xref: /linux/drivers/md/raid10.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27 #include "md-cluster.h"
28 
29 /*
30  * RAID10 provides a combination of RAID0 and RAID1 functionality.
31  * The layout of data is defined by
32  *    chunk_size
33  *    raid_disks
34  *    near_copies (stored in low byte of layout)
35  *    far_copies (stored in second byte of layout)
36  *    far_offset (stored in bit 16 of layout )
37  *    use_far_sets (stored in bit 17 of layout )
38  *    use_far_sets_bugfixed (stored in bit 18 of layout )
39  *
40  * The data to be stored is divided into chunks using chunksize.  Each device
41  * is divided into far_copies sections.   In each section, chunks are laid out
42  * in a style similar to raid0, but near_copies copies of each chunk is stored
43  * (each on a different drive).  The starting device for each section is offset
44  * near_copies from the starting device of the previous section.  Thus there
45  * are (near_copies * far_copies) of each chunk, and each is on a different
46  * drive.  near_copies and far_copies must be at least one, and their product
47  * is at most raid_disks.
48  *
49  * If far_offset is true, then the far_copies are handled a bit differently.
50  * The copies are still in different stripes, but instead of being very far
51  * apart on disk, there are adjacent stripes.
52  *
53  * The far and offset algorithms are handled slightly differently if
54  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
55  * sets that are (near_copies * far_copies) in size.  The far copied stripes
56  * are still shifted by 'near_copies' devices, but this shifting stays confined
57  * to the set rather than the entire array.  This is done to improve the number
58  * of device combinations that can fail without causing the array to fail.
59  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
60  * on a device):
61  *    A B C D    A B C D E
62  *      ...         ...
63  *    D A B C    E A B C D
64  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
65  *    [A B] [C D]    [A B] [C D E]
66  *    |...| |...|    |...| | ... |
67  *    [B A] [D C]    [B A] [E C D]
68  */
69 
70 static void allow_barrier(struct r10conf *conf);
71 static void lower_barrier(struct r10conf *conf);
72 static int _enough(struct r10conf *conf, int previous, int ignore);
73 static int enough(struct r10conf *conf, int ignore);
74 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
75 				int *skipped);
76 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
77 static void end_reshape_write(struct bio *bio);
78 static void end_reshape(struct r10conf *conf);
79 
80 #include "raid1-10.c"
81 
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84 	do { \
85 		write_sequnlock_irq(&(conf)->resync_lock); \
86 		cmd; \
87 	} while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89 
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91 	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92 		       cmd_after(conf))
93 
94 #define wait_event_barrier(conf, cond) \
95 	wait_event_barrier_cmd(conf, cond, NULL_CMD)
96 
97 /*
98  * for resync bio, r10bio pointer can be retrieved from the per-bio
99  * 'struct resync_pages'.
100  */
101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103 	return get_resync_pages(bio)->raid_bio;
104 }
105 
106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108 	struct r10conf *conf = data;
109 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110 
111 	/* allocate a r10bio with room for raid_disks entries in the
112 	 * bios array */
113 	return kzalloc(size, gfp_flags);
114 }
115 
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123 
124 /*
125  * When performing a resync, we need to read and compare, so
126  * we need as many pages are there are copies.
127  * When performing a recovery, we need 2 bios, one for read,
128  * one for write (we recover only one drive per r10buf)
129  *
130  */
131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 	struct r10conf *conf = data;
134 	struct r10bio *r10_bio;
135 	struct bio *bio;
136 	int j;
137 	int nalloc, nalloc_rp;
138 	struct resync_pages *rps;
139 
140 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141 	if (!r10_bio)
142 		return NULL;
143 
144 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146 		nalloc = conf->copies; /* resync */
147 	else
148 		nalloc = 2; /* recovery */
149 
150 	/* allocate once for all bios */
151 	if (!conf->have_replacement)
152 		nalloc_rp = nalloc;
153 	else
154 		nalloc_rp = nalloc * 2;
155 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156 	if (!rps)
157 		goto out_free_r10bio;
158 
159 	/*
160 	 * Allocate bios.
161 	 */
162 	for (j = nalloc ; j-- ; ) {
163 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164 		if (!bio)
165 			goto out_free_bio;
166 		bio_init_inline(bio, NULL, RESYNC_PAGES, 0);
167 		r10_bio->devs[j].bio = bio;
168 		if (!conf->have_replacement)
169 			continue;
170 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171 		if (!bio)
172 			goto out_free_bio;
173 		bio_init_inline(bio, NULL, RESYNC_PAGES, 0);
174 		r10_bio->devs[j].repl_bio = bio;
175 	}
176 	/*
177 	 * Allocate RESYNC_PAGES data pages and attach them
178 	 * where needed.
179 	 */
180 	for (j = 0; j < nalloc; j++) {
181 		struct bio *rbio = r10_bio->devs[j].repl_bio;
182 		struct resync_pages *rp, *rp_repl;
183 
184 		rp = &rps[j];
185 		if (rbio)
186 			rp_repl = &rps[nalloc + j];
187 
188 		bio = r10_bio->devs[j].bio;
189 
190 		if (!j || test_bit(MD_RECOVERY_SYNC,
191 				   &conf->mddev->recovery)) {
192 			if (resync_alloc_pages(rp, gfp_flags))
193 				goto out_free_pages;
194 		} else {
195 			memcpy(rp, &rps[0], sizeof(*rp));
196 			resync_get_all_pages(rp);
197 		}
198 
199 		rp->raid_bio = r10_bio;
200 		bio->bi_private = rp;
201 		if (rbio) {
202 			memcpy(rp_repl, rp, sizeof(*rp));
203 			rbio->bi_private = rp_repl;
204 		}
205 	}
206 
207 	return r10_bio;
208 
209 out_free_pages:
210 	while (--j >= 0)
211 		resync_free_pages(&rps[j]);
212 
213 	j = 0;
214 out_free_bio:
215 	for ( ; j < nalloc; j++) {
216 		if (r10_bio->devs[j].bio)
217 			bio_uninit(r10_bio->devs[j].bio);
218 		kfree(r10_bio->devs[j].bio);
219 		if (r10_bio->devs[j].repl_bio)
220 			bio_uninit(r10_bio->devs[j].repl_bio);
221 		kfree(r10_bio->devs[j].repl_bio);
222 	}
223 	kfree(rps);
224 out_free_r10bio:
225 	rbio_pool_free(r10_bio, conf);
226 	return NULL;
227 }
228 
229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231 	struct r10conf *conf = data;
232 	struct r10bio *r10bio = __r10_bio;
233 	int j;
234 	struct resync_pages *rp = NULL;
235 
236 	for (j = conf->copies; j--; ) {
237 		struct bio *bio = r10bio->devs[j].bio;
238 
239 		if (bio) {
240 			rp = get_resync_pages(bio);
241 			resync_free_pages(rp);
242 			bio_uninit(bio);
243 			kfree(bio);
244 		}
245 
246 		bio = r10bio->devs[j].repl_bio;
247 		if (bio) {
248 			bio_uninit(bio);
249 			kfree(bio);
250 		}
251 	}
252 
253 	/* resync pages array stored in the 1st bio's .bi_private */
254 	kfree(rp);
255 
256 	rbio_pool_free(r10bio, conf);
257 }
258 
259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261 	int i;
262 
263 	for (i = 0; i < conf->geo.raid_disks; i++) {
264 		struct bio **bio = & r10_bio->devs[i].bio;
265 		if (!BIO_SPECIAL(*bio))
266 			bio_put(*bio);
267 		*bio = NULL;
268 		bio = &r10_bio->devs[i].repl_bio;
269 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270 			bio_put(*bio);
271 		*bio = NULL;
272 	}
273 }
274 
275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277 	struct r10conf *conf = r10_bio->mddev->private;
278 
279 	put_all_bios(conf, r10_bio);
280 	mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282 
283 static void put_buf(struct r10bio *r10_bio)
284 {
285 	struct r10conf *conf = r10_bio->mddev->private;
286 
287 	mempool_free(r10_bio, &conf->r10buf_pool);
288 
289 	lower_barrier(conf);
290 }
291 
292 static void wake_up_barrier(struct r10conf *conf)
293 {
294 	if (wq_has_sleeper(&conf->wait_barrier))
295 		wake_up(&conf->wait_barrier);
296 }
297 
298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300 	unsigned long flags;
301 	struct mddev *mddev = r10_bio->mddev;
302 	struct r10conf *conf = mddev->private;
303 
304 	spin_lock_irqsave(&conf->device_lock, flags);
305 	list_add(&r10_bio->retry_list, &conf->retry_list);
306 	conf->nr_queued ++;
307 	spin_unlock_irqrestore(&conf->device_lock, flags);
308 
309 	/* wake up frozen array... */
310 	wake_up(&conf->wait_barrier);
311 
312 	md_wakeup_thread(mddev->thread);
313 }
314 
315 /*
316  * raid_end_bio_io() is called when we have finished servicing a mirrored
317  * operation and are ready to return a success/failure code to the buffer
318  * cache layer.
319  */
320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322 	struct bio *bio = r10_bio->master_bio;
323 	struct r10conf *conf = r10_bio->mddev->private;
324 
325 	if (!test_and_set_bit(R10BIO_Returned, &r10_bio->state)) {
326 		if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
327 			bio->bi_status = BLK_STS_IOERR;
328 		bio_endio(bio);
329 	}
330 
331 	/*
332 	 * Wake up any possible resync thread that waits for the device
333 	 * to go idle.
334 	 */
335 	allow_barrier(conf);
336 
337 	free_r10bio(r10_bio);
338 }
339 
340 /*
341  * Update disk head position estimator based on IRQ completion info.
342  */
343 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
344 {
345 	struct r10conf *conf = r10_bio->mddev->private;
346 
347 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
348 		r10_bio->devs[slot].addr + (r10_bio->sectors);
349 }
350 
351 /*
352  * Find the disk number which triggered given bio
353  */
354 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
355 			 struct bio *bio, int *slotp, int *replp)
356 {
357 	int slot;
358 	int repl = 0;
359 
360 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
361 		if (r10_bio->devs[slot].bio == bio)
362 			break;
363 		if (r10_bio->devs[slot].repl_bio == bio) {
364 			repl = 1;
365 			break;
366 		}
367 	}
368 
369 	update_head_pos(slot, r10_bio);
370 
371 	if (slotp)
372 		*slotp = slot;
373 	if (replp)
374 		*replp = repl;
375 	return r10_bio->devs[slot].devnum;
376 }
377 
378 static void raid10_end_read_request(struct bio *bio)
379 {
380 	int uptodate = !bio->bi_status;
381 	struct r10bio *r10_bio = bio->bi_private;
382 	int slot;
383 	struct md_rdev *rdev;
384 	struct r10conf *conf = r10_bio->mddev->private;
385 
386 	slot = r10_bio->read_slot;
387 	rdev = r10_bio->devs[slot].rdev;
388 	/*
389 	 * this branch is our 'one mirror IO has finished' event handler:
390 	 */
391 	update_head_pos(slot, r10_bio);
392 
393 	if (uptodate) {
394 		/*
395 		 * Set R10BIO_Uptodate in our master bio, so that
396 		 * we will return a good error code to the higher
397 		 * levels even if IO on some other mirrored buffer fails.
398 		 *
399 		 * The 'master' represents the composite IO operation to
400 		 * user-side. So if something waits for IO, then it will
401 		 * wait for the 'master' bio.
402 		 */
403 		set_bit(R10BIO_Uptodate, &r10_bio->state);
404 	} else if (!raid1_should_handle_error(bio)) {
405 		uptodate = 1;
406 	} else {
407 		/* If all other devices that store this block have
408 		 * failed, we want to return the error upwards rather
409 		 * than fail the last device.  Here we redefine
410 		 * "uptodate" to mean "Don't want to retry"
411 		 */
412 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
413 			     rdev->raid_disk))
414 			uptodate = 1;
415 	}
416 	if (uptodate) {
417 		raid_end_bio_io(r10_bio);
418 		rdev_dec_pending(rdev, conf->mddev);
419 	} else {
420 		/*
421 		 * oops, read error - keep the refcount on the rdev
422 		 */
423 		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
424 				   mdname(conf->mddev),
425 				   rdev->bdev,
426 				   (unsigned long long)r10_bio->sector);
427 		set_bit(R10BIO_ReadError, &r10_bio->state);
428 		reschedule_retry(r10_bio);
429 	}
430 }
431 
432 static void close_write(struct r10bio *r10_bio)
433 {
434 	struct mddev *mddev = r10_bio->mddev;
435 
436 	md_write_end(mddev);
437 }
438 
439 static void one_write_done(struct r10bio *r10_bio)
440 {
441 	if (atomic_dec_and_test(&r10_bio->remaining)) {
442 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
443 			reschedule_retry(r10_bio);
444 		else {
445 			close_write(r10_bio);
446 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
447 				reschedule_retry(r10_bio);
448 			else
449 				raid_end_bio_io(r10_bio);
450 		}
451 	}
452 }
453 
454 static void raid10_end_write_request(struct bio *bio)
455 {
456 	struct r10bio *r10_bio = bio->bi_private;
457 	int dev;
458 	int dec_rdev = 1;
459 	struct r10conf *conf = r10_bio->mddev->private;
460 	int slot, repl;
461 	struct md_rdev *rdev = NULL;
462 	struct bio *to_put = NULL;
463 	bool ignore_error = !raid1_should_handle_error(bio) ||
464 		(bio->bi_status && bio_op(bio) == REQ_OP_DISCARD);
465 
466 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
467 
468 	if (repl)
469 		rdev = conf->mirrors[dev].replacement;
470 	if (!rdev) {
471 		smp_rmb();
472 		repl = 0;
473 		rdev = conf->mirrors[dev].rdev;
474 	}
475 	/*
476 	 * this branch is our 'one mirror IO has finished' event handler:
477 	 */
478 	if (bio->bi_status && !ignore_error) {
479 		if (repl)
480 			/* Never record new bad blocks to replacement,
481 			 * just fail it.
482 			 */
483 			md_error(rdev->mddev, rdev);
484 		else {
485 			set_bit(WriteErrorSeen,	&rdev->flags);
486 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
487 				set_bit(MD_RECOVERY_NEEDED,
488 					&rdev->mddev->recovery);
489 
490 			dec_rdev = 0;
491 			if (test_bit(FailFast, &rdev->flags) &&
492 			    (bio->bi_opf & MD_FAILFAST)) {
493 				md_error(rdev->mddev, rdev);
494 			}
495 
496 			/*
497 			 * When the device is faulty, it is not necessary to
498 			 * handle write error.
499 			 */
500 			if (!test_bit(Faulty, &rdev->flags))
501 				set_bit(R10BIO_WriteError, &r10_bio->state);
502 			else {
503 				/* Fail the request */
504 				r10_bio->devs[slot].bio = NULL;
505 				to_put = bio;
506 				dec_rdev = 1;
507 			}
508 		}
509 	} else {
510 		/*
511 		 * Set R10BIO_Uptodate in our master bio, so that
512 		 * we will return a good error code for to the higher
513 		 * levels even if IO on some other mirrored buffer fails.
514 		 *
515 		 * The 'master' represents the composite IO operation to
516 		 * user-side. So if something waits for IO, then it will
517 		 * wait for the 'master' bio.
518 		 *
519 		 * Do not set R10BIO_Uptodate if the current device is
520 		 * rebuilding or Faulty. This is because we cannot use
521 		 * such device for properly reading the data back (we could
522 		 * potentially use it, if the current write would have felt
523 		 * before rdev->recovery_offset, but for simplicity we don't
524 		 * check this here.
525 		 */
526 		if (test_bit(In_sync, &rdev->flags) &&
527 		    !test_bit(Faulty, &rdev->flags))
528 			set_bit(R10BIO_Uptodate, &r10_bio->state);
529 
530 		/* Maybe we can clear some bad blocks. */
531 		if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
532 				      r10_bio->sectors) &&
533 		    !ignore_error) {
534 			bio_put(bio);
535 			if (repl)
536 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
537 			else
538 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
539 			dec_rdev = 0;
540 			set_bit(R10BIO_MadeGood, &r10_bio->state);
541 		}
542 	}
543 
544 	/*
545 	 *
546 	 * Let's see if all mirrored write operations have finished
547 	 * already.
548 	 */
549 	one_write_done(r10_bio);
550 	if (dec_rdev)
551 		rdev_dec_pending(rdev, conf->mddev);
552 	if (to_put)
553 		bio_put(to_put);
554 }
555 
556 /*
557  * RAID10 layout manager
558  * As well as the chunksize and raid_disks count, there are two
559  * parameters: near_copies and far_copies.
560  * near_copies * far_copies must be <= raid_disks.
561  * Normally one of these will be 1.
562  * If both are 1, we get raid0.
563  * If near_copies == raid_disks, we get raid1.
564  *
565  * Chunks are laid out in raid0 style with near_copies copies of the
566  * first chunk, followed by near_copies copies of the next chunk and
567  * so on.
568  * If far_copies > 1, then after 1/far_copies of the array has been assigned
569  * as described above, we start again with a device offset of near_copies.
570  * So we effectively have another copy of the whole array further down all
571  * the drives, but with blocks on different drives.
572  * With this layout, and block is never stored twice on the one device.
573  *
574  * raid10_find_phys finds the sector offset of a given virtual sector
575  * on each device that it is on.
576  *
577  * raid10_find_virt does the reverse mapping, from a device and a
578  * sector offset to a virtual address
579  */
580 
581 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
582 {
583 	int n,f;
584 	sector_t sector;
585 	sector_t chunk;
586 	sector_t stripe;
587 	int dev;
588 	int slot = 0;
589 	int last_far_set_start, last_far_set_size;
590 
591 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
592 	last_far_set_start *= geo->far_set_size;
593 
594 	last_far_set_size = geo->far_set_size;
595 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
596 
597 	/* now calculate first sector/dev */
598 	chunk = r10bio->sector >> geo->chunk_shift;
599 	sector = r10bio->sector & geo->chunk_mask;
600 
601 	chunk *= geo->near_copies;
602 	stripe = chunk;
603 	dev = sector_div(stripe, geo->raid_disks);
604 	if (geo->far_offset)
605 		stripe *= geo->far_copies;
606 
607 	sector += stripe << geo->chunk_shift;
608 
609 	/* and calculate all the others */
610 	for (n = 0; n < geo->near_copies; n++) {
611 		int d = dev;
612 		int set;
613 		sector_t s = sector;
614 		r10bio->devs[slot].devnum = d;
615 		r10bio->devs[slot].addr = s;
616 		slot++;
617 
618 		for (f = 1; f < geo->far_copies; f++) {
619 			set = d / geo->far_set_size;
620 			d += geo->near_copies;
621 
622 			if ((geo->raid_disks % geo->far_set_size) &&
623 			    (d > last_far_set_start)) {
624 				d -= last_far_set_start;
625 				d %= last_far_set_size;
626 				d += last_far_set_start;
627 			} else {
628 				d %= geo->far_set_size;
629 				d += geo->far_set_size * set;
630 			}
631 			s += geo->stride;
632 			r10bio->devs[slot].devnum = d;
633 			r10bio->devs[slot].addr = s;
634 			slot++;
635 		}
636 		dev++;
637 		if (dev >= geo->raid_disks) {
638 			dev = 0;
639 			sector += (geo->chunk_mask + 1);
640 		}
641 	}
642 }
643 
644 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
645 {
646 	struct geom *geo = &conf->geo;
647 
648 	if (conf->reshape_progress != MaxSector &&
649 	    ((r10bio->sector >= conf->reshape_progress) !=
650 	     conf->mddev->reshape_backwards)) {
651 		set_bit(R10BIO_Previous, &r10bio->state);
652 		geo = &conf->prev;
653 	} else
654 		clear_bit(R10BIO_Previous, &r10bio->state);
655 
656 	__raid10_find_phys(geo, r10bio);
657 }
658 
659 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
660 {
661 	sector_t offset, chunk, vchunk;
662 	/* Never use conf->prev as this is only called during resync
663 	 * or recovery, so reshape isn't happening
664 	 */
665 	struct geom *geo = &conf->geo;
666 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
667 	int far_set_size = geo->far_set_size;
668 	int last_far_set_start;
669 
670 	if (geo->raid_disks % geo->far_set_size) {
671 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
672 		last_far_set_start *= geo->far_set_size;
673 
674 		if (dev >= last_far_set_start) {
675 			far_set_size = geo->far_set_size;
676 			far_set_size += (geo->raid_disks % geo->far_set_size);
677 			far_set_start = last_far_set_start;
678 		}
679 	}
680 
681 	offset = sector & geo->chunk_mask;
682 	if (geo->far_offset) {
683 		int fc;
684 		chunk = sector >> geo->chunk_shift;
685 		fc = sector_div(chunk, geo->far_copies);
686 		dev -= fc * geo->near_copies;
687 		if (dev < far_set_start)
688 			dev += far_set_size;
689 	} else {
690 		while (sector >= geo->stride) {
691 			sector -= geo->stride;
692 			if (dev < (geo->near_copies + far_set_start))
693 				dev += far_set_size - geo->near_copies;
694 			else
695 				dev -= geo->near_copies;
696 		}
697 		chunk = sector >> geo->chunk_shift;
698 	}
699 	vchunk = chunk * geo->raid_disks + dev;
700 	sector_div(vchunk, geo->near_copies);
701 	return (vchunk << geo->chunk_shift) + offset;
702 }
703 
704 /*
705  * This routine returns the disk from which the requested read should
706  * be done. There is a per-array 'next expected sequential IO' sector
707  * number - if this matches on the next IO then we use the last disk.
708  * There is also a per-disk 'last know head position' sector that is
709  * maintained from IRQ contexts, both the normal and the resync IO
710  * completion handlers update this position correctly. If there is no
711  * perfect sequential match then we pick the disk whose head is closest.
712  *
713  * If there are 2 mirrors in the same 2 devices, performance degrades
714  * because position is mirror, not device based.
715  *
716  * The rdev for the device selected will have nr_pending incremented.
717  */
718 
719 /*
720  * FIXME: possibly should rethink readbalancing and do it differently
721  * depending on near_copies / far_copies geometry.
722  */
723 static struct md_rdev *read_balance(struct r10conf *conf,
724 				    struct r10bio *r10_bio,
725 				    int *max_sectors)
726 {
727 	const sector_t this_sector = r10_bio->sector;
728 	int disk, slot;
729 	int sectors = r10_bio->sectors;
730 	int best_good_sectors;
731 	sector_t new_distance, best_dist;
732 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
733 	int do_balance;
734 	int best_dist_slot, best_pending_slot;
735 	bool has_nonrot_disk = false;
736 	unsigned int min_pending;
737 	struct geom *geo = &conf->geo;
738 
739 	raid10_find_phys(conf, r10_bio);
740 	best_dist_slot = -1;
741 	min_pending = UINT_MAX;
742 	best_dist_rdev = NULL;
743 	best_pending_rdev = NULL;
744 	best_dist = MaxSector;
745 	best_good_sectors = 0;
746 	do_balance = 1;
747 	clear_bit(R10BIO_FailFast, &r10_bio->state);
748 
749 	if (raid1_should_read_first(conf->mddev, this_sector, sectors))
750 		do_balance = 0;
751 
752 	for (slot = 0; slot < conf->copies ; slot++) {
753 		sector_t first_bad;
754 		sector_t bad_sectors;
755 		sector_t dev_sector;
756 		unsigned int pending;
757 		bool nonrot;
758 
759 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
760 			continue;
761 		disk = r10_bio->devs[slot].devnum;
762 		rdev = conf->mirrors[disk].replacement;
763 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
764 		    r10_bio->devs[slot].addr + sectors >
765 		    rdev->recovery_offset)
766 			rdev = conf->mirrors[disk].rdev;
767 		if (rdev == NULL ||
768 		    test_bit(Faulty, &rdev->flags))
769 			continue;
770 		if (!test_bit(In_sync, &rdev->flags) &&
771 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
772 			continue;
773 
774 		dev_sector = r10_bio->devs[slot].addr;
775 		if (is_badblock(rdev, dev_sector, sectors,
776 				&first_bad, &bad_sectors)) {
777 			if (best_dist < MaxSector)
778 				/* Already have a better slot */
779 				continue;
780 			if (first_bad <= dev_sector) {
781 				/* Cannot read here.  If this is the
782 				 * 'primary' device, then we must not read
783 				 * beyond 'bad_sectors' from another device.
784 				 */
785 				bad_sectors -= (dev_sector - first_bad);
786 				if (!do_balance && sectors > bad_sectors)
787 					sectors = bad_sectors;
788 				if (best_good_sectors > sectors)
789 					best_good_sectors = sectors;
790 			} else {
791 				sector_t good_sectors =
792 					first_bad - dev_sector;
793 				if (good_sectors > best_good_sectors) {
794 					best_good_sectors = good_sectors;
795 					best_dist_slot = slot;
796 					best_dist_rdev = rdev;
797 				}
798 				if (!do_balance)
799 					/* Must read from here */
800 					break;
801 			}
802 			continue;
803 		} else
804 			best_good_sectors = sectors;
805 
806 		if (!do_balance)
807 			break;
808 
809 		nonrot = bdev_nonrot(rdev->bdev);
810 		has_nonrot_disk |= nonrot;
811 		pending = atomic_read(&rdev->nr_pending);
812 		if (min_pending > pending && nonrot) {
813 			min_pending = pending;
814 			best_pending_slot = slot;
815 			best_pending_rdev = rdev;
816 		}
817 
818 		if (best_dist_slot >= 0)
819 			/* At least 2 disks to choose from so failfast is OK */
820 			set_bit(R10BIO_FailFast, &r10_bio->state);
821 		/* This optimisation is debatable, and completely destroys
822 		 * sequential read speed for 'far copies' arrays.  So only
823 		 * keep it for 'near' arrays, and review those later.
824 		 */
825 		if (geo->near_copies > 1 && !pending)
826 			new_distance = 0;
827 
828 		/* for far > 1 always use the lowest address */
829 		else if (geo->far_copies > 1)
830 			new_distance = r10_bio->devs[slot].addr;
831 		else
832 			new_distance = abs(r10_bio->devs[slot].addr -
833 					   conf->mirrors[disk].head_position);
834 
835 		if (new_distance < best_dist) {
836 			best_dist = new_distance;
837 			best_dist_slot = slot;
838 			best_dist_rdev = rdev;
839 		}
840 	}
841 	if (slot >= conf->copies) {
842 		if (has_nonrot_disk) {
843 			slot = best_pending_slot;
844 			rdev = best_pending_rdev;
845 		} else {
846 			slot = best_dist_slot;
847 			rdev = best_dist_rdev;
848 		}
849 	}
850 
851 	if (slot >= 0) {
852 		atomic_inc(&rdev->nr_pending);
853 		r10_bio->read_slot = slot;
854 	} else
855 		rdev = NULL;
856 	*max_sectors = best_good_sectors;
857 
858 	return rdev;
859 }
860 
861 static void flush_pending_writes(struct r10conf *conf)
862 {
863 	/* Any writes that have been queued but are awaiting
864 	 * bitmap updates get flushed here.
865 	 */
866 	spin_lock_irq(&conf->device_lock);
867 
868 	if (conf->pending_bio_list.head) {
869 		struct blk_plug plug;
870 		struct bio *bio;
871 
872 		bio = bio_list_get(&conf->pending_bio_list);
873 		spin_unlock_irq(&conf->device_lock);
874 
875 		/*
876 		 * As this is called in a wait_event() loop (see freeze_array),
877 		 * current->state might be TASK_UNINTERRUPTIBLE which will
878 		 * cause a warning when we prepare to wait again.  As it is
879 		 * rare that this path is taken, it is perfectly safe to force
880 		 * us to go around the wait_event() loop again, so the warning
881 		 * is a false-positive. Silence the warning by resetting
882 		 * thread state
883 		 */
884 		__set_current_state(TASK_RUNNING);
885 
886 		blk_start_plug(&plug);
887 		raid1_prepare_flush_writes(conf->mddev);
888 		wake_up(&conf->wait_barrier);
889 
890 		while (bio) { /* submit pending writes */
891 			struct bio *next = bio->bi_next;
892 
893 			raid1_submit_write(bio);
894 			bio = next;
895 			cond_resched();
896 		}
897 		blk_finish_plug(&plug);
898 	} else
899 		spin_unlock_irq(&conf->device_lock);
900 }
901 
902 /* Barriers....
903  * Sometimes we need to suspend IO while we do something else,
904  * either some resync/recovery, or reconfigure the array.
905  * To do this we raise a 'barrier'.
906  * The 'barrier' is a counter that can be raised multiple times
907  * to count how many activities are happening which preclude
908  * normal IO.
909  * We can only raise the barrier if there is no pending IO.
910  * i.e. if nr_pending == 0.
911  * We choose only to raise the barrier if no-one is waiting for the
912  * barrier to go down.  This means that as soon as an IO request
913  * is ready, no other operations which require a barrier will start
914  * until the IO request has had a chance.
915  *
916  * So: regular IO calls 'wait_barrier'.  When that returns there
917  *    is no backgroup IO happening,  It must arrange to call
918  *    allow_barrier when it has finished its IO.
919  * backgroup IO calls must call raise_barrier.  Once that returns
920  *    there is no normal IO happeing.  It must arrange to call
921  *    lower_barrier when the particular background IO completes.
922  */
923 
924 static void raise_barrier(struct r10conf *conf, int force)
925 {
926 	write_seqlock_irq(&conf->resync_lock);
927 
928 	if (WARN_ON_ONCE(force && !conf->barrier))
929 		force = false;
930 
931 	/* Wait until no block IO is waiting (unless 'force') */
932 	wait_event_barrier(conf, force || !conf->nr_waiting);
933 
934 	/* block any new IO from starting */
935 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
936 
937 	/* Now wait for all pending IO to complete */
938 	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
939 				 conf->barrier < RESYNC_DEPTH);
940 
941 	write_sequnlock_irq(&conf->resync_lock);
942 }
943 
944 static void lower_barrier(struct r10conf *conf)
945 {
946 	unsigned long flags;
947 
948 	write_seqlock_irqsave(&conf->resync_lock, flags);
949 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
950 	write_sequnlock_irqrestore(&conf->resync_lock, flags);
951 	wake_up(&conf->wait_barrier);
952 }
953 
954 static bool stop_waiting_barrier(struct r10conf *conf)
955 {
956 	struct bio_list *bio_list = current->bio_list;
957 	struct md_thread *thread;
958 
959 	/* barrier is dropped */
960 	if (!conf->barrier)
961 		return true;
962 
963 	/*
964 	 * If there are already pending requests (preventing the barrier from
965 	 * rising completely), and the pre-process bio queue isn't empty, then
966 	 * don't wait, as we need to empty that queue to get the nr_pending
967 	 * count down.
968 	 */
969 	if (atomic_read(&conf->nr_pending) && bio_list &&
970 	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
971 		return true;
972 
973 	/* daemon thread must exist while handling io */
974 	thread = rcu_dereference_protected(conf->mddev->thread, true);
975 	/*
976 	 * move on if io is issued from raid10d(), nr_pending is not released
977 	 * from original io(see handle_read_error()). All raise barrier is
978 	 * blocked until this io is done.
979 	 */
980 	if (thread->tsk == current) {
981 		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
982 		return true;
983 	}
984 
985 	return false;
986 }
987 
988 static bool wait_barrier_nolock(struct r10conf *conf)
989 {
990 	unsigned int seq = read_seqbegin(&conf->resync_lock);
991 
992 	if (READ_ONCE(conf->barrier))
993 		return false;
994 
995 	atomic_inc(&conf->nr_pending);
996 	if (!read_seqretry(&conf->resync_lock, seq))
997 		return true;
998 
999 	if (atomic_dec_and_test(&conf->nr_pending))
1000 		wake_up_barrier(conf);
1001 
1002 	return false;
1003 }
1004 
1005 static bool wait_barrier(struct r10conf *conf, bool nowait)
1006 {
1007 	bool ret = true;
1008 
1009 	if (wait_barrier_nolock(conf))
1010 		return true;
1011 
1012 	write_seqlock_irq(&conf->resync_lock);
1013 	if (conf->barrier) {
1014 		/* Return false when nowait flag is set */
1015 		if (nowait) {
1016 			ret = false;
1017 		} else {
1018 			conf->nr_waiting++;
1019 			mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1020 			wait_event_barrier(conf, stop_waiting_barrier(conf));
1021 			conf->nr_waiting--;
1022 		}
1023 		if (!conf->nr_waiting)
1024 			wake_up(&conf->wait_barrier);
1025 	}
1026 	/* Only increment nr_pending when we wait */
1027 	if (ret)
1028 		atomic_inc(&conf->nr_pending);
1029 	write_sequnlock_irq(&conf->resync_lock);
1030 	return ret;
1031 }
1032 
1033 static void allow_barrier(struct r10conf *conf)
1034 {
1035 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1036 			(conf->array_freeze_pending))
1037 		wake_up_barrier(conf);
1038 }
1039 
1040 static void freeze_array(struct r10conf *conf, int extra)
1041 {
1042 	/* stop syncio and normal IO and wait for everything to
1043 	 * go quiet.
1044 	 * We increment barrier and nr_waiting, and then
1045 	 * wait until nr_pending match nr_queued+extra
1046 	 * This is called in the context of one normal IO request
1047 	 * that has failed. Thus any sync request that might be pending
1048 	 * will be blocked by nr_pending, and we need to wait for
1049 	 * pending IO requests to complete or be queued for re-try.
1050 	 * Thus the number queued (nr_queued) plus this request (extra)
1051 	 * must match the number of pending IOs (nr_pending) before
1052 	 * we continue.
1053 	 */
1054 	write_seqlock_irq(&conf->resync_lock);
1055 	conf->array_freeze_pending++;
1056 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1057 	conf->nr_waiting++;
1058 	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1059 			conf->nr_queued + extra, flush_pending_writes(conf));
1060 	conf->array_freeze_pending--;
1061 	write_sequnlock_irq(&conf->resync_lock);
1062 }
1063 
1064 static void unfreeze_array(struct r10conf *conf)
1065 {
1066 	/* reverse the effect of the freeze */
1067 	write_seqlock_irq(&conf->resync_lock);
1068 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1069 	conf->nr_waiting--;
1070 	wake_up(&conf->wait_barrier);
1071 	write_sequnlock_irq(&conf->resync_lock);
1072 }
1073 
1074 static sector_t choose_data_offset(struct r10bio *r10_bio,
1075 				   struct md_rdev *rdev)
1076 {
1077 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1078 	    test_bit(R10BIO_Previous, &r10_bio->state))
1079 		return rdev->data_offset;
1080 	else
1081 		return rdev->new_data_offset;
1082 }
1083 
1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085 {
1086 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1087 	struct mddev *mddev = plug->cb.data;
1088 	struct r10conf *conf = mddev->private;
1089 	struct bio *bio;
1090 
1091 	if (from_schedule) {
1092 		spin_lock_irq(&conf->device_lock);
1093 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1094 		spin_unlock_irq(&conf->device_lock);
1095 		wake_up_barrier(conf);
1096 		md_wakeup_thread(mddev->thread);
1097 		kfree(plug);
1098 		return;
1099 	}
1100 
1101 	/* we aren't scheduling, so we can do the write-out directly. */
1102 	bio = bio_list_get(&plug->pending);
1103 	raid1_prepare_flush_writes(mddev);
1104 	wake_up_barrier(conf);
1105 
1106 	while (bio) { /* submit pending writes */
1107 		struct bio *next = bio->bi_next;
1108 
1109 		raid1_submit_write(bio);
1110 		bio = next;
1111 		cond_resched();
1112 	}
1113 	kfree(plug);
1114 }
1115 
1116 /*
1117  * 1. Register the new request and wait if the reconstruction thread has put
1118  * up a bar for new requests. Continue immediately if no resync is active
1119  * currently.
1120  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1121  */
1122 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1123 				 struct bio *bio, sector_t sectors)
1124 {
1125 	/* Bail out if REQ_NOWAIT is set for the bio */
1126 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1127 		bio_wouldblock_error(bio);
1128 		return false;
1129 	}
1130 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1131 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1132 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1133 		allow_barrier(conf);
1134 		if (bio->bi_opf & REQ_NOWAIT) {
1135 			bio_wouldblock_error(bio);
1136 			return false;
1137 		}
1138 		mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1139 		wait_event(conf->wait_barrier,
1140 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1141 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1142 			   sectors);
1143 		wait_barrier(conf, false);
1144 	}
1145 	return true;
1146 }
1147 
1148 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1149 				struct r10bio *r10_bio, bool io_accounting)
1150 {
1151 	struct r10conf *conf = mddev->private;
1152 	struct bio *read_bio;
1153 	int max_sectors;
1154 	struct md_rdev *rdev;
1155 	char b[BDEVNAME_SIZE];
1156 	int slot = r10_bio->read_slot;
1157 	struct md_rdev *err_rdev = NULL;
1158 	gfp_t gfp = GFP_NOIO;
1159 
1160 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1161 		/*
1162 		 * This is an error retry, but we cannot
1163 		 * safely dereference the rdev in the r10_bio,
1164 		 * we must use the one in conf.
1165 		 * If it has already been disconnected (unlikely)
1166 		 * we lose the device name in error messages.
1167 		 */
1168 		int disk;
1169 		/*
1170 		 * As we are blocking raid10, it is a little safer to
1171 		 * use __GFP_HIGH.
1172 		 */
1173 		gfp = GFP_NOIO | __GFP_HIGH;
1174 
1175 		disk = r10_bio->devs[slot].devnum;
1176 		err_rdev = conf->mirrors[disk].rdev;
1177 		if (err_rdev)
1178 			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1179 		else {
1180 			strcpy(b, "???");
1181 			/* This never gets dereferenced */
1182 			err_rdev = r10_bio->devs[slot].rdev;
1183 		}
1184 	}
1185 
1186 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) {
1187 		raid_end_bio_io(r10_bio);
1188 		return;
1189 	}
1190 
1191 	rdev = read_balance(conf, r10_bio, &max_sectors);
1192 	if (!rdev) {
1193 		if (err_rdev) {
1194 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1195 					    mdname(mddev), b,
1196 					    (unsigned long long)r10_bio->sector);
1197 		}
1198 		raid_end_bio_io(r10_bio);
1199 		return;
1200 	}
1201 	if (err_rdev)
1202 		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1203 				   mdname(mddev),
1204 				   rdev->bdev,
1205 				   (unsigned long long)r10_bio->sector);
1206 	if (max_sectors < bio_sectors(bio)) {
1207 		allow_barrier(conf);
1208 		bio = bio_submit_split_bioset(bio, max_sectors,
1209 					      &conf->bio_split);
1210 		wait_barrier(conf, false);
1211 		if (!bio) {
1212 			set_bit(R10BIO_Returned, &r10_bio->state);
1213 			goto err_handle;
1214 		}
1215 
1216 		r10_bio->master_bio = bio;
1217 		r10_bio->sectors = max_sectors;
1218 	}
1219 	slot = r10_bio->read_slot;
1220 
1221 	if (io_accounting) {
1222 		md_account_bio(mddev, &bio);
1223 		r10_bio->master_bio = bio;
1224 	}
1225 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1226 	read_bio->bi_opf &= ~REQ_NOWAIT;
1227 
1228 	r10_bio->devs[slot].bio = read_bio;
1229 	r10_bio->devs[slot].rdev = rdev;
1230 
1231 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1232 		choose_data_offset(r10_bio, rdev);
1233 	read_bio->bi_end_io = raid10_end_read_request;
1234 	if (test_bit(FailFast, &rdev->flags) &&
1235 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1236 	        read_bio->bi_opf |= MD_FAILFAST;
1237 	read_bio->bi_private = r10_bio;
1238 	mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1239 	submit_bio_noacct(read_bio);
1240 	return;
1241 err_handle:
1242 	atomic_dec(&rdev->nr_pending);
1243 	raid_end_bio_io(r10_bio);
1244 }
1245 
1246 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1247 				  struct bio *bio, bool replacement,
1248 				  int n_copy)
1249 {
1250 	unsigned long flags;
1251 	struct r10conf *conf = mddev->private;
1252 	struct md_rdev *rdev;
1253 	int devnum = r10_bio->devs[n_copy].devnum;
1254 	struct bio *mbio;
1255 
1256 	rdev = replacement ? conf->mirrors[devnum].replacement :
1257 			     conf->mirrors[devnum].rdev;
1258 
1259 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1260 	mbio->bi_opf &= ~REQ_NOWAIT;
1261 	if (replacement)
1262 		r10_bio->devs[n_copy].repl_bio = mbio;
1263 	else
1264 		r10_bio->devs[n_copy].bio = mbio;
1265 
1266 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1267 				   choose_data_offset(r10_bio, rdev));
1268 	mbio->bi_end_io	= raid10_end_write_request;
1269 	if (!replacement && test_bit(FailFast,
1270 				     &conf->mirrors[devnum].rdev->flags)
1271 			 && enough(conf, devnum))
1272 		mbio->bi_opf |= MD_FAILFAST;
1273 	mbio->bi_private = r10_bio;
1274 	mddev_trace_remap(mddev, mbio, r10_bio->sector);
1275 	/* flush_pending_writes() needs access to the rdev so...*/
1276 	mbio->bi_bdev = (void *)rdev;
1277 
1278 	atomic_inc(&r10_bio->remaining);
1279 
1280 	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1281 		spin_lock_irqsave(&conf->device_lock, flags);
1282 		bio_list_add(&conf->pending_bio_list, mbio);
1283 		spin_unlock_irqrestore(&conf->device_lock, flags);
1284 		md_wakeup_thread(mddev->thread);
1285 	}
1286 }
1287 
1288 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1289 {
1290 	struct r10conf *conf = mddev->private;
1291 	struct md_rdev *blocked_rdev;
1292 	int i;
1293 
1294 retry_wait:
1295 	blocked_rdev = NULL;
1296 	for (i = 0; i < conf->copies; i++) {
1297 		struct md_rdev *rdev, *rrdev;
1298 
1299 		rdev = conf->mirrors[i].rdev;
1300 		if (rdev) {
1301 			sector_t dev_sector = r10_bio->devs[i].addr;
1302 
1303 			/*
1304 			 * Discard request doesn't care the write result
1305 			 * so it doesn't need to wait blocked disk here.
1306 			 */
1307 			if (test_bit(WriteErrorSeen, &rdev->flags) &&
1308 			    r10_bio->sectors &&
1309 			    rdev_has_badblock(rdev, dev_sector,
1310 					      r10_bio->sectors) < 0)
1311 				/*
1312 				 * Mustn't write here until the bad
1313 				 * block is acknowledged
1314 				 */
1315 				set_bit(BlockedBadBlocks, &rdev->flags);
1316 
1317 			if (rdev_blocked(rdev)) {
1318 				blocked_rdev = rdev;
1319 				atomic_inc(&rdev->nr_pending);
1320 				break;
1321 			}
1322 		}
1323 
1324 		rrdev = conf->mirrors[i].replacement;
1325 		if (rrdev && rdev_blocked(rrdev)) {
1326 			atomic_inc(&rrdev->nr_pending);
1327 			blocked_rdev = rrdev;
1328 			break;
1329 		}
1330 	}
1331 
1332 	if (unlikely(blocked_rdev)) {
1333 		/* Have to wait for this device to get unblocked, then retry */
1334 		allow_barrier(conf);
1335 		mddev_add_trace_msg(conf->mddev,
1336 			"raid10 %s wait rdev %d blocked",
1337 			__func__, blocked_rdev->raid_disk);
1338 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1339 		wait_barrier(conf, false);
1340 		goto retry_wait;
1341 	}
1342 }
1343 
1344 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1345 				 struct r10bio *r10_bio)
1346 {
1347 	struct r10conf *conf = mddev->private;
1348 	int i, k;
1349 	sector_t sectors;
1350 	int max_sectors;
1351 
1352 	if ((mddev_is_clustered(mddev) &&
1353 	     mddev->cluster_ops->area_resyncing(mddev, WRITE,
1354 						bio->bi_iter.bi_sector,
1355 						bio_end_sector(bio)))) {
1356 		DEFINE_WAIT(w);
1357 		/* Bail out if REQ_NOWAIT is set for the bio */
1358 		if (bio->bi_opf & REQ_NOWAIT) {
1359 			bio_wouldblock_error(bio);
1360 			return;
1361 		}
1362 		for (;;) {
1363 			prepare_to_wait(&conf->wait_barrier,
1364 					&w, TASK_IDLE);
1365 			if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
1366 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1367 				break;
1368 			schedule();
1369 		}
1370 		finish_wait(&conf->wait_barrier, &w);
1371 	}
1372 
1373 	sectors = r10_bio->sectors;
1374 	if (!regular_request_wait(mddev, conf, bio, sectors)) {
1375 		raid_end_bio_io(r10_bio);
1376 		return;
1377 	}
1378 
1379 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1380 	    (mddev->reshape_backwards
1381 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1382 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1383 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1384 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1385 		/* Need to update reshape_position in metadata */
1386 		mddev->reshape_position = conf->reshape_progress;
1387 		set_mask_bits(&mddev->sb_flags, 0,
1388 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1389 		md_wakeup_thread(mddev->thread);
1390 		if (bio->bi_opf & REQ_NOWAIT) {
1391 			allow_barrier(conf);
1392 			bio_wouldblock_error(bio);
1393 			return;
1394 		}
1395 		mddev_add_trace_msg(conf->mddev,
1396 			"raid10 wait reshape metadata");
1397 		wait_event(mddev->sb_wait,
1398 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1399 
1400 		conf->reshape_safe = mddev->reshape_position;
1401 	}
1402 
1403 	/* first select target devices under rcu_lock and
1404 	 * inc refcount on their rdev.  Record them by setting
1405 	 * bios[x] to bio
1406 	 * If there are known/acknowledged bad blocks on any device
1407 	 * on which we have seen a write error, we want to avoid
1408 	 * writing to those blocks.  This potentially requires several
1409 	 * writes to write around the bad blocks.  Each set of writes
1410 	 * gets its own r10_bio with a set of bios attached.
1411 	 */
1412 
1413 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1414 	raid10_find_phys(conf, r10_bio);
1415 
1416 	wait_blocked_dev(mddev, r10_bio);
1417 
1418 	max_sectors = r10_bio->sectors;
1419 
1420 	for (i = 0;  i < conf->copies; i++) {
1421 		int d = r10_bio->devs[i].devnum;
1422 		struct md_rdev *rdev, *rrdev;
1423 
1424 		rdev = conf->mirrors[d].rdev;
1425 		rrdev = conf->mirrors[d].replacement;
1426 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1427 			rdev = NULL;
1428 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1429 			rrdev = NULL;
1430 
1431 		r10_bio->devs[i].bio = NULL;
1432 		r10_bio->devs[i].repl_bio = NULL;
1433 
1434 		if (!rdev && !rrdev)
1435 			continue;
1436 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1437 			sector_t first_bad;
1438 			sector_t dev_sector = r10_bio->devs[i].addr;
1439 			sector_t bad_sectors;
1440 			int is_bad;
1441 
1442 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1443 					     &first_bad, &bad_sectors);
1444 			if (is_bad && first_bad <= dev_sector) {
1445 				/* Cannot write here at all */
1446 				bad_sectors -= (dev_sector - first_bad);
1447 				if (bad_sectors < max_sectors)
1448 					/* Mustn't write more than bad_sectors
1449 					 * to other devices yet
1450 					 */
1451 					max_sectors = bad_sectors;
1452 				continue;
1453 			}
1454 			if (is_bad) {
1455 				int good_sectors;
1456 
1457 				/*
1458 				 * We cannot atomically write this, so just
1459 				 * error in that case. It could be possible to
1460 				 * atomically write other mirrors, but the
1461 				 * complexity of supporting that is not worth
1462 				 * the benefit.
1463 				 */
1464 				if (bio->bi_opf & REQ_ATOMIC)
1465 					goto err_handle;
1466 
1467 				good_sectors = first_bad - dev_sector;
1468 				if (good_sectors < max_sectors)
1469 					max_sectors = good_sectors;
1470 			}
1471 		}
1472 		if (rdev) {
1473 			r10_bio->devs[i].bio = bio;
1474 			atomic_inc(&rdev->nr_pending);
1475 		}
1476 		if (rrdev) {
1477 			r10_bio->devs[i].repl_bio = bio;
1478 			atomic_inc(&rrdev->nr_pending);
1479 		}
1480 	}
1481 
1482 	if (max_sectors < r10_bio->sectors)
1483 		r10_bio->sectors = max_sectors;
1484 
1485 	if (r10_bio->sectors < bio_sectors(bio)) {
1486 		allow_barrier(conf);
1487 		bio = bio_submit_split_bioset(bio, r10_bio->sectors,
1488 					      &conf->bio_split);
1489 		wait_barrier(conf, false);
1490 		if (!bio) {
1491 			set_bit(R10BIO_Returned, &r10_bio->state);
1492 			goto err_handle;
1493 		}
1494 
1495 		r10_bio->master_bio = bio;
1496 	}
1497 
1498 	md_account_bio(mddev, &bio);
1499 	r10_bio->master_bio = bio;
1500 	atomic_set(&r10_bio->remaining, 1);
1501 
1502 	for (i = 0; i < conf->copies; i++) {
1503 		if (r10_bio->devs[i].bio)
1504 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1505 		if (r10_bio->devs[i].repl_bio)
1506 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1507 	}
1508 	one_write_done(r10_bio);
1509 	return;
1510 err_handle:
1511 	for (k = 0;  k < i; k++) {
1512 		int d = r10_bio->devs[k].devnum;
1513 		struct md_rdev *rdev = conf->mirrors[d].rdev;
1514 		struct md_rdev *rrdev = conf->mirrors[d].replacement;
1515 
1516 		if (r10_bio->devs[k].bio) {
1517 			rdev_dec_pending(rdev, mddev);
1518 			r10_bio->devs[k].bio = NULL;
1519 		}
1520 		if (r10_bio->devs[k].repl_bio) {
1521 			rdev_dec_pending(rrdev, mddev);
1522 			r10_bio->devs[k].repl_bio = NULL;
1523 		}
1524 	}
1525 
1526 	raid_end_bio_io(r10_bio);
1527 }
1528 
1529 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1530 {
1531 	struct r10conf *conf = mddev->private;
1532 	struct r10bio *r10_bio;
1533 
1534 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1535 
1536 	r10_bio->master_bio = bio;
1537 	r10_bio->sectors = sectors;
1538 
1539 	r10_bio->mddev = mddev;
1540 	r10_bio->sector = bio->bi_iter.bi_sector;
1541 	r10_bio->state = 0;
1542 	r10_bio->read_slot = -1;
1543 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1544 			conf->geo.raid_disks);
1545 
1546 	if (bio_data_dir(bio) == READ)
1547 		raid10_read_request(mddev, bio, r10_bio, true);
1548 	else
1549 		raid10_write_request(mddev, bio, r10_bio);
1550 }
1551 
1552 static void raid_end_discard_bio(struct r10bio *r10bio)
1553 {
1554 	struct r10conf *conf = r10bio->mddev->private;
1555 	struct r10bio *first_r10bio;
1556 
1557 	while (atomic_dec_and_test(&r10bio->remaining)) {
1558 
1559 		allow_barrier(conf);
1560 
1561 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1562 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1563 			free_r10bio(r10bio);
1564 			r10bio = first_r10bio;
1565 		} else {
1566 			md_write_end(r10bio->mddev);
1567 			bio_endio(r10bio->master_bio);
1568 			free_r10bio(r10bio);
1569 			break;
1570 		}
1571 	}
1572 }
1573 
1574 static void raid10_end_discard_request(struct bio *bio)
1575 {
1576 	struct r10bio *r10_bio = bio->bi_private;
1577 	struct r10conf *conf = r10_bio->mddev->private;
1578 	struct md_rdev *rdev = NULL;
1579 	int dev;
1580 	int slot, repl;
1581 
1582 	/*
1583 	 * We don't care the return value of discard bio
1584 	 */
1585 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1586 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1587 
1588 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1589 	rdev = repl ? conf->mirrors[dev].replacement :
1590 		      conf->mirrors[dev].rdev;
1591 
1592 	raid_end_discard_bio(r10_bio);
1593 	rdev_dec_pending(rdev, conf->mddev);
1594 }
1595 
1596 /*
1597  * There are some limitations to handle discard bio
1598  * 1st, the discard size is bigger than stripe_size*2.
1599  * 2st, if the discard bio spans reshape progress, we use the old way to
1600  * handle discard bio
1601  */
1602 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1603 {
1604 	struct r10conf *conf = mddev->private;
1605 	struct geom *geo = &conf->geo;
1606 	int far_copies = geo->far_copies;
1607 	bool first_copy = true;
1608 	struct r10bio *r10_bio, *first_r10bio;
1609 	struct bio *split;
1610 	int disk;
1611 	sector_t chunk;
1612 	unsigned int stripe_size;
1613 	unsigned int stripe_data_disks;
1614 	sector_t split_size;
1615 	sector_t bio_start, bio_end;
1616 	sector_t first_stripe_index, last_stripe_index;
1617 	sector_t start_disk_offset;
1618 	unsigned int start_disk_index;
1619 	sector_t end_disk_offset;
1620 	unsigned int end_disk_index;
1621 	unsigned int remainder;
1622 
1623 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1624 		return -EAGAIN;
1625 
1626 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1627 		bio_wouldblock_error(bio);
1628 		return 0;
1629 	}
1630 
1631 	/*
1632 	 * Check reshape again to avoid reshape happens after checking
1633 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1634 	 */
1635 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1636 		goto out;
1637 
1638 	if (geo->near_copies)
1639 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1640 					geo->raid_disks % geo->near_copies;
1641 	else
1642 		stripe_data_disks = geo->raid_disks;
1643 
1644 	stripe_size = stripe_data_disks << geo->chunk_shift;
1645 
1646 	bio_start = bio->bi_iter.bi_sector;
1647 	bio_end = bio_end_sector(bio);
1648 
1649 	/*
1650 	 * Maybe one discard bio is smaller than strip size or across one
1651 	 * stripe and discard region is larger than one stripe size. For far
1652 	 * offset layout, if the discard region is not aligned with stripe
1653 	 * size, there is hole when we submit discard bio to member disk.
1654 	 * For simplicity, we only handle discard bio which discard region
1655 	 * is bigger than stripe_size * 2
1656 	 */
1657 	if (bio_sectors(bio) < stripe_size*2)
1658 		goto out;
1659 
1660 	/*
1661 	 * Keep bio aligned with strip size.
1662 	 */
1663 	div_u64_rem(bio_start, stripe_size, &remainder);
1664 	if (remainder) {
1665 		split_size = stripe_size - remainder;
1666 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1667 		if (IS_ERR(split)) {
1668 			bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1669 			bio_endio(bio);
1670 			return 0;
1671 		}
1672 
1673 		bio_chain(split, bio);
1674 		trace_block_split(split, bio->bi_iter.bi_sector);
1675 		allow_barrier(conf);
1676 		/* Resend the fist split part */
1677 		submit_bio_noacct(split);
1678 		wait_barrier(conf, false);
1679 	}
1680 	div_u64_rem(bio_end, stripe_size, &remainder);
1681 	if (remainder) {
1682 		split_size = bio_sectors(bio) - remainder;
1683 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1684 		if (IS_ERR(split)) {
1685 			bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1686 			bio_endio(bio);
1687 			return 0;
1688 		}
1689 
1690 		bio_chain(split, bio);
1691 		trace_block_split(split, bio->bi_iter.bi_sector);
1692 		allow_barrier(conf);
1693 		/* Resend the second split part */
1694 		submit_bio_noacct(bio);
1695 		bio = split;
1696 		wait_barrier(conf, false);
1697 	}
1698 
1699 	bio_start = bio->bi_iter.bi_sector;
1700 	bio_end = bio_end_sector(bio);
1701 
1702 	/*
1703 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1704 	 * One stripe contains the chunks from all member disk (one chunk from
1705 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1706 	 */
1707 	chunk = bio_start >> geo->chunk_shift;
1708 	chunk *= geo->near_copies;
1709 	first_stripe_index = chunk;
1710 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1711 	if (geo->far_offset)
1712 		first_stripe_index *= geo->far_copies;
1713 	start_disk_offset = (bio_start & geo->chunk_mask) +
1714 				(first_stripe_index << geo->chunk_shift);
1715 
1716 	chunk = bio_end >> geo->chunk_shift;
1717 	chunk *= geo->near_copies;
1718 	last_stripe_index = chunk;
1719 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1720 	if (geo->far_offset)
1721 		last_stripe_index *= geo->far_copies;
1722 	end_disk_offset = (bio_end & geo->chunk_mask) +
1723 				(last_stripe_index << geo->chunk_shift);
1724 
1725 retry_discard:
1726 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1727 	r10_bio->mddev = mddev;
1728 	r10_bio->state = 0;
1729 	r10_bio->sectors = 0;
1730 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1731 	wait_blocked_dev(mddev, r10_bio);
1732 
1733 	/*
1734 	 * For far layout it needs more than one r10bio to cover all regions.
1735 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1736 	 * to record the discard bio. Other r10bio->master_bio record the first
1737 	 * r10bio. The first r10bio only release after all other r10bios finish.
1738 	 * The discard bio returns only first r10bio finishes
1739 	 */
1740 	if (first_copy) {
1741 		md_account_bio(mddev, &bio);
1742 		r10_bio->master_bio = bio;
1743 		set_bit(R10BIO_Discard, &r10_bio->state);
1744 		first_copy = false;
1745 		first_r10bio = r10_bio;
1746 	} else
1747 		r10_bio->master_bio = (struct bio *)first_r10bio;
1748 
1749 	/*
1750 	 * first select target devices under rcu_lock and
1751 	 * inc refcount on their rdev.  Record them by setting
1752 	 * bios[x] to bio
1753 	 */
1754 	for (disk = 0; disk < geo->raid_disks; disk++) {
1755 		struct md_rdev *rdev, *rrdev;
1756 
1757 		rdev = conf->mirrors[disk].rdev;
1758 		rrdev = conf->mirrors[disk].replacement;
1759 		r10_bio->devs[disk].bio = NULL;
1760 		r10_bio->devs[disk].repl_bio = NULL;
1761 
1762 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1763 			rdev = NULL;
1764 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1765 			rrdev = NULL;
1766 		if (!rdev && !rrdev)
1767 			continue;
1768 
1769 		if (rdev) {
1770 			r10_bio->devs[disk].bio = bio;
1771 			atomic_inc(&rdev->nr_pending);
1772 		}
1773 		if (rrdev) {
1774 			r10_bio->devs[disk].repl_bio = bio;
1775 			atomic_inc(&rrdev->nr_pending);
1776 		}
1777 	}
1778 
1779 	atomic_set(&r10_bio->remaining, 1);
1780 	for (disk = 0; disk < geo->raid_disks; disk++) {
1781 		sector_t dev_start, dev_end;
1782 		struct bio *mbio, *rbio = NULL;
1783 
1784 		/*
1785 		 * Now start to calculate the start and end address for each disk.
1786 		 * The space between dev_start and dev_end is the discard region.
1787 		 *
1788 		 * For dev_start, it needs to consider three conditions:
1789 		 * 1st, the disk is before start_disk, you can imagine the disk in
1790 		 * the next stripe. So the dev_start is the start address of next
1791 		 * stripe.
1792 		 * 2st, the disk is after start_disk, it means the disk is at the
1793 		 * same stripe of first disk
1794 		 * 3st, the first disk itself, we can use start_disk_offset directly
1795 		 */
1796 		if (disk < start_disk_index)
1797 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1798 		else if (disk > start_disk_index)
1799 			dev_start = first_stripe_index * mddev->chunk_sectors;
1800 		else
1801 			dev_start = start_disk_offset;
1802 
1803 		if (disk < end_disk_index)
1804 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1805 		else if (disk > end_disk_index)
1806 			dev_end = last_stripe_index * mddev->chunk_sectors;
1807 		else
1808 			dev_end = end_disk_offset;
1809 
1810 		/*
1811 		 * It only handles discard bio which size is >= stripe size, so
1812 		 * dev_end > dev_start all the time.
1813 		 * It doesn't need to use rcu lock to get rdev here. We already
1814 		 * add rdev->nr_pending in the first loop.
1815 		 */
1816 		if (r10_bio->devs[disk].bio) {
1817 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1818 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1819 					       &mddev->bio_set);
1820 			mbio->bi_end_io = raid10_end_discard_request;
1821 			mbio->bi_private = r10_bio;
1822 			r10_bio->devs[disk].bio = mbio;
1823 			r10_bio->devs[disk].devnum = disk;
1824 			atomic_inc(&r10_bio->remaining);
1825 			md_submit_discard_bio(mddev, rdev, mbio,
1826 					dev_start + choose_data_offset(r10_bio, rdev),
1827 					dev_end - dev_start);
1828 			bio_endio(mbio);
1829 		}
1830 		if (r10_bio->devs[disk].repl_bio) {
1831 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1832 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1833 					       &mddev->bio_set);
1834 			rbio->bi_end_io = raid10_end_discard_request;
1835 			rbio->bi_private = r10_bio;
1836 			r10_bio->devs[disk].repl_bio = rbio;
1837 			r10_bio->devs[disk].devnum = disk;
1838 			atomic_inc(&r10_bio->remaining);
1839 			md_submit_discard_bio(mddev, rrdev, rbio,
1840 					dev_start + choose_data_offset(r10_bio, rrdev),
1841 					dev_end - dev_start);
1842 			bio_endio(rbio);
1843 		}
1844 	}
1845 
1846 	if (!geo->far_offset && --far_copies) {
1847 		first_stripe_index += geo->stride >> geo->chunk_shift;
1848 		start_disk_offset += geo->stride;
1849 		last_stripe_index += geo->stride >> geo->chunk_shift;
1850 		end_disk_offset += geo->stride;
1851 		atomic_inc(&first_r10bio->remaining);
1852 		raid_end_discard_bio(r10_bio);
1853 		wait_barrier(conf, false);
1854 		goto retry_discard;
1855 	}
1856 
1857 	raid_end_discard_bio(r10_bio);
1858 
1859 	return 0;
1860 out:
1861 	allow_barrier(conf);
1862 	return -EAGAIN;
1863 }
1864 
1865 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1866 {
1867 	struct r10conf *conf = mddev->private;
1868 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1869 	int chunk_sects = chunk_mask + 1;
1870 	int sectors = bio_sectors(bio);
1871 
1872 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1873 	    && md_flush_request(mddev, bio))
1874 		return true;
1875 
1876 	md_write_start(mddev, bio);
1877 
1878 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1879 		if (!raid10_handle_discard(mddev, bio))
1880 			return true;
1881 
1882 	/*
1883 	 * If this request crosses a chunk boundary, we need to split
1884 	 * it.
1885 	 */
1886 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1887 		     sectors > chunk_sects
1888 		     && (conf->geo.near_copies < conf->geo.raid_disks
1889 			 || conf->prev.near_copies <
1890 			 conf->prev.raid_disks)))
1891 		sectors = chunk_sects -
1892 			(bio->bi_iter.bi_sector &
1893 			 (chunk_sects - 1));
1894 	__make_request(mddev, bio, sectors);
1895 
1896 	/* In case raid10d snuck in to freeze_array */
1897 	wake_up_barrier(conf);
1898 	return true;
1899 }
1900 
1901 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1902 {
1903 	struct r10conf *conf = mddev->private;
1904 	int i;
1905 
1906 	lockdep_assert_held(&mddev->lock);
1907 
1908 	if (conf->geo.near_copies < conf->geo.raid_disks)
1909 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1910 	if (conf->geo.near_copies > 1)
1911 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1912 	if (conf->geo.far_copies > 1) {
1913 		if (conf->geo.far_offset)
1914 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1915 		else
1916 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1917 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1918 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1919 	}
1920 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1921 					conf->geo.raid_disks - mddev->degraded);
1922 	for (i = 0; i < conf->geo.raid_disks; i++) {
1923 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1924 
1925 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1926 	}
1927 	seq_printf(seq, "]");
1928 }
1929 
1930 /* check if there are enough drives for
1931  * every block to appear on atleast one.
1932  * Don't consider the device numbered 'ignore'
1933  * as we might be about to remove it.
1934  */
1935 static int _enough(struct r10conf *conf, int previous, int ignore)
1936 {
1937 	int first = 0;
1938 	int has_enough = 0;
1939 	int disks, ncopies;
1940 	if (previous) {
1941 		disks = conf->prev.raid_disks;
1942 		ncopies = conf->prev.near_copies;
1943 	} else {
1944 		disks = conf->geo.raid_disks;
1945 		ncopies = conf->geo.near_copies;
1946 	}
1947 
1948 	do {
1949 		int n = conf->copies;
1950 		int cnt = 0;
1951 		int this = first;
1952 		while (n--) {
1953 			struct md_rdev *rdev;
1954 			if (this != ignore &&
1955 			    (rdev = conf->mirrors[this].rdev) &&
1956 			    test_bit(In_sync, &rdev->flags))
1957 				cnt++;
1958 			this = (this+1) % disks;
1959 		}
1960 		if (cnt == 0)
1961 			goto out;
1962 		first = (first + ncopies) % disks;
1963 	} while (first != 0);
1964 	has_enough = 1;
1965 out:
1966 	return has_enough;
1967 }
1968 
1969 static int enough(struct r10conf *conf, int ignore)
1970 {
1971 	/* when calling 'enough', both 'prev' and 'geo' must
1972 	 * be stable.
1973 	 * This is ensured if ->reconfig_mutex or ->device_lock
1974 	 * is held.
1975 	 */
1976 	return _enough(conf, 0, ignore) &&
1977 		_enough(conf, 1, ignore);
1978 }
1979 
1980 /**
1981  * raid10_error() - RAID10 error handler.
1982  * @mddev: affected md device.
1983  * @rdev: member device to fail.
1984  *
1985  * The routine acknowledges &rdev failure and determines new @mddev state.
1986  * If it failed, then:
1987  *	- &MD_BROKEN flag is set in &mddev->flags.
1988  * Otherwise, it must be degraded:
1989  *	- recovery is interrupted.
1990  *	- &mddev->degraded is bumped.
1991  *
1992  * @rdev is marked as &Faulty excluding case when array is failed and
1993  * MD_FAILLAST_DEV is not set.
1994  */
1995 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1996 {
1997 	struct r10conf *conf = mddev->private;
1998 	unsigned long flags;
1999 
2000 	spin_lock_irqsave(&conf->device_lock, flags);
2001 
2002 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2003 		set_bit(MD_BROKEN, &mddev->flags);
2004 
2005 		if (!test_bit(MD_FAILLAST_DEV, &mddev->flags)) {
2006 			spin_unlock_irqrestore(&conf->device_lock, flags);
2007 			return;
2008 		}
2009 	}
2010 	if (test_and_clear_bit(In_sync, &rdev->flags))
2011 		mddev->degraded++;
2012 
2013 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2014 	set_bit(Blocked, &rdev->flags);
2015 	set_bit(Faulty, &rdev->flags);
2016 	set_mask_bits(&mddev->sb_flags, 0,
2017 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2018 	spin_unlock_irqrestore(&conf->device_lock, flags);
2019 	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2020 		"md/raid10:%s: Operation continuing on %d devices.\n",
2021 		mdname(mddev), rdev->bdev,
2022 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2023 }
2024 
2025 static void print_conf(struct r10conf *conf)
2026 {
2027 	int i;
2028 	struct md_rdev *rdev;
2029 
2030 	pr_debug("RAID10 conf printout:\n");
2031 	if (!conf) {
2032 		pr_debug("(!conf)\n");
2033 		return;
2034 	}
2035 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2036 		 conf->geo.raid_disks);
2037 
2038 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
2039 	for (i = 0; i < conf->geo.raid_disks; i++) {
2040 		rdev = conf->mirrors[i].rdev;
2041 		if (rdev)
2042 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2043 				 i, !test_bit(In_sync, &rdev->flags),
2044 				 !test_bit(Faulty, &rdev->flags),
2045 				 rdev->bdev);
2046 	}
2047 }
2048 
2049 static void close_sync(struct r10conf *conf)
2050 {
2051 	wait_barrier(conf, false);
2052 	allow_barrier(conf);
2053 
2054 	mempool_exit(&conf->r10buf_pool);
2055 }
2056 
2057 static int raid10_spare_active(struct mddev *mddev)
2058 {
2059 	int i;
2060 	struct r10conf *conf = mddev->private;
2061 	struct raid10_info *tmp;
2062 	int count = 0;
2063 	unsigned long flags;
2064 
2065 	/*
2066 	 * Find all non-in_sync disks within the RAID10 configuration
2067 	 * and mark them in_sync
2068 	 */
2069 	for (i = 0; i < conf->geo.raid_disks; i++) {
2070 		tmp = conf->mirrors + i;
2071 		if (tmp->replacement
2072 		    && tmp->replacement->recovery_offset == MaxSector
2073 		    && !test_bit(Faulty, &tmp->replacement->flags)
2074 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2075 			/* Replacement has just become active */
2076 			if (!tmp->rdev
2077 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2078 				count++;
2079 			if (tmp->rdev) {
2080 				/* Replaced device not technically faulty,
2081 				 * but we need to be sure it gets removed
2082 				 * and never re-added.
2083 				 */
2084 				set_bit(Faulty, &tmp->rdev->flags);
2085 				sysfs_notify_dirent_safe(
2086 					tmp->rdev->sysfs_state);
2087 			}
2088 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2089 		} else if (tmp->rdev
2090 			   && tmp->rdev->recovery_offset == MaxSector
2091 			   && !test_bit(Faulty, &tmp->rdev->flags)
2092 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2093 			count++;
2094 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2095 		}
2096 	}
2097 	spin_lock_irqsave(&conf->device_lock, flags);
2098 	mddev->degraded -= count;
2099 	spin_unlock_irqrestore(&conf->device_lock, flags);
2100 
2101 	print_conf(conf);
2102 	return count;
2103 }
2104 
2105 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2106 {
2107 	struct r10conf *conf = mddev->private;
2108 	int err = -EEXIST;
2109 	int mirror, repl_slot = -1;
2110 	int first = 0;
2111 	int last = conf->geo.raid_disks - 1;
2112 	struct raid10_info *p;
2113 
2114 	if (mddev->resync_offset < MaxSector)
2115 		/* only hot-add to in-sync arrays, as recovery is
2116 		 * very different from resync
2117 		 */
2118 		return -EBUSY;
2119 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2120 		return -EINVAL;
2121 
2122 	if (rdev->raid_disk >= 0)
2123 		first = last = rdev->raid_disk;
2124 
2125 	if (rdev->saved_raid_disk >= first &&
2126 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2127 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2128 		mirror = rdev->saved_raid_disk;
2129 	else
2130 		mirror = first;
2131 	for ( ; mirror <= last ; mirror++) {
2132 		p = &conf->mirrors[mirror];
2133 		if (p->rdev) {
2134 			if (test_bit(WantReplacement, &p->rdev->flags) &&
2135 			    p->replacement == NULL && repl_slot < 0)
2136 				repl_slot = mirror;
2137 			continue;
2138 		}
2139 
2140 		err = mddev_stack_new_rdev(mddev, rdev);
2141 		if (err)
2142 			return err;
2143 		p->head_position = 0;
2144 		rdev->raid_disk = mirror;
2145 		err = 0;
2146 		if (rdev->saved_raid_disk != mirror)
2147 			conf->fullsync = 1;
2148 		WRITE_ONCE(p->rdev, rdev);
2149 		break;
2150 	}
2151 
2152 	if (err && repl_slot >= 0) {
2153 		p = &conf->mirrors[repl_slot];
2154 		clear_bit(In_sync, &rdev->flags);
2155 		set_bit(Replacement, &rdev->flags);
2156 		rdev->raid_disk = repl_slot;
2157 		err = mddev_stack_new_rdev(mddev, rdev);
2158 		if (err)
2159 			return err;
2160 		conf->fullsync = 1;
2161 		WRITE_ONCE(p->replacement, rdev);
2162 	}
2163 
2164 	print_conf(conf);
2165 	return err;
2166 }
2167 
2168 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2169 {
2170 	struct r10conf *conf = mddev->private;
2171 	int err = 0;
2172 	int number = rdev->raid_disk;
2173 	struct md_rdev **rdevp;
2174 	struct raid10_info *p;
2175 
2176 	print_conf(conf);
2177 	if (unlikely(number >= mddev->raid_disks))
2178 		return 0;
2179 	p = conf->mirrors + number;
2180 	if (rdev == p->rdev)
2181 		rdevp = &p->rdev;
2182 	else if (rdev == p->replacement)
2183 		rdevp = &p->replacement;
2184 	else
2185 		return 0;
2186 
2187 	if (test_bit(In_sync, &rdev->flags) ||
2188 	    atomic_read(&rdev->nr_pending)) {
2189 		err = -EBUSY;
2190 		goto abort;
2191 	}
2192 	/* Only remove non-faulty devices if recovery
2193 	 * is not possible.
2194 	 */
2195 	if (!test_bit(Faulty, &rdev->flags) &&
2196 	    (!p->replacement || p->replacement == rdev) &&
2197 	    number < conf->geo.raid_disks &&
2198 	    enough(conf, -1)) {
2199 		err = -EBUSY;
2200 		goto abort;
2201 	}
2202 	WRITE_ONCE(*rdevp, NULL);
2203 	if (p->replacement) {
2204 		/* We must have just cleared 'rdev' */
2205 		WRITE_ONCE(p->rdev, p->replacement);
2206 		clear_bit(Replacement, &p->replacement->flags);
2207 		WRITE_ONCE(p->replacement, NULL);
2208 	}
2209 
2210 	clear_bit(WantReplacement, &rdev->flags);
2211 	err = md_integrity_register(mddev);
2212 
2213 abort:
2214 
2215 	print_conf(conf);
2216 	return err;
2217 }
2218 
2219 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2220 {
2221 	struct r10conf *conf = r10_bio->mddev->private;
2222 
2223 	if (!bio->bi_status)
2224 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2225 	else
2226 		/* The write handler will notice the lack of
2227 		 * R10BIO_Uptodate and record any errors etc
2228 		 */
2229 		atomic_add(r10_bio->sectors,
2230 			   &conf->mirrors[d].rdev->corrected_errors);
2231 
2232 	/* for reconstruct, we always reschedule after a read.
2233 	 * for resync, only after all reads
2234 	 */
2235 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2236 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2237 	    atomic_dec_and_test(&r10_bio->remaining)) {
2238 		/* we have read all the blocks,
2239 		 * do the comparison in process context in raid10d
2240 		 */
2241 		reschedule_retry(r10_bio);
2242 	}
2243 }
2244 
2245 static void end_sync_read(struct bio *bio)
2246 {
2247 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2248 	struct r10conf *conf = r10_bio->mddev->private;
2249 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2250 
2251 	__end_sync_read(r10_bio, bio, d);
2252 }
2253 
2254 static void end_reshape_read(struct bio *bio)
2255 {
2256 	/* reshape read bio isn't allocated from r10buf_pool */
2257 	struct r10bio *r10_bio = bio->bi_private;
2258 
2259 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2260 }
2261 
2262 static void end_sync_request(struct r10bio *r10_bio)
2263 {
2264 	struct mddev *mddev = r10_bio->mddev;
2265 
2266 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2267 		if (r10_bio->master_bio == NULL) {
2268 			/* the primary of several recovery bios */
2269 			sector_t s = r10_bio->sectors;
2270 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2271 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2272 				reschedule_retry(r10_bio);
2273 			else
2274 				put_buf(r10_bio);
2275 			md_done_sync(mddev, s);
2276 			break;
2277 		} else {
2278 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2279 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2280 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2281 				reschedule_retry(r10_bio);
2282 			else
2283 				put_buf(r10_bio);
2284 			r10_bio = r10_bio2;
2285 		}
2286 	}
2287 }
2288 
2289 static void end_sync_write(struct bio *bio)
2290 {
2291 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2292 	struct mddev *mddev = r10_bio->mddev;
2293 	struct r10conf *conf = mddev->private;
2294 	int d;
2295 	int slot;
2296 	int repl;
2297 	struct md_rdev *rdev = NULL;
2298 
2299 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2300 	if (repl)
2301 		rdev = conf->mirrors[d].replacement;
2302 	else
2303 		rdev = conf->mirrors[d].rdev;
2304 
2305 	if (bio->bi_status) {
2306 		if (repl)
2307 			md_error(mddev, rdev);
2308 		else {
2309 			set_bit(WriteErrorSeen, &rdev->flags);
2310 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2311 				set_bit(MD_RECOVERY_NEEDED,
2312 					&rdev->mddev->recovery);
2313 			set_bit(R10BIO_WriteError, &r10_bio->state);
2314 		}
2315 	} else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2316 				     r10_bio->sectors)) {
2317 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2318 	}
2319 
2320 	rdev_dec_pending(rdev, mddev);
2321 
2322 	end_sync_request(r10_bio);
2323 }
2324 
2325 /*
2326  * Note: sync and recover and handled very differently for raid10
2327  * This code is for resync.
2328  * For resync, we read through virtual addresses and read all blocks.
2329  * If there is any error, we schedule a write.  The lowest numbered
2330  * drive is authoritative.
2331  * However requests come for physical address, so we need to map.
2332  * For every physical address there are raid_disks/copies virtual addresses,
2333  * which is always are least one, but is not necessarly an integer.
2334  * This means that a physical address can span multiple chunks, so we may
2335  * have to submit multiple io requests for a single sync request.
2336  */
2337 /*
2338  * We check if all blocks are in-sync and only write to blocks that
2339  * aren't in sync
2340  */
2341 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2342 {
2343 	struct r10conf *conf = mddev->private;
2344 	int i, first;
2345 	struct bio *tbio, *fbio;
2346 	int vcnt;
2347 	struct page **tpages, **fpages;
2348 
2349 	atomic_set(&r10_bio->remaining, 1);
2350 
2351 	/* find the first device with a block */
2352 	for (i=0; i<conf->copies; i++)
2353 		if (!r10_bio->devs[i].bio->bi_status)
2354 			break;
2355 
2356 	if (i == conf->copies)
2357 		goto done;
2358 
2359 	first = i;
2360 	fbio = r10_bio->devs[i].bio;
2361 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2362 	fbio->bi_iter.bi_idx = 0;
2363 	fpages = get_resync_pages(fbio)->pages;
2364 
2365 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2366 	/* now find blocks with errors */
2367 	for (i=0 ; i < conf->copies ; i++) {
2368 		int  j, d;
2369 		struct md_rdev *rdev;
2370 		struct resync_pages *rp;
2371 
2372 		tbio = r10_bio->devs[i].bio;
2373 
2374 		if (tbio->bi_end_io != end_sync_read)
2375 			continue;
2376 		if (i == first)
2377 			continue;
2378 
2379 		tpages = get_resync_pages(tbio)->pages;
2380 		d = r10_bio->devs[i].devnum;
2381 		rdev = conf->mirrors[d].rdev;
2382 		if (!r10_bio->devs[i].bio->bi_status) {
2383 			/* We know that the bi_io_vec layout is the same for
2384 			 * both 'first' and 'i', so we just compare them.
2385 			 * All vec entries are PAGE_SIZE;
2386 			 */
2387 			int sectors = r10_bio->sectors;
2388 			for (j = 0; j < vcnt; j++) {
2389 				int len = PAGE_SIZE;
2390 				if (sectors < (len / 512))
2391 					len = sectors * 512;
2392 				if (memcmp(page_address(fpages[j]),
2393 					   page_address(tpages[j]),
2394 					   len))
2395 					break;
2396 				sectors -= len/512;
2397 			}
2398 			if (j == vcnt)
2399 				continue;
2400 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2401 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2402 				/* Don't fix anything. */
2403 				continue;
2404 		} else if (test_bit(FailFast, &rdev->flags)) {
2405 			/* Just give up on this device */
2406 			md_error(rdev->mddev, rdev);
2407 			continue;
2408 		}
2409 		/* Ok, we need to write this bio, either to correct an
2410 		 * inconsistency or to correct an unreadable block.
2411 		 * First we need to fixup bv_offset, bv_len and
2412 		 * bi_vecs, as the read request might have corrupted these
2413 		 */
2414 		rp = get_resync_pages(tbio);
2415 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2416 
2417 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2418 
2419 		rp->raid_bio = r10_bio;
2420 		tbio->bi_private = rp;
2421 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2422 		tbio->bi_end_io = end_sync_write;
2423 
2424 		bio_copy_data(tbio, fbio);
2425 
2426 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2427 		atomic_inc(&r10_bio->remaining);
2428 
2429 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2430 			tbio->bi_opf |= MD_FAILFAST;
2431 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2432 		submit_bio_noacct(tbio);
2433 	}
2434 
2435 	/* Now write out to any replacement devices
2436 	 * that are active
2437 	 */
2438 	for (i = 0; i < conf->copies; i++) {
2439 		tbio = r10_bio->devs[i].repl_bio;
2440 		if (!tbio || !tbio->bi_end_io)
2441 			continue;
2442 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2443 		    && r10_bio->devs[i].bio != fbio)
2444 			bio_copy_data(tbio, fbio);
2445 		atomic_inc(&r10_bio->remaining);
2446 		submit_bio_noacct(tbio);
2447 	}
2448 
2449 done:
2450 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2451 		md_done_sync(mddev, r10_bio->sectors);
2452 		put_buf(r10_bio);
2453 	}
2454 }
2455 
2456 /*
2457  * Now for the recovery code.
2458  * Recovery happens across physical sectors.
2459  * We recover all non-is_sync drives by finding the virtual address of
2460  * each, and then choose a working drive that also has that virt address.
2461  * There is a separate r10_bio for each non-in_sync drive.
2462  * Only the first two slots are in use. The first for reading,
2463  * The second for writing.
2464  *
2465  */
2466 static void fix_recovery_read_error(struct r10bio *r10_bio)
2467 {
2468 	/* We got a read error during recovery.
2469 	 * We repeat the read in smaller page-sized sections.
2470 	 * If a read succeeds, write it to the new device or record
2471 	 * a bad block if we cannot.
2472 	 * If a read fails, record a bad block on both old and
2473 	 * new devices.
2474 	 */
2475 	struct mddev *mddev = r10_bio->mddev;
2476 	struct r10conf *conf = mddev->private;
2477 	struct bio *bio = r10_bio->devs[0].bio;
2478 	sector_t sect = 0;
2479 	int sectors = r10_bio->sectors;
2480 	int idx = 0;
2481 	int dr = r10_bio->devs[0].devnum;
2482 	int dw = r10_bio->devs[1].devnum;
2483 	struct page **pages = get_resync_pages(bio)->pages;
2484 
2485 	while (sectors) {
2486 		int s = sectors;
2487 		struct md_rdev *rdev;
2488 		sector_t addr;
2489 		int ok;
2490 
2491 		if (s > (PAGE_SIZE>>9))
2492 			s = PAGE_SIZE >> 9;
2493 
2494 		rdev = conf->mirrors[dr].rdev;
2495 		addr = r10_bio->devs[0].addr + sect;
2496 		ok = sync_page_io(rdev,
2497 				  addr,
2498 				  s << 9,
2499 				  pages[idx],
2500 				  REQ_OP_READ, false);
2501 		if (ok) {
2502 			rdev = conf->mirrors[dw].rdev;
2503 			addr = r10_bio->devs[1].addr + sect;
2504 			ok = sync_page_io(rdev,
2505 					  addr,
2506 					  s << 9,
2507 					  pages[idx],
2508 					  REQ_OP_WRITE, false);
2509 			if (!ok) {
2510 				set_bit(WriteErrorSeen, &rdev->flags);
2511 				if (!test_and_set_bit(WantReplacement,
2512 						      &rdev->flags))
2513 					set_bit(MD_RECOVERY_NEEDED,
2514 						&rdev->mddev->recovery);
2515 			}
2516 		}
2517 		if (!ok) {
2518 			/* We don't worry if we cannot set a bad block -
2519 			 * it really is bad so there is no loss in not
2520 			 * recording it yet
2521 			 */
2522 			rdev_set_badblocks(rdev, addr, s, 0);
2523 
2524 			if (rdev != conf->mirrors[dw].rdev) {
2525 				/* need bad block on destination too */
2526 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2527 				addr = r10_bio->devs[1].addr + sect;
2528 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2529 				if (!ok) {
2530 					/* just abort the recovery */
2531 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2532 						  mdname(mddev));
2533 
2534 					set_bit(MD_RECOVERY_INTR,
2535 						&mddev->recovery);
2536 					break;
2537 				}
2538 			}
2539 		}
2540 
2541 		sectors -= s;
2542 		sect += s;
2543 		idx++;
2544 	}
2545 }
2546 
2547 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2548 {
2549 	struct r10conf *conf = mddev->private;
2550 	int d;
2551 	struct bio *wbio = r10_bio->devs[1].bio;
2552 	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2553 
2554 	/* Need to test wbio2->bi_end_io before we call
2555 	 * submit_bio_noacct as if the former is NULL,
2556 	 * the latter is free to free wbio2.
2557 	 */
2558 	if (wbio2 && !wbio2->bi_end_io)
2559 		wbio2 = NULL;
2560 
2561 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2562 		fix_recovery_read_error(r10_bio);
2563 		if (wbio->bi_end_io)
2564 			end_sync_request(r10_bio);
2565 		if (wbio2)
2566 			end_sync_request(r10_bio);
2567 		return;
2568 	}
2569 
2570 	/*
2571 	 * share the pages with the first bio
2572 	 * and submit the write request
2573 	 */
2574 	d = r10_bio->devs[1].devnum;
2575 	if (wbio->bi_end_io) {
2576 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2577 		submit_bio_noacct(wbio);
2578 	}
2579 	if (wbio2) {
2580 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2581 		submit_bio_noacct(wbio2);
2582 	}
2583 }
2584 
2585 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2586 			    int sectors, struct page *page, enum req_op op)
2587 {
2588 	if (rdev_has_badblock(rdev, sector, sectors) &&
2589 	    (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2590 		return -1;
2591 	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2592 		/* success */
2593 		return 1;
2594 	if (op == REQ_OP_WRITE) {
2595 		set_bit(WriteErrorSeen, &rdev->flags);
2596 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2597 			set_bit(MD_RECOVERY_NEEDED,
2598 				&rdev->mddev->recovery);
2599 	}
2600 	/* need to record an error - either for the block or the device */
2601 	rdev_set_badblocks(rdev, sector, sectors, 0);
2602 	return 0;
2603 }
2604 
2605 /*
2606  * This is a kernel thread which:
2607  *
2608  *	1.	Retries failed read operations on working mirrors.
2609  *	2.	Updates the raid superblock when problems encounter.
2610  *	3.	Performs writes following reads for array synchronising.
2611  */
2612 
2613 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2614 {
2615 	int sect = 0; /* Offset from r10_bio->sector */
2616 	int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2617 	struct md_rdev *rdev;
2618 	int d = r10_bio->devs[slot].devnum;
2619 
2620 	/* still own a reference to this rdev, so it cannot
2621 	 * have been cleared recently.
2622 	 */
2623 	rdev = conf->mirrors[d].rdev;
2624 
2625 	if (test_bit(Faulty, &rdev->flags))
2626 		/* drive has already been failed, just ignore any
2627 		   more fix_read_error() attempts */
2628 		return;
2629 
2630 	if (exceed_read_errors(mddev, rdev)) {
2631 		r10_bio->devs[slot].bio = IO_BLOCKED;
2632 		return;
2633 	}
2634 
2635 	while(sectors) {
2636 		int s = sectors;
2637 		int sl = slot;
2638 		int success = 0;
2639 		int start;
2640 
2641 		if (s > (PAGE_SIZE>>9))
2642 			s = PAGE_SIZE >> 9;
2643 
2644 		do {
2645 			d = r10_bio->devs[sl].devnum;
2646 			rdev = conf->mirrors[d].rdev;
2647 			if (rdev &&
2648 			    test_bit(In_sync, &rdev->flags) &&
2649 			    !test_bit(Faulty, &rdev->flags) &&
2650 			    rdev_has_badblock(rdev,
2651 					      r10_bio->devs[sl].addr + sect,
2652 					      s) == 0) {
2653 				atomic_inc(&rdev->nr_pending);
2654 				success = sync_page_io(rdev,
2655 						       r10_bio->devs[sl].addr +
2656 						       sect,
2657 						       s<<9,
2658 						       conf->tmppage,
2659 						       REQ_OP_READ, false);
2660 				rdev_dec_pending(rdev, mddev);
2661 				if (success)
2662 					break;
2663 			}
2664 			sl++;
2665 			if (sl == conf->copies)
2666 				sl = 0;
2667 		} while (sl != slot);
2668 
2669 		if (!success) {
2670 			/* Cannot read from anywhere, just mark the block
2671 			 * as bad on the first device to discourage future
2672 			 * reads.
2673 			 */
2674 			int dn = r10_bio->devs[slot].devnum;
2675 			rdev = conf->mirrors[dn].rdev;
2676 
2677 			if (!rdev_set_badblocks(
2678 				    rdev,
2679 				    r10_bio->devs[slot].addr
2680 				    + sect,
2681 				    s, 0)) {
2682 				r10_bio->devs[slot].bio
2683 					= IO_BLOCKED;
2684 			}
2685 			break;
2686 		}
2687 
2688 		start = sl;
2689 		/* write it back and re-read */
2690 		while (sl != slot) {
2691 			if (sl==0)
2692 				sl = conf->copies;
2693 			sl--;
2694 			d = r10_bio->devs[sl].devnum;
2695 			rdev = conf->mirrors[d].rdev;
2696 			if (!rdev ||
2697 			    test_bit(Faulty, &rdev->flags) ||
2698 			    !test_bit(In_sync, &rdev->flags))
2699 				continue;
2700 
2701 			atomic_inc(&rdev->nr_pending);
2702 			if (r10_sync_page_io(rdev,
2703 					     r10_bio->devs[sl].addr +
2704 					     sect,
2705 					     s, conf->tmppage, REQ_OP_WRITE)
2706 			    == 0) {
2707 				/* Well, this device is dead */
2708 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2709 					  mdname(mddev), s,
2710 					  (unsigned long long)(
2711 						  sect +
2712 						  choose_data_offset(r10_bio,
2713 								     rdev)),
2714 					  rdev->bdev);
2715 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2716 					  mdname(mddev),
2717 					  rdev->bdev);
2718 			}
2719 			rdev_dec_pending(rdev, mddev);
2720 		}
2721 		sl = start;
2722 		while (sl != slot) {
2723 			if (sl==0)
2724 				sl = conf->copies;
2725 			sl--;
2726 			d = r10_bio->devs[sl].devnum;
2727 			rdev = conf->mirrors[d].rdev;
2728 			if (!rdev ||
2729 			    test_bit(Faulty, &rdev->flags) ||
2730 			    !test_bit(In_sync, &rdev->flags))
2731 				continue;
2732 
2733 			atomic_inc(&rdev->nr_pending);
2734 			switch (r10_sync_page_io(rdev,
2735 					     r10_bio->devs[sl].addr +
2736 					     sect,
2737 					     s, conf->tmppage, REQ_OP_READ)) {
2738 			case 0:
2739 				/* Well, this device is dead */
2740 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2741 				       mdname(mddev), s,
2742 				       (unsigned long long)(
2743 					       sect +
2744 					       choose_data_offset(r10_bio, rdev)),
2745 				       rdev->bdev);
2746 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2747 				       mdname(mddev),
2748 				       rdev->bdev);
2749 				break;
2750 			case 1:
2751 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2752 				       mdname(mddev), s,
2753 				       (unsigned long long)(
2754 					       sect +
2755 					       choose_data_offset(r10_bio, rdev)),
2756 				       rdev->bdev);
2757 				atomic_add(s, &rdev->corrected_errors);
2758 			}
2759 
2760 			rdev_dec_pending(rdev, mddev);
2761 		}
2762 
2763 		sectors -= s;
2764 		sect += s;
2765 	}
2766 }
2767 
2768 static void narrow_write_error(struct r10bio *r10_bio, int i)
2769 {
2770 	struct bio *bio = r10_bio->master_bio;
2771 	struct mddev *mddev = r10_bio->mddev;
2772 	struct r10conf *conf = mddev->private;
2773 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2774 	/* bio has the data to be written to slot 'i' where
2775 	 * we just recently had a write error.
2776 	 * We repeatedly clone the bio and trim down to one block,
2777 	 * then try the write.  Where the write fails we record
2778 	 * a bad block.
2779 	 * It is conceivable that the bio doesn't exactly align with
2780 	 * blocks.  We must handle this.
2781 	 *
2782 	 * We currently own a reference to the rdev.
2783 	 */
2784 
2785 	int block_sectors, lbs = bdev_logical_block_size(rdev->bdev) >> 9;
2786 	sector_t sector;
2787 	int sectors;
2788 	int sect_to_write = r10_bio->sectors;
2789 
2790 	if (rdev->badblocks.shift < 0)
2791 		block_sectors = lbs;
2792 	else
2793 		block_sectors = roundup(1 << rdev->badblocks.shift, lbs);
2794 
2795 	sector = r10_bio->sector;
2796 	sectors = ((r10_bio->sector + block_sectors)
2797 		   & ~(sector_t)(block_sectors - 1))
2798 		- sector;
2799 
2800 	while (sect_to_write) {
2801 		struct bio *wbio;
2802 		sector_t wsector;
2803 		if (sectors > sect_to_write)
2804 			sectors = sect_to_write;
2805 		/* Write at 'sector' for 'sectors' */
2806 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2807 				       &mddev->bio_set);
2808 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2809 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2810 		wbio->bi_iter.bi_sector = wsector +
2811 				   choose_data_offset(r10_bio, rdev);
2812 		wbio->bi_opf = REQ_OP_WRITE;
2813 
2814 		if (submit_bio_wait(wbio) &&
2815 		    !rdev_set_badblocks(rdev, wsector, sectors, 0)) {
2816 			/*
2817 			 * Badblocks set failed, disk marked Faulty.
2818 			 * No further operations needed.
2819 			 */
2820 			bio_put(wbio);
2821 			break;
2822 		}
2823 
2824 		bio_put(wbio);
2825 		sect_to_write -= sectors;
2826 		sector += sectors;
2827 		sectors = block_sectors;
2828 	}
2829 }
2830 
2831 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2832 {
2833 	int slot = r10_bio->read_slot;
2834 	struct bio *bio;
2835 	struct r10conf *conf = mddev->private;
2836 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2837 
2838 	/* we got a read error. Maybe the drive is bad.  Maybe just
2839 	 * the block and we can fix it.
2840 	 * We freeze all other IO, and try reading the block from
2841 	 * other devices.  When we find one, we re-write
2842 	 * and check it that fixes the read error.
2843 	 * This is all done synchronously while the array is
2844 	 * frozen.
2845 	 */
2846 	bio = r10_bio->devs[slot].bio;
2847 	bio_put(bio);
2848 	r10_bio->devs[slot].bio = NULL;
2849 
2850 	if (mddev->ro)
2851 		r10_bio->devs[slot].bio = IO_BLOCKED;
2852 	else if (!test_bit(FailFast, &rdev->flags)) {
2853 		freeze_array(conf, 1);
2854 		fix_read_error(conf, mddev, r10_bio);
2855 		unfreeze_array(conf);
2856 	} else
2857 		md_error(mddev, rdev);
2858 
2859 	rdev_dec_pending(rdev, mddev);
2860 	r10_bio->state = 0;
2861 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2862 	/*
2863 	 * allow_barrier after re-submit to ensure no sync io
2864 	 * can be issued while regular io pending.
2865 	 */
2866 	allow_barrier(conf);
2867 }
2868 
2869 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2870 {
2871 	/* Some sort of write request has finished and it
2872 	 * succeeded in writing where we thought there was a
2873 	 * bad block.  So forget the bad block.
2874 	 * Or possibly if failed and we need to record
2875 	 * a bad block.
2876 	 */
2877 	int m;
2878 	struct md_rdev *rdev;
2879 
2880 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2881 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2882 		for (m = 0; m < conf->copies; m++) {
2883 			int dev = r10_bio->devs[m].devnum;
2884 			rdev = conf->mirrors[dev].rdev;
2885 			if (r10_bio->devs[m].bio == NULL ||
2886 				r10_bio->devs[m].bio->bi_end_io == NULL)
2887 				continue;
2888 			if (!r10_bio->devs[m].bio->bi_status)
2889 				rdev_clear_badblocks(
2890 					rdev,
2891 					r10_bio->devs[m].addr,
2892 					r10_bio->sectors, 0);
2893 			else
2894 				rdev_set_badblocks(rdev,
2895 						   r10_bio->devs[m].addr,
2896 						   r10_bio->sectors, 0);
2897 			rdev = conf->mirrors[dev].replacement;
2898 			if (r10_bio->devs[m].repl_bio == NULL ||
2899 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2900 				continue;
2901 
2902 			if (!r10_bio->devs[m].repl_bio->bi_status)
2903 				rdev_clear_badblocks(
2904 					rdev,
2905 					r10_bio->devs[m].addr,
2906 					r10_bio->sectors, 0);
2907 			else
2908 				rdev_set_badblocks(rdev,
2909 						   r10_bio->devs[m].addr,
2910 						   r10_bio->sectors, 0);
2911 		}
2912 		put_buf(r10_bio);
2913 	} else {
2914 		bool fail = false;
2915 		for (m = 0; m < conf->copies; m++) {
2916 			int dev = r10_bio->devs[m].devnum;
2917 			struct bio *bio = r10_bio->devs[m].bio;
2918 			rdev = conf->mirrors[dev].rdev;
2919 			if (bio == IO_MADE_GOOD) {
2920 				rdev_clear_badblocks(
2921 					rdev,
2922 					r10_bio->devs[m].addr,
2923 					r10_bio->sectors, 0);
2924 				rdev_dec_pending(rdev, conf->mddev);
2925 			} else if (bio != NULL && bio->bi_status) {
2926 				fail = true;
2927 				narrow_write_error(r10_bio, m);
2928 				rdev_dec_pending(rdev, conf->mddev);
2929 			}
2930 			bio = r10_bio->devs[m].repl_bio;
2931 			rdev = conf->mirrors[dev].replacement;
2932 			if (rdev && bio == IO_MADE_GOOD) {
2933 				rdev_clear_badblocks(
2934 					rdev,
2935 					r10_bio->devs[m].addr,
2936 					r10_bio->sectors, 0);
2937 				rdev_dec_pending(rdev, conf->mddev);
2938 			}
2939 		}
2940 		if (fail) {
2941 			spin_lock_irq(&conf->device_lock);
2942 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2943 			conf->nr_queued++;
2944 			spin_unlock_irq(&conf->device_lock);
2945 			/*
2946 			 * In case freeze_array() is waiting for condition
2947 			 * nr_pending == nr_queued + extra to be true.
2948 			 */
2949 			wake_up(&conf->wait_barrier);
2950 			md_wakeup_thread(conf->mddev->thread);
2951 		} else {
2952 			if (test_bit(R10BIO_WriteError,
2953 				     &r10_bio->state))
2954 				close_write(r10_bio);
2955 			raid_end_bio_io(r10_bio);
2956 		}
2957 	}
2958 }
2959 
2960 static void raid10d(struct md_thread *thread)
2961 {
2962 	struct mddev *mddev = thread->mddev;
2963 	struct r10bio *r10_bio;
2964 	unsigned long flags;
2965 	struct r10conf *conf = mddev->private;
2966 	struct list_head *head = &conf->retry_list;
2967 	struct blk_plug plug;
2968 
2969 	md_check_recovery(mddev);
2970 
2971 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2972 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2973 		LIST_HEAD(tmp);
2974 		spin_lock_irqsave(&conf->device_lock, flags);
2975 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2976 			while (!list_empty(&conf->bio_end_io_list)) {
2977 				list_move(conf->bio_end_io_list.prev, &tmp);
2978 				conf->nr_queued--;
2979 			}
2980 		}
2981 		spin_unlock_irqrestore(&conf->device_lock, flags);
2982 		while (!list_empty(&tmp)) {
2983 			r10_bio = list_first_entry(&tmp, struct r10bio,
2984 						   retry_list);
2985 			list_del(&r10_bio->retry_list);
2986 
2987 			if (test_bit(R10BIO_WriteError,
2988 				     &r10_bio->state))
2989 				close_write(r10_bio);
2990 			raid_end_bio_io(r10_bio);
2991 		}
2992 	}
2993 
2994 	blk_start_plug(&plug);
2995 	for (;;) {
2996 
2997 		flush_pending_writes(conf);
2998 
2999 		spin_lock_irqsave(&conf->device_lock, flags);
3000 		if (list_empty(head)) {
3001 			spin_unlock_irqrestore(&conf->device_lock, flags);
3002 			break;
3003 		}
3004 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3005 		list_del(head->prev);
3006 		conf->nr_queued--;
3007 		spin_unlock_irqrestore(&conf->device_lock, flags);
3008 
3009 		mddev = r10_bio->mddev;
3010 		conf = mddev->private;
3011 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3012 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3013 			handle_write_completed(conf, r10_bio);
3014 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3015 			reshape_request_write(mddev, r10_bio);
3016 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3017 			sync_request_write(mddev, r10_bio);
3018 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3019 			recovery_request_write(mddev, r10_bio);
3020 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3021 			handle_read_error(mddev, r10_bio);
3022 		else
3023 			WARN_ON_ONCE(1);
3024 
3025 		cond_resched();
3026 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3027 			md_check_recovery(mddev);
3028 	}
3029 	blk_finish_plug(&plug);
3030 }
3031 
3032 static int init_resync(struct r10conf *conf)
3033 {
3034 	int ret, buffs, i;
3035 
3036 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3037 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3038 	conf->have_replacement = 0;
3039 	for (i = 0; i < conf->geo.raid_disks; i++)
3040 		if (conf->mirrors[i].replacement)
3041 			conf->have_replacement = 1;
3042 	ret = mempool_init(&conf->r10buf_pool, buffs,
3043 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3044 	if (ret)
3045 		return ret;
3046 	conf->next_resync = 0;
3047 	return 0;
3048 }
3049 
3050 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3051 {
3052 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3053 	struct rsync_pages *rp;
3054 	struct bio *bio;
3055 	int nalloc;
3056 	int i;
3057 
3058 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3059 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3060 		nalloc = conf->copies; /* resync */
3061 	else
3062 		nalloc = 2; /* recovery */
3063 
3064 	for (i = 0; i < nalloc; i++) {
3065 		bio = r10bio->devs[i].bio;
3066 		rp = bio->bi_private;
3067 		bio_reset(bio, NULL, 0);
3068 		bio->bi_private = rp;
3069 		bio = r10bio->devs[i].repl_bio;
3070 		if (bio) {
3071 			rp = bio->bi_private;
3072 			bio_reset(bio, NULL, 0);
3073 			bio->bi_private = rp;
3074 		}
3075 	}
3076 	return r10bio;
3077 }
3078 
3079 /*
3080  * Set cluster_sync_high since we need other nodes to add the
3081  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3082  */
3083 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3084 {
3085 	sector_t window_size;
3086 	int extra_chunk, chunks;
3087 
3088 	/*
3089 	 * First, here we define "stripe" as a unit which across
3090 	 * all member devices one time, so we get chunks by use
3091 	 * raid_disks / near_copies. Otherwise, if near_copies is
3092 	 * close to raid_disks, then resync window could increases
3093 	 * linearly with the increase of raid_disks, which means
3094 	 * we will suspend a really large IO window while it is not
3095 	 * necessary. If raid_disks is not divisible by near_copies,
3096 	 * an extra chunk is needed to ensure the whole "stripe" is
3097 	 * covered.
3098 	 */
3099 
3100 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3101 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3102 		extra_chunk = 0;
3103 	else
3104 		extra_chunk = 1;
3105 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3106 
3107 	/*
3108 	 * At least use a 32M window to align with raid1's resync window
3109 	 */
3110 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3111 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3112 
3113 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3114 }
3115 
3116 /*
3117  * perform a "sync" on one "block"
3118  *
3119  * We need to make sure that no normal I/O request - particularly write
3120  * requests - conflict with active sync requests.
3121  *
3122  * This is achieved by tracking pending requests and a 'barrier' concept
3123  * that can be installed to exclude normal IO requests.
3124  *
3125  * Resync and recovery are handled very differently.
3126  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3127  *
3128  * For resync, we iterate over virtual addresses, read all copies,
3129  * and update if there are differences.  If only one copy is live,
3130  * skip it.
3131  * For recovery, we iterate over physical addresses, read a good
3132  * value for each non-in_sync drive, and over-write.
3133  *
3134  * So, for recovery we may have several outstanding complex requests for a
3135  * given address, one for each out-of-sync device.  We model this by allocating
3136  * a number of r10_bio structures, one for each out-of-sync device.
3137  * As we setup these structures, we collect all bio's together into a list
3138  * which we then process collectively to add pages, and then process again
3139  * to pass to submit_bio_noacct.
3140  *
3141  * The r10_bio structures are linked using a borrowed master_bio pointer.
3142  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3143  * has its remaining count decremented to 0, the whole complex operation
3144  * is complete.
3145  *
3146  */
3147 
3148 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3149 				    sector_t max_sector, int *skipped)
3150 {
3151 	struct r10conf *conf = mddev->private;
3152 	struct r10bio *r10_bio;
3153 	struct bio *biolist = NULL, *bio;
3154 	sector_t nr_sectors;
3155 	int i;
3156 	int max_sync;
3157 	sector_t sync_blocks;
3158 	sector_t chunk_mask = conf->geo.chunk_mask;
3159 	int page_idx = 0;
3160 
3161 	/*
3162 	 * Allow skipping a full rebuild for incremental assembly
3163 	 * of a clean array, like RAID1 does.
3164 	 */
3165 	if (mddev->bitmap == NULL &&
3166 	    mddev->resync_offset == MaxSector &&
3167 	    mddev->reshape_position == MaxSector &&
3168 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3169 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3170 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3171 	    conf->fullsync == 0) {
3172 		*skipped = 1;
3173 		return mddev->dev_sectors - sector_nr;
3174 	}
3175 
3176 	if (!mempool_initialized(&conf->r10buf_pool))
3177 		if (init_resync(conf))
3178 			return 0;
3179 
3180 	if (sector_nr >= max_sector) {
3181 		conf->cluster_sync_low = 0;
3182 		conf->cluster_sync_high = 0;
3183 
3184 		/* If we aborted, we need to abort the
3185 		 * sync on the 'current' bitmap chucks (there can
3186 		 * be several when recovering multiple devices).
3187 		 * as we may have started syncing it but not finished.
3188 		 * We can find the current address in
3189 		 * mddev->curr_resync, but for recovery,
3190 		 * we need to convert that to several
3191 		 * virtual addresses.
3192 		 */
3193 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3194 			end_reshape(conf);
3195 			close_sync(conf);
3196 			return 0;
3197 		}
3198 
3199 		if (mddev->curr_resync < max_sector) { /* aborted */
3200 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3201 				md_bitmap_end_sync(mddev, mddev->curr_resync,
3202 						   &sync_blocks);
3203 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3204 				sector_t sect =
3205 					raid10_find_virt(conf, mddev->curr_resync, i);
3206 
3207 				md_bitmap_end_sync(mddev, sect, &sync_blocks);
3208 			}
3209 		} else {
3210 			/* completed sync */
3211 			if ((!mddev->bitmap || conf->fullsync)
3212 			    && conf->have_replacement
3213 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3214 				/* Completed a full sync so the replacements
3215 				 * are now fully recovered.
3216 				 */
3217 				for (i = 0; i < conf->geo.raid_disks; i++) {
3218 					struct md_rdev *rdev =
3219 						conf->mirrors[i].replacement;
3220 
3221 					if (rdev)
3222 						rdev->recovery_offset = MaxSector;
3223 				}
3224 			}
3225 			conf->fullsync = 0;
3226 		}
3227 		if (md_bitmap_enabled(mddev, false))
3228 			mddev->bitmap_ops->close_sync(mddev);
3229 		close_sync(conf);
3230 		*skipped = 1;
3231 		return 0;
3232 	}
3233 
3234 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3235 		return reshape_request(mddev, sector_nr, skipped);
3236 
3237 	if (max_sector > mddev->resync_max)
3238 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3239 
3240 	/* make sure whole request will fit in a chunk - if chunks
3241 	 * are meaningful
3242 	 */
3243 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3244 	    max_sector > (sector_nr | chunk_mask))
3245 		max_sector = (sector_nr | chunk_mask) + 1;
3246 
3247 	/*
3248 	 * If there is non-resync activity waiting for a turn, then let it
3249 	 * though before starting on this new sync request.
3250 	 */
3251 	if (conf->nr_waiting)
3252 		schedule_timeout_uninterruptible(1);
3253 
3254 	/* Again, very different code for resync and recovery.
3255 	 * Both must result in an r10bio with a list of bios that
3256 	 * have bi_end_io, bi_sector, bi_bdev set,
3257 	 * and bi_private set to the r10bio.
3258 	 * For recovery, we may actually create several r10bios
3259 	 * with 2 bios in each, that correspond to the bios in the main one.
3260 	 * In this case, the subordinate r10bios link back through a
3261 	 * borrowed master_bio pointer, and the counter in the master
3262 	 * includes a ref from each subordinate.
3263 	 */
3264 	/* First, we decide what to do and set ->bi_end_io
3265 	 * To end_sync_read if we want to read, and
3266 	 * end_sync_write if we will want to write.
3267 	 */
3268 
3269 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3270 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3271 		/* recovery... the complicated one */
3272 		int j;
3273 		r10_bio = NULL;
3274 
3275 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3276 			bool still_degraded;
3277 			struct r10bio *rb2;
3278 			sector_t sect;
3279 			bool must_sync;
3280 			int any_working;
3281 			struct raid10_info *mirror = &conf->mirrors[i];
3282 			struct md_rdev *mrdev, *mreplace;
3283 
3284 			mrdev = mirror->rdev;
3285 			mreplace = mirror->replacement;
3286 
3287 			if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3288 			    test_bit(In_sync, &mrdev->flags)))
3289 				mrdev = NULL;
3290 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3291 				mreplace = NULL;
3292 
3293 			if (!mrdev && !mreplace)
3294 				continue;
3295 
3296 			still_degraded = false;
3297 			/* want to reconstruct this device */
3298 			rb2 = r10_bio;
3299 			sect = raid10_find_virt(conf, sector_nr, i);
3300 			if (sect >= mddev->resync_max_sectors)
3301 				/* last stripe is not complete - don't
3302 				 * try to recover this sector.
3303 				 */
3304 				continue;
3305 			/* Unless we are doing a full sync, or a replacement
3306 			 * we only need to recover the block if it is set in
3307 			 * the bitmap
3308 			 */
3309 			must_sync = md_bitmap_start_sync(mddev, sect,
3310 							 &sync_blocks, true);
3311 			if (sync_blocks < max_sync)
3312 				max_sync = sync_blocks;
3313 			if (!must_sync &&
3314 			    mreplace == NULL &&
3315 			    !conf->fullsync) {
3316 				/* yep, skip the sync_blocks here, but don't assume
3317 				 * that there will never be anything to do here
3318 				 */
3319 				continue;
3320 			}
3321 			if (mrdev)
3322 				atomic_inc(&mrdev->nr_pending);
3323 			if (mreplace)
3324 				atomic_inc(&mreplace->nr_pending);
3325 
3326 			r10_bio = raid10_alloc_init_r10buf(conf);
3327 			r10_bio->state = 0;
3328 			raise_barrier(conf, rb2 != NULL);
3329 			atomic_set(&r10_bio->remaining, 0);
3330 
3331 			r10_bio->master_bio = (struct bio*)rb2;
3332 			if (rb2)
3333 				atomic_inc(&rb2->remaining);
3334 			r10_bio->mddev = mddev;
3335 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3336 			r10_bio->sector = sect;
3337 
3338 			raid10_find_phys(conf, r10_bio);
3339 
3340 			/* Need to check if the array will still be
3341 			 * degraded
3342 			 */
3343 			for (j = 0; j < conf->geo.raid_disks; j++) {
3344 				struct md_rdev *rdev = conf->mirrors[j].rdev;
3345 
3346 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3347 					still_degraded = false;
3348 					break;
3349 				}
3350 			}
3351 
3352 			md_bitmap_start_sync(mddev, sect, &sync_blocks,
3353 					     still_degraded);
3354 			any_working = 0;
3355 			for (j=0; j<conf->copies;j++) {
3356 				int k;
3357 				int d = r10_bio->devs[j].devnum;
3358 				sector_t from_addr, to_addr;
3359 				struct md_rdev *rdev = conf->mirrors[d].rdev;
3360 				sector_t sector, first_bad;
3361 				sector_t bad_sectors;
3362 				if (!rdev ||
3363 				    !test_bit(In_sync, &rdev->flags))
3364 					continue;
3365 				/* This is where we read from */
3366 				sector = r10_bio->devs[j].addr;
3367 
3368 				if (is_badblock(rdev, sector, max_sync,
3369 						&first_bad, &bad_sectors)) {
3370 					if (first_bad > sector)
3371 						max_sync = first_bad - sector;
3372 					else {
3373 						bad_sectors -= (sector
3374 								- first_bad);
3375 						if (max_sync > bad_sectors)
3376 							max_sync = bad_sectors;
3377 						continue;
3378 					}
3379 				}
3380 				any_working = 1;
3381 				bio = r10_bio->devs[0].bio;
3382 				bio->bi_next = biolist;
3383 				biolist = bio;
3384 				bio->bi_end_io = end_sync_read;
3385 				bio->bi_opf = REQ_OP_READ;
3386 				if (test_bit(FailFast, &rdev->flags))
3387 					bio->bi_opf |= MD_FAILFAST;
3388 				from_addr = r10_bio->devs[j].addr;
3389 				bio->bi_iter.bi_sector = from_addr +
3390 					rdev->data_offset;
3391 				bio_set_dev(bio, rdev->bdev);
3392 				atomic_inc(&rdev->nr_pending);
3393 				/* and we write to 'i' (if not in_sync) */
3394 
3395 				for (k=0; k<conf->copies; k++)
3396 					if (r10_bio->devs[k].devnum == i)
3397 						break;
3398 				BUG_ON(k == conf->copies);
3399 				to_addr = r10_bio->devs[k].addr;
3400 				r10_bio->devs[0].devnum = d;
3401 				r10_bio->devs[0].addr = from_addr;
3402 				r10_bio->devs[1].devnum = i;
3403 				r10_bio->devs[1].addr = to_addr;
3404 
3405 				if (mrdev) {
3406 					bio = r10_bio->devs[1].bio;
3407 					bio->bi_next = biolist;
3408 					biolist = bio;
3409 					bio->bi_end_io = end_sync_write;
3410 					bio->bi_opf = REQ_OP_WRITE;
3411 					bio->bi_iter.bi_sector = to_addr
3412 						+ mrdev->data_offset;
3413 					bio_set_dev(bio, mrdev->bdev);
3414 					atomic_inc(&r10_bio->remaining);
3415 				} else
3416 					r10_bio->devs[1].bio->bi_end_io = NULL;
3417 
3418 				/* and maybe write to replacement */
3419 				bio = r10_bio->devs[1].repl_bio;
3420 				if (bio)
3421 					bio->bi_end_io = NULL;
3422 				/* Note: if replace is not NULL, then bio
3423 				 * cannot be NULL as r10buf_pool_alloc will
3424 				 * have allocated it.
3425 				 */
3426 				if (!mreplace)
3427 					break;
3428 				bio->bi_next = biolist;
3429 				biolist = bio;
3430 				bio->bi_end_io = end_sync_write;
3431 				bio->bi_opf = REQ_OP_WRITE;
3432 				bio->bi_iter.bi_sector = to_addr +
3433 					mreplace->data_offset;
3434 				bio_set_dev(bio, mreplace->bdev);
3435 				atomic_inc(&r10_bio->remaining);
3436 				break;
3437 			}
3438 			if (j == conf->copies) {
3439 				/* Cannot recover, so abort the recovery or
3440 				 * record a bad block */
3441 				if (any_working) {
3442 					/* problem is that there are bad blocks
3443 					 * on other device(s)
3444 					 */
3445 					int k;
3446 					for (k = 0; k < conf->copies; k++)
3447 						if (r10_bio->devs[k].devnum == i)
3448 							break;
3449 					if (mrdev &&
3450 					    !test_bit(In_sync, &mrdev->flags))
3451 						rdev_set_badblocks(
3452 							mrdev,
3453 							r10_bio->devs[k].addr,
3454 							max_sync, 0);
3455 					if (mreplace)
3456 						rdev_set_badblocks(
3457 							mreplace,
3458 							r10_bio->devs[k].addr,
3459 							max_sync, 0);
3460 					pr_warn("md/raid10:%s: cannot recovery sector %llu + %d.\n",
3461 						mdname(mddev), r10_bio->devs[k].addr, max_sync);
3462 				}
3463 				put_buf(r10_bio);
3464 				if (rb2)
3465 					atomic_dec(&rb2->remaining);
3466 				r10_bio = rb2;
3467 				if (mrdev)
3468 					rdev_dec_pending(mrdev, mddev);
3469 				if (mreplace)
3470 					rdev_dec_pending(mreplace, mddev);
3471 				break;
3472 			}
3473 			if (mrdev)
3474 				rdev_dec_pending(mrdev, mddev);
3475 			if (mreplace)
3476 				rdev_dec_pending(mreplace, mddev);
3477 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3478 				/* Only want this if there is elsewhere to
3479 				 * read from. 'j' is currently the first
3480 				 * readable copy.
3481 				 */
3482 				int targets = 1;
3483 				for (; j < conf->copies; j++) {
3484 					int d = r10_bio->devs[j].devnum;
3485 					if (conf->mirrors[d].rdev &&
3486 					    test_bit(In_sync,
3487 						      &conf->mirrors[d].rdev->flags))
3488 						targets++;
3489 				}
3490 				if (targets == 1)
3491 					r10_bio->devs[0].bio->bi_opf
3492 						&= ~MD_FAILFAST;
3493 			}
3494 		}
3495 		if (biolist == NULL) {
3496 			while (r10_bio) {
3497 				struct r10bio *rb2 = r10_bio;
3498 				r10_bio = (struct r10bio*) rb2->master_bio;
3499 				rb2->master_bio = NULL;
3500 				put_buf(rb2);
3501 			}
3502 			*skipped = 1;
3503 			return max_sync;
3504 		}
3505 	} else {
3506 		/* resync. Schedule a read for every block at this virt offset */
3507 		int count = 0;
3508 
3509 		/*
3510 		 * Since curr_resync_completed could probably not update in
3511 		 * time, and we will set cluster_sync_low based on it.
3512 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3513 		 * safety reason, which ensures curr_resync_completed is
3514 		 * updated in bitmap_cond_end_sync.
3515 		 */
3516 		if (md_bitmap_enabled(mddev, false))
3517 			mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3518 					mddev_is_clustered(mddev) &&
3519 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3520 
3521 		if (!md_bitmap_start_sync(mddev, sector_nr, &sync_blocks,
3522 					  mddev->degraded) &&
3523 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3524 						 &mddev->recovery)) {
3525 			/* We can skip this block */
3526 			*skipped = 1;
3527 			return sync_blocks;
3528 		}
3529 		if (sync_blocks < max_sync)
3530 			max_sync = sync_blocks;
3531 		r10_bio = raid10_alloc_init_r10buf(conf);
3532 		r10_bio->state = 0;
3533 
3534 		r10_bio->mddev = mddev;
3535 		atomic_set(&r10_bio->remaining, 0);
3536 		raise_barrier(conf, 0);
3537 		conf->next_resync = sector_nr;
3538 
3539 		r10_bio->master_bio = NULL;
3540 		r10_bio->sector = sector_nr;
3541 		set_bit(R10BIO_IsSync, &r10_bio->state);
3542 		raid10_find_phys(conf, r10_bio);
3543 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3544 
3545 		for (i = 0; i < conf->copies; i++) {
3546 			int d = r10_bio->devs[i].devnum;
3547 			sector_t first_bad, sector;
3548 			sector_t bad_sectors;
3549 			struct md_rdev *rdev;
3550 
3551 			if (r10_bio->devs[i].repl_bio)
3552 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3553 
3554 			bio = r10_bio->devs[i].bio;
3555 			bio->bi_status = BLK_STS_IOERR;
3556 			rdev = conf->mirrors[d].rdev;
3557 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3558 				continue;
3559 
3560 			sector = r10_bio->devs[i].addr;
3561 			if (is_badblock(rdev, sector, max_sync,
3562 					&first_bad, &bad_sectors)) {
3563 				if (first_bad > sector)
3564 					max_sync = first_bad - sector;
3565 				else {
3566 					bad_sectors -= (sector - first_bad);
3567 					if (max_sync > bad_sectors)
3568 						max_sync = bad_sectors;
3569 					continue;
3570 				}
3571 			}
3572 			atomic_inc(&rdev->nr_pending);
3573 			atomic_inc(&r10_bio->remaining);
3574 			bio->bi_next = biolist;
3575 			biolist = bio;
3576 			bio->bi_end_io = end_sync_read;
3577 			bio->bi_opf = REQ_OP_READ;
3578 			if (test_bit(FailFast, &rdev->flags))
3579 				bio->bi_opf |= MD_FAILFAST;
3580 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3581 			bio_set_dev(bio, rdev->bdev);
3582 			count++;
3583 
3584 			rdev = conf->mirrors[d].replacement;
3585 			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3586 				continue;
3587 
3588 			atomic_inc(&rdev->nr_pending);
3589 
3590 			/* Need to set up for writing to the replacement */
3591 			bio = r10_bio->devs[i].repl_bio;
3592 			bio->bi_status = BLK_STS_IOERR;
3593 
3594 			sector = r10_bio->devs[i].addr;
3595 			bio->bi_next = biolist;
3596 			biolist = bio;
3597 			bio->bi_end_io = end_sync_write;
3598 			bio->bi_opf = REQ_OP_WRITE;
3599 			if (test_bit(FailFast, &rdev->flags))
3600 				bio->bi_opf |= MD_FAILFAST;
3601 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3602 			bio_set_dev(bio, rdev->bdev);
3603 			count++;
3604 		}
3605 
3606 		if (count < 2) {
3607 			for (i=0; i<conf->copies; i++) {
3608 				int d = r10_bio->devs[i].devnum;
3609 				if (r10_bio->devs[i].bio->bi_end_io)
3610 					rdev_dec_pending(conf->mirrors[d].rdev,
3611 							 mddev);
3612 				if (r10_bio->devs[i].repl_bio &&
3613 				    r10_bio->devs[i].repl_bio->bi_end_io)
3614 					rdev_dec_pending(
3615 						conf->mirrors[d].replacement,
3616 						mddev);
3617 			}
3618 			put_buf(r10_bio);
3619 			*skipped = 1;
3620 			return max_sync;
3621 		}
3622 	}
3623 
3624 	nr_sectors = 0;
3625 	if (sector_nr + max_sync < max_sector)
3626 		max_sector = sector_nr + max_sync;
3627 	do {
3628 		struct page *page;
3629 		int len = PAGE_SIZE;
3630 		if (sector_nr + (len>>9) > max_sector)
3631 			len = (max_sector - sector_nr) << 9;
3632 		if (len == 0)
3633 			break;
3634 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3635 			struct resync_pages *rp = get_resync_pages(bio);
3636 			page = resync_fetch_page(rp, page_idx);
3637 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3638 				bio->bi_status = BLK_STS_RESOURCE;
3639 				bio_endio(bio);
3640 				*skipped = 1;
3641 				return max_sync;
3642 			}
3643 		}
3644 		nr_sectors += len>>9;
3645 		sector_nr += len>>9;
3646 	} while (++page_idx < RESYNC_PAGES);
3647 	r10_bio->sectors = nr_sectors;
3648 
3649 	if (mddev_is_clustered(mddev) &&
3650 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3651 		/* It is resync not recovery */
3652 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3653 			conf->cluster_sync_low = mddev->curr_resync_completed;
3654 			raid10_set_cluster_sync_high(conf);
3655 			/* Send resync message */
3656 			mddev->cluster_ops->resync_info_update(mddev,
3657 						conf->cluster_sync_low,
3658 						conf->cluster_sync_high);
3659 		}
3660 	} else if (mddev_is_clustered(mddev)) {
3661 		/* This is recovery not resync */
3662 		sector_t sect_va1, sect_va2;
3663 		bool broadcast_msg = false;
3664 
3665 		for (i = 0; i < conf->geo.raid_disks; i++) {
3666 			/*
3667 			 * sector_nr is a device address for recovery, so we
3668 			 * need translate it to array address before compare
3669 			 * with cluster_sync_high.
3670 			 */
3671 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3672 
3673 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3674 				broadcast_msg = true;
3675 				/*
3676 				 * curr_resync_completed is similar as
3677 				 * sector_nr, so make the translation too.
3678 				 */
3679 				sect_va2 = raid10_find_virt(conf,
3680 					mddev->curr_resync_completed, i);
3681 
3682 				if (conf->cluster_sync_low == 0 ||
3683 				    conf->cluster_sync_low > sect_va2)
3684 					conf->cluster_sync_low = sect_va2;
3685 			}
3686 		}
3687 		if (broadcast_msg) {
3688 			raid10_set_cluster_sync_high(conf);
3689 			mddev->cluster_ops->resync_info_update(mddev,
3690 						conf->cluster_sync_low,
3691 						conf->cluster_sync_high);
3692 		}
3693 	}
3694 
3695 	while (biolist) {
3696 		bio = biolist;
3697 		biolist = biolist->bi_next;
3698 
3699 		bio->bi_next = NULL;
3700 		r10_bio = get_resync_r10bio(bio);
3701 		r10_bio->sectors = nr_sectors;
3702 
3703 		if (bio->bi_end_io == end_sync_read) {
3704 			bio->bi_status = 0;
3705 			submit_bio_noacct(bio);
3706 		}
3707 	}
3708 
3709 	return nr_sectors;
3710 }
3711 
3712 static sector_t
3713 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3714 {
3715 	sector_t size;
3716 	struct r10conf *conf = mddev->private;
3717 
3718 	if (!raid_disks)
3719 		raid_disks = min(conf->geo.raid_disks,
3720 				 conf->prev.raid_disks);
3721 	if (!sectors)
3722 		sectors = conf->dev_sectors;
3723 
3724 	size = sectors >> conf->geo.chunk_shift;
3725 	sector_div(size, conf->geo.far_copies);
3726 	size = size * raid_disks;
3727 	sector_div(size, conf->geo.near_copies);
3728 
3729 	return size << conf->geo.chunk_shift;
3730 }
3731 
3732 static void calc_sectors(struct r10conf *conf, sector_t size)
3733 {
3734 	/* Calculate the number of sectors-per-device that will
3735 	 * actually be used, and set conf->dev_sectors and
3736 	 * conf->stride
3737 	 */
3738 
3739 	size = size >> conf->geo.chunk_shift;
3740 	sector_div(size, conf->geo.far_copies);
3741 	size = size * conf->geo.raid_disks;
3742 	sector_div(size, conf->geo.near_copies);
3743 	/* 'size' is now the number of chunks in the array */
3744 	/* calculate "used chunks per device" */
3745 	size = size * conf->copies;
3746 
3747 	/* We need to round up when dividing by raid_disks to
3748 	 * get the stride size.
3749 	 */
3750 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3751 
3752 	conf->dev_sectors = size << conf->geo.chunk_shift;
3753 
3754 	if (conf->geo.far_offset)
3755 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3756 	else {
3757 		sector_div(size, conf->geo.far_copies);
3758 		conf->geo.stride = size << conf->geo.chunk_shift;
3759 	}
3760 }
3761 
3762 enum geo_type {geo_new, geo_old, geo_start};
3763 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3764 {
3765 	int nc, fc, fo;
3766 	int layout, chunk, disks;
3767 	switch (new) {
3768 	case geo_old:
3769 		layout = mddev->layout;
3770 		chunk = mddev->chunk_sectors;
3771 		disks = mddev->raid_disks - mddev->delta_disks;
3772 		break;
3773 	case geo_new:
3774 		layout = mddev->new_layout;
3775 		chunk = mddev->new_chunk_sectors;
3776 		disks = mddev->raid_disks;
3777 		break;
3778 	default: /* avoid 'may be unused' warnings */
3779 	case geo_start: /* new when starting reshape - raid_disks not
3780 			 * updated yet. */
3781 		layout = mddev->new_layout;
3782 		chunk = mddev->new_chunk_sectors;
3783 		disks = mddev->raid_disks + mddev->delta_disks;
3784 		break;
3785 	}
3786 	if (layout >> 19)
3787 		return -1;
3788 	if (chunk < (PAGE_SIZE >> 9) ||
3789 	    !is_power_of_2(chunk))
3790 		return -2;
3791 	nc = layout & 255;
3792 	fc = (layout >> 8) & 255;
3793 	fo = layout & (1<<16);
3794 	geo->raid_disks = disks;
3795 	geo->near_copies = nc;
3796 	geo->far_copies = fc;
3797 	geo->far_offset = fo;
3798 	switch (layout >> 17) {
3799 	case 0:	/* original layout.  simple but not always optimal */
3800 		geo->far_set_size = disks;
3801 		break;
3802 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3803 		 * actually using this, but leave code here just in case.*/
3804 		geo->far_set_size = disks/fc;
3805 		WARN(geo->far_set_size < fc,
3806 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3807 		break;
3808 	case 2: /* "improved" layout fixed to match documentation */
3809 		geo->far_set_size = fc * nc;
3810 		break;
3811 	default: /* Not a valid layout */
3812 		return -1;
3813 	}
3814 	geo->chunk_mask = chunk - 1;
3815 	geo->chunk_shift = ffz(~chunk);
3816 	return nc*fc;
3817 }
3818 
3819 static void raid10_free_conf(struct r10conf *conf)
3820 {
3821 	if (!conf)
3822 		return;
3823 
3824 	mempool_exit(&conf->r10bio_pool);
3825 	kfree(conf->mirrors);
3826 	kfree(conf->mirrors_old);
3827 	kfree(conf->mirrors_new);
3828 	safe_put_page(conf->tmppage);
3829 	bioset_exit(&conf->bio_split);
3830 	kfree(conf);
3831 }
3832 
3833 static struct r10conf *setup_conf(struct mddev *mddev)
3834 {
3835 	struct r10conf *conf = NULL;
3836 	int err = -EINVAL;
3837 	struct geom geo;
3838 	int copies;
3839 
3840 	copies = setup_geo(&geo, mddev, geo_new);
3841 
3842 	if (copies == -2) {
3843 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3844 			mdname(mddev), PAGE_SIZE);
3845 		goto out;
3846 	}
3847 
3848 	if (copies < 2 || copies > mddev->raid_disks) {
3849 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3850 			mdname(mddev), mddev->new_layout);
3851 		goto out;
3852 	}
3853 
3854 	err = -ENOMEM;
3855 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3856 	if (!conf)
3857 		goto out;
3858 
3859 	/* FIXME calc properly */
3860 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3861 				sizeof(struct raid10_info),
3862 				GFP_KERNEL);
3863 	if (!conf->mirrors)
3864 		goto out;
3865 
3866 	conf->tmppage = alloc_page(GFP_KERNEL);
3867 	if (!conf->tmppage)
3868 		goto out;
3869 
3870 	conf->geo = geo;
3871 	conf->copies = copies;
3872 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3873 			   rbio_pool_free, conf);
3874 	if (err)
3875 		goto out;
3876 
3877 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3878 	if (err)
3879 		goto out;
3880 
3881 	calc_sectors(conf, mddev->dev_sectors);
3882 	if (mddev->reshape_position == MaxSector) {
3883 		conf->prev = conf->geo;
3884 		conf->reshape_progress = MaxSector;
3885 	} else {
3886 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3887 			err = -EINVAL;
3888 			goto out;
3889 		}
3890 		conf->reshape_progress = mddev->reshape_position;
3891 		if (conf->prev.far_offset)
3892 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3893 		else
3894 			/* far_copies must be 1 */
3895 			conf->prev.stride = conf->dev_sectors;
3896 	}
3897 	conf->reshape_safe = conf->reshape_progress;
3898 	spin_lock_init(&conf->device_lock);
3899 	INIT_LIST_HEAD(&conf->retry_list);
3900 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3901 
3902 	seqlock_init(&conf->resync_lock);
3903 	init_waitqueue_head(&conf->wait_barrier);
3904 	atomic_set(&conf->nr_pending, 0);
3905 
3906 	err = -ENOMEM;
3907 	rcu_assign_pointer(conf->thread,
3908 			   md_register_thread(raid10d, mddev, "raid10"));
3909 	if (!conf->thread)
3910 		goto out;
3911 
3912 	conf->mddev = mddev;
3913 	return conf;
3914 
3915  out:
3916 	raid10_free_conf(conf);
3917 	return ERR_PTR(err);
3918 }
3919 
3920 static unsigned int raid10_nr_stripes(struct r10conf *conf)
3921 {
3922 	unsigned int raid_disks = conf->geo.raid_disks;
3923 
3924 	if (conf->geo.raid_disks % conf->geo.near_copies)
3925 		return raid_disks;
3926 	return raid_disks / conf->geo.near_copies;
3927 }
3928 
3929 static int raid10_set_queue_limits(struct mddev *mddev)
3930 {
3931 	struct r10conf *conf = mddev->private;
3932 	struct queue_limits lim;
3933 	int err;
3934 
3935 	md_init_stacking_limits(&lim);
3936 	lim.max_write_zeroes_sectors = 0;
3937 	lim.max_hw_wzeroes_unmap_sectors = 0;
3938 	lim.logical_block_size = mddev->logical_block_size;
3939 	lim.io_min = mddev->chunk_sectors << 9;
3940 	lim.chunk_sectors = mddev->chunk_sectors;
3941 	lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
3942 	lim.features |= BLK_FEAT_ATOMIC_WRITES;
3943 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3944 	if (err)
3945 		return err;
3946 	return queue_limits_set(mddev->gendisk->queue, &lim);
3947 }
3948 
3949 static int raid10_run(struct mddev *mddev)
3950 {
3951 	struct r10conf *conf;
3952 	int i, disk_idx;
3953 	struct raid10_info *disk;
3954 	struct md_rdev *rdev;
3955 	sector_t size;
3956 	sector_t min_offset_diff = 0;
3957 	int first = 1;
3958 	int ret = -EIO;
3959 
3960 	if (mddev->private == NULL) {
3961 		conf = setup_conf(mddev);
3962 		if (IS_ERR(conf))
3963 			return PTR_ERR(conf);
3964 		mddev->private = conf;
3965 	}
3966 	conf = mddev->private;
3967 	if (!conf)
3968 		goto out;
3969 
3970 	rcu_assign_pointer(mddev->thread, conf->thread);
3971 	rcu_assign_pointer(conf->thread, NULL);
3972 
3973 	if (mddev_is_clustered(conf->mddev)) {
3974 		int fc, fo;
3975 
3976 		fc = (mddev->layout >> 8) & 255;
3977 		fo = mddev->layout & (1<<16);
3978 		if (fc > 1 || fo > 0) {
3979 			pr_err("only near layout is supported by clustered"
3980 				" raid10\n");
3981 			goto out_free_conf;
3982 		}
3983 	}
3984 
3985 	rdev_for_each(rdev, mddev) {
3986 		long long diff;
3987 
3988 		disk_idx = rdev->raid_disk;
3989 		if (disk_idx < 0)
3990 			continue;
3991 		if (disk_idx >= conf->geo.raid_disks &&
3992 		    disk_idx >= conf->prev.raid_disks)
3993 			continue;
3994 		disk = conf->mirrors + disk_idx;
3995 
3996 		if (test_bit(Replacement, &rdev->flags)) {
3997 			if (disk->replacement)
3998 				goto out_free_conf;
3999 			disk->replacement = rdev;
4000 		} else {
4001 			if (disk->rdev)
4002 				goto out_free_conf;
4003 			disk->rdev = rdev;
4004 		}
4005 		diff = (rdev->new_data_offset - rdev->data_offset);
4006 		if (!mddev->reshape_backwards)
4007 			diff = -diff;
4008 		if (diff < 0)
4009 			diff = 0;
4010 		if (first || diff < min_offset_diff)
4011 			min_offset_diff = diff;
4012 
4013 		disk->head_position = 0;
4014 		first = 0;
4015 	}
4016 
4017 	if (!mddev_is_dm(conf->mddev)) {
4018 		int err = raid10_set_queue_limits(mddev);
4019 
4020 		if (err) {
4021 			ret = err;
4022 			goto out_free_conf;
4023 		}
4024 	}
4025 
4026 	/* need to check that every block has at least one working mirror */
4027 	if (!enough(conf, -1)) {
4028 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4029 		       mdname(mddev));
4030 		goto out_free_conf;
4031 	}
4032 
4033 	if (conf->reshape_progress != MaxSector) {
4034 		/* must ensure that shape change is supported */
4035 		if (conf->geo.far_copies != 1 &&
4036 		    conf->geo.far_offset == 0)
4037 			goto out_free_conf;
4038 		if (conf->prev.far_copies != 1 &&
4039 		    conf->prev.far_offset == 0)
4040 			goto out_free_conf;
4041 	}
4042 
4043 	mddev->degraded = 0;
4044 	for (i = 0;
4045 	     i < conf->geo.raid_disks
4046 		     || i < conf->prev.raid_disks;
4047 	     i++) {
4048 
4049 		disk = conf->mirrors + i;
4050 
4051 		if (!disk->rdev && disk->replacement) {
4052 			/* The replacement is all we have - use it */
4053 			disk->rdev = disk->replacement;
4054 			disk->replacement = NULL;
4055 			clear_bit(Replacement, &disk->rdev->flags);
4056 		}
4057 
4058 		if (!disk->rdev ||
4059 		    !test_bit(In_sync, &disk->rdev->flags)) {
4060 			disk->head_position = 0;
4061 			mddev->degraded++;
4062 			if (disk->rdev &&
4063 			    disk->rdev->saved_raid_disk < 0)
4064 				conf->fullsync = 1;
4065 		}
4066 
4067 		if (disk->replacement &&
4068 		    !test_bit(In_sync, &disk->replacement->flags) &&
4069 		    disk->replacement->saved_raid_disk < 0) {
4070 			conf->fullsync = 1;
4071 		}
4072 	}
4073 
4074 	if (mddev->resync_offset != MaxSector)
4075 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4076 			  mdname(mddev));
4077 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4078 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4079 		conf->geo.raid_disks);
4080 	/*
4081 	 * Ok, everything is just fine now
4082 	 */
4083 	mddev->dev_sectors = conf->dev_sectors;
4084 	size = raid10_size(mddev, 0, 0);
4085 	md_set_array_sectors(mddev, size);
4086 	mddev->resync_max_sectors = size;
4087 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4088 
4089 	if (md_integrity_register(mddev))
4090 		goto out_free_conf;
4091 
4092 	if (conf->reshape_progress != MaxSector) {
4093 		unsigned long before_length, after_length;
4094 
4095 		before_length = ((1 << conf->prev.chunk_shift) *
4096 				 conf->prev.far_copies);
4097 		after_length = ((1 << conf->geo.chunk_shift) *
4098 				conf->geo.far_copies);
4099 
4100 		if (max(before_length, after_length) > min_offset_diff) {
4101 			/* This cannot work */
4102 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4103 			goto out_free_conf;
4104 		}
4105 		conf->offset_diff = min_offset_diff;
4106 
4107 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4108 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4109 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4110 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4111 	}
4112 
4113 	return 0;
4114 
4115 out_free_conf:
4116 	md_unregister_thread(mddev, &mddev->thread);
4117 	raid10_free_conf(conf);
4118 	mddev->private = NULL;
4119 out:
4120 	return ret;
4121 }
4122 
4123 static void raid10_free(struct mddev *mddev, void *priv)
4124 {
4125 	raid10_free_conf(priv);
4126 }
4127 
4128 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4129 {
4130 	struct r10conf *conf = mddev->private;
4131 
4132 	if (quiesce)
4133 		raise_barrier(conf, 0);
4134 	else
4135 		lower_barrier(conf);
4136 }
4137 
4138 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4139 {
4140 	/* Resize of 'far' arrays is not supported.
4141 	 * For 'near' and 'offset' arrays we can set the
4142 	 * number of sectors used to be an appropriate multiple
4143 	 * of the chunk size.
4144 	 * For 'offset', this is far_copies*chunksize.
4145 	 * For 'near' the multiplier is the LCM of
4146 	 * near_copies and raid_disks.
4147 	 * So if far_copies > 1 && !far_offset, fail.
4148 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4149 	 * multiply by chunk_size.  Then round to this number.
4150 	 * This is mostly done by raid10_size()
4151 	 */
4152 	struct r10conf *conf = mddev->private;
4153 	sector_t oldsize, size;
4154 
4155 	if (mddev->reshape_position != MaxSector)
4156 		return -EBUSY;
4157 
4158 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4159 		return -EINVAL;
4160 
4161 	oldsize = raid10_size(mddev, 0, 0);
4162 	size = raid10_size(mddev, sectors, 0);
4163 	if (mddev->external_size &&
4164 	    mddev->array_sectors > size)
4165 		return -EINVAL;
4166 
4167 	if (md_bitmap_enabled(mddev, false)) {
4168 		int ret = mddev->bitmap_ops->resize(mddev, size, 0);
4169 
4170 		if (ret)
4171 			return ret;
4172 	}
4173 
4174 	md_set_array_sectors(mddev, size);
4175 	if (sectors > mddev->dev_sectors &&
4176 	    mddev->resync_offset > oldsize) {
4177 		mddev->resync_offset = oldsize;
4178 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4179 	}
4180 	calc_sectors(conf, sectors);
4181 	mddev->dev_sectors = conf->dev_sectors;
4182 	mddev->resync_max_sectors = size;
4183 	return 0;
4184 }
4185 
4186 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4187 {
4188 	struct md_rdev *rdev;
4189 	struct r10conf *conf;
4190 
4191 	if (mddev->degraded > 0) {
4192 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4193 			mdname(mddev));
4194 		return ERR_PTR(-EINVAL);
4195 	}
4196 	sector_div(size, devs);
4197 
4198 	/* Set new parameters */
4199 	mddev->new_level = 10;
4200 	/* new layout: far_copies = 1, near_copies = 2 */
4201 	mddev->new_layout = (1<<8) + 2;
4202 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4203 	mddev->delta_disks = mddev->raid_disks;
4204 	mddev->raid_disks *= 2;
4205 	/* make sure it will be not marked as dirty */
4206 	mddev->resync_offset = MaxSector;
4207 	mddev->dev_sectors = size;
4208 
4209 	conf = setup_conf(mddev);
4210 	if (!IS_ERR(conf)) {
4211 		rdev_for_each(rdev, mddev)
4212 			if (rdev->raid_disk >= 0) {
4213 				rdev->new_raid_disk = rdev->raid_disk * 2;
4214 				rdev->sectors = size;
4215 			}
4216 	}
4217 
4218 	return conf;
4219 }
4220 
4221 static void *raid10_takeover(struct mddev *mddev)
4222 {
4223 	struct r0conf *raid0_conf;
4224 
4225 	/* raid10 can take over:
4226 	 *  raid0 - providing it has only two drives
4227 	 */
4228 	if (mddev->level == 0) {
4229 		/* for raid0 takeover only one zone is supported */
4230 		raid0_conf = mddev->private;
4231 		if (raid0_conf->nr_strip_zones > 1) {
4232 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4233 				mdname(mddev));
4234 			return ERR_PTR(-EINVAL);
4235 		}
4236 		return raid10_takeover_raid0(mddev,
4237 			raid0_conf->strip_zone->zone_end,
4238 			raid0_conf->strip_zone->nb_dev);
4239 	}
4240 	return ERR_PTR(-EINVAL);
4241 }
4242 
4243 static int raid10_check_reshape(struct mddev *mddev)
4244 {
4245 	/* Called when there is a request to change
4246 	 * - layout (to ->new_layout)
4247 	 * - chunk size (to ->new_chunk_sectors)
4248 	 * - raid_disks (by delta_disks)
4249 	 * or when trying to restart a reshape that was ongoing.
4250 	 *
4251 	 * We need to validate the request and possibly allocate
4252 	 * space if that might be an issue later.
4253 	 *
4254 	 * Currently we reject any reshape of a 'far' mode array,
4255 	 * allow chunk size to change if new is generally acceptable,
4256 	 * allow raid_disks to increase, and allow
4257 	 * a switch between 'near' mode and 'offset' mode.
4258 	 */
4259 	struct r10conf *conf = mddev->private;
4260 	struct geom geo;
4261 
4262 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4263 		return -EINVAL;
4264 
4265 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4266 		/* mustn't change number of copies */
4267 		return -EINVAL;
4268 	if (geo.far_copies > 1 && !geo.far_offset)
4269 		/* Cannot switch to 'far' mode */
4270 		return -EINVAL;
4271 
4272 	if (mddev->array_sectors & geo.chunk_mask)
4273 			/* not factor of array size */
4274 			return -EINVAL;
4275 
4276 	if (!enough(conf, -1))
4277 		return -EINVAL;
4278 
4279 	kfree(conf->mirrors_new);
4280 	conf->mirrors_new = NULL;
4281 	if (mddev->delta_disks > 0) {
4282 		/* allocate new 'mirrors' list */
4283 		conf->mirrors_new =
4284 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4285 				sizeof(struct raid10_info),
4286 				GFP_KERNEL);
4287 		if (!conf->mirrors_new)
4288 			return -ENOMEM;
4289 	}
4290 	return 0;
4291 }
4292 
4293 /*
4294  * Need to check if array has failed when deciding whether to:
4295  *  - start an array
4296  *  - remove non-faulty devices
4297  *  - add a spare
4298  *  - allow a reshape
4299  * This determination is simple when no reshape is happening.
4300  * However if there is a reshape, we need to carefully check
4301  * both the before and after sections.
4302  * This is because some failed devices may only affect one
4303  * of the two sections, and some non-in_sync devices may
4304  * be insync in the section most affected by failed devices.
4305  */
4306 static int calc_degraded(struct r10conf *conf)
4307 {
4308 	int degraded, degraded2;
4309 	int i;
4310 
4311 	degraded = 0;
4312 	/* 'prev' section first */
4313 	for (i = 0; i < conf->prev.raid_disks; i++) {
4314 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4315 
4316 		if (!rdev || test_bit(Faulty, &rdev->flags))
4317 			degraded++;
4318 		else if (!test_bit(In_sync, &rdev->flags))
4319 			/* When we can reduce the number of devices in
4320 			 * an array, this might not contribute to
4321 			 * 'degraded'.  It does now.
4322 			 */
4323 			degraded++;
4324 	}
4325 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4326 		return degraded;
4327 	degraded2 = 0;
4328 	for (i = 0; i < conf->geo.raid_disks; i++) {
4329 		struct md_rdev *rdev = conf->mirrors[i].rdev;
4330 
4331 		if (!rdev || test_bit(Faulty, &rdev->flags))
4332 			degraded2++;
4333 		else if (!test_bit(In_sync, &rdev->flags)) {
4334 			/* If reshape is increasing the number of devices,
4335 			 * this section has already been recovered, so
4336 			 * it doesn't contribute to degraded.
4337 			 * else it does.
4338 			 */
4339 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4340 				degraded2++;
4341 		}
4342 	}
4343 	if (degraded2 > degraded)
4344 		return degraded2;
4345 	return degraded;
4346 }
4347 
4348 static int raid10_start_reshape(struct mddev *mddev)
4349 {
4350 	/* A 'reshape' has been requested. This commits
4351 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4352 	 * This also checks if there are enough spares and adds them
4353 	 * to the array.
4354 	 * We currently require enough spares to make the final
4355 	 * array non-degraded.  We also require that the difference
4356 	 * between old and new data_offset - on each device - is
4357 	 * enough that we never risk over-writing.
4358 	 */
4359 
4360 	unsigned long before_length, after_length;
4361 	sector_t min_offset_diff = 0;
4362 	int first = 1;
4363 	struct geom new;
4364 	struct r10conf *conf = mddev->private;
4365 	struct md_rdev *rdev;
4366 	int spares = 0;
4367 	int ret;
4368 
4369 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4370 		return -EBUSY;
4371 
4372 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4373 		return -EINVAL;
4374 
4375 	before_length = ((1 << conf->prev.chunk_shift) *
4376 			 conf->prev.far_copies);
4377 	after_length = ((1 << conf->geo.chunk_shift) *
4378 			conf->geo.far_copies);
4379 
4380 	rdev_for_each(rdev, mddev) {
4381 		if (!test_bit(In_sync, &rdev->flags)
4382 		    && !test_bit(Faulty, &rdev->flags))
4383 			spares++;
4384 		if (rdev->raid_disk >= 0) {
4385 			long long diff = (rdev->new_data_offset
4386 					  - rdev->data_offset);
4387 			if (!mddev->reshape_backwards)
4388 				diff = -diff;
4389 			if (diff < 0)
4390 				diff = 0;
4391 			if (first || diff < min_offset_diff)
4392 				min_offset_diff = diff;
4393 			first = 0;
4394 		}
4395 	}
4396 
4397 	if (max(before_length, after_length) > min_offset_diff)
4398 		return -EINVAL;
4399 
4400 	if (spares < mddev->delta_disks)
4401 		return -EINVAL;
4402 
4403 	conf->offset_diff = min_offset_diff;
4404 	spin_lock_irq(&conf->device_lock);
4405 	if (conf->mirrors_new) {
4406 		memcpy(conf->mirrors_new, conf->mirrors,
4407 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4408 		smp_mb();
4409 		kfree(conf->mirrors_old);
4410 		conf->mirrors_old = conf->mirrors;
4411 		conf->mirrors = conf->mirrors_new;
4412 		conf->mirrors_new = NULL;
4413 	}
4414 	setup_geo(&conf->geo, mddev, geo_start);
4415 	smp_mb();
4416 	if (mddev->reshape_backwards) {
4417 		sector_t size = raid10_size(mddev, 0, 0);
4418 		if (size < mddev->array_sectors) {
4419 			spin_unlock_irq(&conf->device_lock);
4420 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4421 				mdname(mddev));
4422 			return -EINVAL;
4423 		}
4424 		mddev->resync_max_sectors = size;
4425 		conf->reshape_progress = size;
4426 	} else
4427 		conf->reshape_progress = 0;
4428 	conf->reshape_safe = conf->reshape_progress;
4429 	spin_unlock_irq(&conf->device_lock);
4430 
4431 	if (mddev->delta_disks && mddev->bitmap) {
4432 		struct mdp_superblock_1 *sb = NULL;
4433 		sector_t oldsize, newsize;
4434 
4435 		oldsize = raid10_size(mddev, 0, 0);
4436 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4437 
4438 		if (!mddev_is_clustered(mddev) &&
4439 		    md_bitmap_enabled(mddev, false)) {
4440 			ret = mddev->bitmap_ops->resize(mddev, newsize, 0);
4441 			if (ret)
4442 				goto abort;
4443 			else
4444 				goto out;
4445 		}
4446 
4447 		rdev_for_each(rdev, mddev) {
4448 			if (rdev->raid_disk > -1 &&
4449 			    !test_bit(Faulty, &rdev->flags))
4450 				sb = page_address(rdev->sb_page);
4451 		}
4452 
4453 		/*
4454 		 * some node is already performing reshape, and no need to
4455 		 * call bitmap_ops->resize again since it should be called when
4456 		 * receiving BITMAP_RESIZE msg
4457 		 */
4458 		if ((sb && (le32_to_cpu(sb->feature_map) &
4459 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4460 			goto out;
4461 
4462 		/* cluster can't be setup without bitmap */
4463 		ret = mddev->bitmap_ops->resize(mddev, newsize, 0);
4464 		if (ret)
4465 			goto abort;
4466 
4467 		ret = mddev->cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4468 		if (ret) {
4469 			mddev->bitmap_ops->resize(mddev, oldsize, 0);
4470 			goto abort;
4471 		}
4472 	}
4473 out:
4474 	if (mddev->delta_disks > 0) {
4475 		rdev_for_each(rdev, mddev)
4476 			if (rdev->raid_disk < 0 &&
4477 			    !test_bit(Faulty, &rdev->flags)) {
4478 				if (raid10_add_disk(mddev, rdev) == 0) {
4479 					if (rdev->raid_disk >=
4480 					    conf->prev.raid_disks)
4481 						set_bit(In_sync, &rdev->flags);
4482 					else
4483 						rdev->recovery_offset = 0;
4484 
4485 					/* Failure here is OK */
4486 					sysfs_link_rdev(mddev, rdev);
4487 				}
4488 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4489 				   && !test_bit(Faulty, &rdev->flags)) {
4490 				/* This is a spare that was manually added */
4491 				set_bit(In_sync, &rdev->flags);
4492 			}
4493 	}
4494 	/* When a reshape changes the number of devices,
4495 	 * ->degraded is measured against the larger of the
4496 	 * pre and  post numbers.
4497 	 */
4498 	spin_lock_irq(&conf->device_lock);
4499 	mddev->degraded = calc_degraded(conf);
4500 	spin_unlock_irq(&conf->device_lock);
4501 	mddev->raid_disks = conf->geo.raid_disks;
4502 	mddev->reshape_position = conf->reshape_progress;
4503 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4504 
4505 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4506 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4507 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4508 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4509 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4510 	conf->reshape_checkpoint = jiffies;
4511 	md_new_event();
4512 	return 0;
4513 
4514 abort:
4515 	mddev->recovery = 0;
4516 	spin_lock_irq(&conf->device_lock);
4517 	conf->geo = conf->prev;
4518 	mddev->raid_disks = conf->geo.raid_disks;
4519 	rdev_for_each(rdev, mddev)
4520 		rdev->new_data_offset = rdev->data_offset;
4521 	smp_wmb();
4522 	conf->reshape_progress = MaxSector;
4523 	conf->reshape_safe = MaxSector;
4524 	mddev->reshape_position = MaxSector;
4525 	spin_unlock_irq(&conf->device_lock);
4526 	return ret;
4527 }
4528 
4529 /* Calculate the last device-address that could contain
4530  * any block from the chunk that includes the array-address 's'
4531  * and report the next address.
4532  * i.e. the address returned will be chunk-aligned and after
4533  * any data that is in the chunk containing 's'.
4534  */
4535 static sector_t last_dev_address(sector_t s, struct geom *geo)
4536 {
4537 	s = (s | geo->chunk_mask) + 1;
4538 	s >>= geo->chunk_shift;
4539 	s *= geo->near_copies;
4540 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4541 	s *= geo->far_copies;
4542 	s <<= geo->chunk_shift;
4543 	return s;
4544 }
4545 
4546 /* Calculate the first device-address that could contain
4547  * any block from the chunk that includes the array-address 's'.
4548  * This too will be the start of a chunk
4549  */
4550 static sector_t first_dev_address(sector_t s, struct geom *geo)
4551 {
4552 	s >>= geo->chunk_shift;
4553 	s *= geo->near_copies;
4554 	sector_div(s, geo->raid_disks);
4555 	s *= geo->far_copies;
4556 	s <<= geo->chunk_shift;
4557 	return s;
4558 }
4559 
4560 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4561 				int *skipped)
4562 {
4563 	/* We simply copy at most one chunk (smallest of old and new)
4564 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4565 	 * or we hit a bad block or something.
4566 	 * This might mean we pause for normal IO in the middle of
4567 	 * a chunk, but that is not a problem as mddev->reshape_position
4568 	 * can record any location.
4569 	 *
4570 	 * If we will want to write to a location that isn't
4571 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4572 	 * we need to flush all reshape requests and update the metadata.
4573 	 *
4574 	 * When reshaping forwards (e.g. to more devices), we interpret
4575 	 * 'safe' as the earliest block which might not have been copied
4576 	 * down yet.  We divide this by previous stripe size and multiply
4577 	 * by previous stripe length to get lowest device offset that we
4578 	 * cannot write to yet.
4579 	 * We interpret 'sector_nr' as an address that we want to write to.
4580 	 * From this we use last_device_address() to find where we might
4581 	 * write to, and first_device_address on the  'safe' position.
4582 	 * If this 'next' write position is after the 'safe' position,
4583 	 * we must update the metadata to increase the 'safe' position.
4584 	 *
4585 	 * When reshaping backwards, we round in the opposite direction
4586 	 * and perform the reverse test:  next write position must not be
4587 	 * less than current safe position.
4588 	 *
4589 	 * In all this the minimum difference in data offsets
4590 	 * (conf->offset_diff - always positive) allows a bit of slack,
4591 	 * so next can be after 'safe', but not by more than offset_diff
4592 	 *
4593 	 * We need to prepare all the bios here before we start any IO
4594 	 * to ensure the size we choose is acceptable to all devices.
4595 	 * The means one for each copy for write-out and an extra one for
4596 	 * read-in.
4597 	 * We store the read-in bio in ->master_bio and the others in
4598 	 * ->devs[x].bio and ->devs[x].repl_bio.
4599 	 */
4600 	struct r10conf *conf = mddev->private;
4601 	struct r10bio *r10_bio;
4602 	sector_t next, safe, last;
4603 	int max_sectors;
4604 	int nr_sectors;
4605 	int s;
4606 	struct md_rdev *rdev;
4607 	int need_flush = 0;
4608 	struct bio *blist;
4609 	struct bio *bio, *read_bio;
4610 	int sectors_done = 0;
4611 	struct page **pages;
4612 
4613 	if (sector_nr == 0) {
4614 		/* If restarting in the middle, skip the initial sectors */
4615 		if (mddev->reshape_backwards &&
4616 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4617 			sector_nr = (raid10_size(mddev, 0, 0)
4618 				     - conf->reshape_progress);
4619 		} else if (!mddev->reshape_backwards &&
4620 			   conf->reshape_progress > 0)
4621 			sector_nr = conf->reshape_progress;
4622 		if (sector_nr) {
4623 			mddev->curr_resync_completed = sector_nr;
4624 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4625 			*skipped = 1;
4626 			return sector_nr;
4627 		}
4628 	}
4629 
4630 	/* We don't use sector_nr to track where we are up to
4631 	 * as that doesn't work well for ->reshape_backwards.
4632 	 * So just use ->reshape_progress.
4633 	 */
4634 	if (mddev->reshape_backwards) {
4635 		/* 'next' is the earliest device address that we might
4636 		 * write to for this chunk in the new layout
4637 		 */
4638 		next = first_dev_address(conf->reshape_progress - 1,
4639 					 &conf->geo);
4640 
4641 		/* 'safe' is the last device address that we might read from
4642 		 * in the old layout after a restart
4643 		 */
4644 		safe = last_dev_address(conf->reshape_safe - 1,
4645 					&conf->prev);
4646 
4647 		if (next + conf->offset_diff < safe)
4648 			need_flush = 1;
4649 
4650 		last = conf->reshape_progress - 1;
4651 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4652 					       & conf->prev.chunk_mask);
4653 		if (sector_nr + RESYNC_SECTORS < last)
4654 			sector_nr = last + 1 - RESYNC_SECTORS;
4655 	} else {
4656 		/* 'next' is after the last device address that we
4657 		 * might write to for this chunk in the new layout
4658 		 */
4659 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4660 
4661 		/* 'safe' is the earliest device address that we might
4662 		 * read from in the old layout after a restart
4663 		 */
4664 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4665 
4666 		/* Need to update metadata if 'next' might be beyond 'safe'
4667 		 * as that would possibly corrupt data
4668 		 */
4669 		if (next > safe + conf->offset_diff)
4670 			need_flush = 1;
4671 
4672 		sector_nr = conf->reshape_progress;
4673 		last  = sector_nr | (conf->geo.chunk_mask
4674 				     & conf->prev.chunk_mask);
4675 
4676 		if (sector_nr + RESYNC_SECTORS <= last)
4677 			last = sector_nr + RESYNC_SECTORS - 1;
4678 	}
4679 
4680 	if (need_flush ||
4681 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4682 		/* Need to update reshape_position in metadata */
4683 		wait_barrier(conf, false);
4684 		mddev->reshape_position = conf->reshape_progress;
4685 		if (mddev->reshape_backwards)
4686 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4687 				- conf->reshape_progress;
4688 		else
4689 			mddev->curr_resync_completed = conf->reshape_progress;
4690 		conf->reshape_checkpoint = jiffies;
4691 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4692 		md_wakeup_thread(mddev->thread);
4693 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4694 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4695 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4696 			allow_barrier(conf);
4697 			return sectors_done;
4698 		}
4699 		conf->reshape_safe = mddev->reshape_position;
4700 		allow_barrier(conf);
4701 	}
4702 
4703 	raise_barrier(conf, 0);
4704 read_more:
4705 	/* Now schedule reads for blocks from sector_nr to last */
4706 	r10_bio = raid10_alloc_init_r10buf(conf);
4707 	r10_bio->state = 0;
4708 	raise_barrier(conf, 1);
4709 	atomic_set(&r10_bio->remaining, 0);
4710 	r10_bio->mddev = mddev;
4711 	r10_bio->sector = sector_nr;
4712 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4713 	r10_bio->sectors = last - sector_nr + 1;
4714 	rdev = read_balance(conf, r10_bio, &max_sectors);
4715 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4716 
4717 	if (!rdev) {
4718 		/* Cannot read from here, so need to record bad blocks
4719 		 * on all the target devices.
4720 		 */
4721 		// FIXME
4722 		mempool_free(r10_bio, &conf->r10buf_pool);
4723 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4724 		return sectors_done;
4725 	}
4726 
4727 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4728 				    GFP_KERNEL, &mddev->bio_set);
4729 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4730 			       + rdev->data_offset);
4731 	read_bio->bi_private = r10_bio;
4732 	read_bio->bi_end_io = end_reshape_read;
4733 	r10_bio->master_bio = read_bio;
4734 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4735 
4736 	/*
4737 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4738 	 * write to the region to avoid conflict.
4739 	*/
4740 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4741 		struct mdp_superblock_1 *sb = NULL;
4742 		int sb_reshape_pos = 0;
4743 
4744 		conf->cluster_sync_low = sector_nr;
4745 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4746 		sb = page_address(rdev->sb_page);
4747 		if (sb) {
4748 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4749 			/*
4750 			 * Set cluster_sync_low again if next address for array
4751 			 * reshape is less than cluster_sync_low. Since we can't
4752 			 * update cluster_sync_low until it has finished reshape.
4753 			 */
4754 			if (sb_reshape_pos < conf->cluster_sync_low)
4755 				conf->cluster_sync_low = sb_reshape_pos;
4756 		}
4757 
4758 		mddev->cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4759 							  conf->cluster_sync_high);
4760 	}
4761 
4762 	/* Now find the locations in the new layout */
4763 	__raid10_find_phys(&conf->geo, r10_bio);
4764 
4765 	blist = read_bio;
4766 	read_bio->bi_next = NULL;
4767 
4768 	for (s = 0; s < conf->copies*2; s++) {
4769 		struct bio *b;
4770 		int d = r10_bio->devs[s/2].devnum;
4771 		struct md_rdev *rdev2;
4772 		if (s&1) {
4773 			rdev2 = conf->mirrors[d].replacement;
4774 			b = r10_bio->devs[s/2].repl_bio;
4775 		} else {
4776 			rdev2 = conf->mirrors[d].rdev;
4777 			b = r10_bio->devs[s/2].bio;
4778 		}
4779 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4780 			continue;
4781 
4782 		bio_set_dev(b, rdev2->bdev);
4783 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4784 			rdev2->new_data_offset;
4785 		b->bi_end_io = end_reshape_write;
4786 		b->bi_opf = REQ_OP_WRITE;
4787 		b->bi_next = blist;
4788 		blist = b;
4789 	}
4790 
4791 	/* Now add as many pages as possible to all of these bios. */
4792 
4793 	nr_sectors = 0;
4794 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4795 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4796 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4797 		int len = (max_sectors - s) << 9;
4798 		if (len > PAGE_SIZE)
4799 			len = PAGE_SIZE;
4800 		for (bio = blist; bio ; bio = bio->bi_next) {
4801 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4802 				bio->bi_status = BLK_STS_RESOURCE;
4803 				bio_endio(bio);
4804 				return sectors_done;
4805 			}
4806 		}
4807 		sector_nr += len >> 9;
4808 		nr_sectors += len >> 9;
4809 	}
4810 	r10_bio->sectors = nr_sectors;
4811 
4812 	/* Now submit the read */
4813 	atomic_inc(&r10_bio->remaining);
4814 	read_bio->bi_next = NULL;
4815 	submit_bio_noacct(read_bio);
4816 	sectors_done += nr_sectors;
4817 	if (sector_nr <= last)
4818 		goto read_more;
4819 
4820 	lower_barrier(conf);
4821 
4822 	/* Now that we have done the whole section we can
4823 	 * update reshape_progress
4824 	 */
4825 	if (mddev->reshape_backwards)
4826 		conf->reshape_progress -= sectors_done;
4827 	else
4828 		conf->reshape_progress += sectors_done;
4829 
4830 	return sectors_done;
4831 }
4832 
4833 static void end_reshape_request(struct r10bio *r10_bio);
4834 static int handle_reshape_read_error(struct mddev *mddev,
4835 				     struct r10bio *r10_bio);
4836 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4837 {
4838 	/* Reshape read completed.  Hopefully we have a block
4839 	 * to write out.
4840 	 * If we got a read error then we do sync 1-page reads from
4841 	 * elsewhere until we find the data - or give up.
4842 	 */
4843 	struct r10conf *conf = mddev->private;
4844 	int s;
4845 
4846 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4847 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4848 			/* Reshape has been aborted */
4849 			md_done_sync(mddev, r10_bio->sectors);
4850 			md_sync_error(mddev);
4851 			return;
4852 		}
4853 
4854 	/* We definitely have the data in the pages, schedule the
4855 	 * writes.
4856 	 */
4857 	atomic_set(&r10_bio->remaining, 1);
4858 	for (s = 0; s < conf->copies*2; s++) {
4859 		struct bio *b;
4860 		int d = r10_bio->devs[s/2].devnum;
4861 		struct md_rdev *rdev;
4862 		if (s&1) {
4863 			rdev = conf->mirrors[d].replacement;
4864 			b = r10_bio->devs[s/2].repl_bio;
4865 		} else {
4866 			rdev = conf->mirrors[d].rdev;
4867 			b = r10_bio->devs[s/2].bio;
4868 		}
4869 		if (!rdev || test_bit(Faulty, &rdev->flags))
4870 			continue;
4871 
4872 		atomic_inc(&rdev->nr_pending);
4873 		atomic_inc(&r10_bio->remaining);
4874 		b->bi_next = NULL;
4875 		submit_bio_noacct(b);
4876 	}
4877 	end_reshape_request(r10_bio);
4878 }
4879 
4880 static void end_reshape(struct r10conf *conf)
4881 {
4882 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4883 		return;
4884 
4885 	spin_lock_irq(&conf->device_lock);
4886 	conf->prev = conf->geo;
4887 	md_finish_reshape(conf->mddev);
4888 	smp_wmb();
4889 	conf->reshape_progress = MaxSector;
4890 	conf->reshape_safe = MaxSector;
4891 	spin_unlock_irq(&conf->device_lock);
4892 
4893 	mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4894 	conf->fullsync = 0;
4895 }
4896 
4897 static void raid10_update_reshape_pos(struct mddev *mddev)
4898 {
4899 	struct r10conf *conf = mddev->private;
4900 	sector_t lo, hi;
4901 
4902 	mddev->cluster_ops->resync_info_get(mddev, &lo, &hi);
4903 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4904 	    || mddev->reshape_position == MaxSector)
4905 		conf->reshape_progress = mddev->reshape_position;
4906 	else
4907 		WARN_ON_ONCE(1);
4908 }
4909 
4910 static int handle_reshape_read_error(struct mddev *mddev,
4911 				     struct r10bio *r10_bio)
4912 {
4913 	/* Use sync reads to get the blocks from somewhere else */
4914 	int sectors = r10_bio->sectors;
4915 	struct r10conf *conf = mddev->private;
4916 	struct r10bio *r10b;
4917 	int slot = 0;
4918 	int idx = 0;
4919 	struct page **pages;
4920 
4921 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4922 	if (!r10b) {
4923 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4924 		return -ENOMEM;
4925 	}
4926 
4927 	/* reshape IOs share pages from .devs[0].bio */
4928 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4929 
4930 	r10b->sector = r10_bio->sector;
4931 	__raid10_find_phys(&conf->prev, r10b);
4932 
4933 	while (sectors) {
4934 		int s = sectors;
4935 		int success = 0;
4936 		int first_slot = slot;
4937 
4938 		if (s > (PAGE_SIZE >> 9))
4939 			s = PAGE_SIZE >> 9;
4940 
4941 		while (!success) {
4942 			int d = r10b->devs[slot].devnum;
4943 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4944 			sector_t addr;
4945 			if (rdev == NULL ||
4946 			    test_bit(Faulty, &rdev->flags) ||
4947 			    !test_bit(In_sync, &rdev->flags))
4948 				goto failed;
4949 
4950 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4951 			atomic_inc(&rdev->nr_pending);
4952 			success = sync_page_io(rdev,
4953 					       addr,
4954 					       s << 9,
4955 					       pages[idx],
4956 					       REQ_OP_READ, false);
4957 			rdev_dec_pending(rdev, mddev);
4958 			if (success)
4959 				break;
4960 		failed:
4961 			slot++;
4962 			if (slot >= conf->copies)
4963 				slot = 0;
4964 			if (slot == first_slot)
4965 				break;
4966 		}
4967 		if (!success) {
4968 			/* couldn't read this block, must give up */
4969 			set_bit(MD_RECOVERY_INTR,
4970 				&mddev->recovery);
4971 			kfree(r10b);
4972 			return -EIO;
4973 		}
4974 		sectors -= s;
4975 		idx++;
4976 	}
4977 	kfree(r10b);
4978 	return 0;
4979 }
4980 
4981 static void end_reshape_write(struct bio *bio)
4982 {
4983 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4984 	struct mddev *mddev = r10_bio->mddev;
4985 	struct r10conf *conf = mddev->private;
4986 	int d;
4987 	int slot;
4988 	int repl;
4989 	struct md_rdev *rdev = NULL;
4990 
4991 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4992 	rdev = repl ? conf->mirrors[d].replacement :
4993 		      conf->mirrors[d].rdev;
4994 
4995 	if (bio->bi_status) {
4996 		/* FIXME should record badblock */
4997 		md_error(mddev, rdev);
4998 	}
4999 
5000 	rdev_dec_pending(rdev, mddev);
5001 	end_reshape_request(r10_bio);
5002 }
5003 
5004 static void end_reshape_request(struct r10bio *r10_bio)
5005 {
5006 	if (!atomic_dec_and_test(&r10_bio->remaining))
5007 		return;
5008 	md_done_sync(r10_bio->mddev, r10_bio->sectors);
5009 	bio_put(r10_bio->master_bio);
5010 	put_buf(r10_bio);
5011 }
5012 
5013 static void raid10_finish_reshape(struct mddev *mddev)
5014 {
5015 	struct r10conf *conf = mddev->private;
5016 
5017 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5018 		return;
5019 
5020 	if (mddev->delta_disks > 0) {
5021 		if (mddev->resync_offset > mddev->resync_max_sectors) {
5022 			mddev->resync_offset = mddev->resync_max_sectors;
5023 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5024 		}
5025 		mddev->resync_max_sectors = mddev->array_sectors;
5026 	} else {
5027 		int d;
5028 		for (d = conf->geo.raid_disks ;
5029 		     d < conf->geo.raid_disks - mddev->delta_disks;
5030 		     d++) {
5031 			struct md_rdev *rdev = conf->mirrors[d].rdev;
5032 			if (rdev)
5033 				clear_bit(In_sync, &rdev->flags);
5034 			rdev = conf->mirrors[d].replacement;
5035 			if (rdev)
5036 				clear_bit(In_sync, &rdev->flags);
5037 		}
5038 	}
5039 	mddev->layout = mddev->new_layout;
5040 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5041 	mddev->reshape_position = MaxSector;
5042 	mddev->delta_disks = 0;
5043 	mddev->reshape_backwards = 0;
5044 }
5045 
5046 static struct md_personality raid10_personality =
5047 {
5048 	.head = {
5049 		.type	= MD_PERSONALITY,
5050 		.id	= ID_RAID10,
5051 		.name	= "raid10",
5052 		.owner	= THIS_MODULE,
5053 	},
5054 
5055 	.make_request	= raid10_make_request,
5056 	.run		= raid10_run,
5057 	.free		= raid10_free,
5058 	.status		= raid10_status,
5059 	.error_handler	= raid10_error,
5060 	.hot_add_disk	= raid10_add_disk,
5061 	.hot_remove_disk= raid10_remove_disk,
5062 	.spare_active	= raid10_spare_active,
5063 	.sync_request	= raid10_sync_request,
5064 	.quiesce	= raid10_quiesce,
5065 	.size		= raid10_size,
5066 	.resize		= raid10_resize,
5067 	.takeover	= raid10_takeover,
5068 	.check_reshape	= raid10_check_reshape,
5069 	.start_reshape	= raid10_start_reshape,
5070 	.finish_reshape	= raid10_finish_reshape,
5071 	.update_reshape_pos = raid10_update_reshape_pos,
5072 };
5073 
5074 static int __init raid10_init(void)
5075 {
5076 	return register_md_submodule(&raid10_personality.head);
5077 }
5078 
5079 static void __exit raid10_exit(void)
5080 {
5081 	unregister_md_submodule(&raid10_personality.head);
5082 }
5083 
5084 module_init(raid10_init);
5085 module_exit(raid10_exit);
5086 MODULE_LICENSE("GPL");
5087 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5088 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5089 MODULE_ALIAS("md-raid10");
5090 MODULE_ALIAS("md-level-10");
5091