1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 23 #define RAID_1_10_NAME "raid10" 24 #include "raid10.h" 25 #include "raid0.h" 26 #include "md-bitmap.h" 27 #include "md-cluster.h" 28 29 /* 30 * RAID10 provides a combination of RAID0 and RAID1 functionality. 31 * The layout of data is defined by 32 * chunk_size 33 * raid_disks 34 * near_copies (stored in low byte of layout) 35 * far_copies (stored in second byte of layout) 36 * far_offset (stored in bit 16 of layout ) 37 * use_far_sets (stored in bit 17 of layout ) 38 * use_far_sets_bugfixed (stored in bit 18 of layout ) 39 * 40 * The data to be stored is divided into chunks using chunksize. Each device 41 * is divided into far_copies sections. In each section, chunks are laid out 42 * in a style similar to raid0, but near_copies copies of each chunk is stored 43 * (each on a different drive). The starting device for each section is offset 44 * near_copies from the starting device of the previous section. Thus there 45 * are (near_copies * far_copies) of each chunk, and each is on a different 46 * drive. near_copies and far_copies must be at least one, and their product 47 * is at most raid_disks. 48 * 49 * If far_offset is true, then the far_copies are handled a bit differently. 50 * The copies are still in different stripes, but instead of being very far 51 * apart on disk, there are adjacent stripes. 52 * 53 * The far and offset algorithms are handled slightly differently if 54 * 'use_far_sets' is true. In this case, the array's devices are grouped into 55 * sets that are (near_copies * far_copies) in size. The far copied stripes 56 * are still shifted by 'near_copies' devices, but this shifting stays confined 57 * to the set rather than the entire array. This is done to improve the number 58 * of device combinations that can fail without causing the array to fail. 59 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 60 * on a device): 61 * A B C D A B C D E 62 * ... ... 63 * D A B C E A B C D 64 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 65 * [A B] [C D] [A B] [C D E] 66 * |...| |...| |...| | ... | 67 * [B A] [D C] [B A] [E C D] 68 */ 69 70 static void allow_barrier(struct r10conf *conf); 71 static void lower_barrier(struct r10conf *conf); 72 static int _enough(struct r10conf *conf, int previous, int ignore); 73 static int enough(struct r10conf *conf, int ignore); 74 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 75 int *skipped); 76 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 77 static void end_reshape_write(struct bio *bio); 78 static void end_reshape(struct r10conf *conf); 79 80 #include "raid1-10.c" 81 82 #define NULL_CMD 83 #define cmd_before(conf, cmd) \ 84 do { \ 85 write_sequnlock_irq(&(conf)->resync_lock); \ 86 cmd; \ 87 } while (0) 88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 89 90 #define wait_event_barrier_cmd(conf, cond, cmd) \ 91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 92 cmd_after(conf)) 93 94 #define wait_event_barrier(conf, cond) \ 95 wait_event_barrier_cmd(conf, cond, NULL_CMD) 96 97 /* 98 * for resync bio, r10bio pointer can be retrieved from the per-bio 99 * 'struct resync_pages'. 100 */ 101 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 102 { 103 return get_resync_pages(bio)->raid_bio; 104 } 105 106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 107 { 108 struct r10conf *conf = data; 109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 110 111 /* allocate a r10bio with room for raid_disks entries in the 112 * bios array */ 113 return kzalloc(size, gfp_flags); 114 } 115 116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 117 /* amount of memory to reserve for resync requests */ 118 #define RESYNC_WINDOW (1024*1024) 119 /* maximum number of concurrent requests, memory permitting */ 120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 123 124 /* 125 * When performing a resync, we need to read and compare, so 126 * we need as many pages are there are copies. 127 * When performing a recovery, we need 2 bios, one for read, 128 * one for write (we recover only one drive per r10buf) 129 * 130 */ 131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 132 { 133 struct r10conf *conf = data; 134 struct r10bio *r10_bio; 135 struct bio *bio; 136 int j; 137 int nalloc, nalloc_rp; 138 struct resync_pages *rps; 139 140 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 141 if (!r10_bio) 142 return NULL; 143 144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 146 nalloc = conf->copies; /* resync */ 147 else 148 nalloc = 2; /* recovery */ 149 150 /* allocate once for all bios */ 151 if (!conf->have_replacement) 152 nalloc_rp = nalloc; 153 else 154 nalloc_rp = nalloc * 2; 155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 156 if (!rps) 157 goto out_free_r10bio; 158 159 /* 160 * Allocate bios. 161 */ 162 for (j = nalloc ; j-- ; ) { 163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 164 if (!bio) 165 goto out_free_bio; 166 bio_init_inline(bio, NULL, RESYNC_PAGES, 0); 167 r10_bio->devs[j].bio = bio; 168 if (!conf->have_replacement) 169 continue; 170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 171 if (!bio) 172 goto out_free_bio; 173 bio_init_inline(bio, NULL, RESYNC_PAGES, 0); 174 r10_bio->devs[j].repl_bio = bio; 175 } 176 /* 177 * Allocate RESYNC_PAGES data pages and attach them 178 * where needed. 179 */ 180 for (j = 0; j < nalloc; j++) { 181 struct bio *rbio = r10_bio->devs[j].repl_bio; 182 struct resync_pages *rp, *rp_repl; 183 184 rp = &rps[j]; 185 if (rbio) 186 rp_repl = &rps[nalloc + j]; 187 188 bio = r10_bio->devs[j].bio; 189 190 if (!j || test_bit(MD_RECOVERY_SYNC, 191 &conf->mddev->recovery)) { 192 if (resync_alloc_pages(rp, gfp_flags)) 193 goto out_free_pages; 194 } else { 195 memcpy(rp, &rps[0], sizeof(*rp)); 196 resync_get_all_pages(rp); 197 } 198 199 rp->raid_bio = r10_bio; 200 bio->bi_private = rp; 201 if (rbio) { 202 memcpy(rp_repl, rp, sizeof(*rp)); 203 rbio->bi_private = rp_repl; 204 } 205 } 206 207 return r10_bio; 208 209 out_free_pages: 210 while (--j >= 0) 211 resync_free_pages(&rps[j]); 212 213 j = 0; 214 out_free_bio: 215 for ( ; j < nalloc; j++) { 216 if (r10_bio->devs[j].bio) 217 bio_uninit(r10_bio->devs[j].bio); 218 kfree(r10_bio->devs[j].bio); 219 if (r10_bio->devs[j].repl_bio) 220 bio_uninit(r10_bio->devs[j].repl_bio); 221 kfree(r10_bio->devs[j].repl_bio); 222 } 223 kfree(rps); 224 out_free_r10bio: 225 rbio_pool_free(r10_bio, conf); 226 return NULL; 227 } 228 229 static void r10buf_pool_free(void *__r10_bio, void *data) 230 { 231 struct r10conf *conf = data; 232 struct r10bio *r10bio = __r10_bio; 233 int j; 234 struct resync_pages *rp = NULL; 235 236 for (j = conf->copies; j--; ) { 237 struct bio *bio = r10bio->devs[j].bio; 238 239 if (bio) { 240 rp = get_resync_pages(bio); 241 resync_free_pages(rp); 242 bio_uninit(bio); 243 kfree(bio); 244 } 245 246 bio = r10bio->devs[j].repl_bio; 247 if (bio) { 248 bio_uninit(bio); 249 kfree(bio); 250 } 251 } 252 253 /* resync pages array stored in the 1st bio's .bi_private */ 254 kfree(rp); 255 256 rbio_pool_free(r10bio, conf); 257 } 258 259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 260 { 261 int i; 262 263 for (i = 0; i < conf->geo.raid_disks; i++) { 264 struct bio **bio = & r10_bio->devs[i].bio; 265 if (!BIO_SPECIAL(*bio)) 266 bio_put(*bio); 267 *bio = NULL; 268 bio = &r10_bio->devs[i].repl_bio; 269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 270 bio_put(*bio); 271 *bio = NULL; 272 } 273 } 274 275 static void free_r10bio(struct r10bio *r10_bio) 276 { 277 struct r10conf *conf = r10_bio->mddev->private; 278 279 put_all_bios(conf, r10_bio); 280 mempool_free(r10_bio, &conf->r10bio_pool); 281 } 282 283 static void put_buf(struct r10bio *r10_bio) 284 { 285 struct r10conf *conf = r10_bio->mddev->private; 286 287 mempool_free(r10_bio, &conf->r10buf_pool); 288 289 lower_barrier(conf); 290 } 291 292 static void wake_up_barrier(struct r10conf *conf) 293 { 294 if (wq_has_sleeper(&conf->wait_barrier)) 295 wake_up(&conf->wait_barrier); 296 } 297 298 static void reschedule_retry(struct r10bio *r10_bio) 299 { 300 unsigned long flags; 301 struct mddev *mddev = r10_bio->mddev; 302 struct r10conf *conf = mddev->private; 303 304 spin_lock_irqsave(&conf->device_lock, flags); 305 list_add(&r10_bio->retry_list, &conf->retry_list); 306 conf->nr_queued ++; 307 spin_unlock_irqrestore(&conf->device_lock, flags); 308 309 /* wake up frozen array... */ 310 wake_up(&conf->wait_barrier); 311 312 md_wakeup_thread(mddev->thread); 313 } 314 315 /* 316 * raid_end_bio_io() is called when we have finished servicing a mirrored 317 * operation and are ready to return a success/failure code to the buffer 318 * cache layer. 319 */ 320 static void raid_end_bio_io(struct r10bio *r10_bio) 321 { 322 struct bio *bio = r10_bio->master_bio; 323 struct r10conf *conf = r10_bio->mddev->private; 324 325 if (!test_and_set_bit(R10BIO_Returned, &r10_bio->state)) { 326 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 327 bio->bi_status = BLK_STS_IOERR; 328 bio_endio(bio); 329 } 330 331 /* 332 * Wake up any possible resync thread that waits for the device 333 * to go idle. 334 */ 335 allow_barrier(conf); 336 337 free_r10bio(r10_bio); 338 } 339 340 /* 341 * Update disk head position estimator based on IRQ completion info. 342 */ 343 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 344 { 345 struct r10conf *conf = r10_bio->mddev->private; 346 347 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 348 r10_bio->devs[slot].addr + (r10_bio->sectors); 349 } 350 351 /* 352 * Find the disk number which triggered given bio 353 */ 354 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 355 struct bio *bio, int *slotp, int *replp) 356 { 357 int slot; 358 int repl = 0; 359 360 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 361 if (r10_bio->devs[slot].bio == bio) 362 break; 363 if (r10_bio->devs[slot].repl_bio == bio) { 364 repl = 1; 365 break; 366 } 367 } 368 369 update_head_pos(slot, r10_bio); 370 371 if (slotp) 372 *slotp = slot; 373 if (replp) 374 *replp = repl; 375 return r10_bio->devs[slot].devnum; 376 } 377 378 static void raid10_end_read_request(struct bio *bio) 379 { 380 int uptodate = !bio->bi_status; 381 struct r10bio *r10_bio = bio->bi_private; 382 int slot; 383 struct md_rdev *rdev; 384 struct r10conf *conf = r10_bio->mddev->private; 385 386 slot = r10_bio->read_slot; 387 rdev = r10_bio->devs[slot].rdev; 388 /* 389 * this branch is our 'one mirror IO has finished' event handler: 390 */ 391 update_head_pos(slot, r10_bio); 392 393 if (uptodate) { 394 /* 395 * Set R10BIO_Uptodate in our master bio, so that 396 * we will return a good error code to the higher 397 * levels even if IO on some other mirrored buffer fails. 398 * 399 * The 'master' represents the composite IO operation to 400 * user-side. So if something waits for IO, then it will 401 * wait for the 'master' bio. 402 */ 403 set_bit(R10BIO_Uptodate, &r10_bio->state); 404 } else if (!raid1_should_handle_error(bio)) { 405 uptodate = 1; 406 } else { 407 /* If all other devices that store this block have 408 * failed, we want to return the error upwards rather 409 * than fail the last device. Here we redefine 410 * "uptodate" to mean "Don't want to retry" 411 */ 412 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 413 rdev->raid_disk)) 414 uptodate = 1; 415 } 416 if (uptodate) { 417 raid_end_bio_io(r10_bio); 418 rdev_dec_pending(rdev, conf->mddev); 419 } else { 420 /* 421 * oops, read error - keep the refcount on the rdev 422 */ 423 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 424 mdname(conf->mddev), 425 rdev->bdev, 426 (unsigned long long)r10_bio->sector); 427 set_bit(R10BIO_ReadError, &r10_bio->state); 428 reschedule_retry(r10_bio); 429 } 430 } 431 432 static void close_write(struct r10bio *r10_bio) 433 { 434 struct mddev *mddev = r10_bio->mddev; 435 436 md_write_end(mddev); 437 } 438 439 static void one_write_done(struct r10bio *r10_bio) 440 { 441 if (atomic_dec_and_test(&r10_bio->remaining)) { 442 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 443 reschedule_retry(r10_bio); 444 else { 445 close_write(r10_bio); 446 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 447 reschedule_retry(r10_bio); 448 else 449 raid_end_bio_io(r10_bio); 450 } 451 } 452 } 453 454 static void raid10_end_write_request(struct bio *bio) 455 { 456 struct r10bio *r10_bio = bio->bi_private; 457 int dev; 458 int dec_rdev = 1; 459 struct r10conf *conf = r10_bio->mddev->private; 460 int slot, repl; 461 struct md_rdev *rdev = NULL; 462 struct bio *to_put = NULL; 463 bool ignore_error = !raid1_should_handle_error(bio) || 464 (bio->bi_status && bio_op(bio) == REQ_OP_DISCARD); 465 466 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 467 468 if (repl) 469 rdev = conf->mirrors[dev].replacement; 470 if (!rdev) { 471 smp_rmb(); 472 repl = 0; 473 rdev = conf->mirrors[dev].rdev; 474 } 475 /* 476 * this branch is our 'one mirror IO has finished' event handler: 477 */ 478 if (bio->bi_status && !ignore_error) { 479 if (repl) 480 /* Never record new bad blocks to replacement, 481 * just fail it. 482 */ 483 md_error(rdev->mddev, rdev); 484 else { 485 set_bit(WriteErrorSeen, &rdev->flags); 486 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 487 set_bit(MD_RECOVERY_NEEDED, 488 &rdev->mddev->recovery); 489 490 dec_rdev = 0; 491 if (test_bit(FailFast, &rdev->flags) && 492 (bio->bi_opf & MD_FAILFAST)) { 493 md_error(rdev->mddev, rdev); 494 } 495 496 /* 497 * When the device is faulty, it is not necessary to 498 * handle write error. 499 */ 500 if (!test_bit(Faulty, &rdev->flags)) 501 set_bit(R10BIO_WriteError, &r10_bio->state); 502 else { 503 /* Fail the request */ 504 r10_bio->devs[slot].bio = NULL; 505 to_put = bio; 506 dec_rdev = 1; 507 } 508 } 509 } else { 510 /* 511 * Set R10BIO_Uptodate in our master bio, so that 512 * we will return a good error code for to the higher 513 * levels even if IO on some other mirrored buffer fails. 514 * 515 * The 'master' represents the composite IO operation to 516 * user-side. So if something waits for IO, then it will 517 * wait for the 'master' bio. 518 * 519 * Do not set R10BIO_Uptodate if the current device is 520 * rebuilding or Faulty. This is because we cannot use 521 * such device for properly reading the data back (we could 522 * potentially use it, if the current write would have felt 523 * before rdev->recovery_offset, but for simplicity we don't 524 * check this here. 525 */ 526 if (test_bit(In_sync, &rdev->flags) && 527 !test_bit(Faulty, &rdev->flags)) 528 set_bit(R10BIO_Uptodate, &r10_bio->state); 529 530 /* Maybe we can clear some bad blocks. */ 531 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 532 r10_bio->sectors) && 533 !ignore_error) { 534 bio_put(bio); 535 if (repl) 536 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 537 else 538 r10_bio->devs[slot].bio = IO_MADE_GOOD; 539 dec_rdev = 0; 540 set_bit(R10BIO_MadeGood, &r10_bio->state); 541 } 542 } 543 544 /* 545 * 546 * Let's see if all mirrored write operations have finished 547 * already. 548 */ 549 one_write_done(r10_bio); 550 if (dec_rdev) 551 rdev_dec_pending(rdev, conf->mddev); 552 if (to_put) 553 bio_put(to_put); 554 } 555 556 /* 557 * RAID10 layout manager 558 * As well as the chunksize and raid_disks count, there are two 559 * parameters: near_copies and far_copies. 560 * near_copies * far_copies must be <= raid_disks. 561 * Normally one of these will be 1. 562 * If both are 1, we get raid0. 563 * If near_copies == raid_disks, we get raid1. 564 * 565 * Chunks are laid out in raid0 style with near_copies copies of the 566 * first chunk, followed by near_copies copies of the next chunk and 567 * so on. 568 * If far_copies > 1, then after 1/far_copies of the array has been assigned 569 * as described above, we start again with a device offset of near_copies. 570 * So we effectively have another copy of the whole array further down all 571 * the drives, but with blocks on different drives. 572 * With this layout, and block is never stored twice on the one device. 573 * 574 * raid10_find_phys finds the sector offset of a given virtual sector 575 * on each device that it is on. 576 * 577 * raid10_find_virt does the reverse mapping, from a device and a 578 * sector offset to a virtual address 579 */ 580 581 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 582 { 583 int n,f; 584 sector_t sector; 585 sector_t chunk; 586 sector_t stripe; 587 int dev; 588 int slot = 0; 589 int last_far_set_start, last_far_set_size; 590 591 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 592 last_far_set_start *= geo->far_set_size; 593 594 last_far_set_size = geo->far_set_size; 595 last_far_set_size += (geo->raid_disks % geo->far_set_size); 596 597 /* now calculate first sector/dev */ 598 chunk = r10bio->sector >> geo->chunk_shift; 599 sector = r10bio->sector & geo->chunk_mask; 600 601 chunk *= geo->near_copies; 602 stripe = chunk; 603 dev = sector_div(stripe, geo->raid_disks); 604 if (geo->far_offset) 605 stripe *= geo->far_copies; 606 607 sector += stripe << geo->chunk_shift; 608 609 /* and calculate all the others */ 610 for (n = 0; n < geo->near_copies; n++) { 611 int d = dev; 612 int set; 613 sector_t s = sector; 614 r10bio->devs[slot].devnum = d; 615 r10bio->devs[slot].addr = s; 616 slot++; 617 618 for (f = 1; f < geo->far_copies; f++) { 619 set = d / geo->far_set_size; 620 d += geo->near_copies; 621 622 if ((geo->raid_disks % geo->far_set_size) && 623 (d > last_far_set_start)) { 624 d -= last_far_set_start; 625 d %= last_far_set_size; 626 d += last_far_set_start; 627 } else { 628 d %= geo->far_set_size; 629 d += geo->far_set_size * set; 630 } 631 s += geo->stride; 632 r10bio->devs[slot].devnum = d; 633 r10bio->devs[slot].addr = s; 634 slot++; 635 } 636 dev++; 637 if (dev >= geo->raid_disks) { 638 dev = 0; 639 sector += (geo->chunk_mask + 1); 640 } 641 } 642 } 643 644 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 645 { 646 struct geom *geo = &conf->geo; 647 648 if (conf->reshape_progress != MaxSector && 649 ((r10bio->sector >= conf->reshape_progress) != 650 conf->mddev->reshape_backwards)) { 651 set_bit(R10BIO_Previous, &r10bio->state); 652 geo = &conf->prev; 653 } else 654 clear_bit(R10BIO_Previous, &r10bio->state); 655 656 __raid10_find_phys(geo, r10bio); 657 } 658 659 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 660 { 661 sector_t offset, chunk, vchunk; 662 /* Never use conf->prev as this is only called during resync 663 * or recovery, so reshape isn't happening 664 */ 665 struct geom *geo = &conf->geo; 666 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 667 int far_set_size = geo->far_set_size; 668 int last_far_set_start; 669 670 if (geo->raid_disks % geo->far_set_size) { 671 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 672 last_far_set_start *= geo->far_set_size; 673 674 if (dev >= last_far_set_start) { 675 far_set_size = geo->far_set_size; 676 far_set_size += (geo->raid_disks % geo->far_set_size); 677 far_set_start = last_far_set_start; 678 } 679 } 680 681 offset = sector & geo->chunk_mask; 682 if (geo->far_offset) { 683 int fc; 684 chunk = sector >> geo->chunk_shift; 685 fc = sector_div(chunk, geo->far_copies); 686 dev -= fc * geo->near_copies; 687 if (dev < far_set_start) 688 dev += far_set_size; 689 } else { 690 while (sector >= geo->stride) { 691 sector -= geo->stride; 692 if (dev < (geo->near_copies + far_set_start)) 693 dev += far_set_size - geo->near_copies; 694 else 695 dev -= geo->near_copies; 696 } 697 chunk = sector >> geo->chunk_shift; 698 } 699 vchunk = chunk * geo->raid_disks + dev; 700 sector_div(vchunk, geo->near_copies); 701 return (vchunk << geo->chunk_shift) + offset; 702 } 703 704 /* 705 * This routine returns the disk from which the requested read should 706 * be done. There is a per-array 'next expected sequential IO' sector 707 * number - if this matches on the next IO then we use the last disk. 708 * There is also a per-disk 'last know head position' sector that is 709 * maintained from IRQ contexts, both the normal and the resync IO 710 * completion handlers update this position correctly. If there is no 711 * perfect sequential match then we pick the disk whose head is closest. 712 * 713 * If there are 2 mirrors in the same 2 devices, performance degrades 714 * because position is mirror, not device based. 715 * 716 * The rdev for the device selected will have nr_pending incremented. 717 */ 718 719 /* 720 * FIXME: possibly should rethink readbalancing and do it differently 721 * depending on near_copies / far_copies geometry. 722 */ 723 static struct md_rdev *read_balance(struct r10conf *conf, 724 struct r10bio *r10_bio, 725 int *max_sectors) 726 { 727 const sector_t this_sector = r10_bio->sector; 728 int disk, slot; 729 int sectors = r10_bio->sectors; 730 int best_good_sectors; 731 sector_t new_distance, best_dist; 732 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 733 int do_balance; 734 int best_dist_slot, best_pending_slot; 735 bool has_nonrot_disk = false; 736 unsigned int min_pending; 737 struct geom *geo = &conf->geo; 738 739 raid10_find_phys(conf, r10_bio); 740 best_dist_slot = -1; 741 min_pending = UINT_MAX; 742 best_dist_rdev = NULL; 743 best_pending_rdev = NULL; 744 best_dist = MaxSector; 745 best_good_sectors = 0; 746 do_balance = 1; 747 clear_bit(R10BIO_FailFast, &r10_bio->state); 748 749 if (raid1_should_read_first(conf->mddev, this_sector, sectors)) 750 do_balance = 0; 751 752 for (slot = 0; slot < conf->copies ; slot++) { 753 sector_t first_bad; 754 sector_t bad_sectors; 755 sector_t dev_sector; 756 unsigned int pending; 757 bool nonrot; 758 759 if (r10_bio->devs[slot].bio == IO_BLOCKED) 760 continue; 761 disk = r10_bio->devs[slot].devnum; 762 rdev = conf->mirrors[disk].replacement; 763 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 764 r10_bio->devs[slot].addr + sectors > 765 rdev->recovery_offset) 766 rdev = conf->mirrors[disk].rdev; 767 if (rdev == NULL || 768 test_bit(Faulty, &rdev->flags)) 769 continue; 770 if (!test_bit(In_sync, &rdev->flags) && 771 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 772 continue; 773 774 dev_sector = r10_bio->devs[slot].addr; 775 if (is_badblock(rdev, dev_sector, sectors, 776 &first_bad, &bad_sectors)) { 777 if (best_dist < MaxSector) 778 /* Already have a better slot */ 779 continue; 780 if (first_bad <= dev_sector) { 781 /* Cannot read here. If this is the 782 * 'primary' device, then we must not read 783 * beyond 'bad_sectors' from another device. 784 */ 785 bad_sectors -= (dev_sector - first_bad); 786 if (!do_balance && sectors > bad_sectors) 787 sectors = bad_sectors; 788 if (best_good_sectors > sectors) 789 best_good_sectors = sectors; 790 } else { 791 sector_t good_sectors = 792 first_bad - dev_sector; 793 if (good_sectors > best_good_sectors) { 794 best_good_sectors = good_sectors; 795 best_dist_slot = slot; 796 best_dist_rdev = rdev; 797 } 798 if (!do_balance) 799 /* Must read from here */ 800 break; 801 } 802 continue; 803 } else 804 best_good_sectors = sectors; 805 806 if (!do_balance) 807 break; 808 809 nonrot = bdev_nonrot(rdev->bdev); 810 has_nonrot_disk |= nonrot; 811 pending = atomic_read(&rdev->nr_pending); 812 if (min_pending > pending && nonrot) { 813 min_pending = pending; 814 best_pending_slot = slot; 815 best_pending_rdev = rdev; 816 } 817 818 if (best_dist_slot >= 0) 819 /* At least 2 disks to choose from so failfast is OK */ 820 set_bit(R10BIO_FailFast, &r10_bio->state); 821 /* This optimisation is debatable, and completely destroys 822 * sequential read speed for 'far copies' arrays. So only 823 * keep it for 'near' arrays, and review those later. 824 */ 825 if (geo->near_copies > 1 && !pending) 826 new_distance = 0; 827 828 /* for far > 1 always use the lowest address */ 829 else if (geo->far_copies > 1) 830 new_distance = r10_bio->devs[slot].addr; 831 else 832 new_distance = abs(r10_bio->devs[slot].addr - 833 conf->mirrors[disk].head_position); 834 835 if (new_distance < best_dist) { 836 best_dist = new_distance; 837 best_dist_slot = slot; 838 best_dist_rdev = rdev; 839 } 840 } 841 if (slot >= conf->copies) { 842 if (has_nonrot_disk) { 843 slot = best_pending_slot; 844 rdev = best_pending_rdev; 845 } else { 846 slot = best_dist_slot; 847 rdev = best_dist_rdev; 848 } 849 } 850 851 if (slot >= 0) { 852 atomic_inc(&rdev->nr_pending); 853 r10_bio->read_slot = slot; 854 } else 855 rdev = NULL; 856 *max_sectors = best_good_sectors; 857 858 return rdev; 859 } 860 861 static void flush_pending_writes(struct r10conf *conf) 862 { 863 /* Any writes that have been queued but are awaiting 864 * bitmap updates get flushed here. 865 */ 866 spin_lock_irq(&conf->device_lock); 867 868 if (conf->pending_bio_list.head) { 869 struct blk_plug plug; 870 struct bio *bio; 871 872 bio = bio_list_get(&conf->pending_bio_list); 873 spin_unlock_irq(&conf->device_lock); 874 875 /* 876 * As this is called in a wait_event() loop (see freeze_array), 877 * current->state might be TASK_UNINTERRUPTIBLE which will 878 * cause a warning when we prepare to wait again. As it is 879 * rare that this path is taken, it is perfectly safe to force 880 * us to go around the wait_event() loop again, so the warning 881 * is a false-positive. Silence the warning by resetting 882 * thread state 883 */ 884 __set_current_state(TASK_RUNNING); 885 886 blk_start_plug(&plug); 887 raid1_prepare_flush_writes(conf->mddev); 888 wake_up(&conf->wait_barrier); 889 890 while (bio) { /* submit pending writes */ 891 struct bio *next = bio->bi_next; 892 893 raid1_submit_write(bio); 894 bio = next; 895 cond_resched(); 896 } 897 blk_finish_plug(&plug); 898 } else 899 spin_unlock_irq(&conf->device_lock); 900 } 901 902 /* Barriers.... 903 * Sometimes we need to suspend IO while we do something else, 904 * either some resync/recovery, or reconfigure the array. 905 * To do this we raise a 'barrier'. 906 * The 'barrier' is a counter that can be raised multiple times 907 * to count how many activities are happening which preclude 908 * normal IO. 909 * We can only raise the barrier if there is no pending IO. 910 * i.e. if nr_pending == 0. 911 * We choose only to raise the barrier if no-one is waiting for the 912 * barrier to go down. This means that as soon as an IO request 913 * is ready, no other operations which require a barrier will start 914 * until the IO request has had a chance. 915 * 916 * So: regular IO calls 'wait_barrier'. When that returns there 917 * is no backgroup IO happening, It must arrange to call 918 * allow_barrier when it has finished its IO. 919 * backgroup IO calls must call raise_barrier. Once that returns 920 * there is no normal IO happeing. It must arrange to call 921 * lower_barrier when the particular background IO completes. 922 */ 923 924 static void raise_barrier(struct r10conf *conf, int force) 925 { 926 write_seqlock_irq(&conf->resync_lock); 927 928 if (WARN_ON_ONCE(force && !conf->barrier)) 929 force = false; 930 931 /* Wait until no block IO is waiting (unless 'force') */ 932 wait_event_barrier(conf, force || !conf->nr_waiting); 933 934 /* block any new IO from starting */ 935 WRITE_ONCE(conf->barrier, conf->barrier + 1); 936 937 /* Now wait for all pending IO to complete */ 938 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 939 conf->barrier < RESYNC_DEPTH); 940 941 write_sequnlock_irq(&conf->resync_lock); 942 } 943 944 static void lower_barrier(struct r10conf *conf) 945 { 946 unsigned long flags; 947 948 write_seqlock_irqsave(&conf->resync_lock, flags); 949 WRITE_ONCE(conf->barrier, conf->barrier - 1); 950 write_sequnlock_irqrestore(&conf->resync_lock, flags); 951 wake_up(&conf->wait_barrier); 952 } 953 954 static bool stop_waiting_barrier(struct r10conf *conf) 955 { 956 struct bio_list *bio_list = current->bio_list; 957 struct md_thread *thread; 958 959 /* barrier is dropped */ 960 if (!conf->barrier) 961 return true; 962 963 /* 964 * If there are already pending requests (preventing the barrier from 965 * rising completely), and the pre-process bio queue isn't empty, then 966 * don't wait, as we need to empty that queue to get the nr_pending 967 * count down. 968 */ 969 if (atomic_read(&conf->nr_pending) && bio_list && 970 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 971 return true; 972 973 /* daemon thread must exist while handling io */ 974 thread = rcu_dereference_protected(conf->mddev->thread, true); 975 /* 976 * move on if io is issued from raid10d(), nr_pending is not released 977 * from original io(see handle_read_error()). All raise barrier is 978 * blocked until this io is done. 979 */ 980 if (thread->tsk == current) { 981 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 982 return true; 983 } 984 985 return false; 986 } 987 988 static bool wait_barrier_nolock(struct r10conf *conf) 989 { 990 unsigned int seq = read_seqbegin(&conf->resync_lock); 991 992 if (READ_ONCE(conf->barrier)) 993 return false; 994 995 atomic_inc(&conf->nr_pending); 996 if (!read_seqretry(&conf->resync_lock, seq)) 997 return true; 998 999 if (atomic_dec_and_test(&conf->nr_pending)) 1000 wake_up_barrier(conf); 1001 1002 return false; 1003 } 1004 1005 static bool wait_barrier(struct r10conf *conf, bool nowait) 1006 { 1007 bool ret = true; 1008 1009 if (wait_barrier_nolock(conf)) 1010 return true; 1011 1012 write_seqlock_irq(&conf->resync_lock); 1013 if (conf->barrier) { 1014 /* Return false when nowait flag is set */ 1015 if (nowait) { 1016 ret = false; 1017 } else { 1018 conf->nr_waiting++; 1019 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier"); 1020 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1021 conf->nr_waiting--; 1022 } 1023 if (!conf->nr_waiting) 1024 wake_up(&conf->wait_barrier); 1025 } 1026 /* Only increment nr_pending when we wait */ 1027 if (ret) 1028 atomic_inc(&conf->nr_pending); 1029 write_sequnlock_irq(&conf->resync_lock); 1030 return ret; 1031 } 1032 1033 static void allow_barrier(struct r10conf *conf) 1034 { 1035 if ((atomic_dec_and_test(&conf->nr_pending)) || 1036 (conf->array_freeze_pending)) 1037 wake_up_barrier(conf); 1038 } 1039 1040 static void freeze_array(struct r10conf *conf, int extra) 1041 { 1042 /* stop syncio and normal IO and wait for everything to 1043 * go quiet. 1044 * We increment barrier and nr_waiting, and then 1045 * wait until nr_pending match nr_queued+extra 1046 * This is called in the context of one normal IO request 1047 * that has failed. Thus any sync request that might be pending 1048 * will be blocked by nr_pending, and we need to wait for 1049 * pending IO requests to complete or be queued for re-try. 1050 * Thus the number queued (nr_queued) plus this request (extra) 1051 * must match the number of pending IOs (nr_pending) before 1052 * we continue. 1053 */ 1054 write_seqlock_irq(&conf->resync_lock); 1055 conf->array_freeze_pending++; 1056 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1057 conf->nr_waiting++; 1058 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1059 conf->nr_queued + extra, flush_pending_writes(conf)); 1060 conf->array_freeze_pending--; 1061 write_sequnlock_irq(&conf->resync_lock); 1062 } 1063 1064 static void unfreeze_array(struct r10conf *conf) 1065 { 1066 /* reverse the effect of the freeze */ 1067 write_seqlock_irq(&conf->resync_lock); 1068 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1069 conf->nr_waiting--; 1070 wake_up(&conf->wait_barrier); 1071 write_sequnlock_irq(&conf->resync_lock); 1072 } 1073 1074 static sector_t choose_data_offset(struct r10bio *r10_bio, 1075 struct md_rdev *rdev) 1076 { 1077 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1078 test_bit(R10BIO_Previous, &r10_bio->state)) 1079 return rdev->data_offset; 1080 else 1081 return rdev->new_data_offset; 1082 } 1083 1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1085 { 1086 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1087 struct mddev *mddev = plug->cb.data; 1088 struct r10conf *conf = mddev->private; 1089 struct bio *bio; 1090 1091 if (from_schedule) { 1092 spin_lock_irq(&conf->device_lock); 1093 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1094 spin_unlock_irq(&conf->device_lock); 1095 wake_up_barrier(conf); 1096 md_wakeup_thread(mddev->thread); 1097 kfree(plug); 1098 return; 1099 } 1100 1101 /* we aren't scheduling, so we can do the write-out directly. */ 1102 bio = bio_list_get(&plug->pending); 1103 raid1_prepare_flush_writes(mddev); 1104 wake_up_barrier(conf); 1105 1106 while (bio) { /* submit pending writes */ 1107 struct bio *next = bio->bi_next; 1108 1109 raid1_submit_write(bio); 1110 bio = next; 1111 cond_resched(); 1112 } 1113 kfree(plug); 1114 } 1115 1116 /* 1117 * 1. Register the new request and wait if the reconstruction thread has put 1118 * up a bar for new requests. Continue immediately if no resync is active 1119 * currently. 1120 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1121 */ 1122 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1123 struct bio *bio, sector_t sectors) 1124 { 1125 /* Bail out if REQ_NOWAIT is set for the bio */ 1126 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1127 bio_wouldblock_error(bio); 1128 return false; 1129 } 1130 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1131 bio->bi_iter.bi_sector < conf->reshape_progress && 1132 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1133 allow_barrier(conf); 1134 if (bio->bi_opf & REQ_NOWAIT) { 1135 bio_wouldblock_error(bio); 1136 return false; 1137 } 1138 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape"); 1139 wait_event(conf->wait_barrier, 1140 conf->reshape_progress <= bio->bi_iter.bi_sector || 1141 conf->reshape_progress >= bio->bi_iter.bi_sector + 1142 sectors); 1143 wait_barrier(conf, false); 1144 } 1145 return true; 1146 } 1147 1148 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1149 struct r10bio *r10_bio, bool io_accounting) 1150 { 1151 struct r10conf *conf = mddev->private; 1152 struct bio *read_bio; 1153 int max_sectors; 1154 struct md_rdev *rdev; 1155 char b[BDEVNAME_SIZE]; 1156 int slot = r10_bio->read_slot; 1157 struct md_rdev *err_rdev = NULL; 1158 gfp_t gfp = GFP_NOIO; 1159 1160 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1161 /* 1162 * This is an error retry, but we cannot 1163 * safely dereference the rdev in the r10_bio, 1164 * we must use the one in conf. 1165 * If it has already been disconnected (unlikely) 1166 * we lose the device name in error messages. 1167 */ 1168 int disk; 1169 /* 1170 * As we are blocking raid10, it is a little safer to 1171 * use __GFP_HIGH. 1172 */ 1173 gfp = GFP_NOIO | __GFP_HIGH; 1174 1175 disk = r10_bio->devs[slot].devnum; 1176 err_rdev = conf->mirrors[disk].rdev; 1177 if (err_rdev) 1178 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1179 else { 1180 strcpy(b, "???"); 1181 /* This never gets dereferenced */ 1182 err_rdev = r10_bio->devs[slot].rdev; 1183 } 1184 } 1185 1186 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) { 1187 raid_end_bio_io(r10_bio); 1188 return; 1189 } 1190 1191 rdev = read_balance(conf, r10_bio, &max_sectors); 1192 if (!rdev) { 1193 if (err_rdev) { 1194 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1195 mdname(mddev), b, 1196 (unsigned long long)r10_bio->sector); 1197 } 1198 raid_end_bio_io(r10_bio); 1199 return; 1200 } 1201 if (err_rdev) 1202 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1203 mdname(mddev), 1204 rdev->bdev, 1205 (unsigned long long)r10_bio->sector); 1206 if (max_sectors < bio_sectors(bio)) { 1207 allow_barrier(conf); 1208 bio = bio_submit_split_bioset(bio, max_sectors, 1209 &conf->bio_split); 1210 wait_barrier(conf, false); 1211 if (!bio) { 1212 set_bit(R10BIO_Returned, &r10_bio->state); 1213 goto err_handle; 1214 } 1215 1216 r10_bio->master_bio = bio; 1217 r10_bio->sectors = max_sectors; 1218 } 1219 slot = r10_bio->read_slot; 1220 1221 if (io_accounting) { 1222 md_account_bio(mddev, &bio); 1223 r10_bio->master_bio = bio; 1224 } 1225 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1226 read_bio->bi_opf &= ~REQ_NOWAIT; 1227 1228 r10_bio->devs[slot].bio = read_bio; 1229 r10_bio->devs[slot].rdev = rdev; 1230 1231 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1232 choose_data_offset(r10_bio, rdev); 1233 read_bio->bi_end_io = raid10_end_read_request; 1234 if (test_bit(FailFast, &rdev->flags) && 1235 test_bit(R10BIO_FailFast, &r10_bio->state)) 1236 read_bio->bi_opf |= MD_FAILFAST; 1237 read_bio->bi_private = r10_bio; 1238 mddev_trace_remap(mddev, read_bio, r10_bio->sector); 1239 submit_bio_noacct(read_bio); 1240 return; 1241 err_handle: 1242 atomic_dec(&rdev->nr_pending); 1243 raid_end_bio_io(r10_bio); 1244 } 1245 1246 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1247 struct bio *bio, bool replacement, 1248 int n_copy) 1249 { 1250 unsigned long flags; 1251 struct r10conf *conf = mddev->private; 1252 struct md_rdev *rdev; 1253 int devnum = r10_bio->devs[n_copy].devnum; 1254 struct bio *mbio; 1255 1256 rdev = replacement ? conf->mirrors[devnum].replacement : 1257 conf->mirrors[devnum].rdev; 1258 1259 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1260 mbio->bi_opf &= ~REQ_NOWAIT; 1261 if (replacement) 1262 r10_bio->devs[n_copy].repl_bio = mbio; 1263 else 1264 r10_bio->devs[n_copy].bio = mbio; 1265 1266 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1267 choose_data_offset(r10_bio, rdev)); 1268 mbio->bi_end_io = raid10_end_write_request; 1269 if (!replacement && test_bit(FailFast, 1270 &conf->mirrors[devnum].rdev->flags) 1271 && enough(conf, devnum)) 1272 mbio->bi_opf |= MD_FAILFAST; 1273 mbio->bi_private = r10_bio; 1274 mddev_trace_remap(mddev, mbio, r10_bio->sector); 1275 /* flush_pending_writes() needs access to the rdev so...*/ 1276 mbio->bi_bdev = (void *)rdev; 1277 1278 atomic_inc(&r10_bio->remaining); 1279 1280 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) { 1281 spin_lock_irqsave(&conf->device_lock, flags); 1282 bio_list_add(&conf->pending_bio_list, mbio); 1283 spin_unlock_irqrestore(&conf->device_lock, flags); 1284 md_wakeup_thread(mddev->thread); 1285 } 1286 } 1287 1288 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1289 { 1290 struct r10conf *conf = mddev->private; 1291 struct md_rdev *blocked_rdev; 1292 int i; 1293 1294 retry_wait: 1295 blocked_rdev = NULL; 1296 for (i = 0; i < conf->copies; i++) { 1297 struct md_rdev *rdev, *rrdev; 1298 1299 rdev = conf->mirrors[i].rdev; 1300 if (rdev) { 1301 sector_t dev_sector = r10_bio->devs[i].addr; 1302 1303 /* 1304 * Discard request doesn't care the write result 1305 * so it doesn't need to wait blocked disk here. 1306 */ 1307 if (test_bit(WriteErrorSeen, &rdev->flags) && 1308 r10_bio->sectors && 1309 rdev_has_badblock(rdev, dev_sector, 1310 r10_bio->sectors) < 0) 1311 /* 1312 * Mustn't write here until the bad 1313 * block is acknowledged 1314 */ 1315 set_bit(BlockedBadBlocks, &rdev->flags); 1316 1317 if (rdev_blocked(rdev)) { 1318 blocked_rdev = rdev; 1319 atomic_inc(&rdev->nr_pending); 1320 break; 1321 } 1322 } 1323 1324 rrdev = conf->mirrors[i].replacement; 1325 if (rrdev && rdev_blocked(rrdev)) { 1326 atomic_inc(&rrdev->nr_pending); 1327 blocked_rdev = rrdev; 1328 break; 1329 } 1330 } 1331 1332 if (unlikely(blocked_rdev)) { 1333 /* Have to wait for this device to get unblocked, then retry */ 1334 allow_barrier(conf); 1335 mddev_add_trace_msg(conf->mddev, 1336 "raid10 %s wait rdev %d blocked", 1337 __func__, blocked_rdev->raid_disk); 1338 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1339 wait_barrier(conf, false); 1340 goto retry_wait; 1341 } 1342 } 1343 1344 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1345 struct r10bio *r10_bio) 1346 { 1347 struct r10conf *conf = mddev->private; 1348 int i, k; 1349 sector_t sectors; 1350 int max_sectors; 1351 1352 if ((mddev_is_clustered(mddev) && 1353 mddev->cluster_ops->area_resyncing(mddev, WRITE, 1354 bio->bi_iter.bi_sector, 1355 bio_end_sector(bio)))) { 1356 DEFINE_WAIT(w); 1357 /* Bail out if REQ_NOWAIT is set for the bio */ 1358 if (bio->bi_opf & REQ_NOWAIT) { 1359 bio_wouldblock_error(bio); 1360 return; 1361 } 1362 for (;;) { 1363 prepare_to_wait(&conf->wait_barrier, 1364 &w, TASK_IDLE); 1365 if (!mddev->cluster_ops->area_resyncing(mddev, WRITE, 1366 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1367 break; 1368 schedule(); 1369 } 1370 finish_wait(&conf->wait_barrier, &w); 1371 } 1372 1373 sectors = r10_bio->sectors; 1374 if (!regular_request_wait(mddev, conf, bio, sectors)) { 1375 raid_end_bio_io(r10_bio); 1376 return; 1377 } 1378 1379 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1380 (mddev->reshape_backwards 1381 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1382 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1383 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1384 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1385 /* Need to update reshape_position in metadata */ 1386 mddev->reshape_position = conf->reshape_progress; 1387 set_mask_bits(&mddev->sb_flags, 0, 1388 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1389 md_wakeup_thread(mddev->thread); 1390 if (bio->bi_opf & REQ_NOWAIT) { 1391 allow_barrier(conf); 1392 bio_wouldblock_error(bio); 1393 return; 1394 } 1395 mddev_add_trace_msg(conf->mddev, 1396 "raid10 wait reshape metadata"); 1397 wait_event(mddev->sb_wait, 1398 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1399 1400 conf->reshape_safe = mddev->reshape_position; 1401 } 1402 1403 /* first select target devices under rcu_lock and 1404 * inc refcount on their rdev. Record them by setting 1405 * bios[x] to bio 1406 * If there are known/acknowledged bad blocks on any device 1407 * on which we have seen a write error, we want to avoid 1408 * writing to those blocks. This potentially requires several 1409 * writes to write around the bad blocks. Each set of writes 1410 * gets its own r10_bio with a set of bios attached. 1411 */ 1412 1413 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1414 raid10_find_phys(conf, r10_bio); 1415 1416 wait_blocked_dev(mddev, r10_bio); 1417 1418 max_sectors = r10_bio->sectors; 1419 1420 for (i = 0; i < conf->copies; i++) { 1421 int d = r10_bio->devs[i].devnum; 1422 struct md_rdev *rdev, *rrdev; 1423 1424 rdev = conf->mirrors[d].rdev; 1425 rrdev = conf->mirrors[d].replacement; 1426 if (rdev && (test_bit(Faulty, &rdev->flags))) 1427 rdev = NULL; 1428 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1429 rrdev = NULL; 1430 1431 r10_bio->devs[i].bio = NULL; 1432 r10_bio->devs[i].repl_bio = NULL; 1433 1434 if (!rdev && !rrdev) 1435 continue; 1436 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1437 sector_t first_bad; 1438 sector_t dev_sector = r10_bio->devs[i].addr; 1439 sector_t bad_sectors; 1440 int is_bad; 1441 1442 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1443 &first_bad, &bad_sectors); 1444 if (is_bad && first_bad <= dev_sector) { 1445 /* Cannot write here at all */ 1446 bad_sectors -= (dev_sector - first_bad); 1447 if (bad_sectors < max_sectors) 1448 /* Mustn't write more than bad_sectors 1449 * to other devices yet 1450 */ 1451 max_sectors = bad_sectors; 1452 continue; 1453 } 1454 if (is_bad) { 1455 int good_sectors; 1456 1457 /* 1458 * We cannot atomically write this, so just 1459 * error in that case. It could be possible to 1460 * atomically write other mirrors, but the 1461 * complexity of supporting that is not worth 1462 * the benefit. 1463 */ 1464 if (bio->bi_opf & REQ_ATOMIC) 1465 goto err_handle; 1466 1467 good_sectors = first_bad - dev_sector; 1468 if (good_sectors < max_sectors) 1469 max_sectors = good_sectors; 1470 } 1471 } 1472 if (rdev) { 1473 r10_bio->devs[i].bio = bio; 1474 atomic_inc(&rdev->nr_pending); 1475 } 1476 if (rrdev) { 1477 r10_bio->devs[i].repl_bio = bio; 1478 atomic_inc(&rrdev->nr_pending); 1479 } 1480 } 1481 1482 if (max_sectors < r10_bio->sectors) 1483 r10_bio->sectors = max_sectors; 1484 1485 if (r10_bio->sectors < bio_sectors(bio)) { 1486 allow_barrier(conf); 1487 bio = bio_submit_split_bioset(bio, r10_bio->sectors, 1488 &conf->bio_split); 1489 wait_barrier(conf, false); 1490 if (!bio) { 1491 set_bit(R10BIO_Returned, &r10_bio->state); 1492 goto err_handle; 1493 } 1494 1495 r10_bio->master_bio = bio; 1496 } 1497 1498 md_account_bio(mddev, &bio); 1499 r10_bio->master_bio = bio; 1500 atomic_set(&r10_bio->remaining, 1); 1501 1502 for (i = 0; i < conf->copies; i++) { 1503 if (r10_bio->devs[i].bio) 1504 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1505 if (r10_bio->devs[i].repl_bio) 1506 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1507 } 1508 one_write_done(r10_bio); 1509 return; 1510 err_handle: 1511 for (k = 0; k < i; k++) { 1512 int d = r10_bio->devs[k].devnum; 1513 struct md_rdev *rdev = conf->mirrors[d].rdev; 1514 struct md_rdev *rrdev = conf->mirrors[d].replacement; 1515 1516 if (r10_bio->devs[k].bio) { 1517 rdev_dec_pending(rdev, mddev); 1518 r10_bio->devs[k].bio = NULL; 1519 } 1520 if (r10_bio->devs[k].repl_bio) { 1521 rdev_dec_pending(rrdev, mddev); 1522 r10_bio->devs[k].repl_bio = NULL; 1523 } 1524 } 1525 1526 raid_end_bio_io(r10_bio); 1527 } 1528 1529 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1530 { 1531 struct r10conf *conf = mddev->private; 1532 struct r10bio *r10_bio; 1533 1534 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1535 1536 r10_bio->master_bio = bio; 1537 r10_bio->sectors = sectors; 1538 1539 r10_bio->mddev = mddev; 1540 r10_bio->sector = bio->bi_iter.bi_sector; 1541 r10_bio->state = 0; 1542 r10_bio->read_slot = -1; 1543 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1544 conf->geo.raid_disks); 1545 1546 if (bio_data_dir(bio) == READ) 1547 raid10_read_request(mddev, bio, r10_bio, true); 1548 else 1549 raid10_write_request(mddev, bio, r10_bio); 1550 } 1551 1552 static void raid_end_discard_bio(struct r10bio *r10bio) 1553 { 1554 struct r10conf *conf = r10bio->mddev->private; 1555 struct r10bio *first_r10bio; 1556 1557 while (atomic_dec_and_test(&r10bio->remaining)) { 1558 1559 allow_barrier(conf); 1560 1561 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1562 first_r10bio = (struct r10bio *)r10bio->master_bio; 1563 free_r10bio(r10bio); 1564 r10bio = first_r10bio; 1565 } else { 1566 md_write_end(r10bio->mddev); 1567 bio_endio(r10bio->master_bio); 1568 free_r10bio(r10bio); 1569 break; 1570 } 1571 } 1572 } 1573 1574 static void raid10_end_discard_request(struct bio *bio) 1575 { 1576 struct r10bio *r10_bio = bio->bi_private; 1577 struct r10conf *conf = r10_bio->mddev->private; 1578 struct md_rdev *rdev = NULL; 1579 int dev; 1580 int slot, repl; 1581 1582 /* 1583 * We don't care the return value of discard bio 1584 */ 1585 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1586 set_bit(R10BIO_Uptodate, &r10_bio->state); 1587 1588 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1589 rdev = repl ? conf->mirrors[dev].replacement : 1590 conf->mirrors[dev].rdev; 1591 1592 raid_end_discard_bio(r10_bio); 1593 rdev_dec_pending(rdev, conf->mddev); 1594 } 1595 1596 /* 1597 * There are some limitations to handle discard bio 1598 * 1st, the discard size is bigger than stripe_size*2. 1599 * 2st, if the discard bio spans reshape progress, we use the old way to 1600 * handle discard bio 1601 */ 1602 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1603 { 1604 struct r10conf *conf = mddev->private; 1605 struct geom *geo = &conf->geo; 1606 int far_copies = geo->far_copies; 1607 bool first_copy = true; 1608 struct r10bio *r10_bio, *first_r10bio; 1609 struct bio *split; 1610 int disk; 1611 sector_t chunk; 1612 unsigned int stripe_size; 1613 unsigned int stripe_data_disks; 1614 sector_t split_size; 1615 sector_t bio_start, bio_end; 1616 sector_t first_stripe_index, last_stripe_index; 1617 sector_t start_disk_offset; 1618 unsigned int start_disk_index; 1619 sector_t end_disk_offset; 1620 unsigned int end_disk_index; 1621 unsigned int remainder; 1622 1623 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1624 return -EAGAIN; 1625 1626 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1627 bio_wouldblock_error(bio); 1628 return 0; 1629 } 1630 1631 /* 1632 * Check reshape again to avoid reshape happens after checking 1633 * MD_RECOVERY_RESHAPE and before wait_barrier 1634 */ 1635 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1636 goto out; 1637 1638 if (geo->near_copies) 1639 stripe_data_disks = geo->raid_disks / geo->near_copies + 1640 geo->raid_disks % geo->near_copies; 1641 else 1642 stripe_data_disks = geo->raid_disks; 1643 1644 stripe_size = stripe_data_disks << geo->chunk_shift; 1645 1646 bio_start = bio->bi_iter.bi_sector; 1647 bio_end = bio_end_sector(bio); 1648 1649 /* 1650 * Maybe one discard bio is smaller than strip size or across one 1651 * stripe and discard region is larger than one stripe size. For far 1652 * offset layout, if the discard region is not aligned with stripe 1653 * size, there is hole when we submit discard bio to member disk. 1654 * For simplicity, we only handle discard bio which discard region 1655 * is bigger than stripe_size * 2 1656 */ 1657 if (bio_sectors(bio) < stripe_size*2) 1658 goto out; 1659 1660 /* 1661 * Keep bio aligned with strip size. 1662 */ 1663 div_u64_rem(bio_start, stripe_size, &remainder); 1664 if (remainder) { 1665 split_size = stripe_size - remainder; 1666 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1667 if (IS_ERR(split)) { 1668 bio->bi_status = errno_to_blk_status(PTR_ERR(split)); 1669 bio_endio(bio); 1670 return 0; 1671 } 1672 1673 bio_chain(split, bio); 1674 trace_block_split(split, bio->bi_iter.bi_sector); 1675 allow_barrier(conf); 1676 /* Resend the fist split part */ 1677 submit_bio_noacct(split); 1678 wait_barrier(conf, false); 1679 } 1680 div_u64_rem(bio_end, stripe_size, &remainder); 1681 if (remainder) { 1682 split_size = bio_sectors(bio) - remainder; 1683 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1684 if (IS_ERR(split)) { 1685 bio->bi_status = errno_to_blk_status(PTR_ERR(split)); 1686 bio_endio(bio); 1687 return 0; 1688 } 1689 1690 bio_chain(split, bio); 1691 trace_block_split(split, bio->bi_iter.bi_sector); 1692 allow_barrier(conf); 1693 /* Resend the second split part */ 1694 submit_bio_noacct(bio); 1695 bio = split; 1696 wait_barrier(conf, false); 1697 } 1698 1699 bio_start = bio->bi_iter.bi_sector; 1700 bio_end = bio_end_sector(bio); 1701 1702 /* 1703 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1704 * One stripe contains the chunks from all member disk (one chunk from 1705 * one disk at the same HBA address). For layout detail, see 'man md 4' 1706 */ 1707 chunk = bio_start >> geo->chunk_shift; 1708 chunk *= geo->near_copies; 1709 first_stripe_index = chunk; 1710 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1711 if (geo->far_offset) 1712 first_stripe_index *= geo->far_copies; 1713 start_disk_offset = (bio_start & geo->chunk_mask) + 1714 (first_stripe_index << geo->chunk_shift); 1715 1716 chunk = bio_end >> geo->chunk_shift; 1717 chunk *= geo->near_copies; 1718 last_stripe_index = chunk; 1719 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1720 if (geo->far_offset) 1721 last_stripe_index *= geo->far_copies; 1722 end_disk_offset = (bio_end & geo->chunk_mask) + 1723 (last_stripe_index << geo->chunk_shift); 1724 1725 retry_discard: 1726 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1727 r10_bio->mddev = mddev; 1728 r10_bio->state = 0; 1729 r10_bio->sectors = 0; 1730 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1731 wait_blocked_dev(mddev, r10_bio); 1732 1733 /* 1734 * For far layout it needs more than one r10bio to cover all regions. 1735 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1736 * to record the discard bio. Other r10bio->master_bio record the first 1737 * r10bio. The first r10bio only release after all other r10bios finish. 1738 * The discard bio returns only first r10bio finishes 1739 */ 1740 if (first_copy) { 1741 md_account_bio(mddev, &bio); 1742 r10_bio->master_bio = bio; 1743 set_bit(R10BIO_Discard, &r10_bio->state); 1744 first_copy = false; 1745 first_r10bio = r10_bio; 1746 } else 1747 r10_bio->master_bio = (struct bio *)first_r10bio; 1748 1749 /* 1750 * first select target devices under rcu_lock and 1751 * inc refcount on their rdev. Record them by setting 1752 * bios[x] to bio 1753 */ 1754 for (disk = 0; disk < geo->raid_disks; disk++) { 1755 struct md_rdev *rdev, *rrdev; 1756 1757 rdev = conf->mirrors[disk].rdev; 1758 rrdev = conf->mirrors[disk].replacement; 1759 r10_bio->devs[disk].bio = NULL; 1760 r10_bio->devs[disk].repl_bio = NULL; 1761 1762 if (rdev && (test_bit(Faulty, &rdev->flags))) 1763 rdev = NULL; 1764 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1765 rrdev = NULL; 1766 if (!rdev && !rrdev) 1767 continue; 1768 1769 if (rdev) { 1770 r10_bio->devs[disk].bio = bio; 1771 atomic_inc(&rdev->nr_pending); 1772 } 1773 if (rrdev) { 1774 r10_bio->devs[disk].repl_bio = bio; 1775 atomic_inc(&rrdev->nr_pending); 1776 } 1777 } 1778 1779 atomic_set(&r10_bio->remaining, 1); 1780 for (disk = 0; disk < geo->raid_disks; disk++) { 1781 sector_t dev_start, dev_end; 1782 struct bio *mbio, *rbio = NULL; 1783 1784 /* 1785 * Now start to calculate the start and end address for each disk. 1786 * The space between dev_start and dev_end is the discard region. 1787 * 1788 * For dev_start, it needs to consider three conditions: 1789 * 1st, the disk is before start_disk, you can imagine the disk in 1790 * the next stripe. So the dev_start is the start address of next 1791 * stripe. 1792 * 2st, the disk is after start_disk, it means the disk is at the 1793 * same stripe of first disk 1794 * 3st, the first disk itself, we can use start_disk_offset directly 1795 */ 1796 if (disk < start_disk_index) 1797 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1798 else if (disk > start_disk_index) 1799 dev_start = first_stripe_index * mddev->chunk_sectors; 1800 else 1801 dev_start = start_disk_offset; 1802 1803 if (disk < end_disk_index) 1804 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1805 else if (disk > end_disk_index) 1806 dev_end = last_stripe_index * mddev->chunk_sectors; 1807 else 1808 dev_end = end_disk_offset; 1809 1810 /* 1811 * It only handles discard bio which size is >= stripe size, so 1812 * dev_end > dev_start all the time. 1813 * It doesn't need to use rcu lock to get rdev here. We already 1814 * add rdev->nr_pending in the first loop. 1815 */ 1816 if (r10_bio->devs[disk].bio) { 1817 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1818 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1819 &mddev->bio_set); 1820 mbio->bi_end_io = raid10_end_discard_request; 1821 mbio->bi_private = r10_bio; 1822 r10_bio->devs[disk].bio = mbio; 1823 r10_bio->devs[disk].devnum = disk; 1824 atomic_inc(&r10_bio->remaining); 1825 md_submit_discard_bio(mddev, rdev, mbio, 1826 dev_start + choose_data_offset(r10_bio, rdev), 1827 dev_end - dev_start); 1828 bio_endio(mbio); 1829 } 1830 if (r10_bio->devs[disk].repl_bio) { 1831 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1832 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1833 &mddev->bio_set); 1834 rbio->bi_end_io = raid10_end_discard_request; 1835 rbio->bi_private = r10_bio; 1836 r10_bio->devs[disk].repl_bio = rbio; 1837 r10_bio->devs[disk].devnum = disk; 1838 atomic_inc(&r10_bio->remaining); 1839 md_submit_discard_bio(mddev, rrdev, rbio, 1840 dev_start + choose_data_offset(r10_bio, rrdev), 1841 dev_end - dev_start); 1842 bio_endio(rbio); 1843 } 1844 } 1845 1846 if (!geo->far_offset && --far_copies) { 1847 first_stripe_index += geo->stride >> geo->chunk_shift; 1848 start_disk_offset += geo->stride; 1849 last_stripe_index += geo->stride >> geo->chunk_shift; 1850 end_disk_offset += geo->stride; 1851 atomic_inc(&first_r10bio->remaining); 1852 raid_end_discard_bio(r10_bio); 1853 wait_barrier(conf, false); 1854 goto retry_discard; 1855 } 1856 1857 raid_end_discard_bio(r10_bio); 1858 1859 return 0; 1860 out: 1861 allow_barrier(conf); 1862 return -EAGAIN; 1863 } 1864 1865 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1866 { 1867 struct r10conf *conf = mddev->private; 1868 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1869 int chunk_sects = chunk_mask + 1; 1870 int sectors = bio_sectors(bio); 1871 1872 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1873 && md_flush_request(mddev, bio)) 1874 return true; 1875 1876 md_write_start(mddev, bio); 1877 1878 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1879 if (!raid10_handle_discard(mddev, bio)) 1880 return true; 1881 1882 /* 1883 * If this request crosses a chunk boundary, we need to split 1884 * it. 1885 */ 1886 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1887 sectors > chunk_sects 1888 && (conf->geo.near_copies < conf->geo.raid_disks 1889 || conf->prev.near_copies < 1890 conf->prev.raid_disks))) 1891 sectors = chunk_sects - 1892 (bio->bi_iter.bi_sector & 1893 (chunk_sects - 1)); 1894 __make_request(mddev, bio, sectors); 1895 1896 /* In case raid10d snuck in to freeze_array */ 1897 wake_up_barrier(conf); 1898 return true; 1899 } 1900 1901 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1902 { 1903 struct r10conf *conf = mddev->private; 1904 int i; 1905 1906 lockdep_assert_held(&mddev->lock); 1907 1908 if (conf->geo.near_copies < conf->geo.raid_disks) 1909 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1910 if (conf->geo.near_copies > 1) 1911 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1912 if (conf->geo.far_copies > 1) { 1913 if (conf->geo.far_offset) 1914 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1915 else 1916 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1917 if (conf->geo.far_set_size != conf->geo.raid_disks) 1918 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1919 } 1920 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1921 conf->geo.raid_disks - mddev->degraded); 1922 for (i = 0; i < conf->geo.raid_disks; i++) { 1923 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1924 1925 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1926 } 1927 seq_printf(seq, "]"); 1928 } 1929 1930 /* check if there are enough drives for 1931 * every block to appear on atleast one. 1932 * Don't consider the device numbered 'ignore' 1933 * as we might be about to remove it. 1934 */ 1935 static int _enough(struct r10conf *conf, int previous, int ignore) 1936 { 1937 int first = 0; 1938 int has_enough = 0; 1939 int disks, ncopies; 1940 if (previous) { 1941 disks = conf->prev.raid_disks; 1942 ncopies = conf->prev.near_copies; 1943 } else { 1944 disks = conf->geo.raid_disks; 1945 ncopies = conf->geo.near_copies; 1946 } 1947 1948 do { 1949 int n = conf->copies; 1950 int cnt = 0; 1951 int this = first; 1952 while (n--) { 1953 struct md_rdev *rdev; 1954 if (this != ignore && 1955 (rdev = conf->mirrors[this].rdev) && 1956 test_bit(In_sync, &rdev->flags)) 1957 cnt++; 1958 this = (this+1) % disks; 1959 } 1960 if (cnt == 0) 1961 goto out; 1962 first = (first + ncopies) % disks; 1963 } while (first != 0); 1964 has_enough = 1; 1965 out: 1966 return has_enough; 1967 } 1968 1969 static int enough(struct r10conf *conf, int ignore) 1970 { 1971 /* when calling 'enough', both 'prev' and 'geo' must 1972 * be stable. 1973 * This is ensured if ->reconfig_mutex or ->device_lock 1974 * is held. 1975 */ 1976 return _enough(conf, 0, ignore) && 1977 _enough(conf, 1, ignore); 1978 } 1979 1980 /** 1981 * raid10_error() - RAID10 error handler. 1982 * @mddev: affected md device. 1983 * @rdev: member device to fail. 1984 * 1985 * The routine acknowledges &rdev failure and determines new @mddev state. 1986 * If it failed, then: 1987 * - &MD_BROKEN flag is set in &mddev->flags. 1988 * Otherwise, it must be degraded: 1989 * - recovery is interrupted. 1990 * - &mddev->degraded is bumped. 1991 * 1992 * @rdev is marked as &Faulty excluding case when array is failed and 1993 * MD_FAILLAST_DEV is not set. 1994 */ 1995 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1996 { 1997 struct r10conf *conf = mddev->private; 1998 unsigned long flags; 1999 2000 spin_lock_irqsave(&conf->device_lock, flags); 2001 2002 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 2003 set_bit(MD_BROKEN, &mddev->flags); 2004 2005 if (!test_bit(MD_FAILLAST_DEV, &mddev->flags)) { 2006 spin_unlock_irqrestore(&conf->device_lock, flags); 2007 return; 2008 } 2009 } 2010 if (test_and_clear_bit(In_sync, &rdev->flags)) 2011 mddev->degraded++; 2012 2013 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2014 set_bit(Blocked, &rdev->flags); 2015 set_bit(Faulty, &rdev->flags); 2016 set_mask_bits(&mddev->sb_flags, 0, 2017 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2018 spin_unlock_irqrestore(&conf->device_lock, flags); 2019 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 2020 "md/raid10:%s: Operation continuing on %d devices.\n", 2021 mdname(mddev), rdev->bdev, 2022 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 2023 } 2024 2025 static void print_conf(struct r10conf *conf) 2026 { 2027 int i; 2028 struct md_rdev *rdev; 2029 2030 pr_debug("RAID10 conf printout:\n"); 2031 if (!conf) { 2032 pr_debug("(!conf)\n"); 2033 return; 2034 } 2035 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2036 conf->geo.raid_disks); 2037 2038 lockdep_assert_held(&conf->mddev->reconfig_mutex); 2039 for (i = 0; i < conf->geo.raid_disks; i++) { 2040 rdev = conf->mirrors[i].rdev; 2041 if (rdev) 2042 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2043 i, !test_bit(In_sync, &rdev->flags), 2044 !test_bit(Faulty, &rdev->flags), 2045 rdev->bdev); 2046 } 2047 } 2048 2049 static void close_sync(struct r10conf *conf) 2050 { 2051 wait_barrier(conf, false); 2052 allow_barrier(conf); 2053 2054 mempool_exit(&conf->r10buf_pool); 2055 } 2056 2057 static int raid10_spare_active(struct mddev *mddev) 2058 { 2059 int i; 2060 struct r10conf *conf = mddev->private; 2061 struct raid10_info *tmp; 2062 int count = 0; 2063 unsigned long flags; 2064 2065 /* 2066 * Find all non-in_sync disks within the RAID10 configuration 2067 * and mark them in_sync 2068 */ 2069 for (i = 0; i < conf->geo.raid_disks; i++) { 2070 tmp = conf->mirrors + i; 2071 if (tmp->replacement 2072 && tmp->replacement->recovery_offset == MaxSector 2073 && !test_bit(Faulty, &tmp->replacement->flags) 2074 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2075 /* Replacement has just become active */ 2076 if (!tmp->rdev 2077 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2078 count++; 2079 if (tmp->rdev) { 2080 /* Replaced device not technically faulty, 2081 * but we need to be sure it gets removed 2082 * and never re-added. 2083 */ 2084 set_bit(Faulty, &tmp->rdev->flags); 2085 sysfs_notify_dirent_safe( 2086 tmp->rdev->sysfs_state); 2087 } 2088 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2089 } else if (tmp->rdev 2090 && tmp->rdev->recovery_offset == MaxSector 2091 && !test_bit(Faulty, &tmp->rdev->flags) 2092 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2093 count++; 2094 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2095 } 2096 } 2097 spin_lock_irqsave(&conf->device_lock, flags); 2098 mddev->degraded -= count; 2099 spin_unlock_irqrestore(&conf->device_lock, flags); 2100 2101 print_conf(conf); 2102 return count; 2103 } 2104 2105 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2106 { 2107 struct r10conf *conf = mddev->private; 2108 int err = -EEXIST; 2109 int mirror, repl_slot = -1; 2110 int first = 0; 2111 int last = conf->geo.raid_disks - 1; 2112 struct raid10_info *p; 2113 2114 if (mddev->resync_offset < MaxSector) 2115 /* only hot-add to in-sync arrays, as recovery is 2116 * very different from resync 2117 */ 2118 return -EBUSY; 2119 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2120 return -EINVAL; 2121 2122 if (rdev->raid_disk >= 0) 2123 first = last = rdev->raid_disk; 2124 2125 if (rdev->saved_raid_disk >= first && 2126 rdev->saved_raid_disk < conf->geo.raid_disks && 2127 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2128 mirror = rdev->saved_raid_disk; 2129 else 2130 mirror = first; 2131 for ( ; mirror <= last ; mirror++) { 2132 p = &conf->mirrors[mirror]; 2133 if (p->rdev) { 2134 if (test_bit(WantReplacement, &p->rdev->flags) && 2135 p->replacement == NULL && repl_slot < 0) 2136 repl_slot = mirror; 2137 continue; 2138 } 2139 2140 err = mddev_stack_new_rdev(mddev, rdev); 2141 if (err) 2142 return err; 2143 p->head_position = 0; 2144 rdev->raid_disk = mirror; 2145 err = 0; 2146 if (rdev->saved_raid_disk != mirror) 2147 conf->fullsync = 1; 2148 WRITE_ONCE(p->rdev, rdev); 2149 break; 2150 } 2151 2152 if (err && repl_slot >= 0) { 2153 p = &conf->mirrors[repl_slot]; 2154 clear_bit(In_sync, &rdev->flags); 2155 set_bit(Replacement, &rdev->flags); 2156 rdev->raid_disk = repl_slot; 2157 err = mddev_stack_new_rdev(mddev, rdev); 2158 if (err) 2159 return err; 2160 conf->fullsync = 1; 2161 WRITE_ONCE(p->replacement, rdev); 2162 } 2163 2164 print_conf(conf); 2165 return err; 2166 } 2167 2168 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2169 { 2170 struct r10conf *conf = mddev->private; 2171 int err = 0; 2172 int number = rdev->raid_disk; 2173 struct md_rdev **rdevp; 2174 struct raid10_info *p; 2175 2176 print_conf(conf); 2177 if (unlikely(number >= mddev->raid_disks)) 2178 return 0; 2179 p = conf->mirrors + number; 2180 if (rdev == p->rdev) 2181 rdevp = &p->rdev; 2182 else if (rdev == p->replacement) 2183 rdevp = &p->replacement; 2184 else 2185 return 0; 2186 2187 if (test_bit(In_sync, &rdev->flags) || 2188 atomic_read(&rdev->nr_pending)) { 2189 err = -EBUSY; 2190 goto abort; 2191 } 2192 /* Only remove non-faulty devices if recovery 2193 * is not possible. 2194 */ 2195 if (!test_bit(Faulty, &rdev->flags) && 2196 (!p->replacement || p->replacement == rdev) && 2197 number < conf->geo.raid_disks && 2198 enough(conf, -1)) { 2199 err = -EBUSY; 2200 goto abort; 2201 } 2202 WRITE_ONCE(*rdevp, NULL); 2203 if (p->replacement) { 2204 /* We must have just cleared 'rdev' */ 2205 WRITE_ONCE(p->rdev, p->replacement); 2206 clear_bit(Replacement, &p->replacement->flags); 2207 WRITE_ONCE(p->replacement, NULL); 2208 } 2209 2210 clear_bit(WantReplacement, &rdev->flags); 2211 err = md_integrity_register(mddev); 2212 2213 abort: 2214 2215 print_conf(conf); 2216 return err; 2217 } 2218 2219 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2220 { 2221 struct r10conf *conf = r10_bio->mddev->private; 2222 2223 if (!bio->bi_status) 2224 set_bit(R10BIO_Uptodate, &r10_bio->state); 2225 else 2226 /* The write handler will notice the lack of 2227 * R10BIO_Uptodate and record any errors etc 2228 */ 2229 atomic_add(r10_bio->sectors, 2230 &conf->mirrors[d].rdev->corrected_errors); 2231 2232 /* for reconstruct, we always reschedule after a read. 2233 * for resync, only after all reads 2234 */ 2235 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2236 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2237 atomic_dec_and_test(&r10_bio->remaining)) { 2238 /* we have read all the blocks, 2239 * do the comparison in process context in raid10d 2240 */ 2241 reschedule_retry(r10_bio); 2242 } 2243 } 2244 2245 static void end_sync_read(struct bio *bio) 2246 { 2247 struct r10bio *r10_bio = get_resync_r10bio(bio); 2248 struct r10conf *conf = r10_bio->mddev->private; 2249 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2250 2251 __end_sync_read(r10_bio, bio, d); 2252 } 2253 2254 static void end_reshape_read(struct bio *bio) 2255 { 2256 /* reshape read bio isn't allocated from r10buf_pool */ 2257 struct r10bio *r10_bio = bio->bi_private; 2258 2259 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2260 } 2261 2262 static void end_sync_request(struct r10bio *r10_bio) 2263 { 2264 struct mddev *mddev = r10_bio->mddev; 2265 2266 while (atomic_dec_and_test(&r10_bio->remaining)) { 2267 if (r10_bio->master_bio == NULL) { 2268 /* the primary of several recovery bios */ 2269 sector_t s = r10_bio->sectors; 2270 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2271 test_bit(R10BIO_WriteError, &r10_bio->state)) 2272 reschedule_retry(r10_bio); 2273 else 2274 put_buf(r10_bio); 2275 md_done_sync(mddev, s); 2276 break; 2277 } else { 2278 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2279 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2280 test_bit(R10BIO_WriteError, &r10_bio->state)) 2281 reschedule_retry(r10_bio); 2282 else 2283 put_buf(r10_bio); 2284 r10_bio = r10_bio2; 2285 } 2286 } 2287 } 2288 2289 static void end_sync_write(struct bio *bio) 2290 { 2291 struct r10bio *r10_bio = get_resync_r10bio(bio); 2292 struct mddev *mddev = r10_bio->mddev; 2293 struct r10conf *conf = mddev->private; 2294 int d; 2295 int slot; 2296 int repl; 2297 struct md_rdev *rdev = NULL; 2298 2299 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2300 if (repl) 2301 rdev = conf->mirrors[d].replacement; 2302 else 2303 rdev = conf->mirrors[d].rdev; 2304 2305 if (bio->bi_status) { 2306 if (repl) 2307 md_error(mddev, rdev); 2308 else { 2309 set_bit(WriteErrorSeen, &rdev->flags); 2310 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2311 set_bit(MD_RECOVERY_NEEDED, 2312 &rdev->mddev->recovery); 2313 set_bit(R10BIO_WriteError, &r10_bio->state); 2314 } 2315 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 2316 r10_bio->sectors)) { 2317 set_bit(R10BIO_MadeGood, &r10_bio->state); 2318 } 2319 2320 rdev_dec_pending(rdev, mddev); 2321 2322 end_sync_request(r10_bio); 2323 } 2324 2325 /* 2326 * Note: sync and recover and handled very differently for raid10 2327 * This code is for resync. 2328 * For resync, we read through virtual addresses and read all blocks. 2329 * If there is any error, we schedule a write. The lowest numbered 2330 * drive is authoritative. 2331 * However requests come for physical address, so we need to map. 2332 * For every physical address there are raid_disks/copies virtual addresses, 2333 * which is always are least one, but is not necessarly an integer. 2334 * This means that a physical address can span multiple chunks, so we may 2335 * have to submit multiple io requests for a single sync request. 2336 */ 2337 /* 2338 * We check if all blocks are in-sync and only write to blocks that 2339 * aren't in sync 2340 */ 2341 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2342 { 2343 struct r10conf *conf = mddev->private; 2344 int i, first; 2345 struct bio *tbio, *fbio; 2346 int vcnt; 2347 struct page **tpages, **fpages; 2348 2349 atomic_set(&r10_bio->remaining, 1); 2350 2351 /* find the first device with a block */ 2352 for (i=0; i<conf->copies; i++) 2353 if (!r10_bio->devs[i].bio->bi_status) 2354 break; 2355 2356 if (i == conf->copies) 2357 goto done; 2358 2359 first = i; 2360 fbio = r10_bio->devs[i].bio; 2361 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2362 fbio->bi_iter.bi_idx = 0; 2363 fpages = get_resync_pages(fbio)->pages; 2364 2365 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2366 /* now find blocks with errors */ 2367 for (i=0 ; i < conf->copies ; i++) { 2368 int j, d; 2369 struct md_rdev *rdev; 2370 struct resync_pages *rp; 2371 2372 tbio = r10_bio->devs[i].bio; 2373 2374 if (tbio->bi_end_io != end_sync_read) 2375 continue; 2376 if (i == first) 2377 continue; 2378 2379 tpages = get_resync_pages(tbio)->pages; 2380 d = r10_bio->devs[i].devnum; 2381 rdev = conf->mirrors[d].rdev; 2382 if (!r10_bio->devs[i].bio->bi_status) { 2383 /* We know that the bi_io_vec layout is the same for 2384 * both 'first' and 'i', so we just compare them. 2385 * All vec entries are PAGE_SIZE; 2386 */ 2387 int sectors = r10_bio->sectors; 2388 for (j = 0; j < vcnt; j++) { 2389 int len = PAGE_SIZE; 2390 if (sectors < (len / 512)) 2391 len = sectors * 512; 2392 if (memcmp(page_address(fpages[j]), 2393 page_address(tpages[j]), 2394 len)) 2395 break; 2396 sectors -= len/512; 2397 } 2398 if (j == vcnt) 2399 continue; 2400 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2401 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2402 /* Don't fix anything. */ 2403 continue; 2404 } else if (test_bit(FailFast, &rdev->flags)) { 2405 /* Just give up on this device */ 2406 md_error(rdev->mddev, rdev); 2407 continue; 2408 } 2409 /* Ok, we need to write this bio, either to correct an 2410 * inconsistency or to correct an unreadable block. 2411 * First we need to fixup bv_offset, bv_len and 2412 * bi_vecs, as the read request might have corrupted these 2413 */ 2414 rp = get_resync_pages(tbio); 2415 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2416 2417 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2418 2419 rp->raid_bio = r10_bio; 2420 tbio->bi_private = rp; 2421 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2422 tbio->bi_end_io = end_sync_write; 2423 2424 bio_copy_data(tbio, fbio); 2425 2426 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2427 atomic_inc(&r10_bio->remaining); 2428 2429 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2430 tbio->bi_opf |= MD_FAILFAST; 2431 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2432 submit_bio_noacct(tbio); 2433 } 2434 2435 /* Now write out to any replacement devices 2436 * that are active 2437 */ 2438 for (i = 0; i < conf->copies; i++) { 2439 tbio = r10_bio->devs[i].repl_bio; 2440 if (!tbio || !tbio->bi_end_io) 2441 continue; 2442 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2443 && r10_bio->devs[i].bio != fbio) 2444 bio_copy_data(tbio, fbio); 2445 atomic_inc(&r10_bio->remaining); 2446 submit_bio_noacct(tbio); 2447 } 2448 2449 done: 2450 if (atomic_dec_and_test(&r10_bio->remaining)) { 2451 md_done_sync(mddev, r10_bio->sectors); 2452 put_buf(r10_bio); 2453 } 2454 } 2455 2456 /* 2457 * Now for the recovery code. 2458 * Recovery happens across physical sectors. 2459 * We recover all non-is_sync drives by finding the virtual address of 2460 * each, and then choose a working drive that also has that virt address. 2461 * There is a separate r10_bio for each non-in_sync drive. 2462 * Only the first two slots are in use. The first for reading, 2463 * The second for writing. 2464 * 2465 */ 2466 static void fix_recovery_read_error(struct r10bio *r10_bio) 2467 { 2468 /* We got a read error during recovery. 2469 * We repeat the read in smaller page-sized sections. 2470 * If a read succeeds, write it to the new device or record 2471 * a bad block if we cannot. 2472 * If a read fails, record a bad block on both old and 2473 * new devices. 2474 */ 2475 struct mddev *mddev = r10_bio->mddev; 2476 struct r10conf *conf = mddev->private; 2477 struct bio *bio = r10_bio->devs[0].bio; 2478 sector_t sect = 0; 2479 int sectors = r10_bio->sectors; 2480 int idx = 0; 2481 int dr = r10_bio->devs[0].devnum; 2482 int dw = r10_bio->devs[1].devnum; 2483 struct page **pages = get_resync_pages(bio)->pages; 2484 2485 while (sectors) { 2486 int s = sectors; 2487 struct md_rdev *rdev; 2488 sector_t addr; 2489 int ok; 2490 2491 if (s > (PAGE_SIZE>>9)) 2492 s = PAGE_SIZE >> 9; 2493 2494 rdev = conf->mirrors[dr].rdev; 2495 addr = r10_bio->devs[0].addr + sect; 2496 ok = sync_page_io(rdev, 2497 addr, 2498 s << 9, 2499 pages[idx], 2500 REQ_OP_READ, false); 2501 if (ok) { 2502 rdev = conf->mirrors[dw].rdev; 2503 addr = r10_bio->devs[1].addr + sect; 2504 ok = sync_page_io(rdev, 2505 addr, 2506 s << 9, 2507 pages[idx], 2508 REQ_OP_WRITE, false); 2509 if (!ok) { 2510 set_bit(WriteErrorSeen, &rdev->flags); 2511 if (!test_and_set_bit(WantReplacement, 2512 &rdev->flags)) 2513 set_bit(MD_RECOVERY_NEEDED, 2514 &rdev->mddev->recovery); 2515 } 2516 } 2517 if (!ok) { 2518 /* We don't worry if we cannot set a bad block - 2519 * it really is bad so there is no loss in not 2520 * recording it yet 2521 */ 2522 rdev_set_badblocks(rdev, addr, s, 0); 2523 2524 if (rdev != conf->mirrors[dw].rdev) { 2525 /* need bad block on destination too */ 2526 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2527 addr = r10_bio->devs[1].addr + sect; 2528 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2529 if (!ok) { 2530 /* just abort the recovery */ 2531 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2532 mdname(mddev)); 2533 2534 set_bit(MD_RECOVERY_INTR, 2535 &mddev->recovery); 2536 break; 2537 } 2538 } 2539 } 2540 2541 sectors -= s; 2542 sect += s; 2543 idx++; 2544 } 2545 } 2546 2547 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2548 { 2549 struct r10conf *conf = mddev->private; 2550 int d; 2551 struct bio *wbio = r10_bio->devs[1].bio; 2552 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2553 2554 /* Need to test wbio2->bi_end_io before we call 2555 * submit_bio_noacct as if the former is NULL, 2556 * the latter is free to free wbio2. 2557 */ 2558 if (wbio2 && !wbio2->bi_end_io) 2559 wbio2 = NULL; 2560 2561 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2562 fix_recovery_read_error(r10_bio); 2563 if (wbio->bi_end_io) 2564 end_sync_request(r10_bio); 2565 if (wbio2) 2566 end_sync_request(r10_bio); 2567 return; 2568 } 2569 2570 /* 2571 * share the pages with the first bio 2572 * and submit the write request 2573 */ 2574 d = r10_bio->devs[1].devnum; 2575 if (wbio->bi_end_io) { 2576 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2577 submit_bio_noacct(wbio); 2578 } 2579 if (wbio2) { 2580 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2581 submit_bio_noacct(wbio2); 2582 } 2583 } 2584 2585 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2586 int sectors, struct page *page, enum req_op op) 2587 { 2588 if (rdev_has_badblock(rdev, sector, sectors) && 2589 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2590 return -1; 2591 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2592 /* success */ 2593 return 1; 2594 if (op == REQ_OP_WRITE) { 2595 set_bit(WriteErrorSeen, &rdev->flags); 2596 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2597 set_bit(MD_RECOVERY_NEEDED, 2598 &rdev->mddev->recovery); 2599 } 2600 /* need to record an error - either for the block or the device */ 2601 rdev_set_badblocks(rdev, sector, sectors, 0); 2602 return 0; 2603 } 2604 2605 /* 2606 * This is a kernel thread which: 2607 * 2608 * 1. Retries failed read operations on working mirrors. 2609 * 2. Updates the raid superblock when problems encounter. 2610 * 3. Performs writes following reads for array synchronising. 2611 */ 2612 2613 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2614 { 2615 int sect = 0; /* Offset from r10_bio->sector */ 2616 int sectors = r10_bio->sectors, slot = r10_bio->read_slot; 2617 struct md_rdev *rdev; 2618 int d = r10_bio->devs[slot].devnum; 2619 2620 /* still own a reference to this rdev, so it cannot 2621 * have been cleared recently. 2622 */ 2623 rdev = conf->mirrors[d].rdev; 2624 2625 if (test_bit(Faulty, &rdev->flags)) 2626 /* drive has already been failed, just ignore any 2627 more fix_read_error() attempts */ 2628 return; 2629 2630 if (exceed_read_errors(mddev, rdev)) { 2631 r10_bio->devs[slot].bio = IO_BLOCKED; 2632 return; 2633 } 2634 2635 while(sectors) { 2636 int s = sectors; 2637 int sl = slot; 2638 int success = 0; 2639 int start; 2640 2641 if (s > (PAGE_SIZE>>9)) 2642 s = PAGE_SIZE >> 9; 2643 2644 do { 2645 d = r10_bio->devs[sl].devnum; 2646 rdev = conf->mirrors[d].rdev; 2647 if (rdev && 2648 test_bit(In_sync, &rdev->flags) && 2649 !test_bit(Faulty, &rdev->flags) && 2650 rdev_has_badblock(rdev, 2651 r10_bio->devs[sl].addr + sect, 2652 s) == 0) { 2653 atomic_inc(&rdev->nr_pending); 2654 success = sync_page_io(rdev, 2655 r10_bio->devs[sl].addr + 2656 sect, 2657 s<<9, 2658 conf->tmppage, 2659 REQ_OP_READ, false); 2660 rdev_dec_pending(rdev, mddev); 2661 if (success) 2662 break; 2663 } 2664 sl++; 2665 if (sl == conf->copies) 2666 sl = 0; 2667 } while (sl != slot); 2668 2669 if (!success) { 2670 /* Cannot read from anywhere, just mark the block 2671 * as bad on the first device to discourage future 2672 * reads. 2673 */ 2674 int dn = r10_bio->devs[slot].devnum; 2675 rdev = conf->mirrors[dn].rdev; 2676 2677 if (!rdev_set_badblocks( 2678 rdev, 2679 r10_bio->devs[slot].addr 2680 + sect, 2681 s, 0)) { 2682 r10_bio->devs[slot].bio 2683 = IO_BLOCKED; 2684 } 2685 break; 2686 } 2687 2688 start = sl; 2689 /* write it back and re-read */ 2690 while (sl != slot) { 2691 if (sl==0) 2692 sl = conf->copies; 2693 sl--; 2694 d = r10_bio->devs[sl].devnum; 2695 rdev = conf->mirrors[d].rdev; 2696 if (!rdev || 2697 test_bit(Faulty, &rdev->flags) || 2698 !test_bit(In_sync, &rdev->flags)) 2699 continue; 2700 2701 atomic_inc(&rdev->nr_pending); 2702 if (r10_sync_page_io(rdev, 2703 r10_bio->devs[sl].addr + 2704 sect, 2705 s, conf->tmppage, REQ_OP_WRITE) 2706 == 0) { 2707 /* Well, this device is dead */ 2708 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2709 mdname(mddev), s, 2710 (unsigned long long)( 2711 sect + 2712 choose_data_offset(r10_bio, 2713 rdev)), 2714 rdev->bdev); 2715 pr_notice("md/raid10:%s: %pg: failing drive\n", 2716 mdname(mddev), 2717 rdev->bdev); 2718 } 2719 rdev_dec_pending(rdev, mddev); 2720 } 2721 sl = start; 2722 while (sl != slot) { 2723 if (sl==0) 2724 sl = conf->copies; 2725 sl--; 2726 d = r10_bio->devs[sl].devnum; 2727 rdev = conf->mirrors[d].rdev; 2728 if (!rdev || 2729 test_bit(Faulty, &rdev->flags) || 2730 !test_bit(In_sync, &rdev->flags)) 2731 continue; 2732 2733 atomic_inc(&rdev->nr_pending); 2734 switch (r10_sync_page_io(rdev, 2735 r10_bio->devs[sl].addr + 2736 sect, 2737 s, conf->tmppage, REQ_OP_READ)) { 2738 case 0: 2739 /* Well, this device is dead */ 2740 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2741 mdname(mddev), s, 2742 (unsigned long long)( 2743 sect + 2744 choose_data_offset(r10_bio, rdev)), 2745 rdev->bdev); 2746 pr_notice("md/raid10:%s: %pg: failing drive\n", 2747 mdname(mddev), 2748 rdev->bdev); 2749 break; 2750 case 1: 2751 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2752 mdname(mddev), s, 2753 (unsigned long long)( 2754 sect + 2755 choose_data_offset(r10_bio, rdev)), 2756 rdev->bdev); 2757 atomic_add(s, &rdev->corrected_errors); 2758 } 2759 2760 rdev_dec_pending(rdev, mddev); 2761 } 2762 2763 sectors -= s; 2764 sect += s; 2765 } 2766 } 2767 2768 static void narrow_write_error(struct r10bio *r10_bio, int i) 2769 { 2770 struct bio *bio = r10_bio->master_bio; 2771 struct mddev *mddev = r10_bio->mddev; 2772 struct r10conf *conf = mddev->private; 2773 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2774 /* bio has the data to be written to slot 'i' where 2775 * we just recently had a write error. 2776 * We repeatedly clone the bio and trim down to one block, 2777 * then try the write. Where the write fails we record 2778 * a bad block. 2779 * It is conceivable that the bio doesn't exactly align with 2780 * blocks. We must handle this. 2781 * 2782 * We currently own a reference to the rdev. 2783 */ 2784 2785 int block_sectors, lbs = bdev_logical_block_size(rdev->bdev) >> 9; 2786 sector_t sector; 2787 int sectors; 2788 int sect_to_write = r10_bio->sectors; 2789 2790 if (rdev->badblocks.shift < 0) 2791 block_sectors = lbs; 2792 else 2793 block_sectors = roundup(1 << rdev->badblocks.shift, lbs); 2794 2795 sector = r10_bio->sector; 2796 sectors = ((r10_bio->sector + block_sectors) 2797 & ~(sector_t)(block_sectors - 1)) 2798 - sector; 2799 2800 while (sect_to_write) { 2801 struct bio *wbio; 2802 sector_t wsector; 2803 if (sectors > sect_to_write) 2804 sectors = sect_to_write; 2805 /* Write at 'sector' for 'sectors' */ 2806 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2807 &mddev->bio_set); 2808 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2809 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2810 wbio->bi_iter.bi_sector = wsector + 2811 choose_data_offset(r10_bio, rdev); 2812 wbio->bi_opf = REQ_OP_WRITE; 2813 2814 if (submit_bio_wait(wbio) && 2815 !rdev_set_badblocks(rdev, wsector, sectors, 0)) { 2816 /* 2817 * Badblocks set failed, disk marked Faulty. 2818 * No further operations needed. 2819 */ 2820 bio_put(wbio); 2821 break; 2822 } 2823 2824 bio_put(wbio); 2825 sect_to_write -= sectors; 2826 sector += sectors; 2827 sectors = block_sectors; 2828 } 2829 } 2830 2831 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2832 { 2833 int slot = r10_bio->read_slot; 2834 struct bio *bio; 2835 struct r10conf *conf = mddev->private; 2836 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2837 2838 /* we got a read error. Maybe the drive is bad. Maybe just 2839 * the block and we can fix it. 2840 * We freeze all other IO, and try reading the block from 2841 * other devices. When we find one, we re-write 2842 * and check it that fixes the read error. 2843 * This is all done synchronously while the array is 2844 * frozen. 2845 */ 2846 bio = r10_bio->devs[slot].bio; 2847 bio_put(bio); 2848 r10_bio->devs[slot].bio = NULL; 2849 2850 if (mddev->ro) 2851 r10_bio->devs[slot].bio = IO_BLOCKED; 2852 else if (!test_bit(FailFast, &rdev->flags)) { 2853 freeze_array(conf, 1); 2854 fix_read_error(conf, mddev, r10_bio); 2855 unfreeze_array(conf); 2856 } else 2857 md_error(mddev, rdev); 2858 2859 rdev_dec_pending(rdev, mddev); 2860 r10_bio->state = 0; 2861 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false); 2862 /* 2863 * allow_barrier after re-submit to ensure no sync io 2864 * can be issued while regular io pending. 2865 */ 2866 allow_barrier(conf); 2867 } 2868 2869 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2870 { 2871 /* Some sort of write request has finished and it 2872 * succeeded in writing where we thought there was a 2873 * bad block. So forget the bad block. 2874 * Or possibly if failed and we need to record 2875 * a bad block. 2876 */ 2877 int m; 2878 struct md_rdev *rdev; 2879 2880 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2881 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2882 for (m = 0; m < conf->copies; m++) { 2883 int dev = r10_bio->devs[m].devnum; 2884 rdev = conf->mirrors[dev].rdev; 2885 if (r10_bio->devs[m].bio == NULL || 2886 r10_bio->devs[m].bio->bi_end_io == NULL) 2887 continue; 2888 if (!r10_bio->devs[m].bio->bi_status) 2889 rdev_clear_badblocks( 2890 rdev, 2891 r10_bio->devs[m].addr, 2892 r10_bio->sectors, 0); 2893 else 2894 rdev_set_badblocks(rdev, 2895 r10_bio->devs[m].addr, 2896 r10_bio->sectors, 0); 2897 rdev = conf->mirrors[dev].replacement; 2898 if (r10_bio->devs[m].repl_bio == NULL || 2899 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2900 continue; 2901 2902 if (!r10_bio->devs[m].repl_bio->bi_status) 2903 rdev_clear_badblocks( 2904 rdev, 2905 r10_bio->devs[m].addr, 2906 r10_bio->sectors, 0); 2907 else 2908 rdev_set_badblocks(rdev, 2909 r10_bio->devs[m].addr, 2910 r10_bio->sectors, 0); 2911 } 2912 put_buf(r10_bio); 2913 } else { 2914 bool fail = false; 2915 for (m = 0; m < conf->copies; m++) { 2916 int dev = r10_bio->devs[m].devnum; 2917 struct bio *bio = r10_bio->devs[m].bio; 2918 rdev = conf->mirrors[dev].rdev; 2919 if (bio == IO_MADE_GOOD) { 2920 rdev_clear_badblocks( 2921 rdev, 2922 r10_bio->devs[m].addr, 2923 r10_bio->sectors, 0); 2924 rdev_dec_pending(rdev, conf->mddev); 2925 } else if (bio != NULL && bio->bi_status) { 2926 fail = true; 2927 narrow_write_error(r10_bio, m); 2928 rdev_dec_pending(rdev, conf->mddev); 2929 } 2930 bio = r10_bio->devs[m].repl_bio; 2931 rdev = conf->mirrors[dev].replacement; 2932 if (rdev && bio == IO_MADE_GOOD) { 2933 rdev_clear_badblocks( 2934 rdev, 2935 r10_bio->devs[m].addr, 2936 r10_bio->sectors, 0); 2937 rdev_dec_pending(rdev, conf->mddev); 2938 } 2939 } 2940 if (fail) { 2941 spin_lock_irq(&conf->device_lock); 2942 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2943 conf->nr_queued++; 2944 spin_unlock_irq(&conf->device_lock); 2945 /* 2946 * In case freeze_array() is waiting for condition 2947 * nr_pending == nr_queued + extra to be true. 2948 */ 2949 wake_up(&conf->wait_barrier); 2950 md_wakeup_thread(conf->mddev->thread); 2951 } else { 2952 if (test_bit(R10BIO_WriteError, 2953 &r10_bio->state)) 2954 close_write(r10_bio); 2955 raid_end_bio_io(r10_bio); 2956 } 2957 } 2958 } 2959 2960 static void raid10d(struct md_thread *thread) 2961 { 2962 struct mddev *mddev = thread->mddev; 2963 struct r10bio *r10_bio; 2964 unsigned long flags; 2965 struct r10conf *conf = mddev->private; 2966 struct list_head *head = &conf->retry_list; 2967 struct blk_plug plug; 2968 2969 md_check_recovery(mddev); 2970 2971 if (!list_empty_careful(&conf->bio_end_io_list) && 2972 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2973 LIST_HEAD(tmp); 2974 spin_lock_irqsave(&conf->device_lock, flags); 2975 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2976 while (!list_empty(&conf->bio_end_io_list)) { 2977 list_move(conf->bio_end_io_list.prev, &tmp); 2978 conf->nr_queued--; 2979 } 2980 } 2981 spin_unlock_irqrestore(&conf->device_lock, flags); 2982 while (!list_empty(&tmp)) { 2983 r10_bio = list_first_entry(&tmp, struct r10bio, 2984 retry_list); 2985 list_del(&r10_bio->retry_list); 2986 2987 if (test_bit(R10BIO_WriteError, 2988 &r10_bio->state)) 2989 close_write(r10_bio); 2990 raid_end_bio_io(r10_bio); 2991 } 2992 } 2993 2994 blk_start_plug(&plug); 2995 for (;;) { 2996 2997 flush_pending_writes(conf); 2998 2999 spin_lock_irqsave(&conf->device_lock, flags); 3000 if (list_empty(head)) { 3001 spin_unlock_irqrestore(&conf->device_lock, flags); 3002 break; 3003 } 3004 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3005 list_del(head->prev); 3006 conf->nr_queued--; 3007 spin_unlock_irqrestore(&conf->device_lock, flags); 3008 3009 mddev = r10_bio->mddev; 3010 conf = mddev->private; 3011 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3012 test_bit(R10BIO_WriteError, &r10_bio->state)) 3013 handle_write_completed(conf, r10_bio); 3014 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3015 reshape_request_write(mddev, r10_bio); 3016 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3017 sync_request_write(mddev, r10_bio); 3018 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3019 recovery_request_write(mddev, r10_bio); 3020 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3021 handle_read_error(mddev, r10_bio); 3022 else 3023 WARN_ON_ONCE(1); 3024 3025 cond_resched(); 3026 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3027 md_check_recovery(mddev); 3028 } 3029 blk_finish_plug(&plug); 3030 } 3031 3032 static int init_resync(struct r10conf *conf) 3033 { 3034 int ret, buffs, i; 3035 3036 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3037 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3038 conf->have_replacement = 0; 3039 for (i = 0; i < conf->geo.raid_disks; i++) 3040 if (conf->mirrors[i].replacement) 3041 conf->have_replacement = 1; 3042 ret = mempool_init(&conf->r10buf_pool, buffs, 3043 r10buf_pool_alloc, r10buf_pool_free, conf); 3044 if (ret) 3045 return ret; 3046 conf->next_resync = 0; 3047 return 0; 3048 } 3049 3050 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3051 { 3052 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3053 struct rsync_pages *rp; 3054 struct bio *bio; 3055 int nalloc; 3056 int i; 3057 3058 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3059 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3060 nalloc = conf->copies; /* resync */ 3061 else 3062 nalloc = 2; /* recovery */ 3063 3064 for (i = 0; i < nalloc; i++) { 3065 bio = r10bio->devs[i].bio; 3066 rp = bio->bi_private; 3067 bio_reset(bio, NULL, 0); 3068 bio->bi_private = rp; 3069 bio = r10bio->devs[i].repl_bio; 3070 if (bio) { 3071 rp = bio->bi_private; 3072 bio_reset(bio, NULL, 0); 3073 bio->bi_private = rp; 3074 } 3075 } 3076 return r10bio; 3077 } 3078 3079 /* 3080 * Set cluster_sync_high since we need other nodes to add the 3081 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3082 */ 3083 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3084 { 3085 sector_t window_size; 3086 int extra_chunk, chunks; 3087 3088 /* 3089 * First, here we define "stripe" as a unit which across 3090 * all member devices one time, so we get chunks by use 3091 * raid_disks / near_copies. Otherwise, if near_copies is 3092 * close to raid_disks, then resync window could increases 3093 * linearly with the increase of raid_disks, which means 3094 * we will suspend a really large IO window while it is not 3095 * necessary. If raid_disks is not divisible by near_copies, 3096 * an extra chunk is needed to ensure the whole "stripe" is 3097 * covered. 3098 */ 3099 3100 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3101 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3102 extra_chunk = 0; 3103 else 3104 extra_chunk = 1; 3105 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3106 3107 /* 3108 * At least use a 32M window to align with raid1's resync window 3109 */ 3110 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3111 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3112 3113 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3114 } 3115 3116 /* 3117 * perform a "sync" on one "block" 3118 * 3119 * We need to make sure that no normal I/O request - particularly write 3120 * requests - conflict with active sync requests. 3121 * 3122 * This is achieved by tracking pending requests and a 'barrier' concept 3123 * that can be installed to exclude normal IO requests. 3124 * 3125 * Resync and recovery are handled very differently. 3126 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3127 * 3128 * For resync, we iterate over virtual addresses, read all copies, 3129 * and update if there are differences. If only one copy is live, 3130 * skip it. 3131 * For recovery, we iterate over physical addresses, read a good 3132 * value for each non-in_sync drive, and over-write. 3133 * 3134 * So, for recovery we may have several outstanding complex requests for a 3135 * given address, one for each out-of-sync device. We model this by allocating 3136 * a number of r10_bio structures, one for each out-of-sync device. 3137 * As we setup these structures, we collect all bio's together into a list 3138 * which we then process collectively to add pages, and then process again 3139 * to pass to submit_bio_noacct. 3140 * 3141 * The r10_bio structures are linked using a borrowed master_bio pointer. 3142 * This link is counted in ->remaining. When the r10_bio that points to NULL 3143 * has its remaining count decremented to 0, the whole complex operation 3144 * is complete. 3145 * 3146 */ 3147 3148 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3149 sector_t max_sector, int *skipped) 3150 { 3151 struct r10conf *conf = mddev->private; 3152 struct r10bio *r10_bio; 3153 struct bio *biolist = NULL, *bio; 3154 sector_t nr_sectors; 3155 int i; 3156 int max_sync; 3157 sector_t sync_blocks; 3158 sector_t chunk_mask = conf->geo.chunk_mask; 3159 int page_idx = 0; 3160 3161 /* 3162 * Allow skipping a full rebuild for incremental assembly 3163 * of a clean array, like RAID1 does. 3164 */ 3165 if (mddev->bitmap == NULL && 3166 mddev->resync_offset == MaxSector && 3167 mddev->reshape_position == MaxSector && 3168 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3169 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3170 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3171 conf->fullsync == 0) { 3172 *skipped = 1; 3173 return mddev->dev_sectors - sector_nr; 3174 } 3175 3176 if (!mempool_initialized(&conf->r10buf_pool)) 3177 if (init_resync(conf)) 3178 return 0; 3179 3180 if (sector_nr >= max_sector) { 3181 conf->cluster_sync_low = 0; 3182 conf->cluster_sync_high = 0; 3183 3184 /* If we aborted, we need to abort the 3185 * sync on the 'current' bitmap chucks (there can 3186 * be several when recovering multiple devices). 3187 * as we may have started syncing it but not finished. 3188 * We can find the current address in 3189 * mddev->curr_resync, but for recovery, 3190 * we need to convert that to several 3191 * virtual addresses. 3192 */ 3193 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3194 end_reshape(conf); 3195 close_sync(conf); 3196 return 0; 3197 } 3198 3199 if (mddev->curr_resync < max_sector) { /* aborted */ 3200 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3201 md_bitmap_end_sync(mddev, mddev->curr_resync, 3202 &sync_blocks); 3203 else for (i = 0; i < conf->geo.raid_disks; i++) { 3204 sector_t sect = 3205 raid10_find_virt(conf, mddev->curr_resync, i); 3206 3207 md_bitmap_end_sync(mddev, sect, &sync_blocks); 3208 } 3209 } else { 3210 /* completed sync */ 3211 if ((!mddev->bitmap || conf->fullsync) 3212 && conf->have_replacement 3213 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3214 /* Completed a full sync so the replacements 3215 * are now fully recovered. 3216 */ 3217 for (i = 0; i < conf->geo.raid_disks; i++) { 3218 struct md_rdev *rdev = 3219 conf->mirrors[i].replacement; 3220 3221 if (rdev) 3222 rdev->recovery_offset = MaxSector; 3223 } 3224 } 3225 conf->fullsync = 0; 3226 } 3227 if (md_bitmap_enabled(mddev, false)) 3228 mddev->bitmap_ops->close_sync(mddev); 3229 close_sync(conf); 3230 *skipped = 1; 3231 return 0; 3232 } 3233 3234 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3235 return reshape_request(mddev, sector_nr, skipped); 3236 3237 if (max_sector > mddev->resync_max) 3238 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3239 3240 /* make sure whole request will fit in a chunk - if chunks 3241 * are meaningful 3242 */ 3243 if (conf->geo.near_copies < conf->geo.raid_disks && 3244 max_sector > (sector_nr | chunk_mask)) 3245 max_sector = (sector_nr | chunk_mask) + 1; 3246 3247 /* 3248 * If there is non-resync activity waiting for a turn, then let it 3249 * though before starting on this new sync request. 3250 */ 3251 if (conf->nr_waiting) 3252 schedule_timeout_uninterruptible(1); 3253 3254 /* Again, very different code for resync and recovery. 3255 * Both must result in an r10bio with a list of bios that 3256 * have bi_end_io, bi_sector, bi_bdev set, 3257 * and bi_private set to the r10bio. 3258 * For recovery, we may actually create several r10bios 3259 * with 2 bios in each, that correspond to the bios in the main one. 3260 * In this case, the subordinate r10bios link back through a 3261 * borrowed master_bio pointer, and the counter in the master 3262 * includes a ref from each subordinate. 3263 */ 3264 /* First, we decide what to do and set ->bi_end_io 3265 * To end_sync_read if we want to read, and 3266 * end_sync_write if we will want to write. 3267 */ 3268 3269 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3270 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3271 /* recovery... the complicated one */ 3272 int j; 3273 r10_bio = NULL; 3274 3275 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3276 bool still_degraded; 3277 struct r10bio *rb2; 3278 sector_t sect; 3279 bool must_sync; 3280 int any_working; 3281 struct raid10_info *mirror = &conf->mirrors[i]; 3282 struct md_rdev *mrdev, *mreplace; 3283 3284 mrdev = mirror->rdev; 3285 mreplace = mirror->replacement; 3286 3287 if (mrdev && (test_bit(Faulty, &mrdev->flags) || 3288 test_bit(In_sync, &mrdev->flags))) 3289 mrdev = NULL; 3290 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3291 mreplace = NULL; 3292 3293 if (!mrdev && !mreplace) 3294 continue; 3295 3296 still_degraded = false; 3297 /* want to reconstruct this device */ 3298 rb2 = r10_bio; 3299 sect = raid10_find_virt(conf, sector_nr, i); 3300 if (sect >= mddev->resync_max_sectors) 3301 /* last stripe is not complete - don't 3302 * try to recover this sector. 3303 */ 3304 continue; 3305 /* Unless we are doing a full sync, or a replacement 3306 * we only need to recover the block if it is set in 3307 * the bitmap 3308 */ 3309 must_sync = md_bitmap_start_sync(mddev, sect, 3310 &sync_blocks, true); 3311 if (sync_blocks < max_sync) 3312 max_sync = sync_blocks; 3313 if (!must_sync && 3314 mreplace == NULL && 3315 !conf->fullsync) { 3316 /* yep, skip the sync_blocks here, but don't assume 3317 * that there will never be anything to do here 3318 */ 3319 continue; 3320 } 3321 if (mrdev) 3322 atomic_inc(&mrdev->nr_pending); 3323 if (mreplace) 3324 atomic_inc(&mreplace->nr_pending); 3325 3326 r10_bio = raid10_alloc_init_r10buf(conf); 3327 r10_bio->state = 0; 3328 raise_barrier(conf, rb2 != NULL); 3329 atomic_set(&r10_bio->remaining, 0); 3330 3331 r10_bio->master_bio = (struct bio*)rb2; 3332 if (rb2) 3333 atomic_inc(&rb2->remaining); 3334 r10_bio->mddev = mddev; 3335 set_bit(R10BIO_IsRecover, &r10_bio->state); 3336 r10_bio->sector = sect; 3337 3338 raid10_find_phys(conf, r10_bio); 3339 3340 /* Need to check if the array will still be 3341 * degraded 3342 */ 3343 for (j = 0; j < conf->geo.raid_disks; j++) { 3344 struct md_rdev *rdev = conf->mirrors[j].rdev; 3345 3346 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3347 still_degraded = false; 3348 break; 3349 } 3350 } 3351 3352 md_bitmap_start_sync(mddev, sect, &sync_blocks, 3353 still_degraded); 3354 any_working = 0; 3355 for (j=0; j<conf->copies;j++) { 3356 int k; 3357 int d = r10_bio->devs[j].devnum; 3358 sector_t from_addr, to_addr; 3359 struct md_rdev *rdev = conf->mirrors[d].rdev; 3360 sector_t sector, first_bad; 3361 sector_t bad_sectors; 3362 if (!rdev || 3363 !test_bit(In_sync, &rdev->flags)) 3364 continue; 3365 /* This is where we read from */ 3366 sector = r10_bio->devs[j].addr; 3367 3368 if (is_badblock(rdev, sector, max_sync, 3369 &first_bad, &bad_sectors)) { 3370 if (first_bad > sector) 3371 max_sync = first_bad - sector; 3372 else { 3373 bad_sectors -= (sector 3374 - first_bad); 3375 if (max_sync > bad_sectors) 3376 max_sync = bad_sectors; 3377 continue; 3378 } 3379 } 3380 any_working = 1; 3381 bio = r10_bio->devs[0].bio; 3382 bio->bi_next = biolist; 3383 biolist = bio; 3384 bio->bi_end_io = end_sync_read; 3385 bio->bi_opf = REQ_OP_READ; 3386 if (test_bit(FailFast, &rdev->flags)) 3387 bio->bi_opf |= MD_FAILFAST; 3388 from_addr = r10_bio->devs[j].addr; 3389 bio->bi_iter.bi_sector = from_addr + 3390 rdev->data_offset; 3391 bio_set_dev(bio, rdev->bdev); 3392 atomic_inc(&rdev->nr_pending); 3393 /* and we write to 'i' (if not in_sync) */ 3394 3395 for (k=0; k<conf->copies; k++) 3396 if (r10_bio->devs[k].devnum == i) 3397 break; 3398 BUG_ON(k == conf->copies); 3399 to_addr = r10_bio->devs[k].addr; 3400 r10_bio->devs[0].devnum = d; 3401 r10_bio->devs[0].addr = from_addr; 3402 r10_bio->devs[1].devnum = i; 3403 r10_bio->devs[1].addr = to_addr; 3404 3405 if (mrdev) { 3406 bio = r10_bio->devs[1].bio; 3407 bio->bi_next = biolist; 3408 biolist = bio; 3409 bio->bi_end_io = end_sync_write; 3410 bio->bi_opf = REQ_OP_WRITE; 3411 bio->bi_iter.bi_sector = to_addr 3412 + mrdev->data_offset; 3413 bio_set_dev(bio, mrdev->bdev); 3414 atomic_inc(&r10_bio->remaining); 3415 } else 3416 r10_bio->devs[1].bio->bi_end_io = NULL; 3417 3418 /* and maybe write to replacement */ 3419 bio = r10_bio->devs[1].repl_bio; 3420 if (bio) 3421 bio->bi_end_io = NULL; 3422 /* Note: if replace is not NULL, then bio 3423 * cannot be NULL as r10buf_pool_alloc will 3424 * have allocated it. 3425 */ 3426 if (!mreplace) 3427 break; 3428 bio->bi_next = biolist; 3429 biolist = bio; 3430 bio->bi_end_io = end_sync_write; 3431 bio->bi_opf = REQ_OP_WRITE; 3432 bio->bi_iter.bi_sector = to_addr + 3433 mreplace->data_offset; 3434 bio_set_dev(bio, mreplace->bdev); 3435 atomic_inc(&r10_bio->remaining); 3436 break; 3437 } 3438 if (j == conf->copies) { 3439 /* Cannot recover, so abort the recovery or 3440 * record a bad block */ 3441 if (any_working) { 3442 /* problem is that there are bad blocks 3443 * on other device(s) 3444 */ 3445 int k; 3446 for (k = 0; k < conf->copies; k++) 3447 if (r10_bio->devs[k].devnum == i) 3448 break; 3449 if (mrdev && 3450 !test_bit(In_sync, &mrdev->flags)) 3451 rdev_set_badblocks( 3452 mrdev, 3453 r10_bio->devs[k].addr, 3454 max_sync, 0); 3455 if (mreplace) 3456 rdev_set_badblocks( 3457 mreplace, 3458 r10_bio->devs[k].addr, 3459 max_sync, 0); 3460 pr_warn("md/raid10:%s: cannot recovery sector %llu + %d.\n", 3461 mdname(mddev), r10_bio->devs[k].addr, max_sync); 3462 } 3463 put_buf(r10_bio); 3464 if (rb2) 3465 atomic_dec(&rb2->remaining); 3466 r10_bio = rb2; 3467 if (mrdev) 3468 rdev_dec_pending(mrdev, mddev); 3469 if (mreplace) 3470 rdev_dec_pending(mreplace, mddev); 3471 break; 3472 } 3473 if (mrdev) 3474 rdev_dec_pending(mrdev, mddev); 3475 if (mreplace) 3476 rdev_dec_pending(mreplace, mddev); 3477 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3478 /* Only want this if there is elsewhere to 3479 * read from. 'j' is currently the first 3480 * readable copy. 3481 */ 3482 int targets = 1; 3483 for (; j < conf->copies; j++) { 3484 int d = r10_bio->devs[j].devnum; 3485 if (conf->mirrors[d].rdev && 3486 test_bit(In_sync, 3487 &conf->mirrors[d].rdev->flags)) 3488 targets++; 3489 } 3490 if (targets == 1) 3491 r10_bio->devs[0].bio->bi_opf 3492 &= ~MD_FAILFAST; 3493 } 3494 } 3495 if (biolist == NULL) { 3496 while (r10_bio) { 3497 struct r10bio *rb2 = r10_bio; 3498 r10_bio = (struct r10bio*) rb2->master_bio; 3499 rb2->master_bio = NULL; 3500 put_buf(rb2); 3501 } 3502 *skipped = 1; 3503 return max_sync; 3504 } 3505 } else { 3506 /* resync. Schedule a read for every block at this virt offset */ 3507 int count = 0; 3508 3509 /* 3510 * Since curr_resync_completed could probably not update in 3511 * time, and we will set cluster_sync_low based on it. 3512 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3513 * safety reason, which ensures curr_resync_completed is 3514 * updated in bitmap_cond_end_sync. 3515 */ 3516 if (md_bitmap_enabled(mddev, false)) 3517 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 3518 mddev_is_clustered(mddev) && 3519 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3520 3521 if (!md_bitmap_start_sync(mddev, sector_nr, &sync_blocks, 3522 mddev->degraded) && 3523 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3524 &mddev->recovery)) { 3525 /* We can skip this block */ 3526 *skipped = 1; 3527 return sync_blocks; 3528 } 3529 if (sync_blocks < max_sync) 3530 max_sync = sync_blocks; 3531 r10_bio = raid10_alloc_init_r10buf(conf); 3532 r10_bio->state = 0; 3533 3534 r10_bio->mddev = mddev; 3535 atomic_set(&r10_bio->remaining, 0); 3536 raise_barrier(conf, 0); 3537 conf->next_resync = sector_nr; 3538 3539 r10_bio->master_bio = NULL; 3540 r10_bio->sector = sector_nr; 3541 set_bit(R10BIO_IsSync, &r10_bio->state); 3542 raid10_find_phys(conf, r10_bio); 3543 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3544 3545 for (i = 0; i < conf->copies; i++) { 3546 int d = r10_bio->devs[i].devnum; 3547 sector_t first_bad, sector; 3548 sector_t bad_sectors; 3549 struct md_rdev *rdev; 3550 3551 if (r10_bio->devs[i].repl_bio) 3552 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3553 3554 bio = r10_bio->devs[i].bio; 3555 bio->bi_status = BLK_STS_IOERR; 3556 rdev = conf->mirrors[d].rdev; 3557 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3558 continue; 3559 3560 sector = r10_bio->devs[i].addr; 3561 if (is_badblock(rdev, sector, max_sync, 3562 &first_bad, &bad_sectors)) { 3563 if (first_bad > sector) 3564 max_sync = first_bad - sector; 3565 else { 3566 bad_sectors -= (sector - first_bad); 3567 if (max_sync > bad_sectors) 3568 max_sync = bad_sectors; 3569 continue; 3570 } 3571 } 3572 atomic_inc(&rdev->nr_pending); 3573 atomic_inc(&r10_bio->remaining); 3574 bio->bi_next = biolist; 3575 biolist = bio; 3576 bio->bi_end_io = end_sync_read; 3577 bio->bi_opf = REQ_OP_READ; 3578 if (test_bit(FailFast, &rdev->flags)) 3579 bio->bi_opf |= MD_FAILFAST; 3580 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3581 bio_set_dev(bio, rdev->bdev); 3582 count++; 3583 3584 rdev = conf->mirrors[d].replacement; 3585 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3586 continue; 3587 3588 atomic_inc(&rdev->nr_pending); 3589 3590 /* Need to set up for writing to the replacement */ 3591 bio = r10_bio->devs[i].repl_bio; 3592 bio->bi_status = BLK_STS_IOERR; 3593 3594 sector = r10_bio->devs[i].addr; 3595 bio->bi_next = biolist; 3596 biolist = bio; 3597 bio->bi_end_io = end_sync_write; 3598 bio->bi_opf = REQ_OP_WRITE; 3599 if (test_bit(FailFast, &rdev->flags)) 3600 bio->bi_opf |= MD_FAILFAST; 3601 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3602 bio_set_dev(bio, rdev->bdev); 3603 count++; 3604 } 3605 3606 if (count < 2) { 3607 for (i=0; i<conf->copies; i++) { 3608 int d = r10_bio->devs[i].devnum; 3609 if (r10_bio->devs[i].bio->bi_end_io) 3610 rdev_dec_pending(conf->mirrors[d].rdev, 3611 mddev); 3612 if (r10_bio->devs[i].repl_bio && 3613 r10_bio->devs[i].repl_bio->bi_end_io) 3614 rdev_dec_pending( 3615 conf->mirrors[d].replacement, 3616 mddev); 3617 } 3618 put_buf(r10_bio); 3619 *skipped = 1; 3620 return max_sync; 3621 } 3622 } 3623 3624 nr_sectors = 0; 3625 if (sector_nr + max_sync < max_sector) 3626 max_sector = sector_nr + max_sync; 3627 do { 3628 struct page *page; 3629 int len = PAGE_SIZE; 3630 if (sector_nr + (len>>9) > max_sector) 3631 len = (max_sector - sector_nr) << 9; 3632 if (len == 0) 3633 break; 3634 for (bio= biolist ; bio ; bio=bio->bi_next) { 3635 struct resync_pages *rp = get_resync_pages(bio); 3636 page = resync_fetch_page(rp, page_idx); 3637 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 3638 bio->bi_status = BLK_STS_RESOURCE; 3639 bio_endio(bio); 3640 *skipped = 1; 3641 return max_sync; 3642 } 3643 } 3644 nr_sectors += len>>9; 3645 sector_nr += len>>9; 3646 } while (++page_idx < RESYNC_PAGES); 3647 r10_bio->sectors = nr_sectors; 3648 3649 if (mddev_is_clustered(mddev) && 3650 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3651 /* It is resync not recovery */ 3652 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3653 conf->cluster_sync_low = mddev->curr_resync_completed; 3654 raid10_set_cluster_sync_high(conf); 3655 /* Send resync message */ 3656 mddev->cluster_ops->resync_info_update(mddev, 3657 conf->cluster_sync_low, 3658 conf->cluster_sync_high); 3659 } 3660 } else if (mddev_is_clustered(mddev)) { 3661 /* This is recovery not resync */ 3662 sector_t sect_va1, sect_va2; 3663 bool broadcast_msg = false; 3664 3665 for (i = 0; i < conf->geo.raid_disks; i++) { 3666 /* 3667 * sector_nr is a device address for recovery, so we 3668 * need translate it to array address before compare 3669 * with cluster_sync_high. 3670 */ 3671 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3672 3673 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3674 broadcast_msg = true; 3675 /* 3676 * curr_resync_completed is similar as 3677 * sector_nr, so make the translation too. 3678 */ 3679 sect_va2 = raid10_find_virt(conf, 3680 mddev->curr_resync_completed, i); 3681 3682 if (conf->cluster_sync_low == 0 || 3683 conf->cluster_sync_low > sect_va2) 3684 conf->cluster_sync_low = sect_va2; 3685 } 3686 } 3687 if (broadcast_msg) { 3688 raid10_set_cluster_sync_high(conf); 3689 mddev->cluster_ops->resync_info_update(mddev, 3690 conf->cluster_sync_low, 3691 conf->cluster_sync_high); 3692 } 3693 } 3694 3695 while (biolist) { 3696 bio = biolist; 3697 biolist = biolist->bi_next; 3698 3699 bio->bi_next = NULL; 3700 r10_bio = get_resync_r10bio(bio); 3701 r10_bio->sectors = nr_sectors; 3702 3703 if (bio->bi_end_io == end_sync_read) { 3704 bio->bi_status = 0; 3705 submit_bio_noacct(bio); 3706 } 3707 } 3708 3709 return nr_sectors; 3710 } 3711 3712 static sector_t 3713 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3714 { 3715 sector_t size; 3716 struct r10conf *conf = mddev->private; 3717 3718 if (!raid_disks) 3719 raid_disks = min(conf->geo.raid_disks, 3720 conf->prev.raid_disks); 3721 if (!sectors) 3722 sectors = conf->dev_sectors; 3723 3724 size = sectors >> conf->geo.chunk_shift; 3725 sector_div(size, conf->geo.far_copies); 3726 size = size * raid_disks; 3727 sector_div(size, conf->geo.near_copies); 3728 3729 return size << conf->geo.chunk_shift; 3730 } 3731 3732 static void calc_sectors(struct r10conf *conf, sector_t size) 3733 { 3734 /* Calculate the number of sectors-per-device that will 3735 * actually be used, and set conf->dev_sectors and 3736 * conf->stride 3737 */ 3738 3739 size = size >> conf->geo.chunk_shift; 3740 sector_div(size, conf->geo.far_copies); 3741 size = size * conf->geo.raid_disks; 3742 sector_div(size, conf->geo.near_copies); 3743 /* 'size' is now the number of chunks in the array */ 3744 /* calculate "used chunks per device" */ 3745 size = size * conf->copies; 3746 3747 /* We need to round up when dividing by raid_disks to 3748 * get the stride size. 3749 */ 3750 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3751 3752 conf->dev_sectors = size << conf->geo.chunk_shift; 3753 3754 if (conf->geo.far_offset) 3755 conf->geo.stride = 1 << conf->geo.chunk_shift; 3756 else { 3757 sector_div(size, conf->geo.far_copies); 3758 conf->geo.stride = size << conf->geo.chunk_shift; 3759 } 3760 } 3761 3762 enum geo_type {geo_new, geo_old, geo_start}; 3763 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3764 { 3765 int nc, fc, fo; 3766 int layout, chunk, disks; 3767 switch (new) { 3768 case geo_old: 3769 layout = mddev->layout; 3770 chunk = mddev->chunk_sectors; 3771 disks = mddev->raid_disks - mddev->delta_disks; 3772 break; 3773 case geo_new: 3774 layout = mddev->new_layout; 3775 chunk = mddev->new_chunk_sectors; 3776 disks = mddev->raid_disks; 3777 break; 3778 default: /* avoid 'may be unused' warnings */ 3779 case geo_start: /* new when starting reshape - raid_disks not 3780 * updated yet. */ 3781 layout = mddev->new_layout; 3782 chunk = mddev->new_chunk_sectors; 3783 disks = mddev->raid_disks + mddev->delta_disks; 3784 break; 3785 } 3786 if (layout >> 19) 3787 return -1; 3788 if (chunk < (PAGE_SIZE >> 9) || 3789 !is_power_of_2(chunk)) 3790 return -2; 3791 nc = layout & 255; 3792 fc = (layout >> 8) & 255; 3793 fo = layout & (1<<16); 3794 geo->raid_disks = disks; 3795 geo->near_copies = nc; 3796 geo->far_copies = fc; 3797 geo->far_offset = fo; 3798 switch (layout >> 17) { 3799 case 0: /* original layout. simple but not always optimal */ 3800 geo->far_set_size = disks; 3801 break; 3802 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3803 * actually using this, but leave code here just in case.*/ 3804 geo->far_set_size = disks/fc; 3805 WARN(geo->far_set_size < fc, 3806 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3807 break; 3808 case 2: /* "improved" layout fixed to match documentation */ 3809 geo->far_set_size = fc * nc; 3810 break; 3811 default: /* Not a valid layout */ 3812 return -1; 3813 } 3814 geo->chunk_mask = chunk - 1; 3815 geo->chunk_shift = ffz(~chunk); 3816 return nc*fc; 3817 } 3818 3819 static void raid10_free_conf(struct r10conf *conf) 3820 { 3821 if (!conf) 3822 return; 3823 3824 mempool_exit(&conf->r10bio_pool); 3825 kfree(conf->mirrors); 3826 kfree(conf->mirrors_old); 3827 kfree(conf->mirrors_new); 3828 safe_put_page(conf->tmppage); 3829 bioset_exit(&conf->bio_split); 3830 kfree(conf); 3831 } 3832 3833 static struct r10conf *setup_conf(struct mddev *mddev) 3834 { 3835 struct r10conf *conf = NULL; 3836 int err = -EINVAL; 3837 struct geom geo; 3838 int copies; 3839 3840 copies = setup_geo(&geo, mddev, geo_new); 3841 3842 if (copies == -2) { 3843 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3844 mdname(mddev), PAGE_SIZE); 3845 goto out; 3846 } 3847 3848 if (copies < 2 || copies > mddev->raid_disks) { 3849 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3850 mdname(mddev), mddev->new_layout); 3851 goto out; 3852 } 3853 3854 err = -ENOMEM; 3855 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3856 if (!conf) 3857 goto out; 3858 3859 /* FIXME calc properly */ 3860 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3861 sizeof(struct raid10_info), 3862 GFP_KERNEL); 3863 if (!conf->mirrors) 3864 goto out; 3865 3866 conf->tmppage = alloc_page(GFP_KERNEL); 3867 if (!conf->tmppage) 3868 goto out; 3869 3870 conf->geo = geo; 3871 conf->copies = copies; 3872 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3873 rbio_pool_free, conf); 3874 if (err) 3875 goto out; 3876 3877 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3878 if (err) 3879 goto out; 3880 3881 calc_sectors(conf, mddev->dev_sectors); 3882 if (mddev->reshape_position == MaxSector) { 3883 conf->prev = conf->geo; 3884 conf->reshape_progress = MaxSector; 3885 } else { 3886 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3887 err = -EINVAL; 3888 goto out; 3889 } 3890 conf->reshape_progress = mddev->reshape_position; 3891 if (conf->prev.far_offset) 3892 conf->prev.stride = 1 << conf->prev.chunk_shift; 3893 else 3894 /* far_copies must be 1 */ 3895 conf->prev.stride = conf->dev_sectors; 3896 } 3897 conf->reshape_safe = conf->reshape_progress; 3898 spin_lock_init(&conf->device_lock); 3899 INIT_LIST_HEAD(&conf->retry_list); 3900 INIT_LIST_HEAD(&conf->bio_end_io_list); 3901 3902 seqlock_init(&conf->resync_lock); 3903 init_waitqueue_head(&conf->wait_barrier); 3904 atomic_set(&conf->nr_pending, 0); 3905 3906 err = -ENOMEM; 3907 rcu_assign_pointer(conf->thread, 3908 md_register_thread(raid10d, mddev, "raid10")); 3909 if (!conf->thread) 3910 goto out; 3911 3912 conf->mddev = mddev; 3913 return conf; 3914 3915 out: 3916 raid10_free_conf(conf); 3917 return ERR_PTR(err); 3918 } 3919 3920 static unsigned int raid10_nr_stripes(struct r10conf *conf) 3921 { 3922 unsigned int raid_disks = conf->geo.raid_disks; 3923 3924 if (conf->geo.raid_disks % conf->geo.near_copies) 3925 return raid_disks; 3926 return raid_disks / conf->geo.near_copies; 3927 } 3928 3929 static int raid10_set_queue_limits(struct mddev *mddev) 3930 { 3931 struct r10conf *conf = mddev->private; 3932 struct queue_limits lim; 3933 int err; 3934 3935 md_init_stacking_limits(&lim); 3936 lim.max_write_zeroes_sectors = 0; 3937 lim.max_hw_wzeroes_unmap_sectors = 0; 3938 lim.logical_block_size = mddev->logical_block_size; 3939 lim.io_min = mddev->chunk_sectors << 9; 3940 lim.chunk_sectors = mddev->chunk_sectors; 3941 lim.io_opt = lim.io_min * raid10_nr_stripes(conf); 3942 lim.features |= BLK_FEAT_ATOMIC_WRITES; 3943 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 3944 if (err) 3945 return err; 3946 return queue_limits_set(mddev->gendisk->queue, &lim); 3947 } 3948 3949 static int raid10_run(struct mddev *mddev) 3950 { 3951 struct r10conf *conf; 3952 int i, disk_idx; 3953 struct raid10_info *disk; 3954 struct md_rdev *rdev; 3955 sector_t size; 3956 sector_t min_offset_diff = 0; 3957 int first = 1; 3958 int ret = -EIO; 3959 3960 if (mddev->private == NULL) { 3961 conf = setup_conf(mddev); 3962 if (IS_ERR(conf)) 3963 return PTR_ERR(conf); 3964 mddev->private = conf; 3965 } 3966 conf = mddev->private; 3967 if (!conf) 3968 goto out; 3969 3970 rcu_assign_pointer(mddev->thread, conf->thread); 3971 rcu_assign_pointer(conf->thread, NULL); 3972 3973 if (mddev_is_clustered(conf->mddev)) { 3974 int fc, fo; 3975 3976 fc = (mddev->layout >> 8) & 255; 3977 fo = mddev->layout & (1<<16); 3978 if (fc > 1 || fo > 0) { 3979 pr_err("only near layout is supported by clustered" 3980 " raid10\n"); 3981 goto out_free_conf; 3982 } 3983 } 3984 3985 rdev_for_each(rdev, mddev) { 3986 long long diff; 3987 3988 disk_idx = rdev->raid_disk; 3989 if (disk_idx < 0) 3990 continue; 3991 if (disk_idx >= conf->geo.raid_disks && 3992 disk_idx >= conf->prev.raid_disks) 3993 continue; 3994 disk = conf->mirrors + disk_idx; 3995 3996 if (test_bit(Replacement, &rdev->flags)) { 3997 if (disk->replacement) 3998 goto out_free_conf; 3999 disk->replacement = rdev; 4000 } else { 4001 if (disk->rdev) 4002 goto out_free_conf; 4003 disk->rdev = rdev; 4004 } 4005 diff = (rdev->new_data_offset - rdev->data_offset); 4006 if (!mddev->reshape_backwards) 4007 diff = -diff; 4008 if (diff < 0) 4009 diff = 0; 4010 if (first || diff < min_offset_diff) 4011 min_offset_diff = diff; 4012 4013 disk->head_position = 0; 4014 first = 0; 4015 } 4016 4017 if (!mddev_is_dm(conf->mddev)) { 4018 int err = raid10_set_queue_limits(mddev); 4019 4020 if (err) { 4021 ret = err; 4022 goto out_free_conf; 4023 } 4024 } 4025 4026 /* need to check that every block has at least one working mirror */ 4027 if (!enough(conf, -1)) { 4028 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4029 mdname(mddev)); 4030 goto out_free_conf; 4031 } 4032 4033 if (conf->reshape_progress != MaxSector) { 4034 /* must ensure that shape change is supported */ 4035 if (conf->geo.far_copies != 1 && 4036 conf->geo.far_offset == 0) 4037 goto out_free_conf; 4038 if (conf->prev.far_copies != 1 && 4039 conf->prev.far_offset == 0) 4040 goto out_free_conf; 4041 } 4042 4043 mddev->degraded = 0; 4044 for (i = 0; 4045 i < conf->geo.raid_disks 4046 || i < conf->prev.raid_disks; 4047 i++) { 4048 4049 disk = conf->mirrors + i; 4050 4051 if (!disk->rdev && disk->replacement) { 4052 /* The replacement is all we have - use it */ 4053 disk->rdev = disk->replacement; 4054 disk->replacement = NULL; 4055 clear_bit(Replacement, &disk->rdev->flags); 4056 } 4057 4058 if (!disk->rdev || 4059 !test_bit(In_sync, &disk->rdev->flags)) { 4060 disk->head_position = 0; 4061 mddev->degraded++; 4062 if (disk->rdev && 4063 disk->rdev->saved_raid_disk < 0) 4064 conf->fullsync = 1; 4065 } 4066 4067 if (disk->replacement && 4068 !test_bit(In_sync, &disk->replacement->flags) && 4069 disk->replacement->saved_raid_disk < 0) { 4070 conf->fullsync = 1; 4071 } 4072 } 4073 4074 if (mddev->resync_offset != MaxSector) 4075 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4076 mdname(mddev)); 4077 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4078 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4079 conf->geo.raid_disks); 4080 /* 4081 * Ok, everything is just fine now 4082 */ 4083 mddev->dev_sectors = conf->dev_sectors; 4084 size = raid10_size(mddev, 0, 0); 4085 md_set_array_sectors(mddev, size); 4086 mddev->resync_max_sectors = size; 4087 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4088 4089 if (md_integrity_register(mddev)) 4090 goto out_free_conf; 4091 4092 if (conf->reshape_progress != MaxSector) { 4093 unsigned long before_length, after_length; 4094 4095 before_length = ((1 << conf->prev.chunk_shift) * 4096 conf->prev.far_copies); 4097 after_length = ((1 << conf->geo.chunk_shift) * 4098 conf->geo.far_copies); 4099 4100 if (max(before_length, after_length) > min_offset_diff) { 4101 /* This cannot work */ 4102 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4103 goto out_free_conf; 4104 } 4105 conf->offset_diff = min_offset_diff; 4106 4107 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4108 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4109 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4110 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4111 } 4112 4113 return 0; 4114 4115 out_free_conf: 4116 md_unregister_thread(mddev, &mddev->thread); 4117 raid10_free_conf(conf); 4118 mddev->private = NULL; 4119 out: 4120 return ret; 4121 } 4122 4123 static void raid10_free(struct mddev *mddev, void *priv) 4124 { 4125 raid10_free_conf(priv); 4126 } 4127 4128 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4129 { 4130 struct r10conf *conf = mddev->private; 4131 4132 if (quiesce) 4133 raise_barrier(conf, 0); 4134 else 4135 lower_barrier(conf); 4136 } 4137 4138 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4139 { 4140 /* Resize of 'far' arrays is not supported. 4141 * For 'near' and 'offset' arrays we can set the 4142 * number of sectors used to be an appropriate multiple 4143 * of the chunk size. 4144 * For 'offset', this is far_copies*chunksize. 4145 * For 'near' the multiplier is the LCM of 4146 * near_copies and raid_disks. 4147 * So if far_copies > 1 && !far_offset, fail. 4148 * Else find LCM(raid_disks, near_copy)*far_copies and 4149 * multiply by chunk_size. Then round to this number. 4150 * This is mostly done by raid10_size() 4151 */ 4152 struct r10conf *conf = mddev->private; 4153 sector_t oldsize, size; 4154 4155 if (mddev->reshape_position != MaxSector) 4156 return -EBUSY; 4157 4158 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4159 return -EINVAL; 4160 4161 oldsize = raid10_size(mddev, 0, 0); 4162 size = raid10_size(mddev, sectors, 0); 4163 if (mddev->external_size && 4164 mddev->array_sectors > size) 4165 return -EINVAL; 4166 4167 if (md_bitmap_enabled(mddev, false)) { 4168 int ret = mddev->bitmap_ops->resize(mddev, size, 0); 4169 4170 if (ret) 4171 return ret; 4172 } 4173 4174 md_set_array_sectors(mddev, size); 4175 if (sectors > mddev->dev_sectors && 4176 mddev->resync_offset > oldsize) { 4177 mddev->resync_offset = oldsize; 4178 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4179 } 4180 calc_sectors(conf, sectors); 4181 mddev->dev_sectors = conf->dev_sectors; 4182 mddev->resync_max_sectors = size; 4183 return 0; 4184 } 4185 4186 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4187 { 4188 struct md_rdev *rdev; 4189 struct r10conf *conf; 4190 4191 if (mddev->degraded > 0) { 4192 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4193 mdname(mddev)); 4194 return ERR_PTR(-EINVAL); 4195 } 4196 sector_div(size, devs); 4197 4198 /* Set new parameters */ 4199 mddev->new_level = 10; 4200 /* new layout: far_copies = 1, near_copies = 2 */ 4201 mddev->new_layout = (1<<8) + 2; 4202 mddev->new_chunk_sectors = mddev->chunk_sectors; 4203 mddev->delta_disks = mddev->raid_disks; 4204 mddev->raid_disks *= 2; 4205 /* make sure it will be not marked as dirty */ 4206 mddev->resync_offset = MaxSector; 4207 mddev->dev_sectors = size; 4208 4209 conf = setup_conf(mddev); 4210 if (!IS_ERR(conf)) { 4211 rdev_for_each(rdev, mddev) 4212 if (rdev->raid_disk >= 0) { 4213 rdev->new_raid_disk = rdev->raid_disk * 2; 4214 rdev->sectors = size; 4215 } 4216 } 4217 4218 return conf; 4219 } 4220 4221 static void *raid10_takeover(struct mddev *mddev) 4222 { 4223 struct r0conf *raid0_conf; 4224 4225 /* raid10 can take over: 4226 * raid0 - providing it has only two drives 4227 */ 4228 if (mddev->level == 0) { 4229 /* for raid0 takeover only one zone is supported */ 4230 raid0_conf = mddev->private; 4231 if (raid0_conf->nr_strip_zones > 1) { 4232 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4233 mdname(mddev)); 4234 return ERR_PTR(-EINVAL); 4235 } 4236 return raid10_takeover_raid0(mddev, 4237 raid0_conf->strip_zone->zone_end, 4238 raid0_conf->strip_zone->nb_dev); 4239 } 4240 return ERR_PTR(-EINVAL); 4241 } 4242 4243 static int raid10_check_reshape(struct mddev *mddev) 4244 { 4245 /* Called when there is a request to change 4246 * - layout (to ->new_layout) 4247 * - chunk size (to ->new_chunk_sectors) 4248 * - raid_disks (by delta_disks) 4249 * or when trying to restart a reshape that was ongoing. 4250 * 4251 * We need to validate the request and possibly allocate 4252 * space if that might be an issue later. 4253 * 4254 * Currently we reject any reshape of a 'far' mode array, 4255 * allow chunk size to change if new is generally acceptable, 4256 * allow raid_disks to increase, and allow 4257 * a switch between 'near' mode and 'offset' mode. 4258 */ 4259 struct r10conf *conf = mddev->private; 4260 struct geom geo; 4261 4262 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4263 return -EINVAL; 4264 4265 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4266 /* mustn't change number of copies */ 4267 return -EINVAL; 4268 if (geo.far_copies > 1 && !geo.far_offset) 4269 /* Cannot switch to 'far' mode */ 4270 return -EINVAL; 4271 4272 if (mddev->array_sectors & geo.chunk_mask) 4273 /* not factor of array size */ 4274 return -EINVAL; 4275 4276 if (!enough(conf, -1)) 4277 return -EINVAL; 4278 4279 kfree(conf->mirrors_new); 4280 conf->mirrors_new = NULL; 4281 if (mddev->delta_disks > 0) { 4282 /* allocate new 'mirrors' list */ 4283 conf->mirrors_new = 4284 kcalloc(mddev->raid_disks + mddev->delta_disks, 4285 sizeof(struct raid10_info), 4286 GFP_KERNEL); 4287 if (!conf->mirrors_new) 4288 return -ENOMEM; 4289 } 4290 return 0; 4291 } 4292 4293 /* 4294 * Need to check if array has failed when deciding whether to: 4295 * - start an array 4296 * - remove non-faulty devices 4297 * - add a spare 4298 * - allow a reshape 4299 * This determination is simple when no reshape is happening. 4300 * However if there is a reshape, we need to carefully check 4301 * both the before and after sections. 4302 * This is because some failed devices may only affect one 4303 * of the two sections, and some non-in_sync devices may 4304 * be insync in the section most affected by failed devices. 4305 */ 4306 static int calc_degraded(struct r10conf *conf) 4307 { 4308 int degraded, degraded2; 4309 int i; 4310 4311 degraded = 0; 4312 /* 'prev' section first */ 4313 for (i = 0; i < conf->prev.raid_disks; i++) { 4314 struct md_rdev *rdev = conf->mirrors[i].rdev; 4315 4316 if (!rdev || test_bit(Faulty, &rdev->flags)) 4317 degraded++; 4318 else if (!test_bit(In_sync, &rdev->flags)) 4319 /* When we can reduce the number of devices in 4320 * an array, this might not contribute to 4321 * 'degraded'. It does now. 4322 */ 4323 degraded++; 4324 } 4325 if (conf->geo.raid_disks == conf->prev.raid_disks) 4326 return degraded; 4327 degraded2 = 0; 4328 for (i = 0; i < conf->geo.raid_disks; i++) { 4329 struct md_rdev *rdev = conf->mirrors[i].rdev; 4330 4331 if (!rdev || test_bit(Faulty, &rdev->flags)) 4332 degraded2++; 4333 else if (!test_bit(In_sync, &rdev->flags)) { 4334 /* If reshape is increasing the number of devices, 4335 * this section has already been recovered, so 4336 * it doesn't contribute to degraded. 4337 * else it does. 4338 */ 4339 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4340 degraded2++; 4341 } 4342 } 4343 if (degraded2 > degraded) 4344 return degraded2; 4345 return degraded; 4346 } 4347 4348 static int raid10_start_reshape(struct mddev *mddev) 4349 { 4350 /* A 'reshape' has been requested. This commits 4351 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4352 * This also checks if there are enough spares and adds them 4353 * to the array. 4354 * We currently require enough spares to make the final 4355 * array non-degraded. We also require that the difference 4356 * between old and new data_offset - on each device - is 4357 * enough that we never risk over-writing. 4358 */ 4359 4360 unsigned long before_length, after_length; 4361 sector_t min_offset_diff = 0; 4362 int first = 1; 4363 struct geom new; 4364 struct r10conf *conf = mddev->private; 4365 struct md_rdev *rdev; 4366 int spares = 0; 4367 int ret; 4368 4369 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4370 return -EBUSY; 4371 4372 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4373 return -EINVAL; 4374 4375 before_length = ((1 << conf->prev.chunk_shift) * 4376 conf->prev.far_copies); 4377 after_length = ((1 << conf->geo.chunk_shift) * 4378 conf->geo.far_copies); 4379 4380 rdev_for_each(rdev, mddev) { 4381 if (!test_bit(In_sync, &rdev->flags) 4382 && !test_bit(Faulty, &rdev->flags)) 4383 spares++; 4384 if (rdev->raid_disk >= 0) { 4385 long long diff = (rdev->new_data_offset 4386 - rdev->data_offset); 4387 if (!mddev->reshape_backwards) 4388 diff = -diff; 4389 if (diff < 0) 4390 diff = 0; 4391 if (first || diff < min_offset_diff) 4392 min_offset_diff = diff; 4393 first = 0; 4394 } 4395 } 4396 4397 if (max(before_length, after_length) > min_offset_diff) 4398 return -EINVAL; 4399 4400 if (spares < mddev->delta_disks) 4401 return -EINVAL; 4402 4403 conf->offset_diff = min_offset_diff; 4404 spin_lock_irq(&conf->device_lock); 4405 if (conf->mirrors_new) { 4406 memcpy(conf->mirrors_new, conf->mirrors, 4407 sizeof(struct raid10_info)*conf->prev.raid_disks); 4408 smp_mb(); 4409 kfree(conf->mirrors_old); 4410 conf->mirrors_old = conf->mirrors; 4411 conf->mirrors = conf->mirrors_new; 4412 conf->mirrors_new = NULL; 4413 } 4414 setup_geo(&conf->geo, mddev, geo_start); 4415 smp_mb(); 4416 if (mddev->reshape_backwards) { 4417 sector_t size = raid10_size(mddev, 0, 0); 4418 if (size < mddev->array_sectors) { 4419 spin_unlock_irq(&conf->device_lock); 4420 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4421 mdname(mddev)); 4422 return -EINVAL; 4423 } 4424 mddev->resync_max_sectors = size; 4425 conf->reshape_progress = size; 4426 } else 4427 conf->reshape_progress = 0; 4428 conf->reshape_safe = conf->reshape_progress; 4429 spin_unlock_irq(&conf->device_lock); 4430 4431 if (mddev->delta_disks && mddev->bitmap) { 4432 struct mdp_superblock_1 *sb = NULL; 4433 sector_t oldsize, newsize; 4434 4435 oldsize = raid10_size(mddev, 0, 0); 4436 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4437 4438 if (!mddev_is_clustered(mddev) && 4439 md_bitmap_enabled(mddev, false)) { 4440 ret = mddev->bitmap_ops->resize(mddev, newsize, 0); 4441 if (ret) 4442 goto abort; 4443 else 4444 goto out; 4445 } 4446 4447 rdev_for_each(rdev, mddev) { 4448 if (rdev->raid_disk > -1 && 4449 !test_bit(Faulty, &rdev->flags)) 4450 sb = page_address(rdev->sb_page); 4451 } 4452 4453 /* 4454 * some node is already performing reshape, and no need to 4455 * call bitmap_ops->resize again since it should be called when 4456 * receiving BITMAP_RESIZE msg 4457 */ 4458 if ((sb && (le32_to_cpu(sb->feature_map) & 4459 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4460 goto out; 4461 4462 /* cluster can't be setup without bitmap */ 4463 ret = mddev->bitmap_ops->resize(mddev, newsize, 0); 4464 if (ret) 4465 goto abort; 4466 4467 ret = mddev->cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4468 if (ret) { 4469 mddev->bitmap_ops->resize(mddev, oldsize, 0); 4470 goto abort; 4471 } 4472 } 4473 out: 4474 if (mddev->delta_disks > 0) { 4475 rdev_for_each(rdev, mddev) 4476 if (rdev->raid_disk < 0 && 4477 !test_bit(Faulty, &rdev->flags)) { 4478 if (raid10_add_disk(mddev, rdev) == 0) { 4479 if (rdev->raid_disk >= 4480 conf->prev.raid_disks) 4481 set_bit(In_sync, &rdev->flags); 4482 else 4483 rdev->recovery_offset = 0; 4484 4485 /* Failure here is OK */ 4486 sysfs_link_rdev(mddev, rdev); 4487 } 4488 } else if (rdev->raid_disk >= conf->prev.raid_disks 4489 && !test_bit(Faulty, &rdev->flags)) { 4490 /* This is a spare that was manually added */ 4491 set_bit(In_sync, &rdev->flags); 4492 } 4493 } 4494 /* When a reshape changes the number of devices, 4495 * ->degraded is measured against the larger of the 4496 * pre and post numbers. 4497 */ 4498 spin_lock_irq(&conf->device_lock); 4499 mddev->degraded = calc_degraded(conf); 4500 spin_unlock_irq(&conf->device_lock); 4501 mddev->raid_disks = conf->geo.raid_disks; 4502 mddev->reshape_position = conf->reshape_progress; 4503 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4504 4505 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4506 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4507 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4508 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4509 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4510 conf->reshape_checkpoint = jiffies; 4511 md_new_event(); 4512 return 0; 4513 4514 abort: 4515 mddev->recovery = 0; 4516 spin_lock_irq(&conf->device_lock); 4517 conf->geo = conf->prev; 4518 mddev->raid_disks = conf->geo.raid_disks; 4519 rdev_for_each(rdev, mddev) 4520 rdev->new_data_offset = rdev->data_offset; 4521 smp_wmb(); 4522 conf->reshape_progress = MaxSector; 4523 conf->reshape_safe = MaxSector; 4524 mddev->reshape_position = MaxSector; 4525 spin_unlock_irq(&conf->device_lock); 4526 return ret; 4527 } 4528 4529 /* Calculate the last device-address that could contain 4530 * any block from the chunk that includes the array-address 's' 4531 * and report the next address. 4532 * i.e. the address returned will be chunk-aligned and after 4533 * any data that is in the chunk containing 's'. 4534 */ 4535 static sector_t last_dev_address(sector_t s, struct geom *geo) 4536 { 4537 s = (s | geo->chunk_mask) + 1; 4538 s >>= geo->chunk_shift; 4539 s *= geo->near_copies; 4540 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4541 s *= geo->far_copies; 4542 s <<= geo->chunk_shift; 4543 return s; 4544 } 4545 4546 /* Calculate the first device-address that could contain 4547 * any block from the chunk that includes the array-address 's'. 4548 * This too will be the start of a chunk 4549 */ 4550 static sector_t first_dev_address(sector_t s, struct geom *geo) 4551 { 4552 s >>= geo->chunk_shift; 4553 s *= geo->near_copies; 4554 sector_div(s, geo->raid_disks); 4555 s *= geo->far_copies; 4556 s <<= geo->chunk_shift; 4557 return s; 4558 } 4559 4560 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4561 int *skipped) 4562 { 4563 /* We simply copy at most one chunk (smallest of old and new) 4564 * at a time, possibly less if that exceeds RESYNC_PAGES, 4565 * or we hit a bad block or something. 4566 * This might mean we pause for normal IO in the middle of 4567 * a chunk, but that is not a problem as mddev->reshape_position 4568 * can record any location. 4569 * 4570 * If we will want to write to a location that isn't 4571 * yet recorded as 'safe' (i.e. in metadata on disk) then 4572 * we need to flush all reshape requests and update the metadata. 4573 * 4574 * When reshaping forwards (e.g. to more devices), we interpret 4575 * 'safe' as the earliest block which might not have been copied 4576 * down yet. We divide this by previous stripe size and multiply 4577 * by previous stripe length to get lowest device offset that we 4578 * cannot write to yet. 4579 * We interpret 'sector_nr' as an address that we want to write to. 4580 * From this we use last_device_address() to find where we might 4581 * write to, and first_device_address on the 'safe' position. 4582 * If this 'next' write position is after the 'safe' position, 4583 * we must update the metadata to increase the 'safe' position. 4584 * 4585 * When reshaping backwards, we round in the opposite direction 4586 * and perform the reverse test: next write position must not be 4587 * less than current safe position. 4588 * 4589 * In all this the minimum difference in data offsets 4590 * (conf->offset_diff - always positive) allows a bit of slack, 4591 * so next can be after 'safe', but not by more than offset_diff 4592 * 4593 * We need to prepare all the bios here before we start any IO 4594 * to ensure the size we choose is acceptable to all devices. 4595 * The means one for each copy for write-out and an extra one for 4596 * read-in. 4597 * We store the read-in bio in ->master_bio and the others in 4598 * ->devs[x].bio and ->devs[x].repl_bio. 4599 */ 4600 struct r10conf *conf = mddev->private; 4601 struct r10bio *r10_bio; 4602 sector_t next, safe, last; 4603 int max_sectors; 4604 int nr_sectors; 4605 int s; 4606 struct md_rdev *rdev; 4607 int need_flush = 0; 4608 struct bio *blist; 4609 struct bio *bio, *read_bio; 4610 int sectors_done = 0; 4611 struct page **pages; 4612 4613 if (sector_nr == 0) { 4614 /* If restarting in the middle, skip the initial sectors */ 4615 if (mddev->reshape_backwards && 4616 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4617 sector_nr = (raid10_size(mddev, 0, 0) 4618 - conf->reshape_progress); 4619 } else if (!mddev->reshape_backwards && 4620 conf->reshape_progress > 0) 4621 sector_nr = conf->reshape_progress; 4622 if (sector_nr) { 4623 mddev->curr_resync_completed = sector_nr; 4624 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4625 *skipped = 1; 4626 return sector_nr; 4627 } 4628 } 4629 4630 /* We don't use sector_nr to track where we are up to 4631 * as that doesn't work well for ->reshape_backwards. 4632 * So just use ->reshape_progress. 4633 */ 4634 if (mddev->reshape_backwards) { 4635 /* 'next' is the earliest device address that we might 4636 * write to for this chunk in the new layout 4637 */ 4638 next = first_dev_address(conf->reshape_progress - 1, 4639 &conf->geo); 4640 4641 /* 'safe' is the last device address that we might read from 4642 * in the old layout after a restart 4643 */ 4644 safe = last_dev_address(conf->reshape_safe - 1, 4645 &conf->prev); 4646 4647 if (next + conf->offset_diff < safe) 4648 need_flush = 1; 4649 4650 last = conf->reshape_progress - 1; 4651 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4652 & conf->prev.chunk_mask); 4653 if (sector_nr + RESYNC_SECTORS < last) 4654 sector_nr = last + 1 - RESYNC_SECTORS; 4655 } else { 4656 /* 'next' is after the last device address that we 4657 * might write to for this chunk in the new layout 4658 */ 4659 next = last_dev_address(conf->reshape_progress, &conf->geo); 4660 4661 /* 'safe' is the earliest device address that we might 4662 * read from in the old layout after a restart 4663 */ 4664 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4665 4666 /* Need to update metadata if 'next' might be beyond 'safe' 4667 * as that would possibly corrupt data 4668 */ 4669 if (next > safe + conf->offset_diff) 4670 need_flush = 1; 4671 4672 sector_nr = conf->reshape_progress; 4673 last = sector_nr | (conf->geo.chunk_mask 4674 & conf->prev.chunk_mask); 4675 4676 if (sector_nr + RESYNC_SECTORS <= last) 4677 last = sector_nr + RESYNC_SECTORS - 1; 4678 } 4679 4680 if (need_flush || 4681 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4682 /* Need to update reshape_position in metadata */ 4683 wait_barrier(conf, false); 4684 mddev->reshape_position = conf->reshape_progress; 4685 if (mddev->reshape_backwards) 4686 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4687 - conf->reshape_progress; 4688 else 4689 mddev->curr_resync_completed = conf->reshape_progress; 4690 conf->reshape_checkpoint = jiffies; 4691 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4692 md_wakeup_thread(mddev->thread); 4693 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4694 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4695 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4696 allow_barrier(conf); 4697 return sectors_done; 4698 } 4699 conf->reshape_safe = mddev->reshape_position; 4700 allow_barrier(conf); 4701 } 4702 4703 raise_barrier(conf, 0); 4704 read_more: 4705 /* Now schedule reads for blocks from sector_nr to last */ 4706 r10_bio = raid10_alloc_init_r10buf(conf); 4707 r10_bio->state = 0; 4708 raise_barrier(conf, 1); 4709 atomic_set(&r10_bio->remaining, 0); 4710 r10_bio->mddev = mddev; 4711 r10_bio->sector = sector_nr; 4712 set_bit(R10BIO_IsReshape, &r10_bio->state); 4713 r10_bio->sectors = last - sector_nr + 1; 4714 rdev = read_balance(conf, r10_bio, &max_sectors); 4715 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4716 4717 if (!rdev) { 4718 /* Cannot read from here, so need to record bad blocks 4719 * on all the target devices. 4720 */ 4721 // FIXME 4722 mempool_free(r10_bio, &conf->r10buf_pool); 4723 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4724 return sectors_done; 4725 } 4726 4727 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4728 GFP_KERNEL, &mddev->bio_set); 4729 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4730 + rdev->data_offset); 4731 read_bio->bi_private = r10_bio; 4732 read_bio->bi_end_io = end_reshape_read; 4733 r10_bio->master_bio = read_bio; 4734 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4735 4736 /* 4737 * Broadcast RESYNC message to other nodes, so all nodes would not 4738 * write to the region to avoid conflict. 4739 */ 4740 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4741 struct mdp_superblock_1 *sb = NULL; 4742 int sb_reshape_pos = 0; 4743 4744 conf->cluster_sync_low = sector_nr; 4745 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4746 sb = page_address(rdev->sb_page); 4747 if (sb) { 4748 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4749 /* 4750 * Set cluster_sync_low again if next address for array 4751 * reshape is less than cluster_sync_low. Since we can't 4752 * update cluster_sync_low until it has finished reshape. 4753 */ 4754 if (sb_reshape_pos < conf->cluster_sync_low) 4755 conf->cluster_sync_low = sb_reshape_pos; 4756 } 4757 4758 mddev->cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4759 conf->cluster_sync_high); 4760 } 4761 4762 /* Now find the locations in the new layout */ 4763 __raid10_find_phys(&conf->geo, r10_bio); 4764 4765 blist = read_bio; 4766 read_bio->bi_next = NULL; 4767 4768 for (s = 0; s < conf->copies*2; s++) { 4769 struct bio *b; 4770 int d = r10_bio->devs[s/2].devnum; 4771 struct md_rdev *rdev2; 4772 if (s&1) { 4773 rdev2 = conf->mirrors[d].replacement; 4774 b = r10_bio->devs[s/2].repl_bio; 4775 } else { 4776 rdev2 = conf->mirrors[d].rdev; 4777 b = r10_bio->devs[s/2].bio; 4778 } 4779 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4780 continue; 4781 4782 bio_set_dev(b, rdev2->bdev); 4783 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4784 rdev2->new_data_offset; 4785 b->bi_end_io = end_reshape_write; 4786 b->bi_opf = REQ_OP_WRITE; 4787 b->bi_next = blist; 4788 blist = b; 4789 } 4790 4791 /* Now add as many pages as possible to all of these bios. */ 4792 4793 nr_sectors = 0; 4794 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4795 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4796 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4797 int len = (max_sectors - s) << 9; 4798 if (len > PAGE_SIZE) 4799 len = PAGE_SIZE; 4800 for (bio = blist; bio ; bio = bio->bi_next) { 4801 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 4802 bio->bi_status = BLK_STS_RESOURCE; 4803 bio_endio(bio); 4804 return sectors_done; 4805 } 4806 } 4807 sector_nr += len >> 9; 4808 nr_sectors += len >> 9; 4809 } 4810 r10_bio->sectors = nr_sectors; 4811 4812 /* Now submit the read */ 4813 atomic_inc(&r10_bio->remaining); 4814 read_bio->bi_next = NULL; 4815 submit_bio_noacct(read_bio); 4816 sectors_done += nr_sectors; 4817 if (sector_nr <= last) 4818 goto read_more; 4819 4820 lower_barrier(conf); 4821 4822 /* Now that we have done the whole section we can 4823 * update reshape_progress 4824 */ 4825 if (mddev->reshape_backwards) 4826 conf->reshape_progress -= sectors_done; 4827 else 4828 conf->reshape_progress += sectors_done; 4829 4830 return sectors_done; 4831 } 4832 4833 static void end_reshape_request(struct r10bio *r10_bio); 4834 static int handle_reshape_read_error(struct mddev *mddev, 4835 struct r10bio *r10_bio); 4836 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4837 { 4838 /* Reshape read completed. Hopefully we have a block 4839 * to write out. 4840 * If we got a read error then we do sync 1-page reads from 4841 * elsewhere until we find the data - or give up. 4842 */ 4843 struct r10conf *conf = mddev->private; 4844 int s; 4845 4846 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4847 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4848 /* Reshape has been aborted */ 4849 md_done_sync(mddev, r10_bio->sectors); 4850 md_sync_error(mddev); 4851 return; 4852 } 4853 4854 /* We definitely have the data in the pages, schedule the 4855 * writes. 4856 */ 4857 atomic_set(&r10_bio->remaining, 1); 4858 for (s = 0; s < conf->copies*2; s++) { 4859 struct bio *b; 4860 int d = r10_bio->devs[s/2].devnum; 4861 struct md_rdev *rdev; 4862 if (s&1) { 4863 rdev = conf->mirrors[d].replacement; 4864 b = r10_bio->devs[s/2].repl_bio; 4865 } else { 4866 rdev = conf->mirrors[d].rdev; 4867 b = r10_bio->devs[s/2].bio; 4868 } 4869 if (!rdev || test_bit(Faulty, &rdev->flags)) 4870 continue; 4871 4872 atomic_inc(&rdev->nr_pending); 4873 atomic_inc(&r10_bio->remaining); 4874 b->bi_next = NULL; 4875 submit_bio_noacct(b); 4876 } 4877 end_reshape_request(r10_bio); 4878 } 4879 4880 static void end_reshape(struct r10conf *conf) 4881 { 4882 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4883 return; 4884 4885 spin_lock_irq(&conf->device_lock); 4886 conf->prev = conf->geo; 4887 md_finish_reshape(conf->mddev); 4888 smp_wmb(); 4889 conf->reshape_progress = MaxSector; 4890 conf->reshape_safe = MaxSector; 4891 spin_unlock_irq(&conf->device_lock); 4892 4893 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf)); 4894 conf->fullsync = 0; 4895 } 4896 4897 static void raid10_update_reshape_pos(struct mddev *mddev) 4898 { 4899 struct r10conf *conf = mddev->private; 4900 sector_t lo, hi; 4901 4902 mddev->cluster_ops->resync_info_get(mddev, &lo, &hi); 4903 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4904 || mddev->reshape_position == MaxSector) 4905 conf->reshape_progress = mddev->reshape_position; 4906 else 4907 WARN_ON_ONCE(1); 4908 } 4909 4910 static int handle_reshape_read_error(struct mddev *mddev, 4911 struct r10bio *r10_bio) 4912 { 4913 /* Use sync reads to get the blocks from somewhere else */ 4914 int sectors = r10_bio->sectors; 4915 struct r10conf *conf = mddev->private; 4916 struct r10bio *r10b; 4917 int slot = 0; 4918 int idx = 0; 4919 struct page **pages; 4920 4921 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4922 if (!r10b) { 4923 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4924 return -ENOMEM; 4925 } 4926 4927 /* reshape IOs share pages from .devs[0].bio */ 4928 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4929 4930 r10b->sector = r10_bio->sector; 4931 __raid10_find_phys(&conf->prev, r10b); 4932 4933 while (sectors) { 4934 int s = sectors; 4935 int success = 0; 4936 int first_slot = slot; 4937 4938 if (s > (PAGE_SIZE >> 9)) 4939 s = PAGE_SIZE >> 9; 4940 4941 while (!success) { 4942 int d = r10b->devs[slot].devnum; 4943 struct md_rdev *rdev = conf->mirrors[d].rdev; 4944 sector_t addr; 4945 if (rdev == NULL || 4946 test_bit(Faulty, &rdev->flags) || 4947 !test_bit(In_sync, &rdev->flags)) 4948 goto failed; 4949 4950 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4951 atomic_inc(&rdev->nr_pending); 4952 success = sync_page_io(rdev, 4953 addr, 4954 s << 9, 4955 pages[idx], 4956 REQ_OP_READ, false); 4957 rdev_dec_pending(rdev, mddev); 4958 if (success) 4959 break; 4960 failed: 4961 slot++; 4962 if (slot >= conf->copies) 4963 slot = 0; 4964 if (slot == first_slot) 4965 break; 4966 } 4967 if (!success) { 4968 /* couldn't read this block, must give up */ 4969 set_bit(MD_RECOVERY_INTR, 4970 &mddev->recovery); 4971 kfree(r10b); 4972 return -EIO; 4973 } 4974 sectors -= s; 4975 idx++; 4976 } 4977 kfree(r10b); 4978 return 0; 4979 } 4980 4981 static void end_reshape_write(struct bio *bio) 4982 { 4983 struct r10bio *r10_bio = get_resync_r10bio(bio); 4984 struct mddev *mddev = r10_bio->mddev; 4985 struct r10conf *conf = mddev->private; 4986 int d; 4987 int slot; 4988 int repl; 4989 struct md_rdev *rdev = NULL; 4990 4991 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4992 rdev = repl ? conf->mirrors[d].replacement : 4993 conf->mirrors[d].rdev; 4994 4995 if (bio->bi_status) { 4996 /* FIXME should record badblock */ 4997 md_error(mddev, rdev); 4998 } 4999 5000 rdev_dec_pending(rdev, mddev); 5001 end_reshape_request(r10_bio); 5002 } 5003 5004 static void end_reshape_request(struct r10bio *r10_bio) 5005 { 5006 if (!atomic_dec_and_test(&r10_bio->remaining)) 5007 return; 5008 md_done_sync(r10_bio->mddev, r10_bio->sectors); 5009 bio_put(r10_bio->master_bio); 5010 put_buf(r10_bio); 5011 } 5012 5013 static void raid10_finish_reshape(struct mddev *mddev) 5014 { 5015 struct r10conf *conf = mddev->private; 5016 5017 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5018 return; 5019 5020 if (mddev->delta_disks > 0) { 5021 if (mddev->resync_offset > mddev->resync_max_sectors) { 5022 mddev->resync_offset = mddev->resync_max_sectors; 5023 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5024 } 5025 mddev->resync_max_sectors = mddev->array_sectors; 5026 } else { 5027 int d; 5028 for (d = conf->geo.raid_disks ; 5029 d < conf->geo.raid_disks - mddev->delta_disks; 5030 d++) { 5031 struct md_rdev *rdev = conf->mirrors[d].rdev; 5032 if (rdev) 5033 clear_bit(In_sync, &rdev->flags); 5034 rdev = conf->mirrors[d].replacement; 5035 if (rdev) 5036 clear_bit(In_sync, &rdev->flags); 5037 } 5038 } 5039 mddev->layout = mddev->new_layout; 5040 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5041 mddev->reshape_position = MaxSector; 5042 mddev->delta_disks = 0; 5043 mddev->reshape_backwards = 0; 5044 } 5045 5046 static struct md_personality raid10_personality = 5047 { 5048 .head = { 5049 .type = MD_PERSONALITY, 5050 .id = ID_RAID10, 5051 .name = "raid10", 5052 .owner = THIS_MODULE, 5053 }, 5054 5055 .make_request = raid10_make_request, 5056 .run = raid10_run, 5057 .free = raid10_free, 5058 .status = raid10_status, 5059 .error_handler = raid10_error, 5060 .hot_add_disk = raid10_add_disk, 5061 .hot_remove_disk= raid10_remove_disk, 5062 .spare_active = raid10_spare_active, 5063 .sync_request = raid10_sync_request, 5064 .quiesce = raid10_quiesce, 5065 .size = raid10_size, 5066 .resize = raid10_resize, 5067 .takeover = raid10_takeover, 5068 .check_reshape = raid10_check_reshape, 5069 .start_reshape = raid10_start_reshape, 5070 .finish_reshape = raid10_finish_reshape, 5071 .update_reshape_pos = raid10_update_reshape_pos, 5072 }; 5073 5074 static int __init raid10_init(void) 5075 { 5076 return register_md_submodule(&raid10_personality.head); 5077 } 5078 5079 static void __exit raid10_exit(void) 5080 { 5081 unregister_md_submodule(&raid10_personality.head); 5082 } 5083 5084 module_init(raid10_init); 5085 module_exit(raid10_exit); 5086 MODULE_LICENSE("GPL"); 5087 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5088 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5089 MODULE_ALIAS("md-raid10"); 5090 MODULE_ALIAS("md-level-10"); 5091