1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) { 103 unplug_slaves(conf->mddev); 104 return NULL; 105 } 106 107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 108 nalloc = conf->copies; /* resync */ 109 else 110 nalloc = 2; /* recovery */ 111 112 /* 113 * Allocate bios. 114 */ 115 for (j = nalloc ; j-- ; ) { 116 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 117 if (!bio) 118 goto out_free_bio; 119 r10_bio->devs[j].bio = bio; 120 } 121 /* 122 * Allocate RESYNC_PAGES data pages and attach them 123 * where needed. 124 */ 125 for (j = 0 ; j < nalloc; j++) { 126 bio = r10_bio->devs[j].bio; 127 for (i = 0; i < RESYNC_PAGES; i++) { 128 page = alloc_page(gfp_flags); 129 if (unlikely(!page)) 130 goto out_free_pages; 131 132 bio->bi_io_vec[i].bv_page = page; 133 } 134 } 135 136 return r10_bio; 137 138 out_free_pages: 139 for ( ; i > 0 ; i--) 140 safe_put_page(bio->bi_io_vec[i-1].bv_page); 141 while (j--) 142 for (i = 0; i < RESYNC_PAGES ; i++) 143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < nalloc ) 147 bio_put(r10_bio->devs[j].bio); 148 r10bio_pool_free(r10_bio, conf); 149 return NULL; 150 } 151 152 static void r10buf_pool_free(void *__r10_bio, void *data) 153 { 154 int i; 155 conf_t *conf = data; 156 r10bio_t *r10bio = __r10_bio; 157 int j; 158 159 for (j=0; j < conf->copies; j++) { 160 struct bio *bio = r10bio->devs[j].bio; 161 if (bio) { 162 for (i = 0; i < RESYNC_PAGES; i++) { 163 safe_put_page(bio->bi_io_vec[i].bv_page); 164 bio->bi_io_vec[i].bv_page = NULL; 165 } 166 bio_put(bio); 167 } 168 } 169 r10bio_pool_free(r10bio, conf); 170 } 171 172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->copies; i++) { 177 struct bio **bio = & r10_bio->devs[i].bio; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r10bio(r10bio_t *r10_bio) 185 { 186 conf_t *conf = mddev_to_conf(r10_bio->mddev); 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r10_bio); 195 mempool_free(r10_bio, conf->r10bio_pool); 196 } 197 198 static void put_buf(r10bio_t *r10_bio) 199 { 200 conf_t *conf = mddev_to_conf(r10_bio->mddev); 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 lower_barrier(conf); 205 } 206 207 static void reschedule_retry(r10bio_t *r10_bio) 208 { 209 unsigned long flags; 210 mddev_t *mddev = r10_bio->mddev; 211 conf_t *conf = mddev_to_conf(mddev); 212 213 spin_lock_irqsave(&conf->device_lock, flags); 214 list_add(&r10_bio->retry_list, &conf->retry_list); 215 conf->nr_queued ++; 216 spin_unlock_irqrestore(&conf->device_lock, flags); 217 218 md_wakeup_thread(mddev->thread); 219 } 220 221 /* 222 * raid_end_bio_io() is called when we have finished servicing a mirrored 223 * operation and are ready to return a success/failure code to the buffer 224 * cache layer. 225 */ 226 static void raid_end_bio_io(r10bio_t *r10_bio) 227 { 228 struct bio *bio = r10_bio->master_bio; 229 230 bio_endio(bio, bio->bi_size, 231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 232 free_r10bio(r10_bio); 233 } 234 235 /* 236 * Update disk head position estimator based on IRQ completion info. 237 */ 238 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 239 { 240 conf_t *conf = mddev_to_conf(r10_bio->mddev); 241 242 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 243 r10_bio->devs[slot].addr + (r10_bio->sectors); 244 } 245 246 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 247 { 248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 250 int slot, dev; 251 conf_t *conf = mddev_to_conf(r10_bio->mddev); 252 253 if (bio->bi_size) 254 return 1; 255 256 slot = r10_bio->read_slot; 257 dev = r10_bio->devs[slot].devnum; 258 /* 259 * this branch is our 'one mirror IO has finished' event handler: 260 */ 261 update_head_pos(slot, r10_bio); 262 263 if (uptodate) { 264 /* 265 * Set R10BIO_Uptodate in our master bio, so that 266 * we will return a good error code to the higher 267 * levels even if IO on some other mirrored buffer fails. 268 * 269 * The 'master' represents the composite IO operation to 270 * user-side. So if something waits for IO, then it will 271 * wait for the 'master' bio. 272 */ 273 set_bit(R10BIO_Uptodate, &r10_bio->state); 274 raid_end_bio_io(r10_bio); 275 } else { 276 /* 277 * oops, read error: 278 */ 279 char b[BDEVNAME_SIZE]; 280 if (printk_ratelimit()) 281 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 282 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 283 reschedule_retry(r10_bio); 284 } 285 286 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 287 return 0; 288 } 289 290 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 291 { 292 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 293 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 294 int slot, dev; 295 conf_t *conf = mddev_to_conf(r10_bio->mddev); 296 297 if (bio->bi_size) 298 return 1; 299 300 for (slot = 0; slot < conf->copies; slot++) 301 if (r10_bio->devs[slot].bio == bio) 302 break; 303 dev = r10_bio->devs[slot].devnum; 304 305 /* 306 * this branch is our 'one mirror IO has finished' event handler: 307 */ 308 if (!uptodate) { 309 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 310 /* an I/O failed, we can't clear the bitmap */ 311 set_bit(R10BIO_Degraded, &r10_bio->state); 312 } else 313 /* 314 * Set R10BIO_Uptodate in our master bio, so that 315 * we will return a good error code for to the higher 316 * levels even if IO on some other mirrored buffer fails. 317 * 318 * The 'master' represents the composite IO operation to 319 * user-side. So if something waits for IO, then it will 320 * wait for the 'master' bio. 321 */ 322 set_bit(R10BIO_Uptodate, &r10_bio->state); 323 324 update_head_pos(slot, r10_bio); 325 326 /* 327 * 328 * Let's see if all mirrored write operations have finished 329 * already. 330 */ 331 if (atomic_dec_and_test(&r10_bio->remaining)) { 332 /* clear the bitmap if all writes complete successfully */ 333 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 334 r10_bio->sectors, 335 !test_bit(R10BIO_Degraded, &r10_bio->state), 336 0); 337 md_write_end(r10_bio->mddev); 338 raid_end_bio_io(r10_bio); 339 } 340 341 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 342 return 0; 343 } 344 345 346 /* 347 * RAID10 layout manager 348 * Aswell as the chunksize and raid_disks count, there are two 349 * parameters: near_copies and far_copies. 350 * near_copies * far_copies must be <= raid_disks. 351 * Normally one of these will be 1. 352 * If both are 1, we get raid0. 353 * If near_copies == raid_disks, we get raid1. 354 * 355 * Chunks are layed out in raid0 style with near_copies copies of the 356 * first chunk, followed by near_copies copies of the next chunk and 357 * so on. 358 * If far_copies > 1, then after 1/far_copies of the array has been assigned 359 * as described above, we start again with a device offset of near_copies. 360 * So we effectively have another copy of the whole array further down all 361 * the drives, but with blocks on different drives. 362 * With this layout, and block is never stored twice on the one device. 363 * 364 * raid10_find_phys finds the sector offset of a given virtual sector 365 * on each device that it is on. 366 * 367 * raid10_find_virt does the reverse mapping, from a device and a 368 * sector offset to a virtual address 369 */ 370 371 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 372 { 373 int n,f; 374 sector_t sector; 375 sector_t chunk; 376 sector_t stripe; 377 int dev; 378 379 int slot = 0; 380 381 /* now calculate first sector/dev */ 382 chunk = r10bio->sector >> conf->chunk_shift; 383 sector = r10bio->sector & conf->chunk_mask; 384 385 chunk *= conf->near_copies; 386 stripe = chunk; 387 dev = sector_div(stripe, conf->raid_disks); 388 if (conf->far_offset) 389 stripe *= conf->far_copies; 390 391 sector += stripe << conf->chunk_shift; 392 393 /* and calculate all the others */ 394 for (n=0; n < conf->near_copies; n++) { 395 int d = dev; 396 sector_t s = sector; 397 r10bio->devs[slot].addr = sector; 398 r10bio->devs[slot].devnum = d; 399 slot++; 400 401 for (f = 1; f < conf->far_copies; f++) { 402 d += conf->near_copies; 403 if (d >= conf->raid_disks) 404 d -= conf->raid_disks; 405 s += conf->stride; 406 r10bio->devs[slot].devnum = d; 407 r10bio->devs[slot].addr = s; 408 slot++; 409 } 410 dev++; 411 if (dev >= conf->raid_disks) { 412 dev = 0; 413 sector += (conf->chunk_mask + 1); 414 } 415 } 416 BUG_ON(slot != conf->copies); 417 } 418 419 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 420 { 421 sector_t offset, chunk, vchunk; 422 423 offset = sector & conf->chunk_mask; 424 if (conf->far_offset) { 425 int fc; 426 chunk = sector >> conf->chunk_shift; 427 fc = sector_div(chunk, conf->far_copies); 428 dev -= fc * conf->near_copies; 429 if (dev < 0) 430 dev += conf->raid_disks; 431 } else { 432 while (sector > conf->stride) { 433 sector -= conf->stride; 434 if (dev < conf->near_copies) 435 dev += conf->raid_disks - conf->near_copies; 436 else 437 dev -= conf->near_copies; 438 } 439 chunk = sector >> conf->chunk_shift; 440 } 441 vchunk = chunk * conf->raid_disks + dev; 442 sector_div(vchunk, conf->near_copies); 443 return (vchunk << conf->chunk_shift) + offset; 444 } 445 446 /** 447 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 448 * @q: request queue 449 * @bio: the buffer head that's been built up so far 450 * @biovec: the request that could be merged to it. 451 * 452 * Return amount of bytes we can accept at this offset 453 * If near_copies == raid_disk, there are no striping issues, 454 * but in that case, the function isn't called at all. 455 */ 456 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio, 457 struct bio_vec *bio_vec) 458 { 459 mddev_t *mddev = q->queuedata; 460 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 461 int max; 462 unsigned int chunk_sectors = mddev->chunk_size >> 9; 463 unsigned int bio_sectors = bio->bi_size >> 9; 464 465 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 466 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 467 if (max <= bio_vec->bv_len && bio_sectors == 0) 468 return bio_vec->bv_len; 469 else 470 return max; 471 } 472 473 /* 474 * This routine returns the disk from which the requested read should 475 * be done. There is a per-array 'next expected sequential IO' sector 476 * number - if this matches on the next IO then we use the last disk. 477 * There is also a per-disk 'last know head position' sector that is 478 * maintained from IRQ contexts, both the normal and the resync IO 479 * completion handlers update this position correctly. If there is no 480 * perfect sequential match then we pick the disk whose head is closest. 481 * 482 * If there are 2 mirrors in the same 2 devices, performance degrades 483 * because position is mirror, not device based. 484 * 485 * The rdev for the device selected will have nr_pending incremented. 486 */ 487 488 /* 489 * FIXME: possibly should rethink readbalancing and do it differently 490 * depending on near_copies / far_copies geometry. 491 */ 492 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 493 { 494 const unsigned long this_sector = r10_bio->sector; 495 int disk, slot, nslot; 496 const int sectors = r10_bio->sectors; 497 sector_t new_distance, current_distance; 498 mdk_rdev_t *rdev; 499 500 raid10_find_phys(conf, r10_bio); 501 rcu_read_lock(); 502 /* 503 * Check if we can balance. We can balance on the whole 504 * device if no resync is going on (recovery is ok), or below 505 * the resync window. We take the first readable disk when 506 * above the resync window. 507 */ 508 if (conf->mddev->recovery_cp < MaxSector 509 && (this_sector + sectors >= conf->next_resync)) { 510 /* make sure that disk is operational */ 511 slot = 0; 512 disk = r10_bio->devs[slot].devnum; 513 514 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 515 r10_bio->devs[slot].bio == IO_BLOCKED || 516 !test_bit(In_sync, &rdev->flags)) { 517 slot++; 518 if (slot == conf->copies) { 519 slot = 0; 520 disk = -1; 521 break; 522 } 523 disk = r10_bio->devs[slot].devnum; 524 } 525 goto rb_out; 526 } 527 528 529 /* make sure the disk is operational */ 530 slot = 0; 531 disk = r10_bio->devs[slot].devnum; 532 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 533 r10_bio->devs[slot].bio == IO_BLOCKED || 534 !test_bit(In_sync, &rdev->flags)) { 535 slot ++; 536 if (slot == conf->copies) { 537 disk = -1; 538 goto rb_out; 539 } 540 disk = r10_bio->devs[slot].devnum; 541 } 542 543 544 current_distance = abs(r10_bio->devs[slot].addr - 545 conf->mirrors[disk].head_position); 546 547 /* Find the disk whose head is closest */ 548 549 for (nslot = slot; nslot < conf->copies; nslot++) { 550 int ndisk = r10_bio->devs[nslot].devnum; 551 552 553 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 554 r10_bio->devs[nslot].bio == IO_BLOCKED || 555 !test_bit(In_sync, &rdev->flags)) 556 continue; 557 558 /* This optimisation is debatable, and completely destroys 559 * sequential read speed for 'far copies' arrays. So only 560 * keep it for 'near' arrays, and review those later. 561 */ 562 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 563 disk = ndisk; 564 slot = nslot; 565 break; 566 } 567 new_distance = abs(r10_bio->devs[nslot].addr - 568 conf->mirrors[ndisk].head_position); 569 if (new_distance < current_distance) { 570 current_distance = new_distance; 571 disk = ndisk; 572 slot = nslot; 573 } 574 } 575 576 rb_out: 577 r10_bio->read_slot = slot; 578 /* conf->next_seq_sect = this_sector + sectors;*/ 579 580 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 581 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 582 else 583 disk = -1; 584 rcu_read_unlock(); 585 586 return disk; 587 } 588 589 static void unplug_slaves(mddev_t *mddev) 590 { 591 conf_t *conf = mddev_to_conf(mddev); 592 int i; 593 594 rcu_read_lock(); 595 for (i=0; i<mddev->raid_disks; i++) { 596 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 597 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 598 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 599 600 atomic_inc(&rdev->nr_pending); 601 rcu_read_unlock(); 602 603 if (r_queue->unplug_fn) 604 r_queue->unplug_fn(r_queue); 605 606 rdev_dec_pending(rdev, mddev); 607 rcu_read_lock(); 608 } 609 } 610 rcu_read_unlock(); 611 } 612 613 static void raid10_unplug(request_queue_t *q) 614 { 615 mddev_t *mddev = q->queuedata; 616 617 unplug_slaves(q->queuedata); 618 md_wakeup_thread(mddev->thread); 619 } 620 621 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk, 622 sector_t *error_sector) 623 { 624 mddev_t *mddev = q->queuedata; 625 conf_t *conf = mddev_to_conf(mddev); 626 int i, ret = 0; 627 628 rcu_read_lock(); 629 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 630 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 631 if (rdev && !test_bit(Faulty, &rdev->flags)) { 632 struct block_device *bdev = rdev->bdev; 633 request_queue_t *r_queue = bdev_get_queue(bdev); 634 635 if (!r_queue->issue_flush_fn) 636 ret = -EOPNOTSUPP; 637 else { 638 atomic_inc(&rdev->nr_pending); 639 rcu_read_unlock(); 640 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 641 error_sector); 642 rdev_dec_pending(rdev, mddev); 643 rcu_read_lock(); 644 } 645 } 646 } 647 rcu_read_unlock(); 648 return ret; 649 } 650 651 /* Barriers.... 652 * Sometimes we need to suspend IO while we do something else, 653 * either some resync/recovery, or reconfigure the array. 654 * To do this we raise a 'barrier'. 655 * The 'barrier' is a counter that can be raised multiple times 656 * to count how many activities are happening which preclude 657 * normal IO. 658 * We can only raise the barrier if there is no pending IO. 659 * i.e. if nr_pending == 0. 660 * We choose only to raise the barrier if no-one is waiting for the 661 * barrier to go down. This means that as soon as an IO request 662 * is ready, no other operations which require a barrier will start 663 * until the IO request has had a chance. 664 * 665 * So: regular IO calls 'wait_barrier'. When that returns there 666 * is no backgroup IO happening, It must arrange to call 667 * allow_barrier when it has finished its IO. 668 * backgroup IO calls must call raise_barrier. Once that returns 669 * there is no normal IO happeing. It must arrange to call 670 * lower_barrier when the particular background IO completes. 671 */ 672 #define RESYNC_DEPTH 32 673 674 static void raise_barrier(conf_t *conf, int force) 675 { 676 BUG_ON(force && !conf->barrier); 677 spin_lock_irq(&conf->resync_lock); 678 679 /* Wait until no block IO is waiting (unless 'force') */ 680 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 681 conf->resync_lock, 682 raid10_unplug(conf->mddev->queue)); 683 684 /* block any new IO from starting */ 685 conf->barrier++; 686 687 /* No wait for all pending IO to complete */ 688 wait_event_lock_irq(conf->wait_barrier, 689 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 690 conf->resync_lock, 691 raid10_unplug(conf->mddev->queue)); 692 693 spin_unlock_irq(&conf->resync_lock); 694 } 695 696 static void lower_barrier(conf_t *conf) 697 { 698 unsigned long flags; 699 spin_lock_irqsave(&conf->resync_lock, flags); 700 conf->barrier--; 701 spin_unlock_irqrestore(&conf->resync_lock, flags); 702 wake_up(&conf->wait_barrier); 703 } 704 705 static void wait_barrier(conf_t *conf) 706 { 707 spin_lock_irq(&conf->resync_lock); 708 if (conf->barrier) { 709 conf->nr_waiting++; 710 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 711 conf->resync_lock, 712 raid10_unplug(conf->mddev->queue)); 713 conf->nr_waiting--; 714 } 715 conf->nr_pending++; 716 spin_unlock_irq(&conf->resync_lock); 717 } 718 719 static void allow_barrier(conf_t *conf) 720 { 721 unsigned long flags; 722 spin_lock_irqsave(&conf->resync_lock, flags); 723 conf->nr_pending--; 724 spin_unlock_irqrestore(&conf->resync_lock, flags); 725 wake_up(&conf->wait_barrier); 726 } 727 728 static void freeze_array(conf_t *conf) 729 { 730 /* stop syncio and normal IO and wait for everything to 731 * go quiet. 732 * We increment barrier and nr_waiting, and then 733 * wait until barrier+nr_pending match nr_queued+2 734 */ 735 spin_lock_irq(&conf->resync_lock); 736 conf->barrier++; 737 conf->nr_waiting++; 738 wait_event_lock_irq(conf->wait_barrier, 739 conf->barrier+conf->nr_pending == conf->nr_queued+2, 740 conf->resync_lock, 741 raid10_unplug(conf->mddev->queue)); 742 spin_unlock_irq(&conf->resync_lock); 743 } 744 745 static void unfreeze_array(conf_t *conf) 746 { 747 /* reverse the effect of the freeze */ 748 spin_lock_irq(&conf->resync_lock); 749 conf->barrier--; 750 conf->nr_waiting--; 751 wake_up(&conf->wait_barrier); 752 spin_unlock_irq(&conf->resync_lock); 753 } 754 755 static int make_request(request_queue_t *q, struct bio * bio) 756 { 757 mddev_t *mddev = q->queuedata; 758 conf_t *conf = mddev_to_conf(mddev); 759 mirror_info_t *mirror; 760 r10bio_t *r10_bio; 761 struct bio *read_bio; 762 int i; 763 int chunk_sects = conf->chunk_mask + 1; 764 const int rw = bio_data_dir(bio); 765 struct bio_list bl; 766 unsigned long flags; 767 768 if (unlikely(bio_barrier(bio))) { 769 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 770 return 0; 771 } 772 773 /* If this request crosses a chunk boundary, we need to 774 * split it. This will only happen for 1 PAGE (or less) requests. 775 */ 776 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 777 > chunk_sects && 778 conf->near_copies < conf->raid_disks)) { 779 struct bio_pair *bp; 780 /* Sanity check -- queue functions should prevent this happening */ 781 if (bio->bi_vcnt != 1 || 782 bio->bi_idx != 0) 783 goto bad_map; 784 /* This is a one page bio that upper layers 785 * refuse to split for us, so we need to split it. 786 */ 787 bp = bio_split(bio, bio_split_pool, 788 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 789 if (make_request(q, &bp->bio1)) 790 generic_make_request(&bp->bio1); 791 if (make_request(q, &bp->bio2)) 792 generic_make_request(&bp->bio2); 793 794 bio_pair_release(bp); 795 return 0; 796 bad_map: 797 printk("raid10_make_request bug: can't convert block across chunks" 798 " or bigger than %dk %llu %d\n", chunk_sects/2, 799 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 800 801 bio_io_error(bio, bio->bi_size); 802 return 0; 803 } 804 805 md_write_start(mddev, bio); 806 807 /* 808 * Register the new request and wait if the reconstruction 809 * thread has put up a bar for new requests. 810 * Continue immediately if no resync is active currently. 811 */ 812 wait_barrier(conf); 813 814 disk_stat_inc(mddev->gendisk, ios[rw]); 815 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 816 817 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 818 819 r10_bio->master_bio = bio; 820 r10_bio->sectors = bio->bi_size >> 9; 821 822 r10_bio->mddev = mddev; 823 r10_bio->sector = bio->bi_sector; 824 r10_bio->state = 0; 825 826 if (rw == READ) { 827 /* 828 * read balancing logic: 829 */ 830 int disk = read_balance(conf, r10_bio); 831 int slot = r10_bio->read_slot; 832 if (disk < 0) { 833 raid_end_bio_io(r10_bio); 834 return 0; 835 } 836 mirror = conf->mirrors + disk; 837 838 read_bio = bio_clone(bio, GFP_NOIO); 839 840 r10_bio->devs[slot].bio = read_bio; 841 842 read_bio->bi_sector = r10_bio->devs[slot].addr + 843 mirror->rdev->data_offset; 844 read_bio->bi_bdev = mirror->rdev->bdev; 845 read_bio->bi_end_io = raid10_end_read_request; 846 read_bio->bi_rw = READ; 847 read_bio->bi_private = r10_bio; 848 849 generic_make_request(read_bio); 850 return 0; 851 } 852 853 /* 854 * WRITE: 855 */ 856 /* first select target devices under spinlock and 857 * inc refcount on their rdev. Record them by setting 858 * bios[x] to bio 859 */ 860 raid10_find_phys(conf, r10_bio); 861 rcu_read_lock(); 862 for (i = 0; i < conf->copies; i++) { 863 int d = r10_bio->devs[i].devnum; 864 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 865 if (rdev && 866 !test_bit(Faulty, &rdev->flags)) { 867 atomic_inc(&rdev->nr_pending); 868 r10_bio->devs[i].bio = bio; 869 } else { 870 r10_bio->devs[i].bio = NULL; 871 set_bit(R10BIO_Degraded, &r10_bio->state); 872 } 873 } 874 rcu_read_unlock(); 875 876 atomic_set(&r10_bio->remaining, 0); 877 878 bio_list_init(&bl); 879 for (i = 0; i < conf->copies; i++) { 880 struct bio *mbio; 881 int d = r10_bio->devs[i].devnum; 882 if (!r10_bio->devs[i].bio) 883 continue; 884 885 mbio = bio_clone(bio, GFP_NOIO); 886 r10_bio->devs[i].bio = mbio; 887 888 mbio->bi_sector = r10_bio->devs[i].addr+ 889 conf->mirrors[d].rdev->data_offset; 890 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 891 mbio->bi_end_io = raid10_end_write_request; 892 mbio->bi_rw = WRITE; 893 mbio->bi_private = r10_bio; 894 895 atomic_inc(&r10_bio->remaining); 896 bio_list_add(&bl, mbio); 897 } 898 899 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 900 spin_lock_irqsave(&conf->device_lock, flags); 901 bio_list_merge(&conf->pending_bio_list, &bl); 902 blk_plug_device(mddev->queue); 903 spin_unlock_irqrestore(&conf->device_lock, flags); 904 905 return 0; 906 } 907 908 static void status(struct seq_file *seq, mddev_t *mddev) 909 { 910 conf_t *conf = mddev_to_conf(mddev); 911 int i; 912 913 if (conf->near_copies < conf->raid_disks) 914 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 915 if (conf->near_copies > 1) 916 seq_printf(seq, " %d near-copies", conf->near_copies); 917 if (conf->far_copies > 1) { 918 if (conf->far_offset) 919 seq_printf(seq, " %d offset-copies", conf->far_copies); 920 else 921 seq_printf(seq, " %d far-copies", conf->far_copies); 922 } 923 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 924 conf->working_disks); 925 for (i = 0; i < conf->raid_disks; i++) 926 seq_printf(seq, "%s", 927 conf->mirrors[i].rdev && 928 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 929 seq_printf(seq, "]"); 930 } 931 932 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 933 { 934 char b[BDEVNAME_SIZE]; 935 conf_t *conf = mddev_to_conf(mddev); 936 937 /* 938 * If it is not operational, then we have already marked it as dead 939 * else if it is the last working disks, ignore the error, let the 940 * next level up know. 941 * else mark the drive as failed 942 */ 943 if (test_bit(In_sync, &rdev->flags) 944 && conf->working_disks == 1) 945 /* 946 * Don't fail the drive, just return an IO error. 947 * The test should really be more sophisticated than 948 * "working_disks == 1", but it isn't critical, and 949 * can wait until we do more sophisticated "is the drive 950 * really dead" tests... 951 */ 952 return; 953 if (test_bit(In_sync, &rdev->flags)) { 954 mddev->degraded++; 955 conf->working_disks--; 956 /* 957 * if recovery is running, make sure it aborts. 958 */ 959 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 960 } 961 clear_bit(In_sync, &rdev->flags); 962 set_bit(Faulty, &rdev->flags); 963 mddev->sb_dirty = 1; 964 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 965 " Operation continuing on %d devices\n", 966 bdevname(rdev->bdev,b), conf->working_disks); 967 } 968 969 static void print_conf(conf_t *conf) 970 { 971 int i; 972 mirror_info_t *tmp; 973 974 printk("RAID10 conf printout:\n"); 975 if (!conf) { 976 printk("(!conf)\n"); 977 return; 978 } 979 printk(" --- wd:%d rd:%d\n", conf->working_disks, 980 conf->raid_disks); 981 982 for (i = 0; i < conf->raid_disks; i++) { 983 char b[BDEVNAME_SIZE]; 984 tmp = conf->mirrors + i; 985 if (tmp->rdev) 986 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 987 i, !test_bit(In_sync, &tmp->rdev->flags), 988 !test_bit(Faulty, &tmp->rdev->flags), 989 bdevname(tmp->rdev->bdev,b)); 990 } 991 } 992 993 static void close_sync(conf_t *conf) 994 { 995 wait_barrier(conf); 996 allow_barrier(conf); 997 998 mempool_destroy(conf->r10buf_pool); 999 conf->r10buf_pool = NULL; 1000 } 1001 1002 /* check if there are enough drives for 1003 * every block to appear on atleast one 1004 */ 1005 static int enough(conf_t *conf) 1006 { 1007 int first = 0; 1008 1009 do { 1010 int n = conf->copies; 1011 int cnt = 0; 1012 while (n--) { 1013 if (conf->mirrors[first].rdev) 1014 cnt++; 1015 first = (first+1) % conf->raid_disks; 1016 } 1017 if (cnt == 0) 1018 return 0; 1019 } while (first != 0); 1020 return 1; 1021 } 1022 1023 static int raid10_spare_active(mddev_t *mddev) 1024 { 1025 int i; 1026 conf_t *conf = mddev->private; 1027 mirror_info_t *tmp; 1028 1029 /* 1030 * Find all non-in_sync disks within the RAID10 configuration 1031 * and mark them in_sync 1032 */ 1033 for (i = 0; i < conf->raid_disks; i++) { 1034 tmp = conf->mirrors + i; 1035 if (tmp->rdev 1036 && !test_bit(Faulty, &tmp->rdev->flags) 1037 && !test_bit(In_sync, &tmp->rdev->flags)) { 1038 conf->working_disks++; 1039 mddev->degraded--; 1040 set_bit(In_sync, &tmp->rdev->flags); 1041 } 1042 } 1043 1044 print_conf(conf); 1045 return 0; 1046 } 1047 1048 1049 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1050 { 1051 conf_t *conf = mddev->private; 1052 int found = 0; 1053 int mirror; 1054 mirror_info_t *p; 1055 1056 if (mddev->recovery_cp < MaxSector) 1057 /* only hot-add to in-sync arrays, as recovery is 1058 * very different from resync 1059 */ 1060 return 0; 1061 if (!enough(conf)) 1062 return 0; 1063 1064 if (rdev->saved_raid_disk >= 0 && 1065 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1066 mirror = rdev->saved_raid_disk; 1067 else 1068 mirror = 0; 1069 for ( ; mirror < mddev->raid_disks; mirror++) 1070 if ( !(p=conf->mirrors+mirror)->rdev) { 1071 1072 blk_queue_stack_limits(mddev->queue, 1073 rdev->bdev->bd_disk->queue); 1074 /* as we don't honour merge_bvec_fn, we must never risk 1075 * violating it, so limit ->max_sector to one PAGE, as 1076 * a one page request is never in violation. 1077 */ 1078 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1079 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1080 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1081 1082 p->head_position = 0; 1083 rdev->raid_disk = mirror; 1084 found = 1; 1085 if (rdev->saved_raid_disk != mirror) 1086 conf->fullsync = 1; 1087 rcu_assign_pointer(p->rdev, rdev); 1088 break; 1089 } 1090 1091 print_conf(conf); 1092 return found; 1093 } 1094 1095 static int raid10_remove_disk(mddev_t *mddev, int number) 1096 { 1097 conf_t *conf = mddev->private; 1098 int err = 0; 1099 mdk_rdev_t *rdev; 1100 mirror_info_t *p = conf->mirrors+ number; 1101 1102 print_conf(conf); 1103 rdev = p->rdev; 1104 if (rdev) { 1105 if (test_bit(In_sync, &rdev->flags) || 1106 atomic_read(&rdev->nr_pending)) { 1107 err = -EBUSY; 1108 goto abort; 1109 } 1110 p->rdev = NULL; 1111 synchronize_rcu(); 1112 if (atomic_read(&rdev->nr_pending)) { 1113 /* lost the race, try later */ 1114 err = -EBUSY; 1115 p->rdev = rdev; 1116 } 1117 } 1118 abort: 1119 1120 print_conf(conf); 1121 return err; 1122 } 1123 1124 1125 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1126 { 1127 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1128 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1129 int i,d; 1130 1131 if (bio->bi_size) 1132 return 1; 1133 1134 for (i=0; i<conf->copies; i++) 1135 if (r10_bio->devs[i].bio == bio) 1136 break; 1137 BUG_ON(i == conf->copies); 1138 update_head_pos(i, r10_bio); 1139 d = r10_bio->devs[i].devnum; 1140 1141 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1142 set_bit(R10BIO_Uptodate, &r10_bio->state); 1143 else { 1144 atomic_add(r10_bio->sectors, 1145 &conf->mirrors[d].rdev->corrected_errors); 1146 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1147 md_error(r10_bio->mddev, 1148 conf->mirrors[d].rdev); 1149 } 1150 1151 /* for reconstruct, we always reschedule after a read. 1152 * for resync, only after all reads 1153 */ 1154 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1155 atomic_dec_and_test(&r10_bio->remaining)) { 1156 /* we have read all the blocks, 1157 * do the comparison in process context in raid10d 1158 */ 1159 reschedule_retry(r10_bio); 1160 } 1161 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1162 return 0; 1163 } 1164 1165 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1166 { 1167 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1168 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1169 mddev_t *mddev = r10_bio->mddev; 1170 conf_t *conf = mddev_to_conf(mddev); 1171 int i,d; 1172 1173 if (bio->bi_size) 1174 return 1; 1175 1176 for (i = 0; i < conf->copies; i++) 1177 if (r10_bio->devs[i].bio == bio) 1178 break; 1179 d = r10_bio->devs[i].devnum; 1180 1181 if (!uptodate) 1182 md_error(mddev, conf->mirrors[d].rdev); 1183 update_head_pos(i, r10_bio); 1184 1185 while (atomic_dec_and_test(&r10_bio->remaining)) { 1186 if (r10_bio->master_bio == NULL) { 1187 /* the primary of several recovery bios */ 1188 md_done_sync(mddev, r10_bio->sectors, 1); 1189 put_buf(r10_bio); 1190 break; 1191 } else { 1192 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1193 put_buf(r10_bio); 1194 r10_bio = r10_bio2; 1195 } 1196 } 1197 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1198 return 0; 1199 } 1200 1201 /* 1202 * Note: sync and recover and handled very differently for raid10 1203 * This code is for resync. 1204 * For resync, we read through virtual addresses and read all blocks. 1205 * If there is any error, we schedule a write. The lowest numbered 1206 * drive is authoritative. 1207 * However requests come for physical address, so we need to map. 1208 * For every physical address there are raid_disks/copies virtual addresses, 1209 * which is always are least one, but is not necessarly an integer. 1210 * This means that a physical address can span multiple chunks, so we may 1211 * have to submit multiple io requests for a single sync request. 1212 */ 1213 /* 1214 * We check if all blocks are in-sync and only write to blocks that 1215 * aren't in sync 1216 */ 1217 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1218 { 1219 conf_t *conf = mddev_to_conf(mddev); 1220 int i, first; 1221 struct bio *tbio, *fbio; 1222 1223 atomic_set(&r10_bio->remaining, 1); 1224 1225 /* find the first device with a block */ 1226 for (i=0; i<conf->copies; i++) 1227 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1228 break; 1229 1230 if (i == conf->copies) 1231 goto done; 1232 1233 first = i; 1234 fbio = r10_bio->devs[i].bio; 1235 1236 /* now find blocks with errors */ 1237 for (i=0 ; i < conf->copies ; i++) { 1238 int j, d; 1239 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1240 1241 tbio = r10_bio->devs[i].bio; 1242 1243 if (tbio->bi_end_io != end_sync_read) 1244 continue; 1245 if (i == first) 1246 continue; 1247 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1248 /* We know that the bi_io_vec layout is the same for 1249 * both 'first' and 'i', so we just compare them. 1250 * All vec entries are PAGE_SIZE; 1251 */ 1252 for (j = 0; j < vcnt; j++) 1253 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1254 page_address(tbio->bi_io_vec[j].bv_page), 1255 PAGE_SIZE)) 1256 break; 1257 if (j == vcnt) 1258 continue; 1259 mddev->resync_mismatches += r10_bio->sectors; 1260 } 1261 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1262 /* Don't fix anything. */ 1263 continue; 1264 /* Ok, we need to write this bio 1265 * First we need to fixup bv_offset, bv_len and 1266 * bi_vecs, as the read request might have corrupted these 1267 */ 1268 tbio->bi_vcnt = vcnt; 1269 tbio->bi_size = r10_bio->sectors << 9; 1270 tbio->bi_idx = 0; 1271 tbio->bi_phys_segments = 0; 1272 tbio->bi_hw_segments = 0; 1273 tbio->bi_hw_front_size = 0; 1274 tbio->bi_hw_back_size = 0; 1275 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1276 tbio->bi_flags |= 1 << BIO_UPTODATE; 1277 tbio->bi_next = NULL; 1278 tbio->bi_rw = WRITE; 1279 tbio->bi_private = r10_bio; 1280 tbio->bi_sector = r10_bio->devs[i].addr; 1281 1282 for (j=0; j < vcnt ; j++) { 1283 tbio->bi_io_vec[j].bv_offset = 0; 1284 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1285 1286 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1287 page_address(fbio->bi_io_vec[j].bv_page), 1288 PAGE_SIZE); 1289 } 1290 tbio->bi_end_io = end_sync_write; 1291 1292 d = r10_bio->devs[i].devnum; 1293 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1294 atomic_inc(&r10_bio->remaining); 1295 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1296 1297 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1298 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1299 generic_make_request(tbio); 1300 } 1301 1302 done: 1303 if (atomic_dec_and_test(&r10_bio->remaining)) { 1304 md_done_sync(mddev, r10_bio->sectors, 1); 1305 put_buf(r10_bio); 1306 } 1307 } 1308 1309 /* 1310 * Now for the recovery code. 1311 * Recovery happens across physical sectors. 1312 * We recover all non-is_sync drives by finding the virtual address of 1313 * each, and then choose a working drive that also has that virt address. 1314 * There is a separate r10_bio for each non-in_sync drive. 1315 * Only the first two slots are in use. The first for reading, 1316 * The second for writing. 1317 * 1318 */ 1319 1320 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1321 { 1322 conf_t *conf = mddev_to_conf(mddev); 1323 int i, d; 1324 struct bio *bio, *wbio; 1325 1326 1327 /* move the pages across to the second bio 1328 * and submit the write request 1329 */ 1330 bio = r10_bio->devs[0].bio; 1331 wbio = r10_bio->devs[1].bio; 1332 for (i=0; i < wbio->bi_vcnt; i++) { 1333 struct page *p = bio->bi_io_vec[i].bv_page; 1334 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1335 wbio->bi_io_vec[i].bv_page = p; 1336 } 1337 d = r10_bio->devs[1].devnum; 1338 1339 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1340 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1341 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1342 generic_make_request(wbio); 1343 else 1344 bio_endio(wbio, wbio->bi_size, -EIO); 1345 } 1346 1347 1348 /* 1349 * This is a kernel thread which: 1350 * 1351 * 1. Retries failed read operations on working mirrors. 1352 * 2. Updates the raid superblock when problems encounter. 1353 * 3. Performs writes following reads for array syncronising. 1354 */ 1355 1356 static void raid10d(mddev_t *mddev) 1357 { 1358 r10bio_t *r10_bio; 1359 struct bio *bio; 1360 unsigned long flags; 1361 conf_t *conf = mddev_to_conf(mddev); 1362 struct list_head *head = &conf->retry_list; 1363 int unplug=0; 1364 mdk_rdev_t *rdev; 1365 1366 md_check_recovery(mddev); 1367 1368 for (;;) { 1369 char b[BDEVNAME_SIZE]; 1370 spin_lock_irqsave(&conf->device_lock, flags); 1371 1372 if (conf->pending_bio_list.head) { 1373 bio = bio_list_get(&conf->pending_bio_list); 1374 blk_remove_plug(mddev->queue); 1375 spin_unlock_irqrestore(&conf->device_lock, flags); 1376 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1377 if (bitmap_unplug(mddev->bitmap) != 0) 1378 printk("%s: bitmap file write failed!\n", mdname(mddev)); 1379 1380 while (bio) { /* submit pending writes */ 1381 struct bio *next = bio->bi_next; 1382 bio->bi_next = NULL; 1383 generic_make_request(bio); 1384 bio = next; 1385 } 1386 unplug = 1; 1387 1388 continue; 1389 } 1390 1391 if (list_empty(head)) 1392 break; 1393 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1394 list_del(head->prev); 1395 conf->nr_queued--; 1396 spin_unlock_irqrestore(&conf->device_lock, flags); 1397 1398 mddev = r10_bio->mddev; 1399 conf = mddev_to_conf(mddev); 1400 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1401 sync_request_write(mddev, r10_bio); 1402 unplug = 1; 1403 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1404 recovery_request_write(mddev, r10_bio); 1405 unplug = 1; 1406 } else { 1407 int mirror; 1408 /* we got a read error. Maybe the drive is bad. Maybe just 1409 * the block and we can fix it. 1410 * We freeze all other IO, and try reading the block from 1411 * other devices. When we find one, we re-write 1412 * and check it that fixes the read error. 1413 * This is all done synchronously while the array is 1414 * frozen. 1415 */ 1416 int sect = 0; /* Offset from r10_bio->sector */ 1417 int sectors = r10_bio->sectors; 1418 freeze_array(conf); 1419 if (mddev->ro == 0) while(sectors) { 1420 int s = sectors; 1421 int sl = r10_bio->read_slot; 1422 int success = 0; 1423 1424 if (s > (PAGE_SIZE>>9)) 1425 s = PAGE_SIZE >> 9; 1426 1427 rcu_read_lock(); 1428 do { 1429 int d = r10_bio->devs[sl].devnum; 1430 rdev = rcu_dereference(conf->mirrors[d].rdev); 1431 if (rdev && 1432 test_bit(In_sync, &rdev->flags)) { 1433 atomic_inc(&rdev->nr_pending); 1434 rcu_read_unlock(); 1435 success = sync_page_io(rdev->bdev, 1436 r10_bio->devs[sl].addr + 1437 sect + rdev->data_offset, 1438 s<<9, 1439 conf->tmppage, READ); 1440 rdev_dec_pending(rdev, mddev); 1441 rcu_read_lock(); 1442 if (success) 1443 break; 1444 } 1445 sl++; 1446 if (sl == conf->copies) 1447 sl = 0; 1448 } while (!success && sl != r10_bio->read_slot); 1449 rcu_read_unlock(); 1450 1451 if (success) { 1452 int start = sl; 1453 /* write it back and re-read */ 1454 rcu_read_lock(); 1455 while (sl != r10_bio->read_slot) { 1456 int d; 1457 if (sl==0) 1458 sl = conf->copies; 1459 sl--; 1460 d = r10_bio->devs[sl].devnum; 1461 rdev = rcu_dereference(conf->mirrors[d].rdev); 1462 if (rdev && 1463 test_bit(In_sync, &rdev->flags)) { 1464 atomic_inc(&rdev->nr_pending); 1465 rcu_read_unlock(); 1466 atomic_add(s, &rdev->corrected_errors); 1467 if (sync_page_io(rdev->bdev, 1468 r10_bio->devs[sl].addr + 1469 sect + rdev->data_offset, 1470 s<<9, conf->tmppage, WRITE) == 0) 1471 /* Well, this device is dead */ 1472 md_error(mddev, rdev); 1473 rdev_dec_pending(rdev, mddev); 1474 rcu_read_lock(); 1475 } 1476 } 1477 sl = start; 1478 while (sl != r10_bio->read_slot) { 1479 int d; 1480 if (sl==0) 1481 sl = conf->copies; 1482 sl--; 1483 d = r10_bio->devs[sl].devnum; 1484 rdev = rcu_dereference(conf->mirrors[d].rdev); 1485 if (rdev && 1486 test_bit(In_sync, &rdev->flags)) { 1487 atomic_inc(&rdev->nr_pending); 1488 rcu_read_unlock(); 1489 if (sync_page_io(rdev->bdev, 1490 r10_bio->devs[sl].addr + 1491 sect + rdev->data_offset, 1492 s<<9, conf->tmppage, READ) == 0) 1493 /* Well, this device is dead */ 1494 md_error(mddev, rdev); 1495 else 1496 printk(KERN_INFO "raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 1497 mdname(mddev), s, (unsigned long long)(sect+rdev->data_offset), bdevname(rdev->bdev, b)); 1498 1499 rdev_dec_pending(rdev, mddev); 1500 rcu_read_lock(); 1501 } 1502 } 1503 rcu_read_unlock(); 1504 } else { 1505 /* Cannot read from anywhere -- bye bye array */ 1506 md_error(mddev, conf->mirrors[r10_bio->devs[r10_bio->read_slot].devnum].rdev); 1507 break; 1508 } 1509 sectors -= s; 1510 sect += s; 1511 } 1512 1513 unfreeze_array(conf); 1514 1515 bio = r10_bio->devs[r10_bio->read_slot].bio; 1516 r10_bio->devs[r10_bio->read_slot].bio = 1517 mddev->ro ? IO_BLOCKED : NULL; 1518 bio_put(bio); 1519 mirror = read_balance(conf, r10_bio); 1520 if (mirror == -1) { 1521 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1522 " read error for block %llu\n", 1523 bdevname(bio->bi_bdev,b), 1524 (unsigned long long)r10_bio->sector); 1525 raid_end_bio_io(r10_bio); 1526 } else { 1527 rdev = conf->mirrors[mirror].rdev; 1528 if (printk_ratelimit()) 1529 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1530 " another mirror\n", 1531 bdevname(rdev->bdev,b), 1532 (unsigned long long)r10_bio->sector); 1533 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1534 r10_bio->devs[r10_bio->read_slot].bio = bio; 1535 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1536 + rdev->data_offset; 1537 bio->bi_bdev = rdev->bdev; 1538 bio->bi_rw = READ; 1539 bio->bi_private = r10_bio; 1540 bio->bi_end_io = raid10_end_read_request; 1541 unplug = 1; 1542 generic_make_request(bio); 1543 } 1544 } 1545 } 1546 spin_unlock_irqrestore(&conf->device_lock, flags); 1547 if (unplug) 1548 unplug_slaves(mddev); 1549 } 1550 1551 1552 static int init_resync(conf_t *conf) 1553 { 1554 int buffs; 1555 1556 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1557 BUG_ON(conf->r10buf_pool); 1558 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1559 if (!conf->r10buf_pool) 1560 return -ENOMEM; 1561 conf->next_resync = 0; 1562 return 0; 1563 } 1564 1565 /* 1566 * perform a "sync" on one "block" 1567 * 1568 * We need to make sure that no normal I/O request - particularly write 1569 * requests - conflict with active sync requests. 1570 * 1571 * This is achieved by tracking pending requests and a 'barrier' concept 1572 * that can be installed to exclude normal IO requests. 1573 * 1574 * Resync and recovery are handled very differently. 1575 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1576 * 1577 * For resync, we iterate over virtual addresses, read all copies, 1578 * and update if there are differences. If only one copy is live, 1579 * skip it. 1580 * For recovery, we iterate over physical addresses, read a good 1581 * value for each non-in_sync drive, and over-write. 1582 * 1583 * So, for recovery we may have several outstanding complex requests for a 1584 * given address, one for each out-of-sync device. We model this by allocating 1585 * a number of r10_bio structures, one for each out-of-sync device. 1586 * As we setup these structures, we collect all bio's together into a list 1587 * which we then process collectively to add pages, and then process again 1588 * to pass to generic_make_request. 1589 * 1590 * The r10_bio structures are linked using a borrowed master_bio pointer. 1591 * This link is counted in ->remaining. When the r10_bio that points to NULL 1592 * has its remaining count decremented to 0, the whole complex operation 1593 * is complete. 1594 * 1595 */ 1596 1597 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1598 { 1599 conf_t *conf = mddev_to_conf(mddev); 1600 r10bio_t *r10_bio; 1601 struct bio *biolist = NULL, *bio; 1602 sector_t max_sector, nr_sectors; 1603 int disk; 1604 int i; 1605 int max_sync; 1606 int sync_blocks; 1607 1608 sector_t sectors_skipped = 0; 1609 int chunks_skipped = 0; 1610 1611 if (!conf->r10buf_pool) 1612 if (init_resync(conf)) 1613 return 0; 1614 1615 skipped: 1616 max_sector = mddev->size << 1; 1617 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1618 max_sector = mddev->resync_max_sectors; 1619 if (sector_nr >= max_sector) { 1620 /* If we aborted, we need to abort the 1621 * sync on the 'current' bitmap chucks (there can 1622 * be several when recovering multiple devices). 1623 * as we may have started syncing it but not finished. 1624 * We can find the current address in 1625 * mddev->curr_resync, but for recovery, 1626 * we need to convert that to several 1627 * virtual addresses. 1628 */ 1629 if (mddev->curr_resync < max_sector) { /* aborted */ 1630 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1631 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1632 &sync_blocks, 1); 1633 else for (i=0; i<conf->raid_disks; i++) { 1634 sector_t sect = 1635 raid10_find_virt(conf, mddev->curr_resync, i); 1636 bitmap_end_sync(mddev->bitmap, sect, 1637 &sync_blocks, 1); 1638 } 1639 } else /* completed sync */ 1640 conf->fullsync = 0; 1641 1642 bitmap_close_sync(mddev->bitmap); 1643 close_sync(conf); 1644 *skipped = 1; 1645 return sectors_skipped; 1646 } 1647 if (chunks_skipped >= conf->raid_disks) { 1648 /* if there has been nothing to do on any drive, 1649 * then there is nothing to do at all.. 1650 */ 1651 *skipped = 1; 1652 return (max_sector - sector_nr) + sectors_skipped; 1653 } 1654 1655 /* make sure whole request will fit in a chunk - if chunks 1656 * are meaningful 1657 */ 1658 if (conf->near_copies < conf->raid_disks && 1659 max_sector > (sector_nr | conf->chunk_mask)) 1660 max_sector = (sector_nr | conf->chunk_mask) + 1; 1661 /* 1662 * If there is non-resync activity waiting for us then 1663 * put in a delay to throttle resync. 1664 */ 1665 if (!go_faster && conf->nr_waiting) 1666 msleep_interruptible(1000); 1667 1668 /* Again, very different code for resync and recovery. 1669 * Both must result in an r10bio with a list of bios that 1670 * have bi_end_io, bi_sector, bi_bdev set, 1671 * and bi_private set to the r10bio. 1672 * For recovery, we may actually create several r10bios 1673 * with 2 bios in each, that correspond to the bios in the main one. 1674 * In this case, the subordinate r10bios link back through a 1675 * borrowed master_bio pointer, and the counter in the master 1676 * includes a ref from each subordinate. 1677 */ 1678 /* First, we decide what to do and set ->bi_end_io 1679 * To end_sync_read if we want to read, and 1680 * end_sync_write if we will want to write. 1681 */ 1682 1683 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1684 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1685 /* recovery... the complicated one */ 1686 int i, j, k; 1687 r10_bio = NULL; 1688 1689 for (i=0 ; i<conf->raid_disks; i++) 1690 if (conf->mirrors[i].rdev && 1691 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1692 int still_degraded = 0; 1693 /* want to reconstruct this device */ 1694 r10bio_t *rb2 = r10_bio; 1695 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1696 int must_sync; 1697 /* Unless we are doing a full sync, we only need 1698 * to recover the block if it is set in the bitmap 1699 */ 1700 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1701 &sync_blocks, 1); 1702 if (sync_blocks < max_sync) 1703 max_sync = sync_blocks; 1704 if (!must_sync && 1705 !conf->fullsync) { 1706 /* yep, skip the sync_blocks here, but don't assume 1707 * that there will never be anything to do here 1708 */ 1709 chunks_skipped = -1; 1710 continue; 1711 } 1712 1713 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1714 raise_barrier(conf, rb2 != NULL); 1715 atomic_set(&r10_bio->remaining, 0); 1716 1717 r10_bio->master_bio = (struct bio*)rb2; 1718 if (rb2) 1719 atomic_inc(&rb2->remaining); 1720 r10_bio->mddev = mddev; 1721 set_bit(R10BIO_IsRecover, &r10_bio->state); 1722 r10_bio->sector = sect; 1723 1724 raid10_find_phys(conf, r10_bio); 1725 /* Need to check if this section will still be 1726 * degraded 1727 */ 1728 for (j=0; j<conf->copies;j++) { 1729 int d = r10_bio->devs[j].devnum; 1730 if (conf->mirrors[d].rdev == NULL || 1731 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1732 still_degraded = 1; 1733 break; 1734 } 1735 } 1736 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1737 &sync_blocks, still_degraded); 1738 1739 for (j=0; j<conf->copies;j++) { 1740 int d = r10_bio->devs[j].devnum; 1741 if (conf->mirrors[d].rdev && 1742 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1743 /* This is where we read from */ 1744 bio = r10_bio->devs[0].bio; 1745 bio->bi_next = biolist; 1746 biolist = bio; 1747 bio->bi_private = r10_bio; 1748 bio->bi_end_io = end_sync_read; 1749 bio->bi_rw = 0; 1750 bio->bi_sector = r10_bio->devs[j].addr + 1751 conf->mirrors[d].rdev->data_offset; 1752 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1753 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1754 atomic_inc(&r10_bio->remaining); 1755 /* and we write to 'i' */ 1756 1757 for (k=0; k<conf->copies; k++) 1758 if (r10_bio->devs[k].devnum == i) 1759 break; 1760 bio = r10_bio->devs[1].bio; 1761 bio->bi_next = biolist; 1762 biolist = bio; 1763 bio->bi_private = r10_bio; 1764 bio->bi_end_io = end_sync_write; 1765 bio->bi_rw = 1; 1766 bio->bi_sector = r10_bio->devs[k].addr + 1767 conf->mirrors[i].rdev->data_offset; 1768 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1769 1770 r10_bio->devs[0].devnum = d; 1771 r10_bio->devs[1].devnum = i; 1772 1773 break; 1774 } 1775 } 1776 if (j == conf->copies) { 1777 /* Cannot recover, so abort the recovery */ 1778 put_buf(r10_bio); 1779 r10_bio = rb2; 1780 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) 1781 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1782 mdname(mddev)); 1783 break; 1784 } 1785 } 1786 if (biolist == NULL) { 1787 while (r10_bio) { 1788 r10bio_t *rb2 = r10_bio; 1789 r10_bio = (r10bio_t*) rb2->master_bio; 1790 rb2->master_bio = NULL; 1791 put_buf(rb2); 1792 } 1793 goto giveup; 1794 } 1795 } else { 1796 /* resync. Schedule a read for every block at this virt offset */ 1797 int count = 0; 1798 1799 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1800 &sync_blocks, mddev->degraded) && 1801 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1802 /* We can skip this block */ 1803 *skipped = 1; 1804 return sync_blocks + sectors_skipped; 1805 } 1806 if (sync_blocks < max_sync) 1807 max_sync = sync_blocks; 1808 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1809 1810 r10_bio->mddev = mddev; 1811 atomic_set(&r10_bio->remaining, 0); 1812 raise_barrier(conf, 0); 1813 conf->next_resync = sector_nr; 1814 1815 r10_bio->master_bio = NULL; 1816 r10_bio->sector = sector_nr; 1817 set_bit(R10BIO_IsSync, &r10_bio->state); 1818 raid10_find_phys(conf, r10_bio); 1819 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1820 1821 for (i=0; i<conf->copies; i++) { 1822 int d = r10_bio->devs[i].devnum; 1823 bio = r10_bio->devs[i].bio; 1824 bio->bi_end_io = NULL; 1825 if (conf->mirrors[d].rdev == NULL || 1826 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1827 continue; 1828 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1829 atomic_inc(&r10_bio->remaining); 1830 bio->bi_next = biolist; 1831 biolist = bio; 1832 bio->bi_private = r10_bio; 1833 bio->bi_end_io = end_sync_read; 1834 bio->bi_rw = 0; 1835 bio->bi_sector = r10_bio->devs[i].addr + 1836 conf->mirrors[d].rdev->data_offset; 1837 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1838 count++; 1839 } 1840 1841 if (count < 2) { 1842 for (i=0; i<conf->copies; i++) { 1843 int d = r10_bio->devs[i].devnum; 1844 if (r10_bio->devs[i].bio->bi_end_io) 1845 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1846 } 1847 put_buf(r10_bio); 1848 biolist = NULL; 1849 goto giveup; 1850 } 1851 } 1852 1853 for (bio = biolist; bio ; bio=bio->bi_next) { 1854 1855 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1856 if (bio->bi_end_io) 1857 bio->bi_flags |= 1 << BIO_UPTODATE; 1858 bio->bi_vcnt = 0; 1859 bio->bi_idx = 0; 1860 bio->bi_phys_segments = 0; 1861 bio->bi_hw_segments = 0; 1862 bio->bi_size = 0; 1863 } 1864 1865 nr_sectors = 0; 1866 if (sector_nr + max_sync < max_sector) 1867 max_sector = sector_nr + max_sync; 1868 do { 1869 struct page *page; 1870 int len = PAGE_SIZE; 1871 disk = 0; 1872 if (sector_nr + (len>>9) > max_sector) 1873 len = (max_sector - sector_nr) << 9; 1874 if (len == 0) 1875 break; 1876 for (bio= biolist ; bio ; bio=bio->bi_next) { 1877 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1878 if (bio_add_page(bio, page, len, 0) == 0) { 1879 /* stop here */ 1880 struct bio *bio2; 1881 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1882 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1883 /* remove last page from this bio */ 1884 bio2->bi_vcnt--; 1885 bio2->bi_size -= len; 1886 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1887 } 1888 goto bio_full; 1889 } 1890 disk = i; 1891 } 1892 nr_sectors += len>>9; 1893 sector_nr += len>>9; 1894 } while (biolist->bi_vcnt < RESYNC_PAGES); 1895 bio_full: 1896 r10_bio->sectors = nr_sectors; 1897 1898 while (biolist) { 1899 bio = biolist; 1900 biolist = biolist->bi_next; 1901 1902 bio->bi_next = NULL; 1903 r10_bio = bio->bi_private; 1904 r10_bio->sectors = nr_sectors; 1905 1906 if (bio->bi_end_io == end_sync_read) { 1907 md_sync_acct(bio->bi_bdev, nr_sectors); 1908 generic_make_request(bio); 1909 } 1910 } 1911 1912 if (sectors_skipped) 1913 /* pretend they weren't skipped, it makes 1914 * no important difference in this case 1915 */ 1916 md_done_sync(mddev, sectors_skipped, 1); 1917 1918 return sectors_skipped + nr_sectors; 1919 giveup: 1920 /* There is nowhere to write, so all non-sync 1921 * drives must be failed, so try the next chunk... 1922 */ 1923 { 1924 sector_t sec = max_sector - sector_nr; 1925 sectors_skipped += sec; 1926 chunks_skipped ++; 1927 sector_nr = max_sector; 1928 goto skipped; 1929 } 1930 } 1931 1932 static int run(mddev_t *mddev) 1933 { 1934 conf_t *conf; 1935 int i, disk_idx; 1936 mirror_info_t *disk; 1937 mdk_rdev_t *rdev; 1938 struct list_head *tmp; 1939 int nc, fc, fo; 1940 sector_t stride, size; 1941 1942 if (mddev->chunk_size == 0) { 1943 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 1944 return -EINVAL; 1945 } 1946 1947 nc = mddev->layout & 255; 1948 fc = (mddev->layout >> 8) & 255; 1949 fo = mddev->layout & (1<<16); 1950 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 1951 (mddev->layout >> 17)) { 1952 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 1953 mdname(mddev), mddev->layout); 1954 goto out; 1955 } 1956 /* 1957 * copy the already verified devices into our private RAID10 1958 * bookkeeping area. [whatever we allocate in run(), 1959 * should be freed in stop()] 1960 */ 1961 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1962 mddev->private = conf; 1963 if (!conf) { 1964 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1965 mdname(mddev)); 1966 goto out; 1967 } 1968 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1969 GFP_KERNEL); 1970 if (!conf->mirrors) { 1971 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1972 mdname(mddev)); 1973 goto out_free_conf; 1974 } 1975 1976 conf->tmppage = alloc_page(GFP_KERNEL); 1977 if (!conf->tmppage) 1978 goto out_free_conf; 1979 1980 conf->near_copies = nc; 1981 conf->far_copies = fc; 1982 conf->copies = nc*fc; 1983 conf->far_offset = fo; 1984 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 1985 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 1986 if (fo) 1987 conf->stride = 1 << conf->chunk_shift; 1988 else { 1989 stride = mddev->size >> (conf->chunk_shift-1); 1990 sector_div(stride, fc); 1991 conf->stride = stride << conf->chunk_shift; 1992 } 1993 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 1994 r10bio_pool_free, conf); 1995 if (!conf->r10bio_pool) { 1996 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1997 mdname(mddev)); 1998 goto out_free_conf; 1999 } 2000 2001 ITERATE_RDEV(mddev, rdev, tmp) { 2002 disk_idx = rdev->raid_disk; 2003 if (disk_idx >= mddev->raid_disks 2004 || disk_idx < 0) 2005 continue; 2006 disk = conf->mirrors + disk_idx; 2007 2008 disk->rdev = rdev; 2009 2010 blk_queue_stack_limits(mddev->queue, 2011 rdev->bdev->bd_disk->queue); 2012 /* as we don't honour merge_bvec_fn, we must never risk 2013 * violating it, so limit ->max_sector to one PAGE, as 2014 * a one page request is never in violation. 2015 */ 2016 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2017 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2018 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2019 2020 disk->head_position = 0; 2021 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags)) 2022 conf->working_disks++; 2023 } 2024 conf->raid_disks = mddev->raid_disks; 2025 conf->mddev = mddev; 2026 spin_lock_init(&conf->device_lock); 2027 INIT_LIST_HEAD(&conf->retry_list); 2028 2029 spin_lock_init(&conf->resync_lock); 2030 init_waitqueue_head(&conf->wait_barrier); 2031 2032 /* need to check that every block has at least one working mirror */ 2033 if (!enough(conf)) { 2034 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2035 mdname(mddev)); 2036 goto out_free_conf; 2037 } 2038 2039 mddev->degraded = 0; 2040 for (i = 0; i < conf->raid_disks; i++) { 2041 2042 disk = conf->mirrors + i; 2043 2044 if (!disk->rdev || 2045 !test_bit(In_sync, &rdev->flags)) { 2046 disk->head_position = 0; 2047 mddev->degraded++; 2048 } 2049 } 2050 2051 2052 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2053 if (!mddev->thread) { 2054 printk(KERN_ERR 2055 "raid10: couldn't allocate thread for %s\n", 2056 mdname(mddev)); 2057 goto out_free_conf; 2058 } 2059 2060 printk(KERN_INFO 2061 "raid10: raid set %s active with %d out of %d devices\n", 2062 mdname(mddev), mddev->raid_disks - mddev->degraded, 2063 mddev->raid_disks); 2064 /* 2065 * Ok, everything is just fine now 2066 */ 2067 if (conf->far_offset) { 2068 size = mddev->size >> (conf->chunk_shift-1); 2069 size *= conf->raid_disks; 2070 size <<= conf->chunk_shift; 2071 sector_div(size, conf->far_copies); 2072 } else 2073 size = conf->stride * conf->raid_disks; 2074 sector_div(size, conf->near_copies); 2075 mddev->array_size = size/2; 2076 mddev->resync_max_sectors = size; 2077 2078 mddev->queue->unplug_fn = raid10_unplug; 2079 mddev->queue->issue_flush_fn = raid10_issue_flush; 2080 2081 /* Calculate max read-ahead size. 2082 * We need to readahead at least twice a whole stripe.... 2083 * maybe... 2084 */ 2085 { 2086 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2087 stripe /= conf->near_copies; 2088 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2089 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2090 } 2091 2092 if (conf->near_copies < mddev->raid_disks) 2093 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2094 return 0; 2095 2096 out_free_conf: 2097 if (conf->r10bio_pool) 2098 mempool_destroy(conf->r10bio_pool); 2099 safe_put_page(conf->tmppage); 2100 kfree(conf->mirrors); 2101 kfree(conf); 2102 mddev->private = NULL; 2103 out: 2104 return -EIO; 2105 } 2106 2107 static int stop(mddev_t *mddev) 2108 { 2109 conf_t *conf = mddev_to_conf(mddev); 2110 2111 md_unregister_thread(mddev->thread); 2112 mddev->thread = NULL; 2113 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2114 if (conf->r10bio_pool) 2115 mempool_destroy(conf->r10bio_pool); 2116 kfree(conf->mirrors); 2117 kfree(conf); 2118 mddev->private = NULL; 2119 return 0; 2120 } 2121 2122 static void raid10_quiesce(mddev_t *mddev, int state) 2123 { 2124 conf_t *conf = mddev_to_conf(mddev); 2125 2126 switch(state) { 2127 case 1: 2128 raise_barrier(conf, 0); 2129 break; 2130 case 0: 2131 lower_barrier(conf); 2132 break; 2133 } 2134 if (mddev->thread) { 2135 if (mddev->bitmap) 2136 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2137 else 2138 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2139 md_wakeup_thread(mddev->thread); 2140 } 2141 } 2142 2143 static struct mdk_personality raid10_personality = 2144 { 2145 .name = "raid10", 2146 .level = 10, 2147 .owner = THIS_MODULE, 2148 .make_request = make_request, 2149 .run = run, 2150 .stop = stop, 2151 .status = status, 2152 .error_handler = error, 2153 .hot_add_disk = raid10_add_disk, 2154 .hot_remove_disk= raid10_remove_disk, 2155 .spare_active = raid10_spare_active, 2156 .sync_request = sync_request, 2157 .quiesce = raid10_quiesce, 2158 }; 2159 2160 static int __init raid_init(void) 2161 { 2162 return register_md_personality(&raid10_personality); 2163 } 2164 2165 static void raid_exit(void) 2166 { 2167 unregister_md_personality(&raid10_personality); 2168 } 2169 2170 module_init(raid_init); 2171 module_exit(raid_exit); 2172 MODULE_LICENSE("GPL"); 2173 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2174 MODULE_ALIAS("md-raid10"); 2175 MODULE_ALIAS("md-level-10"); 2176