  */
61 #define	NR_RAID10_BIOS 256
62 
63 /* when we get a read error on a read-only array, we redirect to another
64  * device without failing the first device, or trying to over-write to
65  * correct the read error.  To keep track of bad blocks on a per-bio
66  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67  */
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70  * bad-block marking which must be done from process context.  So we record
71  * the success by setting devs[n].bio to IO_MADE_GOOD
72  */
73 #define IO_MADE_GOOD ((struct bio *)2)
74 
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76 
77 /* When there are this many requests queued to be written by
78  * the raid10 thread, we become 'congested' to provide back-pressure
79  * for writeback.
80  */
81 static int max_queued_requests = 1024;
82 
83 static void allow_barrier(struct r10conf *conf);
84 static void lower_barrier(struct r10conf *conf);
85 static int enough(struct r10conf *conf, int ignore);
86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87 				int *skipped);
88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89 static void end_reshape_write(struct bio *bio, int error);
90 static void end_reshape(struct r10conf *conf);
91 
92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	struct r10conf *conf = data;
95 	int size = offsetof(struct r10bio, devs[conf->copies]);
96 
97 	/* allocate a r10bio with room for raid_disks entries in the
98 	 * bios array */
99 	return kzalloc(size, gfp_flags);
100 }
101 
102 static void r10bio_pool_free(void *r10_bio, void *data)
103 {
104 	kfree(r10_bio);
105 }
106 
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114 
115 /*
116  * When performing a resync, we need to read and compare, so
117  * we need as many pages are there are copies.
118  * When performing a recovery, we need 2 bios, one for read,
119  * one for write (we recover only one drive per r10buf)
120  *
121  */
122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123 {
124 	struct r10conf *conf = data;
125 	struct page *page;
126 	struct r10bio *r10_bio;
127 	struct bio *bio;
128 	int i, j;
129 	int nalloc;
130 
131 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132 	if (!r10_bio)
133 		return NULL;
134 
135 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137 		nalloc = conf->copies; /* resync */
138 	else
139 		nalloc = 2; /* recovery */
140 
141 	/*
142 	 * Allocate bios.
143 	 */
144 	for (j = nalloc ; j-- ; ) {
145 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 		if (!bio)
147 			goto out_free_bio;
148 		r10_bio->devs[j].bio = bio;
149 		if (!conf->have_replacement)
150 			continue;
151 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 		if (!bio)
153 			goto out_free_bio;
154 		r10_bio->devs[j].repl_bio = bio;
155 	}
156 	/*
157 	 * Allocate RESYNC_PAGES data pages and attach them
158 	 * where needed.
159 	 */
160 	for (j = 0 ; j < nalloc; j++) {
161 		struct bio *rbio = r10_bio->devs[j].repl_bio;
162 		bio = r10_bio->devs[j].bio;
163 		for (i = 0; i < RESYNC_PAGES; i++) {
164 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 					       &conf->mddev->recovery)) {
166 				/* we can share bv_page's during recovery
167 				 * and reshape */
168 				struct bio *rbio = r10_bio->devs[0].bio;
169 				page = rbio->bi_io_vec[i].bv_page;
170 				get_page(page);
171 			} else
172 				page = alloc_page(gfp_flags);
173 			if (unlikely(!page))
174 				goto out_free_pages;
175 
176 			bio->bi_io_vec[i].bv_page = page;
177 			if (rbio)
178 				rbio->bi_io_vec[i].bv_page = page;
179 		}
180 	}
181 
182 	return r10_bio;
183 
184 out_free_pages:
185 	for ( ; i > 0 ; i--)
186 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
187 	while (j--)
188 		for (i = 0; i < RESYNC_PAGES ; i++)
189 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190 	j = 0;
191 out_free_bio:
192 	for ( ; j < nalloc; j++) {
193 		if (r10_bio->devs[j].bio)
194 			bio_put(r10_bio->devs[j].bio);
195 		if (r10_bio->devs[j].repl_bio)
196 			bio_put(r10_bio->devs[j].repl_bio);
197 	}
198 	r10bio_pool_free(r10_bio, conf);
199 	return NULL;
200 }
201 
202 static void r10buf_pool_free(void *__r10_bio, void *data)
203 {
204 	int i;
205 	struct r10conf *conf = data;
206 	struct r10bio *r10bio = __r10_bio;
207 	int j;
208 
209 	for (j=0; j < conf->copies; j++) {
210 		struct bio *bio = r10bio->devs[j].bio;
211 		if (bio) {
212 			for (i = 0; i < RESYNC_PAGES; i++) {
213 				safe_put_page(bio->bi_io_vec[i].bv_page);
214 				bio->bi_io_vec[i].bv_page = NULL;
215 			}
216 			bio_put(bio);
217 		}
218 		bio = r10bio->devs[j].repl_bio;
219 		if (bio)
220 			bio_put(bio);
221 	}
222 	r10bio_pool_free(r10bio, conf);
223 }
224 
225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226 {
227 	int i;
228 
229 	for (i = 0; i < conf->copies; i++) {
230 		struct bio **bio = & r10_bio->devs[i].bio;
231 		if (!BIO_SPECIAL(*bio))
232 			bio_put(*bio);
233 		*bio = NULL;
234 		bio = &r10_bio->devs[i].repl_bio;
235 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236 			bio_put(*bio);
237 		*bio = NULL;
238 	}
239 }
240 
241 static void free_r10bio(struct r10bio *r10_bio)
242 {
243 	struct r10conf *conf = r10_bio->mddev->private;
244 
245 	put_all_bios(conf, r10_bio);
246 	mempool_free(r10_bio, conf->r10bio_pool);
247 }
248 
249 static void put_buf(struct r10bio *r10_bio)
250 {
251 	struct r10conf *conf = r10_bio->mddev->private;
252 
253 	mempool_free(r10_bio, conf->r10buf_pool);
254 
255 	lower_barrier(conf);
256 }
257 
258 static void reschedule_retry(struct r10bio *r10_bio)
259 {
260 	unsigned long flags;
261 	struct mddev *mddev = r10_bio->mddev;
262 	struct r10conf *conf = mddev->private;
263 
264 	spin_lock_irqsave(&conf->device_lock, flags);
265 	list_add(&r10_bio->retry_list, &conf->retry_list);
266 	conf->nr_queued ++;
267 	spin_unlock_irqrestore(&conf->device_lock, flags);
268 
269 	/* wake up frozen array... */
270 	wake_up(&conf->wait_barrier);
271 
272 	md_wakeup_thread(mddev->thread);
273 }
274 
275 /*
276  * raid_end_bio_io() is called when we have finished servicing a mirrored
277  * operation and are ready to return a success/failure code to the buffer
278  * cache layer.
279  */
280 static void raid_end_bio_io(struct r10bio *r10_bio)
281 {
282 	struct bio *bio = r10_bio->master_bio;
283 	int done;
284 	struct r10conf *conf = r10_bio->mddev->private;
285 
286 	if (bio->bi_phys_segments) {
287 		unsigned long flags;
288 		spin_lock_irqsave(&conf->device_lock, flags);
289 		bio->bi_phys_segments--;
290 		done = (bio->bi_phys_segments == 0);
291 		spin_unlock_irqrestore(&conf->device_lock, flags);
292 	} else
293 		done = 1;
294 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 	if (done) {
297 		bio_endio(bio, 0);
298 		/*
299 		 * Wake up any possible resync thread that waits for the device
300 		 * to go idle.
301 		 */
302 		allow_barrier(conf);
303 	}
304 	free_r10bio(r10_bio);
305 }
306 
307 /*
308  * Update disk head position estimator based on IRQ completion info.
309  */
310 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311 {
312 	struct r10conf *conf = r10_bio->mddev->private;
313 
314 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 		r10_bio->devs[slot].addr + (r10_bio->sectors);
316 }
317 
318 /*
319  * Find the disk number which triggered given bio
320  */
321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322 			 struct bio *bio, int *slotp, int *replp)
323 {
324 	int slot;
325 	int repl = 0;
326 
327 	for (slot = 0; slot < conf->copies; slot++) {
328 		if (r10_bio->devs[slot].bio == bio)
329 			break;
330 		if (r10_bio->devs[slot].repl_bio == bio) {
331 			repl = 1;
332 			break;
333 		}
334 	}
335 
336 	BUG_ON(slot == conf->copies);
337 	update_head_pos(slot, r10_bio);
338 
339 	if (slotp)
340 		*slotp = slot;
341 	if (replp)
342 		*replp = repl;
343 	return r10_bio->devs[slot].devnum;
344 }
345 
346 static void raid10_end_read_request(struct bio *bio, int error)
347 {
348 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349 	struct r10bio *r10_bio = bio->bi_private;
350 	int slot, dev;
351 	struct md_rdev *rdev;
352 	struct r10conf *conf = r10_bio->mddev->private;
353 
354 
355 	slot = r10_bio->read_slot;
356 	dev = r10_bio->devs[slot].devnum;
357 	rdev = r10_bio->devs[slot].rdev;
358 	/*
359 	 * this branch is our 'one mirror IO has finished' event handler:
360 	 */
361 	update_head_pos(slot, r10_bio);
362 
363 	if (uptodate) {
364 		/*
365 		 * Set R10BIO_Uptodate in our master bio, so that
366 		 * we will return a good error code to the higher
367 		 * levels even if IO on some other mirrored buffer fails.
368 		 *
369 		 * The 'master' represents the composite IO operation to
370 		 * user-side. So if something waits for IO, then it will
371 		 * wait for the 'master' bio.
372 		 */
373 		set_bit(R10BIO_Uptodate, &r10_bio->state);
374 	} else {
375 		/* If all other devices that store this block have
376 		 * failed, we want to return the error upwards rather
377 		 * than fail the last device.  Here we redefine
378 		 * "uptodate" to mean "Don't want to retry"
379 		 */
380 		unsigned long flags;
381 		spin_lock_irqsave(&conf->device_lock, flags);
382 		if (!enough(conf, rdev->raid_disk))
383 			uptodate = 1;
384 		spin_unlock_irqrestore(&conf->device_lock, flags);
385 	}
386 	if (uptodate) {
387 		raid_end_bio_io(r10_bio);
388 		rdev_dec_pending(rdev, conf->mddev);
389 	} else {
390 		/*
391 		 * oops, read error - keep the refcount on the rdev
392 		 */
393 		char b[BDEVNAME_SIZE];
394 		printk_ratelimited(KERN_ERR
395 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
396 				   mdname(conf->mddev),
397 				   bdevname(rdev->bdev, b),
398 				   (unsigned long long)r10_bio->sector);
399 		set_bit(R10BIO_ReadError, &r10_bio->state);
400 		reschedule_retry(r10_bio);
401 	}
402 }
403 
404 static void close_write(struct r10bio *r10_bio)
405 {
406 	/* clear the bitmap if all writes complete successfully */
407 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 			r10_bio->sectors,
409 			!test_bit(R10BIO_Degraded, &r10_bio->state),
410 			0);
411 	md_write_end(r10_bio->mddev);
412 }
413 
414 static void one_write_done(struct r10bio *r10_bio)
415 {
416 	if (atomic_dec_and_test(&r10_bio->remaining)) {
417 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 			reschedule_retry(r10_bio);
419 		else {
420 			close_write(r10_bio);
421 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 				reschedule_retry(r10_bio);
423 			else
424 				raid_end_bio_io(r10_bio);
425 		}
426 	}
427 }
428 
429 static void raid10_end_write_request(struct bio *bio, int error)
430 {
431 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432 	struct r10bio *r10_bio = bio->bi_private;
433 	int dev;
434 	int dec_rdev = 1;
435 	struct r10conf *conf = r10_bio->mddev->private;
436 	int slot, repl;
437 	struct md_rdev *rdev = NULL;
438 
439 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440 
441 	if (repl)
442 		rdev = conf->mirrors[dev].replacement;
443 	if (!rdev) {
444 		smp_rmb();
445 		repl = 0;
446 		rdev = conf->mirrors[dev].rdev;
447 	}
448 	/*
449 	 * this branch is our 'one mirror IO has finished' event handler:
450 	 */
451 	if (!uptodate) {
452 		if (repl)
453 			/* Never record new bad blocks to replacement,
454 			 * just fail it.
455 			 */
456 			md_error(rdev->mddev, rdev);
457 		else {
458 			set_bit(WriteErrorSeen,	&rdev->flags);
459 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 				set_bit(MD_RECOVERY_NEEDED,
461 					&rdev->mddev->recovery);
462 			set_bit(R10BIO_WriteError, &r10_bio->state);
463 			dec_rdev = 0;
464 		}
465 	} else {
466 		/*
467 		 * Set R10BIO_Uptodate in our master bio, so that
468 		 * we will return a good error code for to the higher
469 		 * levels even if IO on some other mirrored buffer fails.
470 		 *
471 		 * The 'master' represents the composite IO operation to
472 		 * user-side. So if something waits for IO, then it will
473 		 * wait for the 'master' bio.
474 		 */
475 		sector_t first_bad;
476 		int bad_sectors;
477 
478 		set_bit(R10BIO_Uptodate, &r10_bio->state);
479 
480 		/* Maybe we can clear some bad blocks. */
481 		if (is_badblock(rdev,
482 				r10_bio->devs[slot].addr,
483 				r10_bio->sectors,
484 				&first_bad, &bad_sectors)) {
485 			bio_put(bio);
486 			if (repl)
487 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488 			else
489 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
490 			dec_rdev = 0;
491 			set_bit(R10BIO_MadeGood, &r10_bio->state);
492 		}
493 	}
494 
495 	/*
496 	 *
497 	 * Let's see if all mirrored write operations have finished
498 	 * already.
499 	 */
500 	one_write_done(r10_bio);
501 	if (dec_rdev)
502 		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
503 }
504 
505 /*
506  * RAID10 layout manager
507  * As well as the chunksize and raid_disks count, there are two
508  * parameters: near_copies and far_copies.
509  * near_copies * far_copies must be <= raid_disks.
510  * Normally one of these will be 1.
511  * If both are 1, we get raid0.
512  * If near_copies == raid_disks, we get raid1.
513  *
514  * Chunks are laid out in raid0 style with near_copies copies of the
515  * first chunk, followed by near_copies copies of the next chunk and
516  * so on.
517  * If far_copies > 1, then after 1/far_copies of the array has been assigned
518  * as described above, we start again with a device offset of near_copies.
519  * So we effectively have another copy of the whole array further down all
520  * the drives, but with blocks on different drives.
521  * With this layout, and block is never stored twice on the one device.
522  *
523  * raid10_find_phys finds the sector offset of a given virtual sector
524  * on each device that it is on.
525  *
526  * raid10_find_virt does the reverse mapping, from a device and a
527  * sector offset to a virtual address
528  */
529 
530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531 {
532 	int n,f;
533 	sector_t sector;
534 	sector_t chunk;
535 	sector_t stripe;
536 	int dev;
537 	int slot = 0;
538 
539 	/* now calculate first sector/dev */
540 	chunk = r10bio->sector >> geo->chunk_shift;
541 	sector = r10bio->sector & geo->chunk_mask;
542 
543 	chunk *= geo->near_copies;
544 	stripe = chunk;
545 	dev = sector_div(stripe, geo->raid_disks);
546 	if (geo->far_offset)
547 		stripe *= geo->far_copies;
548 
549 	sector += stripe << geo->chunk_shift;
550 
551 	/* and calculate all the others */
552 	for (n = 0; n < geo->near_copies; n++) {
553 		int d = dev;
554 		sector_t s = sector;
555 		r10bio->devs[slot].addr = sector;
556 		r10bio->devs[slot].devnum = d;
557 		slot++;
558 
559 		for (f = 1; f < geo->far_copies; f++) {
560 			d += geo->near_copies;
561 			if (d >= geo->raid_disks)
562 				d -= geo->raid_disks;
563 			s += geo->stride;
564 			r10bio->devs[slot].devnum = d;
565 			r10bio->devs[slot].addr = s;
566 			slot++;
567 		}
568 		dev++;
569 		if (dev >= geo->raid_disks) {
570 			dev = 0;
571 			sector += (geo->chunk_mask + 1);
572 		}
573 	}
574 }
575 
576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577 {
578 	struct geom *geo = &conf->geo;
579 
580 	if (conf->reshape_progress != MaxSector &&
581 	    ((r10bio->sector >= conf->reshape_progress) !=
582 	     conf->mddev->reshape_backwards)) {
583 		set_bit(R10BIO_Previous, &r10bio->state);
584 		geo = &conf->prev;
585 	} else
586 		clear_bit(R10BIO_Previous, &r10bio->state);
587 
588 	__raid10_find_phys(geo, r10bio);
589 }
590 
591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592 {
593 	sector_t offset, chunk, vchunk;
594 	/* Never use conf->prev as this is only called during resync
595 	 * or recovery, so reshape isn't happening
596 	 */
597 	struct geom *geo = &conf->geo;
598 
599 	offset = sector & geo->chunk_mask;
600 	if (geo->far_offset) {
601 		int fc;
602 		chunk = sector >> geo->chunk_shift;
603 		fc = sector_div(chunk, geo->far_copies);
604 		dev -= fc * geo->near_copies;
605 		if (dev < 0)
606 			dev += geo->raid_disks;
607 	} else {
608 		while (sector >= geo->stride) {
609 			sector -= geo->stride;
610 			if (dev < geo->near_copies)
611 				dev += geo->raid_disks - geo->near_copies;
612 			else
613 				dev -= geo->near_copies;
614 		}
615 		chunk = sector >> geo->chunk_shift;
616 	}
617 	vchunk = chunk * geo->raid_disks + dev;
618 	sector_div(vchunk, geo->near_copies);
619 	return (vchunk << geo->chunk_shift) + offset;
620 }
621 
622 /**
623  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624  *	@q: request queue
625  *	@bvm: properties of new bio
626  *	@biovec: the request that could be merged to it.
627  *
628  *	Return amount of bytes we can accept at this offset
629  *	This requires checking for end-of-chunk if near_copies != raid_disks,
630  *	and for subordinate merge_bvec_fns if merge_check_needed.
631  */
632 static int raid10_mergeable_bvec(struct request_queue *q,
633 				 struct bvec_merge_data *bvm,
634 				 struct bio_vec *biovec)
635 {
636 	struct mddev *mddev = q->queuedata;
637 	struct r10conf *conf = mddev->private;
638 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639 	int max;
640 	unsigned int chunk_sectors;
641 	unsigned int bio_sectors = bvm->bi_size >> 9;
642 	struct geom *geo = &conf->geo;
643 
644 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645 	if (conf->reshape_progress != MaxSector &&
646 	    ((sector >= conf->reshape_progress) !=
647 	     conf->mddev->reshape_backwards))
648 		geo = &conf->prev;
649 
650 	if (geo->near_copies < geo->raid_disks) {
651 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 					+ bio_sectors)) << 9;
653 		if (max < 0)
654 			/* bio_add cannot handle a negative return */
655 			max = 0;
656 		if (max <= biovec->bv_len && bio_sectors == 0)
657 			return biovec->bv_len;
658 	} else
659 		max = biovec->bv_len;
660 
661 	if (mddev->merge_check_needed) {
662 		struct r10bio r10_bio;
663 		int s;
664 		if (conf->reshape_progress != MaxSector) {
665 			/* Cannot give any guidance during reshape */
666 			if (max <= biovec->bv_len && bio_sectors == 0)
667 				return biovec->bv_len;
668 			return 0;
669 		}
670 		r10_bio.sector = sector;
671 		raid10_find_phys(conf, &r10_bio);
672 		rcu_read_lock();
673 		for (s = 0; s < conf->copies; s++) {
674 			int disk = r10_bio.devs[s].devnum;
675 			struct md_rdev *rdev = rcu_dereference(
676 				conf->mirrors[disk].rdev);
677 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
678 				struct request_queue *q =
679 					bdev_get_queue(rdev->bdev);
680 				if (q->merge_bvec_fn) {
681 					bvm->bi_sector = r10_bio.devs[s].addr
682 						+ rdev->data_offset;
683 					bvm->bi_bdev = rdev->bdev;
684 					max = min(max, q->merge_bvec_fn(
685 							  q, bvm, biovec));
686 				}
687 			}
688 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
689 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
690 				struct request_queue *q =
691 					bdev_get_queue(rdev->bdev);
692 				if (q->merge_bvec_fn) {
693 					bvm->bi_sector = r10_bio.devs[s].addr
694 						+ rdev->data_offset;
695 					bvm->bi_bdev = rdev->bdev;
696 					max = min(max, q->merge_bvec_fn(
697 							  q, bvm, biovec));
698 				}
699 			}
700 		}
701 		rcu_read_unlock();
702 	}
703 	return max;
704 }
705 
706 /*
707  * This routine returns the disk from which the requested read should
708  * be done. There is a per-array 'next expected sequential IO' sector
709  * number - if this matches on the next IO then we use the last disk.
710  * There is also a per-disk 'last know head position' sector that is
711  * maintained from IRQ contexts, both the normal and the resync IO
712  * completion handlers update this position correctly. If there is no
713  * perfect sequential match then we pick the disk whose head is closest.
714  *
715  * If there are 2 mirrors in the same 2 devices, performance degrades
716  * because position is mirror, not device based.
717  *
718  * The rdev for the device selected will have nr_pending incremented.
719  */
720 
721 /*
722  * FIXME: possibly should rethink readbalancing and do it differently
723  * depending on near_copies / far_copies geometry.
724  */
725 static struct md_rdev *read_balance(struct r10conf *conf,
726 				    struct r10bio *r10_bio,
727 				    int *max_sectors)
728 {
729 	const sector_t this_sector = r10_bio->sector;
730 	int disk, slot;
731 	int sectors = r10_bio->sectors;
732 	int best_good_sectors;
733 	sector_t new_distance, best_dist;
734 	struct md_rdev *best_rdev, *rdev = NULL;
735 	int do_balance;
736 	int best_slot;
737 	struct geom *geo = &conf->geo;
738 
739 	raid10_find_phys(conf, r10_bio);
740 	rcu_read_lock();
741 retry:
742 	sectors = r10_bio->sectors;
743 	best_slot = -1;
744 	best_rdev = NULL;
745 	best_dist = MaxSector;
746 	best_good_sectors = 0;
747 	do_balance = 1;
748 	/*
749 	 * Check if we can balance. We can balance on the whole
750 	 * device if no resync is going on (recovery is ok), or below
751 	 * the resync window. We take the first readable disk when
752 	 * above the resync window.
753 	 */
754 	if (conf->mddev->recovery_cp < MaxSector
755 	    && (this_sector + sectors >= conf->next_resync))
756 		do_balance = 0;
757 
758 	for (slot = 0; slot < conf->copies ; slot++) {
759 		sector_t first_bad;
760 		int bad_sectors;
761 		sector_t dev_sector;
762 
763 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
764 			continue;
765 		disk = r10_bio->devs[slot].devnum;
766 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
767 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
768 		    test_bit(Unmerged, &rdev->flags) ||
769 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
770 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
771 		if (rdev == NULL ||
772 		    test_bit(Faulty, &rdev->flags) ||
773 		    test_bit(Unmerged, &rdev->flags))
774 			continue;
775 		if (!test_bit(In_sync, &rdev->flags) &&
776 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
777 			continue;
778 
779 		dev_sector = r10_bio->devs[slot].addr;
780 		if (is_badblock(rdev, dev_sector, sectors,
781 				&first_bad, &bad_sectors)) {
782 			if (best_dist < MaxSector)
783 				/* Already have a better slot */
784 				continue;
785 			if (first_bad <= dev_sector) {
786 				/* Cannot read here.  If this is the
787 				 * 'primary' device, then we must not read
788 				 * beyond 'bad_sectors' from another device.
789 				 */
790 				bad_sectors -= (dev_sector - first_bad);
791 				if (!do_balance && sectors > bad_sectors)
792 					sectors = bad_sectors;
793 				if (best_good_sectors > sectors)
794 					best_good_sectors = sectors;
795 			} else {
796 				sector_t good_sectors =
797 					first_bad - dev_sector;
798 				if (good_sectors > best_good_sectors) {
799 					best_good_sectors = good_sectors;
800 					best_slot = slot;
801 					best_rdev = rdev;
802 				}
803 				if (!do_balance)
804 					/* Must read from here */
805 					break;
806 			}
807 			continue;
808 		} else
809 			best_good_sectors = sectors;
810 
811 		if (!do_balance)
812 			break;
813 
814 		/* This optimisation is debatable, and completely destroys
815 		 * sequential read speed for 'far copies' arrays.  So only
816 		 * keep it for 'near' arrays, and review those later.
817 		 */
818 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
819 			break;
820 
821 		/* for far > 1 always use the lowest address */
822 		if (geo->far_copies > 1)
823 			new_distance = r10_bio->devs[slot].addr;
824 		else
825 			new_distance = abs(r10_bio->devs[slot].addr -
826 					   conf->mirrors[disk].head_position);
827 		if (new_distance < best_dist) {
828 			best_dist = new_distance;
829 			best_slot = slot;
830 			best_rdev = rdev;
831 		}
832 	}
833 	if (slot >= conf->copies) {
834 		slot = best_slot;
835 		rdev = best_rdev;
836 	}
837 
838 	if (slot >= 0) {
839 		atomic_inc(&rdev->nr_pending);
840 		if (test_bit(Faulty, &rdev->flags)) {
841 			/* Cannot risk returning a device that failed
842 			 * before we inc'ed nr_pending
843 			 */
844 			rdev_dec_pending(rdev, conf->mddev);
845 			goto retry;
846 		}
847 		r10_bio->read_slot = slot;
848 	} else
849 		rdev = NULL;
850 	rcu_read_unlock();
851 	*max_sectors = best_good_sectors;
852 
853 	return rdev;
854 }
855 
856 int md_raid10_congested(struct mddev *mddev, int bits)
857 {
858 	struct r10conf *conf = mddev->private;
859 	int i, ret = 0;
860 
861 	if ((bits & (1 << BDI_async_congested)) &&
862 	    conf->pending_count >= max_queued_requests)
863 		return 1;
864 
865 	rcu_read_lock();
866 	for (i = 0;
867 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
868 		     && ret == 0;
869 	     i++) {
870 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
871 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
872 			struct request_queue *q = bdev_get_queue(rdev->bdev);
873 
874 			ret |= bdi_congested(&q->backing_dev_info, bits);
875 		}
876 	}
877 	rcu_read_unlock();
878 	return ret;
879 }
880 EXPORT_SYMBOL_GPL(md_raid10_congested);
881 
882 static int raid10_congested(void *data, int bits)
883 {
884 	struct mddev *mddev = data;
885 
886 	return mddev_congested(mddev, bits) ||
887 		md_raid10_congested(mddev, bits);
888 }
889 
890 static void flush_pending_writes(struct r10conf *conf)
891 {
892 	/* Any writes that have been queued but are awaiting
893 	 * bitmap updates get flushed here.
894 	 */
895 	spin_lock_irq(&conf->device_lock);
896 
897 	if (conf->pending_bio_list.head) {
898 		struct bio *bio;
899 		bio = bio_list_get(&conf->pending_bio_list);
900 		conf->pending_count = 0;
901 		spin_unlock_irq(&conf->device_lock);
902 		/* flush any pending bitmap writes to disk
903 		 * before proceeding w/ I/O */
904 		bitmap_unplug(conf->mddev->bitmap);
905 		wake_up(&conf->wait_barrier);
906 
907 		while (bio) { /* submit pending writes */
908 			struct bio *next = bio->bi_next;
909 			bio->bi_next = NULL;
910 			generic_make_request(bio);
911 			bio = next;
912 		}
913 	} else
914 		spin_unlock_irq(&conf->device_lock);
915 }
916 
917 /* Barriers....
918  * Sometimes we need to suspend IO while we do something else,
919  * either some resync/recovery, or reconfigure the array.
920  * To do this we raise a 'barrier'.
921  * The 'barrier' is a counter that can be raised multiple times
922  * to count how many activities are happening which preclude
923  * normal IO.
924  * We can only raise the barrier if there is no pending IO.
925  * i.e. if nr_pending == 0.
926  * We choose only to raise the barrier if no-one is waiting for the
927  * barrier to go down.  This means that as soon as an IO request
928  * is ready, no other operations which require a barrier will start
929  * until the IO request has had a chance.
930  *
931  * So: regular IO calls 'wait_barrier'.  When that returns there
932  *    is no backgroup IO happening,  It must arrange to call
933  *    allow_barrier when it has finished its IO.
934  * backgroup IO calls must call raise_barrier.  Once that returns
935  *    there is no normal IO happeing.  It must arrange to call
936  *    lower_barrier when the particular background IO completes.
937  */
938 
939 static void raise_barrier(struct r10conf *conf, int force)
940 {
941 	BUG_ON(force && !conf->barrier);
942 	spin_lock_irq(&conf->resync_lock);
943 
944 	/* Wait until no block IO is waiting (unless 'force') */
945 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
946 			    conf->resync_lock, );
947 
948 	/* block any new IO from starting */
949 	conf->barrier++;
950 
951 	/* Now wait for all pending IO to complete */
952 	wait_event_lock_irq(conf->wait_barrier,
953 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
954 			    conf->resync_lock, );
955 
956 	spin_unlock_irq(&conf->resync_lock);
957 }
958 
959 static void lower_barrier(struct r10conf *conf)
960 {
961 	unsigned long flags;
962 	spin_lock_irqsave(&conf->resync_lock, flags);
963 	conf->barrier--;
964 	spin_unlock_irqrestore(&conf->resync_lock, flags);
965 	wake_up(&conf->wait_barrier);
966 }
967 
968 static void wait_barrier(struct r10conf *conf)
969 {
970 	spin_lock_irq(&conf->resync_lock);
971 	if (conf->barrier) {
972 		conf->nr_waiting++;
973 		/* Wait for the barrier to drop.
974 		 * However if there are already pending
975 		 * requests (preventing the barrier from
976 		 * rising completely), and the
977 		 * pre-process bio queue isn't empty,
978 		 * then don't wait, as we need to empty
979 		 * that queue to get the nr_pending
980 		 * count down.
981 		 */
982 		wait_event_lock_irq(conf->wait_barrier,
983 				    !conf->barrier ||
984 				    (conf->nr_pending &&
985 				     current->bio_list &&
986 				     !bio_list_empty(current->bio_list)),
987 				    conf->resync_lock,
988 			);
989 		conf->nr_waiting--;
990 	}
991 	conf->nr_pending++;
992 	spin_unlock_irq(&conf->resync_lock);
993 }
994 
995 static void allow_barrier(struct r10conf *conf)
996 {
997 	unsigned long flags;
998 	spin_lock_irqsave(&conf->resync_lock, flags);
999 	conf->nr_pending--;
1000 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1001 	wake_up(&conf->wait_barrier);
1002 }
1003 
1004 static void freeze_array(struct r10conf *conf)
1005 {
1006 	/* stop syncio and normal IO and wait for everything to
1007 	 * go quiet.
1008 	 * We increment barrier and nr_waiting, and then
1009 	 * wait until nr_pending match nr_queued+1
1010 	 * This is called in the context of one normal IO request
1011 	 * that has failed. Thus any sync request that might be pending
1012 	 * will be blocked by nr_pending, and we need to wait for
1013 	 * pending IO requests to complete or be queued for re-try.
1014 	 * Thus the number queued (nr_queued) plus this request (1)
1015 	 * must match the number of pending IOs (nr_pending) before
1016 	 * we continue.
1017 	 */
1018 	spin_lock_irq(&conf->resync_lock);
1019 	conf->barrier++;
1020 	conf->nr_waiting++;
1021 	wait_event_lock_irq(conf->wait_barrier,
1022 			    conf->nr_pending == conf->nr_queued+1,
1023 			    conf->resync_lock,
1024 			    flush_pending_writes(conf));
1025 
1026 	spin_unlock_irq(&conf->resync_lock);
1027 }
1028 
1029 static void unfreeze_array(struct r10conf *conf)
1030 {
1031 	/* reverse the effect of the freeze */
1032 	spin_lock_irq(&conf->resync_lock);
1033 	conf->barrier--;
1034 	conf->nr_waiting--;
1035 	wake_up(&conf->wait_barrier);
1036 	spin_unlock_irq(&conf->resync_lock);
1037 }
1038 
1039 static sector_t choose_data_offset(struct r10bio *r10_bio,
1040 				   struct md_rdev *rdev)
1041 {
1042 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1043 	    test_bit(R10BIO_Previous, &r10_bio->state))
1044 		return rdev->data_offset;
1045 	else
1046 		return rdev->new_data_offset;
1047 }
1048 
1049 static void make_request(struct mddev *mddev, struct bio * bio)
1050 {
1051 	struct r10conf *conf = mddev->private;
1052 	struct r10bio *r10_bio;
1053 	struct bio *read_bio;
1054 	int i;
1055 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1056 	int chunk_sects = chunk_mask + 1;
1057 	const int rw = bio_data_dir(bio);
1058 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1059 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1060 	unsigned long flags;
1061 	struct md_rdev *blocked_rdev;
1062 	int sectors_handled;
1063 	int max_sectors;
1064 	int sectors;
1065 
1066 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1067 		md_flush_request(mddev, bio);
1068 		return;
1069 	}
1070 
1071 	/* If this request crosses a chunk boundary, we need to
1072 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1073 	 */
1074 	if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1075 		     > chunk_sects
1076 		     && (conf->geo.near_copies < conf->geo.raid_disks
1077 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1078 		struct bio_pair *bp;
1079 		/* Sanity check -- queue functions should prevent this happening */
1080 		if (bio->bi_vcnt != 1 ||
1081 		    bio->bi_idx != 0)
1082 			goto bad_map;
1083 		/* This is a one page bio that upper layers
1084 		 * refuse to split for us, so we need to split it.
1085 		 */
1086 		bp = bio_split(bio,
1087 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1088 
1089 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1090 		 * If the first succeeds but the second blocks due to the resync
1091 		 * thread raising the barrier, we will deadlock because the
1092 		 * IO to the underlying device will be queued in generic_make_request
1093 		 * and will never complete, so will never reduce nr_pending.
1094 		 * So increment nr_waiting here so no new raise_barriers will
1095 		 * succeed, and so the second wait_barrier cannot block.
1096 		 */
1097 		spin_lock_irq(&conf->resync_lock);
1098 		conf->nr_waiting++;
1099 		spin_unlock_irq(&conf->resync_lock);
1100 
1101 		make_request(mddev, &bp->bio1);
1102 		make_request(mddev, &bp->bio2);
1103 
1104 		spin_lock_irq(&conf->resync_lock);
1105 		conf->nr_waiting--;
1106 		wake_up(&conf->wait_barrier);
1107 		spin_unlock_irq(&conf->resync_lock);
1108 
1109 		bio_pair_release(bp);
1110 		return;
1111 	bad_map:
1112 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1113 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1114 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1115 
1116 		bio_io_error(bio);
1117 		return;
1118 	}
1119 
1120 	md_write_start(mddev, bio);
1121 
1122 	/*
1123 	 * Register the new request and wait if the reconstruction
1124 	 * thread has put up a bar for new requests.
1125 	 * Continue immediately if no resync is active currently.
1126 	 */
1127 	wait_barrier(conf);
1128 
1129 	sectors = bio->bi_size >> 9;
1130 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1131 	    bio->bi_sector < conf->reshape_progress &&
1132 	    bio->bi_sector + sectors > conf->reshape_progress) {
1133 		/* IO spans the reshape position.  Need to wait for
1134 		 * reshape to pass
1135 		 */
1136 		allow_barrier(conf);
1137 		wait_event(conf->wait_barrier,
1138 			   conf->reshape_progress <= bio->bi_sector ||
1139 			   conf->reshape_progress >= bio->bi_sector + sectors);
1140 		wait_barrier(conf);
1141 	}
1142 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1143 	    bio_data_dir(bio) == WRITE &&
1144 	    (mddev->reshape_backwards
1145 	     ? (bio->bi_sector < conf->reshape_safe &&
1146 		bio->bi_sector + sectors > conf->reshape_progress)
1147 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1148 		bio->bi_sector < conf->reshape_progress))) {
1149 		/* Need to update reshape_position in metadata */
1150 		mddev->reshape_position = conf->reshape_progress;
1151 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1152 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1153 		md_wakeup_thread(mddev->thread);
1154 		wait_event(mddev->sb_wait,
1155 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1156 
1157 		conf->reshape_safe = mddev->reshape_position;
1158 	}
1159 
1160 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1161 
1162 	r10_bio->master_bio = bio;
1163 	r10_bio->sectors = sectors;
1164 
1165 	r10_bio->mddev = mddev;
1166 	r10_bio->sector = bio->bi_sector;
1167 	r10_bio->state = 0;
1168 
1169 	/* We might need to issue multiple reads to different
1170 	 * devices if there are bad blocks around, so we keep
1171 	 * track of the number of reads in bio->bi_phys_segments.
1172 	 * If this is 0, there is only one r10_bio and no locking
1173 	 * will be needed when the request completes.  If it is
1174 	 * non-zero, then it is the number of not-completed requests.
1175 	 */
1176 	bio->bi_phys_segments = 0;
1177 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1178 
1179 	if (rw == READ) {
1180 		/*
1181 		 * read balancing logic:
1182 		 */
1183 		struct md_rdev *rdev;
1184 		int slot;
1185 
1186 read_again:
1187 		rdev = read_balance(conf, r10_bio, &max_sectors);
1188 		if (!rdev) {
1189 			raid_end_bio_io(r10_bio);
1190 			return;
1191 		}
1192 		slot = r10_bio->read_slot;
1193 
1194 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1195 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1196 			    max_sectors);
1197 
1198 		r10_bio->devs[slot].bio = read_bio;
1199 		r10_bio->devs[slot].rdev = rdev;
1200 
1201 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1202 			choose_data_offset(r10_bio, rdev);
1203 		read_bio->bi_bdev = rdev->bdev;
1204 		read_bio->bi_end_io = raid10_end_read_request;
1205 		read_bio->bi_rw = READ | do_sync;
1206 		read_bio->bi_private = r10_bio;
1207 
1208 		if (max_sectors < r10_bio->sectors) {
1209 			/* Could not read all from this device, so we will
1210 			 * need another r10_bio.
1211 			 */
1212 			sectors_handled = (r10_bio->sectors + max_sectors
1213 					   - bio->bi_sector);
1214 			r10_bio->sectors = max_sectors;
1215 			spin_lock_irq(&conf->device_lock);
1216 			if (bio->bi_phys_segments == 0)
1217 				bio->bi_phys_segments = 2;
1218 			else
1219 				bio->bi_phys_segments++;
1220 			spin_unlock(&conf->device_lock);
1221 			/* Cannot call generic_make_request directly
1222 			 * as that will be queued in __generic_make_request
1223 			 * and subsequent mempool_alloc might block
1224 			 * waiting for it.  so hand bio over to raid10d.
1225 			 */
1226 			reschedule_retry(r10_bio);
1227 
1228 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1229 
1230 			r10_bio->master_bio = bio;
1231 			r10_bio->sectors = ((bio->bi_size >> 9)
1232 					    - sectors_handled);
1233 			r10_bio->state = 0;
1234 			r10_bio->mddev = mddev;
1235 			r10_bio->sector = bio->bi_sector + sectors_handled;
1236 			goto read_again;
1237 		} else
1238 			generic_make_request(read_bio);
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * WRITE:
1244 	 */
1245 	if (conf->pending_count >= max_queued_requests) {
1246 		md_wakeup_thread(mddev->thread);
1247 		wait_event(conf->wait_barrier,
1248 			   conf->pending_count < max_queued_requests);
1249 	}
1250 	/* first select target devices under rcu_lock and
1251 	 * inc refcount on their rdev.  Record them by setting
1252 	 * bios[x] to bio
1253 	 * If there are known/acknowledged bad blocks on any device
1254 	 * on which we have seen a write error, we want to avoid
1255 	 * writing to those blocks.  This potentially requires several
1256 	 * writes to write around the bad blocks.  Each set of writes
1257 	 * gets its own r10_bio with a set of bios attached.  The number
1258 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1259 	 * the read case.
1260 	 */
1261 
1262 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1263 	raid10_find_phys(conf, r10_bio);
1264 retry_write:
1265 	blocked_rdev = NULL;
1266 	rcu_read_lock();
1267 	max_sectors = r10_bio->sectors;
1268 
1269 	for (i = 0;  i < conf->copies; i++) {
1270 		int d = r10_bio->devs[i].devnum;
1271 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1272 		struct md_rdev *rrdev = rcu_dereference(
1273 			conf->mirrors[d].replacement);
1274 		if (rdev == rrdev)
1275 			rrdev = NULL;
1276 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1277 			atomic_inc(&rdev->nr_pending);
1278 			blocked_rdev = rdev;
1279 			break;
1280 		}
1281 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1282 			atomic_inc(&rrdev->nr_pending);
1283 			blocked_rdev = rrdev;
1284 			break;
1285 		}
1286 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1287 			      || test_bit(Unmerged, &rrdev->flags)))
1288 			rrdev = NULL;
1289 
1290 		r10_bio->devs[i].bio = NULL;
1291 		r10_bio->devs[i].repl_bio = NULL;
1292 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
1293 		    test_bit(Unmerged, &rdev->flags)) {
1294 			set_bit(R10BIO_Degraded, &r10_bio->state);
1295 			continue;
1296 		}
1297 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1298 			sector_t first_bad;
1299 			sector_t dev_sector = r10_bio->devs[i].addr;
1300 			int bad_sectors;
1301 			int is_bad;
1302 
1303 			is_bad = is_badblock(rdev, dev_sector,
1304 					     max_sectors,
1305 					     &first_bad, &bad_sectors);
1306 			if (is_bad < 0) {
1307 				/* Mustn't write here until the bad block
1308 				 * is acknowledged
1309 				 */
1310 				atomic_inc(&rdev->nr_pending);
1311 				set_bit(BlockedBadBlocks, &rdev->flags);
1312 				blocked_rdev = rdev;
1313 				break;
1314 			}
1315 			if (is_bad && first_bad <= dev_sector) {
1316 				/* Cannot write here at all */
1317 				bad_sectors -= (dev_sector - first_bad);
1318 				if (bad_sectors < max_sectors)
1319 					/* Mustn't write more than bad_sectors
1320 					 * to other devices yet
1321 					 */
1322 					max_sectors = bad_sectors;
1323 				/* We don't set R10BIO_Degraded as that
1324 				 * only applies if the disk is missing,
1325 				 * so it might be re-added, and we want to
1326 				 * know to recover this chunk.
1327 				 * In this case the device is here, and the
1328 				 * fact that this chunk is not in-sync is
1329 				 * recorded in the bad block log.
1330 				 */
1331 				continue;
1332 			}
1333 			if (is_bad) {
1334 				int good_sectors = first_bad - dev_sector;
1335 				if (good_sectors < max_sectors)
1336 					max_sectors = good_sectors;
1337 			}
1338 		}
1339 		r10_bio->devs[i].bio = bio;
1340 		atomic_inc(&rdev->nr_pending);
1341 		if (rrdev) {
1342 			r10_bio->devs[i].repl_bio = bio;
1343 			atomic_inc(&rrdev->nr_pending);
1344 		}
1345 	}
1346 	rcu_read_unlock();
1347 
1348 	if (unlikely(blocked_rdev)) {
1349 		/* Have to wait for this device to get unblocked, then retry */
1350 		int j;
1351 		int d;
1352 
1353 		for (j = 0; j < i; j++) {
1354 			if (r10_bio->devs[j].bio) {
1355 				d = r10_bio->devs[j].devnum;
1356 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1357 			}
1358 			if (r10_bio->devs[j].repl_bio) {
1359 				struct md_rdev *rdev;
1360 				d = r10_bio->devs[j].devnum;
1361 				rdev = conf->mirrors[d].replacement;
1362 				if (!rdev) {
1363 					/* Race with remove_disk */
1364 					smp_mb();
1365 					rdev = conf->mirrors[d].rdev;
1366 				}
1367 				rdev_dec_pending(rdev, mddev);
1368 			}
1369 		}
1370 		allow_barrier(conf);
1371 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1372 		wait_barrier(conf);
1373 		goto retry_write;
1374 	}
1375 
1376 	if (max_sectors < r10_bio->sectors) {
1377 		/* We are splitting this into multiple parts, so
1378 		 * we need to prepare for allocating another r10_bio.
1379 		 */
1380 		r10_bio->sectors = max_sectors;
1381 		spin_lock_irq(&conf->device_lock);
1382 		if (bio->bi_phys_segments == 0)
1383 			bio->bi_phys_segments = 2;
1384 		else
1385 			bio->bi_phys_segments++;
1386 		spin_unlock_irq(&conf->device_lock);
1387 	}
1388 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1389 
1390 	atomic_set(&r10_bio->remaining, 1);
1391 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1392 
1393 	for (i = 0; i < conf->copies; i++) {
1394 		struct bio *mbio;
1395 		int d = r10_bio->devs[i].devnum;
1396 		if (!r10_bio->devs[i].bio)
1397 			continue;
1398 
1399 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1401 			    max_sectors);
1402 		r10_bio->devs[i].bio = mbio;
1403 
1404 		mbio->bi_sector	= (r10_bio->devs[i].addr+
1405 				   choose_data_offset(r10_bio,
1406 						      conf->mirrors[d].rdev));
1407 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1408 		mbio->bi_end_io	= raid10_end_write_request;
1409 		mbio->bi_rw = WRITE | do_sync | do_fua;
1410 		mbio->bi_private = r10_bio;
1411 
1412 		atomic_inc(&r10_bio->remaining);
1413 		spin_lock_irqsave(&conf->device_lock, flags);
1414 		bio_list_add(&conf->pending_bio_list, mbio);
1415 		conf->pending_count++;
1416 		spin_unlock_irqrestore(&conf->device_lock, flags);
1417 		if (!mddev_check_plugged(mddev))
1418 			md_wakeup_thread(mddev->thread);
1419 
1420 		if (!r10_bio->devs[i].repl_bio)
1421 			continue;
1422 
1423 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1424 		md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1425 			    max_sectors);
1426 		r10_bio->devs[i].repl_bio = mbio;
1427 
1428 		/* We are actively writing to the original device
1429 		 * so it cannot disappear, so the replacement cannot
1430 		 * become NULL here
1431 		 */
1432 		mbio->bi_sector	= (r10_bio->devs[i].addr +
1433 				   choose_data_offset(
1434 					   r10_bio,
1435 					   conf->mirrors[d].replacement));
1436 		mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1437 		mbio->bi_end_io	= raid10_end_write_request;
1438 		mbio->bi_rw = WRITE | do_sync | do_fua;
1439 		mbio->bi_private = r10_bio;
1440 
1441 		atomic_inc(&r10_bio->remaining);
1442 		spin_lock_irqsave(&conf->device_lock, flags);
1443 		bio_list_add(&conf->pending_bio_list, mbio);
1444 		conf->pending_count++;
1445 		spin_unlock_irqrestore(&conf->device_lock, flags);
1446 		if (!mddev_check_plugged(mddev))
1447 			md_wakeup_thread(mddev->thread);
1448 	}
1449 
1450 	/* Don't remove the bias on 'remaining' (one_write_done) until
1451 	 * after checking if we need to go around again.
1452 	 */
1453 
1454 	if (sectors_handled < (bio->bi_size >> 9)) {
1455 		one_write_done(r10_bio);
1456 		/* We need another r10_bio.  It has already been counted
1457 		 * in bio->bi_phys_segments.
1458 		 */
1459 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1460 
1461 		r10_bio->master_bio = bio;
1462 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1463 
1464 		r10_bio->mddev = mddev;
1465 		r10_bio->sector = bio->bi_sector + sectors_handled;
1466 		r10_bio->state = 0;
1467 		goto retry_write;
1468 	}
1469 	one_write_done(r10_bio);
1470 
1471 	/* In case raid10d snuck in to freeze_array */
1472 	wake_up(&conf->wait_barrier);
1473 }
1474 
1475 static void status(struct seq_file *seq, struct mddev *mddev)
1476 {
1477 	struct r10conf *conf = mddev->private;
1478 	int i;
1479 
1480 	if (conf->geo.near_copies < conf->geo.raid_disks)
1481 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1482 	if (conf->geo.near_copies > 1)
1483 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1484 	if (conf->geo.far_copies > 1) {
1485 		if (conf->geo.far_offset)
1486 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1487 		else
1488 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1489 	}
1490 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1491 					conf->geo.raid_disks - mddev->degraded);
1492 	for (i = 0; i < conf->geo.raid_disks; i++)
1493 		seq_printf(seq, "%s",
1494 			      conf->mirrors[i].rdev &&
1495 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1496 	seq_printf(seq, "]");
1497 }
1498 
1499 /* check if there are enough drives for
1500  * every block to appear on atleast one.
1501  * Don't consider the device numbered 'ignore'
1502  * as we might be about to remove it.
1503  */
1504 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1505 {
1506 	int first = 0;
1507 
1508 	do {
1509 		int n = conf->copies;
1510 		int cnt = 0;
1511 		while (n--) {
1512 			if (conf->mirrors[first].rdev &&
1513 			    first != ignore)
1514 				cnt++;
1515 			first = (first+1) % geo->raid_disks;
1516 		}
1517 		if (cnt == 0)
1518 			return 0;
1519 	} while (first != 0);
1520 	return 1;
1521 }
1522 
1523 static int enough(struct r10conf *conf, int ignore)
1524 {
1525 	return _enough(conf, &conf->geo, ignore) &&
1526 		_enough(conf, &conf->prev, ignore);
1527 }
1528 
1529 static void error(struct mddev *mddev, struct md_rdev *rdev)
1530 {
1531 	char b[BDEVNAME_SIZE];
1532 	struct r10conf *conf = mddev->private;
1533 
1534 	/*
1535 	 * If it is not operational, then we have already marked it as dead
1536 	 * else if it is the last working disks, ignore the error, let the
1537 	 * next level up know.
1538 	 * else mark the drive as failed
1539 	 */
1540 	if (test_bit(In_sync, &rdev->flags)
1541 	    && !enough(conf, rdev->raid_disk))
1542 		/*
1543 		 * Don't fail the drive, just return an IO error.
1544 		 */
1545 		return;
1546 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1547 		unsigned long flags;
1548 		spin_lock_irqsave(&conf->device_lock, flags);
1549 		mddev->degraded++;
1550 		spin_unlock_irqrestore(&conf->device_lock, flags);
1551 		/*
1552 		 * if recovery is running, make sure it aborts.
1553 		 */
1554 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1555 	}
1556 	set_bit(Blocked, &rdev->flags);
1557 	set_bit(Faulty, &rdev->flags);
1558 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1559 	printk(KERN_ALERT
1560 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1561 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1562 	       mdname(mddev), bdevname(rdev->bdev, b),
1563 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1564 }
1565 
1566 static void print_conf(struct r10conf *conf)
1567 {
1568 	int i;
1569 	struct raid10_info *tmp;
1570 
1571 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1572 	if (!conf) {
1573 		printk(KERN_DEBUG "(!conf)\n");
1574 		return;
1575 	}
1576 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1577 		conf->geo.raid_disks);
1578 
1579 	for (i = 0; i < conf->geo.raid_disks; i++) {
1580 		char b[BDEVNAME_SIZE];
1581 		tmp = conf->mirrors + i;
1582 		if (tmp->rdev)
1583 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1584 				i, !test_bit(In_sync, &tmp->rdev->flags),
1585 			        !test_bit(Faulty, &tmp->rdev->flags),
1586 				bdevname(tmp->rdev->bdev,b));
1587 	}
1588 }
1589 
1590 static void close_sync(struct r10conf *conf)
1591 {
1592 	wait_barrier(conf);
1593 	allow_barrier(conf);
1594 
1595 	mempool_destroy(conf->r10buf_pool);
1596 	conf->r10buf_pool = NULL;
1597 }
1598 
1599 static int raid10_spare_active(struct mddev *mddev)
1600 {
1601 	int i;
1602 	struct r10conf *conf = mddev->private;
1603 	struct raid10_info *tmp;
1604 	int count = 0;
1605 	unsigned long flags;
1606 
1607 	/*
1608 	 * Find all non-in_sync disks within the RAID10 configuration
1609 	 * and mark them in_sync
1610 	 */
1611 	for (i = 0; i < conf->geo.raid_disks; i++) {
1612 		tmp = conf->mirrors + i;
1613 		if (tmp->replacement
1614 		    && tmp->replacement->recovery_offset == MaxSector
1615 		    && !test_bit(Faulty, &tmp->replacement->flags)
1616 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1617 			/* Replacement has just become active */
1618 			if (!tmp->rdev
1619 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1620 				count++;
1621 			if (tmp->rdev) {
1622 				/* Replaced device not technically faulty,
1623 				 * but we need to be sure it gets removed
1624 				 * and never re-added.
1625 				 */
1626 				set_bit(Faulty, &tmp->rdev->flags);
1627 				sysfs_notify_dirent_safe(
1628 					tmp->rdev->sysfs_state);
1629 			}
1630 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1631 		} else if (tmp->rdev
1632 			   && !test_bit(Faulty, &tmp->rdev->flags)
1633 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1634 			count++;
1635 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1636 		}
1637 	}
1638 	spin_lock_irqsave(&conf->device_lock, flags);
1639 	mddev->degraded -= count;
1640 	spin_unlock_irqrestore(&conf->device_lock, flags);
1641 
1642 	print_conf(conf);
1643 	return count;
1644 }
1645 
1646 
1647 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1648 {
1649 	struct r10conf *conf = mddev->private;
1650 	int err = -EEXIST;
1651 	int mirror;
1652 	int first = 0;
1653 	int last = conf->geo.raid_disks - 1;
1654 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1655 
1656 	if (mddev->recovery_cp < MaxSector)
1657 		/* only hot-add to in-sync arrays, as recovery is
1658 		 * very different from resync
1659 		 */
1660 		return -EBUSY;
1661 	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1662 		return -EINVAL;
1663 
1664 	if (rdev->raid_disk >= 0)
1665 		first = last = rdev->raid_disk;
1666 
1667 	if (q->merge_bvec_fn) {
1668 		set_bit(Unmerged, &rdev->flags);
1669 		mddev->merge_check_needed = 1;
1670 	}
1671 
1672 	if (rdev->saved_raid_disk >= first &&
1673 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1674 		mirror = rdev->saved_raid_disk;
1675 	else
1676 		mirror = first;
1677 	for ( ; mirror <= last ; mirror++) {
1678 		struct raid10_info *p = &conf->mirrors[mirror];
1679 		if (p->recovery_disabled == mddev->recovery_disabled)
1680 			continue;
1681 		if (p->rdev) {
1682 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1683 			    p->replacement != NULL)
1684 				continue;
1685 			clear_bit(In_sync, &rdev->flags);
1686 			set_bit(Replacement, &rdev->flags);
1687 			rdev->raid_disk = mirror;
1688 			err = 0;
1689 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1690 					  rdev->data_offset << 9);
1691 			conf->fullsync = 1;
1692 			rcu_assign_pointer(p->replacement, rdev);
1693 			break;
1694 		}
1695 
1696 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1697 				  rdev->data_offset << 9);
1698 
1699 		p->head_position = 0;
1700 		p->recovery_disabled = mddev->recovery_disabled - 1;
1701 		rdev->raid_disk = mirror;
1702 		err = 0;
1703 		if (rdev->saved_raid_disk != mirror)
1704 			conf->fullsync = 1;
1705 		rcu_assign_pointer(p->rdev, rdev);
1706 		break;
1707 	}
1708 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1709 		/* Some requests might not have seen this new
1710 		 * merge_bvec_fn.  We must wait for them to complete
1711 		 * before merging the device fully.
1712 		 * First we make sure any code which has tested
1713 		 * our function has submitted the request, then
1714 		 * we wait for all outstanding requests to complete.
1715 		 */
1716 		synchronize_sched();
1717 		raise_barrier(conf, 0);
1718 		lower_barrier(conf);
1719 		clear_bit(Unmerged, &rdev->flags);
1720 	}
1721 	md_integrity_add_rdev(rdev, mddev);
1722 	print_conf(conf);
1723 	return err;
1724 }
1725 
1726 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1727 {
1728 	struct r10conf *conf = mddev->private;
1729 	int err = 0;
1730 	int number = rdev->raid_disk;
1731 	struct md_rdev **rdevp;
1732 	struct raid10_info *p = conf->mirrors + number;
1733 
1734 	print_conf(conf);
1735 	if (rdev == p->rdev)
1736 		rdevp = &p->rdev;
1737 	else if (rdev == p->replacement)
1738 		rdevp = &p->replacement;
1739 	else
1740 		return 0;
1741 
1742 	if (test_bit(In_sync, &rdev->flags) ||
1743 	    atomic_read(&rdev->nr_pending)) {
1744 		err = -EBUSY;
1745 		goto abort;
1746 	}
1747 	/* Only remove faulty devices if recovery
1748 	 * is not possible.
1749 	 */
1750 	if (!test_bit(Faulty, &rdev->flags) &&
1751 	    mddev->recovery_disabled != p->recovery_disabled &&
1752 	    (!p->replacement || p->replacement == rdev) &&
1753 	    number < conf->geo.raid_disks &&
1754 	    enough(conf, -1)) {
1755 		err = -EBUSY;
1756 		goto abort;
1757 	}
1758 	*rdevp = NULL;
1759 	synchronize_rcu();
1760 	if (atomic_read(&rdev->nr_pending)) {
1761 		/* lost the race, try later */
1762 		err = -EBUSY;
1763 		*rdevp = rdev;
1764 		goto abort;
1765 	} else if (p->replacement) {
1766 		/* We must have just cleared 'rdev' */
1767 		p->rdev = p->replacement;
1768 		clear_bit(Replacement, &p->replacement->flags);
1769 		smp_mb(); /* Make sure other CPUs may see both as identical
1770 			   * but will never see neither -- if they are careful.
1771 			   */
1772 		p->replacement = NULL;
1773 		clear_bit(WantReplacement, &rdev->flags);
1774 	} else
1775 		/* We might have just remove the Replacement as faulty
1776 		 * Clear the flag just in case
1777 		 */
1778 		clear_bit(WantReplacement, &rdev->flags);
1779 
1780 	err = md_integrity_register(mddev);
1781 
1782 abort:
1783 
1784 	print_conf(conf);
1785 	return err;
1786 }
1787 
1788 
1789 static void end_sync_read(struct bio *bio, int error)
1790 {
1791 	struct r10bio *r10_bio = bio->bi_private;
1792 	struct r10conf *conf = r10_bio->mddev->private;
1793 	int d;
1794 
1795 	if (bio == r10_bio->master_bio) {
1796 		/* this is a reshape read */
1797 		d = r10_bio->read_slot; /* really the read dev */
1798 	} else
1799 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1800 
1801 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1802 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1803 	else
1804 		/* The write handler will notice the lack of
1805 		 * R10BIO_Uptodate and record any errors etc
1806 		 */
1807 		atomic_add(r10_bio->sectors,
1808 			   &conf->mirrors[d].rdev->corrected_errors);
1809 
1810 	/* for reconstruct, we always reschedule after a read.
1811 	 * for resync, only after all reads
1812 	 */
1813 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1814 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1815 	    atomic_dec_and_test(&r10_bio->remaining)) {
1816 		/* we have read all the blocks,
1817 		 * do the comparison in process context in raid10d
1818 		 */
1819 		reschedule_retry(r10_bio);
1820 	}
1821 }
1822 
1823 static void end_sync_request(struct r10bio *r10_bio)
1824 {
1825 	struct mddev *mddev = r10_bio->mddev;
1826 
1827 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1828 		if (r10_bio->master_bio == NULL) {
1829 			/* the primary of several recovery bios */
1830 			sector_t s = r10_bio->sectors;
1831 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1832 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1833 				reschedule_retry(r10_bio);
1834 			else
1835 				put_buf(r10_bio);
1836 			md_done_sync(mddev, s, 1);
1837 			break;
1838 		} else {
1839 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1840 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1841 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1842 				reschedule_retry(r10_bio);
1843 			else
1844 				put_buf(r10_bio);
1845 			r10_bio = r10_bio2;
1846 		}
1847 	}
1848 }
1849 
1850 static void end_sync_write(struct bio *bio, int error)
1851 {
1852 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1853 	struct r10bio *r10_bio = bio->bi_private;
1854 	struct mddev *mddev = r10_bio->mddev;
1855 	struct r10conf *conf = mddev->private;
1856 	int d;
1857 	sector_t first_bad;
1858 	int bad_sectors;
1859 	int slot;
1860 	int repl;
1861 	struct md_rdev *rdev = NULL;
1862 
1863 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1864 	if (repl)
1865 		rdev = conf->mirrors[d].replacement;
1866 	else
1867 		rdev = conf->mirrors[d].rdev;
1868 
1869 	if (!uptodate) {
1870 		if (repl)
1871 			md_error(mddev, rdev);
1872 		else {
1873 			set_bit(WriteErrorSeen, &rdev->flags);
1874 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1875 				set_bit(MD_RECOVERY_NEEDED,
1876 					&rdev->mddev->recovery);
1877 			set_bit(R10BIO_WriteError, &r10_bio->state);
1878 		}
1879 	} else if (is_badblock(rdev,
1880 			     r10_bio->devs[slot].addr,
1881 			     r10_bio->sectors,
1882 			     &first_bad, &bad_sectors))
1883 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1884 
1885 	rdev_dec_pending(rdev, mddev);
1886 
1887 	end_sync_request(r10_bio);
1888 }
1889 
1890 /*
1891  * Note: sync and recover and handled very differently for raid10
1892  * This code is for resync.
1893  * For resync, we read through virtual addresses and read all blocks.
1894  * If there is any error, we schedule a write.  The lowest numbered
1895  * drive is authoritative.
1896  * However requests come for physical address, so we need to map.
1897  * For every physical address there are raid_disks/copies virtual addresses,
1898  * which is always are least one, but is not necessarly an integer.
1899  * This means that a physical address can span multiple chunks, so we may
1900  * have to submit multiple io requests for a single sync request.
1901  */
1902 /*
1903  * We check if all blocks are in-sync and only write to blocks that
1904  * aren't in sync
1905  */
1906 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1907 {
1908 	struct r10conf *conf = mddev->private;
1909 	int i, first;
1910 	struct bio *tbio, *fbio;
1911 	int vcnt;
1912 
1913 	atomic_set(&r10_bio->remaining, 1);
1914 
1915 	/* find the first device with a block */
1916 	for (i=0; i<conf->copies; i++)
1917 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1918 			break;
1919 
1920 	if (i == conf->copies)
1921 		goto done;
1922 
1923 	first = i;
1924 	fbio = r10_bio->devs[i].bio;
1925 
1926 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1927 	/* now find blocks with errors */
1928 	for (i=0 ; i < conf->copies ; i++) {
1929 		int  j, d;
1930 
1931 		tbio = r10_bio->devs[i].bio;
1932 
1933 		if (tbio->bi_end_io != end_sync_read)
1934 			continue;
1935 		if (i == first)
1936 			continue;
1937 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1938 			/* We know that the bi_io_vec layout is the same for
1939 			 * both 'first' and 'i', so we just compare them.
1940 			 * All vec entries are PAGE_SIZE;
1941 			 */
1942 			for (j = 0; j < vcnt; j++)
1943 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1944 					   page_address(tbio->bi_io_vec[j].bv_page),
1945 					   fbio->bi_io_vec[j].bv_len))
1946 					break;
1947 			if (j == vcnt)
1948 				continue;
1949 			mddev->resync_mismatches += r10_bio->sectors;
1950 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1951 				/* Don't fix anything. */
1952 				continue;
1953 		}
1954 		/* Ok, we need to write this bio, either to correct an
1955 		 * inconsistency or to correct an unreadable block.
1956 		 * First we need to fixup bv_offset, bv_len and
1957 		 * bi_vecs, as the read request might have corrupted these
1958 		 */
1959 		tbio->bi_vcnt = vcnt;
1960 		tbio->bi_size = r10_bio->sectors << 9;
1961 		tbio->bi_idx = 0;
1962 		tbio->bi_phys_segments = 0;
1963 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1964 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1965 		tbio->bi_next = NULL;
1966 		tbio->bi_rw = WRITE;
1967 		tbio->bi_private = r10_bio;
1968 		tbio->bi_sector = r10_bio->devs[i].addr;
1969 
1970 		for (j=0; j < vcnt ; j++) {
1971 			tbio->bi_io_vec[j].bv_offset = 0;
1972 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1973 
1974 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1975 			       page_address(fbio->bi_io_vec[j].bv_page),
1976 			       PAGE_SIZE);
1977 		}
1978 		tbio->bi_end_io = end_sync_write;
1979 
1980 		d = r10_bio->devs[i].devnum;
1981 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1982 		atomic_inc(&r10_bio->remaining);
1983 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1984 
1985 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1986 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1987 		generic_make_request(tbio);
1988 	}
1989 
1990 	/* Now write out to any replacement devices
1991 	 * that are active
1992 	 */
1993 	for (i = 0; i < conf->copies; i++) {
1994 		int j, d;
1995 
1996 		tbio = r10_bio->devs[i].repl_bio;
1997 		if (!tbio || !tbio->bi_end_io)
1998 			continue;
1999 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2000 		    && r10_bio->devs[i].bio != fbio)
2001 			for (j = 0; j < vcnt; j++)
2002 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2003 				       page_address(fbio->bi_io_vec[j].bv_page),
2004 				       PAGE_SIZE);
2005 		d = r10_bio->devs[i].devnum;
2006 		atomic_inc(&r10_bio->remaining);
2007 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2008 			     tbio->bi_size >> 9);
2009 		generic_make_request(tbio);
2010 	}
2011 
2012 done:
2013 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2014 		md_done_sync(mddev, r10_bio->sectors, 1);
2015 		put_buf(r10_bio);
2016 	}
2017 }
2018 
2019 /*
2020  * Now for the recovery code.
2021  * Recovery happens across physical sectors.
2022  * We recover all non-is_sync drives by finding the virtual address of
2023  * each, and then choose a working drive that also has that virt address.
2024  * There is a separate r10_bio for each non-in_sync drive.
2025  * Only the first two slots are in use. The first for reading,
2026  * The second for writing.
2027  *
2028  */
2029 static void fix_recovery_read_error(struct r10bio *r10_bio)
2030 {
2031 	/* We got a read error during recovery.
2032 	 * We repeat the read in smaller page-sized sections.
2033 	 * If a read succeeds, write it to the new device or record
2034 	 * a bad block if we cannot.
2035 	 * If a read fails, record a bad block on both old and
2036 	 * new devices.
2037 	 */
2038 	struct mddev *mddev = r10_bio->mddev;
2039 	struct r10conf *conf = mddev->private;
2040 	struct bio *bio = r10_bio->devs[0].bio;
2041 	sector_t sect = 0;
2042 	int sectors = r10_bio->sectors;
2043 	int idx = 0;
2044 	int dr = r10_bio->devs[0].devnum;
2045 	int dw = r10_bio->devs[1].devnum;
2046 
2047 	while (sectors) {
2048 		int s = sectors;
2049 		struct md_rdev *rdev;
2050 		sector_t addr;
2051 		int ok;
2052 
2053 		if (s > (PAGE_SIZE>>9))
2054 			s = PAGE_SIZE >> 9;
2055 
2056 		rdev = conf->mirrors[dr].rdev;
2057 		addr = r10_bio->devs[0].addr + sect,
2058 		ok = sync_page_io(rdev,
2059 				  addr,
2060 				  s << 9,
2061 				  bio->bi_io_vec[idx].bv_page,
2062 				  READ, false);
2063 		if (ok) {
2064 			rdev = conf->mirrors[dw].rdev;
2065 			addr = r10_bio->devs[1].addr + sect;
2066 			ok = sync_page_io(rdev,
2067 					  addr,
2068 					  s << 9,
2069 					  bio->bi_io_vec[idx].bv_page,
2070 					  WRITE, false);
2071 			if (!ok) {
2072 				set_bit(WriteErrorSeen, &rdev->flags);
2073 				if (!test_and_set_bit(WantReplacement,
2074 						      &rdev->flags))
2075 					set_bit(MD_RECOVERY_NEEDED,
2076 						&rdev->mddev->recovery);
2077 			}
2078 		}
2079 		if (!ok) {
2080 			/* We don't worry if we cannot set a bad block -
2081 			 * it really is bad so there is no loss in not
2082 			 * recording it yet
2083 			 */
2084 			rdev_set_badblocks(rdev, addr, s, 0);
2085 
2086 			if (rdev != conf->mirrors[dw].rdev) {
2087 				/* need bad block on destination too */
2088 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2089 				addr = r10_bio->devs[1].addr + sect;
2090 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2091 				if (!ok) {
2092 					/* just abort the recovery */
2093 					printk(KERN_NOTICE
2094 					       "md/raid10:%s: recovery aborted"
2095 					       " due to read error\n",
2096 					       mdname(mddev));
2097 
2098 					conf->mirrors[dw].recovery_disabled
2099 						= mddev->recovery_disabled;
2100 					set_bit(MD_RECOVERY_INTR,
2101 						&mddev->recovery);
2102 					break;
2103 				}
2104 			}
2105 		}
2106 
2107 		sectors -= s;
2108 		sect += s;
2109 		idx++;
2110 	}
2111 }
2112 
2113 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2114 {
2115 	struct r10conf *conf = mddev->private;
2116 	int d;
2117 	struct bio *wbio, *wbio2;
2118 
2119 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2120 		fix_recovery_read_error(r10_bio);
2121 		end_sync_request(r10_bio);
2122 		return;
2123 	}
2124 
2125 	/*
2126 	 * share the pages with the first bio
2127 	 * and submit the write request
2128 	 */
2129 	d = r10_bio->devs[1].devnum;
2130 	wbio = r10_bio->devs[1].bio;
2131 	wbio2 = r10_bio->devs[1].repl_bio;
2132 	if (wbio->bi_end_io) {
2133 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2134 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2135 		generic_make_request(wbio);
2136 	}
2137 	if (wbio2 && wbio2->bi_end_io) {
2138 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2139 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2140 			     wbio2->bi_size >> 9);
2141 		generic_make_request(wbio2);
2142 	}
2143 }
2144 
2145 
2146 /*
2147  * Used by fix_read_error() to decay the per rdev read_errors.
2148  * We halve the read error count for every hour that has elapsed
2149  * since the last recorded read error.
2150  *
2151  */
2152 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2153 {
2154 	struct timespec cur_time_mon;
2155 	unsigned long hours_since_last;
2156 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2157 
2158 	ktime_get_ts(&cur_time_mon);
2159 
2160 	if (rdev->last_read_error.tv_sec == 0 &&
2161 	    rdev->last_read_error.tv_nsec == 0) {
2162 		/* first time we've seen a read error */
2163 		rdev->last_read_error = cur_time_mon;
2164 		return;
2165 	}
2166 
2167 	hours_since_last = (cur_time_mon.tv_sec -
2168 			    rdev->last_read_error.tv_sec) / 3600;
2169 
2170 	rdev->last_read_error = cur_time_mon;
2171 
2172 	/*
2173 	 * if hours_since_last is > the number of bits in read_errors
2174 	 * just set read errors to 0. We do this to avoid
2175 	 * overflowing the shift of read_errors by hours_since_last.
2176 	 */
2177 	if (hours_since_last >= 8 * sizeof(read_errors))
2178 		atomic_set(&rdev->read_errors, 0);
2179 	else
2180 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2181 }
2182 
2183 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2184 			    int sectors, struct page *page, int rw)
2185 {
2186 	sector_t first_bad;
2187 	int bad_sectors;
2188 
2189 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2190 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2191 		return -1;
2192 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2193 		/* success */
2194 		return 1;
2195 	if (rw == WRITE) {
2196 		set_bit(WriteErrorSeen, &rdev->flags);
2197 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2198 			set_bit(MD_RECOVERY_NEEDED,
2199 				&rdev->mddev->recovery);
2200 	}
2201 	/* need to record an error - either for the block or the device */
2202 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2203 		md_error(rdev->mddev, rdev);
2204 	return 0;
2205 }
2206 
2207 /*
2208  * This is a kernel thread which:
2209  *
2210  *	1.	Retries failed read operations on working mirrors.
2211  *	2.	Updates the raid superblock when problems encounter.
2212  *	3.	Performs writes following reads for array synchronising.
2213  */
2214 
2215 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2216 {
2217 	int sect = 0; /* Offset from r10_bio->sector */
2218 	int sectors = r10_bio->sectors;
2219 	struct md_rdev*rdev;
2220 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2221 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2222 
2223 	/* still own a reference to this rdev, so it cannot
2224 	 * have been cleared recently.
2225 	 */
2226 	rdev = conf->mirrors[d].rdev;
2227 
2228 	if (test_bit(Faulty, &rdev->flags))
2229 		/* drive has already been failed, just ignore any
2230 		   more fix_read_error() attempts */
2231 		return;
2232 
2233 	check_decay_read_errors(mddev, rdev);
2234 	atomic_inc(&rdev->read_errors);
2235 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2236 		char b[BDEVNAME_SIZE];
2237 		bdevname(rdev->bdev, b);
2238 
2239 		printk(KERN_NOTICE
2240 		       "md/raid10:%s: %s: Raid device exceeded "
2241 		       "read_error threshold [cur %d:max %d]\n",
2242 		       mdname(mddev), b,
2243 		       atomic_read(&rdev->read_errors), max_read_errors);
2244 		printk(KERN_NOTICE
2245 		       "md/raid10:%s: %s: Failing raid device\n",
2246 		       mdname(mddev), b);
2247 		md_error(mddev, conf->mirrors[d].rdev);
2248 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2249 		return;
2250 	}
2251 
2252 	while(sectors) {
2253 		int s = sectors;
2254 		int sl = r10_bio->read_slot;
2255 		int success = 0;
2256 		int start;
2257 
2258 		if (s > (PAGE_SIZE>>9))
2259 			s = PAGE_SIZE >> 9;
2260 
2261 		rcu_read_lock();
2262 		do {
2263 			sector_t first_bad;
2264 			int bad_sectors;
2265 
2266 			d = r10_bio->devs[sl].devnum;
2267 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2268 			if (rdev &&
2269 			    !test_bit(Unmerged, &rdev->flags) &&
2270 			    test_bit(In_sync, &rdev->flags) &&
2271 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2272 					&first_bad, &bad_sectors) == 0) {
2273 				atomic_inc(&rdev->nr_pending);
2274 				rcu_read_unlock();
2275 				success = sync_page_io(rdev,
2276 						       r10_bio->devs[sl].addr +
2277 						       sect,
2278 						       s<<9,
2279 						       conf->tmppage, READ, false);
2280 				rdev_dec_pending(rdev, mddev);
2281 				rcu_read_lock();
2282 				if (success)
2283 					break;
2284 			}
2285 			sl++;
2286 			if (sl == conf->copies)
2287 				sl = 0;
2288 		} while (!success && sl != r10_bio->read_slot);
2289 		rcu_read_unlock();
2290 
2291 		if (!success) {
2292 			/* Cannot read from anywhere, just mark the block
2293 			 * as bad on the first device to discourage future
2294 			 * reads.
2295 			 */
2296 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2297 			rdev = conf->mirrors[dn].rdev;
2298 
2299 			if (!rdev_set_badblocks(
2300 				    rdev,
2301 				    r10_bio->devs[r10_bio->read_slot].addr
2302 				    + sect,
2303 				    s, 0)) {
2304 				md_error(mddev, rdev);
2305 				r10_bio->devs[r10_bio->read_slot].bio
2306 					= IO_BLOCKED;
2307 			}
2308 			break;
2309 		}
2310 
2311 		start = sl;
2312 		/* write it back and re-read */
2313 		rcu_read_lock();
2314 		while (sl != r10_bio->read_slot) {
2315 			char b[BDEVNAME_SIZE];
2316 
2317 			if (sl==0)
2318 				sl = conf->copies;
2319 			sl--;
2320 			d = r10_bio->devs[sl].devnum;
2321 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2322 			if (!rdev ||
2323 			    test_bit(Unmerged, &rdev->flags) ||
2324 			    !test_bit(In_sync, &rdev->flags))
2325 				continue;
2326 
2327 			atomic_inc(&rdev->nr_pending);
2328 			rcu_read_unlock();
2329 			if (r10_sync_page_io(rdev,
2330 					     r10_bio->devs[sl].addr +
2331 					     sect,
2332 					     s, conf->tmppage, WRITE)
2333 			    == 0) {
2334 				/* Well, this device is dead */
2335 				printk(KERN_NOTICE
2336 				       "md/raid10:%s: read correction "
2337 				       "write failed"
2338 				       " (%d sectors at %llu on %s)\n",
2339 				       mdname(mddev), s,
2340 				       (unsigned long long)(
2341 					       sect +
2342 					       choose_data_offset(r10_bio,
2343 								  rdev)),
2344 				       bdevname(rdev->bdev, b));
2345 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2346 				       "drive\n",
2347 				       mdname(mddev),
2348 				       bdevname(rdev->bdev, b));
2349 			}
2350 			rdev_dec_pending(rdev, mddev);
2351 			rcu_read_lock();
2352 		}
2353 		sl = start;
2354 		while (sl != r10_bio->read_slot) {
2355 			char b[BDEVNAME_SIZE];
2356 
2357 			if (sl==0)
2358 				sl = conf->copies;
2359 			sl--;
2360 			d = r10_bio->devs[sl].devnum;
2361 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2362 			if (!rdev ||
2363 			    !test_bit(In_sync, &rdev->flags))
2364 				continue;
2365 
2366 			atomic_inc(&rdev->nr_pending);
2367 			rcu_read_unlock();
2368 			switch (r10_sync_page_io(rdev,
2369 					     r10_bio->devs[sl].addr +
2370 					     sect,
2371 					     s, conf->tmppage,
2372 						 READ)) {
2373 			case 0:
2374 				/* Well, this device is dead */
2375 				printk(KERN_NOTICE
2376 				       "md/raid10:%s: unable to read back "
2377 				       "corrected sectors"
2378 				       " (%d sectors at %llu on %s)\n",
2379 				       mdname(mddev), s,
2380 				       (unsigned long long)(
2381 					       sect +
2382 					       choose_data_offset(r10_bio, rdev)),
2383 				       bdevname(rdev->bdev, b));
2384 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2385 				       "drive\n",
2386 				       mdname(mddev),
2387 				       bdevname(rdev->bdev, b));
2388 				break;
2389 			case 1:
2390 				printk(KERN_INFO
2391 				       "md/raid10:%s: read error corrected"
2392 				       " (%d sectors at %llu on %s)\n",
2393 				       mdname(mddev), s,
2394 				       (unsigned long long)(
2395 					       sect +
2396 					       choose_data_offset(r10_bio, rdev)),
2397 				       bdevname(rdev->bdev, b));
2398 				atomic_add(s, &rdev->corrected_errors);
2399 			}
2400 
2401 			rdev_dec_pending(rdev, mddev);
2402 			rcu_read_lock();
2403 		}
2404 		rcu_read_unlock();
2405 
2406 		sectors -= s;
2407 		sect += s;
2408 	}
2409 }
2410 
2411 static void bi_complete(struct bio *bio, int error)
2412 {
2413 	complete((struct completion *)bio->bi_private);
2414 }
2415 
2416 static int submit_bio_wait(int rw, struct bio *bio)
2417 {
2418 	struct completion event;
2419 	rw |= REQ_SYNC;
2420 
2421 	init_completion(&event);
2422 	bio->bi_private = &event;
2423 	bio->bi_end_io = bi_complete;
2424 	submit_bio(rw, bio);
2425 	wait_for_completion(&event);
2426 
2427 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2428 }
2429 
2430 static int narrow_write_error(struct r10bio *r10_bio, int i)
2431 {
2432 	struct bio *bio = r10_bio->master_bio;
2433 	struct mddev *mddev = r10_bio->mddev;
2434 	struct r10conf *conf = mddev->private;
2435 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2436 	/* bio has the data to be written to slot 'i' where
2437 	 * we just recently had a write error.
2438 	 * We repeatedly clone the bio and trim down to one block,
2439 	 * then try the write.  Where the write fails we record
2440 	 * a bad block.
2441 	 * It is conceivable that the bio doesn't exactly align with
2442 	 * blocks.  We must handle this.
2443 	 *
2444 	 * We currently own a reference to the rdev.
2445 	 */
2446 
2447 	int block_sectors;
2448 	sector_t sector;
2449 	int sectors;
2450 	int sect_to_write = r10_bio->sectors;
2451 	int ok = 1;
2452 
2453 	if (rdev->badblocks.shift < 0)
2454 		return 0;
2455 
2456 	block_sectors = 1 << rdev->badblocks.shift;
2457 	sector = r10_bio->sector;
2458 	sectors = ((r10_bio->sector + block_sectors)
2459 		   & ~(sector_t)(block_sectors - 1))
2460 		- sector;
2461 
2462 	while (sect_to_write) {
2463 		struct bio *wbio;
2464 		if (sectors > sect_to_write)
2465 			sectors = sect_to_write;
2466 		/* Write at 'sector' for 'sectors' */
2467 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2468 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2469 		wbio->bi_sector = (r10_bio->devs[i].addr+
2470 				   choose_data_offset(r10_bio, rdev) +
2471 				   (sector - r10_bio->sector));
2472 		wbio->bi_bdev = rdev->bdev;
2473 		if (submit_bio_wait(WRITE, wbio) == 0)
2474 			/* Failure! */
2475 			ok = rdev_set_badblocks(rdev, sector,
2476 						sectors, 0)
2477 				&& ok;
2478 
2479 		bio_put(wbio);
2480 		sect_to_write -= sectors;
2481 		sector += sectors;
2482 		sectors = block_sectors;
2483 	}
2484 	return ok;
2485 }
2486 
2487 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2488 {
2489 	int slot = r10_bio->read_slot;
2490 	struct bio *bio;
2491 	struct r10conf *conf = mddev->private;
2492 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2493 	char b[BDEVNAME_SIZE];
2494 	unsigned long do_sync;
2495 	int max_sectors;
2496 
2497 	/* we got a read error. Maybe the drive is bad.  Maybe just
2498 	 * the block and we can fix it.
2499 	 * We freeze all other IO, and try reading the block from
2500 	 * other devices.  When we find one, we re-write
2501 	 * and check it that fixes the read error.
2502 	 * This is all done synchronously while the array is
2503 	 * frozen.
2504 	 */
2505 	bio = r10_bio->devs[slot].bio;
2506 	bdevname(bio->bi_bdev, b);
2507 	bio_put(bio);
2508 	r10_bio->devs[slot].bio = NULL;
2509 
2510 	if (mddev->ro == 0) {
2511 		freeze_array(conf);
2512 		fix_read_error(conf, mddev, r10_bio);
2513 		unfreeze_array(conf);
2514 	} else
2515 		r10_bio->devs[slot].bio = IO_BLOCKED;
2516 
2517 	rdev_dec_pending(rdev, mddev);
2518 
2519 read_more:
2520 	rdev = read_balance(conf, r10_bio, &max_sectors);
2521 	if (rdev == NULL) {
2522 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2523 		       " read error for block %llu\n",
2524 		       mdname(mddev), b,
2525 		       (unsigned long long)r10_bio->sector);
2526 		raid_end_bio_io(r10_bio);
2527 		return;
2528 	}
2529 
2530 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2531 	slot = r10_bio->read_slot;
2532 	printk_ratelimited(
2533 		KERN_ERR
2534 		"md/raid10:%s: %s: redirecting "
2535 		"sector %llu to another mirror\n",
2536 		mdname(mddev),
2537 		bdevname(rdev->bdev, b),
2538 		(unsigned long long)r10_bio->sector);
2539 	bio = bio_clone_mddev(r10_bio->master_bio,
2540 			      GFP_NOIO, mddev);
2541 	md_trim_bio(bio,
2542 		    r10_bio->sector - bio->bi_sector,
2543 		    max_sectors);
2544 	r10_bio->devs[slot].bio = bio;
2545 	r10_bio->devs[slot].rdev = rdev;
2546 	bio->bi_sector = r10_bio->devs[slot].addr
2547 		+ choose_data_offset(r10_bio, rdev);
2548 	bio->bi_bdev = rdev->bdev;
2549 	bio->bi_rw = READ | do_sync;
2550 	bio->bi_private = r10_bio;
2551 	bio->bi_end_io = raid10_end_read_request;
2552 	if (max_sectors < r10_bio->sectors) {
2553 		/* Drat - have to split this up more */
2554 		struct bio *mbio = r10_bio->master_bio;
2555 		int sectors_handled =
2556 			r10_bio->sector + max_sectors
2557 			- mbio->bi_sector;
2558 		r10_bio->sectors = max_sectors;
2559 		spin_lock_irq(&conf->device_lock);
2560 		if (mbio->bi_phys_segments == 0)
2561 			mbio->bi_phys_segments = 2;
2562 		else
2563 			mbio->bi_phys_segments++;
2564 		spin_unlock_irq(&conf->device_lock);
2565 		generic_make_request(bio);
2566 
2567 		r10_bio = mempool_alloc(conf->r10bio_pool,
2568 					GFP_NOIO);
2569 		r10_bio->master_bio = mbio;
2570 		r10_bio->sectors = (mbio->bi_size >> 9)
2571 			- sectors_handled;
2572 		r10_bio->state = 0;
2573 		set_bit(R10BIO_ReadError,
2574 			&r10_bio->state);
2575 		r10_bio->mddev = mddev;
2576 		r10_bio->sector = mbio->bi_sector
2577 			+ sectors_handled;
2578 
2579 		goto read_more;
2580 	} else
2581 		generic_make_request(bio);
2582 }
2583 
2584 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2585 {
2586 	/* Some sort of write request has finished and it
2587 	 * succeeded in writing where we thought there was a
2588 	 * bad block.  So forget the bad block.
2589 	 * Or possibly if failed and we need to record
2590 	 * a bad block.
2591 	 */
2592 	int m;
2593 	struct md_rdev *rdev;
2594 
2595 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2596 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2597 		for (m = 0; m < conf->copies; m++) {
2598 			int dev = r10_bio->devs[m].devnum;
2599 			rdev = conf->mirrors[dev].rdev;
2600 			if (r10_bio->devs[m].bio == NULL)
2601 				continue;
2602 			if (test_bit(BIO_UPTODATE,
2603 				     &r10_bio->devs[m].bio->bi_flags)) {
2604 				rdev_clear_badblocks(
2605 					rdev,
2606 					r10_bio->devs[m].addr,
2607 					r10_bio->sectors, 0);
2608 			} else {
2609 				if (!rdev_set_badblocks(
2610 					    rdev,
2611 					    r10_bio->devs[m].addr,
2612 					    r10_bio->sectors, 0))
2613 					md_error(conf->mddev, rdev);
2614 			}
2615 			rdev = conf->mirrors[dev].replacement;
2616 			if (r10_bio->devs[m].repl_bio == NULL)
2617 				continue;
2618 			if (test_bit(BIO_UPTODATE,
2619 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2620 				rdev_clear_badblocks(
2621 					rdev,
2622 					r10_bio->devs[m].addr,
2623 					r10_bio->sectors, 0);
2624 			} else {
2625 				if (!rdev_set_badblocks(
2626 					    rdev,
2627 					    r10_bio->devs[m].addr,
2628 					    r10_bio->sectors, 0))
2629 					md_error(conf->mddev, rdev);
2630 			}
2631 		}
2632 		put_buf(r10_bio);
2633 	} else {
2634 		for (m = 0; m < conf->copies; m++) {
2635 			int dev = r10_bio->devs[m].devnum;
2636 			struct bio *bio = r10_bio->devs[m].bio;
2637 			rdev = conf->mirrors[dev].rdev;
2638 			if (bio == IO_MADE_GOOD) {
2639 				rdev_clear_badblocks(
2640 					rdev,
2641 					r10_bio->devs[m].addr,
2642 					r10_bio->sectors, 0);
2643 				rdev_dec_pending(rdev, conf->mddev);
2644 			} else if (bio != NULL &&
2645 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2646 				if (!narrow_write_error(r10_bio, m)) {
2647 					md_error(conf->mddev, rdev);
2648 					set_bit(R10BIO_Degraded,
2649 						&r10_bio->state);
2650 				}
2651 				rdev_dec_pending(rdev, conf->mddev);
2652 			}
2653 			bio = r10_bio->devs[m].repl_bio;
2654 			rdev = conf->mirrors[dev].replacement;
2655 			if (rdev && bio == IO_MADE_GOOD) {
2656 				rdev_clear_badblocks(
2657 					rdev,
2658 					r10_bio->devs[m].addr,
2659 					r10_bio->sectors, 0);
2660 				rdev_dec_pending(rdev, conf->mddev);
2661 			}
2662 		}
2663 		if (test_bit(R10BIO_WriteError,
2664 			     &r10_bio->state))
2665 			close_write(r10_bio);
2666 		raid_end_bio_io(r10_bio);
2667 	}
2668 }
2669 
2670 static void raid10d(struct mddev *mddev)
2671 {
2672 	struct r10bio *r10_bio;
2673 	unsigned long flags;
2674 	struct r10conf *conf = mddev->private;
2675 	struct list_head *head = &conf->retry_list;
2676 	struct blk_plug plug;
2677 
2678 	md_check_recovery(mddev);
2679 
2680 	blk_start_plug(&plug);
2681 	for (;;) {
2682 
2683 		flush_pending_writes(conf);
2684 
2685 		spin_lock_irqsave(&conf->device_lock, flags);
2686 		if (list_empty(head)) {
2687 			spin_unlock_irqrestore(&conf->device_lock, flags);
2688 			break;
2689 		}
2690 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2691 		list_del(head->prev);
2692 		conf->nr_queued--;
2693 		spin_unlock_irqrestore(&conf->device_lock, flags);
2694 
2695 		mddev = r10_bio->mddev;
2696 		conf = mddev->private;
2697 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2698 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2699 			handle_write_completed(conf, r10_bio);
2700 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2701 			reshape_request_write(mddev, r10_bio);
2702 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2703 			sync_request_write(mddev, r10_bio);
2704 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2705 			recovery_request_write(mddev, r10_bio);
2706 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2707 			handle_read_error(mddev, r10_bio);
2708 		else {
2709 			/* just a partial read to be scheduled from a
2710 			 * separate context
2711 			 */
2712 			int slot = r10_bio->read_slot;
2713 			generic_make_request(r10_bio->devs[slot].bio);
2714 		}
2715 
2716 		cond_resched();
2717 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2718 			md_check_recovery(mddev);
2719 	}
2720 	blk_finish_plug(&plug);
2721 }
2722 
2723 
2724 static int init_resync(struct r10conf *conf)
2725 {
2726 	int buffs;
2727 	int i;
2728 
2729 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2730 	BUG_ON(conf->r10buf_pool);
2731 	conf->have_replacement = 0;
2732 	for (i = 0; i < conf->geo.raid_disks; i++)
2733 		if (conf->mirrors[i].replacement)
2734 			conf->have_replacement = 1;
2735 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2736 	if (!conf->r10buf_pool)
2737 		return -ENOMEM;
2738 	conf->next_resync = 0;
2739 	return 0;
2740 }
2741 
2742 /*
2743  * perform a "sync" on one "block"
2744  *
2745  * We need to make sure that no normal I/O request - particularly write
2746  * requests - conflict with active sync requests.
2747  *
2748  * This is achieved by tracking pending requests and a 'barrier' concept
2749  * that can be installed to exclude normal IO requests.
2750  *
2751  * Resync and recovery are handled very differently.
2752  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2753  *
2754  * For resync, we iterate over virtual addresses, read all copies,
2755  * and update if there are differences.  If only one copy is live,
2756  * skip it.
2757  * For recovery, we iterate over physical addresses, read a good
2758  * value for each non-in_sync drive, and over-write.
2759  *
2760  * So, for recovery we may have several outstanding complex requests for a
2761  * given address, one for each out-of-sync device.  We model this by allocating
2762  * a number of r10_bio structures, one for each out-of-sync device.
2763  * As we setup these structures, we collect all bio's together into a list
2764  * which we then process collectively to add pages, and then process again
2765  * to pass to generic_make_request.
2766  *
2767  * The r10_bio structures are linked using a borrowed master_bio pointer.
2768  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2769  * has its remaining count decremented to 0, the whole complex operation
2770  * is complete.
2771  *
2772  */
2773 
2774 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2775 			     int *skipped, int go_faster)
2776 {
2777 	struct r10conf *conf = mddev->private;
2778 	struct r10bio *r10_bio;
2779 	struct bio *biolist = NULL, *bio;
2780 	sector_t max_sector, nr_sectors;
2781 	int i;
2782 	int max_sync;
2783 	sector_t sync_blocks;
2784 	sector_t sectors_skipped = 0;
2785 	int chunks_skipped = 0;
2786 	sector_t chunk_mask = conf->geo.chunk_mask;
2787 
2788 	if (!conf->r10buf_pool)
2789 		if (init_resync(conf))
2790 			return 0;
2791 
2792  skipped:
2793 	max_sector = mddev->dev_sectors;
2794 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2795 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2796 		max_sector = mddev->resync_max_sectors;
2797 	if (sector_nr >= max_sector) {
2798 		/* If we aborted, we need to abort the
2799 		 * sync on the 'current' bitmap chucks (there can
2800 		 * be several when recovering multiple devices).
2801 		 * as we may have started syncing it but not finished.
2802 		 * We can find the current address in
2803 		 * mddev->curr_resync, but for recovery,
2804 		 * we need to convert that to several
2805 		 * virtual addresses.
2806 		 */
2807 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2808 			end_reshape(conf);
2809 			return 0;
2810 		}
2811 
2812 		if (mddev->curr_resync < max_sector) { /* aborted */
2813 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2814 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2815 						&sync_blocks, 1);
2816 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2817 				sector_t sect =
2818 					raid10_find_virt(conf, mddev->curr_resync, i);
2819 				bitmap_end_sync(mddev->bitmap, sect,
2820 						&sync_blocks, 1);
2821 			}
2822 		} else {
2823 			/* completed sync */
2824 			if ((!mddev->bitmap || conf->fullsync)
2825 			    && conf->have_replacement
2826 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2827 				/* Completed a full sync so the replacements
2828 				 * are now fully recovered.
2829 				 */
2830 				for (i = 0; i < conf->geo.raid_disks; i++)
2831 					if (conf->mirrors[i].replacement)
2832 						conf->mirrors[i].replacement
2833 							->recovery_offset
2834 							= MaxSector;
2835 			}
2836 			conf->fullsync = 0;
2837 		}
2838 		bitmap_close_sync(mddev->bitmap);
2839 		close_sync(conf);
2840 		*skipped = 1;
2841 		return sectors_skipped;
2842 	}
2843 
2844 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2845 		return reshape_request(mddev, sector_nr, skipped);
2846 
2847 	if (chunks_skipped >= conf->geo.raid_disks) {
2848 		/* if there has been nothing to do on any drive,
2849 		 * then there is nothing to do at all..
2850 		 */
2851 		*skipped = 1;
2852 		return (max_sector - sector_nr) + sectors_skipped;
2853 	}
2854 
2855 	if (max_sector > mddev->resync_max)
2856 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2857 
2858 	/* make sure whole request will fit in a chunk - if chunks
2859 	 * are meaningful
2860 	 */
2861 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2862 	    max_sector > (sector_nr | chunk_mask))
2863 		max_sector = (sector_nr | chunk_mask) + 1;
2864 	/*
2865 	 * If there is non-resync activity waiting for us then
2866 	 * put in a delay to throttle resync.
2867 	 */
2868 	if (!go_faster && conf->nr_waiting)
2869 		msleep_interruptible(1000);
2870 
2871 	/* Again, very different code for resync and recovery.
2872 	 * Both must result in an r10bio with a list of bios that
2873 	 * have bi_end_io, bi_sector, bi_bdev set,
2874 	 * and bi_private set to the r10bio.
2875 	 * For recovery, we may actually create several r10bios
2876 	 * with 2 bios in each, that correspond to the bios in the main one.
2877 	 * In this case, the subordinate r10bios link back through a
2878 	 * borrowed master_bio pointer, and the counter in the master
2879 	 * includes a ref from each subordinate.
2880 	 */
2881 	/* First, we decide what to do and set ->bi_end_io
2882 	 * To end_sync_read if we want to read, and
2883 	 * end_sync_write if we will want to write.
2884 	 */
2885 
2886 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2887 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2888 		/* recovery... the complicated one */
2889 		int j;
2890 		r10_bio = NULL;
2891 
2892 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2893 			int still_degraded;
2894 			struct r10bio *rb2;
2895 			sector_t sect;
2896 			int must_sync;
2897 			int any_working;
2898 			struct raid10_info *mirror = &conf->mirrors[i];
2899 
2900 			if ((mirror->rdev == NULL ||
2901 			     test_bit(In_sync, &mirror->rdev->flags))
2902 			    &&
2903 			    (mirror->replacement == NULL ||
2904 			     test_bit(Faulty,
2905 				      &mirror->replacement->flags)))
2906 				continue;
2907 
2908 			still_degraded = 0;
2909 			/* want to reconstruct this device */
2910 			rb2 = r10_bio;
2911 			sect = raid10_find_virt(conf, sector_nr, i);
2912 			if (sect >= mddev->resync_max_sectors) {
2913 				/* last stripe is not complete - don't
2914 				 * try to recover this sector.
2915 				 */
2916 				continue;
2917 			}
2918 			/* Unless we are doing a full sync, or a replacement
2919 			 * we only need to recover the block if it is set in
2920 			 * the bitmap
2921 			 */
2922 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2923 						      &sync_blocks, 1);
2924 			if (sync_blocks < max_sync)
2925 				max_sync = sync_blocks;
2926 			if (!must_sync &&
2927 			    mirror->replacement == NULL &&
2928 			    !conf->fullsync) {
2929 				/* yep, skip the sync_blocks here, but don't assume
2930 				 * that there will never be anything to do here
2931 				 */
2932 				chunks_skipped = -1;
2933 				continue;
2934 			}
2935 
2936 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2937 			raise_barrier(conf, rb2 != NULL);
2938 			atomic_set(&r10_bio->remaining, 0);
2939 
2940 			r10_bio->master_bio = (struct bio*)rb2;
2941 			if (rb2)
2942 				atomic_inc(&rb2->remaining);
2943 			r10_bio->mddev = mddev;
2944 			set_bit(R10BIO_IsRecover, &r10_bio->state);
2945 			r10_bio->sector = sect;
2946 
2947 			raid10_find_phys(conf, r10_bio);
2948 
2949 			/* Need to check if the array will still be
2950 			 * degraded
2951 			 */
2952 			for (j = 0; j < conf->geo.raid_disks; j++)
2953 				if (conf->mirrors[j].rdev == NULL ||
2954 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2955 					still_degraded = 1;
2956 					break;
2957 				}
2958 
2959 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2960 						      &sync_blocks, still_degraded);
2961 
2962 			any_working = 0;
2963 			for (j=0; j<conf->copies;j++) {
2964 				int k;
2965 				int d = r10_bio->devs[j].devnum;
2966 				sector_t from_addr, to_addr;
2967 				struct md_rdev *rdev;
2968 				sector_t sector, first_bad;
2969 				int bad_sectors;
2970 				if (!conf->mirrors[d].rdev ||
2971 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2972 					continue;
2973 				/* This is where we read from */
2974 				any_working = 1;
2975 				rdev = conf->mirrors[d].rdev;
2976 				sector = r10_bio->devs[j].addr;
2977 
2978 				if (is_badblock(rdev, sector, max_sync,
2979 						&first_bad, &bad_sectors)) {
2980 					if (first_bad > sector)
2981 						max_sync = first_bad - sector;
2982 					else {
2983 						bad_sectors -= (sector
2984 								- first_bad);
2985 						if (max_sync > bad_sectors)
2986 							max_sync = bad_sectors;
2987 						continue;
2988 					}
2989 				}
2990 				bio = r10_bio->devs[0].bio;
2991 				bio->bi_next = biolist;
2992 				biolist = bio;
2993 				bio->bi_private = r10_bio;
2994 				bio->bi_end_io = end_sync_read;
2995 				bio->bi_rw = READ;
2996 				from_addr = r10_bio->devs[j].addr;
2997 				bio->bi_sector = from_addr + rdev->data_offset;
2998 				bio->bi_bdev = rdev->bdev;
2999 				atomic_inc(&rdev->nr_pending);
3000 				/* and we write to 'i' (if not in_sync) */
3001 
3002 				for (k=0; k<conf->copies; k++)
3003 					if (r10_bio->devs[k].devnum == i)
3004 						break;
3005 				BUG_ON(k == conf->copies);
3006 				to_addr = r10_bio->devs[k].addr;
3007 				r10_bio->devs[0].devnum = d;
3008 				r10_bio->devs[0].addr = from_addr;
3009 				r10_bio->devs[1].devnum = i;
3010 				r10_bio->devs[1].addr = to_addr;
3011 
3012 				rdev = mirror->rdev;
3013 				if (!test_bit(In_sync, &rdev->flags)) {
3014 					bio = r10_bio->devs[1].bio;
3015 					bio->bi_next = biolist;
3016 					biolist = bio;
3017 					bio->bi_private = r10_bio;
3018 					bio->bi_end_io = end_sync_write;
3019 					bio->bi_rw = WRITE;
3020 					bio->bi_sector = to_addr
3021 						+ rdev->data_offset;
3022 					bio->bi_bdev = rdev->bdev;
3023 					atomic_inc(&r10_bio->remaining);
3024 				} else
3025 					r10_bio->devs[1].bio->bi_end_io = NULL;
3026 
3027 				/* and maybe write to replacement */
3028 				bio = r10_bio->devs[1].repl_bio;
3029 				if (bio)
3030 					bio->bi_end_io = NULL;
3031 				rdev = mirror->replacement;
3032 				/* Note: if rdev != NULL, then bio
3033 				 * cannot be NULL as r10buf_pool_alloc will
3034 				 * have allocated it.
3035 				 * So the second test here is pointless.
3036 				 * But it keeps semantic-checkers happy, and
3037 				 * this comment keeps human reviewers
3038 				 * happy.
3039 				 */
3040 				if (rdev == NULL || bio == NULL ||
3041 				    test_bit(Faulty, &rdev->flags))
3042 					break;
3043 				bio->bi_next = biolist;
3044 				biolist = bio;
3045 				bio->bi_private = r10_bio;
3046 				bio->bi_end_io = end_sync_write;
3047 				bio->bi_rw = WRITE;
3048 				bio->bi_sector = to_addr + rdev->data_offset;
3049 				bio->bi_bdev = rdev->bdev;
3050 				atomic_inc(&r10_bio->remaining);
3051 				break;
3052 			}
3053 			if (j == conf->copies) {
3054 				/* Cannot recover, so abort the recovery or
3055 				 * record a bad block */
3056 				put_buf(r10_bio);
3057 				if (rb2)
3058 					atomic_dec(&rb2->remaining);
3059 				r10_bio = rb2;
3060 				if (any_working) {
3061 					/* problem is that there are bad blocks
3062 					 * on other device(s)
3063 					 */
3064 					int k;
3065 					for (k = 0; k < conf->copies; k++)
3066 						if (r10_bio->devs[k].devnum == i)
3067 							break;
3068 					if (!test_bit(In_sync,
3069 						      &mirror->rdev->flags)
3070 					    && !rdev_set_badblocks(
3071 						    mirror->rdev,
3072 						    r10_bio->devs[k].addr,
3073 						    max_sync, 0))
3074 						any_working = 0;
3075 					if (mirror->replacement &&
3076 					    !rdev_set_badblocks(
3077 						    mirror->replacement,
3078 						    r10_bio->devs[k].addr,
3079 						    max_sync, 0))
3080 						any_working = 0;
3081 				}
3082 				if (!any_working)  {
3083 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3084 							      &mddev->recovery))
3085 						printk(KERN_INFO "md/raid10:%s: insufficient "
3086 						       "working devices for recovery.\n",
3087 						       mdname(mddev));
3088 					mirror->recovery_disabled
3089 						= mddev->recovery_disabled;
3090 				}
3091 				break;
3092 			}
3093 		}
3094 		if (biolist == NULL) {
3095 			while (r10_bio) {
3096 				struct r10bio *rb2 = r10_bio;
3097 				r10_bio = (struct r10bio*) rb2->master_bio;
3098 				rb2->master_bio = NULL;
3099 				put_buf(rb2);
3100 			}
3101 			goto giveup;
3102 		}
3103 	} else {
3104 		/* resync. Schedule a read for every block at this virt offset */
3105 		int count = 0;
3106 
3107 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3108 
3109 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3110 				       &sync_blocks, mddev->degraded) &&
3111 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3112 						 &mddev->recovery)) {
3113 			/* We can skip this block */
3114 			*skipped = 1;
3115 			return sync_blocks + sectors_skipped;
3116 		}
3117 		if (sync_blocks < max_sync)
3118 			max_sync = sync_blocks;
3119 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3120 
3121 		r10_bio->mddev = mddev;
3122 		atomic_set(&r10_bio->remaining, 0);
3123 		raise_barrier(conf, 0);
3124 		conf->next_resync = sector_nr;
3125 
3126 		r10_bio->master_bio = NULL;
3127 		r10_bio->sector = sector_nr;
3128 		set_bit(R10BIO_IsSync, &r10_bio->state);
3129 		raid10_find_phys(conf, r10_bio);
3130 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3131 
3132 		for (i = 0; i < conf->copies; i++) {
3133 			int d = r10_bio->devs[i].devnum;
3134 			sector_t first_bad, sector;
3135 			int bad_sectors;
3136 
3137 			if (r10_bio->devs[i].repl_bio)
3138 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3139 
3140 			bio = r10_bio->devs[i].bio;
3141 			bio->bi_end_io = NULL;
3142 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3143 			if (conf->mirrors[d].rdev == NULL ||
3144 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3145 				continue;
3146 			sector = r10_bio->devs[i].addr;
3147 			if (is_badblock(conf->mirrors[d].rdev,
3148 					sector, max_sync,
3149 					&first_bad, &bad_sectors)) {
3150 				if (first_bad > sector)
3151 					max_sync = first_bad - sector;
3152 				else {
3153 					bad_sectors -= (sector - first_bad);
3154 					if (max_sync > bad_sectors)
3155 						max_sync = max_sync;
3156 					continue;
3157 				}
3158 			}
3159 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3160 			atomic_inc(&r10_bio->remaining);
3161 			bio->bi_next = biolist;
3162 			biolist = bio;
3163 			bio->bi_private = r10_bio;
3164 			bio->bi_end_io = end_sync_read;
3165 			bio->bi_rw = READ;
3166 			bio->bi_sector = sector +
3167 				conf->mirrors[d].rdev->data_offset;
3168 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3169 			count++;
3170 
3171 			if (conf->mirrors[d].replacement == NULL ||
3172 			    test_bit(Faulty,
3173 				     &conf->mirrors[d].replacement->flags))
3174 				continue;
3175 
3176 			/* Need to set up for writing to the replacement */
3177 			bio = r10_bio->devs[i].repl_bio;
3178 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3179 
3180 			sector = r10_bio->devs[i].addr;
3181 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3182 			bio->bi_next = biolist;
3183 			biolist = bio;
3184 			bio->bi_private = r10_bio;
3185 			bio->bi_end_io = end_sync_write;
3186 			bio->bi_rw = WRITE;
3187 			bio->bi_sector = sector +
3188 				conf->mirrors[d].replacement->data_offset;
3189 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3190 			count++;
3191 		}
3192 
3193 		if (count < 2) {
3194 			for (i=0; i<conf->copies; i++) {
3195 				int d = r10_bio->devs[i].devnum;
3196 				if (r10_bio->devs[i].bio->bi_end_io)
3197 					rdev_dec_pending(conf->mirrors[d].rdev,
3198 							 mddev);
3199 				if (r10_bio->devs[i].repl_bio &&
3200 				    r10_bio->devs[i].repl_bio->bi_end_io)
3201 					rdev_dec_pending(
3202 						conf->mirrors[d].replacement,
3203 						mddev);
3204 			}
3205 			put_buf(r10_bio);
3206 			biolist = NULL;
3207 			goto giveup;
3208 		}
3209 	}
3210 
3211 	for (bio = biolist; bio ; bio=bio->bi_next) {
3212 
3213 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3214 		if (bio->bi_end_io)
3215 			bio->bi_flags |= 1 << BIO_UPTODATE;
3216 		bio->bi_vcnt = 0;
3217 		bio->bi_idx = 0;
3218 		bio->bi_phys_segments = 0;
3219 		bio->bi_size = 0;
3220 	}
3221 
3222 	nr_sectors = 0;
3223 	if (sector_nr + max_sync < max_sector)
3224 		max_sector = sector_nr + max_sync;
3225 	do {
3226 		struct page *page;
3227 		int len = PAGE_SIZE;
3228 		if (sector_nr + (len>>9) > max_sector)
3229 			len = (max_sector - sector_nr) << 9;
3230 		if (len == 0)
3231 			break;
3232 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3233 			struct bio *bio2;
3234 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3235 			if (bio_add_page(bio, page, len, 0))
3236 				continue;
3237 
3238 			/* stop here */
3239 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3240 			for (bio2 = biolist;
3241 			     bio2 && bio2 != bio;
3242 			     bio2 = bio2->bi_next) {
3243 				/* remove last page from this bio */
3244 				bio2->bi_vcnt--;
3245 				bio2->bi_size -= len;
3246 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3247 			}
3248 			goto bio_full;
3249 		}
3250 		nr_sectors += len>>9;
3251 		sector_nr += len>>9;
3252 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3253  bio_full:
3254 	r10_bio->sectors = nr_sectors;
3255 
3256 	while (biolist) {
3257 		bio = biolist;
3258 		biolist = biolist->bi_next;
3259 
3260 		bio->bi_next = NULL;
3261 		r10_bio = bio->bi_private;
3262 		r10_bio->sectors = nr_sectors;
3263 
3264 		if (bio->bi_end_io == end_sync_read) {
3265 			md_sync_acct(bio->bi_bdev, nr_sectors);
3266 			generic_make_request(bio);
3267 		}
3268 	}
3269 
3270 	if (sectors_skipped)
3271 		/* pretend they weren't skipped, it makes
3272 		 * no important difference in this case
3273 		 */
3274 		md_done_sync(mddev, sectors_skipped, 1);
3275 
3276 	return sectors_skipped + nr_sectors;
3277  giveup:
3278 	/* There is nowhere to write, so all non-sync
3279 	 * drives must be failed or in resync, all drives
3280 	 * have a bad block, so try the next chunk...
3281 	 */
3282 	if (sector_nr + max_sync < max_sector)
3283 		max_sector = sector_nr + max_sync;
3284 
3285 	sectors_skipped += (max_sector - sector_nr);
3286 	chunks_skipped ++;
3287 	sector_nr = max_sector;
3288 	goto skipped;
3289 }
3290 
3291 static sector_t
3292 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3293 {
3294 	sector_t size;
3295 	struct r10conf *conf = mddev->private;
3296 
3297 	if (!raid_disks)
3298 		raid_disks = min(conf->geo.raid_disks,
3299 				 conf->prev.raid_disks);
3300 	if (!sectors)
3301 		sectors = conf->dev_sectors;
3302 
3303 	size = sectors >> conf->geo.chunk_shift;
3304 	sector_div(size, conf->geo.far_copies);
3305 	size = size * raid_disks;
3306 	sector_div(size, conf->geo.near_copies);
3307 
3308 	return size << conf->geo.chunk_shift;
3309 }
3310 
3311 static void calc_sectors(struct r10conf *conf, sector_t size)
3312 {
3313 	/* Calculate the number of sectors-per-device that will
3314 	 * actually be used, and set conf->dev_sectors and
3315 	 * conf->stride
3316 	 */
3317 
3318 	size = size >> conf->geo.chunk_shift;
3319 	sector_div(size, conf->geo.far_copies);
3320 	size = size * conf->geo.raid_disks;
3321 	sector_div(size, conf->geo.near_copies);
3322 	/* 'size' is now the number of chunks in the array */
3323 	/* calculate "used chunks per device" */
3324 	size = size * conf->copies;
3325 
3326 	/* We need to round up when dividing by raid_disks to
3327 	 * get the stride size.
3328 	 */
3329 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3330 
3331 	conf->dev_sectors = size << conf->geo.chunk_shift;
3332 
3333 	if (conf->geo.far_offset)
3334 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3335 	else {
3336 		sector_div(size, conf->geo.far_copies);
3337 		conf->geo.stride = size << conf->geo.chunk_shift;
3338 	}
3339 }
3340 
3341 enum geo_type {geo_new, geo_old, geo_start};
3342 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3343 {
3344 	int nc, fc, fo;
3345 	int layout, chunk, disks;
3346 	switch (new) {
3347 	case geo_old:
3348 		layout = mddev->layout;
3349 		chunk = mddev->chunk_sectors;
3350 		disks = mddev->raid_disks - mddev->delta_disks;
3351 		break;
3352 	case geo_new:
3353 		layout = mddev->new_layout;
3354 		chunk = mddev->new_chunk_sectors;
3355 		disks = mddev->raid_disks;
3356 		break;
3357 	default: /* avoid 'may be unused' warnings */
3358 	case geo_start: /* new when starting reshape - raid_disks not
3359 			 * updated yet. */
3360 		layout = mddev->new_layout;
3361 		chunk = mddev->new_chunk_sectors;
3362 		disks = mddev->raid_disks + mddev->delta_disks;
3363 		break;
3364 	}
3365 	if (layout >> 17)
3366 		return -1;
3367 	if (chunk < (PAGE_SIZE >> 9) ||
3368 	    !is_power_of_2(chunk))
3369 		return -2;
3370 	nc = layout & 255;
3371 	fc = (layout >> 8) & 255;
3372 	fo = layout & (1<<16);
3373 	geo->raid_disks = disks;
3374 	geo->near_copies = nc;
3375 	geo->far_copies = fc;
3376 	geo->far_offset = fo;
3377 	geo->chunk_mask = chunk - 1;
3378 	geo->chunk_shift = ffz(~chunk);
3379 	return nc*fc;
3380 }
3381 
3382 static struct r10conf *setup_conf(struct mddev *mddev)
3383 {
3384 	struct r10conf *conf = NULL;
3385 	int err = -EINVAL;
3386 	struct geom geo;
3387 	int copies;
3388 
3389 	copies = setup_geo(&geo, mddev, geo_new);
3390 
3391 	if (copies == -2) {
3392 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3393 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3394 		       mdname(mddev), PAGE_SIZE);
3395 		goto out;
3396 	}
3397 
3398 	if (copies < 2 || copies > mddev->raid_disks) {
3399 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3400 		       mdname(mddev), mddev->new_layout);
3401 		goto out;
3402 	}
3403 
3404 	err = -ENOMEM;
3405 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3406 	if (!conf)
3407 		goto out;
3408 
3409 	/* FIXME calc properly */
3410 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3411 							    max(0,mddev->delta_disks)),
3412 				GFP_KERNEL);
3413 	if (!conf->mirrors)
3414 		goto out;
3415 
3416 	conf->tmppage = alloc_page(GFP_KERNEL);
3417 	if (!conf->tmppage)
3418 		goto out;
3419 
3420 	conf->geo = geo;
3421 	conf->copies = copies;
3422 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3423 					   r10bio_pool_free, conf);
3424 	if (!conf->r10bio_pool)
3425 		goto out;
3426 
3427 	calc_sectors(conf, mddev->dev_sectors);
3428 	if (mddev->reshape_position == MaxSector) {
3429 		conf->prev = conf->geo;
3430 		conf->reshape_progress = MaxSector;
3431 	} else {
3432 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3433 			err = -EINVAL;
3434 			goto out;
3435 		}
3436 		conf->reshape_progress = mddev->reshape_position;
3437 		if (conf->prev.far_offset)
3438 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3439 		else
3440 			/* far_copies must be 1 */
3441 			conf->prev.stride = conf->dev_sectors;
3442 	}
3443 	spin_lock_init(&conf->device_lock);
3444 	INIT_LIST_HEAD(&conf->retry_list);
3445 
3446 	spin_lock_init(&conf->resync_lock);
3447 	init_waitqueue_head(&conf->wait_barrier);
3448 
3449 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3450 	if (!conf->thread)
3451 		goto out;
3452 
3453 	conf->mddev = mddev;
3454 	return conf;
3455 
3456  out:
3457 	if (err == -ENOMEM)
3458 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3459 		       mdname(mddev));
3460 	if (conf) {
3461 		if (conf->r10bio_pool)
3462 			mempool_destroy(conf->r10bio_pool);
3463 		kfree(conf->mirrors);
3464 		safe_put_page(conf->tmppage);
3465 		kfree(conf);
3466 	}
3467 	return ERR_PTR(err);
3468 }
3469 
3470 static int run(struct mddev *mddev)
3471 {
3472 	struct r10conf *conf;
3473 	int i, disk_idx, chunk_size;
3474 	struct raid10_info *disk;
3475 	struct md_rdev *rdev;
3476 	sector_t size;
3477 	sector_t min_offset_diff = 0;
3478 	int first = 1;
3479 
3480 	if (mddev->private == NULL) {
3481 		conf = setup_conf(mddev);
3482 		if (IS_ERR(conf))
3483 			return PTR_ERR(conf);
3484 		mddev->private = conf;
3485 	}
3486 	conf = mddev->private;
3487 	if (!conf)
3488 		goto out;
3489 
3490 	mddev->thread = conf->thread;
3491 	conf->thread = NULL;
3492 
3493 	chunk_size = mddev->chunk_sectors << 9;
3494 	if (mddev->queue) {
3495 		blk_queue_io_min(mddev->queue, chunk_size);
3496 		if (conf->geo.raid_disks % conf->geo.near_copies)
3497 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3498 		else
3499 			blk_queue_io_opt(mddev->queue, chunk_size *
3500 					 (conf->geo.raid_disks / conf->geo.near_copies));
3501 	}
3502 
3503 	rdev_for_each(rdev, mddev) {
3504 		long long diff;
3505 		struct request_queue *q;
3506 
3507 		disk_idx = rdev->raid_disk;
3508 		if (disk_idx < 0)
3509 			continue;
3510 		if (disk_idx >= conf->geo.raid_disks &&
3511 		    disk_idx >= conf->prev.raid_disks)
3512 			continue;
3513 		disk = conf->mirrors + disk_idx;
3514 
3515 		if (test_bit(Replacement, &rdev->flags)) {
3516 			if (disk->replacement)
3517 				goto out_free_conf;
3518 			disk->replacement = rdev;
3519 		} else {
3520 			if (disk->rdev)
3521 				goto out_free_conf;
3522 			disk->rdev = rdev;
3523 		}
3524 		q = bdev_get_queue(rdev->bdev);
3525 		if (q->merge_bvec_fn)
3526 			mddev->merge_check_needed = 1;
3527 		diff = (rdev->new_data_offset - rdev->data_offset);
3528 		if (!mddev->reshape_backwards)
3529 			diff = -diff;
3530 		if (diff < 0)
3531 			diff = 0;
3532 		if (first || diff < min_offset_diff)
3533 			min_offset_diff = diff;
3534 
3535 		if (mddev->gendisk)
3536 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3537 					  rdev->data_offset << 9);
3538 
3539 		disk->head_position = 0;
3540 	}
3541 
3542 	/* need to check that every block has at least one working mirror */
3543 	if (!enough(conf, -1)) {
3544 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3545 		       mdname(mddev));
3546 		goto out_free_conf;
3547 	}
3548 
3549 	if (conf->reshape_progress != MaxSector) {
3550 		/* must ensure that shape change is supported */
3551 		if (conf->geo.far_copies != 1 &&
3552 		    conf->geo.far_offset == 0)
3553 			goto out_free_conf;
3554 		if (conf->prev.far_copies != 1 &&
3555 		    conf->geo.far_offset == 0)
3556 			goto out_free_conf;
3557 	}
3558 
3559 	mddev->degraded = 0;
3560 	for (i = 0;
3561 	     i < conf->geo.raid_disks
3562 		     || i < conf->prev.raid_disks;
3563 	     i++) {
3564 
3565 		disk = conf->mirrors + i;
3566 
3567 		if (!disk->rdev && disk->replacement) {
3568 			/* The replacement is all we have - use it */
3569 			disk->rdev = disk->replacement;
3570 			disk->replacement = NULL;
3571 			clear_bit(Replacement, &disk->rdev->flags);
3572 		}
3573 
3574 		if (!disk->rdev ||
3575 		    !test_bit(In_sync, &disk->rdev->flags)) {
3576 			disk->head_position = 0;
3577 			mddev->degraded++;
3578 			if (disk->rdev)
3579 				conf->fullsync = 1;
3580 		}
3581 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3582 	}
3583 
3584 	if (mddev->recovery_cp != MaxSector)
3585 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3586 		       " -- starting background reconstruction\n",
3587 		       mdname(mddev));
3588 	printk(KERN_INFO
3589 		"md/raid10:%s: active with %d out of %d devices\n",
3590 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3591 		conf->geo.raid_disks);
3592 	/*
3593 	 * Ok, everything is just fine now
3594 	 */
3595 	mddev->dev_sectors = conf->dev_sectors;
3596 	size = raid10_size(mddev, 0, 0);
3597 	md_set_array_sectors(mddev, size);
3598 	mddev->resync_max_sectors = size;
3599 
3600 	if (mddev->queue) {
3601 		int stripe = conf->geo.raid_disks *
3602 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3603 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3604 		mddev->queue->backing_dev_info.congested_data = mddev;
3605 
3606 		/* Calculate max read-ahead size.
3607 		 * We need to readahead at least twice a whole stripe....
3608 		 * maybe...
3609 		 */
3610 		stripe /= conf->geo.near_copies;
3611 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3612 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3613 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3614 	}
3615 
3616 
3617 	if (md_integrity_register(mddev))
3618 		goto out_free_conf;
3619 
3620 	if (conf->reshape_progress != MaxSector) {
3621 		unsigned long before_length, after_length;
3622 
3623 		before_length = ((1 << conf->prev.chunk_shift) *
3624 				 conf->prev.far_copies);
3625 		after_length = ((1 << conf->geo.chunk_shift) *
3626 				conf->geo.far_copies);
3627 
3628 		if (max(before_length, after_length) > min_offset_diff) {
3629 			/* This cannot work */
3630 			printk("md/raid10: offset difference not enough to continue reshape\n");
3631 			goto out_free_conf;
3632 		}
3633 		conf->offset_diff = min_offset_diff;
3634 
3635 		conf->reshape_safe = conf->reshape_progress;
3636 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3637 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3638 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3639 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3640 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3641 							"reshape");
3642 	}
3643 
3644 	return 0;
3645 
3646 out_free_conf:
3647 	md_unregister_thread(&mddev->thread);
3648 	if (conf->r10bio_pool)
3649 		mempool_destroy(conf->r10bio_pool);
3650 	safe_put_page(conf->tmppage);
3651 	kfree(conf->mirrors);
3652 	kfree(conf);
3653 	mddev->private = NULL;
3654 out:
3655 	return -EIO;
3656 }
3657 
3658 static int stop(struct mddev *mddev)
3659 {
3660 	struct r10conf *conf = mddev->private;
3661 
3662 	raise_barrier(conf, 0);
3663 	lower_barrier(conf);
3664 
3665 	md_unregister_thread(&mddev->thread);
3666 	if (mddev->queue)
3667 		/* the unplug fn references 'conf'*/
3668 		blk_sync_queue(mddev->queue);
3669 
3670 	if (conf->r10bio_pool)
3671 		mempool_destroy(conf->r10bio_pool);
3672 	kfree(conf->mirrors);
3673 	kfree(conf);
3674 	mddev->private = NULL;
3675 	return 0;
3676 }
3677 
3678 static void raid10_quiesce(struct mddev *mddev, int state)
3679 {
3680 	struct r10conf *conf = mddev->private;
3681 
3682 	switch(state) {
3683 	case 1:
3684 		raise_barrier(conf, 0);
3685 		break;
3686 	case 0:
3687 		lower_barrier(conf);
3688 		break;
3689 	}
3690 }
3691 
3692 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3693 {
3694 	/* Resize of 'far' arrays is not supported.
3695 	 * For 'near' and 'offset' arrays we can set the
3696 	 * number of sectors used to be an appropriate multiple
3697 	 * of the chunk size.
3698 	 * For 'offset', this is far_copies*chunksize.
3699 	 * For 'near' the multiplier is the LCM of
3700 	 * near_copies and raid_disks.
3701 	 * So if far_copies > 1 && !far_offset, fail.
3702 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3703 	 * multiply by chunk_size.  Then round to this number.
3704 	 * This is mostly done by raid10_size()
3705 	 */
3706 	struct r10conf *conf = mddev->private;
3707 	sector_t oldsize, size;
3708 
3709 	if (mddev->reshape_position != MaxSector)
3710 		return -EBUSY;
3711 
3712 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3713 		return -EINVAL;
3714 
3715 	oldsize = raid10_size(mddev, 0, 0);
3716 	size = raid10_size(mddev, sectors, 0);
3717 	if (mddev->external_size &&
3718 	    mddev->array_sectors > size)
3719 		return -EINVAL;
3720 	if (mddev->bitmap) {
3721 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3722 		if (ret)
3723 			return ret;
3724 	}
3725 	md_set_array_sectors(mddev, size);
3726 	set_capacity(mddev->gendisk, mddev->array_sectors);
3727 	revalidate_disk(mddev->gendisk);
3728 	if (sectors > mddev->dev_sectors &&
3729 	    mddev->recovery_cp > oldsize) {
3730 		mddev->recovery_cp = oldsize;
3731 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3732 	}
3733 	calc_sectors(conf, sectors);
3734 	mddev->dev_sectors = conf->dev_sectors;
3735 	mddev->resync_max_sectors = size;
3736 	return 0;
3737 }
3738 
3739 static void *raid10_takeover_raid0(struct mddev *mddev)
3740 {
3741 	struct md_rdev *rdev;
3742 	struct r10conf *conf;
3743 
3744 	if (mddev->degraded > 0) {
3745 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3746 		       mdname(mddev));
3747 		return ERR_PTR(-EINVAL);
3748 	}
3749 
3750 	/* Set new parameters */
3751 	mddev->new_level = 10;
3752 	/* new layout: far_copies = 1, near_copies = 2 */
3753 	mddev->new_layout = (1<<8) + 2;
3754 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3755 	mddev->delta_disks = mddev->raid_disks;
3756 	mddev->raid_disks *= 2;
3757 	/* make sure it will be not marked as dirty */
3758 	mddev->recovery_cp = MaxSector;
3759 
3760 	conf = setup_conf(mddev);
3761 	if (!IS_ERR(conf)) {
3762 		rdev_for_each(rdev, mddev)
3763 			if (rdev->raid_disk >= 0)
3764 				rdev->new_raid_disk = rdev->raid_disk * 2;
3765 		conf->barrier = 1;
3766 	}
3767 
3768 	return conf;
3769 }
3770 
3771 static void *raid10_takeover(struct mddev *mddev)
3772 {
3773 	struct r0conf *raid0_conf;
3774 
3775 	/* raid10 can take over:
3776 	 *  raid0 - providing it has only two drives
3777 	 */
3778 	if (mddev->level == 0) {
3779 		/* for raid0 takeover only one zone is supported */
3780 		raid0_conf = mddev->private;
3781 		if (raid0_conf->nr_strip_zones > 1) {
3782 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3783 			       " with more than one zone.\n",
3784 			       mdname(mddev));
3785 			return ERR_PTR(-EINVAL);
3786 		}
3787 		return raid10_takeover_raid0(mddev);
3788 	}
3789 	return ERR_PTR(-EINVAL);
3790 }
3791 
3792 static int raid10_check_reshape(struct mddev *mddev)
3793 {
3794 	/* Called when there is a request to change
3795 	 * - layout (to ->new_layout)
3796 	 * - chunk size (to ->new_chunk_sectors)
3797 	 * - raid_disks (by delta_disks)
3798 	 * or when trying to restart a reshape that was ongoing.
3799 	 *
3800 	 * We need to validate the request and possibly allocate
3801 	 * space if that might be an issue later.
3802 	 *
3803 	 * Currently we reject any reshape of a 'far' mode array,
3804 	 * allow chunk size to change if new is generally acceptable,
3805 	 * allow raid_disks to increase, and allow
3806 	 * a switch between 'near' mode and 'offset' mode.
3807 	 */
3808 	struct r10conf *conf = mddev->private;
3809 	struct geom geo;
3810 
3811 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3812 		return -EINVAL;
3813 
3814 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3815 		/* mustn't change number of copies */
3816 		return -EINVAL;
3817 	if (geo.far_copies > 1 && !geo.far_offset)
3818 		/* Cannot switch to 'far' mode */
3819 		return -EINVAL;
3820 
3821 	if (mddev->array_sectors & geo.chunk_mask)
3822 			/* not factor of array size */
3823 			return -EINVAL;
3824 
3825 	if (!enough(conf, -1))
3826 		return -EINVAL;
3827 
3828 	kfree(conf->mirrors_new);
3829 	conf->mirrors_new = NULL;
3830 	if (mddev->delta_disks > 0) {
3831 		/* allocate new 'mirrors' list */
3832 		conf->mirrors_new = kzalloc(
3833 			sizeof(struct raid10_info)
3834 			*(mddev->raid_disks +
3835 			  mddev->delta_disks),
3836 			GFP_KERNEL);
3837 		if (!conf->mirrors_new)
3838 			return -ENOMEM;
3839 	}
3840 	return 0;
3841 }
3842 
3843 /*
3844  * Need to check if array has failed when deciding whether to:
3845  *  - start an array
3846  *  - remove non-faulty devices
3847  *  - add a spare
3848  *  - allow a reshape
3849  * This determination is simple when no reshape is happening.
3850  * However if there is a reshape, we need to carefully check
3851  * both the before and after sections.
3852  * This is because some failed devices may only affect one
3853  * of the two sections, and some non-in_sync devices may
3854  * be insync in the section most affected by failed devices.
3855  */
3856 static int calc_degraded(struct r10conf *conf)
3857 {
3858 	int degraded, degraded2;
3859 	int i;
3860 
3861 	rcu_read_lock();
3862 	degraded = 0;
3863 	/* 'prev' section first */
3864 	for (i = 0; i < conf->prev.raid_disks; i++) {
3865 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3866 		if (!rdev || test_bit(Faulty, &rdev->flags))
3867 			degraded++;
3868 		else if (!test_bit(In_sync, &rdev->flags))
3869 			/* When we can reduce the number of devices in
3870 			 * an array, this might not contribute to
3871 			 * 'degraded'.  It does now.
3872 			 */
3873 			degraded++;
3874 	}
3875 	rcu_read_unlock();
3876 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3877 		return degraded;
3878 	rcu_read_lock();
3879 	degraded2 = 0;
3880 	for (i = 0; i < conf->geo.raid_disks; i++) {
3881 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3882 		if (!rdev || test_bit(Faulty, &rdev->flags))
3883 			degraded2++;
3884 		else if (!test_bit(In_sync, &rdev->flags)) {
3885 			/* If reshape is increasing the number of devices,
3886 			 * this section has already been recovered, so
3887 			 * it doesn't contribute to degraded.
3888 			 * else it does.
3889 			 */
3890 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3891 				degraded2++;
3892 		}
3893 	}
3894 	rcu_read_unlock();
3895 	if (degraded2 > degraded)
3896 		return degraded2;
3897 	return degraded;
3898 }
3899 
3900 static int raid10_start_reshape(struct mddev *mddev)
3901 {
3902 	/* A 'reshape' has been requested. This commits
3903 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3904 	 * This also checks if there are enough spares and adds them
3905 	 * to the array.
3906 	 * We currently require enough spares to make the final
3907 	 * array non-degraded.  We also require that the difference
3908 	 * between old and new data_offset - on each device - is
3909 	 * enough that we never risk over-writing.
3910 	 */
3911 
3912 	unsigned long before_length, after_length;
3913 	sector_t min_offset_diff = 0;
3914 	int first = 1;
3915 	struct geom new;
3916 	struct r10conf *conf = mddev->private;
3917 	struct md_rdev *rdev;
3918 	int spares = 0;
3919 	int ret;
3920 
3921 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3922 		return -EBUSY;
3923 
3924 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3925 		return -EINVAL;
3926 
3927 	before_length = ((1 << conf->prev.chunk_shift) *
3928 			 conf->prev.far_copies);
3929 	after_length = ((1 << conf->geo.chunk_shift) *
3930 			conf->geo.far_copies);
3931 
3932 	rdev_for_each(rdev, mddev) {
3933 		if (!test_bit(In_sync, &rdev->flags)
3934 		    && !test_bit(Faulty, &rdev->flags))
3935 			spares++;
3936 		if (rdev->raid_disk >= 0) {
3937 			long long diff = (rdev->new_data_offset
3938 					  - rdev->data_offset);
3939 			if (!mddev->reshape_backwards)
3940 				diff = -diff;
3941 			if (diff < 0)
3942 				diff = 0;
3943 			if (first || diff < min_offset_diff)
3944 				min_offset_diff = diff;
3945 		}
3946 	}
3947 
3948 	if (max(before_length, after_length) > min_offset_diff)
3949 		return -EINVAL;
3950 
3951 	if (spares < mddev->delta_disks)
3952 		return -EINVAL;
3953 
3954 	conf->offset_diff = min_offset_diff;
3955 	spin_lock_irq(&conf->device_lock);
3956 	if (conf->mirrors_new) {
3957 		memcpy(conf->mirrors_new, conf->mirrors,
3958 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
3959 		smp_mb();
3960 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
3961 		conf->mirrors_old = conf->mirrors;
3962 		conf->mirrors = conf->mirrors_new;
3963 		conf->mirrors_new = NULL;
3964 	}
3965 	setup_geo(&conf->geo, mddev, geo_start);
3966 	smp_mb();
3967 	if (mddev->reshape_backwards) {
3968 		sector_t size = raid10_size(mddev, 0, 0);
3969 		if (size < mddev->array_sectors) {
3970 			spin_unlock_irq(&conf->device_lock);
3971 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3972 			       mdname(mddev));
3973 			return -EINVAL;
3974 		}
3975 		mddev->resync_max_sectors = size;
3976 		conf->reshape_progress = size;
3977 	} else
3978 		conf->reshape_progress = 0;
3979 	spin_unlock_irq(&conf->device_lock);
3980 
3981 	if (mddev->delta_disks && mddev->bitmap) {
3982 		ret = bitmap_resize(mddev->bitmap,
3983 				    raid10_size(mddev, 0,
3984 						conf->geo.raid_disks),
3985 				    0, 0);
3986 		if (ret)
3987 			goto abort;
3988 	}
3989 	if (mddev->delta_disks > 0) {
3990 		rdev_for_each(rdev, mddev)
3991 			if (rdev->raid_disk < 0 &&
3992 			    !test_bit(Faulty, &rdev->flags)) {
3993 				if (raid10_add_disk(mddev, rdev) == 0) {
3994 					if (rdev->raid_disk >=
3995 					    conf->prev.raid_disks)
3996 						set_bit(In_sync, &rdev->flags);
3997 					else
3998 						rdev->recovery_offset = 0;
3999 
4000 					if (sysfs_link_rdev(mddev, rdev))
4001 						/* Failure here  is OK */;
4002 				}
4003 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4004 				   && !test_bit(Faulty, &rdev->flags)) {
4005 				/* This is a spare that was manually added */
4006 				set_bit(In_sync, &rdev->flags);
4007 			}
4008 	}
4009 	/* When a reshape changes the number of devices,
4010 	 * ->degraded is measured against the larger of the
4011 	 * pre and  post numbers.
4012 	 */
4013 	spin_lock_irq(&conf->device_lock);
4014 	mddev->degraded = calc_degraded(conf);
4015 	spin_unlock_irq(&conf->device_lock);
4016 	mddev->raid_disks = conf->geo.raid_disks;
4017 	mddev->reshape_position = conf->reshape_progress;
4018 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4019 
4020 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4021 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4022 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4023 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4024 
4025 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4026 						"reshape");
4027 	if (!mddev->sync_thread) {
4028 		ret = -EAGAIN;
4029 		goto abort;
4030 	}
4031 	conf->reshape_checkpoint = jiffies;
4032 	md_wakeup_thread(mddev->sync_thread);
4033 	md_new_event(mddev);
4034 	return 0;
4035 
4036 abort:
4037 	mddev->recovery = 0;
4038 	spin_lock_irq(&conf->device_lock);
4039 	conf->geo = conf->prev;
4040 	mddev->raid_disks = conf->geo.raid_disks;
4041 	rdev_for_each(rdev, mddev)
4042 		rdev->new_data_offset = rdev->data_offset;
4043 	smp_wmb();
4044 	conf->reshape_progress = MaxSector;
4045 	mddev->reshape_position = MaxSector;
4046 	spin_unlock_irq(&conf->device_lock);
4047 	return ret;
4048 }
4049 
4050 /* Calculate the last device-address that could contain
4051  * any block from the chunk that includes the array-address 's'
4052  * and report the next address.
4053  * i.e. the address returned will be chunk-aligned and after
4054  * any data that is in the chunk containing 's'.
4055  */
4056 static sector_t last_dev_address(sector_t s, struct geom *geo)
4057 {
4058 	s = (s | geo->chunk_mask) + 1;
4059 	s >>= geo->chunk_shift;
4060 	s *= geo->near_copies;
4061 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4062 	s *= geo->far_copies;
4063 	s <<= geo->chunk_shift;
4064 	return s;
4065 }
4066 
4067 /* Calculate the first device-address that could contain
4068  * any block from the chunk that includes the array-address 's'.
4069  * This too will be the start of a chunk
4070  */
4071 static sector_t first_dev_address(sector_t s, struct geom *geo)
4072 {
4073 	s >>= geo->chunk_shift;
4074 	s *= geo->near_copies;
4075 	sector_div(s, geo->raid_disks);
4076 	s *= geo->far_copies;
4077 	s <<= geo->chunk_shift;
4078 	return s;
4079 }
4080 
4081 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4082 				int *skipped)
4083 {
4084 	/* We simply copy at most one chunk (smallest of old and new)
4085 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4086 	 * or we hit a bad block or something.
4087 	 * This might mean we pause for normal IO in the middle of
4088 	 * a chunk, but that is not a problem was mddev->reshape_position
4089 	 * can record any location.
4090 	 *
4091 	 * If we will want to write to a location that isn't
4092 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4093 	 * we need to flush all reshape requests and update the metadata.
4094 	 *
4095 	 * When reshaping forwards (e.g. to more devices), we interpret
4096 	 * 'safe' as the earliest block which might not have been copied
4097 	 * down yet.  We divide this by previous stripe size and multiply
4098 	 * by previous stripe length to get lowest device offset that we
4099 	 * cannot write to yet.
4100 	 * We interpret 'sector_nr' as an address that we want to write to.
4101 	 * From this we use last_device_address() to find where we might
4102 	 * write to, and first_device_address on the  'safe' position.
4103 	 * If this 'next' write position is after the 'safe' position,
4104 	 * we must update the metadata to increase the 'safe' position.
4105 	 *
4106 	 * When reshaping backwards, we round in the opposite direction
4107 	 * and perform the reverse test:  next write position must not be
4108 	 * less than current safe position.
4109 	 *
4110 	 * In all this the minimum difference in data offsets
4111 	 * (conf->offset_diff - always positive) allows a bit of slack,
4112 	 * so next can be after 'safe', but not by more than offset_disk
4113 	 *
4114 	 * We need to prepare all the bios here before we start any IO
4115 	 * to ensure the size we choose is acceptable to all devices.
4116 	 * The means one for each copy for write-out and an extra one for
4117 	 * read-in.
4118 	 * We store the read-in bio in ->master_bio and the others in
4119 	 * ->devs[x].bio and ->devs[x].repl_bio.
4120 	 */
4121 	struct r10conf *conf = mddev->private;
4122 	struct r10bio *r10_bio;
4123 	sector_t next, safe, last;
4124 	int max_sectors;
4125 	int nr_sectors;
4126 	int s;
4127 	struct md_rdev *rdev;
4128 	int need_flush = 0;
4129 	struct bio *blist;
4130 	struct bio *bio, *read_bio;
4131 	int sectors_done = 0;
4132 
4133 	if (sector_nr == 0) {
4134 		/* If restarting in the middle, skip the initial sectors */
4135 		if (mddev->reshape_backwards &&
4136 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4137 			sector_nr = (raid10_size(mddev, 0, 0)
4138 				     - conf->reshape_progress);
4139 		} else if (!mddev->reshape_backwards &&
4140 			   conf->reshape_progress > 0)
4141 			sector_nr = conf->reshape_progress;
4142 		if (sector_nr) {
4143 			mddev->curr_resync_completed = sector_nr;
4144 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4145 			*skipped = 1;
4146 			return sector_nr;
4147 		}
4148 	}
4149 
4150 	/* We don't use sector_nr to track where we are up to
4151 	 * as that doesn't work well for ->reshape_backwards.
4152 	 * So just use ->reshape_progress.
4153 	 */
4154 	if (mddev->reshape_backwards) {
4155 		/* 'next' is the earliest device address that we might
4156 		 * write to for this chunk in the new layout
4157 		 */
4158 		next = first_dev_address(conf->reshape_progress - 1,
4159 					 &conf->geo);
4160 
4161 		/* 'safe' is the last device address that we might read from
4162 		 * in the old layout after a restart
4163 		 */
4164 		safe = last_dev_address(conf->reshape_safe - 1,
4165 					&conf->prev);
4166 
4167 		if (next + conf->offset_diff < safe)
4168 			need_flush = 1;
4169 
4170 		last = conf->reshape_progress - 1;
4171 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4172 					       & conf->prev.chunk_mask);
4173 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4174 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4175 	} else {
4176 		/* 'next' is after the last device address that we
4177 		 * might write to for this chunk in the new layout
4178 		 */
4179 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4180 
4181 		/* 'safe' is the earliest device address that we might
4182 		 * read from in the old layout after a restart
4183 		 */
4184 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4185 
4186 		/* Need to update metadata if 'next' might be beyond 'safe'
4187 		 * as that would possibly corrupt data
4188 		 */
4189 		if (next > safe + conf->offset_diff)
4190 			need_flush = 1;
4191 
4192 		sector_nr = conf->reshape_progress;
4193 		last  = sector_nr | (conf->geo.chunk_mask
4194 				     & conf->prev.chunk_mask);
4195 
4196 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4197 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4198 	}
4199 
4200 	if (need_flush ||
4201 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4202 		/* Need to update reshape_position in metadata */
4203 		wait_barrier(conf);
4204 		mddev->reshape_position = conf->reshape_progress;
4205 		if (mddev->reshape_backwards)
4206 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4207 				- conf->reshape_progress;
4208 		else
4209 			mddev->curr_resync_completed = conf->reshape_progress;
4210 		conf->reshape_checkpoint = jiffies;
4211 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4212 		md_wakeup_thread(mddev->thread);
4213 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4214 			   kthread_should_stop());
4215 		conf->reshape_safe = mddev->reshape_position;
4216 		allow_barrier(conf);
4217 	}
4218 
4219 read_more:
4220 	/* Now schedule reads for blocks from sector_nr to last */
4221 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4222 	raise_barrier(conf, sectors_done != 0);
4223 	atomic_set(&r10_bio->remaining, 0);
4224 	r10_bio->mddev = mddev;
4225 	r10_bio->sector = sector_nr;
4226 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4227 	r10_bio->sectors = last - sector_nr + 1;
4228 	rdev = read_balance(conf, r10_bio, &max_sectors);
4229 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4230 
4231 	if (!rdev) {
4232 		/* Cannot read from here, so need to record bad blocks
4233 		 * on all the target devices.
4234 		 */
4235 		// FIXME
4236 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4237 		return sectors_done;
4238 	}
4239 
4240 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4241 
4242 	read_bio->bi_bdev = rdev->bdev;
4243 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4244 			       + rdev->data_offset);
4245 	read_bio->bi_private = r10_bio;
4246 	read_bio->bi_end_io = end_sync_read;
4247 	read_bio->bi_rw = READ;
4248 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4249 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4250 	read_bio->bi_vcnt = 0;
4251 	read_bio->bi_idx = 0;
4252 	read_bio->bi_size = 0;
4253 	r10_bio->master_bio = read_bio;
4254 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4255 
4256 	/* Now find the locations in the new layout */
4257 	__raid10_find_phys(&conf->geo, r10_bio);
4258 
4259 	blist = read_bio;
4260 	read_bio->bi_next = NULL;
4261 
4262 	for (s = 0; s < conf->copies*2; s++) {
4263 		struct bio *b;
4264 		int d = r10_bio->devs[s/2].devnum;
4265 		struct md_rdev *rdev2;
4266 		if (s&1) {
4267 			rdev2 = conf->mirrors[d].replacement;
4268 			b = r10_bio->devs[s/2].repl_bio;
4269 		} else {
4270 			rdev2 = conf->mirrors[d].rdev;
4271 			b = r10_bio->devs[s/2].bio;
4272 		}
4273 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4274 			continue;
4275 		b->bi_bdev = rdev2->bdev;
4276 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4277 		b->bi_private = r10_bio;
4278 		b->bi_end_io = end_reshape_write;
4279 		b->bi_rw = WRITE;
4280 		b->bi_flags &= ~(BIO_POOL_MASK - 1);
4281 		b->bi_flags |= 1 << BIO_UPTODATE;
4282 		b->bi_next = blist;
4283 		b->bi_vcnt = 0;
4284 		b->bi_idx = 0;
4285 		b->bi_size = 0;
4286 		blist = b;
4287 	}
4288 
4289 	/* Now add as many pages as possible to all of these bios. */
4290 
4291 	nr_sectors = 0;
4292 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4293 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4294 		int len = (max_sectors - s) << 9;
4295 		if (len > PAGE_SIZE)
4296 			len = PAGE_SIZE;
4297 		for (bio = blist; bio ; bio = bio->bi_next) {
4298 			struct bio *bio2;
4299 			if (bio_add_page(bio, page, len, 0))
4300 				continue;
4301 
4302 			/* Didn't fit, must stop */
4303 			for (bio2 = blist;
4304 			     bio2 && bio2 != bio;
4305 			     bio2 = bio2->bi_next) {
4306 				/* Remove last page from this bio */
4307 				bio2->bi_vcnt--;
4308 				bio2->bi_size -= len;
4309 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4310 			}
4311 			goto bio_full;
4312 		}
4313 		sector_nr += len >> 9;
4314 		nr_sectors += len >> 9;
4315 	}
4316 bio_full:
4317 	r10_bio->sectors = nr_sectors;
4318 
4319 	/* Now submit the read */
4320 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4321 	atomic_inc(&r10_bio->remaining);
4322 	read_bio->bi_next = NULL;
4323 	generic_make_request(read_bio);
4324 	sector_nr += nr_sectors;
4325 	sectors_done += nr_sectors;
4326 	if (sector_nr <= last)
4327 		goto read_more;
4328 
4329 	/* Now that we have done the whole section we can
4330 	 * update reshape_progress
4331 	 */
4332 	if (mddev->reshape_backwards)
4333 		conf->reshape_progress -= sectors_done;
4334 	else
4335 		conf->reshape_progress += sectors_done;
4336 
4337 	return sectors_done;
4338 }
4339 
4340 static void end_reshape_request(struct r10bio *r10_bio);
4341 static int handle_reshape_read_error(struct mddev *mddev,
4342 				     struct r10bio *r10_bio);
4343 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4344 {
4345 	/* Reshape read completed.  Hopefully we have a block
4346 	 * to write out.
4347 	 * If we got a read error then we do sync 1-page reads from
4348 	 * elsewhere until we find the data - or give up.
4349 	 */
4350 	struct r10conf *conf = mddev->private;
4351 	int s;
4352 
4353 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4354 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4355 			/* Reshape has been aborted */
4356 			md_done_sync(mddev, r10_bio->sectors, 0);
4357 			return;
4358 		}
4359 
4360 	/* We definitely have the data in the pages, schedule the
4361 	 * writes.
4362 	 */
4363 	atomic_set(&r10_bio->remaining, 1);
4364 	for (s = 0; s < conf->copies*2; s++) {
4365 		struct bio *b;
4366 		int d = r10_bio->devs[s/2].devnum;
4367 		struct md_rdev *rdev;
4368 		if (s&1) {
4369 			rdev = conf->mirrors[d].replacement;
4370 			b = r10_bio->devs[s/2].repl_bio;
4371 		} else {
4372 			rdev = conf->mirrors[d].rdev;
4373 			b = r10_bio->devs[s/2].bio;
4374 		}
4375 		if (!rdev || test_bit(Faulty, &rdev->flags))
4376 			continue;
4377 		atomic_inc(&rdev->nr_pending);
4378 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4379 		atomic_inc(&r10_bio->remaining);
4380 		b->bi_next = NULL;
4381 		generic_make_request(b);
4382 	}
4383 	end_reshape_request(r10_bio);
4384 }
4385 
4386 static void end_reshape(struct r10conf *conf)
4387 {
4388 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4389 		return;
4390 
4391 	spin_lock_irq(&conf->device_lock);
4392 	conf->prev = conf->geo;
4393 	md_finish_reshape(conf->mddev);
4394 	smp_wmb();
4395 	conf->reshape_progress = MaxSector;
4396 	spin_unlock_irq(&conf->device_lock);
4397 
4398 	/* read-ahead size must cover two whole stripes, which is
4399 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4400 	 */
4401 	if (conf->mddev->queue) {
4402 		int stripe = conf->geo.raid_disks *
4403 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4404 		stripe /= conf->geo.near_copies;
4405 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4406 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4407 	}
4408 	conf->fullsync = 0;
4409 }
4410 
4411 
4412 static int handle_reshape_read_error(struct mddev *mddev,
4413 				     struct r10bio *r10_bio)
4414 {
4415 	/* Use sync reads to get the blocks from somewhere else */
4416 	int sectors = r10_bio->sectors;
4417 	struct r10bio r10b;
4418 	struct r10conf *conf = mddev->private;
4419 	int slot = 0;
4420 	int idx = 0;
4421 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4422 
4423 	r10b.sector = r10_bio->sector;
4424 	__raid10_find_phys(&conf->prev, &r10b);
4425 
4426 	while (sectors) {
4427 		int s = sectors;
4428 		int success = 0;
4429 		int first_slot = slot;
4430 
4431 		if (s > (PAGE_SIZE >> 9))
4432 			s = PAGE_SIZE >> 9;
4433 
4434 		while (!success) {
4435 			int d = r10b.devs[slot].devnum;
4436 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4437 			sector_t addr;
4438 			if (rdev == NULL ||
4439 			    test_bit(Faulty, &rdev->flags) ||
4440 			    !test_bit(In_sync, &rdev->flags))
4441 				goto failed;
4442 
4443 			addr = r10b.devs[slot].addr + idx * PAGE_SIZE;
4444 			success = sync_page_io(rdev,
4445 					       addr,
4446 					       s << 9,
4447 					       bvec[idx].bv_page,
4448 					       READ, false);
4449 			if (success)
4450 				break;
4451 		failed:
4452 			slot++;
4453 			if (slot >= conf->copies)
4454 				slot = 0;
4455 			if (slot == first_slot)
4456 				break;
4457 		}
4458 		if (!success) {
4459 			/* couldn't read this block, must give up */
4460 			set_bit(MD_RECOVERY_INTR,
4461 				&mddev->recovery);
4462 			return -EIO;
4463 		}
4464 		sectors -= s;
4465 		idx++;
4466 	}
4467 	return 0;
4468 }
4469 
4470 static void end_reshape_write(struct bio *bio, int error)
4471 {
4472 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4473 	struct r10bio *r10_bio = bio->bi_private;
4474 	struct mddev *mddev = r10_bio->mddev;
4475 	struct r10conf *conf = mddev->private;
4476 	int d;
4477 	int slot;
4478 	int repl;
4479 	struct md_rdev *rdev = NULL;
4480 
4481 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4482 	if (repl)
4483 		rdev = conf->mirrors[d].replacement;
4484 	if (!rdev) {
4485 		smp_mb();
4486 		rdev = conf->mirrors[d].rdev;
4487 	}
4488 
4489 	if (!uptodate) {
4490 		/* FIXME should record badblock */
4491 		md_error(mddev, rdev);
4492 	}
4493 
4494 	rdev_dec_pending(rdev, mddev);
4495 	end_reshape_request(r10_bio);
4496 }
4497 
4498 static void end_reshape_request(struct r10bio *r10_bio)
4499 {
4500 	if (!atomic_dec_and_test(&r10_bio->remaining))
4501 		return;
4502 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4503 	bio_put(r10_bio->master_bio);
4504 	put_buf(r10_bio);
4505 }
4506 
4507 static void raid10_finish_reshape(struct mddev *mddev)
4508 {
4509 	struct r10conf *conf = mddev->private;
4510 
4511 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4512 		return;
4513 
4514 	if (mddev->delta_disks > 0) {
4515 		sector_t size = raid10_size(mddev, 0, 0);
4516 		md_set_array_sectors(mddev, size);
4517 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4518 			mddev->recovery_cp = mddev->resync_max_sectors;
4519 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4520 		}
4521 		mddev->resync_max_sectors = size;
4522 		set_capacity(mddev->gendisk, mddev->array_sectors);
4523 		revalidate_disk(mddev->gendisk);
4524 	} else {
4525 		int d;
4526 		for (d = conf->geo.raid_disks ;
4527 		     d < conf->geo.raid_disks - mddev->delta_disks;
4528 		     d++) {
4529 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4530 			if (rdev)
4531 				clear_bit(In_sync, &rdev->flags);
4532 			rdev = conf->mirrors[d].replacement;
4533 			if (rdev)
4534 				clear_bit(In_sync, &rdev->flags);
4535 		}
4536 	}
4537 	mddev->layout = mddev->new_layout;
4538 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4539 	mddev->reshape_position = MaxSector;
4540 	mddev->delta_disks = 0;
4541 	mddev->reshape_backwards = 0;
4542 }
4543 
4544 static struct md_personality raid10_personality =
4545 {
4546 	.name		= "raid10",
4547 	.level		= 10,
4548 	.owner		= THIS_MODULE,
4549 	.make_request	= make_request,
4550 	.run		= run,
4551 	.stop		= stop,
4552 	.status		= status,
4553 	.error_handler	= error,
4554 	.hot_add_disk	= raid10_add_disk,
4555 	.hot_remove_disk= raid10_remove_disk,
4556 	.spare_active	= raid10_spare_active,
4557 	.sync_request	= sync_request,
4558 	.quiesce	= raid10_quiesce,
4559 	.size		= raid10_size,
4560 	.resize		= raid10_resize,
4561 	.takeover	= raid10_takeover,
4562 	.check_reshape	= raid10_check_reshape,
4563 	.start_reshape	= raid10_start_reshape,
4564 	.finish_reshape	= raid10_finish_reshape,
4565 };
4566 
4567 static int __init raid_init(void)
4568 {
4569 	return register_md_personality(&raid10_personality);
4570 }
4571 
4572 static void raid_exit(void)
4573 {
4574 	unregister_md_personality(&raid10_personality);
4575 }
4576 
4577 module_init(raid_init);
4578 module_exit(raid_exit);
4579 MODULE_LICENSE("GPL");
4580 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4581 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4582 MODULE_ALIAS("md-raid10");
4583 MODULE_ALIAS("md-level-10");
4584 
4585 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4586