1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 23 #define RAID_1_10_NAME "raid10" 24 #include "raid10.h" 25 #include "raid0.h" 26 #include "md-bitmap.h" 27 #include "md-cluster.h" 28 29 /* 30 * RAID10 provides a combination of RAID0 and RAID1 functionality. 31 * The layout of data is defined by 32 * chunk_size 33 * raid_disks 34 * near_copies (stored in low byte of layout) 35 * far_copies (stored in second byte of layout) 36 * far_offset (stored in bit 16 of layout ) 37 * use_far_sets (stored in bit 17 of layout ) 38 * use_far_sets_bugfixed (stored in bit 18 of layout ) 39 * 40 * The data to be stored is divided into chunks using chunksize. Each device 41 * is divided into far_copies sections. In each section, chunks are laid out 42 * in a style similar to raid0, but near_copies copies of each chunk is stored 43 * (each on a different drive). The starting device for each section is offset 44 * near_copies from the starting device of the previous section. Thus there 45 * are (near_copies * far_copies) of each chunk, and each is on a different 46 * drive. near_copies and far_copies must be at least one, and their product 47 * is at most raid_disks. 48 * 49 * If far_offset is true, then the far_copies are handled a bit differently. 50 * The copies are still in different stripes, but instead of being very far 51 * apart on disk, there are adjacent stripes. 52 * 53 * The far and offset algorithms are handled slightly differently if 54 * 'use_far_sets' is true. In this case, the array's devices are grouped into 55 * sets that are (near_copies * far_copies) in size. The far copied stripes 56 * are still shifted by 'near_copies' devices, but this shifting stays confined 57 * to the set rather than the entire array. This is done to improve the number 58 * of device combinations that can fail without causing the array to fail. 59 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 60 * on a device): 61 * A B C D A B C D E 62 * ... ... 63 * D A B C E A B C D 64 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 65 * [A B] [C D] [A B] [C D E] 66 * |...| |...| |...| | ... | 67 * [B A] [D C] [B A] [E C D] 68 */ 69 70 static void allow_barrier(struct r10conf *conf); 71 static void lower_barrier(struct r10conf *conf); 72 static int _enough(struct r10conf *conf, int previous, int ignore); 73 static int enough(struct r10conf *conf, int ignore); 74 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 75 int *skipped); 76 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 77 static void end_reshape_write(struct bio *bio); 78 static void end_reshape(struct r10conf *conf); 79 80 #include "raid1-10.c" 81 82 #define NULL_CMD 83 #define cmd_before(conf, cmd) \ 84 do { \ 85 write_sequnlock_irq(&(conf)->resync_lock); \ 86 cmd; \ 87 } while (0) 88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 89 90 #define wait_event_barrier_cmd(conf, cond, cmd) \ 91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 92 cmd_after(conf)) 93 94 #define wait_event_barrier(conf, cond) \ 95 wait_event_barrier_cmd(conf, cond, NULL_CMD) 96 97 /* 98 * for resync bio, r10bio pointer can be retrieved from the per-bio 99 * 'struct resync_pages'. 100 */ 101 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 102 { 103 return get_resync_pages(bio)->raid_bio; 104 } 105 106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 107 { 108 struct r10conf *conf = data; 109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 110 111 /* allocate a r10bio with room for raid_disks entries in the 112 * bios array */ 113 return kzalloc(size, gfp_flags); 114 } 115 116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 117 /* amount of memory to reserve for resync requests */ 118 #define RESYNC_WINDOW (1024*1024) 119 /* maximum number of concurrent requests, memory permitting */ 120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 123 124 /* 125 * When performing a resync, we need to read and compare, so 126 * we need as many pages are there are copies. 127 * When performing a recovery, we need 2 bios, one for read, 128 * one for write (we recover only one drive per r10buf) 129 * 130 */ 131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 132 { 133 struct r10conf *conf = data; 134 struct r10bio *r10_bio; 135 struct bio *bio; 136 int j; 137 int nalloc, nalloc_rp; 138 struct resync_pages *rps; 139 140 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 141 if (!r10_bio) 142 return NULL; 143 144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 146 nalloc = conf->copies; /* resync */ 147 else 148 nalloc = 2; /* recovery */ 149 150 /* allocate once for all bios */ 151 if (!conf->have_replacement) 152 nalloc_rp = nalloc; 153 else 154 nalloc_rp = nalloc * 2; 155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 156 if (!rps) 157 goto out_free_r10bio; 158 159 /* 160 * Allocate bios. 161 */ 162 for (j = nalloc ; j-- ; ) { 163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 164 if (!bio) 165 goto out_free_bio; 166 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 167 r10_bio->devs[j].bio = bio; 168 if (!conf->have_replacement) 169 continue; 170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 171 if (!bio) 172 goto out_free_bio; 173 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 174 r10_bio->devs[j].repl_bio = bio; 175 } 176 /* 177 * Allocate RESYNC_PAGES data pages and attach them 178 * where needed. 179 */ 180 for (j = 0; j < nalloc; j++) { 181 struct bio *rbio = r10_bio->devs[j].repl_bio; 182 struct resync_pages *rp, *rp_repl; 183 184 rp = &rps[j]; 185 if (rbio) 186 rp_repl = &rps[nalloc + j]; 187 188 bio = r10_bio->devs[j].bio; 189 190 if (!j || test_bit(MD_RECOVERY_SYNC, 191 &conf->mddev->recovery)) { 192 if (resync_alloc_pages(rp, gfp_flags)) 193 goto out_free_pages; 194 } else { 195 memcpy(rp, &rps[0], sizeof(*rp)); 196 resync_get_all_pages(rp); 197 } 198 199 rp->raid_bio = r10_bio; 200 bio->bi_private = rp; 201 if (rbio) { 202 memcpy(rp_repl, rp, sizeof(*rp)); 203 rbio->bi_private = rp_repl; 204 } 205 } 206 207 return r10_bio; 208 209 out_free_pages: 210 while (--j >= 0) 211 resync_free_pages(&rps[j]); 212 213 j = 0; 214 out_free_bio: 215 for ( ; j < nalloc; j++) { 216 if (r10_bio->devs[j].bio) 217 bio_uninit(r10_bio->devs[j].bio); 218 kfree(r10_bio->devs[j].bio); 219 if (r10_bio->devs[j].repl_bio) 220 bio_uninit(r10_bio->devs[j].repl_bio); 221 kfree(r10_bio->devs[j].repl_bio); 222 } 223 kfree(rps); 224 out_free_r10bio: 225 rbio_pool_free(r10_bio, conf); 226 return NULL; 227 } 228 229 static void r10buf_pool_free(void *__r10_bio, void *data) 230 { 231 struct r10conf *conf = data; 232 struct r10bio *r10bio = __r10_bio; 233 int j; 234 struct resync_pages *rp = NULL; 235 236 for (j = conf->copies; j--; ) { 237 struct bio *bio = r10bio->devs[j].bio; 238 239 if (bio) { 240 rp = get_resync_pages(bio); 241 resync_free_pages(rp); 242 bio_uninit(bio); 243 kfree(bio); 244 } 245 246 bio = r10bio->devs[j].repl_bio; 247 if (bio) { 248 bio_uninit(bio); 249 kfree(bio); 250 } 251 } 252 253 /* resync pages array stored in the 1st bio's .bi_private */ 254 kfree(rp); 255 256 rbio_pool_free(r10bio, conf); 257 } 258 259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 260 { 261 int i; 262 263 for (i = 0; i < conf->geo.raid_disks; i++) { 264 struct bio **bio = & r10_bio->devs[i].bio; 265 if (!BIO_SPECIAL(*bio)) 266 bio_put(*bio); 267 *bio = NULL; 268 bio = &r10_bio->devs[i].repl_bio; 269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 270 bio_put(*bio); 271 *bio = NULL; 272 } 273 } 274 275 static void free_r10bio(struct r10bio *r10_bio) 276 { 277 struct r10conf *conf = r10_bio->mddev->private; 278 279 put_all_bios(conf, r10_bio); 280 mempool_free(r10_bio, &conf->r10bio_pool); 281 } 282 283 static void put_buf(struct r10bio *r10_bio) 284 { 285 struct r10conf *conf = r10_bio->mddev->private; 286 287 mempool_free(r10_bio, &conf->r10buf_pool); 288 289 lower_barrier(conf); 290 } 291 292 static void wake_up_barrier(struct r10conf *conf) 293 { 294 if (wq_has_sleeper(&conf->wait_barrier)) 295 wake_up(&conf->wait_barrier); 296 } 297 298 static void reschedule_retry(struct r10bio *r10_bio) 299 { 300 unsigned long flags; 301 struct mddev *mddev = r10_bio->mddev; 302 struct r10conf *conf = mddev->private; 303 304 spin_lock_irqsave(&conf->device_lock, flags); 305 list_add(&r10_bio->retry_list, &conf->retry_list); 306 conf->nr_queued ++; 307 spin_unlock_irqrestore(&conf->device_lock, flags); 308 309 /* wake up frozen array... */ 310 wake_up(&conf->wait_barrier); 311 312 md_wakeup_thread(mddev->thread); 313 } 314 315 /* 316 * raid_end_bio_io() is called when we have finished servicing a mirrored 317 * operation and are ready to return a success/failure code to the buffer 318 * cache layer. 319 */ 320 static void raid_end_bio_io(struct r10bio *r10_bio) 321 { 322 struct bio *bio = r10_bio->master_bio; 323 struct r10conf *conf = r10_bio->mddev->private; 324 325 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 326 bio->bi_status = BLK_STS_IOERR; 327 328 bio_endio(bio); 329 /* 330 * Wake up any possible resync thread that waits for the device 331 * to go idle. 332 */ 333 allow_barrier(conf); 334 335 free_r10bio(r10_bio); 336 } 337 338 /* 339 * Update disk head position estimator based on IRQ completion info. 340 */ 341 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 342 { 343 struct r10conf *conf = r10_bio->mddev->private; 344 345 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 346 r10_bio->devs[slot].addr + (r10_bio->sectors); 347 } 348 349 /* 350 * Find the disk number which triggered given bio 351 */ 352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 353 struct bio *bio, int *slotp, int *replp) 354 { 355 int slot; 356 int repl = 0; 357 358 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 359 if (r10_bio->devs[slot].bio == bio) 360 break; 361 if (r10_bio->devs[slot].repl_bio == bio) { 362 repl = 1; 363 break; 364 } 365 } 366 367 update_head_pos(slot, r10_bio); 368 369 if (slotp) 370 *slotp = slot; 371 if (replp) 372 *replp = repl; 373 return r10_bio->devs[slot].devnum; 374 } 375 376 static void raid10_end_read_request(struct bio *bio) 377 { 378 int uptodate = !bio->bi_status; 379 struct r10bio *r10_bio = bio->bi_private; 380 int slot; 381 struct md_rdev *rdev; 382 struct r10conf *conf = r10_bio->mddev->private; 383 384 slot = r10_bio->read_slot; 385 rdev = r10_bio->devs[slot].rdev; 386 /* 387 * this branch is our 'one mirror IO has finished' event handler: 388 */ 389 update_head_pos(slot, r10_bio); 390 391 if (uptodate) { 392 /* 393 * Set R10BIO_Uptodate in our master bio, so that 394 * we will return a good error code to the higher 395 * levels even if IO on some other mirrored buffer fails. 396 * 397 * The 'master' represents the composite IO operation to 398 * user-side. So if something waits for IO, then it will 399 * wait for the 'master' bio. 400 */ 401 set_bit(R10BIO_Uptodate, &r10_bio->state); 402 } else if (!raid1_should_handle_error(bio)) { 403 uptodate = 1; 404 } else { 405 /* If all other devices that store this block have 406 * failed, we want to return the error upwards rather 407 * than fail the last device. Here we redefine 408 * "uptodate" to mean "Don't want to retry" 409 */ 410 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 411 rdev->raid_disk)) 412 uptodate = 1; 413 } 414 if (uptodate) { 415 raid_end_bio_io(r10_bio); 416 rdev_dec_pending(rdev, conf->mddev); 417 } else { 418 /* 419 * oops, read error - keep the refcount on the rdev 420 */ 421 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 422 mdname(conf->mddev), 423 rdev->bdev, 424 (unsigned long long)r10_bio->sector); 425 set_bit(R10BIO_ReadError, &r10_bio->state); 426 reschedule_retry(r10_bio); 427 } 428 } 429 430 static void close_write(struct r10bio *r10_bio) 431 { 432 struct mddev *mddev = r10_bio->mddev; 433 434 md_write_end(mddev); 435 } 436 437 static void one_write_done(struct r10bio *r10_bio) 438 { 439 if (atomic_dec_and_test(&r10_bio->remaining)) { 440 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 441 reschedule_retry(r10_bio); 442 else { 443 close_write(r10_bio); 444 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 445 reschedule_retry(r10_bio); 446 else 447 raid_end_bio_io(r10_bio); 448 } 449 } 450 } 451 452 static void raid10_end_write_request(struct bio *bio) 453 { 454 struct r10bio *r10_bio = bio->bi_private; 455 int dev; 456 int dec_rdev = 1; 457 struct r10conf *conf = r10_bio->mddev->private; 458 int slot, repl; 459 struct md_rdev *rdev = NULL; 460 struct bio *to_put = NULL; 461 bool ignore_error = !raid1_should_handle_error(bio) || 462 (bio->bi_status && bio_op(bio) == REQ_OP_DISCARD); 463 464 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 465 466 if (repl) 467 rdev = conf->mirrors[dev].replacement; 468 if (!rdev) { 469 smp_rmb(); 470 repl = 0; 471 rdev = conf->mirrors[dev].rdev; 472 } 473 /* 474 * this branch is our 'one mirror IO has finished' event handler: 475 */ 476 if (bio->bi_status && !ignore_error) { 477 if (repl) 478 /* Never record new bad blocks to replacement, 479 * just fail it. 480 */ 481 md_error(rdev->mddev, rdev); 482 else { 483 set_bit(WriteErrorSeen, &rdev->flags); 484 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 485 set_bit(MD_RECOVERY_NEEDED, 486 &rdev->mddev->recovery); 487 488 dec_rdev = 0; 489 if (test_bit(FailFast, &rdev->flags) && 490 (bio->bi_opf & MD_FAILFAST)) { 491 md_error(rdev->mddev, rdev); 492 } 493 494 /* 495 * When the device is faulty, it is not necessary to 496 * handle write error. 497 */ 498 if (!test_bit(Faulty, &rdev->flags)) 499 set_bit(R10BIO_WriteError, &r10_bio->state); 500 else { 501 /* Fail the request */ 502 r10_bio->devs[slot].bio = NULL; 503 to_put = bio; 504 dec_rdev = 1; 505 } 506 } 507 } else { 508 /* 509 * Set R10BIO_Uptodate in our master bio, so that 510 * we will return a good error code for to the higher 511 * levels even if IO on some other mirrored buffer fails. 512 * 513 * The 'master' represents the composite IO operation to 514 * user-side. So if something waits for IO, then it will 515 * wait for the 'master' bio. 516 * 517 * Do not set R10BIO_Uptodate if the current device is 518 * rebuilding or Faulty. This is because we cannot use 519 * such device for properly reading the data back (we could 520 * potentially use it, if the current write would have felt 521 * before rdev->recovery_offset, but for simplicity we don't 522 * check this here. 523 */ 524 if (test_bit(In_sync, &rdev->flags) && 525 !test_bit(Faulty, &rdev->flags)) 526 set_bit(R10BIO_Uptodate, &r10_bio->state); 527 528 /* Maybe we can clear some bad blocks. */ 529 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 530 r10_bio->sectors) && 531 !ignore_error) { 532 bio_put(bio); 533 if (repl) 534 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 535 else 536 r10_bio->devs[slot].bio = IO_MADE_GOOD; 537 dec_rdev = 0; 538 set_bit(R10BIO_MadeGood, &r10_bio->state); 539 } 540 } 541 542 /* 543 * 544 * Let's see if all mirrored write operations have finished 545 * already. 546 */ 547 one_write_done(r10_bio); 548 if (dec_rdev) 549 rdev_dec_pending(rdev, conf->mddev); 550 if (to_put) 551 bio_put(to_put); 552 } 553 554 /* 555 * RAID10 layout manager 556 * As well as the chunksize and raid_disks count, there are two 557 * parameters: near_copies and far_copies. 558 * near_copies * far_copies must be <= raid_disks. 559 * Normally one of these will be 1. 560 * If both are 1, we get raid0. 561 * If near_copies == raid_disks, we get raid1. 562 * 563 * Chunks are laid out in raid0 style with near_copies copies of the 564 * first chunk, followed by near_copies copies of the next chunk and 565 * so on. 566 * If far_copies > 1, then after 1/far_copies of the array has been assigned 567 * as described above, we start again with a device offset of near_copies. 568 * So we effectively have another copy of the whole array further down all 569 * the drives, but with blocks on different drives. 570 * With this layout, and block is never stored twice on the one device. 571 * 572 * raid10_find_phys finds the sector offset of a given virtual sector 573 * on each device that it is on. 574 * 575 * raid10_find_virt does the reverse mapping, from a device and a 576 * sector offset to a virtual address 577 */ 578 579 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 580 { 581 int n,f; 582 sector_t sector; 583 sector_t chunk; 584 sector_t stripe; 585 int dev; 586 int slot = 0; 587 int last_far_set_start, last_far_set_size; 588 589 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 590 last_far_set_start *= geo->far_set_size; 591 592 last_far_set_size = geo->far_set_size; 593 last_far_set_size += (geo->raid_disks % geo->far_set_size); 594 595 /* now calculate first sector/dev */ 596 chunk = r10bio->sector >> geo->chunk_shift; 597 sector = r10bio->sector & geo->chunk_mask; 598 599 chunk *= geo->near_copies; 600 stripe = chunk; 601 dev = sector_div(stripe, geo->raid_disks); 602 if (geo->far_offset) 603 stripe *= geo->far_copies; 604 605 sector += stripe << geo->chunk_shift; 606 607 /* and calculate all the others */ 608 for (n = 0; n < geo->near_copies; n++) { 609 int d = dev; 610 int set; 611 sector_t s = sector; 612 r10bio->devs[slot].devnum = d; 613 r10bio->devs[slot].addr = s; 614 slot++; 615 616 for (f = 1; f < geo->far_copies; f++) { 617 set = d / geo->far_set_size; 618 d += geo->near_copies; 619 620 if ((geo->raid_disks % geo->far_set_size) && 621 (d > last_far_set_start)) { 622 d -= last_far_set_start; 623 d %= last_far_set_size; 624 d += last_far_set_start; 625 } else { 626 d %= geo->far_set_size; 627 d += geo->far_set_size * set; 628 } 629 s += geo->stride; 630 r10bio->devs[slot].devnum = d; 631 r10bio->devs[slot].addr = s; 632 slot++; 633 } 634 dev++; 635 if (dev >= geo->raid_disks) { 636 dev = 0; 637 sector += (geo->chunk_mask + 1); 638 } 639 } 640 } 641 642 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 643 { 644 struct geom *geo = &conf->geo; 645 646 if (conf->reshape_progress != MaxSector && 647 ((r10bio->sector >= conf->reshape_progress) != 648 conf->mddev->reshape_backwards)) { 649 set_bit(R10BIO_Previous, &r10bio->state); 650 geo = &conf->prev; 651 } else 652 clear_bit(R10BIO_Previous, &r10bio->state); 653 654 __raid10_find_phys(geo, r10bio); 655 } 656 657 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 658 { 659 sector_t offset, chunk, vchunk; 660 /* Never use conf->prev as this is only called during resync 661 * or recovery, so reshape isn't happening 662 */ 663 struct geom *geo = &conf->geo; 664 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 665 int far_set_size = geo->far_set_size; 666 int last_far_set_start; 667 668 if (geo->raid_disks % geo->far_set_size) { 669 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 670 last_far_set_start *= geo->far_set_size; 671 672 if (dev >= last_far_set_start) { 673 far_set_size = geo->far_set_size; 674 far_set_size += (geo->raid_disks % geo->far_set_size); 675 far_set_start = last_far_set_start; 676 } 677 } 678 679 offset = sector & geo->chunk_mask; 680 if (geo->far_offset) { 681 int fc; 682 chunk = sector >> geo->chunk_shift; 683 fc = sector_div(chunk, geo->far_copies); 684 dev -= fc * geo->near_copies; 685 if (dev < far_set_start) 686 dev += far_set_size; 687 } else { 688 while (sector >= geo->stride) { 689 sector -= geo->stride; 690 if (dev < (geo->near_copies + far_set_start)) 691 dev += far_set_size - geo->near_copies; 692 else 693 dev -= geo->near_copies; 694 } 695 chunk = sector >> geo->chunk_shift; 696 } 697 vchunk = chunk * geo->raid_disks + dev; 698 sector_div(vchunk, geo->near_copies); 699 return (vchunk << geo->chunk_shift) + offset; 700 } 701 702 /* 703 * This routine returns the disk from which the requested read should 704 * be done. There is a per-array 'next expected sequential IO' sector 705 * number - if this matches on the next IO then we use the last disk. 706 * There is also a per-disk 'last know head position' sector that is 707 * maintained from IRQ contexts, both the normal and the resync IO 708 * completion handlers update this position correctly. If there is no 709 * perfect sequential match then we pick the disk whose head is closest. 710 * 711 * If there are 2 mirrors in the same 2 devices, performance degrades 712 * because position is mirror, not device based. 713 * 714 * The rdev for the device selected will have nr_pending incremented. 715 */ 716 717 /* 718 * FIXME: possibly should rethink readbalancing and do it differently 719 * depending on near_copies / far_copies geometry. 720 */ 721 static struct md_rdev *read_balance(struct r10conf *conf, 722 struct r10bio *r10_bio, 723 int *max_sectors) 724 { 725 const sector_t this_sector = r10_bio->sector; 726 int disk, slot; 727 int sectors = r10_bio->sectors; 728 int best_good_sectors; 729 sector_t new_distance, best_dist; 730 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 731 int do_balance; 732 int best_dist_slot, best_pending_slot; 733 bool has_nonrot_disk = false; 734 unsigned int min_pending; 735 struct geom *geo = &conf->geo; 736 737 raid10_find_phys(conf, r10_bio); 738 best_dist_slot = -1; 739 min_pending = UINT_MAX; 740 best_dist_rdev = NULL; 741 best_pending_rdev = NULL; 742 best_dist = MaxSector; 743 best_good_sectors = 0; 744 do_balance = 1; 745 clear_bit(R10BIO_FailFast, &r10_bio->state); 746 747 if (raid1_should_read_first(conf->mddev, this_sector, sectors)) 748 do_balance = 0; 749 750 for (slot = 0; slot < conf->copies ; slot++) { 751 sector_t first_bad; 752 sector_t bad_sectors; 753 sector_t dev_sector; 754 unsigned int pending; 755 bool nonrot; 756 757 if (r10_bio->devs[slot].bio == IO_BLOCKED) 758 continue; 759 disk = r10_bio->devs[slot].devnum; 760 rdev = conf->mirrors[disk].replacement; 761 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 762 r10_bio->devs[slot].addr + sectors > 763 rdev->recovery_offset) 764 rdev = conf->mirrors[disk].rdev; 765 if (rdev == NULL || 766 test_bit(Faulty, &rdev->flags)) 767 continue; 768 if (!test_bit(In_sync, &rdev->flags) && 769 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 770 continue; 771 772 dev_sector = r10_bio->devs[slot].addr; 773 if (is_badblock(rdev, dev_sector, sectors, 774 &first_bad, &bad_sectors)) { 775 if (best_dist < MaxSector) 776 /* Already have a better slot */ 777 continue; 778 if (first_bad <= dev_sector) { 779 /* Cannot read here. If this is the 780 * 'primary' device, then we must not read 781 * beyond 'bad_sectors' from another device. 782 */ 783 bad_sectors -= (dev_sector - first_bad); 784 if (!do_balance && sectors > bad_sectors) 785 sectors = bad_sectors; 786 if (best_good_sectors > sectors) 787 best_good_sectors = sectors; 788 } else { 789 sector_t good_sectors = 790 first_bad - dev_sector; 791 if (good_sectors > best_good_sectors) { 792 best_good_sectors = good_sectors; 793 best_dist_slot = slot; 794 best_dist_rdev = rdev; 795 } 796 if (!do_balance) 797 /* Must read from here */ 798 break; 799 } 800 continue; 801 } else 802 best_good_sectors = sectors; 803 804 if (!do_balance) 805 break; 806 807 nonrot = bdev_nonrot(rdev->bdev); 808 has_nonrot_disk |= nonrot; 809 pending = atomic_read(&rdev->nr_pending); 810 if (min_pending > pending && nonrot) { 811 min_pending = pending; 812 best_pending_slot = slot; 813 best_pending_rdev = rdev; 814 } 815 816 if (best_dist_slot >= 0) 817 /* At least 2 disks to choose from so failfast is OK */ 818 set_bit(R10BIO_FailFast, &r10_bio->state); 819 /* This optimisation is debatable, and completely destroys 820 * sequential read speed for 'far copies' arrays. So only 821 * keep it for 'near' arrays, and review those later. 822 */ 823 if (geo->near_copies > 1 && !pending) 824 new_distance = 0; 825 826 /* for far > 1 always use the lowest address */ 827 else if (geo->far_copies > 1) 828 new_distance = r10_bio->devs[slot].addr; 829 else 830 new_distance = abs(r10_bio->devs[slot].addr - 831 conf->mirrors[disk].head_position); 832 833 if (new_distance < best_dist) { 834 best_dist = new_distance; 835 best_dist_slot = slot; 836 best_dist_rdev = rdev; 837 } 838 } 839 if (slot >= conf->copies) { 840 if (has_nonrot_disk) { 841 slot = best_pending_slot; 842 rdev = best_pending_rdev; 843 } else { 844 slot = best_dist_slot; 845 rdev = best_dist_rdev; 846 } 847 } 848 849 if (slot >= 0) { 850 atomic_inc(&rdev->nr_pending); 851 r10_bio->read_slot = slot; 852 } else 853 rdev = NULL; 854 *max_sectors = best_good_sectors; 855 856 return rdev; 857 } 858 859 static void flush_pending_writes(struct r10conf *conf) 860 { 861 /* Any writes that have been queued but are awaiting 862 * bitmap updates get flushed here. 863 */ 864 spin_lock_irq(&conf->device_lock); 865 866 if (conf->pending_bio_list.head) { 867 struct blk_plug plug; 868 struct bio *bio; 869 870 bio = bio_list_get(&conf->pending_bio_list); 871 spin_unlock_irq(&conf->device_lock); 872 873 /* 874 * As this is called in a wait_event() loop (see freeze_array), 875 * current->state might be TASK_UNINTERRUPTIBLE which will 876 * cause a warning when we prepare to wait again. As it is 877 * rare that this path is taken, it is perfectly safe to force 878 * us to go around the wait_event() loop again, so the warning 879 * is a false-positive. Silence the warning by resetting 880 * thread state 881 */ 882 __set_current_state(TASK_RUNNING); 883 884 blk_start_plug(&plug); 885 raid1_prepare_flush_writes(conf->mddev); 886 wake_up(&conf->wait_barrier); 887 888 while (bio) { /* submit pending writes */ 889 struct bio *next = bio->bi_next; 890 891 raid1_submit_write(bio); 892 bio = next; 893 cond_resched(); 894 } 895 blk_finish_plug(&plug); 896 } else 897 spin_unlock_irq(&conf->device_lock); 898 } 899 900 /* Barriers.... 901 * Sometimes we need to suspend IO while we do something else, 902 * either some resync/recovery, or reconfigure the array. 903 * To do this we raise a 'barrier'. 904 * The 'barrier' is a counter that can be raised multiple times 905 * to count how many activities are happening which preclude 906 * normal IO. 907 * We can only raise the barrier if there is no pending IO. 908 * i.e. if nr_pending == 0. 909 * We choose only to raise the barrier if no-one is waiting for the 910 * barrier to go down. This means that as soon as an IO request 911 * is ready, no other operations which require a barrier will start 912 * until the IO request has had a chance. 913 * 914 * So: regular IO calls 'wait_barrier'. When that returns there 915 * is no backgroup IO happening, It must arrange to call 916 * allow_barrier when it has finished its IO. 917 * backgroup IO calls must call raise_barrier. Once that returns 918 * there is no normal IO happeing. It must arrange to call 919 * lower_barrier when the particular background IO completes. 920 */ 921 922 static void raise_barrier(struct r10conf *conf, int force) 923 { 924 write_seqlock_irq(&conf->resync_lock); 925 926 if (WARN_ON_ONCE(force && !conf->barrier)) 927 force = false; 928 929 /* Wait until no block IO is waiting (unless 'force') */ 930 wait_event_barrier(conf, force || !conf->nr_waiting); 931 932 /* block any new IO from starting */ 933 WRITE_ONCE(conf->barrier, conf->barrier + 1); 934 935 /* Now wait for all pending IO to complete */ 936 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 937 conf->barrier < RESYNC_DEPTH); 938 939 write_sequnlock_irq(&conf->resync_lock); 940 } 941 942 static void lower_barrier(struct r10conf *conf) 943 { 944 unsigned long flags; 945 946 write_seqlock_irqsave(&conf->resync_lock, flags); 947 WRITE_ONCE(conf->barrier, conf->barrier - 1); 948 write_sequnlock_irqrestore(&conf->resync_lock, flags); 949 wake_up(&conf->wait_barrier); 950 } 951 952 static bool stop_waiting_barrier(struct r10conf *conf) 953 { 954 struct bio_list *bio_list = current->bio_list; 955 struct md_thread *thread; 956 957 /* barrier is dropped */ 958 if (!conf->barrier) 959 return true; 960 961 /* 962 * If there are already pending requests (preventing the barrier from 963 * rising completely), and the pre-process bio queue isn't empty, then 964 * don't wait, as we need to empty that queue to get the nr_pending 965 * count down. 966 */ 967 if (atomic_read(&conf->nr_pending) && bio_list && 968 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 969 return true; 970 971 /* daemon thread must exist while handling io */ 972 thread = rcu_dereference_protected(conf->mddev->thread, true); 973 /* 974 * move on if io is issued from raid10d(), nr_pending is not released 975 * from original io(see handle_read_error()). All raise barrier is 976 * blocked until this io is done. 977 */ 978 if (thread->tsk == current) { 979 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 980 return true; 981 } 982 983 return false; 984 } 985 986 static bool wait_barrier_nolock(struct r10conf *conf) 987 { 988 unsigned int seq = read_seqbegin(&conf->resync_lock); 989 990 if (READ_ONCE(conf->barrier)) 991 return false; 992 993 atomic_inc(&conf->nr_pending); 994 if (!read_seqretry(&conf->resync_lock, seq)) 995 return true; 996 997 if (atomic_dec_and_test(&conf->nr_pending)) 998 wake_up_barrier(conf); 999 1000 return false; 1001 } 1002 1003 static bool wait_barrier(struct r10conf *conf, bool nowait) 1004 { 1005 bool ret = true; 1006 1007 if (wait_barrier_nolock(conf)) 1008 return true; 1009 1010 write_seqlock_irq(&conf->resync_lock); 1011 if (conf->barrier) { 1012 /* Return false when nowait flag is set */ 1013 if (nowait) { 1014 ret = false; 1015 } else { 1016 conf->nr_waiting++; 1017 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier"); 1018 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1019 conf->nr_waiting--; 1020 } 1021 if (!conf->nr_waiting) 1022 wake_up(&conf->wait_barrier); 1023 } 1024 /* Only increment nr_pending when we wait */ 1025 if (ret) 1026 atomic_inc(&conf->nr_pending); 1027 write_sequnlock_irq(&conf->resync_lock); 1028 return ret; 1029 } 1030 1031 static void allow_barrier(struct r10conf *conf) 1032 { 1033 if ((atomic_dec_and_test(&conf->nr_pending)) || 1034 (conf->array_freeze_pending)) 1035 wake_up_barrier(conf); 1036 } 1037 1038 static void freeze_array(struct r10conf *conf, int extra) 1039 { 1040 /* stop syncio and normal IO and wait for everything to 1041 * go quiet. 1042 * We increment barrier and nr_waiting, and then 1043 * wait until nr_pending match nr_queued+extra 1044 * This is called in the context of one normal IO request 1045 * that has failed. Thus any sync request that might be pending 1046 * will be blocked by nr_pending, and we need to wait for 1047 * pending IO requests to complete or be queued for re-try. 1048 * Thus the number queued (nr_queued) plus this request (extra) 1049 * must match the number of pending IOs (nr_pending) before 1050 * we continue. 1051 */ 1052 write_seqlock_irq(&conf->resync_lock); 1053 conf->array_freeze_pending++; 1054 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1055 conf->nr_waiting++; 1056 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1057 conf->nr_queued + extra, flush_pending_writes(conf)); 1058 conf->array_freeze_pending--; 1059 write_sequnlock_irq(&conf->resync_lock); 1060 } 1061 1062 static void unfreeze_array(struct r10conf *conf) 1063 { 1064 /* reverse the effect of the freeze */ 1065 write_seqlock_irq(&conf->resync_lock); 1066 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1067 conf->nr_waiting--; 1068 wake_up(&conf->wait_barrier); 1069 write_sequnlock_irq(&conf->resync_lock); 1070 } 1071 1072 static sector_t choose_data_offset(struct r10bio *r10_bio, 1073 struct md_rdev *rdev) 1074 { 1075 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1076 test_bit(R10BIO_Previous, &r10_bio->state)) 1077 return rdev->data_offset; 1078 else 1079 return rdev->new_data_offset; 1080 } 1081 1082 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1083 { 1084 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1085 struct mddev *mddev = plug->cb.data; 1086 struct r10conf *conf = mddev->private; 1087 struct bio *bio; 1088 1089 if (from_schedule) { 1090 spin_lock_irq(&conf->device_lock); 1091 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1092 spin_unlock_irq(&conf->device_lock); 1093 wake_up_barrier(conf); 1094 md_wakeup_thread(mddev->thread); 1095 kfree(plug); 1096 return; 1097 } 1098 1099 /* we aren't scheduling, so we can do the write-out directly. */ 1100 bio = bio_list_get(&plug->pending); 1101 raid1_prepare_flush_writes(mddev); 1102 wake_up_barrier(conf); 1103 1104 while (bio) { /* submit pending writes */ 1105 struct bio *next = bio->bi_next; 1106 1107 raid1_submit_write(bio); 1108 bio = next; 1109 cond_resched(); 1110 } 1111 kfree(plug); 1112 } 1113 1114 /* 1115 * 1. Register the new request and wait if the reconstruction thread has put 1116 * up a bar for new requests. Continue immediately if no resync is active 1117 * currently. 1118 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1119 */ 1120 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1121 struct bio *bio, sector_t sectors) 1122 { 1123 /* Bail out if REQ_NOWAIT is set for the bio */ 1124 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1125 bio_wouldblock_error(bio); 1126 return false; 1127 } 1128 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1129 bio->bi_iter.bi_sector < conf->reshape_progress && 1130 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1131 allow_barrier(conf); 1132 if (bio->bi_opf & REQ_NOWAIT) { 1133 bio_wouldblock_error(bio); 1134 return false; 1135 } 1136 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape"); 1137 wait_event(conf->wait_barrier, 1138 conf->reshape_progress <= bio->bi_iter.bi_sector || 1139 conf->reshape_progress >= bio->bi_iter.bi_sector + 1140 sectors); 1141 wait_barrier(conf, false); 1142 } 1143 return true; 1144 } 1145 1146 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1147 struct r10bio *r10_bio, bool io_accounting) 1148 { 1149 struct r10conf *conf = mddev->private; 1150 struct bio *read_bio; 1151 int max_sectors; 1152 struct md_rdev *rdev; 1153 char b[BDEVNAME_SIZE]; 1154 int slot = r10_bio->read_slot; 1155 struct md_rdev *err_rdev = NULL; 1156 gfp_t gfp = GFP_NOIO; 1157 int error; 1158 1159 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1160 /* 1161 * This is an error retry, but we cannot 1162 * safely dereference the rdev in the r10_bio, 1163 * we must use the one in conf. 1164 * If it has already been disconnected (unlikely) 1165 * we lose the device name in error messages. 1166 */ 1167 int disk; 1168 /* 1169 * As we are blocking raid10, it is a little safer to 1170 * use __GFP_HIGH. 1171 */ 1172 gfp = GFP_NOIO | __GFP_HIGH; 1173 1174 disk = r10_bio->devs[slot].devnum; 1175 err_rdev = conf->mirrors[disk].rdev; 1176 if (err_rdev) 1177 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1178 else { 1179 strcpy(b, "???"); 1180 /* This never gets dereferenced */ 1181 err_rdev = r10_bio->devs[slot].rdev; 1182 } 1183 } 1184 1185 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) { 1186 raid_end_bio_io(r10_bio); 1187 return; 1188 } 1189 1190 rdev = read_balance(conf, r10_bio, &max_sectors); 1191 if (!rdev) { 1192 if (err_rdev) { 1193 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1194 mdname(mddev), b, 1195 (unsigned long long)r10_bio->sector); 1196 } 1197 raid_end_bio_io(r10_bio); 1198 return; 1199 } 1200 if (err_rdev) 1201 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1202 mdname(mddev), 1203 rdev->bdev, 1204 (unsigned long long)r10_bio->sector); 1205 if (max_sectors < bio_sectors(bio)) { 1206 struct bio *split = bio_split(bio, max_sectors, 1207 gfp, &conf->bio_split); 1208 if (IS_ERR(split)) { 1209 error = PTR_ERR(split); 1210 goto err_handle; 1211 } 1212 bio_chain(split, bio); 1213 allow_barrier(conf); 1214 submit_bio_noacct(bio); 1215 wait_barrier(conf, false); 1216 bio = split; 1217 r10_bio->master_bio = bio; 1218 r10_bio->sectors = max_sectors; 1219 } 1220 slot = r10_bio->read_slot; 1221 1222 if (io_accounting) { 1223 md_account_bio(mddev, &bio); 1224 r10_bio->master_bio = bio; 1225 } 1226 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1227 read_bio->bi_opf &= ~REQ_NOWAIT; 1228 1229 r10_bio->devs[slot].bio = read_bio; 1230 r10_bio->devs[slot].rdev = rdev; 1231 1232 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1233 choose_data_offset(r10_bio, rdev); 1234 read_bio->bi_end_io = raid10_end_read_request; 1235 if (test_bit(FailFast, &rdev->flags) && 1236 test_bit(R10BIO_FailFast, &r10_bio->state)) 1237 read_bio->bi_opf |= MD_FAILFAST; 1238 read_bio->bi_private = r10_bio; 1239 mddev_trace_remap(mddev, read_bio, r10_bio->sector); 1240 submit_bio_noacct(read_bio); 1241 return; 1242 err_handle: 1243 atomic_dec(&rdev->nr_pending); 1244 bio->bi_status = errno_to_blk_status(error); 1245 set_bit(R10BIO_Uptodate, &r10_bio->state); 1246 raid_end_bio_io(r10_bio); 1247 } 1248 1249 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1250 struct bio *bio, bool replacement, 1251 int n_copy) 1252 { 1253 unsigned long flags; 1254 struct r10conf *conf = mddev->private; 1255 struct md_rdev *rdev; 1256 int devnum = r10_bio->devs[n_copy].devnum; 1257 struct bio *mbio; 1258 1259 rdev = replacement ? conf->mirrors[devnum].replacement : 1260 conf->mirrors[devnum].rdev; 1261 1262 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1263 mbio->bi_opf &= ~REQ_NOWAIT; 1264 if (replacement) 1265 r10_bio->devs[n_copy].repl_bio = mbio; 1266 else 1267 r10_bio->devs[n_copy].bio = mbio; 1268 1269 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1270 choose_data_offset(r10_bio, rdev)); 1271 mbio->bi_end_io = raid10_end_write_request; 1272 if (!replacement && test_bit(FailFast, 1273 &conf->mirrors[devnum].rdev->flags) 1274 && enough(conf, devnum)) 1275 mbio->bi_opf |= MD_FAILFAST; 1276 mbio->bi_private = r10_bio; 1277 mddev_trace_remap(mddev, mbio, r10_bio->sector); 1278 /* flush_pending_writes() needs access to the rdev so...*/ 1279 mbio->bi_bdev = (void *)rdev; 1280 1281 atomic_inc(&r10_bio->remaining); 1282 1283 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) { 1284 spin_lock_irqsave(&conf->device_lock, flags); 1285 bio_list_add(&conf->pending_bio_list, mbio); 1286 spin_unlock_irqrestore(&conf->device_lock, flags); 1287 md_wakeup_thread(mddev->thread); 1288 } 1289 } 1290 1291 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1292 { 1293 struct r10conf *conf = mddev->private; 1294 struct md_rdev *blocked_rdev; 1295 int i; 1296 1297 retry_wait: 1298 blocked_rdev = NULL; 1299 for (i = 0; i < conf->copies; i++) { 1300 struct md_rdev *rdev, *rrdev; 1301 1302 rdev = conf->mirrors[i].rdev; 1303 if (rdev) { 1304 sector_t dev_sector = r10_bio->devs[i].addr; 1305 1306 /* 1307 * Discard request doesn't care the write result 1308 * so it doesn't need to wait blocked disk here. 1309 */ 1310 if (test_bit(WriteErrorSeen, &rdev->flags) && 1311 r10_bio->sectors && 1312 rdev_has_badblock(rdev, dev_sector, 1313 r10_bio->sectors) < 0) 1314 /* 1315 * Mustn't write here until the bad 1316 * block is acknowledged 1317 */ 1318 set_bit(BlockedBadBlocks, &rdev->flags); 1319 1320 if (rdev_blocked(rdev)) { 1321 blocked_rdev = rdev; 1322 atomic_inc(&rdev->nr_pending); 1323 break; 1324 } 1325 } 1326 1327 rrdev = conf->mirrors[i].replacement; 1328 if (rrdev && rdev_blocked(rrdev)) { 1329 atomic_inc(&rrdev->nr_pending); 1330 blocked_rdev = rrdev; 1331 break; 1332 } 1333 } 1334 1335 if (unlikely(blocked_rdev)) { 1336 /* Have to wait for this device to get unblocked, then retry */ 1337 allow_barrier(conf); 1338 mddev_add_trace_msg(conf->mddev, 1339 "raid10 %s wait rdev %d blocked", 1340 __func__, blocked_rdev->raid_disk); 1341 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1342 wait_barrier(conf, false); 1343 goto retry_wait; 1344 } 1345 } 1346 1347 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1348 struct r10bio *r10_bio) 1349 { 1350 struct r10conf *conf = mddev->private; 1351 int i, k; 1352 sector_t sectors; 1353 int max_sectors; 1354 int error; 1355 1356 if ((mddev_is_clustered(mddev) && 1357 mddev->cluster_ops->area_resyncing(mddev, WRITE, 1358 bio->bi_iter.bi_sector, 1359 bio_end_sector(bio)))) { 1360 DEFINE_WAIT(w); 1361 /* Bail out if REQ_NOWAIT is set for the bio */ 1362 if (bio->bi_opf & REQ_NOWAIT) { 1363 bio_wouldblock_error(bio); 1364 return; 1365 } 1366 for (;;) { 1367 prepare_to_wait(&conf->wait_barrier, 1368 &w, TASK_IDLE); 1369 if (!mddev->cluster_ops->area_resyncing(mddev, WRITE, 1370 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1371 break; 1372 schedule(); 1373 } 1374 finish_wait(&conf->wait_barrier, &w); 1375 } 1376 1377 sectors = r10_bio->sectors; 1378 if (!regular_request_wait(mddev, conf, bio, sectors)) { 1379 raid_end_bio_io(r10_bio); 1380 return; 1381 } 1382 1383 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1384 (mddev->reshape_backwards 1385 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1386 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1387 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1388 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1389 /* Need to update reshape_position in metadata */ 1390 mddev->reshape_position = conf->reshape_progress; 1391 set_mask_bits(&mddev->sb_flags, 0, 1392 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1393 md_wakeup_thread(mddev->thread); 1394 if (bio->bi_opf & REQ_NOWAIT) { 1395 allow_barrier(conf); 1396 bio_wouldblock_error(bio); 1397 return; 1398 } 1399 mddev_add_trace_msg(conf->mddev, 1400 "raid10 wait reshape metadata"); 1401 wait_event(mddev->sb_wait, 1402 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1403 1404 conf->reshape_safe = mddev->reshape_position; 1405 } 1406 1407 /* first select target devices under rcu_lock and 1408 * inc refcount on their rdev. Record them by setting 1409 * bios[x] to bio 1410 * If there are known/acknowledged bad blocks on any device 1411 * on which we have seen a write error, we want to avoid 1412 * writing to those blocks. This potentially requires several 1413 * writes to write around the bad blocks. Each set of writes 1414 * gets its own r10_bio with a set of bios attached. 1415 */ 1416 1417 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1418 raid10_find_phys(conf, r10_bio); 1419 1420 wait_blocked_dev(mddev, r10_bio); 1421 1422 max_sectors = r10_bio->sectors; 1423 1424 for (i = 0; i < conf->copies; i++) { 1425 int d = r10_bio->devs[i].devnum; 1426 struct md_rdev *rdev, *rrdev; 1427 1428 rdev = conf->mirrors[d].rdev; 1429 rrdev = conf->mirrors[d].replacement; 1430 if (rdev && (test_bit(Faulty, &rdev->flags))) 1431 rdev = NULL; 1432 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1433 rrdev = NULL; 1434 1435 r10_bio->devs[i].bio = NULL; 1436 r10_bio->devs[i].repl_bio = NULL; 1437 1438 if (!rdev && !rrdev) 1439 continue; 1440 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1441 sector_t first_bad; 1442 sector_t dev_sector = r10_bio->devs[i].addr; 1443 sector_t bad_sectors; 1444 int is_bad; 1445 1446 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1447 &first_bad, &bad_sectors); 1448 if (is_bad && first_bad <= dev_sector) { 1449 /* Cannot write here at all */ 1450 bad_sectors -= (dev_sector - first_bad); 1451 if (bad_sectors < max_sectors) 1452 /* Mustn't write more than bad_sectors 1453 * to other devices yet 1454 */ 1455 max_sectors = bad_sectors; 1456 continue; 1457 } 1458 if (is_bad) { 1459 int good_sectors; 1460 1461 /* 1462 * We cannot atomically write this, so just 1463 * error in that case. It could be possible to 1464 * atomically write other mirrors, but the 1465 * complexity of supporting that is not worth 1466 * the benefit. 1467 */ 1468 if (bio->bi_opf & REQ_ATOMIC) { 1469 error = -EIO; 1470 goto err_handle; 1471 } 1472 1473 good_sectors = first_bad - dev_sector; 1474 if (good_sectors < max_sectors) 1475 max_sectors = good_sectors; 1476 } 1477 } 1478 if (rdev) { 1479 r10_bio->devs[i].bio = bio; 1480 atomic_inc(&rdev->nr_pending); 1481 } 1482 if (rrdev) { 1483 r10_bio->devs[i].repl_bio = bio; 1484 atomic_inc(&rrdev->nr_pending); 1485 } 1486 } 1487 1488 if (max_sectors < r10_bio->sectors) 1489 r10_bio->sectors = max_sectors; 1490 1491 if (r10_bio->sectors < bio_sectors(bio)) { 1492 struct bio *split = bio_split(bio, r10_bio->sectors, 1493 GFP_NOIO, &conf->bio_split); 1494 if (IS_ERR(split)) { 1495 error = PTR_ERR(split); 1496 goto err_handle; 1497 } 1498 bio_chain(split, bio); 1499 allow_barrier(conf); 1500 submit_bio_noacct(bio); 1501 wait_barrier(conf, false); 1502 bio = split; 1503 r10_bio->master_bio = bio; 1504 } 1505 1506 md_account_bio(mddev, &bio); 1507 r10_bio->master_bio = bio; 1508 atomic_set(&r10_bio->remaining, 1); 1509 1510 for (i = 0; i < conf->copies; i++) { 1511 if (r10_bio->devs[i].bio) 1512 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1513 if (r10_bio->devs[i].repl_bio) 1514 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1515 } 1516 one_write_done(r10_bio); 1517 return; 1518 err_handle: 1519 for (k = 0; k < i; k++) { 1520 int d = r10_bio->devs[k].devnum; 1521 struct md_rdev *rdev = conf->mirrors[d].rdev; 1522 struct md_rdev *rrdev = conf->mirrors[d].replacement; 1523 1524 if (r10_bio->devs[k].bio) { 1525 rdev_dec_pending(rdev, mddev); 1526 r10_bio->devs[k].bio = NULL; 1527 } 1528 if (r10_bio->devs[k].repl_bio) { 1529 rdev_dec_pending(rrdev, mddev); 1530 r10_bio->devs[k].repl_bio = NULL; 1531 } 1532 } 1533 1534 bio->bi_status = errno_to_blk_status(error); 1535 set_bit(R10BIO_Uptodate, &r10_bio->state); 1536 raid_end_bio_io(r10_bio); 1537 } 1538 1539 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1540 { 1541 struct r10conf *conf = mddev->private; 1542 struct r10bio *r10_bio; 1543 1544 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1545 1546 r10_bio->master_bio = bio; 1547 r10_bio->sectors = sectors; 1548 1549 r10_bio->mddev = mddev; 1550 r10_bio->sector = bio->bi_iter.bi_sector; 1551 r10_bio->state = 0; 1552 r10_bio->read_slot = -1; 1553 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1554 conf->geo.raid_disks); 1555 1556 if (bio_data_dir(bio) == READ) 1557 raid10_read_request(mddev, bio, r10_bio, true); 1558 else 1559 raid10_write_request(mddev, bio, r10_bio); 1560 } 1561 1562 static void raid_end_discard_bio(struct r10bio *r10bio) 1563 { 1564 struct r10conf *conf = r10bio->mddev->private; 1565 struct r10bio *first_r10bio; 1566 1567 while (atomic_dec_and_test(&r10bio->remaining)) { 1568 1569 allow_barrier(conf); 1570 1571 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1572 first_r10bio = (struct r10bio *)r10bio->master_bio; 1573 free_r10bio(r10bio); 1574 r10bio = first_r10bio; 1575 } else { 1576 md_write_end(r10bio->mddev); 1577 bio_endio(r10bio->master_bio); 1578 free_r10bio(r10bio); 1579 break; 1580 } 1581 } 1582 } 1583 1584 static void raid10_end_discard_request(struct bio *bio) 1585 { 1586 struct r10bio *r10_bio = bio->bi_private; 1587 struct r10conf *conf = r10_bio->mddev->private; 1588 struct md_rdev *rdev = NULL; 1589 int dev; 1590 int slot, repl; 1591 1592 /* 1593 * We don't care the return value of discard bio 1594 */ 1595 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1596 set_bit(R10BIO_Uptodate, &r10_bio->state); 1597 1598 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1599 rdev = repl ? conf->mirrors[dev].replacement : 1600 conf->mirrors[dev].rdev; 1601 1602 raid_end_discard_bio(r10_bio); 1603 rdev_dec_pending(rdev, conf->mddev); 1604 } 1605 1606 /* 1607 * There are some limitations to handle discard bio 1608 * 1st, the discard size is bigger than stripe_size*2. 1609 * 2st, if the discard bio spans reshape progress, we use the old way to 1610 * handle discard bio 1611 */ 1612 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1613 { 1614 struct r10conf *conf = mddev->private; 1615 struct geom *geo = &conf->geo; 1616 int far_copies = geo->far_copies; 1617 bool first_copy = true; 1618 struct r10bio *r10_bio, *first_r10bio; 1619 struct bio *split; 1620 int disk; 1621 sector_t chunk; 1622 unsigned int stripe_size; 1623 unsigned int stripe_data_disks; 1624 sector_t split_size; 1625 sector_t bio_start, bio_end; 1626 sector_t first_stripe_index, last_stripe_index; 1627 sector_t start_disk_offset; 1628 unsigned int start_disk_index; 1629 sector_t end_disk_offset; 1630 unsigned int end_disk_index; 1631 unsigned int remainder; 1632 1633 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1634 return -EAGAIN; 1635 1636 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1637 bio_wouldblock_error(bio); 1638 return 0; 1639 } 1640 1641 /* 1642 * Check reshape again to avoid reshape happens after checking 1643 * MD_RECOVERY_RESHAPE and before wait_barrier 1644 */ 1645 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1646 goto out; 1647 1648 if (geo->near_copies) 1649 stripe_data_disks = geo->raid_disks / geo->near_copies + 1650 geo->raid_disks % geo->near_copies; 1651 else 1652 stripe_data_disks = geo->raid_disks; 1653 1654 stripe_size = stripe_data_disks << geo->chunk_shift; 1655 1656 bio_start = bio->bi_iter.bi_sector; 1657 bio_end = bio_end_sector(bio); 1658 1659 /* 1660 * Maybe one discard bio is smaller than strip size or across one 1661 * stripe and discard region is larger than one stripe size. For far 1662 * offset layout, if the discard region is not aligned with stripe 1663 * size, there is hole when we submit discard bio to member disk. 1664 * For simplicity, we only handle discard bio which discard region 1665 * is bigger than stripe_size * 2 1666 */ 1667 if (bio_sectors(bio) < stripe_size*2) 1668 goto out; 1669 1670 /* 1671 * Keep bio aligned with strip size. 1672 */ 1673 div_u64_rem(bio_start, stripe_size, &remainder); 1674 if (remainder) { 1675 split_size = stripe_size - remainder; 1676 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1677 if (IS_ERR(split)) { 1678 bio->bi_status = errno_to_blk_status(PTR_ERR(split)); 1679 bio_endio(bio); 1680 return 0; 1681 } 1682 bio_chain(split, bio); 1683 allow_barrier(conf); 1684 /* Resend the fist split part */ 1685 submit_bio_noacct(split); 1686 wait_barrier(conf, false); 1687 } 1688 div_u64_rem(bio_end, stripe_size, &remainder); 1689 if (remainder) { 1690 split_size = bio_sectors(bio) - remainder; 1691 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1692 if (IS_ERR(split)) { 1693 bio->bi_status = errno_to_blk_status(PTR_ERR(split)); 1694 bio_endio(bio); 1695 return 0; 1696 } 1697 bio_chain(split, bio); 1698 allow_barrier(conf); 1699 /* Resend the second split part */ 1700 submit_bio_noacct(bio); 1701 bio = split; 1702 wait_barrier(conf, false); 1703 } 1704 1705 bio_start = bio->bi_iter.bi_sector; 1706 bio_end = bio_end_sector(bio); 1707 1708 /* 1709 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1710 * One stripe contains the chunks from all member disk (one chunk from 1711 * one disk at the same HBA address). For layout detail, see 'man md 4' 1712 */ 1713 chunk = bio_start >> geo->chunk_shift; 1714 chunk *= geo->near_copies; 1715 first_stripe_index = chunk; 1716 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1717 if (geo->far_offset) 1718 first_stripe_index *= geo->far_copies; 1719 start_disk_offset = (bio_start & geo->chunk_mask) + 1720 (first_stripe_index << geo->chunk_shift); 1721 1722 chunk = bio_end >> geo->chunk_shift; 1723 chunk *= geo->near_copies; 1724 last_stripe_index = chunk; 1725 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1726 if (geo->far_offset) 1727 last_stripe_index *= geo->far_copies; 1728 end_disk_offset = (bio_end & geo->chunk_mask) + 1729 (last_stripe_index << geo->chunk_shift); 1730 1731 retry_discard: 1732 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1733 r10_bio->mddev = mddev; 1734 r10_bio->state = 0; 1735 r10_bio->sectors = 0; 1736 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1737 wait_blocked_dev(mddev, r10_bio); 1738 1739 /* 1740 * For far layout it needs more than one r10bio to cover all regions. 1741 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1742 * to record the discard bio. Other r10bio->master_bio record the first 1743 * r10bio. The first r10bio only release after all other r10bios finish. 1744 * The discard bio returns only first r10bio finishes 1745 */ 1746 if (first_copy) { 1747 md_account_bio(mddev, &bio); 1748 r10_bio->master_bio = bio; 1749 set_bit(R10BIO_Discard, &r10_bio->state); 1750 first_copy = false; 1751 first_r10bio = r10_bio; 1752 } else 1753 r10_bio->master_bio = (struct bio *)first_r10bio; 1754 1755 /* 1756 * first select target devices under rcu_lock and 1757 * inc refcount on their rdev. Record them by setting 1758 * bios[x] to bio 1759 */ 1760 for (disk = 0; disk < geo->raid_disks; disk++) { 1761 struct md_rdev *rdev, *rrdev; 1762 1763 rdev = conf->mirrors[disk].rdev; 1764 rrdev = conf->mirrors[disk].replacement; 1765 r10_bio->devs[disk].bio = NULL; 1766 r10_bio->devs[disk].repl_bio = NULL; 1767 1768 if (rdev && (test_bit(Faulty, &rdev->flags))) 1769 rdev = NULL; 1770 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1771 rrdev = NULL; 1772 if (!rdev && !rrdev) 1773 continue; 1774 1775 if (rdev) { 1776 r10_bio->devs[disk].bio = bio; 1777 atomic_inc(&rdev->nr_pending); 1778 } 1779 if (rrdev) { 1780 r10_bio->devs[disk].repl_bio = bio; 1781 atomic_inc(&rrdev->nr_pending); 1782 } 1783 } 1784 1785 atomic_set(&r10_bio->remaining, 1); 1786 for (disk = 0; disk < geo->raid_disks; disk++) { 1787 sector_t dev_start, dev_end; 1788 struct bio *mbio, *rbio = NULL; 1789 1790 /* 1791 * Now start to calculate the start and end address for each disk. 1792 * The space between dev_start and dev_end is the discard region. 1793 * 1794 * For dev_start, it needs to consider three conditions: 1795 * 1st, the disk is before start_disk, you can imagine the disk in 1796 * the next stripe. So the dev_start is the start address of next 1797 * stripe. 1798 * 2st, the disk is after start_disk, it means the disk is at the 1799 * same stripe of first disk 1800 * 3st, the first disk itself, we can use start_disk_offset directly 1801 */ 1802 if (disk < start_disk_index) 1803 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1804 else if (disk > start_disk_index) 1805 dev_start = first_stripe_index * mddev->chunk_sectors; 1806 else 1807 dev_start = start_disk_offset; 1808 1809 if (disk < end_disk_index) 1810 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1811 else if (disk > end_disk_index) 1812 dev_end = last_stripe_index * mddev->chunk_sectors; 1813 else 1814 dev_end = end_disk_offset; 1815 1816 /* 1817 * It only handles discard bio which size is >= stripe size, so 1818 * dev_end > dev_start all the time. 1819 * It doesn't need to use rcu lock to get rdev here. We already 1820 * add rdev->nr_pending in the first loop. 1821 */ 1822 if (r10_bio->devs[disk].bio) { 1823 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1824 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1825 &mddev->bio_set); 1826 mbio->bi_end_io = raid10_end_discard_request; 1827 mbio->bi_private = r10_bio; 1828 r10_bio->devs[disk].bio = mbio; 1829 r10_bio->devs[disk].devnum = disk; 1830 atomic_inc(&r10_bio->remaining); 1831 md_submit_discard_bio(mddev, rdev, mbio, 1832 dev_start + choose_data_offset(r10_bio, rdev), 1833 dev_end - dev_start); 1834 bio_endio(mbio); 1835 } 1836 if (r10_bio->devs[disk].repl_bio) { 1837 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1838 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1839 &mddev->bio_set); 1840 rbio->bi_end_io = raid10_end_discard_request; 1841 rbio->bi_private = r10_bio; 1842 r10_bio->devs[disk].repl_bio = rbio; 1843 r10_bio->devs[disk].devnum = disk; 1844 atomic_inc(&r10_bio->remaining); 1845 md_submit_discard_bio(mddev, rrdev, rbio, 1846 dev_start + choose_data_offset(r10_bio, rrdev), 1847 dev_end - dev_start); 1848 bio_endio(rbio); 1849 } 1850 } 1851 1852 if (!geo->far_offset && --far_copies) { 1853 first_stripe_index += geo->stride >> geo->chunk_shift; 1854 start_disk_offset += geo->stride; 1855 last_stripe_index += geo->stride >> geo->chunk_shift; 1856 end_disk_offset += geo->stride; 1857 atomic_inc(&first_r10bio->remaining); 1858 raid_end_discard_bio(r10_bio); 1859 wait_barrier(conf, false); 1860 goto retry_discard; 1861 } 1862 1863 raid_end_discard_bio(r10_bio); 1864 1865 return 0; 1866 out: 1867 allow_barrier(conf); 1868 return -EAGAIN; 1869 } 1870 1871 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1872 { 1873 struct r10conf *conf = mddev->private; 1874 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1875 int chunk_sects = chunk_mask + 1; 1876 int sectors = bio_sectors(bio); 1877 1878 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1879 && md_flush_request(mddev, bio)) 1880 return true; 1881 1882 md_write_start(mddev, bio); 1883 1884 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1885 if (!raid10_handle_discard(mddev, bio)) 1886 return true; 1887 1888 /* 1889 * If this request crosses a chunk boundary, we need to split 1890 * it. 1891 */ 1892 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1893 sectors > chunk_sects 1894 && (conf->geo.near_copies < conf->geo.raid_disks 1895 || conf->prev.near_copies < 1896 conf->prev.raid_disks))) 1897 sectors = chunk_sects - 1898 (bio->bi_iter.bi_sector & 1899 (chunk_sects - 1)); 1900 __make_request(mddev, bio, sectors); 1901 1902 /* In case raid10d snuck in to freeze_array */ 1903 wake_up_barrier(conf); 1904 return true; 1905 } 1906 1907 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1908 { 1909 struct r10conf *conf = mddev->private; 1910 int i; 1911 1912 lockdep_assert_held(&mddev->lock); 1913 1914 if (conf->geo.near_copies < conf->geo.raid_disks) 1915 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1916 if (conf->geo.near_copies > 1) 1917 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1918 if (conf->geo.far_copies > 1) { 1919 if (conf->geo.far_offset) 1920 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1921 else 1922 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1923 if (conf->geo.far_set_size != conf->geo.raid_disks) 1924 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1925 } 1926 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1927 conf->geo.raid_disks - mddev->degraded); 1928 for (i = 0; i < conf->geo.raid_disks; i++) { 1929 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1930 1931 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1932 } 1933 seq_printf(seq, "]"); 1934 } 1935 1936 /* check if there are enough drives for 1937 * every block to appear on atleast one. 1938 * Don't consider the device numbered 'ignore' 1939 * as we might be about to remove it. 1940 */ 1941 static int _enough(struct r10conf *conf, int previous, int ignore) 1942 { 1943 int first = 0; 1944 int has_enough = 0; 1945 int disks, ncopies; 1946 if (previous) { 1947 disks = conf->prev.raid_disks; 1948 ncopies = conf->prev.near_copies; 1949 } else { 1950 disks = conf->geo.raid_disks; 1951 ncopies = conf->geo.near_copies; 1952 } 1953 1954 do { 1955 int n = conf->copies; 1956 int cnt = 0; 1957 int this = first; 1958 while (n--) { 1959 struct md_rdev *rdev; 1960 if (this != ignore && 1961 (rdev = conf->mirrors[this].rdev) && 1962 test_bit(In_sync, &rdev->flags)) 1963 cnt++; 1964 this = (this+1) % disks; 1965 } 1966 if (cnt == 0) 1967 goto out; 1968 first = (first + ncopies) % disks; 1969 } while (first != 0); 1970 has_enough = 1; 1971 out: 1972 return has_enough; 1973 } 1974 1975 static int enough(struct r10conf *conf, int ignore) 1976 { 1977 /* when calling 'enough', both 'prev' and 'geo' must 1978 * be stable. 1979 * This is ensured if ->reconfig_mutex or ->device_lock 1980 * is held. 1981 */ 1982 return _enough(conf, 0, ignore) && 1983 _enough(conf, 1, ignore); 1984 } 1985 1986 /** 1987 * raid10_error() - RAID10 error handler. 1988 * @mddev: affected md device. 1989 * @rdev: member device to fail. 1990 * 1991 * The routine acknowledges &rdev failure and determines new @mddev state. 1992 * If it failed, then: 1993 * - &MD_BROKEN flag is set in &mddev->flags. 1994 * Otherwise, it must be degraded: 1995 * - recovery is interrupted. 1996 * - &mddev->degraded is bumped. 1997 * 1998 * @rdev is marked as &Faulty excluding case when array is failed and 1999 * &mddev->fail_last_dev is off. 2000 */ 2001 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 2002 { 2003 struct r10conf *conf = mddev->private; 2004 unsigned long flags; 2005 2006 spin_lock_irqsave(&conf->device_lock, flags); 2007 2008 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 2009 set_bit(MD_BROKEN, &mddev->flags); 2010 2011 if (!mddev->fail_last_dev) { 2012 spin_unlock_irqrestore(&conf->device_lock, flags); 2013 return; 2014 } 2015 } 2016 if (test_and_clear_bit(In_sync, &rdev->flags)) 2017 mddev->degraded++; 2018 2019 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2020 set_bit(Blocked, &rdev->flags); 2021 set_bit(Faulty, &rdev->flags); 2022 set_mask_bits(&mddev->sb_flags, 0, 2023 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2024 spin_unlock_irqrestore(&conf->device_lock, flags); 2025 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 2026 "md/raid10:%s: Operation continuing on %d devices.\n", 2027 mdname(mddev), rdev->bdev, 2028 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 2029 } 2030 2031 static void print_conf(struct r10conf *conf) 2032 { 2033 int i; 2034 struct md_rdev *rdev; 2035 2036 pr_debug("RAID10 conf printout:\n"); 2037 if (!conf) { 2038 pr_debug("(!conf)\n"); 2039 return; 2040 } 2041 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2042 conf->geo.raid_disks); 2043 2044 lockdep_assert_held(&conf->mddev->reconfig_mutex); 2045 for (i = 0; i < conf->geo.raid_disks; i++) { 2046 rdev = conf->mirrors[i].rdev; 2047 if (rdev) 2048 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2049 i, !test_bit(In_sync, &rdev->flags), 2050 !test_bit(Faulty, &rdev->flags), 2051 rdev->bdev); 2052 } 2053 } 2054 2055 static void close_sync(struct r10conf *conf) 2056 { 2057 wait_barrier(conf, false); 2058 allow_barrier(conf); 2059 2060 mempool_exit(&conf->r10buf_pool); 2061 } 2062 2063 static int raid10_spare_active(struct mddev *mddev) 2064 { 2065 int i; 2066 struct r10conf *conf = mddev->private; 2067 struct raid10_info *tmp; 2068 int count = 0; 2069 unsigned long flags; 2070 2071 /* 2072 * Find all non-in_sync disks within the RAID10 configuration 2073 * and mark them in_sync 2074 */ 2075 for (i = 0; i < conf->geo.raid_disks; i++) { 2076 tmp = conf->mirrors + i; 2077 if (tmp->replacement 2078 && tmp->replacement->recovery_offset == MaxSector 2079 && !test_bit(Faulty, &tmp->replacement->flags) 2080 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2081 /* Replacement has just become active */ 2082 if (!tmp->rdev 2083 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2084 count++; 2085 if (tmp->rdev) { 2086 /* Replaced device not technically faulty, 2087 * but we need to be sure it gets removed 2088 * and never re-added. 2089 */ 2090 set_bit(Faulty, &tmp->rdev->flags); 2091 sysfs_notify_dirent_safe( 2092 tmp->rdev->sysfs_state); 2093 } 2094 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2095 } else if (tmp->rdev 2096 && tmp->rdev->recovery_offset == MaxSector 2097 && !test_bit(Faulty, &tmp->rdev->flags) 2098 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2099 count++; 2100 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2101 } 2102 } 2103 spin_lock_irqsave(&conf->device_lock, flags); 2104 mddev->degraded -= count; 2105 spin_unlock_irqrestore(&conf->device_lock, flags); 2106 2107 print_conf(conf); 2108 return count; 2109 } 2110 2111 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2112 { 2113 struct r10conf *conf = mddev->private; 2114 int err = -EEXIST; 2115 int mirror, repl_slot = -1; 2116 int first = 0; 2117 int last = conf->geo.raid_disks - 1; 2118 struct raid10_info *p; 2119 2120 if (mddev->resync_offset < MaxSector) 2121 /* only hot-add to in-sync arrays, as recovery is 2122 * very different from resync 2123 */ 2124 return -EBUSY; 2125 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2126 return -EINVAL; 2127 2128 if (rdev->raid_disk >= 0) 2129 first = last = rdev->raid_disk; 2130 2131 if (rdev->saved_raid_disk >= first && 2132 rdev->saved_raid_disk < conf->geo.raid_disks && 2133 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2134 mirror = rdev->saved_raid_disk; 2135 else 2136 mirror = first; 2137 for ( ; mirror <= last ; mirror++) { 2138 p = &conf->mirrors[mirror]; 2139 if (p->recovery_disabled == mddev->recovery_disabled) 2140 continue; 2141 if (p->rdev) { 2142 if (test_bit(WantReplacement, &p->rdev->flags) && 2143 p->replacement == NULL && repl_slot < 0) 2144 repl_slot = mirror; 2145 continue; 2146 } 2147 2148 err = mddev_stack_new_rdev(mddev, rdev); 2149 if (err) 2150 return err; 2151 p->head_position = 0; 2152 p->recovery_disabled = mddev->recovery_disabled - 1; 2153 rdev->raid_disk = mirror; 2154 err = 0; 2155 if (rdev->saved_raid_disk != mirror) 2156 conf->fullsync = 1; 2157 WRITE_ONCE(p->rdev, rdev); 2158 break; 2159 } 2160 2161 if (err && repl_slot >= 0) { 2162 p = &conf->mirrors[repl_slot]; 2163 clear_bit(In_sync, &rdev->flags); 2164 set_bit(Replacement, &rdev->flags); 2165 rdev->raid_disk = repl_slot; 2166 err = mddev_stack_new_rdev(mddev, rdev); 2167 if (err) 2168 return err; 2169 conf->fullsync = 1; 2170 WRITE_ONCE(p->replacement, rdev); 2171 } 2172 2173 print_conf(conf); 2174 return err; 2175 } 2176 2177 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2178 { 2179 struct r10conf *conf = mddev->private; 2180 int err = 0; 2181 int number = rdev->raid_disk; 2182 struct md_rdev **rdevp; 2183 struct raid10_info *p; 2184 2185 print_conf(conf); 2186 if (unlikely(number >= mddev->raid_disks)) 2187 return 0; 2188 p = conf->mirrors + number; 2189 if (rdev == p->rdev) 2190 rdevp = &p->rdev; 2191 else if (rdev == p->replacement) 2192 rdevp = &p->replacement; 2193 else 2194 return 0; 2195 2196 if (test_bit(In_sync, &rdev->flags) || 2197 atomic_read(&rdev->nr_pending)) { 2198 err = -EBUSY; 2199 goto abort; 2200 } 2201 /* Only remove non-faulty devices if recovery 2202 * is not possible. 2203 */ 2204 if (!test_bit(Faulty, &rdev->flags) && 2205 mddev->recovery_disabled != p->recovery_disabled && 2206 (!p->replacement || p->replacement == rdev) && 2207 number < conf->geo.raid_disks && 2208 enough(conf, -1)) { 2209 err = -EBUSY; 2210 goto abort; 2211 } 2212 WRITE_ONCE(*rdevp, NULL); 2213 if (p->replacement) { 2214 /* We must have just cleared 'rdev' */ 2215 WRITE_ONCE(p->rdev, p->replacement); 2216 clear_bit(Replacement, &p->replacement->flags); 2217 WRITE_ONCE(p->replacement, NULL); 2218 } 2219 2220 clear_bit(WantReplacement, &rdev->flags); 2221 err = md_integrity_register(mddev); 2222 2223 abort: 2224 2225 print_conf(conf); 2226 return err; 2227 } 2228 2229 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2230 { 2231 struct r10conf *conf = r10_bio->mddev->private; 2232 2233 if (!bio->bi_status) 2234 set_bit(R10BIO_Uptodate, &r10_bio->state); 2235 else 2236 /* The write handler will notice the lack of 2237 * R10BIO_Uptodate and record any errors etc 2238 */ 2239 atomic_add(r10_bio->sectors, 2240 &conf->mirrors[d].rdev->corrected_errors); 2241 2242 /* for reconstruct, we always reschedule after a read. 2243 * for resync, only after all reads 2244 */ 2245 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2246 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2247 atomic_dec_and_test(&r10_bio->remaining)) { 2248 /* we have read all the blocks, 2249 * do the comparison in process context in raid10d 2250 */ 2251 reschedule_retry(r10_bio); 2252 } 2253 } 2254 2255 static void end_sync_read(struct bio *bio) 2256 { 2257 struct r10bio *r10_bio = get_resync_r10bio(bio); 2258 struct r10conf *conf = r10_bio->mddev->private; 2259 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2260 2261 __end_sync_read(r10_bio, bio, d); 2262 } 2263 2264 static void end_reshape_read(struct bio *bio) 2265 { 2266 /* reshape read bio isn't allocated from r10buf_pool */ 2267 struct r10bio *r10_bio = bio->bi_private; 2268 2269 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2270 } 2271 2272 static void end_sync_request(struct r10bio *r10_bio) 2273 { 2274 struct mddev *mddev = r10_bio->mddev; 2275 2276 while (atomic_dec_and_test(&r10_bio->remaining)) { 2277 if (r10_bio->master_bio == NULL) { 2278 /* the primary of several recovery bios */ 2279 sector_t s = r10_bio->sectors; 2280 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2281 test_bit(R10BIO_WriteError, &r10_bio->state)) 2282 reschedule_retry(r10_bio); 2283 else 2284 put_buf(r10_bio); 2285 md_done_sync(mddev, s, 1); 2286 break; 2287 } else { 2288 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2289 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2290 test_bit(R10BIO_WriteError, &r10_bio->state)) 2291 reschedule_retry(r10_bio); 2292 else 2293 put_buf(r10_bio); 2294 r10_bio = r10_bio2; 2295 } 2296 } 2297 } 2298 2299 static void end_sync_write(struct bio *bio) 2300 { 2301 struct r10bio *r10_bio = get_resync_r10bio(bio); 2302 struct mddev *mddev = r10_bio->mddev; 2303 struct r10conf *conf = mddev->private; 2304 int d; 2305 int slot; 2306 int repl; 2307 struct md_rdev *rdev = NULL; 2308 2309 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2310 if (repl) 2311 rdev = conf->mirrors[d].replacement; 2312 else 2313 rdev = conf->mirrors[d].rdev; 2314 2315 if (bio->bi_status) { 2316 if (repl) 2317 md_error(mddev, rdev); 2318 else { 2319 set_bit(WriteErrorSeen, &rdev->flags); 2320 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2321 set_bit(MD_RECOVERY_NEEDED, 2322 &rdev->mddev->recovery); 2323 set_bit(R10BIO_WriteError, &r10_bio->state); 2324 } 2325 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 2326 r10_bio->sectors)) { 2327 set_bit(R10BIO_MadeGood, &r10_bio->state); 2328 } 2329 2330 rdev_dec_pending(rdev, mddev); 2331 2332 end_sync_request(r10_bio); 2333 } 2334 2335 /* 2336 * Note: sync and recover and handled very differently for raid10 2337 * This code is for resync. 2338 * For resync, we read through virtual addresses and read all blocks. 2339 * If there is any error, we schedule a write. The lowest numbered 2340 * drive is authoritative. 2341 * However requests come for physical address, so we need to map. 2342 * For every physical address there are raid_disks/copies virtual addresses, 2343 * which is always are least one, but is not necessarly an integer. 2344 * This means that a physical address can span multiple chunks, so we may 2345 * have to submit multiple io requests for a single sync request. 2346 */ 2347 /* 2348 * We check if all blocks are in-sync and only write to blocks that 2349 * aren't in sync 2350 */ 2351 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2352 { 2353 struct r10conf *conf = mddev->private; 2354 int i, first; 2355 struct bio *tbio, *fbio; 2356 int vcnt; 2357 struct page **tpages, **fpages; 2358 2359 atomic_set(&r10_bio->remaining, 1); 2360 2361 /* find the first device with a block */ 2362 for (i=0; i<conf->copies; i++) 2363 if (!r10_bio->devs[i].bio->bi_status) 2364 break; 2365 2366 if (i == conf->copies) 2367 goto done; 2368 2369 first = i; 2370 fbio = r10_bio->devs[i].bio; 2371 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2372 fbio->bi_iter.bi_idx = 0; 2373 fpages = get_resync_pages(fbio)->pages; 2374 2375 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2376 /* now find blocks with errors */ 2377 for (i=0 ; i < conf->copies ; i++) { 2378 int j, d; 2379 struct md_rdev *rdev; 2380 struct resync_pages *rp; 2381 2382 tbio = r10_bio->devs[i].bio; 2383 2384 if (tbio->bi_end_io != end_sync_read) 2385 continue; 2386 if (i == first) 2387 continue; 2388 2389 tpages = get_resync_pages(tbio)->pages; 2390 d = r10_bio->devs[i].devnum; 2391 rdev = conf->mirrors[d].rdev; 2392 if (!r10_bio->devs[i].bio->bi_status) { 2393 /* We know that the bi_io_vec layout is the same for 2394 * both 'first' and 'i', so we just compare them. 2395 * All vec entries are PAGE_SIZE; 2396 */ 2397 int sectors = r10_bio->sectors; 2398 for (j = 0; j < vcnt; j++) { 2399 int len = PAGE_SIZE; 2400 if (sectors < (len / 512)) 2401 len = sectors * 512; 2402 if (memcmp(page_address(fpages[j]), 2403 page_address(tpages[j]), 2404 len)) 2405 break; 2406 sectors -= len/512; 2407 } 2408 if (j == vcnt) 2409 continue; 2410 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2411 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2412 /* Don't fix anything. */ 2413 continue; 2414 } else if (test_bit(FailFast, &rdev->flags)) { 2415 /* Just give up on this device */ 2416 md_error(rdev->mddev, rdev); 2417 continue; 2418 } 2419 /* Ok, we need to write this bio, either to correct an 2420 * inconsistency or to correct an unreadable block. 2421 * First we need to fixup bv_offset, bv_len and 2422 * bi_vecs, as the read request might have corrupted these 2423 */ 2424 rp = get_resync_pages(tbio); 2425 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2426 2427 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2428 2429 rp->raid_bio = r10_bio; 2430 tbio->bi_private = rp; 2431 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2432 tbio->bi_end_io = end_sync_write; 2433 2434 bio_copy_data(tbio, fbio); 2435 2436 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2437 atomic_inc(&r10_bio->remaining); 2438 2439 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2440 tbio->bi_opf |= MD_FAILFAST; 2441 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2442 submit_bio_noacct(tbio); 2443 } 2444 2445 /* Now write out to any replacement devices 2446 * that are active 2447 */ 2448 for (i = 0; i < conf->copies; i++) { 2449 tbio = r10_bio->devs[i].repl_bio; 2450 if (!tbio || !tbio->bi_end_io) 2451 continue; 2452 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2453 && r10_bio->devs[i].bio != fbio) 2454 bio_copy_data(tbio, fbio); 2455 atomic_inc(&r10_bio->remaining); 2456 submit_bio_noacct(tbio); 2457 } 2458 2459 done: 2460 if (atomic_dec_and_test(&r10_bio->remaining)) { 2461 md_done_sync(mddev, r10_bio->sectors, 1); 2462 put_buf(r10_bio); 2463 } 2464 } 2465 2466 /* 2467 * Now for the recovery code. 2468 * Recovery happens across physical sectors. 2469 * We recover all non-is_sync drives by finding the virtual address of 2470 * each, and then choose a working drive that also has that virt address. 2471 * There is a separate r10_bio for each non-in_sync drive. 2472 * Only the first two slots are in use. The first for reading, 2473 * The second for writing. 2474 * 2475 */ 2476 static void fix_recovery_read_error(struct r10bio *r10_bio) 2477 { 2478 /* We got a read error during recovery. 2479 * We repeat the read in smaller page-sized sections. 2480 * If a read succeeds, write it to the new device or record 2481 * a bad block if we cannot. 2482 * If a read fails, record a bad block on both old and 2483 * new devices. 2484 */ 2485 struct mddev *mddev = r10_bio->mddev; 2486 struct r10conf *conf = mddev->private; 2487 struct bio *bio = r10_bio->devs[0].bio; 2488 sector_t sect = 0; 2489 int sectors = r10_bio->sectors; 2490 int idx = 0; 2491 int dr = r10_bio->devs[0].devnum; 2492 int dw = r10_bio->devs[1].devnum; 2493 struct page **pages = get_resync_pages(bio)->pages; 2494 2495 while (sectors) { 2496 int s = sectors; 2497 struct md_rdev *rdev; 2498 sector_t addr; 2499 int ok; 2500 2501 if (s > (PAGE_SIZE>>9)) 2502 s = PAGE_SIZE >> 9; 2503 2504 rdev = conf->mirrors[dr].rdev; 2505 addr = r10_bio->devs[0].addr + sect; 2506 ok = sync_page_io(rdev, 2507 addr, 2508 s << 9, 2509 pages[idx], 2510 REQ_OP_READ, false); 2511 if (ok) { 2512 rdev = conf->mirrors[dw].rdev; 2513 addr = r10_bio->devs[1].addr + sect; 2514 ok = sync_page_io(rdev, 2515 addr, 2516 s << 9, 2517 pages[idx], 2518 REQ_OP_WRITE, false); 2519 if (!ok) { 2520 set_bit(WriteErrorSeen, &rdev->flags); 2521 if (!test_and_set_bit(WantReplacement, 2522 &rdev->flags)) 2523 set_bit(MD_RECOVERY_NEEDED, 2524 &rdev->mddev->recovery); 2525 } 2526 } 2527 if (!ok) { 2528 /* We don't worry if we cannot set a bad block - 2529 * it really is bad so there is no loss in not 2530 * recording it yet 2531 */ 2532 rdev_set_badblocks(rdev, addr, s, 0); 2533 2534 if (rdev != conf->mirrors[dw].rdev) { 2535 /* need bad block on destination too */ 2536 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2537 addr = r10_bio->devs[1].addr + sect; 2538 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2539 if (!ok) { 2540 /* just abort the recovery */ 2541 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2542 mdname(mddev)); 2543 2544 conf->mirrors[dw].recovery_disabled 2545 = mddev->recovery_disabled; 2546 set_bit(MD_RECOVERY_INTR, 2547 &mddev->recovery); 2548 break; 2549 } 2550 } 2551 } 2552 2553 sectors -= s; 2554 sect += s; 2555 idx++; 2556 } 2557 } 2558 2559 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2560 { 2561 struct r10conf *conf = mddev->private; 2562 int d; 2563 struct bio *wbio = r10_bio->devs[1].bio; 2564 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2565 2566 /* Need to test wbio2->bi_end_io before we call 2567 * submit_bio_noacct as if the former is NULL, 2568 * the latter is free to free wbio2. 2569 */ 2570 if (wbio2 && !wbio2->bi_end_io) 2571 wbio2 = NULL; 2572 2573 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2574 fix_recovery_read_error(r10_bio); 2575 if (wbio->bi_end_io) 2576 end_sync_request(r10_bio); 2577 if (wbio2) 2578 end_sync_request(r10_bio); 2579 return; 2580 } 2581 2582 /* 2583 * share the pages with the first bio 2584 * and submit the write request 2585 */ 2586 d = r10_bio->devs[1].devnum; 2587 if (wbio->bi_end_io) { 2588 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2589 submit_bio_noacct(wbio); 2590 } 2591 if (wbio2) { 2592 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2593 submit_bio_noacct(wbio2); 2594 } 2595 } 2596 2597 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2598 int sectors, struct page *page, enum req_op op) 2599 { 2600 if (rdev_has_badblock(rdev, sector, sectors) && 2601 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2602 return -1; 2603 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2604 /* success */ 2605 return 1; 2606 if (op == REQ_OP_WRITE) { 2607 set_bit(WriteErrorSeen, &rdev->flags); 2608 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2609 set_bit(MD_RECOVERY_NEEDED, 2610 &rdev->mddev->recovery); 2611 } 2612 /* need to record an error - either for the block or the device */ 2613 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2614 md_error(rdev->mddev, rdev); 2615 return 0; 2616 } 2617 2618 /* 2619 * This is a kernel thread which: 2620 * 2621 * 1. Retries failed read operations on working mirrors. 2622 * 2. Updates the raid superblock when problems encounter. 2623 * 3. Performs writes following reads for array synchronising. 2624 */ 2625 2626 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2627 { 2628 int sect = 0; /* Offset from r10_bio->sector */ 2629 int sectors = r10_bio->sectors, slot = r10_bio->read_slot; 2630 struct md_rdev *rdev; 2631 int d = r10_bio->devs[slot].devnum; 2632 2633 /* still own a reference to this rdev, so it cannot 2634 * have been cleared recently. 2635 */ 2636 rdev = conf->mirrors[d].rdev; 2637 2638 if (test_bit(Faulty, &rdev->flags)) 2639 /* drive has already been failed, just ignore any 2640 more fix_read_error() attempts */ 2641 return; 2642 2643 if (exceed_read_errors(mddev, rdev)) { 2644 r10_bio->devs[slot].bio = IO_BLOCKED; 2645 return; 2646 } 2647 2648 while(sectors) { 2649 int s = sectors; 2650 int sl = slot; 2651 int success = 0; 2652 int start; 2653 2654 if (s > (PAGE_SIZE>>9)) 2655 s = PAGE_SIZE >> 9; 2656 2657 do { 2658 d = r10_bio->devs[sl].devnum; 2659 rdev = conf->mirrors[d].rdev; 2660 if (rdev && 2661 test_bit(In_sync, &rdev->flags) && 2662 !test_bit(Faulty, &rdev->flags) && 2663 rdev_has_badblock(rdev, 2664 r10_bio->devs[sl].addr + sect, 2665 s) == 0) { 2666 atomic_inc(&rdev->nr_pending); 2667 success = sync_page_io(rdev, 2668 r10_bio->devs[sl].addr + 2669 sect, 2670 s<<9, 2671 conf->tmppage, 2672 REQ_OP_READ, false); 2673 rdev_dec_pending(rdev, mddev); 2674 if (success) 2675 break; 2676 } 2677 sl++; 2678 if (sl == conf->copies) 2679 sl = 0; 2680 } while (sl != slot); 2681 2682 if (!success) { 2683 /* Cannot read from anywhere, just mark the block 2684 * as bad on the first device to discourage future 2685 * reads. 2686 */ 2687 int dn = r10_bio->devs[slot].devnum; 2688 rdev = conf->mirrors[dn].rdev; 2689 2690 if (!rdev_set_badblocks( 2691 rdev, 2692 r10_bio->devs[slot].addr 2693 + sect, 2694 s, 0)) { 2695 md_error(mddev, rdev); 2696 r10_bio->devs[slot].bio 2697 = IO_BLOCKED; 2698 } 2699 break; 2700 } 2701 2702 start = sl; 2703 /* write it back and re-read */ 2704 while (sl != slot) { 2705 if (sl==0) 2706 sl = conf->copies; 2707 sl--; 2708 d = r10_bio->devs[sl].devnum; 2709 rdev = conf->mirrors[d].rdev; 2710 if (!rdev || 2711 test_bit(Faulty, &rdev->flags) || 2712 !test_bit(In_sync, &rdev->flags)) 2713 continue; 2714 2715 atomic_inc(&rdev->nr_pending); 2716 if (r10_sync_page_io(rdev, 2717 r10_bio->devs[sl].addr + 2718 sect, 2719 s, conf->tmppage, REQ_OP_WRITE) 2720 == 0) { 2721 /* Well, this device is dead */ 2722 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2723 mdname(mddev), s, 2724 (unsigned long long)( 2725 sect + 2726 choose_data_offset(r10_bio, 2727 rdev)), 2728 rdev->bdev); 2729 pr_notice("md/raid10:%s: %pg: failing drive\n", 2730 mdname(mddev), 2731 rdev->bdev); 2732 } 2733 rdev_dec_pending(rdev, mddev); 2734 } 2735 sl = start; 2736 while (sl != slot) { 2737 if (sl==0) 2738 sl = conf->copies; 2739 sl--; 2740 d = r10_bio->devs[sl].devnum; 2741 rdev = conf->mirrors[d].rdev; 2742 if (!rdev || 2743 test_bit(Faulty, &rdev->flags) || 2744 !test_bit(In_sync, &rdev->flags)) 2745 continue; 2746 2747 atomic_inc(&rdev->nr_pending); 2748 switch (r10_sync_page_io(rdev, 2749 r10_bio->devs[sl].addr + 2750 sect, 2751 s, conf->tmppage, REQ_OP_READ)) { 2752 case 0: 2753 /* Well, this device is dead */ 2754 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2755 mdname(mddev), s, 2756 (unsigned long long)( 2757 sect + 2758 choose_data_offset(r10_bio, rdev)), 2759 rdev->bdev); 2760 pr_notice("md/raid10:%s: %pg: failing drive\n", 2761 mdname(mddev), 2762 rdev->bdev); 2763 break; 2764 case 1: 2765 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2766 mdname(mddev), s, 2767 (unsigned long long)( 2768 sect + 2769 choose_data_offset(r10_bio, rdev)), 2770 rdev->bdev); 2771 atomic_add(s, &rdev->corrected_errors); 2772 } 2773 2774 rdev_dec_pending(rdev, mddev); 2775 } 2776 2777 sectors -= s; 2778 sect += s; 2779 } 2780 } 2781 2782 static bool narrow_write_error(struct r10bio *r10_bio, int i) 2783 { 2784 struct bio *bio = r10_bio->master_bio; 2785 struct mddev *mddev = r10_bio->mddev; 2786 struct r10conf *conf = mddev->private; 2787 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2788 /* bio has the data to be written to slot 'i' where 2789 * we just recently had a write error. 2790 * We repeatedly clone the bio and trim down to one block, 2791 * then try the write. Where the write fails we record 2792 * a bad block. 2793 * It is conceivable that the bio doesn't exactly align with 2794 * blocks. We must handle this. 2795 * 2796 * We currently own a reference to the rdev. 2797 */ 2798 2799 int block_sectors; 2800 sector_t sector; 2801 int sectors; 2802 int sect_to_write = r10_bio->sectors; 2803 bool ok = true; 2804 2805 if (rdev->badblocks.shift < 0) 2806 return false; 2807 2808 block_sectors = roundup(1 << rdev->badblocks.shift, 2809 bdev_logical_block_size(rdev->bdev) >> 9); 2810 sector = r10_bio->sector; 2811 sectors = ((r10_bio->sector + block_sectors) 2812 & ~(sector_t)(block_sectors - 1)) 2813 - sector; 2814 2815 while (sect_to_write) { 2816 struct bio *wbio; 2817 sector_t wsector; 2818 if (sectors > sect_to_write) 2819 sectors = sect_to_write; 2820 /* Write at 'sector' for 'sectors' */ 2821 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2822 &mddev->bio_set); 2823 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2824 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2825 wbio->bi_iter.bi_sector = wsector + 2826 choose_data_offset(r10_bio, rdev); 2827 wbio->bi_opf = REQ_OP_WRITE; 2828 2829 if (submit_bio_wait(wbio) < 0) 2830 /* Failure! */ 2831 ok = rdev_set_badblocks(rdev, wsector, 2832 sectors, 0) 2833 && ok; 2834 2835 bio_put(wbio); 2836 sect_to_write -= sectors; 2837 sector += sectors; 2838 sectors = block_sectors; 2839 } 2840 return ok; 2841 } 2842 2843 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2844 { 2845 int slot = r10_bio->read_slot; 2846 struct bio *bio; 2847 struct r10conf *conf = mddev->private; 2848 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2849 2850 /* we got a read error. Maybe the drive is bad. Maybe just 2851 * the block and we can fix it. 2852 * We freeze all other IO, and try reading the block from 2853 * other devices. When we find one, we re-write 2854 * and check it that fixes the read error. 2855 * This is all done synchronously while the array is 2856 * frozen. 2857 */ 2858 bio = r10_bio->devs[slot].bio; 2859 bio_put(bio); 2860 r10_bio->devs[slot].bio = NULL; 2861 2862 if (mddev->ro) 2863 r10_bio->devs[slot].bio = IO_BLOCKED; 2864 else if (!test_bit(FailFast, &rdev->flags)) { 2865 freeze_array(conf, 1); 2866 fix_read_error(conf, mddev, r10_bio); 2867 unfreeze_array(conf); 2868 } else 2869 md_error(mddev, rdev); 2870 2871 rdev_dec_pending(rdev, mddev); 2872 r10_bio->state = 0; 2873 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false); 2874 /* 2875 * allow_barrier after re-submit to ensure no sync io 2876 * can be issued while regular io pending. 2877 */ 2878 allow_barrier(conf); 2879 } 2880 2881 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2882 { 2883 /* Some sort of write request has finished and it 2884 * succeeded in writing where we thought there was a 2885 * bad block. So forget the bad block. 2886 * Or possibly if failed and we need to record 2887 * a bad block. 2888 */ 2889 int m; 2890 struct md_rdev *rdev; 2891 2892 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2893 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2894 for (m = 0; m < conf->copies; m++) { 2895 int dev = r10_bio->devs[m].devnum; 2896 rdev = conf->mirrors[dev].rdev; 2897 if (r10_bio->devs[m].bio == NULL || 2898 r10_bio->devs[m].bio->bi_end_io == NULL) 2899 continue; 2900 if (!r10_bio->devs[m].bio->bi_status) { 2901 rdev_clear_badblocks( 2902 rdev, 2903 r10_bio->devs[m].addr, 2904 r10_bio->sectors, 0); 2905 } else { 2906 if (!rdev_set_badblocks( 2907 rdev, 2908 r10_bio->devs[m].addr, 2909 r10_bio->sectors, 0)) 2910 md_error(conf->mddev, rdev); 2911 } 2912 rdev = conf->mirrors[dev].replacement; 2913 if (r10_bio->devs[m].repl_bio == NULL || 2914 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2915 continue; 2916 2917 if (!r10_bio->devs[m].repl_bio->bi_status) { 2918 rdev_clear_badblocks( 2919 rdev, 2920 r10_bio->devs[m].addr, 2921 r10_bio->sectors, 0); 2922 } else { 2923 if (!rdev_set_badblocks( 2924 rdev, 2925 r10_bio->devs[m].addr, 2926 r10_bio->sectors, 0)) 2927 md_error(conf->mddev, rdev); 2928 } 2929 } 2930 put_buf(r10_bio); 2931 } else { 2932 bool fail = false; 2933 for (m = 0; m < conf->copies; m++) { 2934 int dev = r10_bio->devs[m].devnum; 2935 struct bio *bio = r10_bio->devs[m].bio; 2936 rdev = conf->mirrors[dev].rdev; 2937 if (bio == IO_MADE_GOOD) { 2938 rdev_clear_badblocks( 2939 rdev, 2940 r10_bio->devs[m].addr, 2941 r10_bio->sectors, 0); 2942 rdev_dec_pending(rdev, conf->mddev); 2943 } else if (bio != NULL && bio->bi_status) { 2944 fail = true; 2945 if (!narrow_write_error(r10_bio, m)) 2946 md_error(conf->mddev, rdev); 2947 rdev_dec_pending(rdev, conf->mddev); 2948 } 2949 bio = r10_bio->devs[m].repl_bio; 2950 rdev = conf->mirrors[dev].replacement; 2951 if (rdev && bio == IO_MADE_GOOD) { 2952 rdev_clear_badblocks( 2953 rdev, 2954 r10_bio->devs[m].addr, 2955 r10_bio->sectors, 0); 2956 rdev_dec_pending(rdev, conf->mddev); 2957 } 2958 } 2959 if (fail) { 2960 spin_lock_irq(&conf->device_lock); 2961 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2962 conf->nr_queued++; 2963 spin_unlock_irq(&conf->device_lock); 2964 /* 2965 * In case freeze_array() is waiting for condition 2966 * nr_pending == nr_queued + extra to be true. 2967 */ 2968 wake_up(&conf->wait_barrier); 2969 md_wakeup_thread(conf->mddev->thread); 2970 } else { 2971 if (test_bit(R10BIO_WriteError, 2972 &r10_bio->state)) 2973 close_write(r10_bio); 2974 raid_end_bio_io(r10_bio); 2975 } 2976 } 2977 } 2978 2979 static void raid10d(struct md_thread *thread) 2980 { 2981 struct mddev *mddev = thread->mddev; 2982 struct r10bio *r10_bio; 2983 unsigned long flags; 2984 struct r10conf *conf = mddev->private; 2985 struct list_head *head = &conf->retry_list; 2986 struct blk_plug plug; 2987 2988 md_check_recovery(mddev); 2989 2990 if (!list_empty_careful(&conf->bio_end_io_list) && 2991 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2992 LIST_HEAD(tmp); 2993 spin_lock_irqsave(&conf->device_lock, flags); 2994 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2995 while (!list_empty(&conf->bio_end_io_list)) { 2996 list_move(conf->bio_end_io_list.prev, &tmp); 2997 conf->nr_queued--; 2998 } 2999 } 3000 spin_unlock_irqrestore(&conf->device_lock, flags); 3001 while (!list_empty(&tmp)) { 3002 r10_bio = list_first_entry(&tmp, struct r10bio, 3003 retry_list); 3004 list_del(&r10_bio->retry_list); 3005 3006 if (test_bit(R10BIO_WriteError, 3007 &r10_bio->state)) 3008 close_write(r10_bio); 3009 raid_end_bio_io(r10_bio); 3010 } 3011 } 3012 3013 blk_start_plug(&plug); 3014 for (;;) { 3015 3016 flush_pending_writes(conf); 3017 3018 spin_lock_irqsave(&conf->device_lock, flags); 3019 if (list_empty(head)) { 3020 spin_unlock_irqrestore(&conf->device_lock, flags); 3021 break; 3022 } 3023 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3024 list_del(head->prev); 3025 conf->nr_queued--; 3026 spin_unlock_irqrestore(&conf->device_lock, flags); 3027 3028 mddev = r10_bio->mddev; 3029 conf = mddev->private; 3030 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3031 test_bit(R10BIO_WriteError, &r10_bio->state)) 3032 handle_write_completed(conf, r10_bio); 3033 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3034 reshape_request_write(mddev, r10_bio); 3035 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3036 sync_request_write(mddev, r10_bio); 3037 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3038 recovery_request_write(mddev, r10_bio); 3039 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3040 handle_read_error(mddev, r10_bio); 3041 else 3042 WARN_ON_ONCE(1); 3043 3044 cond_resched(); 3045 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3046 md_check_recovery(mddev); 3047 } 3048 blk_finish_plug(&plug); 3049 } 3050 3051 static int init_resync(struct r10conf *conf) 3052 { 3053 int ret, buffs, i; 3054 3055 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3056 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3057 conf->have_replacement = 0; 3058 for (i = 0; i < conf->geo.raid_disks; i++) 3059 if (conf->mirrors[i].replacement) 3060 conf->have_replacement = 1; 3061 ret = mempool_init(&conf->r10buf_pool, buffs, 3062 r10buf_pool_alloc, r10buf_pool_free, conf); 3063 if (ret) 3064 return ret; 3065 conf->next_resync = 0; 3066 return 0; 3067 } 3068 3069 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3070 { 3071 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3072 struct rsync_pages *rp; 3073 struct bio *bio; 3074 int nalloc; 3075 int i; 3076 3077 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3078 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3079 nalloc = conf->copies; /* resync */ 3080 else 3081 nalloc = 2; /* recovery */ 3082 3083 for (i = 0; i < nalloc; i++) { 3084 bio = r10bio->devs[i].bio; 3085 rp = bio->bi_private; 3086 bio_reset(bio, NULL, 0); 3087 bio->bi_private = rp; 3088 bio = r10bio->devs[i].repl_bio; 3089 if (bio) { 3090 rp = bio->bi_private; 3091 bio_reset(bio, NULL, 0); 3092 bio->bi_private = rp; 3093 } 3094 } 3095 return r10bio; 3096 } 3097 3098 /* 3099 * Set cluster_sync_high since we need other nodes to add the 3100 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3101 */ 3102 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3103 { 3104 sector_t window_size; 3105 int extra_chunk, chunks; 3106 3107 /* 3108 * First, here we define "stripe" as a unit which across 3109 * all member devices one time, so we get chunks by use 3110 * raid_disks / near_copies. Otherwise, if near_copies is 3111 * close to raid_disks, then resync window could increases 3112 * linearly with the increase of raid_disks, which means 3113 * we will suspend a really large IO window while it is not 3114 * necessary. If raid_disks is not divisible by near_copies, 3115 * an extra chunk is needed to ensure the whole "stripe" is 3116 * covered. 3117 */ 3118 3119 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3120 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3121 extra_chunk = 0; 3122 else 3123 extra_chunk = 1; 3124 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3125 3126 /* 3127 * At least use a 32M window to align with raid1's resync window 3128 */ 3129 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3130 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3131 3132 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3133 } 3134 3135 /* 3136 * perform a "sync" on one "block" 3137 * 3138 * We need to make sure that no normal I/O request - particularly write 3139 * requests - conflict with active sync requests. 3140 * 3141 * This is achieved by tracking pending requests and a 'barrier' concept 3142 * that can be installed to exclude normal IO requests. 3143 * 3144 * Resync and recovery are handled very differently. 3145 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3146 * 3147 * For resync, we iterate over virtual addresses, read all copies, 3148 * and update if there are differences. If only one copy is live, 3149 * skip it. 3150 * For recovery, we iterate over physical addresses, read a good 3151 * value for each non-in_sync drive, and over-write. 3152 * 3153 * So, for recovery we may have several outstanding complex requests for a 3154 * given address, one for each out-of-sync device. We model this by allocating 3155 * a number of r10_bio structures, one for each out-of-sync device. 3156 * As we setup these structures, we collect all bio's together into a list 3157 * which we then process collectively to add pages, and then process again 3158 * to pass to submit_bio_noacct. 3159 * 3160 * The r10_bio structures are linked using a borrowed master_bio pointer. 3161 * This link is counted in ->remaining. When the r10_bio that points to NULL 3162 * has its remaining count decremented to 0, the whole complex operation 3163 * is complete. 3164 * 3165 */ 3166 3167 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3168 sector_t max_sector, int *skipped) 3169 { 3170 struct r10conf *conf = mddev->private; 3171 struct r10bio *r10_bio; 3172 struct bio *biolist = NULL, *bio; 3173 sector_t nr_sectors; 3174 int i; 3175 int max_sync; 3176 sector_t sync_blocks; 3177 sector_t sectors_skipped = 0; 3178 int chunks_skipped = 0; 3179 sector_t chunk_mask = conf->geo.chunk_mask; 3180 int page_idx = 0; 3181 int error_disk = -1; 3182 3183 /* 3184 * Allow skipping a full rebuild for incremental assembly 3185 * of a clean array, like RAID1 does. 3186 */ 3187 if (mddev->bitmap == NULL && 3188 mddev->resync_offset == MaxSector && 3189 mddev->reshape_position == MaxSector && 3190 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3191 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3192 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3193 conf->fullsync == 0) { 3194 *skipped = 1; 3195 return mddev->dev_sectors - sector_nr; 3196 } 3197 3198 if (!mempool_initialized(&conf->r10buf_pool)) 3199 if (init_resync(conf)) 3200 return 0; 3201 3202 skipped: 3203 if (sector_nr >= max_sector) { 3204 conf->cluster_sync_low = 0; 3205 conf->cluster_sync_high = 0; 3206 3207 /* If we aborted, we need to abort the 3208 * sync on the 'current' bitmap chucks (there can 3209 * be several when recovering multiple devices). 3210 * as we may have started syncing it but not finished. 3211 * We can find the current address in 3212 * mddev->curr_resync, but for recovery, 3213 * we need to convert that to several 3214 * virtual addresses. 3215 */ 3216 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3217 end_reshape(conf); 3218 close_sync(conf); 3219 return 0; 3220 } 3221 3222 if (mddev->curr_resync < max_sector) { /* aborted */ 3223 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3224 mddev->bitmap_ops->end_sync(mddev, 3225 mddev->curr_resync, 3226 &sync_blocks); 3227 else for (i = 0; i < conf->geo.raid_disks; i++) { 3228 sector_t sect = 3229 raid10_find_virt(conf, mddev->curr_resync, i); 3230 3231 mddev->bitmap_ops->end_sync(mddev, sect, 3232 &sync_blocks); 3233 } 3234 } else { 3235 /* completed sync */ 3236 if ((!mddev->bitmap || conf->fullsync) 3237 && conf->have_replacement 3238 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3239 /* Completed a full sync so the replacements 3240 * are now fully recovered. 3241 */ 3242 for (i = 0; i < conf->geo.raid_disks; i++) { 3243 struct md_rdev *rdev = 3244 conf->mirrors[i].replacement; 3245 3246 if (rdev) 3247 rdev->recovery_offset = MaxSector; 3248 } 3249 } 3250 conf->fullsync = 0; 3251 } 3252 mddev->bitmap_ops->close_sync(mddev); 3253 close_sync(conf); 3254 *skipped = 1; 3255 return sectors_skipped; 3256 } 3257 3258 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3259 return reshape_request(mddev, sector_nr, skipped); 3260 3261 if (chunks_skipped >= conf->geo.raid_disks) { 3262 pr_err("md/raid10:%s: %s fails\n", mdname(mddev), 3263 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"); 3264 if (error_disk >= 0 && 3265 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3266 /* 3267 * recovery fails, set mirrors.recovery_disabled, 3268 * device shouldn't be added to there. 3269 */ 3270 conf->mirrors[error_disk].recovery_disabled = 3271 mddev->recovery_disabled; 3272 return 0; 3273 } 3274 /* 3275 * if there has been nothing to do on any drive, 3276 * then there is nothing to do at all. 3277 */ 3278 *skipped = 1; 3279 return (max_sector - sector_nr) + sectors_skipped; 3280 } 3281 3282 if (max_sector > mddev->resync_max) 3283 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3284 3285 /* make sure whole request will fit in a chunk - if chunks 3286 * are meaningful 3287 */ 3288 if (conf->geo.near_copies < conf->geo.raid_disks && 3289 max_sector > (sector_nr | chunk_mask)) 3290 max_sector = (sector_nr | chunk_mask) + 1; 3291 3292 /* 3293 * If there is non-resync activity waiting for a turn, then let it 3294 * though before starting on this new sync request. 3295 */ 3296 if (conf->nr_waiting) 3297 schedule_timeout_uninterruptible(1); 3298 3299 /* Again, very different code for resync and recovery. 3300 * Both must result in an r10bio with a list of bios that 3301 * have bi_end_io, bi_sector, bi_bdev set, 3302 * and bi_private set to the r10bio. 3303 * For recovery, we may actually create several r10bios 3304 * with 2 bios in each, that correspond to the bios in the main one. 3305 * In this case, the subordinate r10bios link back through a 3306 * borrowed master_bio pointer, and the counter in the master 3307 * includes a ref from each subordinate. 3308 */ 3309 /* First, we decide what to do and set ->bi_end_io 3310 * To end_sync_read if we want to read, and 3311 * end_sync_write if we will want to write. 3312 */ 3313 3314 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3315 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3316 /* recovery... the complicated one */ 3317 int j; 3318 r10_bio = NULL; 3319 3320 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3321 bool still_degraded; 3322 struct r10bio *rb2; 3323 sector_t sect; 3324 bool must_sync; 3325 int any_working; 3326 struct raid10_info *mirror = &conf->mirrors[i]; 3327 struct md_rdev *mrdev, *mreplace; 3328 3329 mrdev = mirror->rdev; 3330 mreplace = mirror->replacement; 3331 3332 if (mrdev && (test_bit(Faulty, &mrdev->flags) || 3333 test_bit(In_sync, &mrdev->flags))) 3334 mrdev = NULL; 3335 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3336 mreplace = NULL; 3337 3338 if (!mrdev && !mreplace) 3339 continue; 3340 3341 still_degraded = false; 3342 /* want to reconstruct this device */ 3343 rb2 = r10_bio; 3344 sect = raid10_find_virt(conf, sector_nr, i); 3345 if (sect >= mddev->resync_max_sectors) 3346 /* last stripe is not complete - don't 3347 * try to recover this sector. 3348 */ 3349 continue; 3350 /* Unless we are doing a full sync, or a replacement 3351 * we only need to recover the block if it is set in 3352 * the bitmap 3353 */ 3354 must_sync = mddev->bitmap_ops->start_sync(mddev, sect, 3355 &sync_blocks, 3356 true); 3357 if (sync_blocks < max_sync) 3358 max_sync = sync_blocks; 3359 if (!must_sync && 3360 mreplace == NULL && 3361 !conf->fullsync) { 3362 /* yep, skip the sync_blocks here, but don't assume 3363 * that there will never be anything to do here 3364 */ 3365 chunks_skipped = -1; 3366 continue; 3367 } 3368 if (mrdev) 3369 atomic_inc(&mrdev->nr_pending); 3370 if (mreplace) 3371 atomic_inc(&mreplace->nr_pending); 3372 3373 r10_bio = raid10_alloc_init_r10buf(conf); 3374 r10_bio->state = 0; 3375 raise_barrier(conf, rb2 != NULL); 3376 atomic_set(&r10_bio->remaining, 0); 3377 3378 r10_bio->master_bio = (struct bio*)rb2; 3379 if (rb2) 3380 atomic_inc(&rb2->remaining); 3381 r10_bio->mddev = mddev; 3382 set_bit(R10BIO_IsRecover, &r10_bio->state); 3383 r10_bio->sector = sect; 3384 3385 raid10_find_phys(conf, r10_bio); 3386 3387 /* Need to check if the array will still be 3388 * degraded 3389 */ 3390 for (j = 0; j < conf->geo.raid_disks; j++) { 3391 struct md_rdev *rdev = conf->mirrors[j].rdev; 3392 3393 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3394 still_degraded = false; 3395 break; 3396 } 3397 } 3398 3399 must_sync = mddev->bitmap_ops->start_sync(mddev, sect, 3400 &sync_blocks, still_degraded); 3401 3402 any_working = 0; 3403 for (j=0; j<conf->copies;j++) { 3404 int k; 3405 int d = r10_bio->devs[j].devnum; 3406 sector_t from_addr, to_addr; 3407 struct md_rdev *rdev = conf->mirrors[d].rdev; 3408 sector_t sector, first_bad; 3409 sector_t bad_sectors; 3410 if (!rdev || 3411 !test_bit(In_sync, &rdev->flags)) 3412 continue; 3413 /* This is where we read from */ 3414 any_working = 1; 3415 sector = r10_bio->devs[j].addr; 3416 3417 if (is_badblock(rdev, sector, max_sync, 3418 &first_bad, &bad_sectors)) { 3419 if (first_bad > sector) 3420 max_sync = first_bad - sector; 3421 else { 3422 bad_sectors -= (sector 3423 - first_bad); 3424 if (max_sync > bad_sectors) 3425 max_sync = bad_sectors; 3426 continue; 3427 } 3428 } 3429 bio = r10_bio->devs[0].bio; 3430 bio->bi_next = biolist; 3431 biolist = bio; 3432 bio->bi_end_io = end_sync_read; 3433 bio->bi_opf = REQ_OP_READ; 3434 if (test_bit(FailFast, &rdev->flags)) 3435 bio->bi_opf |= MD_FAILFAST; 3436 from_addr = r10_bio->devs[j].addr; 3437 bio->bi_iter.bi_sector = from_addr + 3438 rdev->data_offset; 3439 bio_set_dev(bio, rdev->bdev); 3440 atomic_inc(&rdev->nr_pending); 3441 /* and we write to 'i' (if not in_sync) */ 3442 3443 for (k=0; k<conf->copies; k++) 3444 if (r10_bio->devs[k].devnum == i) 3445 break; 3446 BUG_ON(k == conf->copies); 3447 to_addr = r10_bio->devs[k].addr; 3448 r10_bio->devs[0].devnum = d; 3449 r10_bio->devs[0].addr = from_addr; 3450 r10_bio->devs[1].devnum = i; 3451 r10_bio->devs[1].addr = to_addr; 3452 3453 if (mrdev) { 3454 bio = r10_bio->devs[1].bio; 3455 bio->bi_next = biolist; 3456 biolist = bio; 3457 bio->bi_end_io = end_sync_write; 3458 bio->bi_opf = REQ_OP_WRITE; 3459 bio->bi_iter.bi_sector = to_addr 3460 + mrdev->data_offset; 3461 bio_set_dev(bio, mrdev->bdev); 3462 atomic_inc(&r10_bio->remaining); 3463 } else 3464 r10_bio->devs[1].bio->bi_end_io = NULL; 3465 3466 /* and maybe write to replacement */ 3467 bio = r10_bio->devs[1].repl_bio; 3468 if (bio) 3469 bio->bi_end_io = NULL; 3470 /* Note: if replace is not NULL, then bio 3471 * cannot be NULL as r10buf_pool_alloc will 3472 * have allocated it. 3473 */ 3474 if (!mreplace) 3475 break; 3476 bio->bi_next = biolist; 3477 biolist = bio; 3478 bio->bi_end_io = end_sync_write; 3479 bio->bi_opf = REQ_OP_WRITE; 3480 bio->bi_iter.bi_sector = to_addr + 3481 mreplace->data_offset; 3482 bio_set_dev(bio, mreplace->bdev); 3483 atomic_inc(&r10_bio->remaining); 3484 break; 3485 } 3486 if (j == conf->copies) { 3487 /* Cannot recover, so abort the recovery or 3488 * record a bad block */ 3489 if (any_working) { 3490 /* problem is that there are bad blocks 3491 * on other device(s) 3492 */ 3493 int k; 3494 for (k = 0; k < conf->copies; k++) 3495 if (r10_bio->devs[k].devnum == i) 3496 break; 3497 if (mrdev && !test_bit(In_sync, 3498 &mrdev->flags) 3499 && !rdev_set_badblocks( 3500 mrdev, 3501 r10_bio->devs[k].addr, 3502 max_sync, 0)) 3503 any_working = 0; 3504 if (mreplace && 3505 !rdev_set_badblocks( 3506 mreplace, 3507 r10_bio->devs[k].addr, 3508 max_sync, 0)) 3509 any_working = 0; 3510 } 3511 if (!any_working) { 3512 if (!test_and_set_bit(MD_RECOVERY_INTR, 3513 &mddev->recovery)) 3514 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3515 mdname(mddev)); 3516 mirror->recovery_disabled 3517 = mddev->recovery_disabled; 3518 } else { 3519 error_disk = i; 3520 } 3521 put_buf(r10_bio); 3522 if (rb2) 3523 atomic_dec(&rb2->remaining); 3524 r10_bio = rb2; 3525 if (mrdev) 3526 rdev_dec_pending(mrdev, mddev); 3527 if (mreplace) 3528 rdev_dec_pending(mreplace, mddev); 3529 break; 3530 } 3531 if (mrdev) 3532 rdev_dec_pending(mrdev, mddev); 3533 if (mreplace) 3534 rdev_dec_pending(mreplace, mddev); 3535 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3536 /* Only want this if there is elsewhere to 3537 * read from. 'j' is currently the first 3538 * readable copy. 3539 */ 3540 int targets = 1; 3541 for (; j < conf->copies; j++) { 3542 int d = r10_bio->devs[j].devnum; 3543 if (conf->mirrors[d].rdev && 3544 test_bit(In_sync, 3545 &conf->mirrors[d].rdev->flags)) 3546 targets++; 3547 } 3548 if (targets == 1) 3549 r10_bio->devs[0].bio->bi_opf 3550 &= ~MD_FAILFAST; 3551 } 3552 } 3553 if (biolist == NULL) { 3554 while (r10_bio) { 3555 struct r10bio *rb2 = r10_bio; 3556 r10_bio = (struct r10bio*) rb2->master_bio; 3557 rb2->master_bio = NULL; 3558 put_buf(rb2); 3559 } 3560 goto giveup; 3561 } 3562 } else { 3563 /* resync. Schedule a read for every block at this virt offset */ 3564 int count = 0; 3565 3566 /* 3567 * Since curr_resync_completed could probably not update in 3568 * time, and we will set cluster_sync_low based on it. 3569 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3570 * safety reason, which ensures curr_resync_completed is 3571 * updated in bitmap_cond_end_sync. 3572 */ 3573 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 3574 mddev_is_clustered(mddev) && 3575 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3576 3577 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, 3578 &sync_blocks, 3579 mddev->degraded) && 3580 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3581 &mddev->recovery)) { 3582 /* We can skip this block */ 3583 *skipped = 1; 3584 return sync_blocks + sectors_skipped; 3585 } 3586 if (sync_blocks < max_sync) 3587 max_sync = sync_blocks; 3588 r10_bio = raid10_alloc_init_r10buf(conf); 3589 r10_bio->state = 0; 3590 3591 r10_bio->mddev = mddev; 3592 atomic_set(&r10_bio->remaining, 0); 3593 raise_barrier(conf, 0); 3594 conf->next_resync = sector_nr; 3595 3596 r10_bio->master_bio = NULL; 3597 r10_bio->sector = sector_nr; 3598 set_bit(R10BIO_IsSync, &r10_bio->state); 3599 raid10_find_phys(conf, r10_bio); 3600 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3601 3602 for (i = 0; i < conf->copies; i++) { 3603 int d = r10_bio->devs[i].devnum; 3604 sector_t first_bad, sector; 3605 sector_t bad_sectors; 3606 struct md_rdev *rdev; 3607 3608 if (r10_bio->devs[i].repl_bio) 3609 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3610 3611 bio = r10_bio->devs[i].bio; 3612 bio->bi_status = BLK_STS_IOERR; 3613 rdev = conf->mirrors[d].rdev; 3614 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3615 continue; 3616 3617 sector = r10_bio->devs[i].addr; 3618 if (is_badblock(rdev, sector, max_sync, 3619 &first_bad, &bad_sectors)) { 3620 if (first_bad > sector) 3621 max_sync = first_bad - sector; 3622 else { 3623 bad_sectors -= (sector - first_bad); 3624 if (max_sync > bad_sectors) 3625 max_sync = bad_sectors; 3626 continue; 3627 } 3628 } 3629 atomic_inc(&rdev->nr_pending); 3630 atomic_inc(&r10_bio->remaining); 3631 bio->bi_next = biolist; 3632 biolist = bio; 3633 bio->bi_end_io = end_sync_read; 3634 bio->bi_opf = REQ_OP_READ; 3635 if (test_bit(FailFast, &rdev->flags)) 3636 bio->bi_opf |= MD_FAILFAST; 3637 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3638 bio_set_dev(bio, rdev->bdev); 3639 count++; 3640 3641 rdev = conf->mirrors[d].replacement; 3642 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3643 continue; 3644 3645 atomic_inc(&rdev->nr_pending); 3646 3647 /* Need to set up for writing to the replacement */ 3648 bio = r10_bio->devs[i].repl_bio; 3649 bio->bi_status = BLK_STS_IOERR; 3650 3651 sector = r10_bio->devs[i].addr; 3652 bio->bi_next = biolist; 3653 biolist = bio; 3654 bio->bi_end_io = end_sync_write; 3655 bio->bi_opf = REQ_OP_WRITE; 3656 if (test_bit(FailFast, &rdev->flags)) 3657 bio->bi_opf |= MD_FAILFAST; 3658 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3659 bio_set_dev(bio, rdev->bdev); 3660 count++; 3661 } 3662 3663 if (count < 2) { 3664 for (i=0; i<conf->copies; i++) { 3665 int d = r10_bio->devs[i].devnum; 3666 if (r10_bio->devs[i].bio->bi_end_io) 3667 rdev_dec_pending(conf->mirrors[d].rdev, 3668 mddev); 3669 if (r10_bio->devs[i].repl_bio && 3670 r10_bio->devs[i].repl_bio->bi_end_io) 3671 rdev_dec_pending( 3672 conf->mirrors[d].replacement, 3673 mddev); 3674 } 3675 put_buf(r10_bio); 3676 biolist = NULL; 3677 goto giveup; 3678 } 3679 } 3680 3681 nr_sectors = 0; 3682 if (sector_nr + max_sync < max_sector) 3683 max_sector = sector_nr + max_sync; 3684 do { 3685 struct page *page; 3686 int len = PAGE_SIZE; 3687 if (sector_nr + (len>>9) > max_sector) 3688 len = (max_sector - sector_nr) << 9; 3689 if (len == 0) 3690 break; 3691 for (bio= biolist ; bio ; bio=bio->bi_next) { 3692 struct resync_pages *rp = get_resync_pages(bio); 3693 page = resync_fetch_page(rp, page_idx); 3694 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 3695 bio->bi_status = BLK_STS_RESOURCE; 3696 bio_endio(bio); 3697 goto giveup; 3698 } 3699 } 3700 nr_sectors += len>>9; 3701 sector_nr += len>>9; 3702 } while (++page_idx < RESYNC_PAGES); 3703 r10_bio->sectors = nr_sectors; 3704 3705 if (mddev_is_clustered(mddev) && 3706 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3707 /* It is resync not recovery */ 3708 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3709 conf->cluster_sync_low = mddev->curr_resync_completed; 3710 raid10_set_cluster_sync_high(conf); 3711 /* Send resync message */ 3712 mddev->cluster_ops->resync_info_update(mddev, 3713 conf->cluster_sync_low, 3714 conf->cluster_sync_high); 3715 } 3716 } else if (mddev_is_clustered(mddev)) { 3717 /* This is recovery not resync */ 3718 sector_t sect_va1, sect_va2; 3719 bool broadcast_msg = false; 3720 3721 for (i = 0; i < conf->geo.raid_disks; i++) { 3722 /* 3723 * sector_nr is a device address for recovery, so we 3724 * need translate it to array address before compare 3725 * with cluster_sync_high. 3726 */ 3727 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3728 3729 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3730 broadcast_msg = true; 3731 /* 3732 * curr_resync_completed is similar as 3733 * sector_nr, so make the translation too. 3734 */ 3735 sect_va2 = raid10_find_virt(conf, 3736 mddev->curr_resync_completed, i); 3737 3738 if (conf->cluster_sync_low == 0 || 3739 conf->cluster_sync_low > sect_va2) 3740 conf->cluster_sync_low = sect_va2; 3741 } 3742 } 3743 if (broadcast_msg) { 3744 raid10_set_cluster_sync_high(conf); 3745 mddev->cluster_ops->resync_info_update(mddev, 3746 conf->cluster_sync_low, 3747 conf->cluster_sync_high); 3748 } 3749 } 3750 3751 while (biolist) { 3752 bio = biolist; 3753 biolist = biolist->bi_next; 3754 3755 bio->bi_next = NULL; 3756 r10_bio = get_resync_r10bio(bio); 3757 r10_bio->sectors = nr_sectors; 3758 3759 if (bio->bi_end_io == end_sync_read) { 3760 bio->bi_status = 0; 3761 submit_bio_noacct(bio); 3762 } 3763 } 3764 3765 if (sectors_skipped) 3766 /* pretend they weren't skipped, it makes 3767 * no important difference in this case 3768 */ 3769 md_done_sync(mddev, sectors_skipped, 1); 3770 3771 return sectors_skipped + nr_sectors; 3772 giveup: 3773 /* There is nowhere to write, so all non-sync 3774 * drives must be failed or in resync, all drives 3775 * have a bad block, so try the next chunk... 3776 */ 3777 if (sector_nr + max_sync < max_sector) 3778 max_sector = sector_nr + max_sync; 3779 3780 sectors_skipped += (max_sector - sector_nr); 3781 chunks_skipped ++; 3782 sector_nr = max_sector; 3783 goto skipped; 3784 } 3785 3786 static sector_t 3787 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3788 { 3789 sector_t size; 3790 struct r10conf *conf = mddev->private; 3791 3792 if (!raid_disks) 3793 raid_disks = min(conf->geo.raid_disks, 3794 conf->prev.raid_disks); 3795 if (!sectors) 3796 sectors = conf->dev_sectors; 3797 3798 size = sectors >> conf->geo.chunk_shift; 3799 sector_div(size, conf->geo.far_copies); 3800 size = size * raid_disks; 3801 sector_div(size, conf->geo.near_copies); 3802 3803 return size << conf->geo.chunk_shift; 3804 } 3805 3806 static void calc_sectors(struct r10conf *conf, sector_t size) 3807 { 3808 /* Calculate the number of sectors-per-device that will 3809 * actually be used, and set conf->dev_sectors and 3810 * conf->stride 3811 */ 3812 3813 size = size >> conf->geo.chunk_shift; 3814 sector_div(size, conf->geo.far_copies); 3815 size = size * conf->geo.raid_disks; 3816 sector_div(size, conf->geo.near_copies); 3817 /* 'size' is now the number of chunks in the array */ 3818 /* calculate "used chunks per device" */ 3819 size = size * conf->copies; 3820 3821 /* We need to round up when dividing by raid_disks to 3822 * get the stride size. 3823 */ 3824 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3825 3826 conf->dev_sectors = size << conf->geo.chunk_shift; 3827 3828 if (conf->geo.far_offset) 3829 conf->geo.stride = 1 << conf->geo.chunk_shift; 3830 else { 3831 sector_div(size, conf->geo.far_copies); 3832 conf->geo.stride = size << conf->geo.chunk_shift; 3833 } 3834 } 3835 3836 enum geo_type {geo_new, geo_old, geo_start}; 3837 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3838 { 3839 int nc, fc, fo; 3840 int layout, chunk, disks; 3841 switch (new) { 3842 case geo_old: 3843 layout = mddev->layout; 3844 chunk = mddev->chunk_sectors; 3845 disks = mddev->raid_disks - mddev->delta_disks; 3846 break; 3847 case geo_new: 3848 layout = mddev->new_layout; 3849 chunk = mddev->new_chunk_sectors; 3850 disks = mddev->raid_disks; 3851 break; 3852 default: /* avoid 'may be unused' warnings */ 3853 case geo_start: /* new when starting reshape - raid_disks not 3854 * updated yet. */ 3855 layout = mddev->new_layout; 3856 chunk = mddev->new_chunk_sectors; 3857 disks = mddev->raid_disks + mddev->delta_disks; 3858 break; 3859 } 3860 if (layout >> 19) 3861 return -1; 3862 if (chunk < (PAGE_SIZE >> 9) || 3863 !is_power_of_2(chunk)) 3864 return -2; 3865 nc = layout & 255; 3866 fc = (layout >> 8) & 255; 3867 fo = layout & (1<<16); 3868 geo->raid_disks = disks; 3869 geo->near_copies = nc; 3870 geo->far_copies = fc; 3871 geo->far_offset = fo; 3872 switch (layout >> 17) { 3873 case 0: /* original layout. simple but not always optimal */ 3874 geo->far_set_size = disks; 3875 break; 3876 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3877 * actually using this, but leave code here just in case.*/ 3878 geo->far_set_size = disks/fc; 3879 WARN(geo->far_set_size < fc, 3880 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3881 break; 3882 case 2: /* "improved" layout fixed to match documentation */ 3883 geo->far_set_size = fc * nc; 3884 break; 3885 default: /* Not a valid layout */ 3886 return -1; 3887 } 3888 geo->chunk_mask = chunk - 1; 3889 geo->chunk_shift = ffz(~chunk); 3890 return nc*fc; 3891 } 3892 3893 static void raid10_free_conf(struct r10conf *conf) 3894 { 3895 if (!conf) 3896 return; 3897 3898 mempool_exit(&conf->r10bio_pool); 3899 kfree(conf->mirrors); 3900 kfree(conf->mirrors_old); 3901 kfree(conf->mirrors_new); 3902 safe_put_page(conf->tmppage); 3903 bioset_exit(&conf->bio_split); 3904 kfree(conf); 3905 } 3906 3907 static struct r10conf *setup_conf(struct mddev *mddev) 3908 { 3909 struct r10conf *conf = NULL; 3910 int err = -EINVAL; 3911 struct geom geo; 3912 int copies; 3913 3914 copies = setup_geo(&geo, mddev, geo_new); 3915 3916 if (copies == -2) { 3917 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3918 mdname(mddev), PAGE_SIZE); 3919 goto out; 3920 } 3921 3922 if (copies < 2 || copies > mddev->raid_disks) { 3923 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3924 mdname(mddev), mddev->new_layout); 3925 goto out; 3926 } 3927 3928 err = -ENOMEM; 3929 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3930 if (!conf) 3931 goto out; 3932 3933 /* FIXME calc properly */ 3934 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3935 sizeof(struct raid10_info), 3936 GFP_KERNEL); 3937 if (!conf->mirrors) 3938 goto out; 3939 3940 conf->tmppage = alloc_page(GFP_KERNEL); 3941 if (!conf->tmppage) 3942 goto out; 3943 3944 conf->geo = geo; 3945 conf->copies = copies; 3946 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3947 rbio_pool_free, conf); 3948 if (err) 3949 goto out; 3950 3951 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3952 if (err) 3953 goto out; 3954 3955 calc_sectors(conf, mddev->dev_sectors); 3956 if (mddev->reshape_position == MaxSector) { 3957 conf->prev = conf->geo; 3958 conf->reshape_progress = MaxSector; 3959 } else { 3960 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3961 err = -EINVAL; 3962 goto out; 3963 } 3964 conf->reshape_progress = mddev->reshape_position; 3965 if (conf->prev.far_offset) 3966 conf->prev.stride = 1 << conf->prev.chunk_shift; 3967 else 3968 /* far_copies must be 1 */ 3969 conf->prev.stride = conf->dev_sectors; 3970 } 3971 conf->reshape_safe = conf->reshape_progress; 3972 spin_lock_init(&conf->device_lock); 3973 INIT_LIST_HEAD(&conf->retry_list); 3974 INIT_LIST_HEAD(&conf->bio_end_io_list); 3975 3976 seqlock_init(&conf->resync_lock); 3977 init_waitqueue_head(&conf->wait_barrier); 3978 atomic_set(&conf->nr_pending, 0); 3979 3980 err = -ENOMEM; 3981 rcu_assign_pointer(conf->thread, 3982 md_register_thread(raid10d, mddev, "raid10")); 3983 if (!conf->thread) 3984 goto out; 3985 3986 conf->mddev = mddev; 3987 return conf; 3988 3989 out: 3990 raid10_free_conf(conf); 3991 return ERR_PTR(err); 3992 } 3993 3994 static unsigned int raid10_nr_stripes(struct r10conf *conf) 3995 { 3996 unsigned int raid_disks = conf->geo.raid_disks; 3997 3998 if (conf->geo.raid_disks % conf->geo.near_copies) 3999 return raid_disks; 4000 return raid_disks / conf->geo.near_copies; 4001 } 4002 4003 static int raid10_set_queue_limits(struct mddev *mddev) 4004 { 4005 struct r10conf *conf = mddev->private; 4006 struct queue_limits lim; 4007 int err; 4008 4009 md_init_stacking_limits(&lim); 4010 lim.max_write_zeroes_sectors = 0; 4011 lim.io_min = mddev->chunk_sectors << 9; 4012 lim.chunk_sectors = mddev->chunk_sectors; 4013 lim.io_opt = lim.io_min * raid10_nr_stripes(conf); 4014 lim.features |= BLK_FEAT_ATOMIC_WRITES; 4015 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 4016 if (err) 4017 return err; 4018 return queue_limits_set(mddev->gendisk->queue, &lim); 4019 } 4020 4021 static int raid10_run(struct mddev *mddev) 4022 { 4023 struct r10conf *conf; 4024 int i, disk_idx; 4025 struct raid10_info *disk; 4026 struct md_rdev *rdev; 4027 sector_t size; 4028 sector_t min_offset_diff = 0; 4029 int first = 1; 4030 int ret = -EIO; 4031 4032 if (mddev->private == NULL) { 4033 conf = setup_conf(mddev); 4034 if (IS_ERR(conf)) 4035 return PTR_ERR(conf); 4036 mddev->private = conf; 4037 } 4038 conf = mddev->private; 4039 if (!conf) 4040 goto out; 4041 4042 rcu_assign_pointer(mddev->thread, conf->thread); 4043 rcu_assign_pointer(conf->thread, NULL); 4044 4045 if (mddev_is_clustered(conf->mddev)) { 4046 int fc, fo; 4047 4048 fc = (mddev->layout >> 8) & 255; 4049 fo = mddev->layout & (1<<16); 4050 if (fc > 1 || fo > 0) { 4051 pr_err("only near layout is supported by clustered" 4052 " raid10\n"); 4053 goto out_free_conf; 4054 } 4055 } 4056 4057 rdev_for_each(rdev, mddev) { 4058 long long diff; 4059 4060 disk_idx = rdev->raid_disk; 4061 if (disk_idx < 0) 4062 continue; 4063 if (disk_idx >= conf->geo.raid_disks && 4064 disk_idx >= conf->prev.raid_disks) 4065 continue; 4066 disk = conf->mirrors + disk_idx; 4067 4068 if (test_bit(Replacement, &rdev->flags)) { 4069 if (disk->replacement) 4070 goto out_free_conf; 4071 disk->replacement = rdev; 4072 } else { 4073 if (disk->rdev) 4074 goto out_free_conf; 4075 disk->rdev = rdev; 4076 } 4077 diff = (rdev->new_data_offset - rdev->data_offset); 4078 if (!mddev->reshape_backwards) 4079 diff = -diff; 4080 if (diff < 0) 4081 diff = 0; 4082 if (first || diff < min_offset_diff) 4083 min_offset_diff = diff; 4084 4085 disk->head_position = 0; 4086 first = 0; 4087 } 4088 4089 if (!mddev_is_dm(conf->mddev)) { 4090 int err = raid10_set_queue_limits(mddev); 4091 4092 if (err) { 4093 ret = err; 4094 goto out_free_conf; 4095 } 4096 } 4097 4098 /* need to check that every block has at least one working mirror */ 4099 if (!enough(conf, -1)) { 4100 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4101 mdname(mddev)); 4102 goto out_free_conf; 4103 } 4104 4105 if (conf->reshape_progress != MaxSector) { 4106 /* must ensure that shape change is supported */ 4107 if (conf->geo.far_copies != 1 && 4108 conf->geo.far_offset == 0) 4109 goto out_free_conf; 4110 if (conf->prev.far_copies != 1 && 4111 conf->prev.far_offset == 0) 4112 goto out_free_conf; 4113 } 4114 4115 mddev->degraded = 0; 4116 for (i = 0; 4117 i < conf->geo.raid_disks 4118 || i < conf->prev.raid_disks; 4119 i++) { 4120 4121 disk = conf->mirrors + i; 4122 4123 if (!disk->rdev && disk->replacement) { 4124 /* The replacement is all we have - use it */ 4125 disk->rdev = disk->replacement; 4126 disk->replacement = NULL; 4127 clear_bit(Replacement, &disk->rdev->flags); 4128 } 4129 4130 if (!disk->rdev || 4131 !test_bit(In_sync, &disk->rdev->flags)) { 4132 disk->head_position = 0; 4133 mddev->degraded++; 4134 if (disk->rdev && 4135 disk->rdev->saved_raid_disk < 0) 4136 conf->fullsync = 1; 4137 } 4138 4139 if (disk->replacement && 4140 !test_bit(In_sync, &disk->replacement->flags) && 4141 disk->replacement->saved_raid_disk < 0) { 4142 conf->fullsync = 1; 4143 } 4144 4145 disk->recovery_disabled = mddev->recovery_disabled - 1; 4146 } 4147 4148 if (mddev->resync_offset != MaxSector) 4149 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4150 mdname(mddev)); 4151 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4152 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4153 conf->geo.raid_disks); 4154 /* 4155 * Ok, everything is just fine now 4156 */ 4157 mddev->dev_sectors = conf->dev_sectors; 4158 size = raid10_size(mddev, 0, 0); 4159 md_set_array_sectors(mddev, size); 4160 mddev->resync_max_sectors = size; 4161 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4162 4163 if (md_integrity_register(mddev)) 4164 goto out_free_conf; 4165 4166 if (conf->reshape_progress != MaxSector) { 4167 unsigned long before_length, after_length; 4168 4169 before_length = ((1 << conf->prev.chunk_shift) * 4170 conf->prev.far_copies); 4171 after_length = ((1 << conf->geo.chunk_shift) * 4172 conf->geo.far_copies); 4173 4174 if (max(before_length, after_length) > min_offset_diff) { 4175 /* This cannot work */ 4176 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4177 goto out_free_conf; 4178 } 4179 conf->offset_diff = min_offset_diff; 4180 4181 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4182 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4183 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4184 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4185 } 4186 4187 return 0; 4188 4189 out_free_conf: 4190 md_unregister_thread(mddev, &mddev->thread); 4191 raid10_free_conf(conf); 4192 mddev->private = NULL; 4193 out: 4194 return ret; 4195 } 4196 4197 static void raid10_free(struct mddev *mddev, void *priv) 4198 { 4199 raid10_free_conf(priv); 4200 } 4201 4202 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4203 { 4204 struct r10conf *conf = mddev->private; 4205 4206 if (quiesce) 4207 raise_barrier(conf, 0); 4208 else 4209 lower_barrier(conf); 4210 } 4211 4212 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4213 { 4214 /* Resize of 'far' arrays is not supported. 4215 * For 'near' and 'offset' arrays we can set the 4216 * number of sectors used to be an appropriate multiple 4217 * of the chunk size. 4218 * For 'offset', this is far_copies*chunksize. 4219 * For 'near' the multiplier is the LCM of 4220 * near_copies and raid_disks. 4221 * So if far_copies > 1 && !far_offset, fail. 4222 * Else find LCM(raid_disks, near_copy)*far_copies and 4223 * multiply by chunk_size. Then round to this number. 4224 * This is mostly done by raid10_size() 4225 */ 4226 struct r10conf *conf = mddev->private; 4227 sector_t oldsize, size; 4228 int ret; 4229 4230 if (mddev->reshape_position != MaxSector) 4231 return -EBUSY; 4232 4233 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4234 return -EINVAL; 4235 4236 oldsize = raid10_size(mddev, 0, 0); 4237 size = raid10_size(mddev, sectors, 0); 4238 if (mddev->external_size && 4239 mddev->array_sectors > size) 4240 return -EINVAL; 4241 4242 ret = mddev->bitmap_ops->resize(mddev, size, 0, false); 4243 if (ret) 4244 return ret; 4245 4246 md_set_array_sectors(mddev, size); 4247 if (sectors > mddev->dev_sectors && 4248 mddev->resync_offset > oldsize) { 4249 mddev->resync_offset = oldsize; 4250 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4251 } 4252 calc_sectors(conf, sectors); 4253 mddev->dev_sectors = conf->dev_sectors; 4254 mddev->resync_max_sectors = size; 4255 return 0; 4256 } 4257 4258 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4259 { 4260 struct md_rdev *rdev; 4261 struct r10conf *conf; 4262 4263 if (mddev->degraded > 0) { 4264 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4265 mdname(mddev)); 4266 return ERR_PTR(-EINVAL); 4267 } 4268 sector_div(size, devs); 4269 4270 /* Set new parameters */ 4271 mddev->new_level = 10; 4272 /* new layout: far_copies = 1, near_copies = 2 */ 4273 mddev->new_layout = (1<<8) + 2; 4274 mddev->new_chunk_sectors = mddev->chunk_sectors; 4275 mddev->delta_disks = mddev->raid_disks; 4276 mddev->raid_disks *= 2; 4277 /* make sure it will be not marked as dirty */ 4278 mddev->resync_offset = MaxSector; 4279 mddev->dev_sectors = size; 4280 4281 conf = setup_conf(mddev); 4282 if (!IS_ERR(conf)) { 4283 rdev_for_each(rdev, mddev) 4284 if (rdev->raid_disk >= 0) { 4285 rdev->new_raid_disk = rdev->raid_disk * 2; 4286 rdev->sectors = size; 4287 } 4288 } 4289 4290 return conf; 4291 } 4292 4293 static void *raid10_takeover(struct mddev *mddev) 4294 { 4295 struct r0conf *raid0_conf; 4296 4297 /* raid10 can take over: 4298 * raid0 - providing it has only two drives 4299 */ 4300 if (mddev->level == 0) { 4301 /* for raid0 takeover only one zone is supported */ 4302 raid0_conf = mddev->private; 4303 if (raid0_conf->nr_strip_zones > 1) { 4304 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4305 mdname(mddev)); 4306 return ERR_PTR(-EINVAL); 4307 } 4308 return raid10_takeover_raid0(mddev, 4309 raid0_conf->strip_zone->zone_end, 4310 raid0_conf->strip_zone->nb_dev); 4311 } 4312 return ERR_PTR(-EINVAL); 4313 } 4314 4315 static int raid10_check_reshape(struct mddev *mddev) 4316 { 4317 /* Called when there is a request to change 4318 * - layout (to ->new_layout) 4319 * - chunk size (to ->new_chunk_sectors) 4320 * - raid_disks (by delta_disks) 4321 * or when trying to restart a reshape that was ongoing. 4322 * 4323 * We need to validate the request and possibly allocate 4324 * space if that might be an issue later. 4325 * 4326 * Currently we reject any reshape of a 'far' mode array, 4327 * allow chunk size to change if new is generally acceptable, 4328 * allow raid_disks to increase, and allow 4329 * a switch between 'near' mode and 'offset' mode. 4330 */ 4331 struct r10conf *conf = mddev->private; 4332 struct geom geo; 4333 4334 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4335 return -EINVAL; 4336 4337 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4338 /* mustn't change number of copies */ 4339 return -EINVAL; 4340 if (geo.far_copies > 1 && !geo.far_offset) 4341 /* Cannot switch to 'far' mode */ 4342 return -EINVAL; 4343 4344 if (mddev->array_sectors & geo.chunk_mask) 4345 /* not factor of array size */ 4346 return -EINVAL; 4347 4348 if (!enough(conf, -1)) 4349 return -EINVAL; 4350 4351 kfree(conf->mirrors_new); 4352 conf->mirrors_new = NULL; 4353 if (mddev->delta_disks > 0) { 4354 /* allocate new 'mirrors' list */ 4355 conf->mirrors_new = 4356 kcalloc(mddev->raid_disks + mddev->delta_disks, 4357 sizeof(struct raid10_info), 4358 GFP_KERNEL); 4359 if (!conf->mirrors_new) 4360 return -ENOMEM; 4361 } 4362 return 0; 4363 } 4364 4365 /* 4366 * Need to check if array has failed when deciding whether to: 4367 * - start an array 4368 * - remove non-faulty devices 4369 * - add a spare 4370 * - allow a reshape 4371 * This determination is simple when no reshape is happening. 4372 * However if there is a reshape, we need to carefully check 4373 * both the before and after sections. 4374 * This is because some failed devices may only affect one 4375 * of the two sections, and some non-in_sync devices may 4376 * be insync in the section most affected by failed devices. 4377 */ 4378 static int calc_degraded(struct r10conf *conf) 4379 { 4380 int degraded, degraded2; 4381 int i; 4382 4383 degraded = 0; 4384 /* 'prev' section first */ 4385 for (i = 0; i < conf->prev.raid_disks; i++) { 4386 struct md_rdev *rdev = conf->mirrors[i].rdev; 4387 4388 if (!rdev || test_bit(Faulty, &rdev->flags)) 4389 degraded++; 4390 else if (!test_bit(In_sync, &rdev->flags)) 4391 /* When we can reduce the number of devices in 4392 * an array, this might not contribute to 4393 * 'degraded'. It does now. 4394 */ 4395 degraded++; 4396 } 4397 if (conf->geo.raid_disks == conf->prev.raid_disks) 4398 return degraded; 4399 degraded2 = 0; 4400 for (i = 0; i < conf->geo.raid_disks; i++) { 4401 struct md_rdev *rdev = conf->mirrors[i].rdev; 4402 4403 if (!rdev || test_bit(Faulty, &rdev->flags)) 4404 degraded2++; 4405 else if (!test_bit(In_sync, &rdev->flags)) { 4406 /* If reshape is increasing the number of devices, 4407 * this section has already been recovered, so 4408 * it doesn't contribute to degraded. 4409 * else it does. 4410 */ 4411 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4412 degraded2++; 4413 } 4414 } 4415 if (degraded2 > degraded) 4416 return degraded2; 4417 return degraded; 4418 } 4419 4420 static int raid10_start_reshape(struct mddev *mddev) 4421 { 4422 /* A 'reshape' has been requested. This commits 4423 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4424 * This also checks if there are enough spares and adds them 4425 * to the array. 4426 * We currently require enough spares to make the final 4427 * array non-degraded. We also require that the difference 4428 * between old and new data_offset - on each device - is 4429 * enough that we never risk over-writing. 4430 */ 4431 4432 unsigned long before_length, after_length; 4433 sector_t min_offset_diff = 0; 4434 int first = 1; 4435 struct geom new; 4436 struct r10conf *conf = mddev->private; 4437 struct md_rdev *rdev; 4438 int spares = 0; 4439 int ret; 4440 4441 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4442 return -EBUSY; 4443 4444 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4445 return -EINVAL; 4446 4447 before_length = ((1 << conf->prev.chunk_shift) * 4448 conf->prev.far_copies); 4449 after_length = ((1 << conf->geo.chunk_shift) * 4450 conf->geo.far_copies); 4451 4452 rdev_for_each(rdev, mddev) { 4453 if (!test_bit(In_sync, &rdev->flags) 4454 && !test_bit(Faulty, &rdev->flags)) 4455 spares++; 4456 if (rdev->raid_disk >= 0) { 4457 long long diff = (rdev->new_data_offset 4458 - rdev->data_offset); 4459 if (!mddev->reshape_backwards) 4460 diff = -diff; 4461 if (diff < 0) 4462 diff = 0; 4463 if (first || diff < min_offset_diff) 4464 min_offset_diff = diff; 4465 first = 0; 4466 } 4467 } 4468 4469 if (max(before_length, after_length) > min_offset_diff) 4470 return -EINVAL; 4471 4472 if (spares < mddev->delta_disks) 4473 return -EINVAL; 4474 4475 conf->offset_diff = min_offset_diff; 4476 spin_lock_irq(&conf->device_lock); 4477 if (conf->mirrors_new) { 4478 memcpy(conf->mirrors_new, conf->mirrors, 4479 sizeof(struct raid10_info)*conf->prev.raid_disks); 4480 smp_mb(); 4481 kfree(conf->mirrors_old); 4482 conf->mirrors_old = conf->mirrors; 4483 conf->mirrors = conf->mirrors_new; 4484 conf->mirrors_new = NULL; 4485 } 4486 setup_geo(&conf->geo, mddev, geo_start); 4487 smp_mb(); 4488 if (mddev->reshape_backwards) { 4489 sector_t size = raid10_size(mddev, 0, 0); 4490 if (size < mddev->array_sectors) { 4491 spin_unlock_irq(&conf->device_lock); 4492 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4493 mdname(mddev)); 4494 return -EINVAL; 4495 } 4496 mddev->resync_max_sectors = size; 4497 conf->reshape_progress = size; 4498 } else 4499 conf->reshape_progress = 0; 4500 conf->reshape_safe = conf->reshape_progress; 4501 spin_unlock_irq(&conf->device_lock); 4502 4503 if (mddev->delta_disks && mddev->bitmap) { 4504 struct mdp_superblock_1 *sb = NULL; 4505 sector_t oldsize, newsize; 4506 4507 oldsize = raid10_size(mddev, 0, 0); 4508 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4509 4510 if (!mddev_is_clustered(mddev)) { 4511 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 4512 if (ret) 4513 goto abort; 4514 else 4515 goto out; 4516 } 4517 4518 rdev_for_each(rdev, mddev) { 4519 if (rdev->raid_disk > -1 && 4520 !test_bit(Faulty, &rdev->flags)) 4521 sb = page_address(rdev->sb_page); 4522 } 4523 4524 /* 4525 * some node is already performing reshape, and no need to 4526 * call bitmap_ops->resize again since it should be called when 4527 * receiving BITMAP_RESIZE msg 4528 */ 4529 if ((sb && (le32_to_cpu(sb->feature_map) & 4530 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4531 goto out; 4532 4533 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 4534 if (ret) 4535 goto abort; 4536 4537 ret = mddev->cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4538 if (ret) { 4539 mddev->bitmap_ops->resize(mddev, oldsize, 0, false); 4540 goto abort; 4541 } 4542 } 4543 out: 4544 if (mddev->delta_disks > 0) { 4545 rdev_for_each(rdev, mddev) 4546 if (rdev->raid_disk < 0 && 4547 !test_bit(Faulty, &rdev->flags)) { 4548 if (raid10_add_disk(mddev, rdev) == 0) { 4549 if (rdev->raid_disk >= 4550 conf->prev.raid_disks) 4551 set_bit(In_sync, &rdev->flags); 4552 else 4553 rdev->recovery_offset = 0; 4554 4555 /* Failure here is OK */ 4556 sysfs_link_rdev(mddev, rdev); 4557 } 4558 } else if (rdev->raid_disk >= conf->prev.raid_disks 4559 && !test_bit(Faulty, &rdev->flags)) { 4560 /* This is a spare that was manually added */ 4561 set_bit(In_sync, &rdev->flags); 4562 } 4563 } 4564 /* When a reshape changes the number of devices, 4565 * ->degraded is measured against the larger of the 4566 * pre and post numbers. 4567 */ 4568 spin_lock_irq(&conf->device_lock); 4569 mddev->degraded = calc_degraded(conf); 4570 spin_unlock_irq(&conf->device_lock); 4571 mddev->raid_disks = conf->geo.raid_disks; 4572 mddev->reshape_position = conf->reshape_progress; 4573 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4574 4575 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4576 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4577 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4578 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4579 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4580 conf->reshape_checkpoint = jiffies; 4581 md_new_event(); 4582 return 0; 4583 4584 abort: 4585 mddev->recovery = 0; 4586 spin_lock_irq(&conf->device_lock); 4587 conf->geo = conf->prev; 4588 mddev->raid_disks = conf->geo.raid_disks; 4589 rdev_for_each(rdev, mddev) 4590 rdev->new_data_offset = rdev->data_offset; 4591 smp_wmb(); 4592 conf->reshape_progress = MaxSector; 4593 conf->reshape_safe = MaxSector; 4594 mddev->reshape_position = MaxSector; 4595 spin_unlock_irq(&conf->device_lock); 4596 return ret; 4597 } 4598 4599 /* Calculate the last device-address that could contain 4600 * any block from the chunk that includes the array-address 's' 4601 * and report the next address. 4602 * i.e. the address returned will be chunk-aligned and after 4603 * any data that is in the chunk containing 's'. 4604 */ 4605 static sector_t last_dev_address(sector_t s, struct geom *geo) 4606 { 4607 s = (s | geo->chunk_mask) + 1; 4608 s >>= geo->chunk_shift; 4609 s *= geo->near_copies; 4610 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4611 s *= geo->far_copies; 4612 s <<= geo->chunk_shift; 4613 return s; 4614 } 4615 4616 /* Calculate the first device-address that could contain 4617 * any block from the chunk that includes the array-address 's'. 4618 * This too will be the start of a chunk 4619 */ 4620 static sector_t first_dev_address(sector_t s, struct geom *geo) 4621 { 4622 s >>= geo->chunk_shift; 4623 s *= geo->near_copies; 4624 sector_div(s, geo->raid_disks); 4625 s *= geo->far_copies; 4626 s <<= geo->chunk_shift; 4627 return s; 4628 } 4629 4630 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4631 int *skipped) 4632 { 4633 /* We simply copy at most one chunk (smallest of old and new) 4634 * at a time, possibly less if that exceeds RESYNC_PAGES, 4635 * or we hit a bad block or something. 4636 * This might mean we pause for normal IO in the middle of 4637 * a chunk, but that is not a problem as mddev->reshape_position 4638 * can record any location. 4639 * 4640 * If we will want to write to a location that isn't 4641 * yet recorded as 'safe' (i.e. in metadata on disk) then 4642 * we need to flush all reshape requests and update the metadata. 4643 * 4644 * When reshaping forwards (e.g. to more devices), we interpret 4645 * 'safe' as the earliest block which might not have been copied 4646 * down yet. We divide this by previous stripe size and multiply 4647 * by previous stripe length to get lowest device offset that we 4648 * cannot write to yet. 4649 * We interpret 'sector_nr' as an address that we want to write to. 4650 * From this we use last_device_address() to find where we might 4651 * write to, and first_device_address on the 'safe' position. 4652 * If this 'next' write position is after the 'safe' position, 4653 * we must update the metadata to increase the 'safe' position. 4654 * 4655 * When reshaping backwards, we round in the opposite direction 4656 * and perform the reverse test: next write position must not be 4657 * less than current safe position. 4658 * 4659 * In all this the minimum difference in data offsets 4660 * (conf->offset_diff - always positive) allows a bit of slack, 4661 * so next can be after 'safe', but not by more than offset_diff 4662 * 4663 * We need to prepare all the bios here before we start any IO 4664 * to ensure the size we choose is acceptable to all devices. 4665 * The means one for each copy for write-out and an extra one for 4666 * read-in. 4667 * We store the read-in bio in ->master_bio and the others in 4668 * ->devs[x].bio and ->devs[x].repl_bio. 4669 */ 4670 struct r10conf *conf = mddev->private; 4671 struct r10bio *r10_bio; 4672 sector_t next, safe, last; 4673 int max_sectors; 4674 int nr_sectors; 4675 int s; 4676 struct md_rdev *rdev; 4677 int need_flush = 0; 4678 struct bio *blist; 4679 struct bio *bio, *read_bio; 4680 int sectors_done = 0; 4681 struct page **pages; 4682 4683 if (sector_nr == 0) { 4684 /* If restarting in the middle, skip the initial sectors */ 4685 if (mddev->reshape_backwards && 4686 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4687 sector_nr = (raid10_size(mddev, 0, 0) 4688 - conf->reshape_progress); 4689 } else if (!mddev->reshape_backwards && 4690 conf->reshape_progress > 0) 4691 sector_nr = conf->reshape_progress; 4692 if (sector_nr) { 4693 mddev->curr_resync_completed = sector_nr; 4694 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4695 *skipped = 1; 4696 return sector_nr; 4697 } 4698 } 4699 4700 /* We don't use sector_nr to track where we are up to 4701 * as that doesn't work well for ->reshape_backwards. 4702 * So just use ->reshape_progress. 4703 */ 4704 if (mddev->reshape_backwards) { 4705 /* 'next' is the earliest device address that we might 4706 * write to for this chunk in the new layout 4707 */ 4708 next = first_dev_address(conf->reshape_progress - 1, 4709 &conf->geo); 4710 4711 /* 'safe' is the last device address that we might read from 4712 * in the old layout after a restart 4713 */ 4714 safe = last_dev_address(conf->reshape_safe - 1, 4715 &conf->prev); 4716 4717 if (next + conf->offset_diff < safe) 4718 need_flush = 1; 4719 4720 last = conf->reshape_progress - 1; 4721 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4722 & conf->prev.chunk_mask); 4723 if (sector_nr + RESYNC_SECTORS < last) 4724 sector_nr = last + 1 - RESYNC_SECTORS; 4725 } else { 4726 /* 'next' is after the last device address that we 4727 * might write to for this chunk in the new layout 4728 */ 4729 next = last_dev_address(conf->reshape_progress, &conf->geo); 4730 4731 /* 'safe' is the earliest device address that we might 4732 * read from in the old layout after a restart 4733 */ 4734 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4735 4736 /* Need to update metadata if 'next' might be beyond 'safe' 4737 * as that would possibly corrupt data 4738 */ 4739 if (next > safe + conf->offset_diff) 4740 need_flush = 1; 4741 4742 sector_nr = conf->reshape_progress; 4743 last = sector_nr | (conf->geo.chunk_mask 4744 & conf->prev.chunk_mask); 4745 4746 if (sector_nr + RESYNC_SECTORS <= last) 4747 last = sector_nr + RESYNC_SECTORS - 1; 4748 } 4749 4750 if (need_flush || 4751 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4752 /* Need to update reshape_position in metadata */ 4753 wait_barrier(conf, false); 4754 mddev->reshape_position = conf->reshape_progress; 4755 if (mddev->reshape_backwards) 4756 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4757 - conf->reshape_progress; 4758 else 4759 mddev->curr_resync_completed = conf->reshape_progress; 4760 conf->reshape_checkpoint = jiffies; 4761 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4762 md_wakeup_thread(mddev->thread); 4763 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4764 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4765 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4766 allow_barrier(conf); 4767 return sectors_done; 4768 } 4769 conf->reshape_safe = mddev->reshape_position; 4770 allow_barrier(conf); 4771 } 4772 4773 raise_barrier(conf, 0); 4774 read_more: 4775 /* Now schedule reads for blocks from sector_nr to last */ 4776 r10_bio = raid10_alloc_init_r10buf(conf); 4777 r10_bio->state = 0; 4778 raise_barrier(conf, 1); 4779 atomic_set(&r10_bio->remaining, 0); 4780 r10_bio->mddev = mddev; 4781 r10_bio->sector = sector_nr; 4782 set_bit(R10BIO_IsReshape, &r10_bio->state); 4783 r10_bio->sectors = last - sector_nr + 1; 4784 rdev = read_balance(conf, r10_bio, &max_sectors); 4785 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4786 4787 if (!rdev) { 4788 /* Cannot read from here, so need to record bad blocks 4789 * on all the target devices. 4790 */ 4791 // FIXME 4792 mempool_free(r10_bio, &conf->r10buf_pool); 4793 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4794 return sectors_done; 4795 } 4796 4797 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4798 GFP_KERNEL, &mddev->bio_set); 4799 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4800 + rdev->data_offset); 4801 read_bio->bi_private = r10_bio; 4802 read_bio->bi_end_io = end_reshape_read; 4803 r10_bio->master_bio = read_bio; 4804 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4805 4806 /* 4807 * Broadcast RESYNC message to other nodes, so all nodes would not 4808 * write to the region to avoid conflict. 4809 */ 4810 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4811 struct mdp_superblock_1 *sb = NULL; 4812 int sb_reshape_pos = 0; 4813 4814 conf->cluster_sync_low = sector_nr; 4815 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4816 sb = page_address(rdev->sb_page); 4817 if (sb) { 4818 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4819 /* 4820 * Set cluster_sync_low again if next address for array 4821 * reshape is less than cluster_sync_low. Since we can't 4822 * update cluster_sync_low until it has finished reshape. 4823 */ 4824 if (sb_reshape_pos < conf->cluster_sync_low) 4825 conf->cluster_sync_low = sb_reshape_pos; 4826 } 4827 4828 mddev->cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4829 conf->cluster_sync_high); 4830 } 4831 4832 /* Now find the locations in the new layout */ 4833 __raid10_find_phys(&conf->geo, r10_bio); 4834 4835 blist = read_bio; 4836 read_bio->bi_next = NULL; 4837 4838 for (s = 0; s < conf->copies*2; s++) { 4839 struct bio *b; 4840 int d = r10_bio->devs[s/2].devnum; 4841 struct md_rdev *rdev2; 4842 if (s&1) { 4843 rdev2 = conf->mirrors[d].replacement; 4844 b = r10_bio->devs[s/2].repl_bio; 4845 } else { 4846 rdev2 = conf->mirrors[d].rdev; 4847 b = r10_bio->devs[s/2].bio; 4848 } 4849 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4850 continue; 4851 4852 bio_set_dev(b, rdev2->bdev); 4853 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4854 rdev2->new_data_offset; 4855 b->bi_end_io = end_reshape_write; 4856 b->bi_opf = REQ_OP_WRITE; 4857 b->bi_next = blist; 4858 blist = b; 4859 } 4860 4861 /* Now add as many pages as possible to all of these bios. */ 4862 4863 nr_sectors = 0; 4864 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4865 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4866 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4867 int len = (max_sectors - s) << 9; 4868 if (len > PAGE_SIZE) 4869 len = PAGE_SIZE; 4870 for (bio = blist; bio ; bio = bio->bi_next) { 4871 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 4872 bio->bi_status = BLK_STS_RESOURCE; 4873 bio_endio(bio); 4874 return sectors_done; 4875 } 4876 } 4877 sector_nr += len >> 9; 4878 nr_sectors += len >> 9; 4879 } 4880 r10_bio->sectors = nr_sectors; 4881 4882 /* Now submit the read */ 4883 atomic_inc(&r10_bio->remaining); 4884 read_bio->bi_next = NULL; 4885 submit_bio_noacct(read_bio); 4886 sectors_done += nr_sectors; 4887 if (sector_nr <= last) 4888 goto read_more; 4889 4890 lower_barrier(conf); 4891 4892 /* Now that we have done the whole section we can 4893 * update reshape_progress 4894 */ 4895 if (mddev->reshape_backwards) 4896 conf->reshape_progress -= sectors_done; 4897 else 4898 conf->reshape_progress += sectors_done; 4899 4900 return sectors_done; 4901 } 4902 4903 static void end_reshape_request(struct r10bio *r10_bio); 4904 static int handle_reshape_read_error(struct mddev *mddev, 4905 struct r10bio *r10_bio); 4906 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4907 { 4908 /* Reshape read completed. Hopefully we have a block 4909 * to write out. 4910 * If we got a read error then we do sync 1-page reads from 4911 * elsewhere until we find the data - or give up. 4912 */ 4913 struct r10conf *conf = mddev->private; 4914 int s; 4915 4916 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4917 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4918 /* Reshape has been aborted */ 4919 md_done_sync(mddev, r10_bio->sectors, 0); 4920 return; 4921 } 4922 4923 /* We definitely have the data in the pages, schedule the 4924 * writes. 4925 */ 4926 atomic_set(&r10_bio->remaining, 1); 4927 for (s = 0; s < conf->copies*2; s++) { 4928 struct bio *b; 4929 int d = r10_bio->devs[s/2].devnum; 4930 struct md_rdev *rdev; 4931 if (s&1) { 4932 rdev = conf->mirrors[d].replacement; 4933 b = r10_bio->devs[s/2].repl_bio; 4934 } else { 4935 rdev = conf->mirrors[d].rdev; 4936 b = r10_bio->devs[s/2].bio; 4937 } 4938 if (!rdev || test_bit(Faulty, &rdev->flags)) 4939 continue; 4940 4941 atomic_inc(&rdev->nr_pending); 4942 atomic_inc(&r10_bio->remaining); 4943 b->bi_next = NULL; 4944 submit_bio_noacct(b); 4945 } 4946 end_reshape_request(r10_bio); 4947 } 4948 4949 static void end_reshape(struct r10conf *conf) 4950 { 4951 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4952 return; 4953 4954 spin_lock_irq(&conf->device_lock); 4955 conf->prev = conf->geo; 4956 md_finish_reshape(conf->mddev); 4957 smp_wmb(); 4958 conf->reshape_progress = MaxSector; 4959 conf->reshape_safe = MaxSector; 4960 spin_unlock_irq(&conf->device_lock); 4961 4962 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf)); 4963 conf->fullsync = 0; 4964 } 4965 4966 static void raid10_update_reshape_pos(struct mddev *mddev) 4967 { 4968 struct r10conf *conf = mddev->private; 4969 sector_t lo, hi; 4970 4971 mddev->cluster_ops->resync_info_get(mddev, &lo, &hi); 4972 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4973 || mddev->reshape_position == MaxSector) 4974 conf->reshape_progress = mddev->reshape_position; 4975 else 4976 WARN_ON_ONCE(1); 4977 } 4978 4979 static int handle_reshape_read_error(struct mddev *mddev, 4980 struct r10bio *r10_bio) 4981 { 4982 /* Use sync reads to get the blocks from somewhere else */ 4983 int sectors = r10_bio->sectors; 4984 struct r10conf *conf = mddev->private; 4985 struct r10bio *r10b; 4986 int slot = 0; 4987 int idx = 0; 4988 struct page **pages; 4989 4990 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4991 if (!r10b) { 4992 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4993 return -ENOMEM; 4994 } 4995 4996 /* reshape IOs share pages from .devs[0].bio */ 4997 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4998 4999 r10b->sector = r10_bio->sector; 5000 __raid10_find_phys(&conf->prev, r10b); 5001 5002 while (sectors) { 5003 int s = sectors; 5004 int success = 0; 5005 int first_slot = slot; 5006 5007 if (s > (PAGE_SIZE >> 9)) 5008 s = PAGE_SIZE >> 9; 5009 5010 while (!success) { 5011 int d = r10b->devs[slot].devnum; 5012 struct md_rdev *rdev = conf->mirrors[d].rdev; 5013 sector_t addr; 5014 if (rdev == NULL || 5015 test_bit(Faulty, &rdev->flags) || 5016 !test_bit(In_sync, &rdev->flags)) 5017 goto failed; 5018 5019 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5020 atomic_inc(&rdev->nr_pending); 5021 success = sync_page_io(rdev, 5022 addr, 5023 s << 9, 5024 pages[idx], 5025 REQ_OP_READ, false); 5026 rdev_dec_pending(rdev, mddev); 5027 if (success) 5028 break; 5029 failed: 5030 slot++; 5031 if (slot >= conf->copies) 5032 slot = 0; 5033 if (slot == first_slot) 5034 break; 5035 } 5036 if (!success) { 5037 /* couldn't read this block, must give up */ 5038 set_bit(MD_RECOVERY_INTR, 5039 &mddev->recovery); 5040 kfree(r10b); 5041 return -EIO; 5042 } 5043 sectors -= s; 5044 idx++; 5045 } 5046 kfree(r10b); 5047 return 0; 5048 } 5049 5050 static void end_reshape_write(struct bio *bio) 5051 { 5052 struct r10bio *r10_bio = get_resync_r10bio(bio); 5053 struct mddev *mddev = r10_bio->mddev; 5054 struct r10conf *conf = mddev->private; 5055 int d; 5056 int slot; 5057 int repl; 5058 struct md_rdev *rdev = NULL; 5059 5060 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5061 rdev = repl ? conf->mirrors[d].replacement : 5062 conf->mirrors[d].rdev; 5063 5064 if (bio->bi_status) { 5065 /* FIXME should record badblock */ 5066 md_error(mddev, rdev); 5067 } 5068 5069 rdev_dec_pending(rdev, mddev); 5070 end_reshape_request(r10_bio); 5071 } 5072 5073 static void end_reshape_request(struct r10bio *r10_bio) 5074 { 5075 if (!atomic_dec_and_test(&r10_bio->remaining)) 5076 return; 5077 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5078 bio_put(r10_bio->master_bio); 5079 put_buf(r10_bio); 5080 } 5081 5082 static void raid10_finish_reshape(struct mddev *mddev) 5083 { 5084 struct r10conf *conf = mddev->private; 5085 5086 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5087 return; 5088 5089 if (mddev->delta_disks > 0) { 5090 if (mddev->resync_offset > mddev->resync_max_sectors) { 5091 mddev->resync_offset = mddev->resync_max_sectors; 5092 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5093 } 5094 mddev->resync_max_sectors = mddev->array_sectors; 5095 } else { 5096 int d; 5097 for (d = conf->geo.raid_disks ; 5098 d < conf->geo.raid_disks - mddev->delta_disks; 5099 d++) { 5100 struct md_rdev *rdev = conf->mirrors[d].rdev; 5101 if (rdev) 5102 clear_bit(In_sync, &rdev->flags); 5103 rdev = conf->mirrors[d].replacement; 5104 if (rdev) 5105 clear_bit(In_sync, &rdev->flags); 5106 } 5107 } 5108 mddev->layout = mddev->new_layout; 5109 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5110 mddev->reshape_position = MaxSector; 5111 mddev->delta_disks = 0; 5112 mddev->reshape_backwards = 0; 5113 } 5114 5115 static struct md_personality raid10_personality = 5116 { 5117 .head = { 5118 .type = MD_PERSONALITY, 5119 .id = ID_RAID10, 5120 .name = "raid10", 5121 .owner = THIS_MODULE, 5122 }, 5123 5124 .make_request = raid10_make_request, 5125 .run = raid10_run, 5126 .free = raid10_free, 5127 .status = raid10_status, 5128 .error_handler = raid10_error, 5129 .hot_add_disk = raid10_add_disk, 5130 .hot_remove_disk= raid10_remove_disk, 5131 .spare_active = raid10_spare_active, 5132 .sync_request = raid10_sync_request, 5133 .quiesce = raid10_quiesce, 5134 .size = raid10_size, 5135 .resize = raid10_resize, 5136 .takeover = raid10_takeover, 5137 .check_reshape = raid10_check_reshape, 5138 .start_reshape = raid10_start_reshape, 5139 .finish_reshape = raid10_finish_reshape, 5140 .update_reshape_pos = raid10_update_reshape_pos, 5141 }; 5142 5143 static int __init raid10_init(void) 5144 { 5145 return register_md_submodule(&raid10_personality.head); 5146 } 5147 5148 static void __exit raid10_exit(void) 5149 { 5150 unregister_md_submodule(&raid10_personality.head); 5151 } 5152 5153 module_init(raid10_init); 5154 module_exit(raid10_exit); 5155 MODULE_LICENSE("GPL"); 5156 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5157 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5158 MODULE_ALIAS("md-raid10"); 5159 MODULE_ALIAS("md-level-10"); 5160