1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 23 #define RAID_1_10_NAME "raid10" 24 #include "raid10.h" 25 #include "raid0.h" 26 #include "md-bitmap.h" 27 #include "md-cluster.h" 28 29 /* 30 * RAID10 provides a combination of RAID0 and RAID1 functionality. 31 * The layout of data is defined by 32 * chunk_size 33 * raid_disks 34 * near_copies (stored in low byte of layout) 35 * far_copies (stored in second byte of layout) 36 * far_offset (stored in bit 16 of layout ) 37 * use_far_sets (stored in bit 17 of layout ) 38 * use_far_sets_bugfixed (stored in bit 18 of layout ) 39 * 40 * The data to be stored is divided into chunks using chunksize. Each device 41 * is divided into far_copies sections. In each section, chunks are laid out 42 * in a style similar to raid0, but near_copies copies of each chunk is stored 43 * (each on a different drive). The starting device for each section is offset 44 * near_copies from the starting device of the previous section. Thus there 45 * are (near_copies * far_copies) of each chunk, and each is on a different 46 * drive. near_copies and far_copies must be at least one, and their product 47 * is at most raid_disks. 48 * 49 * If far_offset is true, then the far_copies are handled a bit differently. 50 * The copies are still in different stripes, but instead of being very far 51 * apart on disk, there are adjacent stripes. 52 * 53 * The far and offset algorithms are handled slightly differently if 54 * 'use_far_sets' is true. In this case, the array's devices are grouped into 55 * sets that are (near_copies * far_copies) in size. The far copied stripes 56 * are still shifted by 'near_copies' devices, but this shifting stays confined 57 * to the set rather than the entire array. This is done to improve the number 58 * of device combinations that can fail without causing the array to fail. 59 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 60 * on a device): 61 * A B C D A B C D E 62 * ... ... 63 * D A B C E A B C D 64 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 65 * [A B] [C D] [A B] [C D E] 66 * |...| |...| |...| | ... | 67 * [B A] [D C] [B A] [E C D] 68 */ 69 70 static void allow_barrier(struct r10conf *conf); 71 static void lower_barrier(struct r10conf *conf); 72 static int _enough(struct r10conf *conf, int previous, int ignore); 73 static int enough(struct r10conf *conf, int ignore); 74 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 75 int *skipped); 76 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 77 static void end_reshape_write(struct bio *bio); 78 static void end_reshape(struct r10conf *conf); 79 80 #include "raid1-10.c" 81 82 #define NULL_CMD 83 #define cmd_before(conf, cmd) \ 84 do { \ 85 write_sequnlock_irq(&(conf)->resync_lock); \ 86 cmd; \ 87 } while (0) 88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 89 90 #define wait_event_barrier_cmd(conf, cond, cmd) \ 91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 92 cmd_after(conf)) 93 94 #define wait_event_barrier(conf, cond) \ 95 wait_event_barrier_cmd(conf, cond, NULL_CMD) 96 97 /* 98 * for resync bio, r10bio pointer can be retrieved from the per-bio 99 * 'struct resync_pages'. 100 */ 101 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 102 { 103 return get_resync_pages(bio)->raid_bio; 104 } 105 106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 107 { 108 struct r10conf *conf = data; 109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 110 111 /* allocate a r10bio with room for raid_disks entries in the 112 * bios array */ 113 return kzalloc(size, gfp_flags); 114 } 115 116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 117 /* amount of memory to reserve for resync requests */ 118 #define RESYNC_WINDOW (1024*1024) 119 /* maximum number of concurrent requests, memory permitting */ 120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 123 124 /* 125 * When performing a resync, we need to read and compare, so 126 * we need as many pages are there are copies. 127 * When performing a recovery, we need 2 bios, one for read, 128 * one for write (we recover only one drive per r10buf) 129 * 130 */ 131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 132 { 133 struct r10conf *conf = data; 134 struct r10bio *r10_bio; 135 struct bio *bio; 136 int j; 137 int nalloc, nalloc_rp; 138 struct resync_pages *rps; 139 140 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 141 if (!r10_bio) 142 return NULL; 143 144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 146 nalloc = conf->copies; /* resync */ 147 else 148 nalloc = 2; /* recovery */ 149 150 /* allocate once for all bios */ 151 if (!conf->have_replacement) 152 nalloc_rp = nalloc; 153 else 154 nalloc_rp = nalloc * 2; 155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 156 if (!rps) 157 goto out_free_r10bio; 158 159 /* 160 * Allocate bios. 161 */ 162 for (j = nalloc ; j-- ; ) { 163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 164 if (!bio) 165 goto out_free_bio; 166 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 167 r10_bio->devs[j].bio = bio; 168 if (!conf->have_replacement) 169 continue; 170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 171 if (!bio) 172 goto out_free_bio; 173 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 174 r10_bio->devs[j].repl_bio = bio; 175 } 176 /* 177 * Allocate RESYNC_PAGES data pages and attach them 178 * where needed. 179 */ 180 for (j = 0; j < nalloc; j++) { 181 struct bio *rbio = r10_bio->devs[j].repl_bio; 182 struct resync_pages *rp, *rp_repl; 183 184 rp = &rps[j]; 185 if (rbio) 186 rp_repl = &rps[nalloc + j]; 187 188 bio = r10_bio->devs[j].bio; 189 190 if (!j || test_bit(MD_RECOVERY_SYNC, 191 &conf->mddev->recovery)) { 192 if (resync_alloc_pages(rp, gfp_flags)) 193 goto out_free_pages; 194 } else { 195 memcpy(rp, &rps[0], sizeof(*rp)); 196 resync_get_all_pages(rp); 197 } 198 199 rp->raid_bio = r10_bio; 200 bio->bi_private = rp; 201 if (rbio) { 202 memcpy(rp_repl, rp, sizeof(*rp)); 203 rbio->bi_private = rp_repl; 204 } 205 } 206 207 return r10_bio; 208 209 out_free_pages: 210 while (--j >= 0) 211 resync_free_pages(&rps[j]); 212 213 j = 0; 214 out_free_bio: 215 for ( ; j < nalloc; j++) { 216 if (r10_bio->devs[j].bio) 217 bio_uninit(r10_bio->devs[j].bio); 218 kfree(r10_bio->devs[j].bio); 219 if (r10_bio->devs[j].repl_bio) 220 bio_uninit(r10_bio->devs[j].repl_bio); 221 kfree(r10_bio->devs[j].repl_bio); 222 } 223 kfree(rps); 224 out_free_r10bio: 225 rbio_pool_free(r10_bio, conf); 226 return NULL; 227 } 228 229 static void r10buf_pool_free(void *__r10_bio, void *data) 230 { 231 struct r10conf *conf = data; 232 struct r10bio *r10bio = __r10_bio; 233 int j; 234 struct resync_pages *rp = NULL; 235 236 for (j = conf->copies; j--; ) { 237 struct bio *bio = r10bio->devs[j].bio; 238 239 if (bio) { 240 rp = get_resync_pages(bio); 241 resync_free_pages(rp); 242 bio_uninit(bio); 243 kfree(bio); 244 } 245 246 bio = r10bio->devs[j].repl_bio; 247 if (bio) { 248 bio_uninit(bio); 249 kfree(bio); 250 } 251 } 252 253 /* resync pages array stored in the 1st bio's .bi_private */ 254 kfree(rp); 255 256 rbio_pool_free(r10bio, conf); 257 } 258 259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 260 { 261 int i; 262 263 for (i = 0; i < conf->geo.raid_disks; i++) { 264 struct bio **bio = & r10_bio->devs[i].bio; 265 if (!BIO_SPECIAL(*bio)) 266 bio_put(*bio); 267 *bio = NULL; 268 bio = &r10_bio->devs[i].repl_bio; 269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 270 bio_put(*bio); 271 *bio = NULL; 272 } 273 } 274 275 static void free_r10bio(struct r10bio *r10_bio) 276 { 277 struct r10conf *conf = r10_bio->mddev->private; 278 279 put_all_bios(conf, r10_bio); 280 mempool_free(r10_bio, &conf->r10bio_pool); 281 } 282 283 static void put_buf(struct r10bio *r10_bio) 284 { 285 struct r10conf *conf = r10_bio->mddev->private; 286 287 mempool_free(r10_bio, &conf->r10buf_pool); 288 289 lower_barrier(conf); 290 } 291 292 static void wake_up_barrier(struct r10conf *conf) 293 { 294 if (wq_has_sleeper(&conf->wait_barrier)) 295 wake_up(&conf->wait_barrier); 296 } 297 298 static void reschedule_retry(struct r10bio *r10_bio) 299 { 300 unsigned long flags; 301 struct mddev *mddev = r10_bio->mddev; 302 struct r10conf *conf = mddev->private; 303 304 spin_lock_irqsave(&conf->device_lock, flags); 305 list_add(&r10_bio->retry_list, &conf->retry_list); 306 conf->nr_queued ++; 307 spin_unlock_irqrestore(&conf->device_lock, flags); 308 309 /* wake up frozen array... */ 310 wake_up(&conf->wait_barrier); 311 312 md_wakeup_thread(mddev->thread); 313 } 314 315 /* 316 * raid_end_bio_io() is called when we have finished servicing a mirrored 317 * operation and are ready to return a success/failure code to the buffer 318 * cache layer. 319 */ 320 static void raid_end_bio_io(struct r10bio *r10_bio) 321 { 322 struct bio *bio = r10_bio->master_bio; 323 struct r10conf *conf = r10_bio->mddev->private; 324 325 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 326 bio->bi_status = BLK_STS_IOERR; 327 328 bio_endio(bio); 329 /* 330 * Wake up any possible resync thread that waits for the device 331 * to go idle. 332 */ 333 allow_barrier(conf); 334 335 free_r10bio(r10_bio); 336 } 337 338 /* 339 * Update disk head position estimator based on IRQ completion info. 340 */ 341 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 342 { 343 struct r10conf *conf = r10_bio->mddev->private; 344 345 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 346 r10_bio->devs[slot].addr + (r10_bio->sectors); 347 } 348 349 /* 350 * Find the disk number which triggered given bio 351 */ 352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 353 struct bio *bio, int *slotp, int *replp) 354 { 355 int slot; 356 int repl = 0; 357 358 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 359 if (r10_bio->devs[slot].bio == bio) 360 break; 361 if (r10_bio->devs[slot].repl_bio == bio) { 362 repl = 1; 363 break; 364 } 365 } 366 367 update_head_pos(slot, r10_bio); 368 369 if (slotp) 370 *slotp = slot; 371 if (replp) 372 *replp = repl; 373 return r10_bio->devs[slot].devnum; 374 } 375 376 static void raid10_end_read_request(struct bio *bio) 377 { 378 int uptodate = !bio->bi_status; 379 struct r10bio *r10_bio = bio->bi_private; 380 int slot; 381 struct md_rdev *rdev; 382 struct r10conf *conf = r10_bio->mddev->private; 383 384 slot = r10_bio->read_slot; 385 rdev = r10_bio->devs[slot].rdev; 386 /* 387 * this branch is our 'one mirror IO has finished' event handler: 388 */ 389 update_head_pos(slot, r10_bio); 390 391 if (uptodate) { 392 /* 393 * Set R10BIO_Uptodate in our master bio, so that 394 * we will return a good error code to the higher 395 * levels even if IO on some other mirrored buffer fails. 396 * 397 * The 'master' represents the composite IO operation to 398 * user-side. So if something waits for IO, then it will 399 * wait for the 'master' bio. 400 */ 401 set_bit(R10BIO_Uptodate, &r10_bio->state); 402 } else if (!raid1_should_handle_error(bio)) { 403 uptodate = 1; 404 } else { 405 /* If all other devices that store this block have 406 * failed, we want to return the error upwards rather 407 * than fail the last device. Here we redefine 408 * "uptodate" to mean "Don't want to retry" 409 */ 410 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 411 rdev->raid_disk)) 412 uptodate = 1; 413 } 414 if (uptodate) { 415 raid_end_bio_io(r10_bio); 416 rdev_dec_pending(rdev, conf->mddev); 417 } else { 418 /* 419 * oops, read error - keep the refcount on the rdev 420 */ 421 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 422 mdname(conf->mddev), 423 rdev->bdev, 424 (unsigned long long)r10_bio->sector); 425 set_bit(R10BIO_ReadError, &r10_bio->state); 426 reschedule_retry(r10_bio); 427 } 428 } 429 430 static void close_write(struct r10bio *r10_bio) 431 { 432 struct mddev *mddev = r10_bio->mddev; 433 434 md_write_end(mddev); 435 } 436 437 static void one_write_done(struct r10bio *r10_bio) 438 { 439 if (atomic_dec_and_test(&r10_bio->remaining)) { 440 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 441 reschedule_retry(r10_bio); 442 else { 443 close_write(r10_bio); 444 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 445 reschedule_retry(r10_bio); 446 else 447 raid_end_bio_io(r10_bio); 448 } 449 } 450 } 451 452 static void raid10_end_write_request(struct bio *bio) 453 { 454 struct r10bio *r10_bio = bio->bi_private; 455 int dev; 456 int dec_rdev = 1; 457 struct r10conf *conf = r10_bio->mddev->private; 458 int slot, repl; 459 struct md_rdev *rdev = NULL; 460 struct bio *to_put = NULL; 461 bool ignore_error = !raid1_should_handle_error(bio) || 462 (bio->bi_status && bio_op(bio) == REQ_OP_DISCARD); 463 464 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 465 466 if (repl) 467 rdev = conf->mirrors[dev].replacement; 468 if (!rdev) { 469 smp_rmb(); 470 repl = 0; 471 rdev = conf->mirrors[dev].rdev; 472 } 473 /* 474 * this branch is our 'one mirror IO has finished' event handler: 475 */ 476 if (bio->bi_status && !ignore_error) { 477 if (repl) 478 /* Never record new bad blocks to replacement, 479 * just fail it. 480 */ 481 md_error(rdev->mddev, rdev); 482 else { 483 set_bit(WriteErrorSeen, &rdev->flags); 484 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 485 set_bit(MD_RECOVERY_NEEDED, 486 &rdev->mddev->recovery); 487 488 dec_rdev = 0; 489 if (test_bit(FailFast, &rdev->flags) && 490 (bio->bi_opf & MD_FAILFAST)) { 491 md_error(rdev->mddev, rdev); 492 } 493 494 /* 495 * When the device is faulty, it is not necessary to 496 * handle write error. 497 */ 498 if (!test_bit(Faulty, &rdev->flags)) 499 set_bit(R10BIO_WriteError, &r10_bio->state); 500 else { 501 /* Fail the request */ 502 r10_bio->devs[slot].bio = NULL; 503 to_put = bio; 504 dec_rdev = 1; 505 } 506 } 507 } else { 508 /* 509 * Set R10BIO_Uptodate in our master bio, so that 510 * we will return a good error code for to the higher 511 * levels even if IO on some other mirrored buffer fails. 512 * 513 * The 'master' represents the composite IO operation to 514 * user-side. So if something waits for IO, then it will 515 * wait for the 'master' bio. 516 * 517 * Do not set R10BIO_Uptodate if the current device is 518 * rebuilding or Faulty. This is because we cannot use 519 * such device for properly reading the data back (we could 520 * potentially use it, if the current write would have felt 521 * before rdev->recovery_offset, but for simplicity we don't 522 * check this here. 523 */ 524 if (test_bit(In_sync, &rdev->flags) && 525 !test_bit(Faulty, &rdev->flags)) 526 set_bit(R10BIO_Uptodate, &r10_bio->state); 527 528 /* Maybe we can clear some bad blocks. */ 529 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 530 r10_bio->sectors) && 531 !ignore_error) { 532 bio_put(bio); 533 if (repl) 534 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 535 else 536 r10_bio->devs[slot].bio = IO_MADE_GOOD; 537 dec_rdev = 0; 538 set_bit(R10BIO_MadeGood, &r10_bio->state); 539 } 540 } 541 542 /* 543 * 544 * Let's see if all mirrored write operations have finished 545 * already. 546 */ 547 one_write_done(r10_bio); 548 if (dec_rdev) 549 rdev_dec_pending(rdev, conf->mddev); 550 if (to_put) 551 bio_put(to_put); 552 } 553 554 /* 555 * RAID10 layout manager 556 * As well as the chunksize and raid_disks count, there are two 557 * parameters: near_copies and far_copies. 558 * near_copies * far_copies must be <= raid_disks. 559 * Normally one of these will be 1. 560 * If both are 1, we get raid0. 561 * If near_copies == raid_disks, we get raid1. 562 * 563 * Chunks are laid out in raid0 style with near_copies copies of the 564 * first chunk, followed by near_copies copies of the next chunk and 565 * so on. 566 * If far_copies > 1, then after 1/far_copies of the array has been assigned 567 * as described above, we start again with a device offset of near_copies. 568 * So we effectively have another copy of the whole array further down all 569 * the drives, but with blocks on different drives. 570 * With this layout, and block is never stored twice on the one device. 571 * 572 * raid10_find_phys finds the sector offset of a given virtual sector 573 * on each device that it is on. 574 * 575 * raid10_find_virt does the reverse mapping, from a device and a 576 * sector offset to a virtual address 577 */ 578 579 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 580 { 581 int n,f; 582 sector_t sector; 583 sector_t chunk; 584 sector_t stripe; 585 int dev; 586 int slot = 0; 587 int last_far_set_start, last_far_set_size; 588 589 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 590 last_far_set_start *= geo->far_set_size; 591 592 last_far_set_size = geo->far_set_size; 593 last_far_set_size += (geo->raid_disks % geo->far_set_size); 594 595 /* now calculate first sector/dev */ 596 chunk = r10bio->sector >> geo->chunk_shift; 597 sector = r10bio->sector & geo->chunk_mask; 598 599 chunk *= geo->near_copies; 600 stripe = chunk; 601 dev = sector_div(stripe, geo->raid_disks); 602 if (geo->far_offset) 603 stripe *= geo->far_copies; 604 605 sector += stripe << geo->chunk_shift; 606 607 /* and calculate all the others */ 608 for (n = 0; n < geo->near_copies; n++) { 609 int d = dev; 610 int set; 611 sector_t s = sector; 612 r10bio->devs[slot].devnum = d; 613 r10bio->devs[slot].addr = s; 614 slot++; 615 616 for (f = 1; f < geo->far_copies; f++) { 617 set = d / geo->far_set_size; 618 d += geo->near_copies; 619 620 if ((geo->raid_disks % geo->far_set_size) && 621 (d > last_far_set_start)) { 622 d -= last_far_set_start; 623 d %= last_far_set_size; 624 d += last_far_set_start; 625 } else { 626 d %= geo->far_set_size; 627 d += geo->far_set_size * set; 628 } 629 s += geo->stride; 630 r10bio->devs[slot].devnum = d; 631 r10bio->devs[slot].addr = s; 632 slot++; 633 } 634 dev++; 635 if (dev >= geo->raid_disks) { 636 dev = 0; 637 sector += (geo->chunk_mask + 1); 638 } 639 } 640 } 641 642 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 643 { 644 struct geom *geo = &conf->geo; 645 646 if (conf->reshape_progress != MaxSector && 647 ((r10bio->sector >= conf->reshape_progress) != 648 conf->mddev->reshape_backwards)) { 649 set_bit(R10BIO_Previous, &r10bio->state); 650 geo = &conf->prev; 651 } else 652 clear_bit(R10BIO_Previous, &r10bio->state); 653 654 __raid10_find_phys(geo, r10bio); 655 } 656 657 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 658 { 659 sector_t offset, chunk, vchunk; 660 /* Never use conf->prev as this is only called during resync 661 * or recovery, so reshape isn't happening 662 */ 663 struct geom *geo = &conf->geo; 664 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 665 int far_set_size = geo->far_set_size; 666 int last_far_set_start; 667 668 if (geo->raid_disks % geo->far_set_size) { 669 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 670 last_far_set_start *= geo->far_set_size; 671 672 if (dev >= last_far_set_start) { 673 far_set_size = geo->far_set_size; 674 far_set_size += (geo->raid_disks % geo->far_set_size); 675 far_set_start = last_far_set_start; 676 } 677 } 678 679 offset = sector & geo->chunk_mask; 680 if (geo->far_offset) { 681 int fc; 682 chunk = sector >> geo->chunk_shift; 683 fc = sector_div(chunk, geo->far_copies); 684 dev -= fc * geo->near_copies; 685 if (dev < far_set_start) 686 dev += far_set_size; 687 } else { 688 while (sector >= geo->stride) { 689 sector -= geo->stride; 690 if (dev < (geo->near_copies + far_set_start)) 691 dev += far_set_size - geo->near_copies; 692 else 693 dev -= geo->near_copies; 694 } 695 chunk = sector >> geo->chunk_shift; 696 } 697 vchunk = chunk * geo->raid_disks + dev; 698 sector_div(vchunk, geo->near_copies); 699 return (vchunk << geo->chunk_shift) + offset; 700 } 701 702 /* 703 * This routine returns the disk from which the requested read should 704 * be done. There is a per-array 'next expected sequential IO' sector 705 * number - if this matches on the next IO then we use the last disk. 706 * There is also a per-disk 'last know head position' sector that is 707 * maintained from IRQ contexts, both the normal and the resync IO 708 * completion handlers update this position correctly. If there is no 709 * perfect sequential match then we pick the disk whose head is closest. 710 * 711 * If there are 2 mirrors in the same 2 devices, performance degrades 712 * because position is mirror, not device based. 713 * 714 * The rdev for the device selected will have nr_pending incremented. 715 */ 716 717 /* 718 * FIXME: possibly should rethink readbalancing and do it differently 719 * depending on near_copies / far_copies geometry. 720 */ 721 static struct md_rdev *read_balance(struct r10conf *conf, 722 struct r10bio *r10_bio, 723 int *max_sectors) 724 { 725 const sector_t this_sector = r10_bio->sector; 726 int disk, slot; 727 int sectors = r10_bio->sectors; 728 int best_good_sectors; 729 sector_t new_distance, best_dist; 730 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 731 int do_balance; 732 int best_dist_slot, best_pending_slot; 733 bool has_nonrot_disk = false; 734 unsigned int min_pending; 735 struct geom *geo = &conf->geo; 736 737 raid10_find_phys(conf, r10_bio); 738 best_dist_slot = -1; 739 min_pending = UINT_MAX; 740 best_dist_rdev = NULL; 741 best_pending_rdev = NULL; 742 best_dist = MaxSector; 743 best_good_sectors = 0; 744 do_balance = 1; 745 clear_bit(R10BIO_FailFast, &r10_bio->state); 746 747 if (raid1_should_read_first(conf->mddev, this_sector, sectors)) 748 do_balance = 0; 749 750 for (slot = 0; slot < conf->copies ; slot++) { 751 sector_t first_bad; 752 sector_t bad_sectors; 753 sector_t dev_sector; 754 unsigned int pending; 755 bool nonrot; 756 757 if (r10_bio->devs[slot].bio == IO_BLOCKED) 758 continue; 759 disk = r10_bio->devs[slot].devnum; 760 rdev = conf->mirrors[disk].replacement; 761 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 762 r10_bio->devs[slot].addr + sectors > 763 rdev->recovery_offset) 764 rdev = conf->mirrors[disk].rdev; 765 if (rdev == NULL || 766 test_bit(Faulty, &rdev->flags)) 767 continue; 768 if (!test_bit(In_sync, &rdev->flags) && 769 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 770 continue; 771 772 dev_sector = r10_bio->devs[slot].addr; 773 if (is_badblock(rdev, dev_sector, sectors, 774 &first_bad, &bad_sectors)) { 775 if (best_dist < MaxSector) 776 /* Already have a better slot */ 777 continue; 778 if (first_bad <= dev_sector) { 779 /* Cannot read here. If this is the 780 * 'primary' device, then we must not read 781 * beyond 'bad_sectors' from another device. 782 */ 783 bad_sectors -= (dev_sector - first_bad); 784 if (!do_balance && sectors > bad_sectors) 785 sectors = bad_sectors; 786 if (best_good_sectors > sectors) 787 best_good_sectors = sectors; 788 } else { 789 sector_t good_sectors = 790 first_bad - dev_sector; 791 if (good_sectors > best_good_sectors) { 792 best_good_sectors = good_sectors; 793 best_dist_slot = slot; 794 best_dist_rdev = rdev; 795 } 796 if (!do_balance) 797 /* Must read from here */ 798 break; 799 } 800 continue; 801 } else 802 best_good_sectors = sectors; 803 804 if (!do_balance) 805 break; 806 807 nonrot = bdev_nonrot(rdev->bdev); 808 has_nonrot_disk |= nonrot; 809 pending = atomic_read(&rdev->nr_pending); 810 if (min_pending > pending && nonrot) { 811 min_pending = pending; 812 best_pending_slot = slot; 813 best_pending_rdev = rdev; 814 } 815 816 if (best_dist_slot >= 0) 817 /* At least 2 disks to choose from so failfast is OK */ 818 set_bit(R10BIO_FailFast, &r10_bio->state); 819 /* This optimisation is debatable, and completely destroys 820 * sequential read speed for 'far copies' arrays. So only 821 * keep it for 'near' arrays, and review those later. 822 */ 823 if (geo->near_copies > 1 && !pending) 824 new_distance = 0; 825 826 /* for far > 1 always use the lowest address */ 827 else if (geo->far_copies > 1) 828 new_distance = r10_bio->devs[slot].addr; 829 else 830 new_distance = abs(r10_bio->devs[slot].addr - 831 conf->mirrors[disk].head_position); 832 833 if (new_distance < best_dist) { 834 best_dist = new_distance; 835 best_dist_slot = slot; 836 best_dist_rdev = rdev; 837 } 838 } 839 if (slot >= conf->copies) { 840 if (has_nonrot_disk) { 841 slot = best_pending_slot; 842 rdev = best_pending_rdev; 843 } else { 844 slot = best_dist_slot; 845 rdev = best_dist_rdev; 846 } 847 } 848 849 if (slot >= 0) { 850 atomic_inc(&rdev->nr_pending); 851 r10_bio->read_slot = slot; 852 } else 853 rdev = NULL; 854 *max_sectors = best_good_sectors; 855 856 return rdev; 857 } 858 859 static void flush_pending_writes(struct r10conf *conf) 860 { 861 /* Any writes that have been queued but are awaiting 862 * bitmap updates get flushed here. 863 */ 864 spin_lock_irq(&conf->device_lock); 865 866 if (conf->pending_bio_list.head) { 867 struct blk_plug plug; 868 struct bio *bio; 869 870 bio = bio_list_get(&conf->pending_bio_list); 871 spin_unlock_irq(&conf->device_lock); 872 873 /* 874 * As this is called in a wait_event() loop (see freeze_array), 875 * current->state might be TASK_UNINTERRUPTIBLE which will 876 * cause a warning when we prepare to wait again. As it is 877 * rare that this path is taken, it is perfectly safe to force 878 * us to go around the wait_event() loop again, so the warning 879 * is a false-positive. Silence the warning by resetting 880 * thread state 881 */ 882 __set_current_state(TASK_RUNNING); 883 884 blk_start_plug(&plug); 885 raid1_prepare_flush_writes(conf->mddev); 886 wake_up(&conf->wait_barrier); 887 888 while (bio) { /* submit pending writes */ 889 struct bio *next = bio->bi_next; 890 891 raid1_submit_write(bio); 892 bio = next; 893 cond_resched(); 894 } 895 blk_finish_plug(&plug); 896 } else 897 spin_unlock_irq(&conf->device_lock); 898 } 899 900 /* Barriers.... 901 * Sometimes we need to suspend IO while we do something else, 902 * either some resync/recovery, or reconfigure the array. 903 * To do this we raise a 'barrier'. 904 * The 'barrier' is a counter that can be raised multiple times 905 * to count how many activities are happening which preclude 906 * normal IO. 907 * We can only raise the barrier if there is no pending IO. 908 * i.e. if nr_pending == 0. 909 * We choose only to raise the barrier if no-one is waiting for the 910 * barrier to go down. This means that as soon as an IO request 911 * is ready, no other operations which require a barrier will start 912 * until the IO request has had a chance. 913 * 914 * So: regular IO calls 'wait_barrier'. When that returns there 915 * is no backgroup IO happening, It must arrange to call 916 * allow_barrier when it has finished its IO. 917 * backgroup IO calls must call raise_barrier. Once that returns 918 * there is no normal IO happeing. It must arrange to call 919 * lower_barrier when the particular background IO completes. 920 */ 921 922 static void raise_barrier(struct r10conf *conf, int force) 923 { 924 write_seqlock_irq(&conf->resync_lock); 925 926 if (WARN_ON_ONCE(force && !conf->barrier)) 927 force = false; 928 929 /* Wait until no block IO is waiting (unless 'force') */ 930 wait_event_barrier(conf, force || !conf->nr_waiting); 931 932 /* block any new IO from starting */ 933 WRITE_ONCE(conf->barrier, conf->barrier + 1); 934 935 /* Now wait for all pending IO to complete */ 936 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 937 conf->barrier < RESYNC_DEPTH); 938 939 write_sequnlock_irq(&conf->resync_lock); 940 } 941 942 static void lower_barrier(struct r10conf *conf) 943 { 944 unsigned long flags; 945 946 write_seqlock_irqsave(&conf->resync_lock, flags); 947 WRITE_ONCE(conf->barrier, conf->barrier - 1); 948 write_sequnlock_irqrestore(&conf->resync_lock, flags); 949 wake_up(&conf->wait_barrier); 950 } 951 952 static bool stop_waiting_barrier(struct r10conf *conf) 953 { 954 struct bio_list *bio_list = current->bio_list; 955 struct md_thread *thread; 956 957 /* barrier is dropped */ 958 if (!conf->barrier) 959 return true; 960 961 /* 962 * If there are already pending requests (preventing the barrier from 963 * rising completely), and the pre-process bio queue isn't empty, then 964 * don't wait, as we need to empty that queue to get the nr_pending 965 * count down. 966 */ 967 if (atomic_read(&conf->nr_pending) && bio_list && 968 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 969 return true; 970 971 /* daemon thread must exist while handling io */ 972 thread = rcu_dereference_protected(conf->mddev->thread, true); 973 /* 974 * move on if io is issued from raid10d(), nr_pending is not released 975 * from original io(see handle_read_error()). All raise barrier is 976 * blocked until this io is done. 977 */ 978 if (thread->tsk == current) { 979 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 980 return true; 981 } 982 983 return false; 984 } 985 986 static bool wait_barrier_nolock(struct r10conf *conf) 987 { 988 unsigned int seq = read_seqbegin(&conf->resync_lock); 989 990 if (READ_ONCE(conf->barrier)) 991 return false; 992 993 atomic_inc(&conf->nr_pending); 994 if (!read_seqretry(&conf->resync_lock, seq)) 995 return true; 996 997 if (atomic_dec_and_test(&conf->nr_pending)) 998 wake_up_barrier(conf); 999 1000 return false; 1001 } 1002 1003 static bool wait_barrier(struct r10conf *conf, bool nowait) 1004 { 1005 bool ret = true; 1006 1007 if (wait_barrier_nolock(conf)) 1008 return true; 1009 1010 write_seqlock_irq(&conf->resync_lock); 1011 if (conf->barrier) { 1012 /* Return false when nowait flag is set */ 1013 if (nowait) { 1014 ret = false; 1015 } else { 1016 conf->nr_waiting++; 1017 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier"); 1018 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1019 conf->nr_waiting--; 1020 } 1021 if (!conf->nr_waiting) 1022 wake_up(&conf->wait_barrier); 1023 } 1024 /* Only increment nr_pending when we wait */ 1025 if (ret) 1026 atomic_inc(&conf->nr_pending); 1027 write_sequnlock_irq(&conf->resync_lock); 1028 return ret; 1029 } 1030 1031 static void allow_barrier(struct r10conf *conf) 1032 { 1033 if ((atomic_dec_and_test(&conf->nr_pending)) || 1034 (conf->array_freeze_pending)) 1035 wake_up_barrier(conf); 1036 } 1037 1038 static void freeze_array(struct r10conf *conf, int extra) 1039 { 1040 /* stop syncio and normal IO and wait for everything to 1041 * go quiet. 1042 * We increment barrier and nr_waiting, and then 1043 * wait until nr_pending match nr_queued+extra 1044 * This is called in the context of one normal IO request 1045 * that has failed. Thus any sync request that might be pending 1046 * will be blocked by nr_pending, and we need to wait for 1047 * pending IO requests to complete or be queued for re-try. 1048 * Thus the number queued (nr_queued) plus this request (extra) 1049 * must match the number of pending IOs (nr_pending) before 1050 * we continue. 1051 */ 1052 write_seqlock_irq(&conf->resync_lock); 1053 conf->array_freeze_pending++; 1054 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1055 conf->nr_waiting++; 1056 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1057 conf->nr_queued + extra, flush_pending_writes(conf)); 1058 conf->array_freeze_pending--; 1059 write_sequnlock_irq(&conf->resync_lock); 1060 } 1061 1062 static void unfreeze_array(struct r10conf *conf) 1063 { 1064 /* reverse the effect of the freeze */ 1065 write_seqlock_irq(&conf->resync_lock); 1066 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1067 conf->nr_waiting--; 1068 wake_up(&conf->wait_barrier); 1069 write_sequnlock_irq(&conf->resync_lock); 1070 } 1071 1072 static sector_t choose_data_offset(struct r10bio *r10_bio, 1073 struct md_rdev *rdev) 1074 { 1075 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1076 test_bit(R10BIO_Previous, &r10_bio->state)) 1077 return rdev->data_offset; 1078 else 1079 return rdev->new_data_offset; 1080 } 1081 1082 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1083 { 1084 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1085 struct mddev *mddev = plug->cb.data; 1086 struct r10conf *conf = mddev->private; 1087 struct bio *bio; 1088 1089 if (from_schedule) { 1090 spin_lock_irq(&conf->device_lock); 1091 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1092 spin_unlock_irq(&conf->device_lock); 1093 wake_up_barrier(conf); 1094 md_wakeup_thread(mddev->thread); 1095 kfree(plug); 1096 return; 1097 } 1098 1099 /* we aren't scheduling, so we can do the write-out directly. */ 1100 bio = bio_list_get(&plug->pending); 1101 raid1_prepare_flush_writes(mddev); 1102 wake_up_barrier(conf); 1103 1104 while (bio) { /* submit pending writes */ 1105 struct bio *next = bio->bi_next; 1106 1107 raid1_submit_write(bio); 1108 bio = next; 1109 cond_resched(); 1110 } 1111 kfree(plug); 1112 } 1113 1114 /* 1115 * 1. Register the new request and wait if the reconstruction thread has put 1116 * up a bar for new requests. Continue immediately if no resync is active 1117 * currently. 1118 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1119 */ 1120 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1121 struct bio *bio, sector_t sectors) 1122 { 1123 /* Bail out if REQ_NOWAIT is set for the bio */ 1124 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1125 bio_wouldblock_error(bio); 1126 return false; 1127 } 1128 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1129 bio->bi_iter.bi_sector < conf->reshape_progress && 1130 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1131 allow_barrier(conf); 1132 if (bio->bi_opf & REQ_NOWAIT) { 1133 bio_wouldblock_error(bio); 1134 return false; 1135 } 1136 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape"); 1137 wait_event(conf->wait_barrier, 1138 conf->reshape_progress <= bio->bi_iter.bi_sector || 1139 conf->reshape_progress >= bio->bi_iter.bi_sector + 1140 sectors); 1141 wait_barrier(conf, false); 1142 } 1143 return true; 1144 } 1145 1146 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1147 struct r10bio *r10_bio, bool io_accounting) 1148 { 1149 struct r10conf *conf = mddev->private; 1150 struct bio *read_bio; 1151 int max_sectors; 1152 struct md_rdev *rdev; 1153 char b[BDEVNAME_SIZE]; 1154 int slot = r10_bio->read_slot; 1155 struct md_rdev *err_rdev = NULL; 1156 gfp_t gfp = GFP_NOIO; 1157 int error; 1158 1159 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1160 /* 1161 * This is an error retry, but we cannot 1162 * safely dereference the rdev in the r10_bio, 1163 * we must use the one in conf. 1164 * If it has already been disconnected (unlikely) 1165 * we lose the device name in error messages. 1166 */ 1167 int disk; 1168 /* 1169 * As we are blocking raid10, it is a little safer to 1170 * use __GFP_HIGH. 1171 */ 1172 gfp = GFP_NOIO | __GFP_HIGH; 1173 1174 disk = r10_bio->devs[slot].devnum; 1175 err_rdev = conf->mirrors[disk].rdev; 1176 if (err_rdev) 1177 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1178 else { 1179 strcpy(b, "???"); 1180 /* This never gets dereferenced */ 1181 err_rdev = r10_bio->devs[slot].rdev; 1182 } 1183 } 1184 1185 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1186 return; 1187 rdev = read_balance(conf, r10_bio, &max_sectors); 1188 if (!rdev) { 1189 if (err_rdev) { 1190 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1191 mdname(mddev), b, 1192 (unsigned long long)r10_bio->sector); 1193 } 1194 raid_end_bio_io(r10_bio); 1195 return; 1196 } 1197 if (err_rdev) 1198 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1199 mdname(mddev), 1200 rdev->bdev, 1201 (unsigned long long)r10_bio->sector); 1202 if (max_sectors < bio_sectors(bio)) { 1203 struct bio *split = bio_split(bio, max_sectors, 1204 gfp, &conf->bio_split); 1205 if (IS_ERR(split)) { 1206 error = PTR_ERR(split); 1207 goto err_handle; 1208 } 1209 bio_chain(split, bio); 1210 allow_barrier(conf); 1211 submit_bio_noacct(bio); 1212 wait_barrier(conf, false); 1213 bio = split; 1214 r10_bio->master_bio = bio; 1215 r10_bio->sectors = max_sectors; 1216 } 1217 slot = r10_bio->read_slot; 1218 1219 if (io_accounting) { 1220 md_account_bio(mddev, &bio); 1221 r10_bio->master_bio = bio; 1222 } 1223 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1224 1225 r10_bio->devs[slot].bio = read_bio; 1226 r10_bio->devs[slot].rdev = rdev; 1227 1228 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1229 choose_data_offset(r10_bio, rdev); 1230 read_bio->bi_end_io = raid10_end_read_request; 1231 if (test_bit(FailFast, &rdev->flags) && 1232 test_bit(R10BIO_FailFast, &r10_bio->state)) 1233 read_bio->bi_opf |= MD_FAILFAST; 1234 read_bio->bi_private = r10_bio; 1235 mddev_trace_remap(mddev, read_bio, r10_bio->sector); 1236 submit_bio_noacct(read_bio); 1237 return; 1238 err_handle: 1239 atomic_dec(&rdev->nr_pending); 1240 bio->bi_status = errno_to_blk_status(error); 1241 set_bit(R10BIO_Uptodate, &r10_bio->state); 1242 raid_end_bio_io(r10_bio); 1243 } 1244 1245 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1246 struct bio *bio, bool replacement, 1247 int n_copy) 1248 { 1249 unsigned long flags; 1250 struct r10conf *conf = mddev->private; 1251 struct md_rdev *rdev; 1252 int devnum = r10_bio->devs[n_copy].devnum; 1253 struct bio *mbio; 1254 1255 rdev = replacement ? conf->mirrors[devnum].replacement : 1256 conf->mirrors[devnum].rdev; 1257 1258 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1259 if (replacement) 1260 r10_bio->devs[n_copy].repl_bio = mbio; 1261 else 1262 r10_bio->devs[n_copy].bio = mbio; 1263 1264 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1265 choose_data_offset(r10_bio, rdev)); 1266 mbio->bi_end_io = raid10_end_write_request; 1267 if (!replacement && test_bit(FailFast, 1268 &conf->mirrors[devnum].rdev->flags) 1269 && enough(conf, devnum)) 1270 mbio->bi_opf |= MD_FAILFAST; 1271 mbio->bi_private = r10_bio; 1272 mddev_trace_remap(mddev, mbio, r10_bio->sector); 1273 /* flush_pending_writes() needs access to the rdev so...*/ 1274 mbio->bi_bdev = (void *)rdev; 1275 1276 atomic_inc(&r10_bio->remaining); 1277 1278 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) { 1279 spin_lock_irqsave(&conf->device_lock, flags); 1280 bio_list_add(&conf->pending_bio_list, mbio); 1281 spin_unlock_irqrestore(&conf->device_lock, flags); 1282 md_wakeup_thread(mddev->thread); 1283 } 1284 } 1285 1286 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1287 { 1288 struct r10conf *conf = mddev->private; 1289 struct md_rdev *blocked_rdev; 1290 int i; 1291 1292 retry_wait: 1293 blocked_rdev = NULL; 1294 for (i = 0; i < conf->copies; i++) { 1295 struct md_rdev *rdev, *rrdev; 1296 1297 rdev = conf->mirrors[i].rdev; 1298 if (rdev) { 1299 sector_t dev_sector = r10_bio->devs[i].addr; 1300 1301 /* 1302 * Discard request doesn't care the write result 1303 * so it doesn't need to wait blocked disk here. 1304 */ 1305 if (test_bit(WriteErrorSeen, &rdev->flags) && 1306 r10_bio->sectors && 1307 rdev_has_badblock(rdev, dev_sector, 1308 r10_bio->sectors) < 0) 1309 /* 1310 * Mustn't write here until the bad 1311 * block is acknowledged 1312 */ 1313 set_bit(BlockedBadBlocks, &rdev->flags); 1314 1315 if (rdev_blocked(rdev)) { 1316 blocked_rdev = rdev; 1317 atomic_inc(&rdev->nr_pending); 1318 break; 1319 } 1320 } 1321 1322 rrdev = conf->mirrors[i].replacement; 1323 if (rrdev && rdev_blocked(rrdev)) { 1324 atomic_inc(&rrdev->nr_pending); 1325 blocked_rdev = rrdev; 1326 break; 1327 } 1328 } 1329 1330 if (unlikely(blocked_rdev)) { 1331 /* Have to wait for this device to get unblocked, then retry */ 1332 allow_barrier(conf); 1333 mddev_add_trace_msg(conf->mddev, 1334 "raid10 %s wait rdev %d blocked", 1335 __func__, blocked_rdev->raid_disk); 1336 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1337 wait_barrier(conf, false); 1338 goto retry_wait; 1339 } 1340 } 1341 1342 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1343 struct r10bio *r10_bio) 1344 { 1345 struct r10conf *conf = mddev->private; 1346 int i, k; 1347 sector_t sectors; 1348 int max_sectors; 1349 int error; 1350 1351 if ((mddev_is_clustered(mddev) && 1352 mddev->cluster_ops->area_resyncing(mddev, WRITE, 1353 bio->bi_iter.bi_sector, 1354 bio_end_sector(bio)))) { 1355 DEFINE_WAIT(w); 1356 /* Bail out if REQ_NOWAIT is set for the bio */ 1357 if (bio->bi_opf & REQ_NOWAIT) { 1358 bio_wouldblock_error(bio); 1359 return; 1360 } 1361 for (;;) { 1362 prepare_to_wait(&conf->wait_barrier, 1363 &w, TASK_IDLE); 1364 if (!mddev->cluster_ops->area_resyncing(mddev, WRITE, 1365 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1366 break; 1367 schedule(); 1368 } 1369 finish_wait(&conf->wait_barrier, &w); 1370 } 1371 1372 sectors = r10_bio->sectors; 1373 if (!regular_request_wait(mddev, conf, bio, sectors)) 1374 return; 1375 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1376 (mddev->reshape_backwards 1377 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1378 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1379 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1380 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1381 /* Need to update reshape_position in metadata */ 1382 mddev->reshape_position = conf->reshape_progress; 1383 set_mask_bits(&mddev->sb_flags, 0, 1384 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1385 md_wakeup_thread(mddev->thread); 1386 if (bio->bi_opf & REQ_NOWAIT) { 1387 allow_barrier(conf); 1388 bio_wouldblock_error(bio); 1389 return; 1390 } 1391 mddev_add_trace_msg(conf->mddev, 1392 "raid10 wait reshape metadata"); 1393 wait_event(mddev->sb_wait, 1394 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1395 1396 conf->reshape_safe = mddev->reshape_position; 1397 } 1398 1399 /* first select target devices under rcu_lock and 1400 * inc refcount on their rdev. Record them by setting 1401 * bios[x] to bio 1402 * If there are known/acknowledged bad blocks on any device 1403 * on which we have seen a write error, we want to avoid 1404 * writing to those blocks. This potentially requires several 1405 * writes to write around the bad blocks. Each set of writes 1406 * gets its own r10_bio with a set of bios attached. 1407 */ 1408 1409 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1410 raid10_find_phys(conf, r10_bio); 1411 1412 wait_blocked_dev(mddev, r10_bio); 1413 1414 max_sectors = r10_bio->sectors; 1415 1416 for (i = 0; i < conf->copies; i++) { 1417 int d = r10_bio->devs[i].devnum; 1418 struct md_rdev *rdev, *rrdev; 1419 1420 rdev = conf->mirrors[d].rdev; 1421 rrdev = conf->mirrors[d].replacement; 1422 if (rdev && (test_bit(Faulty, &rdev->flags))) 1423 rdev = NULL; 1424 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1425 rrdev = NULL; 1426 1427 r10_bio->devs[i].bio = NULL; 1428 r10_bio->devs[i].repl_bio = NULL; 1429 1430 if (!rdev && !rrdev) 1431 continue; 1432 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1433 sector_t first_bad; 1434 sector_t dev_sector = r10_bio->devs[i].addr; 1435 sector_t bad_sectors; 1436 int is_bad; 1437 1438 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1439 &first_bad, &bad_sectors); 1440 if (is_bad && first_bad <= dev_sector) { 1441 /* Cannot write here at all */ 1442 bad_sectors -= (dev_sector - first_bad); 1443 if (bad_sectors < max_sectors) 1444 /* Mustn't write more than bad_sectors 1445 * to other devices yet 1446 */ 1447 max_sectors = bad_sectors; 1448 continue; 1449 } 1450 if (is_bad) { 1451 int good_sectors; 1452 1453 /* 1454 * We cannot atomically write this, so just 1455 * error in that case. It could be possible to 1456 * atomically write other mirrors, but the 1457 * complexity of supporting that is not worth 1458 * the benefit. 1459 */ 1460 if (bio->bi_opf & REQ_ATOMIC) { 1461 error = -EIO; 1462 goto err_handle; 1463 } 1464 1465 good_sectors = first_bad - dev_sector; 1466 if (good_sectors < max_sectors) 1467 max_sectors = good_sectors; 1468 } 1469 } 1470 if (rdev) { 1471 r10_bio->devs[i].bio = bio; 1472 atomic_inc(&rdev->nr_pending); 1473 } 1474 if (rrdev) { 1475 r10_bio->devs[i].repl_bio = bio; 1476 atomic_inc(&rrdev->nr_pending); 1477 } 1478 } 1479 1480 if (max_sectors < r10_bio->sectors) 1481 r10_bio->sectors = max_sectors; 1482 1483 if (r10_bio->sectors < bio_sectors(bio)) { 1484 struct bio *split = bio_split(bio, r10_bio->sectors, 1485 GFP_NOIO, &conf->bio_split); 1486 if (IS_ERR(split)) { 1487 error = PTR_ERR(split); 1488 goto err_handle; 1489 } 1490 bio_chain(split, bio); 1491 allow_barrier(conf); 1492 submit_bio_noacct(bio); 1493 wait_barrier(conf, false); 1494 bio = split; 1495 r10_bio->master_bio = bio; 1496 } 1497 1498 md_account_bio(mddev, &bio); 1499 r10_bio->master_bio = bio; 1500 atomic_set(&r10_bio->remaining, 1); 1501 1502 for (i = 0; i < conf->copies; i++) { 1503 if (r10_bio->devs[i].bio) 1504 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1505 if (r10_bio->devs[i].repl_bio) 1506 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1507 } 1508 one_write_done(r10_bio); 1509 return; 1510 err_handle: 1511 for (k = 0; k < i; k++) { 1512 int d = r10_bio->devs[k].devnum; 1513 struct md_rdev *rdev = conf->mirrors[d].rdev; 1514 struct md_rdev *rrdev = conf->mirrors[d].replacement; 1515 1516 if (r10_bio->devs[k].bio) { 1517 rdev_dec_pending(rdev, mddev); 1518 r10_bio->devs[k].bio = NULL; 1519 } 1520 if (r10_bio->devs[k].repl_bio) { 1521 rdev_dec_pending(rrdev, mddev); 1522 r10_bio->devs[k].repl_bio = NULL; 1523 } 1524 } 1525 1526 bio->bi_status = errno_to_blk_status(error); 1527 set_bit(R10BIO_Uptodate, &r10_bio->state); 1528 raid_end_bio_io(r10_bio); 1529 } 1530 1531 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1532 { 1533 struct r10conf *conf = mddev->private; 1534 struct r10bio *r10_bio; 1535 1536 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1537 1538 r10_bio->master_bio = bio; 1539 r10_bio->sectors = sectors; 1540 1541 r10_bio->mddev = mddev; 1542 r10_bio->sector = bio->bi_iter.bi_sector; 1543 r10_bio->state = 0; 1544 r10_bio->read_slot = -1; 1545 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1546 conf->geo.raid_disks); 1547 1548 if (bio_data_dir(bio) == READ) 1549 raid10_read_request(mddev, bio, r10_bio, true); 1550 else 1551 raid10_write_request(mddev, bio, r10_bio); 1552 } 1553 1554 static void raid_end_discard_bio(struct r10bio *r10bio) 1555 { 1556 struct r10conf *conf = r10bio->mddev->private; 1557 struct r10bio *first_r10bio; 1558 1559 while (atomic_dec_and_test(&r10bio->remaining)) { 1560 1561 allow_barrier(conf); 1562 1563 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1564 first_r10bio = (struct r10bio *)r10bio->master_bio; 1565 free_r10bio(r10bio); 1566 r10bio = first_r10bio; 1567 } else { 1568 md_write_end(r10bio->mddev); 1569 bio_endio(r10bio->master_bio); 1570 free_r10bio(r10bio); 1571 break; 1572 } 1573 } 1574 } 1575 1576 static void raid10_end_discard_request(struct bio *bio) 1577 { 1578 struct r10bio *r10_bio = bio->bi_private; 1579 struct r10conf *conf = r10_bio->mddev->private; 1580 struct md_rdev *rdev = NULL; 1581 int dev; 1582 int slot, repl; 1583 1584 /* 1585 * We don't care the return value of discard bio 1586 */ 1587 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1588 set_bit(R10BIO_Uptodate, &r10_bio->state); 1589 1590 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1591 rdev = repl ? conf->mirrors[dev].replacement : 1592 conf->mirrors[dev].rdev; 1593 1594 raid_end_discard_bio(r10_bio); 1595 rdev_dec_pending(rdev, conf->mddev); 1596 } 1597 1598 /* 1599 * There are some limitations to handle discard bio 1600 * 1st, the discard size is bigger than stripe_size*2. 1601 * 2st, if the discard bio spans reshape progress, we use the old way to 1602 * handle discard bio 1603 */ 1604 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1605 { 1606 struct r10conf *conf = mddev->private; 1607 struct geom *geo = &conf->geo; 1608 int far_copies = geo->far_copies; 1609 bool first_copy = true; 1610 struct r10bio *r10_bio, *first_r10bio; 1611 struct bio *split; 1612 int disk; 1613 sector_t chunk; 1614 unsigned int stripe_size; 1615 unsigned int stripe_data_disks; 1616 sector_t split_size; 1617 sector_t bio_start, bio_end; 1618 sector_t first_stripe_index, last_stripe_index; 1619 sector_t start_disk_offset; 1620 unsigned int start_disk_index; 1621 sector_t end_disk_offset; 1622 unsigned int end_disk_index; 1623 unsigned int remainder; 1624 1625 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1626 return -EAGAIN; 1627 1628 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1629 bio_wouldblock_error(bio); 1630 return 0; 1631 } 1632 1633 /* 1634 * Check reshape again to avoid reshape happens after checking 1635 * MD_RECOVERY_RESHAPE and before wait_barrier 1636 */ 1637 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1638 goto out; 1639 1640 if (geo->near_copies) 1641 stripe_data_disks = geo->raid_disks / geo->near_copies + 1642 geo->raid_disks % geo->near_copies; 1643 else 1644 stripe_data_disks = geo->raid_disks; 1645 1646 stripe_size = stripe_data_disks << geo->chunk_shift; 1647 1648 bio_start = bio->bi_iter.bi_sector; 1649 bio_end = bio_end_sector(bio); 1650 1651 /* 1652 * Maybe one discard bio is smaller than strip size or across one 1653 * stripe and discard region is larger than one stripe size. For far 1654 * offset layout, if the discard region is not aligned with stripe 1655 * size, there is hole when we submit discard bio to member disk. 1656 * For simplicity, we only handle discard bio which discard region 1657 * is bigger than stripe_size * 2 1658 */ 1659 if (bio_sectors(bio) < stripe_size*2) 1660 goto out; 1661 1662 /* 1663 * Keep bio aligned with strip size. 1664 */ 1665 div_u64_rem(bio_start, stripe_size, &remainder); 1666 if (remainder) { 1667 split_size = stripe_size - remainder; 1668 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1669 if (IS_ERR(split)) { 1670 bio->bi_status = errno_to_blk_status(PTR_ERR(split)); 1671 bio_endio(bio); 1672 return 0; 1673 } 1674 bio_chain(split, bio); 1675 allow_barrier(conf); 1676 /* Resend the fist split part */ 1677 submit_bio_noacct(split); 1678 wait_barrier(conf, false); 1679 } 1680 div_u64_rem(bio_end, stripe_size, &remainder); 1681 if (remainder) { 1682 split_size = bio_sectors(bio) - remainder; 1683 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1684 if (IS_ERR(split)) { 1685 bio->bi_status = errno_to_blk_status(PTR_ERR(split)); 1686 bio_endio(bio); 1687 return 0; 1688 } 1689 bio_chain(split, bio); 1690 allow_barrier(conf); 1691 /* Resend the second split part */ 1692 submit_bio_noacct(bio); 1693 bio = split; 1694 wait_barrier(conf, false); 1695 } 1696 1697 bio_start = bio->bi_iter.bi_sector; 1698 bio_end = bio_end_sector(bio); 1699 1700 /* 1701 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1702 * One stripe contains the chunks from all member disk (one chunk from 1703 * one disk at the same HBA address). For layout detail, see 'man md 4' 1704 */ 1705 chunk = bio_start >> geo->chunk_shift; 1706 chunk *= geo->near_copies; 1707 first_stripe_index = chunk; 1708 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1709 if (geo->far_offset) 1710 first_stripe_index *= geo->far_copies; 1711 start_disk_offset = (bio_start & geo->chunk_mask) + 1712 (first_stripe_index << geo->chunk_shift); 1713 1714 chunk = bio_end >> geo->chunk_shift; 1715 chunk *= geo->near_copies; 1716 last_stripe_index = chunk; 1717 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1718 if (geo->far_offset) 1719 last_stripe_index *= geo->far_copies; 1720 end_disk_offset = (bio_end & geo->chunk_mask) + 1721 (last_stripe_index << geo->chunk_shift); 1722 1723 retry_discard: 1724 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1725 r10_bio->mddev = mddev; 1726 r10_bio->state = 0; 1727 r10_bio->sectors = 0; 1728 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1729 wait_blocked_dev(mddev, r10_bio); 1730 1731 /* 1732 * For far layout it needs more than one r10bio to cover all regions. 1733 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1734 * to record the discard bio. Other r10bio->master_bio record the first 1735 * r10bio. The first r10bio only release after all other r10bios finish. 1736 * The discard bio returns only first r10bio finishes 1737 */ 1738 if (first_copy) { 1739 md_account_bio(mddev, &bio); 1740 r10_bio->master_bio = bio; 1741 set_bit(R10BIO_Discard, &r10_bio->state); 1742 first_copy = false; 1743 first_r10bio = r10_bio; 1744 } else 1745 r10_bio->master_bio = (struct bio *)first_r10bio; 1746 1747 /* 1748 * first select target devices under rcu_lock and 1749 * inc refcount on their rdev. Record them by setting 1750 * bios[x] to bio 1751 */ 1752 for (disk = 0; disk < geo->raid_disks; disk++) { 1753 struct md_rdev *rdev, *rrdev; 1754 1755 rdev = conf->mirrors[disk].rdev; 1756 rrdev = conf->mirrors[disk].replacement; 1757 r10_bio->devs[disk].bio = NULL; 1758 r10_bio->devs[disk].repl_bio = NULL; 1759 1760 if (rdev && (test_bit(Faulty, &rdev->flags))) 1761 rdev = NULL; 1762 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1763 rrdev = NULL; 1764 if (!rdev && !rrdev) 1765 continue; 1766 1767 if (rdev) { 1768 r10_bio->devs[disk].bio = bio; 1769 atomic_inc(&rdev->nr_pending); 1770 } 1771 if (rrdev) { 1772 r10_bio->devs[disk].repl_bio = bio; 1773 atomic_inc(&rrdev->nr_pending); 1774 } 1775 } 1776 1777 atomic_set(&r10_bio->remaining, 1); 1778 for (disk = 0; disk < geo->raid_disks; disk++) { 1779 sector_t dev_start, dev_end; 1780 struct bio *mbio, *rbio = NULL; 1781 1782 /* 1783 * Now start to calculate the start and end address for each disk. 1784 * The space between dev_start and dev_end is the discard region. 1785 * 1786 * For dev_start, it needs to consider three conditions: 1787 * 1st, the disk is before start_disk, you can imagine the disk in 1788 * the next stripe. So the dev_start is the start address of next 1789 * stripe. 1790 * 2st, the disk is after start_disk, it means the disk is at the 1791 * same stripe of first disk 1792 * 3st, the first disk itself, we can use start_disk_offset directly 1793 */ 1794 if (disk < start_disk_index) 1795 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1796 else if (disk > start_disk_index) 1797 dev_start = first_stripe_index * mddev->chunk_sectors; 1798 else 1799 dev_start = start_disk_offset; 1800 1801 if (disk < end_disk_index) 1802 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1803 else if (disk > end_disk_index) 1804 dev_end = last_stripe_index * mddev->chunk_sectors; 1805 else 1806 dev_end = end_disk_offset; 1807 1808 /* 1809 * It only handles discard bio which size is >= stripe size, so 1810 * dev_end > dev_start all the time. 1811 * It doesn't need to use rcu lock to get rdev here. We already 1812 * add rdev->nr_pending in the first loop. 1813 */ 1814 if (r10_bio->devs[disk].bio) { 1815 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1816 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1817 &mddev->bio_set); 1818 mbio->bi_end_io = raid10_end_discard_request; 1819 mbio->bi_private = r10_bio; 1820 r10_bio->devs[disk].bio = mbio; 1821 r10_bio->devs[disk].devnum = disk; 1822 atomic_inc(&r10_bio->remaining); 1823 md_submit_discard_bio(mddev, rdev, mbio, 1824 dev_start + choose_data_offset(r10_bio, rdev), 1825 dev_end - dev_start); 1826 bio_endio(mbio); 1827 } 1828 if (r10_bio->devs[disk].repl_bio) { 1829 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1830 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1831 &mddev->bio_set); 1832 rbio->bi_end_io = raid10_end_discard_request; 1833 rbio->bi_private = r10_bio; 1834 r10_bio->devs[disk].repl_bio = rbio; 1835 r10_bio->devs[disk].devnum = disk; 1836 atomic_inc(&r10_bio->remaining); 1837 md_submit_discard_bio(mddev, rrdev, rbio, 1838 dev_start + choose_data_offset(r10_bio, rrdev), 1839 dev_end - dev_start); 1840 bio_endio(rbio); 1841 } 1842 } 1843 1844 if (!geo->far_offset && --far_copies) { 1845 first_stripe_index += geo->stride >> geo->chunk_shift; 1846 start_disk_offset += geo->stride; 1847 last_stripe_index += geo->stride >> geo->chunk_shift; 1848 end_disk_offset += geo->stride; 1849 atomic_inc(&first_r10bio->remaining); 1850 raid_end_discard_bio(r10_bio); 1851 wait_barrier(conf, false); 1852 goto retry_discard; 1853 } 1854 1855 raid_end_discard_bio(r10_bio); 1856 1857 return 0; 1858 out: 1859 allow_barrier(conf); 1860 return -EAGAIN; 1861 } 1862 1863 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1864 { 1865 struct r10conf *conf = mddev->private; 1866 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1867 int chunk_sects = chunk_mask + 1; 1868 int sectors = bio_sectors(bio); 1869 1870 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1871 && md_flush_request(mddev, bio)) 1872 return true; 1873 1874 md_write_start(mddev, bio); 1875 1876 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1877 if (!raid10_handle_discard(mddev, bio)) 1878 return true; 1879 1880 /* 1881 * If this request crosses a chunk boundary, we need to split 1882 * it. 1883 */ 1884 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1885 sectors > chunk_sects 1886 && (conf->geo.near_copies < conf->geo.raid_disks 1887 || conf->prev.near_copies < 1888 conf->prev.raid_disks))) 1889 sectors = chunk_sects - 1890 (bio->bi_iter.bi_sector & 1891 (chunk_sects - 1)); 1892 __make_request(mddev, bio, sectors); 1893 1894 /* In case raid10d snuck in to freeze_array */ 1895 wake_up_barrier(conf); 1896 return true; 1897 } 1898 1899 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1900 { 1901 struct r10conf *conf = mddev->private; 1902 int i; 1903 1904 lockdep_assert_held(&mddev->lock); 1905 1906 if (conf->geo.near_copies < conf->geo.raid_disks) 1907 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1908 if (conf->geo.near_copies > 1) 1909 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1910 if (conf->geo.far_copies > 1) { 1911 if (conf->geo.far_offset) 1912 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1913 else 1914 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1915 if (conf->geo.far_set_size != conf->geo.raid_disks) 1916 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1917 } 1918 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1919 conf->geo.raid_disks - mddev->degraded); 1920 for (i = 0; i < conf->geo.raid_disks; i++) { 1921 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1922 1923 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1924 } 1925 seq_printf(seq, "]"); 1926 } 1927 1928 /* check if there are enough drives for 1929 * every block to appear on atleast one. 1930 * Don't consider the device numbered 'ignore' 1931 * as we might be about to remove it. 1932 */ 1933 static int _enough(struct r10conf *conf, int previous, int ignore) 1934 { 1935 int first = 0; 1936 int has_enough = 0; 1937 int disks, ncopies; 1938 if (previous) { 1939 disks = conf->prev.raid_disks; 1940 ncopies = conf->prev.near_copies; 1941 } else { 1942 disks = conf->geo.raid_disks; 1943 ncopies = conf->geo.near_copies; 1944 } 1945 1946 do { 1947 int n = conf->copies; 1948 int cnt = 0; 1949 int this = first; 1950 while (n--) { 1951 struct md_rdev *rdev; 1952 if (this != ignore && 1953 (rdev = conf->mirrors[this].rdev) && 1954 test_bit(In_sync, &rdev->flags)) 1955 cnt++; 1956 this = (this+1) % disks; 1957 } 1958 if (cnt == 0) 1959 goto out; 1960 first = (first + ncopies) % disks; 1961 } while (first != 0); 1962 has_enough = 1; 1963 out: 1964 return has_enough; 1965 } 1966 1967 static int enough(struct r10conf *conf, int ignore) 1968 { 1969 /* when calling 'enough', both 'prev' and 'geo' must 1970 * be stable. 1971 * This is ensured if ->reconfig_mutex or ->device_lock 1972 * is held. 1973 */ 1974 return _enough(conf, 0, ignore) && 1975 _enough(conf, 1, ignore); 1976 } 1977 1978 /** 1979 * raid10_error() - RAID10 error handler. 1980 * @mddev: affected md device. 1981 * @rdev: member device to fail. 1982 * 1983 * The routine acknowledges &rdev failure and determines new @mddev state. 1984 * If it failed, then: 1985 * - &MD_BROKEN flag is set in &mddev->flags. 1986 * Otherwise, it must be degraded: 1987 * - recovery is interrupted. 1988 * - &mddev->degraded is bumped. 1989 * 1990 * @rdev is marked as &Faulty excluding case when array is failed and 1991 * &mddev->fail_last_dev is off. 1992 */ 1993 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1994 { 1995 struct r10conf *conf = mddev->private; 1996 unsigned long flags; 1997 1998 spin_lock_irqsave(&conf->device_lock, flags); 1999 2000 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 2001 set_bit(MD_BROKEN, &mddev->flags); 2002 2003 if (!mddev->fail_last_dev) { 2004 spin_unlock_irqrestore(&conf->device_lock, flags); 2005 return; 2006 } 2007 } 2008 if (test_and_clear_bit(In_sync, &rdev->flags)) 2009 mddev->degraded++; 2010 2011 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2012 set_bit(Blocked, &rdev->flags); 2013 set_bit(Faulty, &rdev->flags); 2014 set_mask_bits(&mddev->sb_flags, 0, 2015 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2016 spin_unlock_irqrestore(&conf->device_lock, flags); 2017 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 2018 "md/raid10:%s: Operation continuing on %d devices.\n", 2019 mdname(mddev), rdev->bdev, 2020 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 2021 } 2022 2023 static void print_conf(struct r10conf *conf) 2024 { 2025 int i; 2026 struct md_rdev *rdev; 2027 2028 pr_debug("RAID10 conf printout:\n"); 2029 if (!conf) { 2030 pr_debug("(!conf)\n"); 2031 return; 2032 } 2033 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2034 conf->geo.raid_disks); 2035 2036 lockdep_assert_held(&conf->mddev->reconfig_mutex); 2037 for (i = 0; i < conf->geo.raid_disks; i++) { 2038 rdev = conf->mirrors[i].rdev; 2039 if (rdev) 2040 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2041 i, !test_bit(In_sync, &rdev->flags), 2042 !test_bit(Faulty, &rdev->flags), 2043 rdev->bdev); 2044 } 2045 } 2046 2047 static void close_sync(struct r10conf *conf) 2048 { 2049 wait_barrier(conf, false); 2050 allow_barrier(conf); 2051 2052 mempool_exit(&conf->r10buf_pool); 2053 } 2054 2055 static int raid10_spare_active(struct mddev *mddev) 2056 { 2057 int i; 2058 struct r10conf *conf = mddev->private; 2059 struct raid10_info *tmp; 2060 int count = 0; 2061 unsigned long flags; 2062 2063 /* 2064 * Find all non-in_sync disks within the RAID10 configuration 2065 * and mark them in_sync 2066 */ 2067 for (i = 0; i < conf->geo.raid_disks; i++) { 2068 tmp = conf->mirrors + i; 2069 if (tmp->replacement 2070 && tmp->replacement->recovery_offset == MaxSector 2071 && !test_bit(Faulty, &tmp->replacement->flags) 2072 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2073 /* Replacement has just become active */ 2074 if (!tmp->rdev 2075 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2076 count++; 2077 if (tmp->rdev) { 2078 /* Replaced device not technically faulty, 2079 * but we need to be sure it gets removed 2080 * and never re-added. 2081 */ 2082 set_bit(Faulty, &tmp->rdev->flags); 2083 sysfs_notify_dirent_safe( 2084 tmp->rdev->sysfs_state); 2085 } 2086 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2087 } else if (tmp->rdev 2088 && tmp->rdev->recovery_offset == MaxSector 2089 && !test_bit(Faulty, &tmp->rdev->flags) 2090 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2091 count++; 2092 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2093 } 2094 } 2095 spin_lock_irqsave(&conf->device_lock, flags); 2096 mddev->degraded -= count; 2097 spin_unlock_irqrestore(&conf->device_lock, flags); 2098 2099 print_conf(conf); 2100 return count; 2101 } 2102 2103 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2104 { 2105 struct r10conf *conf = mddev->private; 2106 int err = -EEXIST; 2107 int mirror, repl_slot = -1; 2108 int first = 0; 2109 int last = conf->geo.raid_disks - 1; 2110 struct raid10_info *p; 2111 2112 if (mddev->recovery_cp < MaxSector) 2113 /* only hot-add to in-sync arrays, as recovery is 2114 * very different from resync 2115 */ 2116 return -EBUSY; 2117 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2118 return -EINVAL; 2119 2120 if (rdev->raid_disk >= 0) 2121 first = last = rdev->raid_disk; 2122 2123 if (rdev->saved_raid_disk >= first && 2124 rdev->saved_raid_disk < conf->geo.raid_disks && 2125 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2126 mirror = rdev->saved_raid_disk; 2127 else 2128 mirror = first; 2129 for ( ; mirror <= last ; mirror++) { 2130 p = &conf->mirrors[mirror]; 2131 if (p->recovery_disabled == mddev->recovery_disabled) 2132 continue; 2133 if (p->rdev) { 2134 if (test_bit(WantReplacement, &p->rdev->flags) && 2135 p->replacement == NULL && repl_slot < 0) 2136 repl_slot = mirror; 2137 continue; 2138 } 2139 2140 err = mddev_stack_new_rdev(mddev, rdev); 2141 if (err) 2142 return err; 2143 p->head_position = 0; 2144 p->recovery_disabled = mddev->recovery_disabled - 1; 2145 rdev->raid_disk = mirror; 2146 err = 0; 2147 if (rdev->saved_raid_disk != mirror) 2148 conf->fullsync = 1; 2149 WRITE_ONCE(p->rdev, rdev); 2150 break; 2151 } 2152 2153 if (err && repl_slot >= 0) { 2154 p = &conf->mirrors[repl_slot]; 2155 clear_bit(In_sync, &rdev->flags); 2156 set_bit(Replacement, &rdev->flags); 2157 rdev->raid_disk = repl_slot; 2158 err = mddev_stack_new_rdev(mddev, rdev); 2159 if (err) 2160 return err; 2161 conf->fullsync = 1; 2162 WRITE_ONCE(p->replacement, rdev); 2163 } 2164 2165 print_conf(conf); 2166 return err; 2167 } 2168 2169 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2170 { 2171 struct r10conf *conf = mddev->private; 2172 int err = 0; 2173 int number = rdev->raid_disk; 2174 struct md_rdev **rdevp; 2175 struct raid10_info *p; 2176 2177 print_conf(conf); 2178 if (unlikely(number >= mddev->raid_disks)) 2179 return 0; 2180 p = conf->mirrors + number; 2181 if (rdev == p->rdev) 2182 rdevp = &p->rdev; 2183 else if (rdev == p->replacement) 2184 rdevp = &p->replacement; 2185 else 2186 return 0; 2187 2188 if (test_bit(In_sync, &rdev->flags) || 2189 atomic_read(&rdev->nr_pending)) { 2190 err = -EBUSY; 2191 goto abort; 2192 } 2193 /* Only remove non-faulty devices if recovery 2194 * is not possible. 2195 */ 2196 if (!test_bit(Faulty, &rdev->flags) && 2197 mddev->recovery_disabled != p->recovery_disabled && 2198 (!p->replacement || p->replacement == rdev) && 2199 number < conf->geo.raid_disks && 2200 enough(conf, -1)) { 2201 err = -EBUSY; 2202 goto abort; 2203 } 2204 WRITE_ONCE(*rdevp, NULL); 2205 if (p->replacement) { 2206 /* We must have just cleared 'rdev' */ 2207 WRITE_ONCE(p->rdev, p->replacement); 2208 clear_bit(Replacement, &p->replacement->flags); 2209 WRITE_ONCE(p->replacement, NULL); 2210 } 2211 2212 clear_bit(WantReplacement, &rdev->flags); 2213 err = md_integrity_register(mddev); 2214 2215 abort: 2216 2217 print_conf(conf); 2218 return err; 2219 } 2220 2221 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2222 { 2223 struct r10conf *conf = r10_bio->mddev->private; 2224 2225 if (!bio->bi_status) 2226 set_bit(R10BIO_Uptodate, &r10_bio->state); 2227 else 2228 /* The write handler will notice the lack of 2229 * R10BIO_Uptodate and record any errors etc 2230 */ 2231 atomic_add(r10_bio->sectors, 2232 &conf->mirrors[d].rdev->corrected_errors); 2233 2234 /* for reconstruct, we always reschedule after a read. 2235 * for resync, only after all reads 2236 */ 2237 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2238 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2239 atomic_dec_and_test(&r10_bio->remaining)) { 2240 /* we have read all the blocks, 2241 * do the comparison in process context in raid10d 2242 */ 2243 reschedule_retry(r10_bio); 2244 } 2245 } 2246 2247 static void end_sync_read(struct bio *bio) 2248 { 2249 struct r10bio *r10_bio = get_resync_r10bio(bio); 2250 struct r10conf *conf = r10_bio->mddev->private; 2251 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2252 2253 __end_sync_read(r10_bio, bio, d); 2254 } 2255 2256 static void end_reshape_read(struct bio *bio) 2257 { 2258 /* reshape read bio isn't allocated from r10buf_pool */ 2259 struct r10bio *r10_bio = bio->bi_private; 2260 2261 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2262 } 2263 2264 static void end_sync_request(struct r10bio *r10_bio) 2265 { 2266 struct mddev *mddev = r10_bio->mddev; 2267 2268 while (atomic_dec_and_test(&r10_bio->remaining)) { 2269 if (r10_bio->master_bio == NULL) { 2270 /* the primary of several recovery bios */ 2271 sector_t s = r10_bio->sectors; 2272 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2273 test_bit(R10BIO_WriteError, &r10_bio->state)) 2274 reschedule_retry(r10_bio); 2275 else 2276 put_buf(r10_bio); 2277 md_done_sync(mddev, s, 1); 2278 break; 2279 } else { 2280 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2281 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2282 test_bit(R10BIO_WriteError, &r10_bio->state)) 2283 reschedule_retry(r10_bio); 2284 else 2285 put_buf(r10_bio); 2286 r10_bio = r10_bio2; 2287 } 2288 } 2289 } 2290 2291 static void end_sync_write(struct bio *bio) 2292 { 2293 struct r10bio *r10_bio = get_resync_r10bio(bio); 2294 struct mddev *mddev = r10_bio->mddev; 2295 struct r10conf *conf = mddev->private; 2296 int d; 2297 int slot; 2298 int repl; 2299 struct md_rdev *rdev = NULL; 2300 2301 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2302 if (repl) 2303 rdev = conf->mirrors[d].replacement; 2304 else 2305 rdev = conf->mirrors[d].rdev; 2306 2307 if (bio->bi_status) { 2308 if (repl) 2309 md_error(mddev, rdev); 2310 else { 2311 set_bit(WriteErrorSeen, &rdev->flags); 2312 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2313 set_bit(MD_RECOVERY_NEEDED, 2314 &rdev->mddev->recovery); 2315 set_bit(R10BIO_WriteError, &r10_bio->state); 2316 } 2317 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 2318 r10_bio->sectors)) { 2319 set_bit(R10BIO_MadeGood, &r10_bio->state); 2320 } 2321 2322 rdev_dec_pending(rdev, mddev); 2323 2324 end_sync_request(r10_bio); 2325 } 2326 2327 /* 2328 * Note: sync and recover and handled very differently for raid10 2329 * This code is for resync. 2330 * For resync, we read through virtual addresses and read all blocks. 2331 * If there is any error, we schedule a write. The lowest numbered 2332 * drive is authoritative. 2333 * However requests come for physical address, so we need to map. 2334 * For every physical address there are raid_disks/copies virtual addresses, 2335 * which is always are least one, but is not necessarly an integer. 2336 * This means that a physical address can span multiple chunks, so we may 2337 * have to submit multiple io requests for a single sync request. 2338 */ 2339 /* 2340 * We check if all blocks are in-sync and only write to blocks that 2341 * aren't in sync 2342 */ 2343 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2344 { 2345 struct r10conf *conf = mddev->private; 2346 int i, first; 2347 struct bio *tbio, *fbio; 2348 int vcnt; 2349 struct page **tpages, **fpages; 2350 2351 atomic_set(&r10_bio->remaining, 1); 2352 2353 /* find the first device with a block */ 2354 for (i=0; i<conf->copies; i++) 2355 if (!r10_bio->devs[i].bio->bi_status) 2356 break; 2357 2358 if (i == conf->copies) 2359 goto done; 2360 2361 first = i; 2362 fbio = r10_bio->devs[i].bio; 2363 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2364 fbio->bi_iter.bi_idx = 0; 2365 fpages = get_resync_pages(fbio)->pages; 2366 2367 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2368 /* now find blocks with errors */ 2369 for (i=0 ; i < conf->copies ; i++) { 2370 int j, d; 2371 struct md_rdev *rdev; 2372 struct resync_pages *rp; 2373 2374 tbio = r10_bio->devs[i].bio; 2375 2376 if (tbio->bi_end_io != end_sync_read) 2377 continue; 2378 if (i == first) 2379 continue; 2380 2381 tpages = get_resync_pages(tbio)->pages; 2382 d = r10_bio->devs[i].devnum; 2383 rdev = conf->mirrors[d].rdev; 2384 if (!r10_bio->devs[i].bio->bi_status) { 2385 /* We know that the bi_io_vec layout is the same for 2386 * both 'first' and 'i', so we just compare them. 2387 * All vec entries are PAGE_SIZE; 2388 */ 2389 int sectors = r10_bio->sectors; 2390 for (j = 0; j < vcnt; j++) { 2391 int len = PAGE_SIZE; 2392 if (sectors < (len / 512)) 2393 len = sectors * 512; 2394 if (memcmp(page_address(fpages[j]), 2395 page_address(tpages[j]), 2396 len)) 2397 break; 2398 sectors -= len/512; 2399 } 2400 if (j == vcnt) 2401 continue; 2402 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2403 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2404 /* Don't fix anything. */ 2405 continue; 2406 } else if (test_bit(FailFast, &rdev->flags)) { 2407 /* Just give up on this device */ 2408 md_error(rdev->mddev, rdev); 2409 continue; 2410 } 2411 /* Ok, we need to write this bio, either to correct an 2412 * inconsistency or to correct an unreadable block. 2413 * First we need to fixup bv_offset, bv_len and 2414 * bi_vecs, as the read request might have corrupted these 2415 */ 2416 rp = get_resync_pages(tbio); 2417 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2418 2419 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2420 2421 rp->raid_bio = r10_bio; 2422 tbio->bi_private = rp; 2423 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2424 tbio->bi_end_io = end_sync_write; 2425 2426 bio_copy_data(tbio, fbio); 2427 2428 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2429 atomic_inc(&r10_bio->remaining); 2430 2431 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2432 tbio->bi_opf |= MD_FAILFAST; 2433 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2434 submit_bio_noacct(tbio); 2435 } 2436 2437 /* Now write out to any replacement devices 2438 * that are active 2439 */ 2440 for (i = 0; i < conf->copies; i++) { 2441 int d; 2442 2443 tbio = r10_bio->devs[i].repl_bio; 2444 if (!tbio || !tbio->bi_end_io) 2445 continue; 2446 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2447 && r10_bio->devs[i].bio != fbio) 2448 bio_copy_data(tbio, fbio); 2449 d = r10_bio->devs[i].devnum; 2450 atomic_inc(&r10_bio->remaining); 2451 submit_bio_noacct(tbio); 2452 } 2453 2454 done: 2455 if (atomic_dec_and_test(&r10_bio->remaining)) { 2456 md_done_sync(mddev, r10_bio->sectors, 1); 2457 put_buf(r10_bio); 2458 } 2459 } 2460 2461 /* 2462 * Now for the recovery code. 2463 * Recovery happens across physical sectors. 2464 * We recover all non-is_sync drives by finding the virtual address of 2465 * each, and then choose a working drive that also has that virt address. 2466 * There is a separate r10_bio for each non-in_sync drive. 2467 * Only the first two slots are in use. The first for reading, 2468 * The second for writing. 2469 * 2470 */ 2471 static void fix_recovery_read_error(struct r10bio *r10_bio) 2472 { 2473 /* We got a read error during recovery. 2474 * We repeat the read in smaller page-sized sections. 2475 * If a read succeeds, write it to the new device or record 2476 * a bad block if we cannot. 2477 * If a read fails, record a bad block on both old and 2478 * new devices. 2479 */ 2480 struct mddev *mddev = r10_bio->mddev; 2481 struct r10conf *conf = mddev->private; 2482 struct bio *bio = r10_bio->devs[0].bio; 2483 sector_t sect = 0; 2484 int sectors = r10_bio->sectors; 2485 int idx = 0; 2486 int dr = r10_bio->devs[0].devnum; 2487 int dw = r10_bio->devs[1].devnum; 2488 struct page **pages = get_resync_pages(bio)->pages; 2489 2490 while (sectors) { 2491 int s = sectors; 2492 struct md_rdev *rdev; 2493 sector_t addr; 2494 int ok; 2495 2496 if (s > (PAGE_SIZE>>9)) 2497 s = PAGE_SIZE >> 9; 2498 2499 rdev = conf->mirrors[dr].rdev; 2500 addr = r10_bio->devs[0].addr + sect; 2501 ok = sync_page_io(rdev, 2502 addr, 2503 s << 9, 2504 pages[idx], 2505 REQ_OP_READ, false); 2506 if (ok) { 2507 rdev = conf->mirrors[dw].rdev; 2508 addr = r10_bio->devs[1].addr + sect; 2509 ok = sync_page_io(rdev, 2510 addr, 2511 s << 9, 2512 pages[idx], 2513 REQ_OP_WRITE, false); 2514 if (!ok) { 2515 set_bit(WriteErrorSeen, &rdev->flags); 2516 if (!test_and_set_bit(WantReplacement, 2517 &rdev->flags)) 2518 set_bit(MD_RECOVERY_NEEDED, 2519 &rdev->mddev->recovery); 2520 } 2521 } 2522 if (!ok) { 2523 /* We don't worry if we cannot set a bad block - 2524 * it really is bad so there is no loss in not 2525 * recording it yet 2526 */ 2527 rdev_set_badblocks(rdev, addr, s, 0); 2528 2529 if (rdev != conf->mirrors[dw].rdev) { 2530 /* need bad block on destination too */ 2531 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2532 addr = r10_bio->devs[1].addr + sect; 2533 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2534 if (!ok) { 2535 /* just abort the recovery */ 2536 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2537 mdname(mddev)); 2538 2539 conf->mirrors[dw].recovery_disabled 2540 = mddev->recovery_disabled; 2541 set_bit(MD_RECOVERY_INTR, 2542 &mddev->recovery); 2543 break; 2544 } 2545 } 2546 } 2547 2548 sectors -= s; 2549 sect += s; 2550 idx++; 2551 } 2552 } 2553 2554 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2555 { 2556 struct r10conf *conf = mddev->private; 2557 int d; 2558 struct bio *wbio = r10_bio->devs[1].bio; 2559 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2560 2561 /* Need to test wbio2->bi_end_io before we call 2562 * submit_bio_noacct as if the former is NULL, 2563 * the latter is free to free wbio2. 2564 */ 2565 if (wbio2 && !wbio2->bi_end_io) 2566 wbio2 = NULL; 2567 2568 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2569 fix_recovery_read_error(r10_bio); 2570 if (wbio->bi_end_io) 2571 end_sync_request(r10_bio); 2572 if (wbio2) 2573 end_sync_request(r10_bio); 2574 return; 2575 } 2576 2577 /* 2578 * share the pages with the first bio 2579 * and submit the write request 2580 */ 2581 d = r10_bio->devs[1].devnum; 2582 if (wbio->bi_end_io) { 2583 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2584 submit_bio_noacct(wbio); 2585 } 2586 if (wbio2) { 2587 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2588 submit_bio_noacct(wbio2); 2589 } 2590 } 2591 2592 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2593 int sectors, struct page *page, enum req_op op) 2594 { 2595 if (rdev_has_badblock(rdev, sector, sectors) && 2596 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2597 return -1; 2598 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2599 /* success */ 2600 return 1; 2601 if (op == REQ_OP_WRITE) { 2602 set_bit(WriteErrorSeen, &rdev->flags); 2603 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2604 set_bit(MD_RECOVERY_NEEDED, 2605 &rdev->mddev->recovery); 2606 } 2607 /* need to record an error - either for the block or the device */ 2608 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2609 md_error(rdev->mddev, rdev); 2610 return 0; 2611 } 2612 2613 /* 2614 * This is a kernel thread which: 2615 * 2616 * 1. Retries failed read operations on working mirrors. 2617 * 2. Updates the raid superblock when problems encounter. 2618 * 3. Performs writes following reads for array synchronising. 2619 */ 2620 2621 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2622 { 2623 int sect = 0; /* Offset from r10_bio->sector */ 2624 int sectors = r10_bio->sectors, slot = r10_bio->read_slot; 2625 struct md_rdev *rdev; 2626 int d = r10_bio->devs[slot].devnum; 2627 2628 /* still own a reference to this rdev, so it cannot 2629 * have been cleared recently. 2630 */ 2631 rdev = conf->mirrors[d].rdev; 2632 2633 if (test_bit(Faulty, &rdev->flags)) 2634 /* drive has already been failed, just ignore any 2635 more fix_read_error() attempts */ 2636 return; 2637 2638 if (exceed_read_errors(mddev, rdev)) { 2639 r10_bio->devs[slot].bio = IO_BLOCKED; 2640 return; 2641 } 2642 2643 while(sectors) { 2644 int s = sectors; 2645 int sl = slot; 2646 int success = 0; 2647 int start; 2648 2649 if (s > (PAGE_SIZE>>9)) 2650 s = PAGE_SIZE >> 9; 2651 2652 do { 2653 d = r10_bio->devs[sl].devnum; 2654 rdev = conf->mirrors[d].rdev; 2655 if (rdev && 2656 test_bit(In_sync, &rdev->flags) && 2657 !test_bit(Faulty, &rdev->flags) && 2658 rdev_has_badblock(rdev, 2659 r10_bio->devs[sl].addr + sect, 2660 s) == 0) { 2661 atomic_inc(&rdev->nr_pending); 2662 success = sync_page_io(rdev, 2663 r10_bio->devs[sl].addr + 2664 sect, 2665 s<<9, 2666 conf->tmppage, 2667 REQ_OP_READ, false); 2668 rdev_dec_pending(rdev, mddev); 2669 if (success) 2670 break; 2671 } 2672 sl++; 2673 if (sl == conf->copies) 2674 sl = 0; 2675 } while (sl != slot); 2676 2677 if (!success) { 2678 /* Cannot read from anywhere, just mark the block 2679 * as bad on the first device to discourage future 2680 * reads. 2681 */ 2682 int dn = r10_bio->devs[slot].devnum; 2683 rdev = conf->mirrors[dn].rdev; 2684 2685 if (!rdev_set_badblocks( 2686 rdev, 2687 r10_bio->devs[slot].addr 2688 + sect, 2689 s, 0)) { 2690 md_error(mddev, rdev); 2691 r10_bio->devs[slot].bio 2692 = IO_BLOCKED; 2693 } 2694 break; 2695 } 2696 2697 start = sl; 2698 /* write it back and re-read */ 2699 while (sl != slot) { 2700 if (sl==0) 2701 sl = conf->copies; 2702 sl--; 2703 d = r10_bio->devs[sl].devnum; 2704 rdev = conf->mirrors[d].rdev; 2705 if (!rdev || 2706 test_bit(Faulty, &rdev->flags) || 2707 !test_bit(In_sync, &rdev->flags)) 2708 continue; 2709 2710 atomic_inc(&rdev->nr_pending); 2711 if (r10_sync_page_io(rdev, 2712 r10_bio->devs[sl].addr + 2713 sect, 2714 s, conf->tmppage, REQ_OP_WRITE) 2715 == 0) { 2716 /* Well, this device is dead */ 2717 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2718 mdname(mddev), s, 2719 (unsigned long long)( 2720 sect + 2721 choose_data_offset(r10_bio, 2722 rdev)), 2723 rdev->bdev); 2724 pr_notice("md/raid10:%s: %pg: failing drive\n", 2725 mdname(mddev), 2726 rdev->bdev); 2727 } 2728 rdev_dec_pending(rdev, mddev); 2729 } 2730 sl = start; 2731 while (sl != slot) { 2732 if (sl==0) 2733 sl = conf->copies; 2734 sl--; 2735 d = r10_bio->devs[sl].devnum; 2736 rdev = conf->mirrors[d].rdev; 2737 if (!rdev || 2738 test_bit(Faulty, &rdev->flags) || 2739 !test_bit(In_sync, &rdev->flags)) 2740 continue; 2741 2742 atomic_inc(&rdev->nr_pending); 2743 switch (r10_sync_page_io(rdev, 2744 r10_bio->devs[sl].addr + 2745 sect, 2746 s, conf->tmppage, REQ_OP_READ)) { 2747 case 0: 2748 /* Well, this device is dead */ 2749 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2750 mdname(mddev), s, 2751 (unsigned long long)( 2752 sect + 2753 choose_data_offset(r10_bio, rdev)), 2754 rdev->bdev); 2755 pr_notice("md/raid10:%s: %pg: failing drive\n", 2756 mdname(mddev), 2757 rdev->bdev); 2758 break; 2759 case 1: 2760 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2761 mdname(mddev), s, 2762 (unsigned long long)( 2763 sect + 2764 choose_data_offset(r10_bio, rdev)), 2765 rdev->bdev); 2766 atomic_add(s, &rdev->corrected_errors); 2767 } 2768 2769 rdev_dec_pending(rdev, mddev); 2770 } 2771 2772 sectors -= s; 2773 sect += s; 2774 } 2775 } 2776 2777 static bool narrow_write_error(struct r10bio *r10_bio, int i) 2778 { 2779 struct bio *bio = r10_bio->master_bio; 2780 struct mddev *mddev = r10_bio->mddev; 2781 struct r10conf *conf = mddev->private; 2782 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2783 /* bio has the data to be written to slot 'i' where 2784 * we just recently had a write error. 2785 * We repeatedly clone the bio and trim down to one block, 2786 * then try the write. Where the write fails we record 2787 * a bad block. 2788 * It is conceivable that the bio doesn't exactly align with 2789 * blocks. We must handle this. 2790 * 2791 * We currently own a reference to the rdev. 2792 */ 2793 2794 int block_sectors; 2795 sector_t sector; 2796 int sectors; 2797 int sect_to_write = r10_bio->sectors; 2798 bool ok = true; 2799 2800 if (rdev->badblocks.shift < 0) 2801 return false; 2802 2803 block_sectors = roundup(1 << rdev->badblocks.shift, 2804 bdev_logical_block_size(rdev->bdev) >> 9); 2805 sector = r10_bio->sector; 2806 sectors = ((r10_bio->sector + block_sectors) 2807 & ~(sector_t)(block_sectors - 1)) 2808 - sector; 2809 2810 while (sect_to_write) { 2811 struct bio *wbio; 2812 sector_t wsector; 2813 if (sectors > sect_to_write) 2814 sectors = sect_to_write; 2815 /* Write at 'sector' for 'sectors' */ 2816 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2817 &mddev->bio_set); 2818 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2819 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2820 wbio->bi_iter.bi_sector = wsector + 2821 choose_data_offset(r10_bio, rdev); 2822 wbio->bi_opf = REQ_OP_WRITE; 2823 2824 if (submit_bio_wait(wbio) < 0) 2825 /* Failure! */ 2826 ok = rdev_set_badblocks(rdev, wsector, 2827 sectors, 0) 2828 && ok; 2829 2830 bio_put(wbio); 2831 sect_to_write -= sectors; 2832 sector += sectors; 2833 sectors = block_sectors; 2834 } 2835 return ok; 2836 } 2837 2838 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2839 { 2840 int slot = r10_bio->read_slot; 2841 struct bio *bio; 2842 struct r10conf *conf = mddev->private; 2843 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2844 2845 /* we got a read error. Maybe the drive is bad. Maybe just 2846 * the block and we can fix it. 2847 * We freeze all other IO, and try reading the block from 2848 * other devices. When we find one, we re-write 2849 * and check it that fixes the read error. 2850 * This is all done synchronously while the array is 2851 * frozen. 2852 */ 2853 bio = r10_bio->devs[slot].bio; 2854 bio_put(bio); 2855 r10_bio->devs[slot].bio = NULL; 2856 2857 if (mddev->ro) 2858 r10_bio->devs[slot].bio = IO_BLOCKED; 2859 else if (!test_bit(FailFast, &rdev->flags)) { 2860 freeze_array(conf, 1); 2861 fix_read_error(conf, mddev, r10_bio); 2862 unfreeze_array(conf); 2863 } else 2864 md_error(mddev, rdev); 2865 2866 rdev_dec_pending(rdev, mddev); 2867 r10_bio->state = 0; 2868 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false); 2869 /* 2870 * allow_barrier after re-submit to ensure no sync io 2871 * can be issued while regular io pending. 2872 */ 2873 allow_barrier(conf); 2874 } 2875 2876 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2877 { 2878 /* Some sort of write request has finished and it 2879 * succeeded in writing where we thought there was a 2880 * bad block. So forget the bad block. 2881 * Or possibly if failed and we need to record 2882 * a bad block. 2883 */ 2884 int m; 2885 struct md_rdev *rdev; 2886 2887 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2888 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2889 for (m = 0; m < conf->copies; m++) { 2890 int dev = r10_bio->devs[m].devnum; 2891 rdev = conf->mirrors[dev].rdev; 2892 if (r10_bio->devs[m].bio == NULL || 2893 r10_bio->devs[m].bio->bi_end_io == NULL) 2894 continue; 2895 if (!r10_bio->devs[m].bio->bi_status) { 2896 rdev_clear_badblocks( 2897 rdev, 2898 r10_bio->devs[m].addr, 2899 r10_bio->sectors, 0); 2900 } else { 2901 if (!rdev_set_badblocks( 2902 rdev, 2903 r10_bio->devs[m].addr, 2904 r10_bio->sectors, 0)) 2905 md_error(conf->mddev, rdev); 2906 } 2907 rdev = conf->mirrors[dev].replacement; 2908 if (r10_bio->devs[m].repl_bio == NULL || 2909 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2910 continue; 2911 2912 if (!r10_bio->devs[m].repl_bio->bi_status) { 2913 rdev_clear_badblocks( 2914 rdev, 2915 r10_bio->devs[m].addr, 2916 r10_bio->sectors, 0); 2917 } else { 2918 if (!rdev_set_badblocks( 2919 rdev, 2920 r10_bio->devs[m].addr, 2921 r10_bio->sectors, 0)) 2922 md_error(conf->mddev, rdev); 2923 } 2924 } 2925 put_buf(r10_bio); 2926 } else { 2927 bool fail = false; 2928 for (m = 0; m < conf->copies; m++) { 2929 int dev = r10_bio->devs[m].devnum; 2930 struct bio *bio = r10_bio->devs[m].bio; 2931 rdev = conf->mirrors[dev].rdev; 2932 if (bio == IO_MADE_GOOD) { 2933 rdev_clear_badblocks( 2934 rdev, 2935 r10_bio->devs[m].addr, 2936 r10_bio->sectors, 0); 2937 rdev_dec_pending(rdev, conf->mddev); 2938 } else if (bio != NULL && bio->bi_status) { 2939 fail = true; 2940 if (!narrow_write_error(r10_bio, m)) 2941 md_error(conf->mddev, rdev); 2942 rdev_dec_pending(rdev, conf->mddev); 2943 } 2944 bio = r10_bio->devs[m].repl_bio; 2945 rdev = conf->mirrors[dev].replacement; 2946 if (rdev && bio == IO_MADE_GOOD) { 2947 rdev_clear_badblocks( 2948 rdev, 2949 r10_bio->devs[m].addr, 2950 r10_bio->sectors, 0); 2951 rdev_dec_pending(rdev, conf->mddev); 2952 } 2953 } 2954 if (fail) { 2955 spin_lock_irq(&conf->device_lock); 2956 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2957 conf->nr_queued++; 2958 spin_unlock_irq(&conf->device_lock); 2959 /* 2960 * In case freeze_array() is waiting for condition 2961 * nr_pending == nr_queued + extra to be true. 2962 */ 2963 wake_up(&conf->wait_barrier); 2964 md_wakeup_thread(conf->mddev->thread); 2965 } else { 2966 if (test_bit(R10BIO_WriteError, 2967 &r10_bio->state)) 2968 close_write(r10_bio); 2969 raid_end_bio_io(r10_bio); 2970 } 2971 } 2972 } 2973 2974 static void raid10d(struct md_thread *thread) 2975 { 2976 struct mddev *mddev = thread->mddev; 2977 struct r10bio *r10_bio; 2978 unsigned long flags; 2979 struct r10conf *conf = mddev->private; 2980 struct list_head *head = &conf->retry_list; 2981 struct blk_plug plug; 2982 2983 md_check_recovery(mddev); 2984 2985 if (!list_empty_careful(&conf->bio_end_io_list) && 2986 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2987 LIST_HEAD(tmp); 2988 spin_lock_irqsave(&conf->device_lock, flags); 2989 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2990 while (!list_empty(&conf->bio_end_io_list)) { 2991 list_move(conf->bio_end_io_list.prev, &tmp); 2992 conf->nr_queued--; 2993 } 2994 } 2995 spin_unlock_irqrestore(&conf->device_lock, flags); 2996 while (!list_empty(&tmp)) { 2997 r10_bio = list_first_entry(&tmp, struct r10bio, 2998 retry_list); 2999 list_del(&r10_bio->retry_list); 3000 3001 if (test_bit(R10BIO_WriteError, 3002 &r10_bio->state)) 3003 close_write(r10_bio); 3004 raid_end_bio_io(r10_bio); 3005 } 3006 } 3007 3008 blk_start_plug(&plug); 3009 for (;;) { 3010 3011 flush_pending_writes(conf); 3012 3013 spin_lock_irqsave(&conf->device_lock, flags); 3014 if (list_empty(head)) { 3015 spin_unlock_irqrestore(&conf->device_lock, flags); 3016 break; 3017 } 3018 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3019 list_del(head->prev); 3020 conf->nr_queued--; 3021 spin_unlock_irqrestore(&conf->device_lock, flags); 3022 3023 mddev = r10_bio->mddev; 3024 conf = mddev->private; 3025 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3026 test_bit(R10BIO_WriteError, &r10_bio->state)) 3027 handle_write_completed(conf, r10_bio); 3028 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3029 reshape_request_write(mddev, r10_bio); 3030 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3031 sync_request_write(mddev, r10_bio); 3032 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3033 recovery_request_write(mddev, r10_bio); 3034 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3035 handle_read_error(mddev, r10_bio); 3036 else 3037 WARN_ON_ONCE(1); 3038 3039 cond_resched(); 3040 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3041 md_check_recovery(mddev); 3042 } 3043 blk_finish_plug(&plug); 3044 } 3045 3046 static int init_resync(struct r10conf *conf) 3047 { 3048 int ret, buffs, i; 3049 3050 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3051 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3052 conf->have_replacement = 0; 3053 for (i = 0; i < conf->geo.raid_disks; i++) 3054 if (conf->mirrors[i].replacement) 3055 conf->have_replacement = 1; 3056 ret = mempool_init(&conf->r10buf_pool, buffs, 3057 r10buf_pool_alloc, r10buf_pool_free, conf); 3058 if (ret) 3059 return ret; 3060 conf->next_resync = 0; 3061 return 0; 3062 } 3063 3064 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3065 { 3066 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3067 struct rsync_pages *rp; 3068 struct bio *bio; 3069 int nalloc; 3070 int i; 3071 3072 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3073 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3074 nalloc = conf->copies; /* resync */ 3075 else 3076 nalloc = 2; /* recovery */ 3077 3078 for (i = 0; i < nalloc; i++) { 3079 bio = r10bio->devs[i].bio; 3080 rp = bio->bi_private; 3081 bio_reset(bio, NULL, 0); 3082 bio->bi_private = rp; 3083 bio = r10bio->devs[i].repl_bio; 3084 if (bio) { 3085 rp = bio->bi_private; 3086 bio_reset(bio, NULL, 0); 3087 bio->bi_private = rp; 3088 } 3089 } 3090 return r10bio; 3091 } 3092 3093 /* 3094 * Set cluster_sync_high since we need other nodes to add the 3095 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3096 */ 3097 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3098 { 3099 sector_t window_size; 3100 int extra_chunk, chunks; 3101 3102 /* 3103 * First, here we define "stripe" as a unit which across 3104 * all member devices one time, so we get chunks by use 3105 * raid_disks / near_copies. Otherwise, if near_copies is 3106 * close to raid_disks, then resync window could increases 3107 * linearly with the increase of raid_disks, which means 3108 * we will suspend a really large IO window while it is not 3109 * necessary. If raid_disks is not divisible by near_copies, 3110 * an extra chunk is needed to ensure the whole "stripe" is 3111 * covered. 3112 */ 3113 3114 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3115 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3116 extra_chunk = 0; 3117 else 3118 extra_chunk = 1; 3119 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3120 3121 /* 3122 * At least use a 32M window to align with raid1's resync window 3123 */ 3124 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3125 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3126 3127 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3128 } 3129 3130 /* 3131 * perform a "sync" on one "block" 3132 * 3133 * We need to make sure that no normal I/O request - particularly write 3134 * requests - conflict with active sync requests. 3135 * 3136 * This is achieved by tracking pending requests and a 'barrier' concept 3137 * that can be installed to exclude normal IO requests. 3138 * 3139 * Resync and recovery are handled very differently. 3140 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3141 * 3142 * For resync, we iterate over virtual addresses, read all copies, 3143 * and update if there are differences. If only one copy is live, 3144 * skip it. 3145 * For recovery, we iterate over physical addresses, read a good 3146 * value for each non-in_sync drive, and over-write. 3147 * 3148 * So, for recovery we may have several outstanding complex requests for a 3149 * given address, one for each out-of-sync device. We model this by allocating 3150 * a number of r10_bio structures, one for each out-of-sync device. 3151 * As we setup these structures, we collect all bio's together into a list 3152 * which we then process collectively to add pages, and then process again 3153 * to pass to submit_bio_noacct. 3154 * 3155 * The r10_bio structures are linked using a borrowed master_bio pointer. 3156 * This link is counted in ->remaining. When the r10_bio that points to NULL 3157 * has its remaining count decremented to 0, the whole complex operation 3158 * is complete. 3159 * 3160 */ 3161 3162 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3163 sector_t max_sector, int *skipped) 3164 { 3165 struct r10conf *conf = mddev->private; 3166 struct r10bio *r10_bio; 3167 struct bio *biolist = NULL, *bio; 3168 sector_t nr_sectors; 3169 int i; 3170 int max_sync; 3171 sector_t sync_blocks; 3172 sector_t sectors_skipped = 0; 3173 int chunks_skipped = 0; 3174 sector_t chunk_mask = conf->geo.chunk_mask; 3175 int page_idx = 0; 3176 int error_disk = -1; 3177 3178 /* 3179 * Allow skipping a full rebuild for incremental assembly 3180 * of a clean array, like RAID1 does. 3181 */ 3182 if (mddev->bitmap == NULL && 3183 mddev->recovery_cp == MaxSector && 3184 mddev->reshape_position == MaxSector && 3185 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3186 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3187 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3188 conf->fullsync == 0) { 3189 *skipped = 1; 3190 return mddev->dev_sectors - sector_nr; 3191 } 3192 3193 if (!mempool_initialized(&conf->r10buf_pool)) 3194 if (init_resync(conf)) 3195 return 0; 3196 3197 skipped: 3198 if (sector_nr >= max_sector) { 3199 conf->cluster_sync_low = 0; 3200 conf->cluster_sync_high = 0; 3201 3202 /* If we aborted, we need to abort the 3203 * sync on the 'current' bitmap chucks (there can 3204 * be several when recovering multiple devices). 3205 * as we may have started syncing it but not finished. 3206 * We can find the current address in 3207 * mddev->curr_resync, but for recovery, 3208 * we need to convert that to several 3209 * virtual addresses. 3210 */ 3211 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3212 end_reshape(conf); 3213 close_sync(conf); 3214 return 0; 3215 } 3216 3217 if (mddev->curr_resync < max_sector) { /* aborted */ 3218 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3219 mddev->bitmap_ops->end_sync(mddev, 3220 mddev->curr_resync, 3221 &sync_blocks); 3222 else for (i = 0; i < conf->geo.raid_disks; i++) { 3223 sector_t sect = 3224 raid10_find_virt(conf, mddev->curr_resync, i); 3225 3226 mddev->bitmap_ops->end_sync(mddev, sect, 3227 &sync_blocks); 3228 } 3229 } else { 3230 /* completed sync */ 3231 if ((!mddev->bitmap || conf->fullsync) 3232 && conf->have_replacement 3233 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3234 /* Completed a full sync so the replacements 3235 * are now fully recovered. 3236 */ 3237 for (i = 0; i < conf->geo.raid_disks; i++) { 3238 struct md_rdev *rdev = 3239 conf->mirrors[i].replacement; 3240 3241 if (rdev) 3242 rdev->recovery_offset = MaxSector; 3243 } 3244 } 3245 conf->fullsync = 0; 3246 } 3247 mddev->bitmap_ops->close_sync(mddev); 3248 close_sync(conf); 3249 *skipped = 1; 3250 return sectors_skipped; 3251 } 3252 3253 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3254 return reshape_request(mddev, sector_nr, skipped); 3255 3256 if (chunks_skipped >= conf->geo.raid_disks) { 3257 pr_err("md/raid10:%s: %s fails\n", mdname(mddev), 3258 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"); 3259 if (error_disk >= 0 && 3260 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3261 /* 3262 * recovery fails, set mirrors.recovery_disabled, 3263 * device shouldn't be added to there. 3264 */ 3265 conf->mirrors[error_disk].recovery_disabled = 3266 mddev->recovery_disabled; 3267 return 0; 3268 } 3269 /* 3270 * if there has been nothing to do on any drive, 3271 * then there is nothing to do at all. 3272 */ 3273 *skipped = 1; 3274 return (max_sector - sector_nr) + sectors_skipped; 3275 } 3276 3277 if (max_sector > mddev->resync_max) 3278 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3279 3280 /* make sure whole request will fit in a chunk - if chunks 3281 * are meaningful 3282 */ 3283 if (conf->geo.near_copies < conf->geo.raid_disks && 3284 max_sector > (sector_nr | chunk_mask)) 3285 max_sector = (sector_nr | chunk_mask) + 1; 3286 3287 /* 3288 * If there is non-resync activity waiting for a turn, then let it 3289 * though before starting on this new sync request. 3290 */ 3291 if (conf->nr_waiting) 3292 schedule_timeout_uninterruptible(1); 3293 3294 /* Again, very different code for resync and recovery. 3295 * Both must result in an r10bio with a list of bios that 3296 * have bi_end_io, bi_sector, bi_bdev set, 3297 * and bi_private set to the r10bio. 3298 * For recovery, we may actually create several r10bios 3299 * with 2 bios in each, that correspond to the bios in the main one. 3300 * In this case, the subordinate r10bios link back through a 3301 * borrowed master_bio pointer, and the counter in the master 3302 * includes a ref from each subordinate. 3303 */ 3304 /* First, we decide what to do and set ->bi_end_io 3305 * To end_sync_read if we want to read, and 3306 * end_sync_write if we will want to write. 3307 */ 3308 3309 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3310 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3311 /* recovery... the complicated one */ 3312 int j; 3313 r10_bio = NULL; 3314 3315 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3316 bool still_degraded; 3317 struct r10bio *rb2; 3318 sector_t sect; 3319 bool must_sync; 3320 int any_working; 3321 struct raid10_info *mirror = &conf->mirrors[i]; 3322 struct md_rdev *mrdev, *mreplace; 3323 3324 mrdev = mirror->rdev; 3325 mreplace = mirror->replacement; 3326 3327 if (mrdev && (test_bit(Faulty, &mrdev->flags) || 3328 test_bit(In_sync, &mrdev->flags))) 3329 mrdev = NULL; 3330 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3331 mreplace = NULL; 3332 3333 if (!mrdev && !mreplace) 3334 continue; 3335 3336 still_degraded = false; 3337 /* want to reconstruct this device */ 3338 rb2 = r10_bio; 3339 sect = raid10_find_virt(conf, sector_nr, i); 3340 if (sect >= mddev->resync_max_sectors) 3341 /* last stripe is not complete - don't 3342 * try to recover this sector. 3343 */ 3344 continue; 3345 /* Unless we are doing a full sync, or a replacement 3346 * we only need to recover the block if it is set in 3347 * the bitmap 3348 */ 3349 must_sync = mddev->bitmap_ops->start_sync(mddev, sect, 3350 &sync_blocks, 3351 true); 3352 if (sync_blocks < max_sync) 3353 max_sync = sync_blocks; 3354 if (!must_sync && 3355 mreplace == NULL && 3356 !conf->fullsync) { 3357 /* yep, skip the sync_blocks here, but don't assume 3358 * that there will never be anything to do here 3359 */ 3360 chunks_skipped = -1; 3361 continue; 3362 } 3363 if (mrdev) 3364 atomic_inc(&mrdev->nr_pending); 3365 if (mreplace) 3366 atomic_inc(&mreplace->nr_pending); 3367 3368 r10_bio = raid10_alloc_init_r10buf(conf); 3369 r10_bio->state = 0; 3370 raise_barrier(conf, rb2 != NULL); 3371 atomic_set(&r10_bio->remaining, 0); 3372 3373 r10_bio->master_bio = (struct bio*)rb2; 3374 if (rb2) 3375 atomic_inc(&rb2->remaining); 3376 r10_bio->mddev = mddev; 3377 set_bit(R10BIO_IsRecover, &r10_bio->state); 3378 r10_bio->sector = sect; 3379 3380 raid10_find_phys(conf, r10_bio); 3381 3382 /* Need to check if the array will still be 3383 * degraded 3384 */ 3385 for (j = 0; j < conf->geo.raid_disks; j++) { 3386 struct md_rdev *rdev = conf->mirrors[j].rdev; 3387 3388 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3389 still_degraded = false; 3390 break; 3391 } 3392 } 3393 3394 must_sync = mddev->bitmap_ops->start_sync(mddev, sect, 3395 &sync_blocks, still_degraded); 3396 3397 any_working = 0; 3398 for (j=0; j<conf->copies;j++) { 3399 int k; 3400 int d = r10_bio->devs[j].devnum; 3401 sector_t from_addr, to_addr; 3402 struct md_rdev *rdev = conf->mirrors[d].rdev; 3403 sector_t sector, first_bad; 3404 sector_t bad_sectors; 3405 if (!rdev || 3406 !test_bit(In_sync, &rdev->flags)) 3407 continue; 3408 /* This is where we read from */ 3409 any_working = 1; 3410 sector = r10_bio->devs[j].addr; 3411 3412 if (is_badblock(rdev, sector, max_sync, 3413 &first_bad, &bad_sectors)) { 3414 if (first_bad > sector) 3415 max_sync = first_bad - sector; 3416 else { 3417 bad_sectors -= (sector 3418 - first_bad); 3419 if (max_sync > bad_sectors) 3420 max_sync = bad_sectors; 3421 continue; 3422 } 3423 } 3424 bio = r10_bio->devs[0].bio; 3425 bio->bi_next = biolist; 3426 biolist = bio; 3427 bio->bi_end_io = end_sync_read; 3428 bio->bi_opf = REQ_OP_READ; 3429 if (test_bit(FailFast, &rdev->flags)) 3430 bio->bi_opf |= MD_FAILFAST; 3431 from_addr = r10_bio->devs[j].addr; 3432 bio->bi_iter.bi_sector = from_addr + 3433 rdev->data_offset; 3434 bio_set_dev(bio, rdev->bdev); 3435 atomic_inc(&rdev->nr_pending); 3436 /* and we write to 'i' (if not in_sync) */ 3437 3438 for (k=0; k<conf->copies; k++) 3439 if (r10_bio->devs[k].devnum == i) 3440 break; 3441 BUG_ON(k == conf->copies); 3442 to_addr = r10_bio->devs[k].addr; 3443 r10_bio->devs[0].devnum = d; 3444 r10_bio->devs[0].addr = from_addr; 3445 r10_bio->devs[1].devnum = i; 3446 r10_bio->devs[1].addr = to_addr; 3447 3448 if (mrdev) { 3449 bio = r10_bio->devs[1].bio; 3450 bio->bi_next = biolist; 3451 biolist = bio; 3452 bio->bi_end_io = end_sync_write; 3453 bio->bi_opf = REQ_OP_WRITE; 3454 bio->bi_iter.bi_sector = to_addr 3455 + mrdev->data_offset; 3456 bio_set_dev(bio, mrdev->bdev); 3457 atomic_inc(&r10_bio->remaining); 3458 } else 3459 r10_bio->devs[1].bio->bi_end_io = NULL; 3460 3461 /* and maybe write to replacement */ 3462 bio = r10_bio->devs[1].repl_bio; 3463 if (bio) 3464 bio->bi_end_io = NULL; 3465 /* Note: if replace is not NULL, then bio 3466 * cannot be NULL as r10buf_pool_alloc will 3467 * have allocated it. 3468 */ 3469 if (!mreplace) 3470 break; 3471 bio->bi_next = biolist; 3472 biolist = bio; 3473 bio->bi_end_io = end_sync_write; 3474 bio->bi_opf = REQ_OP_WRITE; 3475 bio->bi_iter.bi_sector = to_addr + 3476 mreplace->data_offset; 3477 bio_set_dev(bio, mreplace->bdev); 3478 atomic_inc(&r10_bio->remaining); 3479 break; 3480 } 3481 if (j == conf->copies) { 3482 /* Cannot recover, so abort the recovery or 3483 * record a bad block */ 3484 if (any_working) { 3485 /* problem is that there are bad blocks 3486 * on other device(s) 3487 */ 3488 int k; 3489 for (k = 0; k < conf->copies; k++) 3490 if (r10_bio->devs[k].devnum == i) 3491 break; 3492 if (mrdev && !test_bit(In_sync, 3493 &mrdev->flags) 3494 && !rdev_set_badblocks( 3495 mrdev, 3496 r10_bio->devs[k].addr, 3497 max_sync, 0)) 3498 any_working = 0; 3499 if (mreplace && 3500 !rdev_set_badblocks( 3501 mreplace, 3502 r10_bio->devs[k].addr, 3503 max_sync, 0)) 3504 any_working = 0; 3505 } 3506 if (!any_working) { 3507 if (!test_and_set_bit(MD_RECOVERY_INTR, 3508 &mddev->recovery)) 3509 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3510 mdname(mddev)); 3511 mirror->recovery_disabled 3512 = mddev->recovery_disabled; 3513 } else { 3514 error_disk = i; 3515 } 3516 put_buf(r10_bio); 3517 if (rb2) 3518 atomic_dec(&rb2->remaining); 3519 r10_bio = rb2; 3520 if (mrdev) 3521 rdev_dec_pending(mrdev, mddev); 3522 if (mreplace) 3523 rdev_dec_pending(mreplace, mddev); 3524 break; 3525 } 3526 if (mrdev) 3527 rdev_dec_pending(mrdev, mddev); 3528 if (mreplace) 3529 rdev_dec_pending(mreplace, mddev); 3530 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3531 /* Only want this if there is elsewhere to 3532 * read from. 'j' is currently the first 3533 * readable copy. 3534 */ 3535 int targets = 1; 3536 for (; j < conf->copies; j++) { 3537 int d = r10_bio->devs[j].devnum; 3538 if (conf->mirrors[d].rdev && 3539 test_bit(In_sync, 3540 &conf->mirrors[d].rdev->flags)) 3541 targets++; 3542 } 3543 if (targets == 1) 3544 r10_bio->devs[0].bio->bi_opf 3545 &= ~MD_FAILFAST; 3546 } 3547 } 3548 if (biolist == NULL) { 3549 while (r10_bio) { 3550 struct r10bio *rb2 = r10_bio; 3551 r10_bio = (struct r10bio*) rb2->master_bio; 3552 rb2->master_bio = NULL; 3553 put_buf(rb2); 3554 } 3555 goto giveup; 3556 } 3557 } else { 3558 /* resync. Schedule a read for every block at this virt offset */ 3559 int count = 0; 3560 3561 /* 3562 * Since curr_resync_completed could probably not update in 3563 * time, and we will set cluster_sync_low based on it. 3564 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3565 * safety reason, which ensures curr_resync_completed is 3566 * updated in bitmap_cond_end_sync. 3567 */ 3568 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 3569 mddev_is_clustered(mddev) && 3570 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3571 3572 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, 3573 &sync_blocks, 3574 mddev->degraded) && 3575 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3576 &mddev->recovery)) { 3577 /* We can skip this block */ 3578 *skipped = 1; 3579 return sync_blocks + sectors_skipped; 3580 } 3581 if (sync_blocks < max_sync) 3582 max_sync = sync_blocks; 3583 r10_bio = raid10_alloc_init_r10buf(conf); 3584 r10_bio->state = 0; 3585 3586 r10_bio->mddev = mddev; 3587 atomic_set(&r10_bio->remaining, 0); 3588 raise_barrier(conf, 0); 3589 conf->next_resync = sector_nr; 3590 3591 r10_bio->master_bio = NULL; 3592 r10_bio->sector = sector_nr; 3593 set_bit(R10BIO_IsSync, &r10_bio->state); 3594 raid10_find_phys(conf, r10_bio); 3595 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3596 3597 for (i = 0; i < conf->copies; i++) { 3598 int d = r10_bio->devs[i].devnum; 3599 sector_t first_bad, sector; 3600 sector_t bad_sectors; 3601 struct md_rdev *rdev; 3602 3603 if (r10_bio->devs[i].repl_bio) 3604 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3605 3606 bio = r10_bio->devs[i].bio; 3607 bio->bi_status = BLK_STS_IOERR; 3608 rdev = conf->mirrors[d].rdev; 3609 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3610 continue; 3611 3612 sector = r10_bio->devs[i].addr; 3613 if (is_badblock(rdev, sector, max_sync, 3614 &first_bad, &bad_sectors)) { 3615 if (first_bad > sector) 3616 max_sync = first_bad - sector; 3617 else { 3618 bad_sectors -= (sector - first_bad); 3619 if (max_sync > bad_sectors) 3620 max_sync = bad_sectors; 3621 continue; 3622 } 3623 } 3624 atomic_inc(&rdev->nr_pending); 3625 atomic_inc(&r10_bio->remaining); 3626 bio->bi_next = biolist; 3627 biolist = bio; 3628 bio->bi_end_io = end_sync_read; 3629 bio->bi_opf = REQ_OP_READ; 3630 if (test_bit(FailFast, &rdev->flags)) 3631 bio->bi_opf |= MD_FAILFAST; 3632 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3633 bio_set_dev(bio, rdev->bdev); 3634 count++; 3635 3636 rdev = conf->mirrors[d].replacement; 3637 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3638 continue; 3639 3640 atomic_inc(&rdev->nr_pending); 3641 3642 /* Need to set up for writing to the replacement */ 3643 bio = r10_bio->devs[i].repl_bio; 3644 bio->bi_status = BLK_STS_IOERR; 3645 3646 sector = r10_bio->devs[i].addr; 3647 bio->bi_next = biolist; 3648 biolist = bio; 3649 bio->bi_end_io = end_sync_write; 3650 bio->bi_opf = REQ_OP_WRITE; 3651 if (test_bit(FailFast, &rdev->flags)) 3652 bio->bi_opf |= MD_FAILFAST; 3653 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3654 bio_set_dev(bio, rdev->bdev); 3655 count++; 3656 } 3657 3658 if (count < 2) { 3659 for (i=0; i<conf->copies; i++) { 3660 int d = r10_bio->devs[i].devnum; 3661 if (r10_bio->devs[i].bio->bi_end_io) 3662 rdev_dec_pending(conf->mirrors[d].rdev, 3663 mddev); 3664 if (r10_bio->devs[i].repl_bio && 3665 r10_bio->devs[i].repl_bio->bi_end_io) 3666 rdev_dec_pending( 3667 conf->mirrors[d].replacement, 3668 mddev); 3669 } 3670 put_buf(r10_bio); 3671 biolist = NULL; 3672 goto giveup; 3673 } 3674 } 3675 3676 nr_sectors = 0; 3677 if (sector_nr + max_sync < max_sector) 3678 max_sector = sector_nr + max_sync; 3679 do { 3680 struct page *page; 3681 int len = PAGE_SIZE; 3682 if (sector_nr + (len>>9) > max_sector) 3683 len = (max_sector - sector_nr) << 9; 3684 if (len == 0) 3685 break; 3686 for (bio= biolist ; bio ; bio=bio->bi_next) { 3687 struct resync_pages *rp = get_resync_pages(bio); 3688 page = resync_fetch_page(rp, page_idx); 3689 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 3690 bio->bi_status = BLK_STS_RESOURCE; 3691 bio_endio(bio); 3692 goto giveup; 3693 } 3694 } 3695 nr_sectors += len>>9; 3696 sector_nr += len>>9; 3697 } while (++page_idx < RESYNC_PAGES); 3698 r10_bio->sectors = nr_sectors; 3699 3700 if (mddev_is_clustered(mddev) && 3701 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3702 /* It is resync not recovery */ 3703 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3704 conf->cluster_sync_low = mddev->curr_resync_completed; 3705 raid10_set_cluster_sync_high(conf); 3706 /* Send resync message */ 3707 mddev->cluster_ops->resync_info_update(mddev, 3708 conf->cluster_sync_low, 3709 conf->cluster_sync_high); 3710 } 3711 } else if (mddev_is_clustered(mddev)) { 3712 /* This is recovery not resync */ 3713 sector_t sect_va1, sect_va2; 3714 bool broadcast_msg = false; 3715 3716 for (i = 0; i < conf->geo.raid_disks; i++) { 3717 /* 3718 * sector_nr is a device address for recovery, so we 3719 * need translate it to array address before compare 3720 * with cluster_sync_high. 3721 */ 3722 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3723 3724 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3725 broadcast_msg = true; 3726 /* 3727 * curr_resync_completed is similar as 3728 * sector_nr, so make the translation too. 3729 */ 3730 sect_va2 = raid10_find_virt(conf, 3731 mddev->curr_resync_completed, i); 3732 3733 if (conf->cluster_sync_low == 0 || 3734 conf->cluster_sync_low > sect_va2) 3735 conf->cluster_sync_low = sect_va2; 3736 } 3737 } 3738 if (broadcast_msg) { 3739 raid10_set_cluster_sync_high(conf); 3740 mddev->cluster_ops->resync_info_update(mddev, 3741 conf->cluster_sync_low, 3742 conf->cluster_sync_high); 3743 } 3744 } 3745 3746 while (biolist) { 3747 bio = biolist; 3748 biolist = biolist->bi_next; 3749 3750 bio->bi_next = NULL; 3751 r10_bio = get_resync_r10bio(bio); 3752 r10_bio->sectors = nr_sectors; 3753 3754 if (bio->bi_end_io == end_sync_read) { 3755 bio->bi_status = 0; 3756 submit_bio_noacct(bio); 3757 } 3758 } 3759 3760 if (sectors_skipped) 3761 /* pretend they weren't skipped, it makes 3762 * no important difference in this case 3763 */ 3764 md_done_sync(mddev, sectors_skipped, 1); 3765 3766 return sectors_skipped + nr_sectors; 3767 giveup: 3768 /* There is nowhere to write, so all non-sync 3769 * drives must be failed or in resync, all drives 3770 * have a bad block, so try the next chunk... 3771 */ 3772 if (sector_nr + max_sync < max_sector) 3773 max_sector = sector_nr + max_sync; 3774 3775 sectors_skipped += (max_sector - sector_nr); 3776 chunks_skipped ++; 3777 sector_nr = max_sector; 3778 goto skipped; 3779 } 3780 3781 static sector_t 3782 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3783 { 3784 sector_t size; 3785 struct r10conf *conf = mddev->private; 3786 3787 if (!raid_disks) 3788 raid_disks = min(conf->geo.raid_disks, 3789 conf->prev.raid_disks); 3790 if (!sectors) 3791 sectors = conf->dev_sectors; 3792 3793 size = sectors >> conf->geo.chunk_shift; 3794 sector_div(size, conf->geo.far_copies); 3795 size = size * raid_disks; 3796 sector_div(size, conf->geo.near_copies); 3797 3798 return size << conf->geo.chunk_shift; 3799 } 3800 3801 static void calc_sectors(struct r10conf *conf, sector_t size) 3802 { 3803 /* Calculate the number of sectors-per-device that will 3804 * actually be used, and set conf->dev_sectors and 3805 * conf->stride 3806 */ 3807 3808 size = size >> conf->geo.chunk_shift; 3809 sector_div(size, conf->geo.far_copies); 3810 size = size * conf->geo.raid_disks; 3811 sector_div(size, conf->geo.near_copies); 3812 /* 'size' is now the number of chunks in the array */ 3813 /* calculate "used chunks per device" */ 3814 size = size * conf->copies; 3815 3816 /* We need to round up when dividing by raid_disks to 3817 * get the stride size. 3818 */ 3819 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3820 3821 conf->dev_sectors = size << conf->geo.chunk_shift; 3822 3823 if (conf->geo.far_offset) 3824 conf->geo.stride = 1 << conf->geo.chunk_shift; 3825 else { 3826 sector_div(size, conf->geo.far_copies); 3827 conf->geo.stride = size << conf->geo.chunk_shift; 3828 } 3829 } 3830 3831 enum geo_type {geo_new, geo_old, geo_start}; 3832 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3833 { 3834 int nc, fc, fo; 3835 int layout, chunk, disks; 3836 switch (new) { 3837 case geo_old: 3838 layout = mddev->layout; 3839 chunk = mddev->chunk_sectors; 3840 disks = mddev->raid_disks - mddev->delta_disks; 3841 break; 3842 case geo_new: 3843 layout = mddev->new_layout; 3844 chunk = mddev->new_chunk_sectors; 3845 disks = mddev->raid_disks; 3846 break; 3847 default: /* avoid 'may be unused' warnings */ 3848 case geo_start: /* new when starting reshape - raid_disks not 3849 * updated yet. */ 3850 layout = mddev->new_layout; 3851 chunk = mddev->new_chunk_sectors; 3852 disks = mddev->raid_disks + mddev->delta_disks; 3853 break; 3854 } 3855 if (layout >> 19) 3856 return -1; 3857 if (chunk < (PAGE_SIZE >> 9) || 3858 !is_power_of_2(chunk)) 3859 return -2; 3860 nc = layout & 255; 3861 fc = (layout >> 8) & 255; 3862 fo = layout & (1<<16); 3863 geo->raid_disks = disks; 3864 geo->near_copies = nc; 3865 geo->far_copies = fc; 3866 geo->far_offset = fo; 3867 switch (layout >> 17) { 3868 case 0: /* original layout. simple but not always optimal */ 3869 geo->far_set_size = disks; 3870 break; 3871 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3872 * actually using this, but leave code here just in case.*/ 3873 geo->far_set_size = disks/fc; 3874 WARN(geo->far_set_size < fc, 3875 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3876 break; 3877 case 2: /* "improved" layout fixed to match documentation */ 3878 geo->far_set_size = fc * nc; 3879 break; 3880 default: /* Not a valid layout */ 3881 return -1; 3882 } 3883 geo->chunk_mask = chunk - 1; 3884 geo->chunk_shift = ffz(~chunk); 3885 return nc*fc; 3886 } 3887 3888 static void raid10_free_conf(struct r10conf *conf) 3889 { 3890 if (!conf) 3891 return; 3892 3893 mempool_exit(&conf->r10bio_pool); 3894 kfree(conf->mirrors); 3895 kfree(conf->mirrors_old); 3896 kfree(conf->mirrors_new); 3897 safe_put_page(conf->tmppage); 3898 bioset_exit(&conf->bio_split); 3899 kfree(conf); 3900 } 3901 3902 static struct r10conf *setup_conf(struct mddev *mddev) 3903 { 3904 struct r10conf *conf = NULL; 3905 int err = -EINVAL; 3906 struct geom geo; 3907 int copies; 3908 3909 copies = setup_geo(&geo, mddev, geo_new); 3910 3911 if (copies == -2) { 3912 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3913 mdname(mddev), PAGE_SIZE); 3914 goto out; 3915 } 3916 3917 if (copies < 2 || copies > mddev->raid_disks) { 3918 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3919 mdname(mddev), mddev->new_layout); 3920 goto out; 3921 } 3922 3923 err = -ENOMEM; 3924 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3925 if (!conf) 3926 goto out; 3927 3928 /* FIXME calc properly */ 3929 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3930 sizeof(struct raid10_info), 3931 GFP_KERNEL); 3932 if (!conf->mirrors) 3933 goto out; 3934 3935 conf->tmppage = alloc_page(GFP_KERNEL); 3936 if (!conf->tmppage) 3937 goto out; 3938 3939 conf->geo = geo; 3940 conf->copies = copies; 3941 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3942 rbio_pool_free, conf); 3943 if (err) 3944 goto out; 3945 3946 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3947 if (err) 3948 goto out; 3949 3950 calc_sectors(conf, mddev->dev_sectors); 3951 if (mddev->reshape_position == MaxSector) { 3952 conf->prev = conf->geo; 3953 conf->reshape_progress = MaxSector; 3954 } else { 3955 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3956 err = -EINVAL; 3957 goto out; 3958 } 3959 conf->reshape_progress = mddev->reshape_position; 3960 if (conf->prev.far_offset) 3961 conf->prev.stride = 1 << conf->prev.chunk_shift; 3962 else 3963 /* far_copies must be 1 */ 3964 conf->prev.stride = conf->dev_sectors; 3965 } 3966 conf->reshape_safe = conf->reshape_progress; 3967 spin_lock_init(&conf->device_lock); 3968 INIT_LIST_HEAD(&conf->retry_list); 3969 INIT_LIST_HEAD(&conf->bio_end_io_list); 3970 3971 seqlock_init(&conf->resync_lock); 3972 init_waitqueue_head(&conf->wait_barrier); 3973 atomic_set(&conf->nr_pending, 0); 3974 3975 err = -ENOMEM; 3976 rcu_assign_pointer(conf->thread, 3977 md_register_thread(raid10d, mddev, "raid10")); 3978 if (!conf->thread) 3979 goto out; 3980 3981 conf->mddev = mddev; 3982 return conf; 3983 3984 out: 3985 raid10_free_conf(conf); 3986 return ERR_PTR(err); 3987 } 3988 3989 static unsigned int raid10_nr_stripes(struct r10conf *conf) 3990 { 3991 unsigned int raid_disks = conf->geo.raid_disks; 3992 3993 if (conf->geo.raid_disks % conf->geo.near_copies) 3994 return raid_disks; 3995 return raid_disks / conf->geo.near_copies; 3996 } 3997 3998 static int raid10_set_queue_limits(struct mddev *mddev) 3999 { 4000 struct r10conf *conf = mddev->private; 4001 struct queue_limits lim; 4002 int err; 4003 4004 md_init_stacking_limits(&lim); 4005 lim.max_write_zeroes_sectors = 0; 4006 lim.io_min = mddev->chunk_sectors << 9; 4007 lim.io_opt = lim.io_min * raid10_nr_stripes(conf); 4008 lim.features |= BLK_FEAT_ATOMIC_WRITES; 4009 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 4010 if (err) 4011 return err; 4012 return queue_limits_set(mddev->gendisk->queue, &lim); 4013 } 4014 4015 static int raid10_run(struct mddev *mddev) 4016 { 4017 struct r10conf *conf; 4018 int i, disk_idx; 4019 struct raid10_info *disk; 4020 struct md_rdev *rdev; 4021 sector_t size; 4022 sector_t min_offset_diff = 0; 4023 int first = 1; 4024 int ret = -EIO; 4025 4026 if (mddev->private == NULL) { 4027 conf = setup_conf(mddev); 4028 if (IS_ERR(conf)) 4029 return PTR_ERR(conf); 4030 mddev->private = conf; 4031 } 4032 conf = mddev->private; 4033 if (!conf) 4034 goto out; 4035 4036 rcu_assign_pointer(mddev->thread, conf->thread); 4037 rcu_assign_pointer(conf->thread, NULL); 4038 4039 if (mddev_is_clustered(conf->mddev)) { 4040 int fc, fo; 4041 4042 fc = (mddev->layout >> 8) & 255; 4043 fo = mddev->layout & (1<<16); 4044 if (fc > 1 || fo > 0) { 4045 pr_err("only near layout is supported by clustered" 4046 " raid10\n"); 4047 goto out_free_conf; 4048 } 4049 } 4050 4051 rdev_for_each(rdev, mddev) { 4052 long long diff; 4053 4054 disk_idx = rdev->raid_disk; 4055 if (disk_idx < 0) 4056 continue; 4057 if (disk_idx >= conf->geo.raid_disks && 4058 disk_idx >= conf->prev.raid_disks) 4059 continue; 4060 disk = conf->mirrors + disk_idx; 4061 4062 if (test_bit(Replacement, &rdev->flags)) { 4063 if (disk->replacement) 4064 goto out_free_conf; 4065 disk->replacement = rdev; 4066 } else { 4067 if (disk->rdev) 4068 goto out_free_conf; 4069 disk->rdev = rdev; 4070 } 4071 diff = (rdev->new_data_offset - rdev->data_offset); 4072 if (!mddev->reshape_backwards) 4073 diff = -diff; 4074 if (diff < 0) 4075 diff = 0; 4076 if (first || diff < min_offset_diff) 4077 min_offset_diff = diff; 4078 4079 disk->head_position = 0; 4080 first = 0; 4081 } 4082 4083 if (!mddev_is_dm(conf->mddev)) { 4084 int err = raid10_set_queue_limits(mddev); 4085 4086 if (err) { 4087 ret = err; 4088 goto out_free_conf; 4089 } 4090 } 4091 4092 /* need to check that every block has at least one working mirror */ 4093 if (!enough(conf, -1)) { 4094 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4095 mdname(mddev)); 4096 goto out_free_conf; 4097 } 4098 4099 if (conf->reshape_progress != MaxSector) { 4100 /* must ensure that shape change is supported */ 4101 if (conf->geo.far_copies != 1 && 4102 conf->geo.far_offset == 0) 4103 goto out_free_conf; 4104 if (conf->prev.far_copies != 1 && 4105 conf->prev.far_offset == 0) 4106 goto out_free_conf; 4107 } 4108 4109 mddev->degraded = 0; 4110 for (i = 0; 4111 i < conf->geo.raid_disks 4112 || i < conf->prev.raid_disks; 4113 i++) { 4114 4115 disk = conf->mirrors + i; 4116 4117 if (!disk->rdev && disk->replacement) { 4118 /* The replacement is all we have - use it */ 4119 disk->rdev = disk->replacement; 4120 disk->replacement = NULL; 4121 clear_bit(Replacement, &disk->rdev->flags); 4122 } 4123 4124 if (!disk->rdev || 4125 !test_bit(In_sync, &disk->rdev->flags)) { 4126 disk->head_position = 0; 4127 mddev->degraded++; 4128 if (disk->rdev && 4129 disk->rdev->saved_raid_disk < 0) 4130 conf->fullsync = 1; 4131 } 4132 4133 if (disk->replacement && 4134 !test_bit(In_sync, &disk->replacement->flags) && 4135 disk->replacement->saved_raid_disk < 0) { 4136 conf->fullsync = 1; 4137 } 4138 4139 disk->recovery_disabled = mddev->recovery_disabled - 1; 4140 } 4141 4142 if (mddev->recovery_cp != MaxSector) 4143 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4144 mdname(mddev)); 4145 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4146 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4147 conf->geo.raid_disks); 4148 /* 4149 * Ok, everything is just fine now 4150 */ 4151 mddev->dev_sectors = conf->dev_sectors; 4152 size = raid10_size(mddev, 0, 0); 4153 md_set_array_sectors(mddev, size); 4154 mddev->resync_max_sectors = size; 4155 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4156 4157 if (md_integrity_register(mddev)) 4158 goto out_free_conf; 4159 4160 if (conf->reshape_progress != MaxSector) { 4161 unsigned long before_length, after_length; 4162 4163 before_length = ((1 << conf->prev.chunk_shift) * 4164 conf->prev.far_copies); 4165 after_length = ((1 << conf->geo.chunk_shift) * 4166 conf->geo.far_copies); 4167 4168 if (max(before_length, after_length) > min_offset_diff) { 4169 /* This cannot work */ 4170 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4171 goto out_free_conf; 4172 } 4173 conf->offset_diff = min_offset_diff; 4174 4175 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4176 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4177 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4178 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4179 } 4180 4181 return 0; 4182 4183 out_free_conf: 4184 md_unregister_thread(mddev, &mddev->thread); 4185 raid10_free_conf(conf); 4186 mddev->private = NULL; 4187 out: 4188 return ret; 4189 } 4190 4191 static void raid10_free(struct mddev *mddev, void *priv) 4192 { 4193 raid10_free_conf(priv); 4194 } 4195 4196 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4197 { 4198 struct r10conf *conf = mddev->private; 4199 4200 if (quiesce) 4201 raise_barrier(conf, 0); 4202 else 4203 lower_barrier(conf); 4204 } 4205 4206 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4207 { 4208 /* Resize of 'far' arrays is not supported. 4209 * For 'near' and 'offset' arrays we can set the 4210 * number of sectors used to be an appropriate multiple 4211 * of the chunk size. 4212 * For 'offset', this is far_copies*chunksize. 4213 * For 'near' the multiplier is the LCM of 4214 * near_copies and raid_disks. 4215 * So if far_copies > 1 && !far_offset, fail. 4216 * Else find LCM(raid_disks, near_copy)*far_copies and 4217 * multiply by chunk_size. Then round to this number. 4218 * This is mostly done by raid10_size() 4219 */ 4220 struct r10conf *conf = mddev->private; 4221 sector_t oldsize, size; 4222 int ret; 4223 4224 if (mddev->reshape_position != MaxSector) 4225 return -EBUSY; 4226 4227 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4228 return -EINVAL; 4229 4230 oldsize = raid10_size(mddev, 0, 0); 4231 size = raid10_size(mddev, sectors, 0); 4232 if (mddev->external_size && 4233 mddev->array_sectors > size) 4234 return -EINVAL; 4235 4236 ret = mddev->bitmap_ops->resize(mddev, size, 0, false); 4237 if (ret) 4238 return ret; 4239 4240 md_set_array_sectors(mddev, size); 4241 if (sectors > mddev->dev_sectors && 4242 mddev->recovery_cp > oldsize) { 4243 mddev->recovery_cp = oldsize; 4244 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4245 } 4246 calc_sectors(conf, sectors); 4247 mddev->dev_sectors = conf->dev_sectors; 4248 mddev->resync_max_sectors = size; 4249 return 0; 4250 } 4251 4252 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4253 { 4254 struct md_rdev *rdev; 4255 struct r10conf *conf; 4256 4257 if (mddev->degraded > 0) { 4258 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4259 mdname(mddev)); 4260 return ERR_PTR(-EINVAL); 4261 } 4262 sector_div(size, devs); 4263 4264 /* Set new parameters */ 4265 mddev->new_level = 10; 4266 /* new layout: far_copies = 1, near_copies = 2 */ 4267 mddev->new_layout = (1<<8) + 2; 4268 mddev->new_chunk_sectors = mddev->chunk_sectors; 4269 mddev->delta_disks = mddev->raid_disks; 4270 mddev->raid_disks *= 2; 4271 /* make sure it will be not marked as dirty */ 4272 mddev->recovery_cp = MaxSector; 4273 mddev->dev_sectors = size; 4274 4275 conf = setup_conf(mddev); 4276 if (!IS_ERR(conf)) { 4277 rdev_for_each(rdev, mddev) 4278 if (rdev->raid_disk >= 0) { 4279 rdev->new_raid_disk = rdev->raid_disk * 2; 4280 rdev->sectors = size; 4281 } 4282 } 4283 4284 return conf; 4285 } 4286 4287 static void *raid10_takeover(struct mddev *mddev) 4288 { 4289 struct r0conf *raid0_conf; 4290 4291 /* raid10 can take over: 4292 * raid0 - providing it has only two drives 4293 */ 4294 if (mddev->level == 0) { 4295 /* for raid0 takeover only one zone is supported */ 4296 raid0_conf = mddev->private; 4297 if (raid0_conf->nr_strip_zones > 1) { 4298 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4299 mdname(mddev)); 4300 return ERR_PTR(-EINVAL); 4301 } 4302 return raid10_takeover_raid0(mddev, 4303 raid0_conf->strip_zone->zone_end, 4304 raid0_conf->strip_zone->nb_dev); 4305 } 4306 return ERR_PTR(-EINVAL); 4307 } 4308 4309 static int raid10_check_reshape(struct mddev *mddev) 4310 { 4311 /* Called when there is a request to change 4312 * - layout (to ->new_layout) 4313 * - chunk size (to ->new_chunk_sectors) 4314 * - raid_disks (by delta_disks) 4315 * or when trying to restart a reshape that was ongoing. 4316 * 4317 * We need to validate the request and possibly allocate 4318 * space if that might be an issue later. 4319 * 4320 * Currently we reject any reshape of a 'far' mode array, 4321 * allow chunk size to change if new is generally acceptable, 4322 * allow raid_disks to increase, and allow 4323 * a switch between 'near' mode and 'offset' mode. 4324 */ 4325 struct r10conf *conf = mddev->private; 4326 struct geom geo; 4327 4328 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4329 return -EINVAL; 4330 4331 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4332 /* mustn't change number of copies */ 4333 return -EINVAL; 4334 if (geo.far_copies > 1 && !geo.far_offset) 4335 /* Cannot switch to 'far' mode */ 4336 return -EINVAL; 4337 4338 if (mddev->array_sectors & geo.chunk_mask) 4339 /* not factor of array size */ 4340 return -EINVAL; 4341 4342 if (!enough(conf, -1)) 4343 return -EINVAL; 4344 4345 kfree(conf->mirrors_new); 4346 conf->mirrors_new = NULL; 4347 if (mddev->delta_disks > 0) { 4348 /* allocate new 'mirrors' list */ 4349 conf->mirrors_new = 4350 kcalloc(mddev->raid_disks + mddev->delta_disks, 4351 sizeof(struct raid10_info), 4352 GFP_KERNEL); 4353 if (!conf->mirrors_new) 4354 return -ENOMEM; 4355 } 4356 return 0; 4357 } 4358 4359 /* 4360 * Need to check if array has failed when deciding whether to: 4361 * - start an array 4362 * - remove non-faulty devices 4363 * - add a spare 4364 * - allow a reshape 4365 * This determination is simple when no reshape is happening. 4366 * However if there is a reshape, we need to carefully check 4367 * both the before and after sections. 4368 * This is because some failed devices may only affect one 4369 * of the two sections, and some non-in_sync devices may 4370 * be insync in the section most affected by failed devices. 4371 */ 4372 static int calc_degraded(struct r10conf *conf) 4373 { 4374 int degraded, degraded2; 4375 int i; 4376 4377 degraded = 0; 4378 /* 'prev' section first */ 4379 for (i = 0; i < conf->prev.raid_disks; i++) { 4380 struct md_rdev *rdev = conf->mirrors[i].rdev; 4381 4382 if (!rdev || test_bit(Faulty, &rdev->flags)) 4383 degraded++; 4384 else if (!test_bit(In_sync, &rdev->flags)) 4385 /* When we can reduce the number of devices in 4386 * an array, this might not contribute to 4387 * 'degraded'. It does now. 4388 */ 4389 degraded++; 4390 } 4391 if (conf->geo.raid_disks == conf->prev.raid_disks) 4392 return degraded; 4393 degraded2 = 0; 4394 for (i = 0; i < conf->geo.raid_disks; i++) { 4395 struct md_rdev *rdev = conf->mirrors[i].rdev; 4396 4397 if (!rdev || test_bit(Faulty, &rdev->flags)) 4398 degraded2++; 4399 else if (!test_bit(In_sync, &rdev->flags)) { 4400 /* If reshape is increasing the number of devices, 4401 * this section has already been recovered, so 4402 * it doesn't contribute to degraded. 4403 * else it does. 4404 */ 4405 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4406 degraded2++; 4407 } 4408 } 4409 if (degraded2 > degraded) 4410 return degraded2; 4411 return degraded; 4412 } 4413 4414 static int raid10_start_reshape(struct mddev *mddev) 4415 { 4416 /* A 'reshape' has been requested. This commits 4417 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4418 * This also checks if there are enough spares and adds them 4419 * to the array. 4420 * We currently require enough spares to make the final 4421 * array non-degraded. We also require that the difference 4422 * between old and new data_offset - on each device - is 4423 * enough that we never risk over-writing. 4424 */ 4425 4426 unsigned long before_length, after_length; 4427 sector_t min_offset_diff = 0; 4428 int first = 1; 4429 struct geom new; 4430 struct r10conf *conf = mddev->private; 4431 struct md_rdev *rdev; 4432 int spares = 0; 4433 int ret; 4434 4435 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4436 return -EBUSY; 4437 4438 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4439 return -EINVAL; 4440 4441 before_length = ((1 << conf->prev.chunk_shift) * 4442 conf->prev.far_copies); 4443 after_length = ((1 << conf->geo.chunk_shift) * 4444 conf->geo.far_copies); 4445 4446 rdev_for_each(rdev, mddev) { 4447 if (!test_bit(In_sync, &rdev->flags) 4448 && !test_bit(Faulty, &rdev->flags)) 4449 spares++; 4450 if (rdev->raid_disk >= 0) { 4451 long long diff = (rdev->new_data_offset 4452 - rdev->data_offset); 4453 if (!mddev->reshape_backwards) 4454 diff = -diff; 4455 if (diff < 0) 4456 diff = 0; 4457 if (first || diff < min_offset_diff) 4458 min_offset_diff = diff; 4459 first = 0; 4460 } 4461 } 4462 4463 if (max(before_length, after_length) > min_offset_diff) 4464 return -EINVAL; 4465 4466 if (spares < mddev->delta_disks) 4467 return -EINVAL; 4468 4469 conf->offset_diff = min_offset_diff; 4470 spin_lock_irq(&conf->device_lock); 4471 if (conf->mirrors_new) { 4472 memcpy(conf->mirrors_new, conf->mirrors, 4473 sizeof(struct raid10_info)*conf->prev.raid_disks); 4474 smp_mb(); 4475 kfree(conf->mirrors_old); 4476 conf->mirrors_old = conf->mirrors; 4477 conf->mirrors = conf->mirrors_new; 4478 conf->mirrors_new = NULL; 4479 } 4480 setup_geo(&conf->geo, mddev, geo_start); 4481 smp_mb(); 4482 if (mddev->reshape_backwards) { 4483 sector_t size = raid10_size(mddev, 0, 0); 4484 if (size < mddev->array_sectors) { 4485 spin_unlock_irq(&conf->device_lock); 4486 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4487 mdname(mddev)); 4488 return -EINVAL; 4489 } 4490 mddev->resync_max_sectors = size; 4491 conf->reshape_progress = size; 4492 } else 4493 conf->reshape_progress = 0; 4494 conf->reshape_safe = conf->reshape_progress; 4495 spin_unlock_irq(&conf->device_lock); 4496 4497 if (mddev->delta_disks && mddev->bitmap) { 4498 struct mdp_superblock_1 *sb = NULL; 4499 sector_t oldsize, newsize; 4500 4501 oldsize = raid10_size(mddev, 0, 0); 4502 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4503 4504 if (!mddev_is_clustered(mddev)) { 4505 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 4506 if (ret) 4507 goto abort; 4508 else 4509 goto out; 4510 } 4511 4512 rdev_for_each(rdev, mddev) { 4513 if (rdev->raid_disk > -1 && 4514 !test_bit(Faulty, &rdev->flags)) 4515 sb = page_address(rdev->sb_page); 4516 } 4517 4518 /* 4519 * some node is already performing reshape, and no need to 4520 * call bitmap_ops->resize again since it should be called when 4521 * receiving BITMAP_RESIZE msg 4522 */ 4523 if ((sb && (le32_to_cpu(sb->feature_map) & 4524 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4525 goto out; 4526 4527 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 4528 if (ret) 4529 goto abort; 4530 4531 ret = mddev->cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4532 if (ret) { 4533 mddev->bitmap_ops->resize(mddev, oldsize, 0, false); 4534 goto abort; 4535 } 4536 } 4537 out: 4538 if (mddev->delta_disks > 0) { 4539 rdev_for_each(rdev, mddev) 4540 if (rdev->raid_disk < 0 && 4541 !test_bit(Faulty, &rdev->flags)) { 4542 if (raid10_add_disk(mddev, rdev) == 0) { 4543 if (rdev->raid_disk >= 4544 conf->prev.raid_disks) 4545 set_bit(In_sync, &rdev->flags); 4546 else 4547 rdev->recovery_offset = 0; 4548 4549 /* Failure here is OK */ 4550 sysfs_link_rdev(mddev, rdev); 4551 } 4552 } else if (rdev->raid_disk >= conf->prev.raid_disks 4553 && !test_bit(Faulty, &rdev->flags)) { 4554 /* This is a spare that was manually added */ 4555 set_bit(In_sync, &rdev->flags); 4556 } 4557 } 4558 /* When a reshape changes the number of devices, 4559 * ->degraded is measured against the larger of the 4560 * pre and post numbers. 4561 */ 4562 spin_lock_irq(&conf->device_lock); 4563 mddev->degraded = calc_degraded(conf); 4564 spin_unlock_irq(&conf->device_lock); 4565 mddev->raid_disks = conf->geo.raid_disks; 4566 mddev->reshape_position = conf->reshape_progress; 4567 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4568 4569 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4570 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4571 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4572 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4573 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4574 conf->reshape_checkpoint = jiffies; 4575 md_new_event(); 4576 return 0; 4577 4578 abort: 4579 mddev->recovery = 0; 4580 spin_lock_irq(&conf->device_lock); 4581 conf->geo = conf->prev; 4582 mddev->raid_disks = conf->geo.raid_disks; 4583 rdev_for_each(rdev, mddev) 4584 rdev->new_data_offset = rdev->data_offset; 4585 smp_wmb(); 4586 conf->reshape_progress = MaxSector; 4587 conf->reshape_safe = MaxSector; 4588 mddev->reshape_position = MaxSector; 4589 spin_unlock_irq(&conf->device_lock); 4590 return ret; 4591 } 4592 4593 /* Calculate the last device-address that could contain 4594 * any block from the chunk that includes the array-address 's' 4595 * and report the next address. 4596 * i.e. the address returned will be chunk-aligned and after 4597 * any data that is in the chunk containing 's'. 4598 */ 4599 static sector_t last_dev_address(sector_t s, struct geom *geo) 4600 { 4601 s = (s | geo->chunk_mask) + 1; 4602 s >>= geo->chunk_shift; 4603 s *= geo->near_copies; 4604 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4605 s *= geo->far_copies; 4606 s <<= geo->chunk_shift; 4607 return s; 4608 } 4609 4610 /* Calculate the first device-address that could contain 4611 * any block from the chunk that includes the array-address 's'. 4612 * This too will be the start of a chunk 4613 */ 4614 static sector_t first_dev_address(sector_t s, struct geom *geo) 4615 { 4616 s >>= geo->chunk_shift; 4617 s *= geo->near_copies; 4618 sector_div(s, geo->raid_disks); 4619 s *= geo->far_copies; 4620 s <<= geo->chunk_shift; 4621 return s; 4622 } 4623 4624 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4625 int *skipped) 4626 { 4627 /* We simply copy at most one chunk (smallest of old and new) 4628 * at a time, possibly less if that exceeds RESYNC_PAGES, 4629 * or we hit a bad block or something. 4630 * This might mean we pause for normal IO in the middle of 4631 * a chunk, but that is not a problem as mddev->reshape_position 4632 * can record any location. 4633 * 4634 * If we will want to write to a location that isn't 4635 * yet recorded as 'safe' (i.e. in metadata on disk) then 4636 * we need to flush all reshape requests and update the metadata. 4637 * 4638 * When reshaping forwards (e.g. to more devices), we interpret 4639 * 'safe' as the earliest block which might not have been copied 4640 * down yet. We divide this by previous stripe size and multiply 4641 * by previous stripe length to get lowest device offset that we 4642 * cannot write to yet. 4643 * We interpret 'sector_nr' as an address that we want to write to. 4644 * From this we use last_device_address() to find where we might 4645 * write to, and first_device_address on the 'safe' position. 4646 * If this 'next' write position is after the 'safe' position, 4647 * we must update the metadata to increase the 'safe' position. 4648 * 4649 * When reshaping backwards, we round in the opposite direction 4650 * and perform the reverse test: next write position must not be 4651 * less than current safe position. 4652 * 4653 * In all this the minimum difference in data offsets 4654 * (conf->offset_diff - always positive) allows a bit of slack, 4655 * so next can be after 'safe', but not by more than offset_diff 4656 * 4657 * We need to prepare all the bios here before we start any IO 4658 * to ensure the size we choose is acceptable to all devices. 4659 * The means one for each copy for write-out and an extra one for 4660 * read-in. 4661 * We store the read-in bio in ->master_bio and the others in 4662 * ->devs[x].bio and ->devs[x].repl_bio. 4663 */ 4664 struct r10conf *conf = mddev->private; 4665 struct r10bio *r10_bio; 4666 sector_t next, safe, last; 4667 int max_sectors; 4668 int nr_sectors; 4669 int s; 4670 struct md_rdev *rdev; 4671 int need_flush = 0; 4672 struct bio *blist; 4673 struct bio *bio, *read_bio; 4674 int sectors_done = 0; 4675 struct page **pages; 4676 4677 if (sector_nr == 0) { 4678 /* If restarting in the middle, skip the initial sectors */ 4679 if (mddev->reshape_backwards && 4680 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4681 sector_nr = (raid10_size(mddev, 0, 0) 4682 - conf->reshape_progress); 4683 } else if (!mddev->reshape_backwards && 4684 conf->reshape_progress > 0) 4685 sector_nr = conf->reshape_progress; 4686 if (sector_nr) { 4687 mddev->curr_resync_completed = sector_nr; 4688 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4689 *skipped = 1; 4690 return sector_nr; 4691 } 4692 } 4693 4694 /* We don't use sector_nr to track where we are up to 4695 * as that doesn't work well for ->reshape_backwards. 4696 * So just use ->reshape_progress. 4697 */ 4698 if (mddev->reshape_backwards) { 4699 /* 'next' is the earliest device address that we might 4700 * write to for this chunk in the new layout 4701 */ 4702 next = first_dev_address(conf->reshape_progress - 1, 4703 &conf->geo); 4704 4705 /* 'safe' is the last device address that we might read from 4706 * in the old layout after a restart 4707 */ 4708 safe = last_dev_address(conf->reshape_safe - 1, 4709 &conf->prev); 4710 4711 if (next + conf->offset_diff < safe) 4712 need_flush = 1; 4713 4714 last = conf->reshape_progress - 1; 4715 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4716 & conf->prev.chunk_mask); 4717 if (sector_nr + RESYNC_SECTORS < last) 4718 sector_nr = last + 1 - RESYNC_SECTORS; 4719 } else { 4720 /* 'next' is after the last device address that we 4721 * might write to for this chunk in the new layout 4722 */ 4723 next = last_dev_address(conf->reshape_progress, &conf->geo); 4724 4725 /* 'safe' is the earliest device address that we might 4726 * read from in the old layout after a restart 4727 */ 4728 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4729 4730 /* Need to update metadata if 'next' might be beyond 'safe' 4731 * as that would possibly corrupt data 4732 */ 4733 if (next > safe + conf->offset_diff) 4734 need_flush = 1; 4735 4736 sector_nr = conf->reshape_progress; 4737 last = sector_nr | (conf->geo.chunk_mask 4738 & conf->prev.chunk_mask); 4739 4740 if (sector_nr + RESYNC_SECTORS <= last) 4741 last = sector_nr + RESYNC_SECTORS - 1; 4742 } 4743 4744 if (need_flush || 4745 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4746 /* Need to update reshape_position in metadata */ 4747 wait_barrier(conf, false); 4748 mddev->reshape_position = conf->reshape_progress; 4749 if (mddev->reshape_backwards) 4750 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4751 - conf->reshape_progress; 4752 else 4753 mddev->curr_resync_completed = conf->reshape_progress; 4754 conf->reshape_checkpoint = jiffies; 4755 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4756 md_wakeup_thread(mddev->thread); 4757 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4758 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4759 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4760 allow_barrier(conf); 4761 return sectors_done; 4762 } 4763 conf->reshape_safe = mddev->reshape_position; 4764 allow_barrier(conf); 4765 } 4766 4767 raise_barrier(conf, 0); 4768 read_more: 4769 /* Now schedule reads for blocks from sector_nr to last */ 4770 r10_bio = raid10_alloc_init_r10buf(conf); 4771 r10_bio->state = 0; 4772 raise_barrier(conf, 1); 4773 atomic_set(&r10_bio->remaining, 0); 4774 r10_bio->mddev = mddev; 4775 r10_bio->sector = sector_nr; 4776 set_bit(R10BIO_IsReshape, &r10_bio->state); 4777 r10_bio->sectors = last - sector_nr + 1; 4778 rdev = read_balance(conf, r10_bio, &max_sectors); 4779 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4780 4781 if (!rdev) { 4782 /* Cannot read from here, so need to record bad blocks 4783 * on all the target devices. 4784 */ 4785 // FIXME 4786 mempool_free(r10_bio, &conf->r10buf_pool); 4787 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4788 return sectors_done; 4789 } 4790 4791 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4792 GFP_KERNEL, &mddev->bio_set); 4793 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4794 + rdev->data_offset); 4795 read_bio->bi_private = r10_bio; 4796 read_bio->bi_end_io = end_reshape_read; 4797 r10_bio->master_bio = read_bio; 4798 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4799 4800 /* 4801 * Broadcast RESYNC message to other nodes, so all nodes would not 4802 * write to the region to avoid conflict. 4803 */ 4804 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4805 struct mdp_superblock_1 *sb = NULL; 4806 int sb_reshape_pos = 0; 4807 4808 conf->cluster_sync_low = sector_nr; 4809 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4810 sb = page_address(rdev->sb_page); 4811 if (sb) { 4812 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4813 /* 4814 * Set cluster_sync_low again if next address for array 4815 * reshape is less than cluster_sync_low. Since we can't 4816 * update cluster_sync_low until it has finished reshape. 4817 */ 4818 if (sb_reshape_pos < conf->cluster_sync_low) 4819 conf->cluster_sync_low = sb_reshape_pos; 4820 } 4821 4822 mddev->cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4823 conf->cluster_sync_high); 4824 } 4825 4826 /* Now find the locations in the new layout */ 4827 __raid10_find_phys(&conf->geo, r10_bio); 4828 4829 blist = read_bio; 4830 read_bio->bi_next = NULL; 4831 4832 for (s = 0; s < conf->copies*2; s++) { 4833 struct bio *b; 4834 int d = r10_bio->devs[s/2].devnum; 4835 struct md_rdev *rdev2; 4836 if (s&1) { 4837 rdev2 = conf->mirrors[d].replacement; 4838 b = r10_bio->devs[s/2].repl_bio; 4839 } else { 4840 rdev2 = conf->mirrors[d].rdev; 4841 b = r10_bio->devs[s/2].bio; 4842 } 4843 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4844 continue; 4845 4846 bio_set_dev(b, rdev2->bdev); 4847 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4848 rdev2->new_data_offset; 4849 b->bi_end_io = end_reshape_write; 4850 b->bi_opf = REQ_OP_WRITE; 4851 b->bi_next = blist; 4852 blist = b; 4853 } 4854 4855 /* Now add as many pages as possible to all of these bios. */ 4856 4857 nr_sectors = 0; 4858 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4859 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4860 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4861 int len = (max_sectors - s) << 9; 4862 if (len > PAGE_SIZE) 4863 len = PAGE_SIZE; 4864 for (bio = blist; bio ; bio = bio->bi_next) { 4865 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 4866 bio->bi_status = BLK_STS_RESOURCE; 4867 bio_endio(bio); 4868 return sectors_done; 4869 } 4870 } 4871 sector_nr += len >> 9; 4872 nr_sectors += len >> 9; 4873 } 4874 r10_bio->sectors = nr_sectors; 4875 4876 /* Now submit the read */ 4877 atomic_inc(&r10_bio->remaining); 4878 read_bio->bi_next = NULL; 4879 submit_bio_noacct(read_bio); 4880 sectors_done += nr_sectors; 4881 if (sector_nr <= last) 4882 goto read_more; 4883 4884 lower_barrier(conf); 4885 4886 /* Now that we have done the whole section we can 4887 * update reshape_progress 4888 */ 4889 if (mddev->reshape_backwards) 4890 conf->reshape_progress -= sectors_done; 4891 else 4892 conf->reshape_progress += sectors_done; 4893 4894 return sectors_done; 4895 } 4896 4897 static void end_reshape_request(struct r10bio *r10_bio); 4898 static int handle_reshape_read_error(struct mddev *mddev, 4899 struct r10bio *r10_bio); 4900 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4901 { 4902 /* Reshape read completed. Hopefully we have a block 4903 * to write out. 4904 * If we got a read error then we do sync 1-page reads from 4905 * elsewhere until we find the data - or give up. 4906 */ 4907 struct r10conf *conf = mddev->private; 4908 int s; 4909 4910 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4911 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4912 /* Reshape has been aborted */ 4913 md_done_sync(mddev, r10_bio->sectors, 0); 4914 return; 4915 } 4916 4917 /* We definitely have the data in the pages, schedule the 4918 * writes. 4919 */ 4920 atomic_set(&r10_bio->remaining, 1); 4921 for (s = 0; s < conf->copies*2; s++) { 4922 struct bio *b; 4923 int d = r10_bio->devs[s/2].devnum; 4924 struct md_rdev *rdev; 4925 if (s&1) { 4926 rdev = conf->mirrors[d].replacement; 4927 b = r10_bio->devs[s/2].repl_bio; 4928 } else { 4929 rdev = conf->mirrors[d].rdev; 4930 b = r10_bio->devs[s/2].bio; 4931 } 4932 if (!rdev || test_bit(Faulty, &rdev->flags)) 4933 continue; 4934 4935 atomic_inc(&rdev->nr_pending); 4936 atomic_inc(&r10_bio->remaining); 4937 b->bi_next = NULL; 4938 submit_bio_noacct(b); 4939 } 4940 end_reshape_request(r10_bio); 4941 } 4942 4943 static void end_reshape(struct r10conf *conf) 4944 { 4945 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4946 return; 4947 4948 spin_lock_irq(&conf->device_lock); 4949 conf->prev = conf->geo; 4950 md_finish_reshape(conf->mddev); 4951 smp_wmb(); 4952 conf->reshape_progress = MaxSector; 4953 conf->reshape_safe = MaxSector; 4954 spin_unlock_irq(&conf->device_lock); 4955 4956 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf)); 4957 conf->fullsync = 0; 4958 } 4959 4960 static void raid10_update_reshape_pos(struct mddev *mddev) 4961 { 4962 struct r10conf *conf = mddev->private; 4963 sector_t lo, hi; 4964 4965 mddev->cluster_ops->resync_info_get(mddev, &lo, &hi); 4966 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4967 || mddev->reshape_position == MaxSector) 4968 conf->reshape_progress = mddev->reshape_position; 4969 else 4970 WARN_ON_ONCE(1); 4971 } 4972 4973 static int handle_reshape_read_error(struct mddev *mddev, 4974 struct r10bio *r10_bio) 4975 { 4976 /* Use sync reads to get the blocks from somewhere else */ 4977 int sectors = r10_bio->sectors; 4978 struct r10conf *conf = mddev->private; 4979 struct r10bio *r10b; 4980 int slot = 0; 4981 int idx = 0; 4982 struct page **pages; 4983 4984 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4985 if (!r10b) { 4986 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4987 return -ENOMEM; 4988 } 4989 4990 /* reshape IOs share pages from .devs[0].bio */ 4991 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4992 4993 r10b->sector = r10_bio->sector; 4994 __raid10_find_phys(&conf->prev, r10b); 4995 4996 while (sectors) { 4997 int s = sectors; 4998 int success = 0; 4999 int first_slot = slot; 5000 5001 if (s > (PAGE_SIZE >> 9)) 5002 s = PAGE_SIZE >> 9; 5003 5004 while (!success) { 5005 int d = r10b->devs[slot].devnum; 5006 struct md_rdev *rdev = conf->mirrors[d].rdev; 5007 sector_t addr; 5008 if (rdev == NULL || 5009 test_bit(Faulty, &rdev->flags) || 5010 !test_bit(In_sync, &rdev->flags)) 5011 goto failed; 5012 5013 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5014 atomic_inc(&rdev->nr_pending); 5015 success = sync_page_io(rdev, 5016 addr, 5017 s << 9, 5018 pages[idx], 5019 REQ_OP_READ, false); 5020 rdev_dec_pending(rdev, mddev); 5021 if (success) 5022 break; 5023 failed: 5024 slot++; 5025 if (slot >= conf->copies) 5026 slot = 0; 5027 if (slot == first_slot) 5028 break; 5029 } 5030 if (!success) { 5031 /* couldn't read this block, must give up */ 5032 set_bit(MD_RECOVERY_INTR, 5033 &mddev->recovery); 5034 kfree(r10b); 5035 return -EIO; 5036 } 5037 sectors -= s; 5038 idx++; 5039 } 5040 kfree(r10b); 5041 return 0; 5042 } 5043 5044 static void end_reshape_write(struct bio *bio) 5045 { 5046 struct r10bio *r10_bio = get_resync_r10bio(bio); 5047 struct mddev *mddev = r10_bio->mddev; 5048 struct r10conf *conf = mddev->private; 5049 int d; 5050 int slot; 5051 int repl; 5052 struct md_rdev *rdev = NULL; 5053 5054 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5055 rdev = repl ? conf->mirrors[d].replacement : 5056 conf->mirrors[d].rdev; 5057 5058 if (bio->bi_status) { 5059 /* FIXME should record badblock */ 5060 md_error(mddev, rdev); 5061 } 5062 5063 rdev_dec_pending(rdev, mddev); 5064 end_reshape_request(r10_bio); 5065 } 5066 5067 static void end_reshape_request(struct r10bio *r10_bio) 5068 { 5069 if (!atomic_dec_and_test(&r10_bio->remaining)) 5070 return; 5071 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5072 bio_put(r10_bio->master_bio); 5073 put_buf(r10_bio); 5074 } 5075 5076 static void raid10_finish_reshape(struct mddev *mddev) 5077 { 5078 struct r10conf *conf = mddev->private; 5079 5080 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5081 return; 5082 5083 if (mddev->delta_disks > 0) { 5084 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5085 mddev->recovery_cp = mddev->resync_max_sectors; 5086 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5087 } 5088 mddev->resync_max_sectors = mddev->array_sectors; 5089 } else { 5090 int d; 5091 for (d = conf->geo.raid_disks ; 5092 d < conf->geo.raid_disks - mddev->delta_disks; 5093 d++) { 5094 struct md_rdev *rdev = conf->mirrors[d].rdev; 5095 if (rdev) 5096 clear_bit(In_sync, &rdev->flags); 5097 rdev = conf->mirrors[d].replacement; 5098 if (rdev) 5099 clear_bit(In_sync, &rdev->flags); 5100 } 5101 } 5102 mddev->layout = mddev->new_layout; 5103 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5104 mddev->reshape_position = MaxSector; 5105 mddev->delta_disks = 0; 5106 mddev->reshape_backwards = 0; 5107 } 5108 5109 static struct md_personality raid10_personality = 5110 { 5111 .head = { 5112 .type = MD_PERSONALITY, 5113 .id = ID_RAID10, 5114 .name = "raid10", 5115 .owner = THIS_MODULE, 5116 }, 5117 5118 .make_request = raid10_make_request, 5119 .run = raid10_run, 5120 .free = raid10_free, 5121 .status = raid10_status, 5122 .error_handler = raid10_error, 5123 .hot_add_disk = raid10_add_disk, 5124 .hot_remove_disk= raid10_remove_disk, 5125 .spare_active = raid10_spare_active, 5126 .sync_request = raid10_sync_request, 5127 .quiesce = raid10_quiesce, 5128 .size = raid10_size, 5129 .resize = raid10_resize, 5130 .takeover = raid10_takeover, 5131 .check_reshape = raid10_check_reshape, 5132 .start_reshape = raid10_start_reshape, 5133 .finish_reshape = raid10_finish_reshape, 5134 .update_reshape_pos = raid10_update_reshape_pos, 5135 }; 5136 5137 static int __init raid10_init(void) 5138 { 5139 return register_md_submodule(&raid10_personality.head); 5140 } 5141 5142 static void __exit raid10_exit(void) 5143 { 5144 unregister_md_submodule(&raid10_personality.head); 5145 } 5146 5147 module_init(raid10_init); 5148 module_exit(raid10_exit); 5149 MODULE_LICENSE("GPL"); 5150 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5151 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5152 MODULE_ALIAS("md-raid10"); 5153 MODULE_ALIAS("md-level-10"); 5154