1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 #define NULL_CMD 83 #define cmd_before(conf, cmd) \ 84 do { \ 85 write_sequnlock_irq(&(conf)->resync_lock); \ 86 cmd; \ 87 } while (0) 88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 89 90 #define wait_event_barrier_cmd(conf, cond, cmd) \ 91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 92 cmd_after(conf)) 93 94 #define wait_event_barrier(conf, cond) \ 95 wait_event_barrier_cmd(conf, cond, NULL_CMD) 96 97 /* 98 * for resync bio, r10bio pointer can be retrieved from the per-bio 99 * 'struct resync_pages'. 100 */ 101 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 102 { 103 return get_resync_pages(bio)->raid_bio; 104 } 105 106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 107 { 108 struct r10conf *conf = data; 109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 110 111 /* allocate a r10bio with room for raid_disks entries in the 112 * bios array */ 113 return kzalloc(size, gfp_flags); 114 } 115 116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 117 /* amount of memory to reserve for resync requests */ 118 #define RESYNC_WINDOW (1024*1024) 119 /* maximum number of concurrent requests, memory permitting */ 120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 123 124 /* 125 * When performing a resync, we need to read and compare, so 126 * we need as many pages are there are copies. 127 * When performing a recovery, we need 2 bios, one for read, 128 * one for write (we recover only one drive per r10buf) 129 * 130 */ 131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 132 { 133 struct r10conf *conf = data; 134 struct r10bio *r10_bio; 135 struct bio *bio; 136 int j; 137 int nalloc, nalloc_rp; 138 struct resync_pages *rps; 139 140 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 141 if (!r10_bio) 142 return NULL; 143 144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 146 nalloc = conf->copies; /* resync */ 147 else 148 nalloc = 2; /* recovery */ 149 150 /* allocate once for all bios */ 151 if (!conf->have_replacement) 152 nalloc_rp = nalloc; 153 else 154 nalloc_rp = nalloc * 2; 155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 156 if (!rps) 157 goto out_free_r10bio; 158 159 /* 160 * Allocate bios. 161 */ 162 for (j = nalloc ; j-- ; ) { 163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 164 if (!bio) 165 goto out_free_bio; 166 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 167 r10_bio->devs[j].bio = bio; 168 if (!conf->have_replacement) 169 continue; 170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 171 if (!bio) 172 goto out_free_bio; 173 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 174 r10_bio->devs[j].repl_bio = bio; 175 } 176 /* 177 * Allocate RESYNC_PAGES data pages and attach them 178 * where needed. 179 */ 180 for (j = 0; j < nalloc; j++) { 181 struct bio *rbio = r10_bio->devs[j].repl_bio; 182 struct resync_pages *rp, *rp_repl; 183 184 rp = &rps[j]; 185 if (rbio) 186 rp_repl = &rps[nalloc + j]; 187 188 bio = r10_bio->devs[j].bio; 189 190 if (!j || test_bit(MD_RECOVERY_SYNC, 191 &conf->mddev->recovery)) { 192 if (resync_alloc_pages(rp, gfp_flags)) 193 goto out_free_pages; 194 } else { 195 memcpy(rp, &rps[0], sizeof(*rp)); 196 resync_get_all_pages(rp); 197 } 198 199 rp->raid_bio = r10_bio; 200 bio->bi_private = rp; 201 if (rbio) { 202 memcpy(rp_repl, rp, sizeof(*rp)); 203 rbio->bi_private = rp_repl; 204 } 205 } 206 207 return r10_bio; 208 209 out_free_pages: 210 while (--j >= 0) 211 resync_free_pages(&rps[j]); 212 213 j = 0; 214 out_free_bio: 215 for ( ; j < nalloc; j++) { 216 if (r10_bio->devs[j].bio) 217 bio_uninit(r10_bio->devs[j].bio); 218 kfree(r10_bio->devs[j].bio); 219 if (r10_bio->devs[j].repl_bio) 220 bio_uninit(r10_bio->devs[j].repl_bio); 221 kfree(r10_bio->devs[j].repl_bio); 222 } 223 kfree(rps); 224 out_free_r10bio: 225 rbio_pool_free(r10_bio, conf); 226 return NULL; 227 } 228 229 static void r10buf_pool_free(void *__r10_bio, void *data) 230 { 231 struct r10conf *conf = data; 232 struct r10bio *r10bio = __r10_bio; 233 int j; 234 struct resync_pages *rp = NULL; 235 236 for (j = conf->copies; j--; ) { 237 struct bio *bio = r10bio->devs[j].bio; 238 239 if (bio) { 240 rp = get_resync_pages(bio); 241 resync_free_pages(rp); 242 bio_uninit(bio); 243 kfree(bio); 244 } 245 246 bio = r10bio->devs[j].repl_bio; 247 if (bio) { 248 bio_uninit(bio); 249 kfree(bio); 250 } 251 } 252 253 /* resync pages array stored in the 1st bio's .bi_private */ 254 kfree(rp); 255 256 rbio_pool_free(r10bio, conf); 257 } 258 259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 260 { 261 int i; 262 263 for (i = 0; i < conf->geo.raid_disks; i++) { 264 struct bio **bio = & r10_bio->devs[i].bio; 265 if (!BIO_SPECIAL(*bio)) 266 bio_put(*bio); 267 *bio = NULL; 268 bio = &r10_bio->devs[i].repl_bio; 269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 270 bio_put(*bio); 271 *bio = NULL; 272 } 273 } 274 275 static void free_r10bio(struct r10bio *r10_bio) 276 { 277 struct r10conf *conf = r10_bio->mddev->private; 278 279 put_all_bios(conf, r10_bio); 280 mempool_free(r10_bio, &conf->r10bio_pool); 281 } 282 283 static void put_buf(struct r10bio *r10_bio) 284 { 285 struct r10conf *conf = r10_bio->mddev->private; 286 287 mempool_free(r10_bio, &conf->r10buf_pool); 288 289 lower_barrier(conf); 290 } 291 292 static void wake_up_barrier(struct r10conf *conf) 293 { 294 if (wq_has_sleeper(&conf->wait_barrier)) 295 wake_up(&conf->wait_barrier); 296 } 297 298 static void reschedule_retry(struct r10bio *r10_bio) 299 { 300 unsigned long flags; 301 struct mddev *mddev = r10_bio->mddev; 302 struct r10conf *conf = mddev->private; 303 304 spin_lock_irqsave(&conf->device_lock, flags); 305 list_add(&r10_bio->retry_list, &conf->retry_list); 306 conf->nr_queued ++; 307 spin_unlock_irqrestore(&conf->device_lock, flags); 308 309 /* wake up frozen array... */ 310 wake_up(&conf->wait_barrier); 311 312 md_wakeup_thread(mddev->thread); 313 } 314 315 /* 316 * raid_end_bio_io() is called when we have finished servicing a mirrored 317 * operation and are ready to return a success/failure code to the buffer 318 * cache layer. 319 */ 320 static void raid_end_bio_io(struct r10bio *r10_bio) 321 { 322 struct bio *bio = r10_bio->master_bio; 323 struct r10conf *conf = r10_bio->mddev->private; 324 325 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 326 bio->bi_status = BLK_STS_IOERR; 327 328 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 329 bio_end_io_acct(bio, r10_bio->start_time); 330 bio_endio(bio); 331 /* 332 * Wake up any possible resync thread that waits for the device 333 * to go idle. 334 */ 335 allow_barrier(conf); 336 337 free_r10bio(r10_bio); 338 } 339 340 /* 341 * Update disk head position estimator based on IRQ completion info. 342 */ 343 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 344 { 345 struct r10conf *conf = r10_bio->mddev->private; 346 347 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 348 r10_bio->devs[slot].addr + (r10_bio->sectors); 349 } 350 351 /* 352 * Find the disk number which triggered given bio 353 */ 354 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 355 struct bio *bio, int *slotp, int *replp) 356 { 357 int slot; 358 int repl = 0; 359 360 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 361 if (r10_bio->devs[slot].bio == bio) 362 break; 363 if (r10_bio->devs[slot].repl_bio == bio) { 364 repl = 1; 365 break; 366 } 367 } 368 369 update_head_pos(slot, r10_bio); 370 371 if (slotp) 372 *slotp = slot; 373 if (replp) 374 *replp = repl; 375 return r10_bio->devs[slot].devnum; 376 } 377 378 static void raid10_end_read_request(struct bio *bio) 379 { 380 int uptodate = !bio->bi_status; 381 struct r10bio *r10_bio = bio->bi_private; 382 int slot; 383 struct md_rdev *rdev; 384 struct r10conf *conf = r10_bio->mddev->private; 385 386 slot = r10_bio->read_slot; 387 rdev = r10_bio->devs[slot].rdev; 388 /* 389 * this branch is our 'one mirror IO has finished' event handler: 390 */ 391 update_head_pos(slot, r10_bio); 392 393 if (uptodate) { 394 /* 395 * Set R10BIO_Uptodate in our master bio, so that 396 * we will return a good error code to the higher 397 * levels even if IO on some other mirrored buffer fails. 398 * 399 * The 'master' represents the composite IO operation to 400 * user-side. So if something waits for IO, then it will 401 * wait for the 'master' bio. 402 */ 403 set_bit(R10BIO_Uptodate, &r10_bio->state); 404 } else { 405 /* If all other devices that store this block have 406 * failed, we want to return the error upwards rather 407 * than fail the last device. Here we redefine 408 * "uptodate" to mean "Don't want to retry" 409 */ 410 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 411 rdev->raid_disk)) 412 uptodate = 1; 413 } 414 if (uptodate) { 415 raid_end_bio_io(r10_bio); 416 rdev_dec_pending(rdev, conf->mddev); 417 } else { 418 /* 419 * oops, read error - keep the refcount on the rdev 420 */ 421 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 422 mdname(conf->mddev), 423 rdev->bdev, 424 (unsigned long long)r10_bio->sector); 425 set_bit(R10BIO_ReadError, &r10_bio->state); 426 reschedule_retry(r10_bio); 427 } 428 } 429 430 static void close_write(struct r10bio *r10_bio) 431 { 432 /* clear the bitmap if all writes complete successfully */ 433 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 434 r10_bio->sectors, 435 !test_bit(R10BIO_Degraded, &r10_bio->state), 436 0); 437 md_write_end(r10_bio->mddev); 438 } 439 440 static void one_write_done(struct r10bio *r10_bio) 441 { 442 if (atomic_dec_and_test(&r10_bio->remaining)) { 443 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 444 reschedule_retry(r10_bio); 445 else { 446 close_write(r10_bio); 447 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 448 reschedule_retry(r10_bio); 449 else 450 raid_end_bio_io(r10_bio); 451 } 452 } 453 } 454 455 static void raid10_end_write_request(struct bio *bio) 456 { 457 struct r10bio *r10_bio = bio->bi_private; 458 int dev; 459 int dec_rdev = 1; 460 struct r10conf *conf = r10_bio->mddev->private; 461 int slot, repl; 462 struct md_rdev *rdev = NULL; 463 struct bio *to_put = NULL; 464 bool discard_error; 465 466 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 467 468 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 469 470 if (repl) 471 rdev = conf->mirrors[dev].replacement; 472 if (!rdev) { 473 smp_rmb(); 474 repl = 0; 475 rdev = conf->mirrors[dev].rdev; 476 } 477 /* 478 * this branch is our 'one mirror IO has finished' event handler: 479 */ 480 if (bio->bi_status && !discard_error) { 481 if (repl) 482 /* Never record new bad blocks to replacement, 483 * just fail it. 484 */ 485 md_error(rdev->mddev, rdev); 486 else { 487 set_bit(WriteErrorSeen, &rdev->flags); 488 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 489 set_bit(MD_RECOVERY_NEEDED, 490 &rdev->mddev->recovery); 491 492 dec_rdev = 0; 493 if (test_bit(FailFast, &rdev->flags) && 494 (bio->bi_opf & MD_FAILFAST)) { 495 md_error(rdev->mddev, rdev); 496 } 497 498 /* 499 * When the device is faulty, it is not necessary to 500 * handle write error. 501 */ 502 if (!test_bit(Faulty, &rdev->flags)) 503 set_bit(R10BIO_WriteError, &r10_bio->state); 504 else { 505 /* Fail the request */ 506 set_bit(R10BIO_Degraded, &r10_bio->state); 507 r10_bio->devs[slot].bio = NULL; 508 to_put = bio; 509 dec_rdev = 1; 510 } 511 } 512 } else { 513 /* 514 * Set R10BIO_Uptodate in our master bio, so that 515 * we will return a good error code for to the higher 516 * levels even if IO on some other mirrored buffer fails. 517 * 518 * The 'master' represents the composite IO operation to 519 * user-side. So if something waits for IO, then it will 520 * wait for the 'master' bio. 521 */ 522 sector_t first_bad; 523 int bad_sectors; 524 525 /* 526 * Do not set R10BIO_Uptodate if the current device is 527 * rebuilding or Faulty. This is because we cannot use 528 * such device for properly reading the data back (we could 529 * potentially use it, if the current write would have felt 530 * before rdev->recovery_offset, but for simplicity we don't 531 * check this here. 532 */ 533 if (test_bit(In_sync, &rdev->flags) && 534 !test_bit(Faulty, &rdev->flags)) 535 set_bit(R10BIO_Uptodate, &r10_bio->state); 536 537 /* Maybe we can clear some bad blocks. */ 538 if (is_badblock(rdev, 539 r10_bio->devs[slot].addr, 540 r10_bio->sectors, 541 &first_bad, &bad_sectors) && !discard_error) { 542 bio_put(bio); 543 if (repl) 544 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 545 else 546 r10_bio->devs[slot].bio = IO_MADE_GOOD; 547 dec_rdev = 0; 548 set_bit(R10BIO_MadeGood, &r10_bio->state); 549 } 550 } 551 552 /* 553 * 554 * Let's see if all mirrored write operations have finished 555 * already. 556 */ 557 one_write_done(r10_bio); 558 if (dec_rdev) 559 rdev_dec_pending(rdev, conf->mddev); 560 if (to_put) 561 bio_put(to_put); 562 } 563 564 /* 565 * RAID10 layout manager 566 * As well as the chunksize and raid_disks count, there are two 567 * parameters: near_copies and far_copies. 568 * near_copies * far_copies must be <= raid_disks. 569 * Normally one of these will be 1. 570 * If both are 1, we get raid0. 571 * If near_copies == raid_disks, we get raid1. 572 * 573 * Chunks are laid out in raid0 style with near_copies copies of the 574 * first chunk, followed by near_copies copies of the next chunk and 575 * so on. 576 * If far_copies > 1, then after 1/far_copies of the array has been assigned 577 * as described above, we start again with a device offset of near_copies. 578 * So we effectively have another copy of the whole array further down all 579 * the drives, but with blocks on different drives. 580 * With this layout, and block is never stored twice on the one device. 581 * 582 * raid10_find_phys finds the sector offset of a given virtual sector 583 * on each device that it is on. 584 * 585 * raid10_find_virt does the reverse mapping, from a device and a 586 * sector offset to a virtual address 587 */ 588 589 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 590 { 591 int n,f; 592 sector_t sector; 593 sector_t chunk; 594 sector_t stripe; 595 int dev; 596 int slot = 0; 597 int last_far_set_start, last_far_set_size; 598 599 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 600 last_far_set_start *= geo->far_set_size; 601 602 last_far_set_size = geo->far_set_size; 603 last_far_set_size += (geo->raid_disks % geo->far_set_size); 604 605 /* now calculate first sector/dev */ 606 chunk = r10bio->sector >> geo->chunk_shift; 607 sector = r10bio->sector & geo->chunk_mask; 608 609 chunk *= geo->near_copies; 610 stripe = chunk; 611 dev = sector_div(stripe, geo->raid_disks); 612 if (geo->far_offset) 613 stripe *= geo->far_copies; 614 615 sector += stripe << geo->chunk_shift; 616 617 /* and calculate all the others */ 618 for (n = 0; n < geo->near_copies; n++) { 619 int d = dev; 620 int set; 621 sector_t s = sector; 622 r10bio->devs[slot].devnum = d; 623 r10bio->devs[slot].addr = s; 624 slot++; 625 626 for (f = 1; f < geo->far_copies; f++) { 627 set = d / geo->far_set_size; 628 d += geo->near_copies; 629 630 if ((geo->raid_disks % geo->far_set_size) && 631 (d > last_far_set_start)) { 632 d -= last_far_set_start; 633 d %= last_far_set_size; 634 d += last_far_set_start; 635 } else { 636 d %= geo->far_set_size; 637 d += geo->far_set_size * set; 638 } 639 s += geo->stride; 640 r10bio->devs[slot].devnum = d; 641 r10bio->devs[slot].addr = s; 642 slot++; 643 } 644 dev++; 645 if (dev >= geo->raid_disks) { 646 dev = 0; 647 sector += (geo->chunk_mask + 1); 648 } 649 } 650 } 651 652 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 653 { 654 struct geom *geo = &conf->geo; 655 656 if (conf->reshape_progress != MaxSector && 657 ((r10bio->sector >= conf->reshape_progress) != 658 conf->mddev->reshape_backwards)) { 659 set_bit(R10BIO_Previous, &r10bio->state); 660 geo = &conf->prev; 661 } else 662 clear_bit(R10BIO_Previous, &r10bio->state); 663 664 __raid10_find_phys(geo, r10bio); 665 } 666 667 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 668 { 669 sector_t offset, chunk, vchunk; 670 /* Never use conf->prev as this is only called during resync 671 * or recovery, so reshape isn't happening 672 */ 673 struct geom *geo = &conf->geo; 674 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 675 int far_set_size = geo->far_set_size; 676 int last_far_set_start; 677 678 if (geo->raid_disks % geo->far_set_size) { 679 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 680 last_far_set_start *= geo->far_set_size; 681 682 if (dev >= last_far_set_start) { 683 far_set_size = geo->far_set_size; 684 far_set_size += (geo->raid_disks % geo->far_set_size); 685 far_set_start = last_far_set_start; 686 } 687 } 688 689 offset = sector & geo->chunk_mask; 690 if (geo->far_offset) { 691 int fc; 692 chunk = sector >> geo->chunk_shift; 693 fc = sector_div(chunk, geo->far_copies); 694 dev -= fc * geo->near_copies; 695 if (dev < far_set_start) 696 dev += far_set_size; 697 } else { 698 while (sector >= geo->stride) { 699 sector -= geo->stride; 700 if (dev < (geo->near_copies + far_set_start)) 701 dev += far_set_size - geo->near_copies; 702 else 703 dev -= geo->near_copies; 704 } 705 chunk = sector >> geo->chunk_shift; 706 } 707 vchunk = chunk * geo->raid_disks + dev; 708 sector_div(vchunk, geo->near_copies); 709 return (vchunk << geo->chunk_shift) + offset; 710 } 711 712 /* 713 * This routine returns the disk from which the requested read should 714 * be done. There is a per-array 'next expected sequential IO' sector 715 * number - if this matches on the next IO then we use the last disk. 716 * There is also a per-disk 'last know head position' sector that is 717 * maintained from IRQ contexts, both the normal and the resync IO 718 * completion handlers update this position correctly. If there is no 719 * perfect sequential match then we pick the disk whose head is closest. 720 * 721 * If there are 2 mirrors in the same 2 devices, performance degrades 722 * because position is mirror, not device based. 723 * 724 * The rdev for the device selected will have nr_pending incremented. 725 */ 726 727 /* 728 * FIXME: possibly should rethink readbalancing and do it differently 729 * depending on near_copies / far_copies geometry. 730 */ 731 static struct md_rdev *read_balance(struct r10conf *conf, 732 struct r10bio *r10_bio, 733 int *max_sectors) 734 { 735 const sector_t this_sector = r10_bio->sector; 736 int disk, slot; 737 int sectors = r10_bio->sectors; 738 int best_good_sectors; 739 sector_t new_distance, best_dist; 740 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 741 int do_balance; 742 int best_dist_slot, best_pending_slot; 743 bool has_nonrot_disk = false; 744 unsigned int min_pending; 745 struct geom *geo = &conf->geo; 746 747 raid10_find_phys(conf, r10_bio); 748 rcu_read_lock(); 749 best_dist_slot = -1; 750 min_pending = UINT_MAX; 751 best_dist_rdev = NULL; 752 best_pending_rdev = NULL; 753 best_dist = MaxSector; 754 best_good_sectors = 0; 755 do_balance = 1; 756 clear_bit(R10BIO_FailFast, &r10_bio->state); 757 /* 758 * Check if we can balance. We can balance on the whole 759 * device if no resync is going on (recovery is ok), or below 760 * the resync window. We take the first readable disk when 761 * above the resync window. 762 */ 763 if ((conf->mddev->recovery_cp < MaxSector 764 && (this_sector + sectors >= conf->next_resync)) || 765 (mddev_is_clustered(conf->mddev) && 766 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 767 this_sector + sectors))) 768 do_balance = 0; 769 770 for (slot = 0; slot < conf->copies ; slot++) { 771 sector_t first_bad; 772 int bad_sectors; 773 sector_t dev_sector; 774 unsigned int pending; 775 bool nonrot; 776 777 if (r10_bio->devs[slot].bio == IO_BLOCKED) 778 continue; 779 disk = r10_bio->devs[slot].devnum; 780 rdev = rcu_dereference(conf->mirrors[disk].replacement); 781 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 782 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 783 rdev = rcu_dereference(conf->mirrors[disk].rdev); 784 if (rdev == NULL || 785 test_bit(Faulty, &rdev->flags)) 786 continue; 787 if (!test_bit(In_sync, &rdev->flags) && 788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 789 continue; 790 791 dev_sector = r10_bio->devs[slot].addr; 792 if (is_badblock(rdev, dev_sector, sectors, 793 &first_bad, &bad_sectors)) { 794 if (best_dist < MaxSector) 795 /* Already have a better slot */ 796 continue; 797 if (first_bad <= dev_sector) { 798 /* Cannot read here. If this is the 799 * 'primary' device, then we must not read 800 * beyond 'bad_sectors' from another device. 801 */ 802 bad_sectors -= (dev_sector - first_bad); 803 if (!do_balance && sectors > bad_sectors) 804 sectors = bad_sectors; 805 if (best_good_sectors > sectors) 806 best_good_sectors = sectors; 807 } else { 808 sector_t good_sectors = 809 first_bad - dev_sector; 810 if (good_sectors > best_good_sectors) { 811 best_good_sectors = good_sectors; 812 best_dist_slot = slot; 813 best_dist_rdev = rdev; 814 } 815 if (!do_balance) 816 /* Must read from here */ 817 break; 818 } 819 continue; 820 } else 821 best_good_sectors = sectors; 822 823 if (!do_balance) 824 break; 825 826 nonrot = bdev_nonrot(rdev->bdev); 827 has_nonrot_disk |= nonrot; 828 pending = atomic_read(&rdev->nr_pending); 829 if (min_pending > pending && nonrot) { 830 min_pending = pending; 831 best_pending_slot = slot; 832 best_pending_rdev = rdev; 833 } 834 835 if (best_dist_slot >= 0) 836 /* At least 2 disks to choose from so failfast is OK */ 837 set_bit(R10BIO_FailFast, &r10_bio->state); 838 /* This optimisation is debatable, and completely destroys 839 * sequential read speed for 'far copies' arrays. So only 840 * keep it for 'near' arrays, and review those later. 841 */ 842 if (geo->near_copies > 1 && !pending) 843 new_distance = 0; 844 845 /* for far > 1 always use the lowest address */ 846 else if (geo->far_copies > 1) 847 new_distance = r10_bio->devs[slot].addr; 848 else 849 new_distance = abs(r10_bio->devs[slot].addr - 850 conf->mirrors[disk].head_position); 851 852 if (new_distance < best_dist) { 853 best_dist = new_distance; 854 best_dist_slot = slot; 855 best_dist_rdev = rdev; 856 } 857 } 858 if (slot >= conf->copies) { 859 if (has_nonrot_disk) { 860 slot = best_pending_slot; 861 rdev = best_pending_rdev; 862 } else { 863 slot = best_dist_slot; 864 rdev = best_dist_rdev; 865 } 866 } 867 868 if (slot >= 0) { 869 atomic_inc(&rdev->nr_pending); 870 r10_bio->read_slot = slot; 871 } else 872 rdev = NULL; 873 rcu_read_unlock(); 874 *max_sectors = best_good_sectors; 875 876 return rdev; 877 } 878 879 static void flush_pending_writes(struct r10conf *conf) 880 { 881 /* Any writes that have been queued but are awaiting 882 * bitmap updates get flushed here. 883 */ 884 spin_lock_irq(&conf->device_lock); 885 886 if (conf->pending_bio_list.head) { 887 struct blk_plug plug; 888 struct bio *bio; 889 890 bio = bio_list_get(&conf->pending_bio_list); 891 spin_unlock_irq(&conf->device_lock); 892 893 /* 894 * As this is called in a wait_event() loop (see freeze_array), 895 * current->state might be TASK_UNINTERRUPTIBLE which will 896 * cause a warning when we prepare to wait again. As it is 897 * rare that this path is taken, it is perfectly safe to force 898 * us to go around the wait_event() loop again, so the warning 899 * is a false-positive. Silence the warning by resetting 900 * thread state 901 */ 902 __set_current_state(TASK_RUNNING); 903 904 blk_start_plug(&plug); 905 /* flush any pending bitmap writes to disk 906 * before proceeding w/ I/O */ 907 md_bitmap_unplug(conf->mddev->bitmap); 908 wake_up(&conf->wait_barrier); 909 910 while (bio) { /* submit pending writes */ 911 struct bio *next = bio->bi_next; 912 struct md_rdev *rdev = (void*)bio->bi_bdev; 913 bio->bi_next = NULL; 914 bio_set_dev(bio, rdev->bdev); 915 if (test_bit(Faulty, &rdev->flags)) { 916 bio_io_error(bio); 917 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 918 !bdev_max_discard_sectors(bio->bi_bdev))) 919 /* Just ignore it */ 920 bio_endio(bio); 921 else 922 submit_bio_noacct(bio); 923 bio = next; 924 } 925 blk_finish_plug(&plug); 926 } else 927 spin_unlock_irq(&conf->device_lock); 928 } 929 930 /* Barriers.... 931 * Sometimes we need to suspend IO while we do something else, 932 * either some resync/recovery, or reconfigure the array. 933 * To do this we raise a 'barrier'. 934 * The 'barrier' is a counter that can be raised multiple times 935 * to count how many activities are happening which preclude 936 * normal IO. 937 * We can only raise the barrier if there is no pending IO. 938 * i.e. if nr_pending == 0. 939 * We choose only to raise the barrier if no-one is waiting for the 940 * barrier to go down. This means that as soon as an IO request 941 * is ready, no other operations which require a barrier will start 942 * until the IO request has had a chance. 943 * 944 * So: regular IO calls 'wait_barrier'. When that returns there 945 * is no backgroup IO happening, It must arrange to call 946 * allow_barrier when it has finished its IO. 947 * backgroup IO calls must call raise_barrier. Once that returns 948 * there is no normal IO happeing. It must arrange to call 949 * lower_barrier when the particular background IO completes. 950 */ 951 952 static void raise_barrier(struct r10conf *conf, int force) 953 { 954 write_seqlock_irq(&conf->resync_lock); 955 956 if (WARN_ON_ONCE(force && !conf->barrier)) 957 force = false; 958 959 /* Wait until no block IO is waiting (unless 'force') */ 960 wait_event_barrier(conf, force || !conf->nr_waiting); 961 962 /* block any new IO from starting */ 963 WRITE_ONCE(conf->barrier, conf->barrier + 1); 964 965 /* Now wait for all pending IO to complete */ 966 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 967 conf->barrier < RESYNC_DEPTH); 968 969 write_sequnlock_irq(&conf->resync_lock); 970 } 971 972 static void lower_barrier(struct r10conf *conf) 973 { 974 unsigned long flags; 975 976 write_seqlock_irqsave(&conf->resync_lock, flags); 977 WRITE_ONCE(conf->barrier, conf->barrier - 1); 978 write_sequnlock_irqrestore(&conf->resync_lock, flags); 979 wake_up(&conf->wait_barrier); 980 } 981 982 static bool stop_waiting_barrier(struct r10conf *conf) 983 { 984 struct bio_list *bio_list = current->bio_list; 985 986 /* barrier is dropped */ 987 if (!conf->barrier) 988 return true; 989 990 /* 991 * If there are already pending requests (preventing the barrier from 992 * rising completely), and the pre-process bio queue isn't empty, then 993 * don't wait, as we need to empty that queue to get the nr_pending 994 * count down. 995 */ 996 if (atomic_read(&conf->nr_pending) && bio_list && 997 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 998 return true; 999 1000 /* 1001 * move on if io is issued from raid10d(), nr_pending is not released 1002 * from original io(see handle_read_error()). All raise barrier is 1003 * blocked until this io is done. 1004 */ 1005 if (conf->mddev->thread->tsk == current) { 1006 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 1007 return true; 1008 } 1009 1010 return false; 1011 } 1012 1013 static bool wait_barrier_nolock(struct r10conf *conf) 1014 { 1015 unsigned int seq = read_seqbegin(&conf->resync_lock); 1016 1017 if (READ_ONCE(conf->barrier)) 1018 return false; 1019 1020 atomic_inc(&conf->nr_pending); 1021 if (!read_seqretry(&conf->resync_lock, seq)) 1022 return true; 1023 1024 if (atomic_dec_and_test(&conf->nr_pending)) 1025 wake_up_barrier(conf); 1026 1027 return false; 1028 } 1029 1030 static bool wait_barrier(struct r10conf *conf, bool nowait) 1031 { 1032 bool ret = true; 1033 1034 if (wait_barrier_nolock(conf)) 1035 return true; 1036 1037 write_seqlock_irq(&conf->resync_lock); 1038 if (conf->barrier) { 1039 /* Return false when nowait flag is set */ 1040 if (nowait) { 1041 ret = false; 1042 } else { 1043 conf->nr_waiting++; 1044 raid10_log(conf->mddev, "wait barrier"); 1045 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1046 conf->nr_waiting--; 1047 } 1048 if (!conf->nr_waiting) 1049 wake_up(&conf->wait_barrier); 1050 } 1051 /* Only increment nr_pending when we wait */ 1052 if (ret) 1053 atomic_inc(&conf->nr_pending); 1054 write_sequnlock_irq(&conf->resync_lock); 1055 return ret; 1056 } 1057 1058 static void allow_barrier(struct r10conf *conf) 1059 { 1060 if ((atomic_dec_and_test(&conf->nr_pending)) || 1061 (conf->array_freeze_pending)) 1062 wake_up_barrier(conf); 1063 } 1064 1065 static void freeze_array(struct r10conf *conf, int extra) 1066 { 1067 /* stop syncio and normal IO and wait for everything to 1068 * go quiet. 1069 * We increment barrier and nr_waiting, and then 1070 * wait until nr_pending match nr_queued+extra 1071 * This is called in the context of one normal IO request 1072 * that has failed. Thus any sync request that might be pending 1073 * will be blocked by nr_pending, and we need to wait for 1074 * pending IO requests to complete or be queued for re-try. 1075 * Thus the number queued (nr_queued) plus this request (extra) 1076 * must match the number of pending IOs (nr_pending) before 1077 * we continue. 1078 */ 1079 write_seqlock_irq(&conf->resync_lock); 1080 conf->array_freeze_pending++; 1081 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1082 conf->nr_waiting++; 1083 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1084 conf->nr_queued + extra, flush_pending_writes(conf)); 1085 conf->array_freeze_pending--; 1086 write_sequnlock_irq(&conf->resync_lock); 1087 } 1088 1089 static void unfreeze_array(struct r10conf *conf) 1090 { 1091 /* reverse the effect of the freeze */ 1092 write_seqlock_irq(&conf->resync_lock); 1093 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1094 conf->nr_waiting--; 1095 wake_up(&conf->wait_barrier); 1096 write_sequnlock_irq(&conf->resync_lock); 1097 } 1098 1099 static sector_t choose_data_offset(struct r10bio *r10_bio, 1100 struct md_rdev *rdev) 1101 { 1102 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1103 test_bit(R10BIO_Previous, &r10_bio->state)) 1104 return rdev->data_offset; 1105 else 1106 return rdev->new_data_offset; 1107 } 1108 1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1110 { 1111 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1112 struct mddev *mddev = plug->cb.data; 1113 struct r10conf *conf = mddev->private; 1114 struct bio *bio; 1115 1116 if (from_schedule || current->bio_list) { 1117 spin_lock_irq(&conf->device_lock); 1118 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1119 spin_unlock_irq(&conf->device_lock); 1120 wake_up(&conf->wait_barrier); 1121 md_wakeup_thread(mddev->thread); 1122 kfree(plug); 1123 return; 1124 } 1125 1126 /* we aren't scheduling, so we can do the write-out directly. */ 1127 bio = bio_list_get(&plug->pending); 1128 md_bitmap_unplug(mddev->bitmap); 1129 wake_up(&conf->wait_barrier); 1130 1131 while (bio) { /* submit pending writes */ 1132 struct bio *next = bio->bi_next; 1133 struct md_rdev *rdev = (void*)bio->bi_bdev; 1134 bio->bi_next = NULL; 1135 bio_set_dev(bio, rdev->bdev); 1136 if (test_bit(Faulty, &rdev->flags)) { 1137 bio_io_error(bio); 1138 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1139 !bdev_max_discard_sectors(bio->bi_bdev))) 1140 /* Just ignore it */ 1141 bio_endio(bio); 1142 else 1143 submit_bio_noacct(bio); 1144 bio = next; 1145 } 1146 kfree(plug); 1147 } 1148 1149 /* 1150 * 1. Register the new request and wait if the reconstruction thread has put 1151 * up a bar for new requests. Continue immediately if no resync is active 1152 * currently. 1153 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1154 */ 1155 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1156 struct bio *bio, sector_t sectors) 1157 { 1158 /* Bail out if REQ_NOWAIT is set for the bio */ 1159 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1160 bio_wouldblock_error(bio); 1161 return false; 1162 } 1163 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1164 bio->bi_iter.bi_sector < conf->reshape_progress && 1165 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1166 allow_barrier(conf); 1167 if (bio->bi_opf & REQ_NOWAIT) { 1168 bio_wouldblock_error(bio); 1169 return false; 1170 } 1171 raid10_log(conf->mddev, "wait reshape"); 1172 wait_event(conf->wait_barrier, 1173 conf->reshape_progress <= bio->bi_iter.bi_sector || 1174 conf->reshape_progress >= bio->bi_iter.bi_sector + 1175 sectors); 1176 wait_barrier(conf, false); 1177 } 1178 return true; 1179 } 1180 1181 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1182 struct r10bio *r10_bio) 1183 { 1184 struct r10conf *conf = mddev->private; 1185 struct bio *read_bio; 1186 const enum req_op op = bio_op(bio); 1187 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1188 int max_sectors; 1189 struct md_rdev *rdev; 1190 char b[BDEVNAME_SIZE]; 1191 int slot = r10_bio->read_slot; 1192 struct md_rdev *err_rdev = NULL; 1193 gfp_t gfp = GFP_NOIO; 1194 1195 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1196 /* 1197 * This is an error retry, but we cannot 1198 * safely dereference the rdev in the r10_bio, 1199 * we must use the one in conf. 1200 * If it has already been disconnected (unlikely) 1201 * we lose the device name in error messages. 1202 */ 1203 int disk; 1204 /* 1205 * As we are blocking raid10, it is a little safer to 1206 * use __GFP_HIGH. 1207 */ 1208 gfp = GFP_NOIO | __GFP_HIGH; 1209 1210 rcu_read_lock(); 1211 disk = r10_bio->devs[slot].devnum; 1212 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1213 if (err_rdev) 1214 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1215 else { 1216 strcpy(b, "???"); 1217 /* This never gets dereferenced */ 1218 err_rdev = r10_bio->devs[slot].rdev; 1219 } 1220 rcu_read_unlock(); 1221 } 1222 1223 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1224 return; 1225 rdev = read_balance(conf, r10_bio, &max_sectors); 1226 if (!rdev) { 1227 if (err_rdev) { 1228 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1229 mdname(mddev), b, 1230 (unsigned long long)r10_bio->sector); 1231 } 1232 raid_end_bio_io(r10_bio); 1233 return; 1234 } 1235 if (err_rdev) 1236 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1237 mdname(mddev), 1238 rdev->bdev, 1239 (unsigned long long)r10_bio->sector); 1240 if (max_sectors < bio_sectors(bio)) { 1241 struct bio *split = bio_split(bio, max_sectors, 1242 gfp, &conf->bio_split); 1243 bio_chain(split, bio); 1244 allow_barrier(conf); 1245 submit_bio_noacct(bio); 1246 wait_barrier(conf, false); 1247 bio = split; 1248 r10_bio->master_bio = bio; 1249 r10_bio->sectors = max_sectors; 1250 } 1251 slot = r10_bio->read_slot; 1252 1253 if (!r10_bio->start_time && 1254 blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1255 r10_bio->start_time = bio_start_io_acct(bio); 1256 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1257 1258 r10_bio->devs[slot].bio = read_bio; 1259 r10_bio->devs[slot].rdev = rdev; 1260 1261 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1262 choose_data_offset(r10_bio, rdev); 1263 read_bio->bi_end_io = raid10_end_read_request; 1264 read_bio->bi_opf = op | do_sync; 1265 if (test_bit(FailFast, &rdev->flags) && 1266 test_bit(R10BIO_FailFast, &r10_bio->state)) 1267 read_bio->bi_opf |= MD_FAILFAST; 1268 read_bio->bi_private = r10_bio; 1269 1270 if (mddev->gendisk) 1271 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1272 r10_bio->sector); 1273 submit_bio_noacct(read_bio); 1274 return; 1275 } 1276 1277 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1278 struct bio *bio, bool replacement, 1279 int n_copy) 1280 { 1281 const enum req_op op = bio_op(bio); 1282 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1283 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA; 1284 unsigned long flags; 1285 struct blk_plug_cb *cb; 1286 struct raid1_plug_cb *plug = NULL; 1287 struct r10conf *conf = mddev->private; 1288 struct md_rdev *rdev; 1289 int devnum = r10_bio->devs[n_copy].devnum; 1290 struct bio *mbio; 1291 1292 if (replacement) { 1293 rdev = conf->mirrors[devnum].replacement; 1294 if (rdev == NULL) { 1295 /* Replacement just got moved to main 'rdev' */ 1296 smp_mb(); 1297 rdev = conf->mirrors[devnum].rdev; 1298 } 1299 } else 1300 rdev = conf->mirrors[devnum].rdev; 1301 1302 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1303 if (replacement) 1304 r10_bio->devs[n_copy].repl_bio = mbio; 1305 else 1306 r10_bio->devs[n_copy].bio = mbio; 1307 1308 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1309 choose_data_offset(r10_bio, rdev)); 1310 mbio->bi_end_io = raid10_end_write_request; 1311 mbio->bi_opf = op | do_sync | do_fua; 1312 if (!replacement && test_bit(FailFast, 1313 &conf->mirrors[devnum].rdev->flags) 1314 && enough(conf, devnum)) 1315 mbio->bi_opf |= MD_FAILFAST; 1316 mbio->bi_private = r10_bio; 1317 1318 if (conf->mddev->gendisk) 1319 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk), 1320 r10_bio->sector); 1321 /* flush_pending_writes() needs access to the rdev so...*/ 1322 mbio->bi_bdev = (void *)rdev; 1323 1324 atomic_inc(&r10_bio->remaining); 1325 1326 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1327 if (cb) 1328 plug = container_of(cb, struct raid1_plug_cb, cb); 1329 else 1330 plug = NULL; 1331 if (plug) { 1332 bio_list_add(&plug->pending, mbio); 1333 } else { 1334 spin_lock_irqsave(&conf->device_lock, flags); 1335 bio_list_add(&conf->pending_bio_list, mbio); 1336 spin_unlock_irqrestore(&conf->device_lock, flags); 1337 md_wakeup_thread(mddev->thread); 1338 } 1339 } 1340 1341 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1342 { 1343 int i; 1344 struct r10conf *conf = mddev->private; 1345 struct md_rdev *blocked_rdev; 1346 1347 retry_wait: 1348 blocked_rdev = NULL; 1349 rcu_read_lock(); 1350 for (i = 0; i < conf->copies; i++) { 1351 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1352 struct md_rdev *rrdev = rcu_dereference( 1353 conf->mirrors[i].replacement); 1354 if (rdev == rrdev) 1355 rrdev = NULL; 1356 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1357 atomic_inc(&rdev->nr_pending); 1358 blocked_rdev = rdev; 1359 break; 1360 } 1361 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1362 atomic_inc(&rrdev->nr_pending); 1363 blocked_rdev = rrdev; 1364 break; 1365 } 1366 1367 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1368 sector_t first_bad; 1369 sector_t dev_sector = r10_bio->devs[i].addr; 1370 int bad_sectors; 1371 int is_bad; 1372 1373 /* 1374 * Discard request doesn't care the write result 1375 * so it doesn't need to wait blocked disk here. 1376 */ 1377 if (!r10_bio->sectors) 1378 continue; 1379 1380 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors, 1381 &first_bad, &bad_sectors); 1382 if (is_bad < 0) { 1383 /* 1384 * Mustn't write here until the bad block 1385 * is acknowledged 1386 */ 1387 atomic_inc(&rdev->nr_pending); 1388 set_bit(BlockedBadBlocks, &rdev->flags); 1389 blocked_rdev = rdev; 1390 break; 1391 } 1392 } 1393 } 1394 rcu_read_unlock(); 1395 1396 if (unlikely(blocked_rdev)) { 1397 /* Have to wait for this device to get unblocked, then retry */ 1398 allow_barrier(conf); 1399 raid10_log(conf->mddev, "%s wait rdev %d blocked", 1400 __func__, blocked_rdev->raid_disk); 1401 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1402 wait_barrier(conf, false); 1403 goto retry_wait; 1404 } 1405 } 1406 1407 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1408 struct r10bio *r10_bio) 1409 { 1410 struct r10conf *conf = mddev->private; 1411 int i; 1412 sector_t sectors; 1413 int max_sectors; 1414 1415 if ((mddev_is_clustered(mddev) && 1416 md_cluster_ops->area_resyncing(mddev, WRITE, 1417 bio->bi_iter.bi_sector, 1418 bio_end_sector(bio)))) { 1419 DEFINE_WAIT(w); 1420 /* Bail out if REQ_NOWAIT is set for the bio */ 1421 if (bio->bi_opf & REQ_NOWAIT) { 1422 bio_wouldblock_error(bio); 1423 return; 1424 } 1425 for (;;) { 1426 prepare_to_wait(&conf->wait_barrier, 1427 &w, TASK_IDLE); 1428 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1429 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1430 break; 1431 schedule(); 1432 } 1433 finish_wait(&conf->wait_barrier, &w); 1434 } 1435 1436 sectors = r10_bio->sectors; 1437 if (!regular_request_wait(mddev, conf, bio, sectors)) 1438 return; 1439 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1440 (mddev->reshape_backwards 1441 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1442 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1443 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1444 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1445 /* Need to update reshape_position in metadata */ 1446 mddev->reshape_position = conf->reshape_progress; 1447 set_mask_bits(&mddev->sb_flags, 0, 1448 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1449 md_wakeup_thread(mddev->thread); 1450 if (bio->bi_opf & REQ_NOWAIT) { 1451 allow_barrier(conf); 1452 bio_wouldblock_error(bio); 1453 return; 1454 } 1455 raid10_log(conf->mddev, "wait reshape metadata"); 1456 wait_event(mddev->sb_wait, 1457 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1458 1459 conf->reshape_safe = mddev->reshape_position; 1460 } 1461 1462 /* first select target devices under rcu_lock and 1463 * inc refcount on their rdev. Record them by setting 1464 * bios[x] to bio 1465 * If there are known/acknowledged bad blocks on any device 1466 * on which we have seen a write error, we want to avoid 1467 * writing to those blocks. This potentially requires several 1468 * writes to write around the bad blocks. Each set of writes 1469 * gets its own r10_bio with a set of bios attached. 1470 */ 1471 1472 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1473 raid10_find_phys(conf, r10_bio); 1474 1475 wait_blocked_dev(mddev, r10_bio); 1476 1477 rcu_read_lock(); 1478 max_sectors = r10_bio->sectors; 1479 1480 for (i = 0; i < conf->copies; i++) { 1481 int d = r10_bio->devs[i].devnum; 1482 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1483 struct md_rdev *rrdev = rcu_dereference( 1484 conf->mirrors[d].replacement); 1485 if (rdev == rrdev) 1486 rrdev = NULL; 1487 if (rdev && (test_bit(Faulty, &rdev->flags))) 1488 rdev = NULL; 1489 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1490 rrdev = NULL; 1491 1492 r10_bio->devs[i].bio = NULL; 1493 r10_bio->devs[i].repl_bio = NULL; 1494 1495 if (!rdev && !rrdev) { 1496 set_bit(R10BIO_Degraded, &r10_bio->state); 1497 continue; 1498 } 1499 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1500 sector_t first_bad; 1501 sector_t dev_sector = r10_bio->devs[i].addr; 1502 int bad_sectors; 1503 int is_bad; 1504 1505 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1506 &first_bad, &bad_sectors); 1507 if (is_bad && first_bad <= dev_sector) { 1508 /* Cannot write here at all */ 1509 bad_sectors -= (dev_sector - first_bad); 1510 if (bad_sectors < max_sectors) 1511 /* Mustn't write more than bad_sectors 1512 * to other devices yet 1513 */ 1514 max_sectors = bad_sectors; 1515 /* We don't set R10BIO_Degraded as that 1516 * only applies if the disk is missing, 1517 * so it might be re-added, and we want to 1518 * know to recover this chunk. 1519 * In this case the device is here, and the 1520 * fact that this chunk is not in-sync is 1521 * recorded in the bad block log. 1522 */ 1523 continue; 1524 } 1525 if (is_bad) { 1526 int good_sectors = first_bad - dev_sector; 1527 if (good_sectors < max_sectors) 1528 max_sectors = good_sectors; 1529 } 1530 } 1531 if (rdev) { 1532 r10_bio->devs[i].bio = bio; 1533 atomic_inc(&rdev->nr_pending); 1534 } 1535 if (rrdev) { 1536 r10_bio->devs[i].repl_bio = bio; 1537 atomic_inc(&rrdev->nr_pending); 1538 } 1539 } 1540 rcu_read_unlock(); 1541 1542 if (max_sectors < r10_bio->sectors) 1543 r10_bio->sectors = max_sectors; 1544 1545 if (r10_bio->sectors < bio_sectors(bio)) { 1546 struct bio *split = bio_split(bio, r10_bio->sectors, 1547 GFP_NOIO, &conf->bio_split); 1548 bio_chain(split, bio); 1549 allow_barrier(conf); 1550 submit_bio_noacct(bio); 1551 wait_barrier(conf, false); 1552 bio = split; 1553 r10_bio->master_bio = bio; 1554 } 1555 1556 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1557 r10_bio->start_time = bio_start_io_acct(bio); 1558 atomic_set(&r10_bio->remaining, 1); 1559 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1560 1561 for (i = 0; i < conf->copies; i++) { 1562 if (r10_bio->devs[i].bio) 1563 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1564 if (r10_bio->devs[i].repl_bio) 1565 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1566 } 1567 one_write_done(r10_bio); 1568 } 1569 1570 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1571 { 1572 struct r10conf *conf = mddev->private; 1573 struct r10bio *r10_bio; 1574 1575 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1576 1577 r10_bio->master_bio = bio; 1578 r10_bio->sectors = sectors; 1579 1580 r10_bio->mddev = mddev; 1581 r10_bio->sector = bio->bi_iter.bi_sector; 1582 r10_bio->state = 0; 1583 r10_bio->read_slot = -1; 1584 r10_bio->start_time = 0; 1585 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1586 conf->geo.raid_disks); 1587 1588 if (bio_data_dir(bio) == READ) 1589 raid10_read_request(mddev, bio, r10_bio); 1590 else 1591 raid10_write_request(mddev, bio, r10_bio); 1592 } 1593 1594 static void raid_end_discard_bio(struct r10bio *r10bio) 1595 { 1596 struct r10conf *conf = r10bio->mddev->private; 1597 struct r10bio *first_r10bio; 1598 1599 while (atomic_dec_and_test(&r10bio->remaining)) { 1600 1601 allow_barrier(conf); 1602 1603 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1604 first_r10bio = (struct r10bio *)r10bio->master_bio; 1605 free_r10bio(r10bio); 1606 r10bio = first_r10bio; 1607 } else { 1608 md_write_end(r10bio->mddev); 1609 bio_endio(r10bio->master_bio); 1610 free_r10bio(r10bio); 1611 break; 1612 } 1613 } 1614 } 1615 1616 static void raid10_end_discard_request(struct bio *bio) 1617 { 1618 struct r10bio *r10_bio = bio->bi_private; 1619 struct r10conf *conf = r10_bio->mddev->private; 1620 struct md_rdev *rdev = NULL; 1621 int dev; 1622 int slot, repl; 1623 1624 /* 1625 * We don't care the return value of discard bio 1626 */ 1627 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1628 set_bit(R10BIO_Uptodate, &r10_bio->state); 1629 1630 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1631 if (repl) 1632 rdev = conf->mirrors[dev].replacement; 1633 if (!rdev) { 1634 /* 1635 * raid10_remove_disk uses smp_mb to make sure rdev is set to 1636 * replacement before setting replacement to NULL. It can read 1637 * rdev first without barrier protect even replacement is NULL 1638 */ 1639 smp_rmb(); 1640 rdev = conf->mirrors[dev].rdev; 1641 } 1642 1643 raid_end_discard_bio(r10_bio); 1644 rdev_dec_pending(rdev, conf->mddev); 1645 } 1646 1647 /* 1648 * There are some limitations to handle discard bio 1649 * 1st, the discard size is bigger than stripe_size*2. 1650 * 2st, if the discard bio spans reshape progress, we use the old way to 1651 * handle discard bio 1652 */ 1653 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1654 { 1655 struct r10conf *conf = mddev->private; 1656 struct geom *geo = &conf->geo; 1657 int far_copies = geo->far_copies; 1658 bool first_copy = true; 1659 struct r10bio *r10_bio, *first_r10bio; 1660 struct bio *split; 1661 int disk; 1662 sector_t chunk; 1663 unsigned int stripe_size; 1664 unsigned int stripe_data_disks; 1665 sector_t split_size; 1666 sector_t bio_start, bio_end; 1667 sector_t first_stripe_index, last_stripe_index; 1668 sector_t start_disk_offset; 1669 unsigned int start_disk_index; 1670 sector_t end_disk_offset; 1671 unsigned int end_disk_index; 1672 unsigned int remainder; 1673 1674 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1675 return -EAGAIN; 1676 1677 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { 1678 bio_wouldblock_error(bio); 1679 return 0; 1680 } 1681 wait_barrier(conf, false); 1682 1683 /* 1684 * Check reshape again to avoid reshape happens after checking 1685 * MD_RECOVERY_RESHAPE and before wait_barrier 1686 */ 1687 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1688 goto out; 1689 1690 if (geo->near_copies) 1691 stripe_data_disks = geo->raid_disks / geo->near_copies + 1692 geo->raid_disks % geo->near_copies; 1693 else 1694 stripe_data_disks = geo->raid_disks; 1695 1696 stripe_size = stripe_data_disks << geo->chunk_shift; 1697 1698 bio_start = bio->bi_iter.bi_sector; 1699 bio_end = bio_end_sector(bio); 1700 1701 /* 1702 * Maybe one discard bio is smaller than strip size or across one 1703 * stripe and discard region is larger than one stripe size. For far 1704 * offset layout, if the discard region is not aligned with stripe 1705 * size, there is hole when we submit discard bio to member disk. 1706 * For simplicity, we only handle discard bio which discard region 1707 * is bigger than stripe_size * 2 1708 */ 1709 if (bio_sectors(bio) < stripe_size*2) 1710 goto out; 1711 1712 /* 1713 * Keep bio aligned with strip size. 1714 */ 1715 div_u64_rem(bio_start, stripe_size, &remainder); 1716 if (remainder) { 1717 split_size = stripe_size - remainder; 1718 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1719 bio_chain(split, bio); 1720 allow_barrier(conf); 1721 /* Resend the fist split part */ 1722 submit_bio_noacct(split); 1723 wait_barrier(conf, false); 1724 } 1725 div_u64_rem(bio_end, stripe_size, &remainder); 1726 if (remainder) { 1727 split_size = bio_sectors(bio) - remainder; 1728 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1729 bio_chain(split, bio); 1730 allow_barrier(conf); 1731 /* Resend the second split part */ 1732 submit_bio_noacct(bio); 1733 bio = split; 1734 wait_barrier(conf, false); 1735 } 1736 1737 bio_start = bio->bi_iter.bi_sector; 1738 bio_end = bio_end_sector(bio); 1739 1740 /* 1741 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1742 * One stripe contains the chunks from all member disk (one chunk from 1743 * one disk at the same HBA address). For layout detail, see 'man md 4' 1744 */ 1745 chunk = bio_start >> geo->chunk_shift; 1746 chunk *= geo->near_copies; 1747 first_stripe_index = chunk; 1748 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1749 if (geo->far_offset) 1750 first_stripe_index *= geo->far_copies; 1751 start_disk_offset = (bio_start & geo->chunk_mask) + 1752 (first_stripe_index << geo->chunk_shift); 1753 1754 chunk = bio_end >> geo->chunk_shift; 1755 chunk *= geo->near_copies; 1756 last_stripe_index = chunk; 1757 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1758 if (geo->far_offset) 1759 last_stripe_index *= geo->far_copies; 1760 end_disk_offset = (bio_end & geo->chunk_mask) + 1761 (last_stripe_index << geo->chunk_shift); 1762 1763 retry_discard: 1764 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1765 r10_bio->mddev = mddev; 1766 r10_bio->state = 0; 1767 r10_bio->sectors = 0; 1768 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1769 wait_blocked_dev(mddev, r10_bio); 1770 1771 /* 1772 * For far layout it needs more than one r10bio to cover all regions. 1773 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1774 * to record the discard bio. Other r10bio->master_bio record the first 1775 * r10bio. The first r10bio only release after all other r10bios finish. 1776 * The discard bio returns only first r10bio finishes 1777 */ 1778 if (first_copy) { 1779 r10_bio->master_bio = bio; 1780 set_bit(R10BIO_Discard, &r10_bio->state); 1781 first_copy = false; 1782 first_r10bio = r10_bio; 1783 } else 1784 r10_bio->master_bio = (struct bio *)first_r10bio; 1785 1786 /* 1787 * first select target devices under rcu_lock and 1788 * inc refcount on their rdev. Record them by setting 1789 * bios[x] to bio 1790 */ 1791 rcu_read_lock(); 1792 for (disk = 0; disk < geo->raid_disks; disk++) { 1793 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev); 1794 struct md_rdev *rrdev = rcu_dereference( 1795 conf->mirrors[disk].replacement); 1796 1797 r10_bio->devs[disk].bio = NULL; 1798 r10_bio->devs[disk].repl_bio = NULL; 1799 1800 if (rdev && (test_bit(Faulty, &rdev->flags))) 1801 rdev = NULL; 1802 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1803 rrdev = NULL; 1804 if (!rdev && !rrdev) 1805 continue; 1806 1807 if (rdev) { 1808 r10_bio->devs[disk].bio = bio; 1809 atomic_inc(&rdev->nr_pending); 1810 } 1811 if (rrdev) { 1812 r10_bio->devs[disk].repl_bio = bio; 1813 atomic_inc(&rrdev->nr_pending); 1814 } 1815 } 1816 rcu_read_unlock(); 1817 1818 atomic_set(&r10_bio->remaining, 1); 1819 for (disk = 0; disk < geo->raid_disks; disk++) { 1820 sector_t dev_start, dev_end; 1821 struct bio *mbio, *rbio = NULL; 1822 1823 /* 1824 * Now start to calculate the start and end address for each disk. 1825 * The space between dev_start and dev_end is the discard region. 1826 * 1827 * For dev_start, it needs to consider three conditions: 1828 * 1st, the disk is before start_disk, you can imagine the disk in 1829 * the next stripe. So the dev_start is the start address of next 1830 * stripe. 1831 * 2st, the disk is after start_disk, it means the disk is at the 1832 * same stripe of first disk 1833 * 3st, the first disk itself, we can use start_disk_offset directly 1834 */ 1835 if (disk < start_disk_index) 1836 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1837 else if (disk > start_disk_index) 1838 dev_start = first_stripe_index * mddev->chunk_sectors; 1839 else 1840 dev_start = start_disk_offset; 1841 1842 if (disk < end_disk_index) 1843 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1844 else if (disk > end_disk_index) 1845 dev_end = last_stripe_index * mddev->chunk_sectors; 1846 else 1847 dev_end = end_disk_offset; 1848 1849 /* 1850 * It only handles discard bio which size is >= stripe size, so 1851 * dev_end > dev_start all the time. 1852 * It doesn't need to use rcu lock to get rdev here. We already 1853 * add rdev->nr_pending in the first loop. 1854 */ 1855 if (r10_bio->devs[disk].bio) { 1856 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1857 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1858 &mddev->bio_set); 1859 mbio->bi_end_io = raid10_end_discard_request; 1860 mbio->bi_private = r10_bio; 1861 r10_bio->devs[disk].bio = mbio; 1862 r10_bio->devs[disk].devnum = disk; 1863 atomic_inc(&r10_bio->remaining); 1864 md_submit_discard_bio(mddev, rdev, mbio, 1865 dev_start + choose_data_offset(r10_bio, rdev), 1866 dev_end - dev_start); 1867 bio_endio(mbio); 1868 } 1869 if (r10_bio->devs[disk].repl_bio) { 1870 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1871 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1872 &mddev->bio_set); 1873 rbio->bi_end_io = raid10_end_discard_request; 1874 rbio->bi_private = r10_bio; 1875 r10_bio->devs[disk].repl_bio = rbio; 1876 r10_bio->devs[disk].devnum = disk; 1877 atomic_inc(&r10_bio->remaining); 1878 md_submit_discard_bio(mddev, rrdev, rbio, 1879 dev_start + choose_data_offset(r10_bio, rrdev), 1880 dev_end - dev_start); 1881 bio_endio(rbio); 1882 } 1883 } 1884 1885 if (!geo->far_offset && --far_copies) { 1886 first_stripe_index += geo->stride >> geo->chunk_shift; 1887 start_disk_offset += geo->stride; 1888 last_stripe_index += geo->stride >> geo->chunk_shift; 1889 end_disk_offset += geo->stride; 1890 atomic_inc(&first_r10bio->remaining); 1891 raid_end_discard_bio(r10_bio); 1892 wait_barrier(conf, false); 1893 goto retry_discard; 1894 } 1895 1896 raid_end_discard_bio(r10_bio); 1897 1898 return 0; 1899 out: 1900 allow_barrier(conf); 1901 return -EAGAIN; 1902 } 1903 1904 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1905 { 1906 struct r10conf *conf = mddev->private; 1907 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1908 int chunk_sects = chunk_mask + 1; 1909 int sectors = bio_sectors(bio); 1910 1911 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1912 && md_flush_request(mddev, bio)) 1913 return true; 1914 1915 if (!md_write_start(mddev, bio)) 1916 return false; 1917 1918 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1919 if (!raid10_handle_discard(mddev, bio)) 1920 return true; 1921 1922 /* 1923 * If this request crosses a chunk boundary, we need to split 1924 * it. 1925 */ 1926 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1927 sectors > chunk_sects 1928 && (conf->geo.near_copies < conf->geo.raid_disks 1929 || conf->prev.near_copies < 1930 conf->prev.raid_disks))) 1931 sectors = chunk_sects - 1932 (bio->bi_iter.bi_sector & 1933 (chunk_sects - 1)); 1934 __make_request(mddev, bio, sectors); 1935 1936 /* In case raid10d snuck in to freeze_array */ 1937 wake_up_barrier(conf); 1938 return true; 1939 } 1940 1941 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1942 { 1943 struct r10conf *conf = mddev->private; 1944 int i; 1945 1946 if (conf->geo.near_copies < conf->geo.raid_disks) 1947 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1948 if (conf->geo.near_copies > 1) 1949 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1950 if (conf->geo.far_copies > 1) { 1951 if (conf->geo.far_offset) 1952 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1953 else 1954 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1955 if (conf->geo.far_set_size != conf->geo.raid_disks) 1956 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1957 } 1958 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1959 conf->geo.raid_disks - mddev->degraded); 1960 rcu_read_lock(); 1961 for (i = 0; i < conf->geo.raid_disks; i++) { 1962 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1963 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1964 } 1965 rcu_read_unlock(); 1966 seq_printf(seq, "]"); 1967 } 1968 1969 /* check if there are enough drives for 1970 * every block to appear on atleast one. 1971 * Don't consider the device numbered 'ignore' 1972 * as we might be about to remove it. 1973 */ 1974 static int _enough(struct r10conf *conf, int previous, int ignore) 1975 { 1976 int first = 0; 1977 int has_enough = 0; 1978 int disks, ncopies; 1979 if (previous) { 1980 disks = conf->prev.raid_disks; 1981 ncopies = conf->prev.near_copies; 1982 } else { 1983 disks = conf->geo.raid_disks; 1984 ncopies = conf->geo.near_copies; 1985 } 1986 1987 rcu_read_lock(); 1988 do { 1989 int n = conf->copies; 1990 int cnt = 0; 1991 int this = first; 1992 while (n--) { 1993 struct md_rdev *rdev; 1994 if (this != ignore && 1995 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1996 test_bit(In_sync, &rdev->flags)) 1997 cnt++; 1998 this = (this+1) % disks; 1999 } 2000 if (cnt == 0) 2001 goto out; 2002 first = (first + ncopies) % disks; 2003 } while (first != 0); 2004 has_enough = 1; 2005 out: 2006 rcu_read_unlock(); 2007 return has_enough; 2008 } 2009 2010 static int enough(struct r10conf *conf, int ignore) 2011 { 2012 /* when calling 'enough', both 'prev' and 'geo' must 2013 * be stable. 2014 * This is ensured if ->reconfig_mutex or ->device_lock 2015 * is held. 2016 */ 2017 return _enough(conf, 0, ignore) && 2018 _enough(conf, 1, ignore); 2019 } 2020 2021 /** 2022 * raid10_error() - RAID10 error handler. 2023 * @mddev: affected md device. 2024 * @rdev: member device to fail. 2025 * 2026 * The routine acknowledges &rdev failure and determines new @mddev state. 2027 * If it failed, then: 2028 * - &MD_BROKEN flag is set in &mddev->flags. 2029 * Otherwise, it must be degraded: 2030 * - recovery is interrupted. 2031 * - &mddev->degraded is bumped. 2032 * 2033 * @rdev is marked as &Faulty excluding case when array is failed and 2034 * &mddev->fail_last_dev is off. 2035 */ 2036 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 2037 { 2038 struct r10conf *conf = mddev->private; 2039 unsigned long flags; 2040 2041 spin_lock_irqsave(&conf->device_lock, flags); 2042 2043 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 2044 set_bit(MD_BROKEN, &mddev->flags); 2045 2046 if (!mddev->fail_last_dev) { 2047 spin_unlock_irqrestore(&conf->device_lock, flags); 2048 return; 2049 } 2050 } 2051 if (test_and_clear_bit(In_sync, &rdev->flags)) 2052 mddev->degraded++; 2053 2054 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2055 set_bit(Blocked, &rdev->flags); 2056 set_bit(Faulty, &rdev->flags); 2057 set_mask_bits(&mddev->sb_flags, 0, 2058 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2059 spin_unlock_irqrestore(&conf->device_lock, flags); 2060 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 2061 "md/raid10:%s: Operation continuing on %d devices.\n", 2062 mdname(mddev), rdev->bdev, 2063 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 2064 } 2065 2066 static void print_conf(struct r10conf *conf) 2067 { 2068 int i; 2069 struct md_rdev *rdev; 2070 2071 pr_debug("RAID10 conf printout:\n"); 2072 if (!conf) { 2073 pr_debug("(!conf)\n"); 2074 return; 2075 } 2076 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2077 conf->geo.raid_disks); 2078 2079 /* This is only called with ->reconfix_mutex held, so 2080 * rcu protection of rdev is not needed */ 2081 for (i = 0; i < conf->geo.raid_disks; i++) { 2082 rdev = conf->mirrors[i].rdev; 2083 if (rdev) 2084 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2085 i, !test_bit(In_sync, &rdev->flags), 2086 !test_bit(Faulty, &rdev->flags), 2087 rdev->bdev); 2088 } 2089 } 2090 2091 static void close_sync(struct r10conf *conf) 2092 { 2093 wait_barrier(conf, false); 2094 allow_barrier(conf); 2095 2096 mempool_exit(&conf->r10buf_pool); 2097 } 2098 2099 static int raid10_spare_active(struct mddev *mddev) 2100 { 2101 int i; 2102 struct r10conf *conf = mddev->private; 2103 struct raid10_info *tmp; 2104 int count = 0; 2105 unsigned long flags; 2106 2107 /* 2108 * Find all non-in_sync disks within the RAID10 configuration 2109 * and mark them in_sync 2110 */ 2111 for (i = 0; i < conf->geo.raid_disks; i++) { 2112 tmp = conf->mirrors + i; 2113 if (tmp->replacement 2114 && tmp->replacement->recovery_offset == MaxSector 2115 && !test_bit(Faulty, &tmp->replacement->flags) 2116 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2117 /* Replacement has just become active */ 2118 if (!tmp->rdev 2119 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2120 count++; 2121 if (tmp->rdev) { 2122 /* Replaced device not technically faulty, 2123 * but we need to be sure it gets removed 2124 * and never re-added. 2125 */ 2126 set_bit(Faulty, &tmp->rdev->flags); 2127 sysfs_notify_dirent_safe( 2128 tmp->rdev->sysfs_state); 2129 } 2130 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2131 } else if (tmp->rdev 2132 && tmp->rdev->recovery_offset == MaxSector 2133 && !test_bit(Faulty, &tmp->rdev->flags) 2134 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2135 count++; 2136 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2137 } 2138 } 2139 spin_lock_irqsave(&conf->device_lock, flags); 2140 mddev->degraded -= count; 2141 spin_unlock_irqrestore(&conf->device_lock, flags); 2142 2143 print_conf(conf); 2144 return count; 2145 } 2146 2147 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2148 { 2149 struct r10conf *conf = mddev->private; 2150 int err = -EEXIST; 2151 int mirror; 2152 int first = 0; 2153 int last = conf->geo.raid_disks - 1; 2154 2155 if (mddev->recovery_cp < MaxSector) 2156 /* only hot-add to in-sync arrays, as recovery is 2157 * very different from resync 2158 */ 2159 return -EBUSY; 2160 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2161 return -EINVAL; 2162 2163 if (md_integrity_add_rdev(rdev, mddev)) 2164 return -ENXIO; 2165 2166 if (rdev->raid_disk >= 0) 2167 first = last = rdev->raid_disk; 2168 2169 if (rdev->saved_raid_disk >= first && 2170 rdev->saved_raid_disk < conf->geo.raid_disks && 2171 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2172 mirror = rdev->saved_raid_disk; 2173 else 2174 mirror = first; 2175 for ( ; mirror <= last ; mirror++) { 2176 struct raid10_info *p = &conf->mirrors[mirror]; 2177 if (p->recovery_disabled == mddev->recovery_disabled) 2178 continue; 2179 if (p->rdev) { 2180 if (!test_bit(WantReplacement, &p->rdev->flags) || 2181 p->replacement != NULL) 2182 continue; 2183 clear_bit(In_sync, &rdev->flags); 2184 set_bit(Replacement, &rdev->flags); 2185 rdev->raid_disk = mirror; 2186 err = 0; 2187 if (mddev->gendisk) 2188 disk_stack_limits(mddev->gendisk, rdev->bdev, 2189 rdev->data_offset << 9); 2190 conf->fullsync = 1; 2191 rcu_assign_pointer(p->replacement, rdev); 2192 break; 2193 } 2194 2195 if (mddev->gendisk) 2196 disk_stack_limits(mddev->gendisk, rdev->bdev, 2197 rdev->data_offset << 9); 2198 2199 p->head_position = 0; 2200 p->recovery_disabled = mddev->recovery_disabled - 1; 2201 rdev->raid_disk = mirror; 2202 err = 0; 2203 if (rdev->saved_raid_disk != mirror) 2204 conf->fullsync = 1; 2205 rcu_assign_pointer(p->rdev, rdev); 2206 break; 2207 } 2208 2209 print_conf(conf); 2210 return err; 2211 } 2212 2213 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2214 { 2215 struct r10conf *conf = mddev->private; 2216 int err = 0; 2217 int number = rdev->raid_disk; 2218 struct md_rdev **rdevp; 2219 struct raid10_info *p; 2220 2221 print_conf(conf); 2222 if (unlikely(number >= mddev->raid_disks)) 2223 return 0; 2224 p = conf->mirrors + number; 2225 if (rdev == p->rdev) 2226 rdevp = &p->rdev; 2227 else if (rdev == p->replacement) 2228 rdevp = &p->replacement; 2229 else 2230 return 0; 2231 2232 if (test_bit(In_sync, &rdev->flags) || 2233 atomic_read(&rdev->nr_pending)) { 2234 err = -EBUSY; 2235 goto abort; 2236 } 2237 /* Only remove non-faulty devices if recovery 2238 * is not possible. 2239 */ 2240 if (!test_bit(Faulty, &rdev->flags) && 2241 mddev->recovery_disabled != p->recovery_disabled && 2242 (!p->replacement || p->replacement == rdev) && 2243 number < conf->geo.raid_disks && 2244 enough(conf, -1)) { 2245 err = -EBUSY; 2246 goto abort; 2247 } 2248 *rdevp = NULL; 2249 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 2250 synchronize_rcu(); 2251 if (atomic_read(&rdev->nr_pending)) { 2252 /* lost the race, try later */ 2253 err = -EBUSY; 2254 *rdevp = rdev; 2255 goto abort; 2256 } 2257 } 2258 if (p->replacement) { 2259 /* We must have just cleared 'rdev' */ 2260 p->rdev = p->replacement; 2261 clear_bit(Replacement, &p->replacement->flags); 2262 smp_mb(); /* Make sure other CPUs may see both as identical 2263 * but will never see neither -- if they are careful. 2264 */ 2265 p->replacement = NULL; 2266 } 2267 2268 clear_bit(WantReplacement, &rdev->flags); 2269 err = md_integrity_register(mddev); 2270 2271 abort: 2272 2273 print_conf(conf); 2274 return err; 2275 } 2276 2277 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2278 { 2279 struct r10conf *conf = r10_bio->mddev->private; 2280 2281 if (!bio->bi_status) 2282 set_bit(R10BIO_Uptodate, &r10_bio->state); 2283 else 2284 /* The write handler will notice the lack of 2285 * R10BIO_Uptodate and record any errors etc 2286 */ 2287 atomic_add(r10_bio->sectors, 2288 &conf->mirrors[d].rdev->corrected_errors); 2289 2290 /* for reconstruct, we always reschedule after a read. 2291 * for resync, only after all reads 2292 */ 2293 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2294 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2295 atomic_dec_and_test(&r10_bio->remaining)) { 2296 /* we have read all the blocks, 2297 * do the comparison in process context in raid10d 2298 */ 2299 reschedule_retry(r10_bio); 2300 } 2301 } 2302 2303 static void end_sync_read(struct bio *bio) 2304 { 2305 struct r10bio *r10_bio = get_resync_r10bio(bio); 2306 struct r10conf *conf = r10_bio->mddev->private; 2307 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2308 2309 __end_sync_read(r10_bio, bio, d); 2310 } 2311 2312 static void end_reshape_read(struct bio *bio) 2313 { 2314 /* reshape read bio isn't allocated from r10buf_pool */ 2315 struct r10bio *r10_bio = bio->bi_private; 2316 2317 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2318 } 2319 2320 static void end_sync_request(struct r10bio *r10_bio) 2321 { 2322 struct mddev *mddev = r10_bio->mddev; 2323 2324 while (atomic_dec_and_test(&r10_bio->remaining)) { 2325 if (r10_bio->master_bio == NULL) { 2326 /* the primary of several recovery bios */ 2327 sector_t s = r10_bio->sectors; 2328 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2329 test_bit(R10BIO_WriteError, &r10_bio->state)) 2330 reschedule_retry(r10_bio); 2331 else 2332 put_buf(r10_bio); 2333 md_done_sync(mddev, s, 1); 2334 break; 2335 } else { 2336 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2337 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2338 test_bit(R10BIO_WriteError, &r10_bio->state)) 2339 reschedule_retry(r10_bio); 2340 else 2341 put_buf(r10_bio); 2342 r10_bio = r10_bio2; 2343 } 2344 } 2345 } 2346 2347 static void end_sync_write(struct bio *bio) 2348 { 2349 struct r10bio *r10_bio = get_resync_r10bio(bio); 2350 struct mddev *mddev = r10_bio->mddev; 2351 struct r10conf *conf = mddev->private; 2352 int d; 2353 sector_t first_bad; 2354 int bad_sectors; 2355 int slot; 2356 int repl; 2357 struct md_rdev *rdev = NULL; 2358 2359 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2360 if (repl) 2361 rdev = conf->mirrors[d].replacement; 2362 else 2363 rdev = conf->mirrors[d].rdev; 2364 2365 if (bio->bi_status) { 2366 if (repl) 2367 md_error(mddev, rdev); 2368 else { 2369 set_bit(WriteErrorSeen, &rdev->flags); 2370 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2371 set_bit(MD_RECOVERY_NEEDED, 2372 &rdev->mddev->recovery); 2373 set_bit(R10BIO_WriteError, &r10_bio->state); 2374 } 2375 } else if (is_badblock(rdev, 2376 r10_bio->devs[slot].addr, 2377 r10_bio->sectors, 2378 &first_bad, &bad_sectors)) 2379 set_bit(R10BIO_MadeGood, &r10_bio->state); 2380 2381 rdev_dec_pending(rdev, mddev); 2382 2383 end_sync_request(r10_bio); 2384 } 2385 2386 /* 2387 * Note: sync and recover and handled very differently for raid10 2388 * This code is for resync. 2389 * For resync, we read through virtual addresses and read all blocks. 2390 * If there is any error, we schedule a write. The lowest numbered 2391 * drive is authoritative. 2392 * However requests come for physical address, so we need to map. 2393 * For every physical address there are raid_disks/copies virtual addresses, 2394 * which is always are least one, but is not necessarly an integer. 2395 * This means that a physical address can span multiple chunks, so we may 2396 * have to submit multiple io requests for a single sync request. 2397 */ 2398 /* 2399 * We check if all blocks are in-sync and only write to blocks that 2400 * aren't in sync 2401 */ 2402 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2403 { 2404 struct r10conf *conf = mddev->private; 2405 int i, first; 2406 struct bio *tbio, *fbio; 2407 int vcnt; 2408 struct page **tpages, **fpages; 2409 2410 atomic_set(&r10_bio->remaining, 1); 2411 2412 /* find the first device with a block */ 2413 for (i=0; i<conf->copies; i++) 2414 if (!r10_bio->devs[i].bio->bi_status) 2415 break; 2416 2417 if (i == conf->copies) 2418 goto done; 2419 2420 first = i; 2421 fbio = r10_bio->devs[i].bio; 2422 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2423 fbio->bi_iter.bi_idx = 0; 2424 fpages = get_resync_pages(fbio)->pages; 2425 2426 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2427 /* now find blocks with errors */ 2428 for (i=0 ; i < conf->copies ; i++) { 2429 int j, d; 2430 struct md_rdev *rdev; 2431 struct resync_pages *rp; 2432 2433 tbio = r10_bio->devs[i].bio; 2434 2435 if (tbio->bi_end_io != end_sync_read) 2436 continue; 2437 if (i == first) 2438 continue; 2439 2440 tpages = get_resync_pages(tbio)->pages; 2441 d = r10_bio->devs[i].devnum; 2442 rdev = conf->mirrors[d].rdev; 2443 if (!r10_bio->devs[i].bio->bi_status) { 2444 /* We know that the bi_io_vec layout is the same for 2445 * both 'first' and 'i', so we just compare them. 2446 * All vec entries are PAGE_SIZE; 2447 */ 2448 int sectors = r10_bio->sectors; 2449 for (j = 0; j < vcnt; j++) { 2450 int len = PAGE_SIZE; 2451 if (sectors < (len / 512)) 2452 len = sectors * 512; 2453 if (memcmp(page_address(fpages[j]), 2454 page_address(tpages[j]), 2455 len)) 2456 break; 2457 sectors -= len/512; 2458 } 2459 if (j == vcnt) 2460 continue; 2461 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2462 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2463 /* Don't fix anything. */ 2464 continue; 2465 } else if (test_bit(FailFast, &rdev->flags)) { 2466 /* Just give up on this device */ 2467 md_error(rdev->mddev, rdev); 2468 continue; 2469 } 2470 /* Ok, we need to write this bio, either to correct an 2471 * inconsistency or to correct an unreadable block. 2472 * First we need to fixup bv_offset, bv_len and 2473 * bi_vecs, as the read request might have corrupted these 2474 */ 2475 rp = get_resync_pages(tbio); 2476 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2477 2478 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2479 2480 rp->raid_bio = r10_bio; 2481 tbio->bi_private = rp; 2482 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2483 tbio->bi_end_io = end_sync_write; 2484 2485 bio_copy_data(tbio, fbio); 2486 2487 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2488 atomic_inc(&r10_bio->remaining); 2489 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2490 2491 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2492 tbio->bi_opf |= MD_FAILFAST; 2493 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2494 submit_bio_noacct(tbio); 2495 } 2496 2497 /* Now write out to any replacement devices 2498 * that are active 2499 */ 2500 for (i = 0; i < conf->copies; i++) { 2501 int d; 2502 2503 tbio = r10_bio->devs[i].repl_bio; 2504 if (!tbio || !tbio->bi_end_io) 2505 continue; 2506 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2507 && r10_bio->devs[i].bio != fbio) 2508 bio_copy_data(tbio, fbio); 2509 d = r10_bio->devs[i].devnum; 2510 atomic_inc(&r10_bio->remaining); 2511 md_sync_acct(conf->mirrors[d].replacement->bdev, 2512 bio_sectors(tbio)); 2513 submit_bio_noacct(tbio); 2514 } 2515 2516 done: 2517 if (atomic_dec_and_test(&r10_bio->remaining)) { 2518 md_done_sync(mddev, r10_bio->sectors, 1); 2519 put_buf(r10_bio); 2520 } 2521 } 2522 2523 /* 2524 * Now for the recovery code. 2525 * Recovery happens across physical sectors. 2526 * We recover all non-is_sync drives by finding the virtual address of 2527 * each, and then choose a working drive that also has that virt address. 2528 * There is a separate r10_bio for each non-in_sync drive. 2529 * Only the first two slots are in use. The first for reading, 2530 * The second for writing. 2531 * 2532 */ 2533 static void fix_recovery_read_error(struct r10bio *r10_bio) 2534 { 2535 /* We got a read error during recovery. 2536 * We repeat the read in smaller page-sized sections. 2537 * If a read succeeds, write it to the new device or record 2538 * a bad block if we cannot. 2539 * If a read fails, record a bad block on both old and 2540 * new devices. 2541 */ 2542 struct mddev *mddev = r10_bio->mddev; 2543 struct r10conf *conf = mddev->private; 2544 struct bio *bio = r10_bio->devs[0].bio; 2545 sector_t sect = 0; 2546 int sectors = r10_bio->sectors; 2547 int idx = 0; 2548 int dr = r10_bio->devs[0].devnum; 2549 int dw = r10_bio->devs[1].devnum; 2550 struct page **pages = get_resync_pages(bio)->pages; 2551 2552 while (sectors) { 2553 int s = sectors; 2554 struct md_rdev *rdev; 2555 sector_t addr; 2556 int ok; 2557 2558 if (s > (PAGE_SIZE>>9)) 2559 s = PAGE_SIZE >> 9; 2560 2561 rdev = conf->mirrors[dr].rdev; 2562 addr = r10_bio->devs[0].addr + sect, 2563 ok = sync_page_io(rdev, 2564 addr, 2565 s << 9, 2566 pages[idx], 2567 REQ_OP_READ, false); 2568 if (ok) { 2569 rdev = conf->mirrors[dw].rdev; 2570 addr = r10_bio->devs[1].addr + sect; 2571 ok = sync_page_io(rdev, 2572 addr, 2573 s << 9, 2574 pages[idx], 2575 REQ_OP_WRITE, false); 2576 if (!ok) { 2577 set_bit(WriteErrorSeen, &rdev->flags); 2578 if (!test_and_set_bit(WantReplacement, 2579 &rdev->flags)) 2580 set_bit(MD_RECOVERY_NEEDED, 2581 &rdev->mddev->recovery); 2582 } 2583 } 2584 if (!ok) { 2585 /* We don't worry if we cannot set a bad block - 2586 * it really is bad so there is no loss in not 2587 * recording it yet 2588 */ 2589 rdev_set_badblocks(rdev, addr, s, 0); 2590 2591 if (rdev != conf->mirrors[dw].rdev) { 2592 /* need bad block on destination too */ 2593 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2594 addr = r10_bio->devs[1].addr + sect; 2595 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2596 if (!ok) { 2597 /* just abort the recovery */ 2598 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2599 mdname(mddev)); 2600 2601 conf->mirrors[dw].recovery_disabled 2602 = mddev->recovery_disabled; 2603 set_bit(MD_RECOVERY_INTR, 2604 &mddev->recovery); 2605 break; 2606 } 2607 } 2608 } 2609 2610 sectors -= s; 2611 sect += s; 2612 idx++; 2613 } 2614 } 2615 2616 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2617 { 2618 struct r10conf *conf = mddev->private; 2619 int d; 2620 struct bio *wbio = r10_bio->devs[1].bio; 2621 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2622 2623 /* Need to test wbio2->bi_end_io before we call 2624 * submit_bio_noacct as if the former is NULL, 2625 * the latter is free to free wbio2. 2626 */ 2627 if (wbio2 && !wbio2->bi_end_io) 2628 wbio2 = NULL; 2629 2630 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2631 fix_recovery_read_error(r10_bio); 2632 if (wbio->bi_end_io) 2633 end_sync_request(r10_bio); 2634 if (wbio2) 2635 end_sync_request(r10_bio); 2636 return; 2637 } 2638 2639 /* 2640 * share the pages with the first bio 2641 * and submit the write request 2642 */ 2643 d = r10_bio->devs[1].devnum; 2644 if (wbio->bi_end_io) { 2645 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2646 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2647 submit_bio_noacct(wbio); 2648 } 2649 if (wbio2) { 2650 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2651 md_sync_acct(conf->mirrors[d].replacement->bdev, 2652 bio_sectors(wbio2)); 2653 submit_bio_noacct(wbio2); 2654 } 2655 } 2656 2657 /* 2658 * Used by fix_read_error() to decay the per rdev read_errors. 2659 * We halve the read error count for every hour that has elapsed 2660 * since the last recorded read error. 2661 * 2662 */ 2663 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2664 { 2665 long cur_time_mon; 2666 unsigned long hours_since_last; 2667 unsigned int read_errors = atomic_read(&rdev->read_errors); 2668 2669 cur_time_mon = ktime_get_seconds(); 2670 2671 if (rdev->last_read_error == 0) { 2672 /* first time we've seen a read error */ 2673 rdev->last_read_error = cur_time_mon; 2674 return; 2675 } 2676 2677 hours_since_last = (long)(cur_time_mon - 2678 rdev->last_read_error) / 3600; 2679 2680 rdev->last_read_error = cur_time_mon; 2681 2682 /* 2683 * if hours_since_last is > the number of bits in read_errors 2684 * just set read errors to 0. We do this to avoid 2685 * overflowing the shift of read_errors by hours_since_last. 2686 */ 2687 if (hours_since_last >= 8 * sizeof(read_errors)) 2688 atomic_set(&rdev->read_errors, 0); 2689 else 2690 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2691 } 2692 2693 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2694 int sectors, struct page *page, enum req_op op) 2695 { 2696 sector_t first_bad; 2697 int bad_sectors; 2698 2699 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2700 && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2701 return -1; 2702 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2703 /* success */ 2704 return 1; 2705 if (op == REQ_OP_WRITE) { 2706 set_bit(WriteErrorSeen, &rdev->flags); 2707 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2708 set_bit(MD_RECOVERY_NEEDED, 2709 &rdev->mddev->recovery); 2710 } 2711 /* need to record an error - either for the block or the device */ 2712 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2713 md_error(rdev->mddev, rdev); 2714 return 0; 2715 } 2716 2717 /* 2718 * This is a kernel thread which: 2719 * 2720 * 1. Retries failed read operations on working mirrors. 2721 * 2. Updates the raid superblock when problems encounter. 2722 * 3. Performs writes following reads for array synchronising. 2723 */ 2724 2725 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2726 { 2727 int sect = 0; /* Offset from r10_bio->sector */ 2728 int sectors = r10_bio->sectors; 2729 struct md_rdev *rdev; 2730 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2731 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2732 2733 /* still own a reference to this rdev, so it cannot 2734 * have been cleared recently. 2735 */ 2736 rdev = conf->mirrors[d].rdev; 2737 2738 if (test_bit(Faulty, &rdev->flags)) 2739 /* drive has already been failed, just ignore any 2740 more fix_read_error() attempts */ 2741 return; 2742 2743 check_decay_read_errors(mddev, rdev); 2744 atomic_inc(&rdev->read_errors); 2745 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2746 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2747 mdname(mddev), rdev->bdev, 2748 atomic_read(&rdev->read_errors), max_read_errors); 2749 pr_notice("md/raid10:%s: %pg: Failing raid device\n", 2750 mdname(mddev), rdev->bdev); 2751 md_error(mddev, rdev); 2752 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2753 return; 2754 } 2755 2756 while(sectors) { 2757 int s = sectors; 2758 int sl = r10_bio->read_slot; 2759 int success = 0; 2760 int start; 2761 2762 if (s > (PAGE_SIZE>>9)) 2763 s = PAGE_SIZE >> 9; 2764 2765 rcu_read_lock(); 2766 do { 2767 sector_t first_bad; 2768 int bad_sectors; 2769 2770 d = r10_bio->devs[sl].devnum; 2771 rdev = rcu_dereference(conf->mirrors[d].rdev); 2772 if (rdev && 2773 test_bit(In_sync, &rdev->flags) && 2774 !test_bit(Faulty, &rdev->flags) && 2775 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2776 &first_bad, &bad_sectors) == 0) { 2777 atomic_inc(&rdev->nr_pending); 2778 rcu_read_unlock(); 2779 success = sync_page_io(rdev, 2780 r10_bio->devs[sl].addr + 2781 sect, 2782 s<<9, 2783 conf->tmppage, 2784 REQ_OP_READ, false); 2785 rdev_dec_pending(rdev, mddev); 2786 rcu_read_lock(); 2787 if (success) 2788 break; 2789 } 2790 sl++; 2791 if (sl == conf->copies) 2792 sl = 0; 2793 } while (!success && sl != r10_bio->read_slot); 2794 rcu_read_unlock(); 2795 2796 if (!success) { 2797 /* Cannot read from anywhere, just mark the block 2798 * as bad on the first device to discourage future 2799 * reads. 2800 */ 2801 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2802 rdev = conf->mirrors[dn].rdev; 2803 2804 if (!rdev_set_badblocks( 2805 rdev, 2806 r10_bio->devs[r10_bio->read_slot].addr 2807 + sect, 2808 s, 0)) { 2809 md_error(mddev, rdev); 2810 r10_bio->devs[r10_bio->read_slot].bio 2811 = IO_BLOCKED; 2812 } 2813 break; 2814 } 2815 2816 start = sl; 2817 /* write it back and re-read */ 2818 rcu_read_lock(); 2819 while (sl != r10_bio->read_slot) { 2820 if (sl==0) 2821 sl = conf->copies; 2822 sl--; 2823 d = r10_bio->devs[sl].devnum; 2824 rdev = rcu_dereference(conf->mirrors[d].rdev); 2825 if (!rdev || 2826 test_bit(Faulty, &rdev->flags) || 2827 !test_bit(In_sync, &rdev->flags)) 2828 continue; 2829 2830 atomic_inc(&rdev->nr_pending); 2831 rcu_read_unlock(); 2832 if (r10_sync_page_io(rdev, 2833 r10_bio->devs[sl].addr + 2834 sect, 2835 s, conf->tmppage, REQ_OP_WRITE) 2836 == 0) { 2837 /* Well, this device is dead */ 2838 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2839 mdname(mddev), s, 2840 (unsigned long long)( 2841 sect + 2842 choose_data_offset(r10_bio, 2843 rdev)), 2844 rdev->bdev); 2845 pr_notice("md/raid10:%s: %pg: failing drive\n", 2846 mdname(mddev), 2847 rdev->bdev); 2848 } 2849 rdev_dec_pending(rdev, mddev); 2850 rcu_read_lock(); 2851 } 2852 sl = start; 2853 while (sl != r10_bio->read_slot) { 2854 if (sl==0) 2855 sl = conf->copies; 2856 sl--; 2857 d = r10_bio->devs[sl].devnum; 2858 rdev = rcu_dereference(conf->mirrors[d].rdev); 2859 if (!rdev || 2860 test_bit(Faulty, &rdev->flags) || 2861 !test_bit(In_sync, &rdev->flags)) 2862 continue; 2863 2864 atomic_inc(&rdev->nr_pending); 2865 rcu_read_unlock(); 2866 switch (r10_sync_page_io(rdev, 2867 r10_bio->devs[sl].addr + 2868 sect, 2869 s, conf->tmppage, REQ_OP_READ)) { 2870 case 0: 2871 /* Well, this device is dead */ 2872 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2873 mdname(mddev), s, 2874 (unsigned long long)( 2875 sect + 2876 choose_data_offset(r10_bio, rdev)), 2877 rdev->bdev); 2878 pr_notice("md/raid10:%s: %pg: failing drive\n", 2879 mdname(mddev), 2880 rdev->bdev); 2881 break; 2882 case 1: 2883 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2884 mdname(mddev), s, 2885 (unsigned long long)( 2886 sect + 2887 choose_data_offset(r10_bio, rdev)), 2888 rdev->bdev); 2889 atomic_add(s, &rdev->corrected_errors); 2890 } 2891 2892 rdev_dec_pending(rdev, mddev); 2893 rcu_read_lock(); 2894 } 2895 rcu_read_unlock(); 2896 2897 sectors -= s; 2898 sect += s; 2899 } 2900 } 2901 2902 static int narrow_write_error(struct r10bio *r10_bio, int i) 2903 { 2904 struct bio *bio = r10_bio->master_bio; 2905 struct mddev *mddev = r10_bio->mddev; 2906 struct r10conf *conf = mddev->private; 2907 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2908 /* bio has the data to be written to slot 'i' where 2909 * we just recently had a write error. 2910 * We repeatedly clone the bio and trim down to one block, 2911 * then try the write. Where the write fails we record 2912 * a bad block. 2913 * It is conceivable that the bio doesn't exactly align with 2914 * blocks. We must handle this. 2915 * 2916 * We currently own a reference to the rdev. 2917 */ 2918 2919 int block_sectors; 2920 sector_t sector; 2921 int sectors; 2922 int sect_to_write = r10_bio->sectors; 2923 int ok = 1; 2924 2925 if (rdev->badblocks.shift < 0) 2926 return 0; 2927 2928 block_sectors = roundup(1 << rdev->badblocks.shift, 2929 bdev_logical_block_size(rdev->bdev) >> 9); 2930 sector = r10_bio->sector; 2931 sectors = ((r10_bio->sector + block_sectors) 2932 & ~(sector_t)(block_sectors - 1)) 2933 - sector; 2934 2935 while (sect_to_write) { 2936 struct bio *wbio; 2937 sector_t wsector; 2938 if (sectors > sect_to_write) 2939 sectors = sect_to_write; 2940 /* Write at 'sector' for 'sectors' */ 2941 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2942 &mddev->bio_set); 2943 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2944 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2945 wbio->bi_iter.bi_sector = wsector + 2946 choose_data_offset(r10_bio, rdev); 2947 wbio->bi_opf = REQ_OP_WRITE; 2948 2949 if (submit_bio_wait(wbio) < 0) 2950 /* Failure! */ 2951 ok = rdev_set_badblocks(rdev, wsector, 2952 sectors, 0) 2953 && ok; 2954 2955 bio_put(wbio); 2956 sect_to_write -= sectors; 2957 sector += sectors; 2958 sectors = block_sectors; 2959 } 2960 return ok; 2961 } 2962 2963 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2964 { 2965 int slot = r10_bio->read_slot; 2966 struct bio *bio; 2967 struct r10conf *conf = mddev->private; 2968 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2969 2970 /* we got a read error. Maybe the drive is bad. Maybe just 2971 * the block and we can fix it. 2972 * We freeze all other IO, and try reading the block from 2973 * other devices. When we find one, we re-write 2974 * and check it that fixes the read error. 2975 * This is all done synchronously while the array is 2976 * frozen. 2977 */ 2978 bio = r10_bio->devs[slot].bio; 2979 bio_put(bio); 2980 r10_bio->devs[slot].bio = NULL; 2981 2982 if (mddev->ro) 2983 r10_bio->devs[slot].bio = IO_BLOCKED; 2984 else if (!test_bit(FailFast, &rdev->flags)) { 2985 freeze_array(conf, 1); 2986 fix_read_error(conf, mddev, r10_bio); 2987 unfreeze_array(conf); 2988 } else 2989 md_error(mddev, rdev); 2990 2991 rdev_dec_pending(rdev, mddev); 2992 r10_bio->state = 0; 2993 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2994 /* 2995 * allow_barrier after re-submit to ensure no sync io 2996 * can be issued while regular io pending. 2997 */ 2998 allow_barrier(conf); 2999 } 3000 3001 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 3002 { 3003 /* Some sort of write request has finished and it 3004 * succeeded in writing where we thought there was a 3005 * bad block. So forget the bad block. 3006 * Or possibly if failed and we need to record 3007 * a bad block. 3008 */ 3009 int m; 3010 struct md_rdev *rdev; 3011 3012 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 3013 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 3014 for (m = 0; m < conf->copies; m++) { 3015 int dev = r10_bio->devs[m].devnum; 3016 rdev = conf->mirrors[dev].rdev; 3017 if (r10_bio->devs[m].bio == NULL || 3018 r10_bio->devs[m].bio->bi_end_io == NULL) 3019 continue; 3020 if (!r10_bio->devs[m].bio->bi_status) { 3021 rdev_clear_badblocks( 3022 rdev, 3023 r10_bio->devs[m].addr, 3024 r10_bio->sectors, 0); 3025 } else { 3026 if (!rdev_set_badblocks( 3027 rdev, 3028 r10_bio->devs[m].addr, 3029 r10_bio->sectors, 0)) 3030 md_error(conf->mddev, rdev); 3031 } 3032 rdev = conf->mirrors[dev].replacement; 3033 if (r10_bio->devs[m].repl_bio == NULL || 3034 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 3035 continue; 3036 3037 if (!r10_bio->devs[m].repl_bio->bi_status) { 3038 rdev_clear_badblocks( 3039 rdev, 3040 r10_bio->devs[m].addr, 3041 r10_bio->sectors, 0); 3042 } else { 3043 if (!rdev_set_badblocks( 3044 rdev, 3045 r10_bio->devs[m].addr, 3046 r10_bio->sectors, 0)) 3047 md_error(conf->mddev, rdev); 3048 } 3049 } 3050 put_buf(r10_bio); 3051 } else { 3052 bool fail = false; 3053 for (m = 0; m < conf->copies; m++) { 3054 int dev = r10_bio->devs[m].devnum; 3055 struct bio *bio = r10_bio->devs[m].bio; 3056 rdev = conf->mirrors[dev].rdev; 3057 if (bio == IO_MADE_GOOD) { 3058 rdev_clear_badblocks( 3059 rdev, 3060 r10_bio->devs[m].addr, 3061 r10_bio->sectors, 0); 3062 rdev_dec_pending(rdev, conf->mddev); 3063 } else if (bio != NULL && bio->bi_status) { 3064 fail = true; 3065 if (!narrow_write_error(r10_bio, m)) { 3066 md_error(conf->mddev, rdev); 3067 set_bit(R10BIO_Degraded, 3068 &r10_bio->state); 3069 } 3070 rdev_dec_pending(rdev, conf->mddev); 3071 } 3072 bio = r10_bio->devs[m].repl_bio; 3073 rdev = conf->mirrors[dev].replacement; 3074 if (rdev && bio == IO_MADE_GOOD) { 3075 rdev_clear_badblocks( 3076 rdev, 3077 r10_bio->devs[m].addr, 3078 r10_bio->sectors, 0); 3079 rdev_dec_pending(rdev, conf->mddev); 3080 } 3081 } 3082 if (fail) { 3083 spin_lock_irq(&conf->device_lock); 3084 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 3085 conf->nr_queued++; 3086 spin_unlock_irq(&conf->device_lock); 3087 /* 3088 * In case freeze_array() is waiting for condition 3089 * nr_pending == nr_queued + extra to be true. 3090 */ 3091 wake_up(&conf->wait_barrier); 3092 md_wakeup_thread(conf->mddev->thread); 3093 } else { 3094 if (test_bit(R10BIO_WriteError, 3095 &r10_bio->state)) 3096 close_write(r10_bio); 3097 raid_end_bio_io(r10_bio); 3098 } 3099 } 3100 } 3101 3102 static void raid10d(struct md_thread *thread) 3103 { 3104 struct mddev *mddev = thread->mddev; 3105 struct r10bio *r10_bio; 3106 unsigned long flags; 3107 struct r10conf *conf = mddev->private; 3108 struct list_head *head = &conf->retry_list; 3109 struct blk_plug plug; 3110 3111 md_check_recovery(mddev); 3112 3113 if (!list_empty_careful(&conf->bio_end_io_list) && 3114 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3115 LIST_HEAD(tmp); 3116 spin_lock_irqsave(&conf->device_lock, flags); 3117 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3118 while (!list_empty(&conf->bio_end_io_list)) { 3119 list_move(conf->bio_end_io_list.prev, &tmp); 3120 conf->nr_queued--; 3121 } 3122 } 3123 spin_unlock_irqrestore(&conf->device_lock, flags); 3124 while (!list_empty(&tmp)) { 3125 r10_bio = list_first_entry(&tmp, struct r10bio, 3126 retry_list); 3127 list_del(&r10_bio->retry_list); 3128 if (mddev->degraded) 3129 set_bit(R10BIO_Degraded, &r10_bio->state); 3130 3131 if (test_bit(R10BIO_WriteError, 3132 &r10_bio->state)) 3133 close_write(r10_bio); 3134 raid_end_bio_io(r10_bio); 3135 } 3136 } 3137 3138 blk_start_plug(&plug); 3139 for (;;) { 3140 3141 flush_pending_writes(conf); 3142 3143 spin_lock_irqsave(&conf->device_lock, flags); 3144 if (list_empty(head)) { 3145 spin_unlock_irqrestore(&conf->device_lock, flags); 3146 break; 3147 } 3148 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3149 list_del(head->prev); 3150 conf->nr_queued--; 3151 spin_unlock_irqrestore(&conf->device_lock, flags); 3152 3153 mddev = r10_bio->mddev; 3154 conf = mddev->private; 3155 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3156 test_bit(R10BIO_WriteError, &r10_bio->state)) 3157 handle_write_completed(conf, r10_bio); 3158 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3159 reshape_request_write(mddev, r10_bio); 3160 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3161 sync_request_write(mddev, r10_bio); 3162 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3163 recovery_request_write(mddev, r10_bio); 3164 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3165 handle_read_error(mddev, r10_bio); 3166 else 3167 WARN_ON_ONCE(1); 3168 3169 cond_resched(); 3170 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3171 md_check_recovery(mddev); 3172 } 3173 blk_finish_plug(&plug); 3174 } 3175 3176 static int init_resync(struct r10conf *conf) 3177 { 3178 int ret, buffs, i; 3179 3180 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3181 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3182 conf->have_replacement = 0; 3183 for (i = 0; i < conf->geo.raid_disks; i++) 3184 if (conf->mirrors[i].replacement) 3185 conf->have_replacement = 1; 3186 ret = mempool_init(&conf->r10buf_pool, buffs, 3187 r10buf_pool_alloc, r10buf_pool_free, conf); 3188 if (ret) 3189 return ret; 3190 conf->next_resync = 0; 3191 return 0; 3192 } 3193 3194 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3195 { 3196 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3197 struct rsync_pages *rp; 3198 struct bio *bio; 3199 int nalloc; 3200 int i; 3201 3202 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3203 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3204 nalloc = conf->copies; /* resync */ 3205 else 3206 nalloc = 2; /* recovery */ 3207 3208 for (i = 0; i < nalloc; i++) { 3209 bio = r10bio->devs[i].bio; 3210 rp = bio->bi_private; 3211 bio_reset(bio, NULL, 0); 3212 bio->bi_private = rp; 3213 bio = r10bio->devs[i].repl_bio; 3214 if (bio) { 3215 rp = bio->bi_private; 3216 bio_reset(bio, NULL, 0); 3217 bio->bi_private = rp; 3218 } 3219 } 3220 return r10bio; 3221 } 3222 3223 /* 3224 * Set cluster_sync_high since we need other nodes to add the 3225 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3226 */ 3227 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3228 { 3229 sector_t window_size; 3230 int extra_chunk, chunks; 3231 3232 /* 3233 * First, here we define "stripe" as a unit which across 3234 * all member devices one time, so we get chunks by use 3235 * raid_disks / near_copies. Otherwise, if near_copies is 3236 * close to raid_disks, then resync window could increases 3237 * linearly with the increase of raid_disks, which means 3238 * we will suspend a really large IO window while it is not 3239 * necessary. If raid_disks is not divisible by near_copies, 3240 * an extra chunk is needed to ensure the whole "stripe" is 3241 * covered. 3242 */ 3243 3244 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3245 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3246 extra_chunk = 0; 3247 else 3248 extra_chunk = 1; 3249 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3250 3251 /* 3252 * At least use a 32M window to align with raid1's resync window 3253 */ 3254 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3255 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3256 3257 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3258 } 3259 3260 /* 3261 * perform a "sync" on one "block" 3262 * 3263 * We need to make sure that no normal I/O request - particularly write 3264 * requests - conflict with active sync requests. 3265 * 3266 * This is achieved by tracking pending requests and a 'barrier' concept 3267 * that can be installed to exclude normal IO requests. 3268 * 3269 * Resync and recovery are handled very differently. 3270 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3271 * 3272 * For resync, we iterate over virtual addresses, read all copies, 3273 * and update if there are differences. If only one copy is live, 3274 * skip it. 3275 * For recovery, we iterate over physical addresses, read a good 3276 * value for each non-in_sync drive, and over-write. 3277 * 3278 * So, for recovery we may have several outstanding complex requests for a 3279 * given address, one for each out-of-sync device. We model this by allocating 3280 * a number of r10_bio structures, one for each out-of-sync device. 3281 * As we setup these structures, we collect all bio's together into a list 3282 * which we then process collectively to add pages, and then process again 3283 * to pass to submit_bio_noacct. 3284 * 3285 * The r10_bio structures are linked using a borrowed master_bio pointer. 3286 * This link is counted in ->remaining. When the r10_bio that points to NULL 3287 * has its remaining count decremented to 0, the whole complex operation 3288 * is complete. 3289 * 3290 */ 3291 3292 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3293 int *skipped) 3294 { 3295 struct r10conf *conf = mddev->private; 3296 struct r10bio *r10_bio; 3297 struct bio *biolist = NULL, *bio; 3298 sector_t max_sector, nr_sectors; 3299 int i; 3300 int max_sync; 3301 sector_t sync_blocks; 3302 sector_t sectors_skipped = 0; 3303 int chunks_skipped = 0; 3304 sector_t chunk_mask = conf->geo.chunk_mask; 3305 int page_idx = 0; 3306 3307 /* 3308 * Allow skipping a full rebuild for incremental assembly 3309 * of a clean array, like RAID1 does. 3310 */ 3311 if (mddev->bitmap == NULL && 3312 mddev->recovery_cp == MaxSector && 3313 mddev->reshape_position == MaxSector && 3314 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3315 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3316 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3317 conf->fullsync == 0) { 3318 *skipped = 1; 3319 return mddev->dev_sectors - sector_nr; 3320 } 3321 3322 if (!mempool_initialized(&conf->r10buf_pool)) 3323 if (init_resync(conf)) 3324 return 0; 3325 3326 skipped: 3327 max_sector = mddev->dev_sectors; 3328 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 3329 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3330 max_sector = mddev->resync_max_sectors; 3331 if (sector_nr >= max_sector) { 3332 conf->cluster_sync_low = 0; 3333 conf->cluster_sync_high = 0; 3334 3335 /* If we aborted, we need to abort the 3336 * sync on the 'current' bitmap chucks (there can 3337 * be several when recovering multiple devices). 3338 * as we may have started syncing it but not finished. 3339 * We can find the current address in 3340 * mddev->curr_resync, but for recovery, 3341 * we need to convert that to several 3342 * virtual addresses. 3343 */ 3344 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3345 end_reshape(conf); 3346 close_sync(conf); 3347 return 0; 3348 } 3349 3350 if (mddev->curr_resync < max_sector) { /* aborted */ 3351 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3352 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3353 &sync_blocks, 1); 3354 else for (i = 0; i < conf->geo.raid_disks; i++) { 3355 sector_t sect = 3356 raid10_find_virt(conf, mddev->curr_resync, i); 3357 md_bitmap_end_sync(mddev->bitmap, sect, 3358 &sync_blocks, 1); 3359 } 3360 } else { 3361 /* completed sync */ 3362 if ((!mddev->bitmap || conf->fullsync) 3363 && conf->have_replacement 3364 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3365 /* Completed a full sync so the replacements 3366 * are now fully recovered. 3367 */ 3368 rcu_read_lock(); 3369 for (i = 0; i < conf->geo.raid_disks; i++) { 3370 struct md_rdev *rdev = 3371 rcu_dereference(conf->mirrors[i].replacement); 3372 if (rdev) 3373 rdev->recovery_offset = MaxSector; 3374 } 3375 rcu_read_unlock(); 3376 } 3377 conf->fullsync = 0; 3378 } 3379 md_bitmap_close_sync(mddev->bitmap); 3380 close_sync(conf); 3381 *skipped = 1; 3382 return sectors_skipped; 3383 } 3384 3385 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3386 return reshape_request(mddev, sector_nr, skipped); 3387 3388 if (chunks_skipped >= conf->geo.raid_disks) { 3389 /* if there has been nothing to do on any drive, 3390 * then there is nothing to do at all.. 3391 */ 3392 *skipped = 1; 3393 return (max_sector - sector_nr) + sectors_skipped; 3394 } 3395 3396 if (max_sector > mddev->resync_max) 3397 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3398 3399 /* make sure whole request will fit in a chunk - if chunks 3400 * are meaningful 3401 */ 3402 if (conf->geo.near_copies < conf->geo.raid_disks && 3403 max_sector > (sector_nr | chunk_mask)) 3404 max_sector = (sector_nr | chunk_mask) + 1; 3405 3406 /* 3407 * If there is non-resync activity waiting for a turn, then let it 3408 * though before starting on this new sync request. 3409 */ 3410 if (conf->nr_waiting) 3411 schedule_timeout_uninterruptible(1); 3412 3413 /* Again, very different code for resync and recovery. 3414 * Both must result in an r10bio with a list of bios that 3415 * have bi_end_io, bi_sector, bi_bdev set, 3416 * and bi_private set to the r10bio. 3417 * For recovery, we may actually create several r10bios 3418 * with 2 bios in each, that correspond to the bios in the main one. 3419 * In this case, the subordinate r10bios link back through a 3420 * borrowed master_bio pointer, and the counter in the master 3421 * includes a ref from each subordinate. 3422 */ 3423 /* First, we decide what to do and set ->bi_end_io 3424 * To end_sync_read if we want to read, and 3425 * end_sync_write if we will want to write. 3426 */ 3427 3428 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3429 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3430 /* recovery... the complicated one */ 3431 int j; 3432 r10_bio = NULL; 3433 3434 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3435 int still_degraded; 3436 struct r10bio *rb2; 3437 sector_t sect; 3438 int must_sync; 3439 int any_working; 3440 int need_recover = 0; 3441 int need_replace = 0; 3442 struct raid10_info *mirror = &conf->mirrors[i]; 3443 struct md_rdev *mrdev, *mreplace; 3444 3445 rcu_read_lock(); 3446 mrdev = rcu_dereference(mirror->rdev); 3447 mreplace = rcu_dereference(mirror->replacement); 3448 3449 if (mrdev != NULL && 3450 !test_bit(Faulty, &mrdev->flags) && 3451 !test_bit(In_sync, &mrdev->flags)) 3452 need_recover = 1; 3453 if (mreplace != NULL && 3454 !test_bit(Faulty, &mreplace->flags)) 3455 need_replace = 1; 3456 3457 if (!need_recover && !need_replace) { 3458 rcu_read_unlock(); 3459 continue; 3460 } 3461 3462 still_degraded = 0; 3463 /* want to reconstruct this device */ 3464 rb2 = r10_bio; 3465 sect = raid10_find_virt(conf, sector_nr, i); 3466 if (sect >= mddev->resync_max_sectors) { 3467 /* last stripe is not complete - don't 3468 * try to recover this sector. 3469 */ 3470 rcu_read_unlock(); 3471 continue; 3472 } 3473 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3474 mreplace = NULL; 3475 /* Unless we are doing a full sync, or a replacement 3476 * we only need to recover the block if it is set in 3477 * the bitmap 3478 */ 3479 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3480 &sync_blocks, 1); 3481 if (sync_blocks < max_sync) 3482 max_sync = sync_blocks; 3483 if (!must_sync && 3484 mreplace == NULL && 3485 !conf->fullsync) { 3486 /* yep, skip the sync_blocks here, but don't assume 3487 * that there will never be anything to do here 3488 */ 3489 chunks_skipped = -1; 3490 rcu_read_unlock(); 3491 continue; 3492 } 3493 atomic_inc(&mrdev->nr_pending); 3494 if (mreplace) 3495 atomic_inc(&mreplace->nr_pending); 3496 rcu_read_unlock(); 3497 3498 r10_bio = raid10_alloc_init_r10buf(conf); 3499 r10_bio->state = 0; 3500 raise_barrier(conf, rb2 != NULL); 3501 atomic_set(&r10_bio->remaining, 0); 3502 3503 r10_bio->master_bio = (struct bio*)rb2; 3504 if (rb2) 3505 atomic_inc(&rb2->remaining); 3506 r10_bio->mddev = mddev; 3507 set_bit(R10BIO_IsRecover, &r10_bio->state); 3508 r10_bio->sector = sect; 3509 3510 raid10_find_phys(conf, r10_bio); 3511 3512 /* Need to check if the array will still be 3513 * degraded 3514 */ 3515 rcu_read_lock(); 3516 for (j = 0; j < conf->geo.raid_disks; j++) { 3517 struct md_rdev *rdev = rcu_dereference( 3518 conf->mirrors[j].rdev); 3519 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3520 still_degraded = 1; 3521 break; 3522 } 3523 } 3524 3525 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3526 &sync_blocks, still_degraded); 3527 3528 any_working = 0; 3529 for (j=0; j<conf->copies;j++) { 3530 int k; 3531 int d = r10_bio->devs[j].devnum; 3532 sector_t from_addr, to_addr; 3533 struct md_rdev *rdev = 3534 rcu_dereference(conf->mirrors[d].rdev); 3535 sector_t sector, first_bad; 3536 int bad_sectors; 3537 if (!rdev || 3538 !test_bit(In_sync, &rdev->flags)) 3539 continue; 3540 /* This is where we read from */ 3541 any_working = 1; 3542 sector = r10_bio->devs[j].addr; 3543 3544 if (is_badblock(rdev, sector, max_sync, 3545 &first_bad, &bad_sectors)) { 3546 if (first_bad > sector) 3547 max_sync = first_bad - sector; 3548 else { 3549 bad_sectors -= (sector 3550 - first_bad); 3551 if (max_sync > bad_sectors) 3552 max_sync = bad_sectors; 3553 continue; 3554 } 3555 } 3556 bio = r10_bio->devs[0].bio; 3557 bio->bi_next = biolist; 3558 biolist = bio; 3559 bio->bi_end_io = end_sync_read; 3560 bio->bi_opf = REQ_OP_READ; 3561 if (test_bit(FailFast, &rdev->flags)) 3562 bio->bi_opf |= MD_FAILFAST; 3563 from_addr = r10_bio->devs[j].addr; 3564 bio->bi_iter.bi_sector = from_addr + 3565 rdev->data_offset; 3566 bio_set_dev(bio, rdev->bdev); 3567 atomic_inc(&rdev->nr_pending); 3568 /* and we write to 'i' (if not in_sync) */ 3569 3570 for (k=0; k<conf->copies; k++) 3571 if (r10_bio->devs[k].devnum == i) 3572 break; 3573 BUG_ON(k == conf->copies); 3574 to_addr = r10_bio->devs[k].addr; 3575 r10_bio->devs[0].devnum = d; 3576 r10_bio->devs[0].addr = from_addr; 3577 r10_bio->devs[1].devnum = i; 3578 r10_bio->devs[1].addr = to_addr; 3579 3580 if (need_recover) { 3581 bio = r10_bio->devs[1].bio; 3582 bio->bi_next = biolist; 3583 biolist = bio; 3584 bio->bi_end_io = end_sync_write; 3585 bio->bi_opf = REQ_OP_WRITE; 3586 bio->bi_iter.bi_sector = to_addr 3587 + mrdev->data_offset; 3588 bio_set_dev(bio, mrdev->bdev); 3589 atomic_inc(&r10_bio->remaining); 3590 } else 3591 r10_bio->devs[1].bio->bi_end_io = NULL; 3592 3593 /* and maybe write to replacement */ 3594 bio = r10_bio->devs[1].repl_bio; 3595 if (bio) 3596 bio->bi_end_io = NULL; 3597 /* Note: if need_replace, then bio 3598 * cannot be NULL as r10buf_pool_alloc will 3599 * have allocated it. 3600 */ 3601 if (!need_replace) 3602 break; 3603 bio->bi_next = biolist; 3604 biolist = bio; 3605 bio->bi_end_io = end_sync_write; 3606 bio->bi_opf = REQ_OP_WRITE; 3607 bio->bi_iter.bi_sector = to_addr + 3608 mreplace->data_offset; 3609 bio_set_dev(bio, mreplace->bdev); 3610 atomic_inc(&r10_bio->remaining); 3611 break; 3612 } 3613 rcu_read_unlock(); 3614 if (j == conf->copies) { 3615 /* Cannot recover, so abort the recovery or 3616 * record a bad block */ 3617 if (any_working) { 3618 /* problem is that there are bad blocks 3619 * on other device(s) 3620 */ 3621 int k; 3622 for (k = 0; k < conf->copies; k++) 3623 if (r10_bio->devs[k].devnum == i) 3624 break; 3625 if (!test_bit(In_sync, 3626 &mrdev->flags) 3627 && !rdev_set_badblocks( 3628 mrdev, 3629 r10_bio->devs[k].addr, 3630 max_sync, 0)) 3631 any_working = 0; 3632 if (mreplace && 3633 !rdev_set_badblocks( 3634 mreplace, 3635 r10_bio->devs[k].addr, 3636 max_sync, 0)) 3637 any_working = 0; 3638 } 3639 if (!any_working) { 3640 if (!test_and_set_bit(MD_RECOVERY_INTR, 3641 &mddev->recovery)) 3642 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3643 mdname(mddev)); 3644 mirror->recovery_disabled 3645 = mddev->recovery_disabled; 3646 } 3647 put_buf(r10_bio); 3648 if (rb2) 3649 atomic_dec(&rb2->remaining); 3650 r10_bio = rb2; 3651 rdev_dec_pending(mrdev, mddev); 3652 if (mreplace) 3653 rdev_dec_pending(mreplace, mddev); 3654 break; 3655 } 3656 rdev_dec_pending(mrdev, mddev); 3657 if (mreplace) 3658 rdev_dec_pending(mreplace, mddev); 3659 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3660 /* Only want this if there is elsewhere to 3661 * read from. 'j' is currently the first 3662 * readable copy. 3663 */ 3664 int targets = 1; 3665 for (; j < conf->copies; j++) { 3666 int d = r10_bio->devs[j].devnum; 3667 if (conf->mirrors[d].rdev && 3668 test_bit(In_sync, 3669 &conf->mirrors[d].rdev->flags)) 3670 targets++; 3671 } 3672 if (targets == 1) 3673 r10_bio->devs[0].bio->bi_opf 3674 &= ~MD_FAILFAST; 3675 } 3676 } 3677 if (biolist == NULL) { 3678 while (r10_bio) { 3679 struct r10bio *rb2 = r10_bio; 3680 r10_bio = (struct r10bio*) rb2->master_bio; 3681 rb2->master_bio = NULL; 3682 put_buf(rb2); 3683 } 3684 goto giveup; 3685 } 3686 } else { 3687 /* resync. Schedule a read for every block at this virt offset */ 3688 int count = 0; 3689 3690 /* 3691 * Since curr_resync_completed could probably not update in 3692 * time, and we will set cluster_sync_low based on it. 3693 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3694 * safety reason, which ensures curr_resync_completed is 3695 * updated in bitmap_cond_end_sync. 3696 */ 3697 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3698 mddev_is_clustered(mddev) && 3699 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3700 3701 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3702 &sync_blocks, mddev->degraded) && 3703 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3704 &mddev->recovery)) { 3705 /* We can skip this block */ 3706 *skipped = 1; 3707 return sync_blocks + sectors_skipped; 3708 } 3709 if (sync_blocks < max_sync) 3710 max_sync = sync_blocks; 3711 r10_bio = raid10_alloc_init_r10buf(conf); 3712 r10_bio->state = 0; 3713 3714 r10_bio->mddev = mddev; 3715 atomic_set(&r10_bio->remaining, 0); 3716 raise_barrier(conf, 0); 3717 conf->next_resync = sector_nr; 3718 3719 r10_bio->master_bio = NULL; 3720 r10_bio->sector = sector_nr; 3721 set_bit(R10BIO_IsSync, &r10_bio->state); 3722 raid10_find_phys(conf, r10_bio); 3723 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3724 3725 for (i = 0; i < conf->copies; i++) { 3726 int d = r10_bio->devs[i].devnum; 3727 sector_t first_bad, sector; 3728 int bad_sectors; 3729 struct md_rdev *rdev; 3730 3731 if (r10_bio->devs[i].repl_bio) 3732 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3733 3734 bio = r10_bio->devs[i].bio; 3735 bio->bi_status = BLK_STS_IOERR; 3736 rcu_read_lock(); 3737 rdev = rcu_dereference(conf->mirrors[d].rdev); 3738 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3739 rcu_read_unlock(); 3740 continue; 3741 } 3742 sector = r10_bio->devs[i].addr; 3743 if (is_badblock(rdev, sector, max_sync, 3744 &first_bad, &bad_sectors)) { 3745 if (first_bad > sector) 3746 max_sync = first_bad - sector; 3747 else { 3748 bad_sectors -= (sector - first_bad); 3749 if (max_sync > bad_sectors) 3750 max_sync = bad_sectors; 3751 rcu_read_unlock(); 3752 continue; 3753 } 3754 } 3755 atomic_inc(&rdev->nr_pending); 3756 atomic_inc(&r10_bio->remaining); 3757 bio->bi_next = biolist; 3758 biolist = bio; 3759 bio->bi_end_io = end_sync_read; 3760 bio->bi_opf = REQ_OP_READ; 3761 if (test_bit(FailFast, &rdev->flags)) 3762 bio->bi_opf |= MD_FAILFAST; 3763 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3764 bio_set_dev(bio, rdev->bdev); 3765 count++; 3766 3767 rdev = rcu_dereference(conf->mirrors[d].replacement); 3768 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3769 rcu_read_unlock(); 3770 continue; 3771 } 3772 atomic_inc(&rdev->nr_pending); 3773 3774 /* Need to set up for writing to the replacement */ 3775 bio = r10_bio->devs[i].repl_bio; 3776 bio->bi_status = BLK_STS_IOERR; 3777 3778 sector = r10_bio->devs[i].addr; 3779 bio->bi_next = biolist; 3780 biolist = bio; 3781 bio->bi_end_io = end_sync_write; 3782 bio->bi_opf = REQ_OP_WRITE; 3783 if (test_bit(FailFast, &rdev->flags)) 3784 bio->bi_opf |= MD_FAILFAST; 3785 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3786 bio_set_dev(bio, rdev->bdev); 3787 count++; 3788 rcu_read_unlock(); 3789 } 3790 3791 if (count < 2) { 3792 for (i=0; i<conf->copies; i++) { 3793 int d = r10_bio->devs[i].devnum; 3794 if (r10_bio->devs[i].bio->bi_end_io) 3795 rdev_dec_pending(conf->mirrors[d].rdev, 3796 mddev); 3797 if (r10_bio->devs[i].repl_bio && 3798 r10_bio->devs[i].repl_bio->bi_end_io) 3799 rdev_dec_pending( 3800 conf->mirrors[d].replacement, 3801 mddev); 3802 } 3803 put_buf(r10_bio); 3804 biolist = NULL; 3805 goto giveup; 3806 } 3807 } 3808 3809 nr_sectors = 0; 3810 if (sector_nr + max_sync < max_sector) 3811 max_sector = sector_nr + max_sync; 3812 do { 3813 struct page *page; 3814 int len = PAGE_SIZE; 3815 if (sector_nr + (len>>9) > max_sector) 3816 len = (max_sector - sector_nr) << 9; 3817 if (len == 0) 3818 break; 3819 for (bio= biolist ; bio ; bio=bio->bi_next) { 3820 struct resync_pages *rp = get_resync_pages(bio); 3821 page = resync_fetch_page(rp, page_idx); 3822 /* 3823 * won't fail because the vec table is big enough 3824 * to hold all these pages 3825 */ 3826 bio_add_page(bio, page, len, 0); 3827 } 3828 nr_sectors += len>>9; 3829 sector_nr += len>>9; 3830 } while (++page_idx < RESYNC_PAGES); 3831 r10_bio->sectors = nr_sectors; 3832 3833 if (mddev_is_clustered(mddev) && 3834 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3835 /* It is resync not recovery */ 3836 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3837 conf->cluster_sync_low = mddev->curr_resync_completed; 3838 raid10_set_cluster_sync_high(conf); 3839 /* Send resync message */ 3840 md_cluster_ops->resync_info_update(mddev, 3841 conf->cluster_sync_low, 3842 conf->cluster_sync_high); 3843 } 3844 } else if (mddev_is_clustered(mddev)) { 3845 /* This is recovery not resync */ 3846 sector_t sect_va1, sect_va2; 3847 bool broadcast_msg = false; 3848 3849 for (i = 0; i < conf->geo.raid_disks; i++) { 3850 /* 3851 * sector_nr is a device address for recovery, so we 3852 * need translate it to array address before compare 3853 * with cluster_sync_high. 3854 */ 3855 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3856 3857 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3858 broadcast_msg = true; 3859 /* 3860 * curr_resync_completed is similar as 3861 * sector_nr, so make the translation too. 3862 */ 3863 sect_va2 = raid10_find_virt(conf, 3864 mddev->curr_resync_completed, i); 3865 3866 if (conf->cluster_sync_low == 0 || 3867 conf->cluster_sync_low > sect_va2) 3868 conf->cluster_sync_low = sect_va2; 3869 } 3870 } 3871 if (broadcast_msg) { 3872 raid10_set_cluster_sync_high(conf); 3873 md_cluster_ops->resync_info_update(mddev, 3874 conf->cluster_sync_low, 3875 conf->cluster_sync_high); 3876 } 3877 } 3878 3879 while (biolist) { 3880 bio = biolist; 3881 biolist = biolist->bi_next; 3882 3883 bio->bi_next = NULL; 3884 r10_bio = get_resync_r10bio(bio); 3885 r10_bio->sectors = nr_sectors; 3886 3887 if (bio->bi_end_io == end_sync_read) { 3888 md_sync_acct_bio(bio, nr_sectors); 3889 bio->bi_status = 0; 3890 submit_bio_noacct(bio); 3891 } 3892 } 3893 3894 if (sectors_skipped) 3895 /* pretend they weren't skipped, it makes 3896 * no important difference in this case 3897 */ 3898 md_done_sync(mddev, sectors_skipped, 1); 3899 3900 return sectors_skipped + nr_sectors; 3901 giveup: 3902 /* There is nowhere to write, so all non-sync 3903 * drives must be failed or in resync, all drives 3904 * have a bad block, so try the next chunk... 3905 */ 3906 if (sector_nr + max_sync < max_sector) 3907 max_sector = sector_nr + max_sync; 3908 3909 sectors_skipped += (max_sector - sector_nr); 3910 chunks_skipped ++; 3911 sector_nr = max_sector; 3912 goto skipped; 3913 } 3914 3915 static sector_t 3916 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3917 { 3918 sector_t size; 3919 struct r10conf *conf = mddev->private; 3920 3921 if (!raid_disks) 3922 raid_disks = min(conf->geo.raid_disks, 3923 conf->prev.raid_disks); 3924 if (!sectors) 3925 sectors = conf->dev_sectors; 3926 3927 size = sectors >> conf->geo.chunk_shift; 3928 sector_div(size, conf->geo.far_copies); 3929 size = size * raid_disks; 3930 sector_div(size, conf->geo.near_copies); 3931 3932 return size << conf->geo.chunk_shift; 3933 } 3934 3935 static void calc_sectors(struct r10conf *conf, sector_t size) 3936 { 3937 /* Calculate the number of sectors-per-device that will 3938 * actually be used, and set conf->dev_sectors and 3939 * conf->stride 3940 */ 3941 3942 size = size >> conf->geo.chunk_shift; 3943 sector_div(size, conf->geo.far_copies); 3944 size = size * conf->geo.raid_disks; 3945 sector_div(size, conf->geo.near_copies); 3946 /* 'size' is now the number of chunks in the array */ 3947 /* calculate "used chunks per device" */ 3948 size = size * conf->copies; 3949 3950 /* We need to round up when dividing by raid_disks to 3951 * get the stride size. 3952 */ 3953 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3954 3955 conf->dev_sectors = size << conf->geo.chunk_shift; 3956 3957 if (conf->geo.far_offset) 3958 conf->geo.stride = 1 << conf->geo.chunk_shift; 3959 else { 3960 sector_div(size, conf->geo.far_copies); 3961 conf->geo.stride = size << conf->geo.chunk_shift; 3962 } 3963 } 3964 3965 enum geo_type {geo_new, geo_old, geo_start}; 3966 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3967 { 3968 int nc, fc, fo; 3969 int layout, chunk, disks; 3970 switch (new) { 3971 case geo_old: 3972 layout = mddev->layout; 3973 chunk = mddev->chunk_sectors; 3974 disks = mddev->raid_disks - mddev->delta_disks; 3975 break; 3976 case geo_new: 3977 layout = mddev->new_layout; 3978 chunk = mddev->new_chunk_sectors; 3979 disks = mddev->raid_disks; 3980 break; 3981 default: /* avoid 'may be unused' warnings */ 3982 case geo_start: /* new when starting reshape - raid_disks not 3983 * updated yet. */ 3984 layout = mddev->new_layout; 3985 chunk = mddev->new_chunk_sectors; 3986 disks = mddev->raid_disks + mddev->delta_disks; 3987 break; 3988 } 3989 if (layout >> 19) 3990 return -1; 3991 if (chunk < (PAGE_SIZE >> 9) || 3992 !is_power_of_2(chunk)) 3993 return -2; 3994 nc = layout & 255; 3995 fc = (layout >> 8) & 255; 3996 fo = layout & (1<<16); 3997 geo->raid_disks = disks; 3998 geo->near_copies = nc; 3999 geo->far_copies = fc; 4000 geo->far_offset = fo; 4001 switch (layout >> 17) { 4002 case 0: /* original layout. simple but not always optimal */ 4003 geo->far_set_size = disks; 4004 break; 4005 case 1: /* "improved" layout which was buggy. Hopefully no-one is 4006 * actually using this, but leave code here just in case.*/ 4007 geo->far_set_size = disks/fc; 4008 WARN(geo->far_set_size < fc, 4009 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 4010 break; 4011 case 2: /* "improved" layout fixed to match documentation */ 4012 geo->far_set_size = fc * nc; 4013 break; 4014 default: /* Not a valid layout */ 4015 return -1; 4016 } 4017 geo->chunk_mask = chunk - 1; 4018 geo->chunk_shift = ffz(~chunk); 4019 return nc*fc; 4020 } 4021 4022 static void raid10_free_conf(struct r10conf *conf) 4023 { 4024 if (!conf) 4025 return; 4026 4027 mempool_exit(&conf->r10bio_pool); 4028 kfree(conf->mirrors); 4029 kfree(conf->mirrors_old); 4030 kfree(conf->mirrors_new); 4031 safe_put_page(conf->tmppage); 4032 bioset_exit(&conf->bio_split); 4033 kfree(conf); 4034 } 4035 4036 static struct r10conf *setup_conf(struct mddev *mddev) 4037 { 4038 struct r10conf *conf = NULL; 4039 int err = -EINVAL; 4040 struct geom geo; 4041 int copies; 4042 4043 copies = setup_geo(&geo, mddev, geo_new); 4044 4045 if (copies == -2) { 4046 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 4047 mdname(mddev), PAGE_SIZE); 4048 goto out; 4049 } 4050 4051 if (copies < 2 || copies > mddev->raid_disks) { 4052 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 4053 mdname(mddev), mddev->new_layout); 4054 goto out; 4055 } 4056 4057 err = -ENOMEM; 4058 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 4059 if (!conf) 4060 goto out; 4061 4062 /* FIXME calc properly */ 4063 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 4064 sizeof(struct raid10_info), 4065 GFP_KERNEL); 4066 if (!conf->mirrors) 4067 goto out; 4068 4069 conf->tmppage = alloc_page(GFP_KERNEL); 4070 if (!conf->tmppage) 4071 goto out; 4072 4073 conf->geo = geo; 4074 conf->copies = copies; 4075 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 4076 rbio_pool_free, conf); 4077 if (err) 4078 goto out; 4079 4080 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 4081 if (err) 4082 goto out; 4083 4084 calc_sectors(conf, mddev->dev_sectors); 4085 if (mddev->reshape_position == MaxSector) { 4086 conf->prev = conf->geo; 4087 conf->reshape_progress = MaxSector; 4088 } else { 4089 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 4090 err = -EINVAL; 4091 goto out; 4092 } 4093 conf->reshape_progress = mddev->reshape_position; 4094 if (conf->prev.far_offset) 4095 conf->prev.stride = 1 << conf->prev.chunk_shift; 4096 else 4097 /* far_copies must be 1 */ 4098 conf->prev.stride = conf->dev_sectors; 4099 } 4100 conf->reshape_safe = conf->reshape_progress; 4101 spin_lock_init(&conf->device_lock); 4102 INIT_LIST_HEAD(&conf->retry_list); 4103 INIT_LIST_HEAD(&conf->bio_end_io_list); 4104 4105 seqlock_init(&conf->resync_lock); 4106 init_waitqueue_head(&conf->wait_barrier); 4107 atomic_set(&conf->nr_pending, 0); 4108 4109 err = -ENOMEM; 4110 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 4111 if (!conf->thread) 4112 goto out; 4113 4114 conf->mddev = mddev; 4115 return conf; 4116 4117 out: 4118 raid10_free_conf(conf); 4119 return ERR_PTR(err); 4120 } 4121 4122 static void raid10_set_io_opt(struct r10conf *conf) 4123 { 4124 int raid_disks = conf->geo.raid_disks; 4125 4126 if (!(conf->geo.raid_disks % conf->geo.near_copies)) 4127 raid_disks /= conf->geo.near_copies; 4128 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) * 4129 raid_disks); 4130 } 4131 4132 static int raid10_run(struct mddev *mddev) 4133 { 4134 struct r10conf *conf; 4135 int i, disk_idx; 4136 struct raid10_info *disk; 4137 struct md_rdev *rdev; 4138 sector_t size; 4139 sector_t min_offset_diff = 0; 4140 int first = 1; 4141 4142 if (mddev_init_writes_pending(mddev) < 0) 4143 return -ENOMEM; 4144 4145 if (mddev->private == NULL) { 4146 conf = setup_conf(mddev); 4147 if (IS_ERR(conf)) 4148 return PTR_ERR(conf); 4149 mddev->private = conf; 4150 } 4151 conf = mddev->private; 4152 if (!conf) 4153 goto out; 4154 4155 mddev->thread = conf->thread; 4156 conf->thread = NULL; 4157 4158 if (mddev_is_clustered(conf->mddev)) { 4159 int fc, fo; 4160 4161 fc = (mddev->layout >> 8) & 255; 4162 fo = mddev->layout & (1<<16); 4163 if (fc > 1 || fo > 0) { 4164 pr_err("only near layout is supported by clustered" 4165 " raid10\n"); 4166 goto out_free_conf; 4167 } 4168 } 4169 4170 if (mddev->queue) { 4171 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 4172 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); 4173 raid10_set_io_opt(conf); 4174 } 4175 4176 rdev_for_each(rdev, mddev) { 4177 long long diff; 4178 4179 disk_idx = rdev->raid_disk; 4180 if (disk_idx < 0) 4181 continue; 4182 if (disk_idx >= conf->geo.raid_disks && 4183 disk_idx >= conf->prev.raid_disks) 4184 continue; 4185 disk = conf->mirrors + disk_idx; 4186 4187 if (test_bit(Replacement, &rdev->flags)) { 4188 if (disk->replacement) 4189 goto out_free_conf; 4190 disk->replacement = rdev; 4191 } else { 4192 if (disk->rdev) 4193 goto out_free_conf; 4194 disk->rdev = rdev; 4195 } 4196 diff = (rdev->new_data_offset - rdev->data_offset); 4197 if (!mddev->reshape_backwards) 4198 diff = -diff; 4199 if (diff < 0) 4200 diff = 0; 4201 if (first || diff < min_offset_diff) 4202 min_offset_diff = diff; 4203 4204 if (mddev->gendisk) 4205 disk_stack_limits(mddev->gendisk, rdev->bdev, 4206 rdev->data_offset << 9); 4207 4208 disk->head_position = 0; 4209 first = 0; 4210 } 4211 4212 /* need to check that every block has at least one working mirror */ 4213 if (!enough(conf, -1)) { 4214 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4215 mdname(mddev)); 4216 goto out_free_conf; 4217 } 4218 4219 if (conf->reshape_progress != MaxSector) { 4220 /* must ensure that shape change is supported */ 4221 if (conf->geo.far_copies != 1 && 4222 conf->geo.far_offset == 0) 4223 goto out_free_conf; 4224 if (conf->prev.far_copies != 1 && 4225 conf->prev.far_offset == 0) 4226 goto out_free_conf; 4227 } 4228 4229 mddev->degraded = 0; 4230 for (i = 0; 4231 i < conf->geo.raid_disks 4232 || i < conf->prev.raid_disks; 4233 i++) { 4234 4235 disk = conf->mirrors + i; 4236 4237 if (!disk->rdev && disk->replacement) { 4238 /* The replacement is all we have - use it */ 4239 disk->rdev = disk->replacement; 4240 disk->replacement = NULL; 4241 clear_bit(Replacement, &disk->rdev->flags); 4242 } 4243 4244 if (!disk->rdev || 4245 !test_bit(In_sync, &disk->rdev->flags)) { 4246 disk->head_position = 0; 4247 mddev->degraded++; 4248 if (disk->rdev && 4249 disk->rdev->saved_raid_disk < 0) 4250 conf->fullsync = 1; 4251 } 4252 4253 if (disk->replacement && 4254 !test_bit(In_sync, &disk->replacement->flags) && 4255 disk->replacement->saved_raid_disk < 0) { 4256 conf->fullsync = 1; 4257 } 4258 4259 disk->recovery_disabled = mddev->recovery_disabled - 1; 4260 } 4261 4262 if (mddev->recovery_cp != MaxSector) 4263 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4264 mdname(mddev)); 4265 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4266 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4267 conf->geo.raid_disks); 4268 /* 4269 * Ok, everything is just fine now 4270 */ 4271 mddev->dev_sectors = conf->dev_sectors; 4272 size = raid10_size(mddev, 0, 0); 4273 md_set_array_sectors(mddev, size); 4274 mddev->resync_max_sectors = size; 4275 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4276 4277 if (md_integrity_register(mddev)) 4278 goto out_free_conf; 4279 4280 if (conf->reshape_progress != MaxSector) { 4281 unsigned long before_length, after_length; 4282 4283 before_length = ((1 << conf->prev.chunk_shift) * 4284 conf->prev.far_copies); 4285 after_length = ((1 << conf->geo.chunk_shift) * 4286 conf->geo.far_copies); 4287 4288 if (max(before_length, after_length) > min_offset_diff) { 4289 /* This cannot work */ 4290 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4291 goto out_free_conf; 4292 } 4293 conf->offset_diff = min_offset_diff; 4294 4295 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4296 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4297 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4298 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4299 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4300 "reshape"); 4301 if (!mddev->sync_thread) 4302 goto out_free_conf; 4303 } 4304 4305 return 0; 4306 4307 out_free_conf: 4308 md_unregister_thread(&mddev->thread); 4309 raid10_free_conf(conf); 4310 mddev->private = NULL; 4311 out: 4312 return -EIO; 4313 } 4314 4315 static void raid10_free(struct mddev *mddev, void *priv) 4316 { 4317 raid10_free_conf(priv); 4318 } 4319 4320 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4321 { 4322 struct r10conf *conf = mddev->private; 4323 4324 if (quiesce) 4325 raise_barrier(conf, 0); 4326 else 4327 lower_barrier(conf); 4328 } 4329 4330 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4331 { 4332 /* Resize of 'far' arrays is not supported. 4333 * For 'near' and 'offset' arrays we can set the 4334 * number of sectors used to be an appropriate multiple 4335 * of the chunk size. 4336 * For 'offset', this is far_copies*chunksize. 4337 * For 'near' the multiplier is the LCM of 4338 * near_copies and raid_disks. 4339 * So if far_copies > 1 && !far_offset, fail. 4340 * Else find LCM(raid_disks, near_copy)*far_copies and 4341 * multiply by chunk_size. Then round to this number. 4342 * This is mostly done by raid10_size() 4343 */ 4344 struct r10conf *conf = mddev->private; 4345 sector_t oldsize, size; 4346 4347 if (mddev->reshape_position != MaxSector) 4348 return -EBUSY; 4349 4350 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4351 return -EINVAL; 4352 4353 oldsize = raid10_size(mddev, 0, 0); 4354 size = raid10_size(mddev, sectors, 0); 4355 if (mddev->external_size && 4356 mddev->array_sectors > size) 4357 return -EINVAL; 4358 if (mddev->bitmap) { 4359 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4360 if (ret) 4361 return ret; 4362 } 4363 md_set_array_sectors(mddev, size); 4364 if (sectors > mddev->dev_sectors && 4365 mddev->recovery_cp > oldsize) { 4366 mddev->recovery_cp = oldsize; 4367 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4368 } 4369 calc_sectors(conf, sectors); 4370 mddev->dev_sectors = conf->dev_sectors; 4371 mddev->resync_max_sectors = size; 4372 return 0; 4373 } 4374 4375 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4376 { 4377 struct md_rdev *rdev; 4378 struct r10conf *conf; 4379 4380 if (mddev->degraded > 0) { 4381 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4382 mdname(mddev)); 4383 return ERR_PTR(-EINVAL); 4384 } 4385 sector_div(size, devs); 4386 4387 /* Set new parameters */ 4388 mddev->new_level = 10; 4389 /* new layout: far_copies = 1, near_copies = 2 */ 4390 mddev->new_layout = (1<<8) + 2; 4391 mddev->new_chunk_sectors = mddev->chunk_sectors; 4392 mddev->delta_disks = mddev->raid_disks; 4393 mddev->raid_disks *= 2; 4394 /* make sure it will be not marked as dirty */ 4395 mddev->recovery_cp = MaxSector; 4396 mddev->dev_sectors = size; 4397 4398 conf = setup_conf(mddev); 4399 if (!IS_ERR(conf)) { 4400 rdev_for_each(rdev, mddev) 4401 if (rdev->raid_disk >= 0) { 4402 rdev->new_raid_disk = rdev->raid_disk * 2; 4403 rdev->sectors = size; 4404 } 4405 WRITE_ONCE(conf->barrier, 1); 4406 } 4407 4408 return conf; 4409 } 4410 4411 static void *raid10_takeover(struct mddev *mddev) 4412 { 4413 struct r0conf *raid0_conf; 4414 4415 /* raid10 can take over: 4416 * raid0 - providing it has only two drives 4417 */ 4418 if (mddev->level == 0) { 4419 /* for raid0 takeover only one zone is supported */ 4420 raid0_conf = mddev->private; 4421 if (raid0_conf->nr_strip_zones > 1) { 4422 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4423 mdname(mddev)); 4424 return ERR_PTR(-EINVAL); 4425 } 4426 return raid10_takeover_raid0(mddev, 4427 raid0_conf->strip_zone->zone_end, 4428 raid0_conf->strip_zone->nb_dev); 4429 } 4430 return ERR_PTR(-EINVAL); 4431 } 4432 4433 static int raid10_check_reshape(struct mddev *mddev) 4434 { 4435 /* Called when there is a request to change 4436 * - layout (to ->new_layout) 4437 * - chunk size (to ->new_chunk_sectors) 4438 * - raid_disks (by delta_disks) 4439 * or when trying to restart a reshape that was ongoing. 4440 * 4441 * We need to validate the request and possibly allocate 4442 * space if that might be an issue later. 4443 * 4444 * Currently we reject any reshape of a 'far' mode array, 4445 * allow chunk size to change if new is generally acceptable, 4446 * allow raid_disks to increase, and allow 4447 * a switch between 'near' mode and 'offset' mode. 4448 */ 4449 struct r10conf *conf = mddev->private; 4450 struct geom geo; 4451 4452 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4453 return -EINVAL; 4454 4455 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4456 /* mustn't change number of copies */ 4457 return -EINVAL; 4458 if (geo.far_copies > 1 && !geo.far_offset) 4459 /* Cannot switch to 'far' mode */ 4460 return -EINVAL; 4461 4462 if (mddev->array_sectors & geo.chunk_mask) 4463 /* not factor of array size */ 4464 return -EINVAL; 4465 4466 if (!enough(conf, -1)) 4467 return -EINVAL; 4468 4469 kfree(conf->mirrors_new); 4470 conf->mirrors_new = NULL; 4471 if (mddev->delta_disks > 0) { 4472 /* allocate new 'mirrors' list */ 4473 conf->mirrors_new = 4474 kcalloc(mddev->raid_disks + mddev->delta_disks, 4475 sizeof(struct raid10_info), 4476 GFP_KERNEL); 4477 if (!conf->mirrors_new) 4478 return -ENOMEM; 4479 } 4480 return 0; 4481 } 4482 4483 /* 4484 * Need to check if array has failed when deciding whether to: 4485 * - start an array 4486 * - remove non-faulty devices 4487 * - add a spare 4488 * - allow a reshape 4489 * This determination is simple when no reshape is happening. 4490 * However if there is a reshape, we need to carefully check 4491 * both the before and after sections. 4492 * This is because some failed devices may only affect one 4493 * of the two sections, and some non-in_sync devices may 4494 * be insync in the section most affected by failed devices. 4495 */ 4496 static int calc_degraded(struct r10conf *conf) 4497 { 4498 int degraded, degraded2; 4499 int i; 4500 4501 rcu_read_lock(); 4502 degraded = 0; 4503 /* 'prev' section first */ 4504 for (i = 0; i < conf->prev.raid_disks; i++) { 4505 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4506 if (!rdev || test_bit(Faulty, &rdev->flags)) 4507 degraded++; 4508 else if (!test_bit(In_sync, &rdev->flags)) 4509 /* When we can reduce the number of devices in 4510 * an array, this might not contribute to 4511 * 'degraded'. It does now. 4512 */ 4513 degraded++; 4514 } 4515 rcu_read_unlock(); 4516 if (conf->geo.raid_disks == conf->prev.raid_disks) 4517 return degraded; 4518 rcu_read_lock(); 4519 degraded2 = 0; 4520 for (i = 0; i < conf->geo.raid_disks; i++) { 4521 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4522 if (!rdev || test_bit(Faulty, &rdev->flags)) 4523 degraded2++; 4524 else if (!test_bit(In_sync, &rdev->flags)) { 4525 /* If reshape is increasing the number of devices, 4526 * this section has already been recovered, so 4527 * it doesn't contribute to degraded. 4528 * else it does. 4529 */ 4530 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4531 degraded2++; 4532 } 4533 } 4534 rcu_read_unlock(); 4535 if (degraded2 > degraded) 4536 return degraded2; 4537 return degraded; 4538 } 4539 4540 static int raid10_start_reshape(struct mddev *mddev) 4541 { 4542 /* A 'reshape' has been requested. This commits 4543 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4544 * This also checks if there are enough spares and adds them 4545 * to the array. 4546 * We currently require enough spares to make the final 4547 * array non-degraded. We also require that the difference 4548 * between old and new data_offset - on each device - is 4549 * enough that we never risk over-writing. 4550 */ 4551 4552 unsigned long before_length, after_length; 4553 sector_t min_offset_diff = 0; 4554 int first = 1; 4555 struct geom new; 4556 struct r10conf *conf = mddev->private; 4557 struct md_rdev *rdev; 4558 int spares = 0; 4559 int ret; 4560 4561 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4562 return -EBUSY; 4563 4564 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4565 return -EINVAL; 4566 4567 before_length = ((1 << conf->prev.chunk_shift) * 4568 conf->prev.far_copies); 4569 after_length = ((1 << conf->geo.chunk_shift) * 4570 conf->geo.far_copies); 4571 4572 rdev_for_each(rdev, mddev) { 4573 if (!test_bit(In_sync, &rdev->flags) 4574 && !test_bit(Faulty, &rdev->flags)) 4575 spares++; 4576 if (rdev->raid_disk >= 0) { 4577 long long diff = (rdev->new_data_offset 4578 - rdev->data_offset); 4579 if (!mddev->reshape_backwards) 4580 diff = -diff; 4581 if (diff < 0) 4582 diff = 0; 4583 if (first || diff < min_offset_diff) 4584 min_offset_diff = diff; 4585 first = 0; 4586 } 4587 } 4588 4589 if (max(before_length, after_length) > min_offset_diff) 4590 return -EINVAL; 4591 4592 if (spares < mddev->delta_disks) 4593 return -EINVAL; 4594 4595 conf->offset_diff = min_offset_diff; 4596 spin_lock_irq(&conf->device_lock); 4597 if (conf->mirrors_new) { 4598 memcpy(conf->mirrors_new, conf->mirrors, 4599 sizeof(struct raid10_info)*conf->prev.raid_disks); 4600 smp_mb(); 4601 kfree(conf->mirrors_old); 4602 conf->mirrors_old = conf->mirrors; 4603 conf->mirrors = conf->mirrors_new; 4604 conf->mirrors_new = NULL; 4605 } 4606 setup_geo(&conf->geo, mddev, geo_start); 4607 smp_mb(); 4608 if (mddev->reshape_backwards) { 4609 sector_t size = raid10_size(mddev, 0, 0); 4610 if (size < mddev->array_sectors) { 4611 spin_unlock_irq(&conf->device_lock); 4612 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4613 mdname(mddev)); 4614 return -EINVAL; 4615 } 4616 mddev->resync_max_sectors = size; 4617 conf->reshape_progress = size; 4618 } else 4619 conf->reshape_progress = 0; 4620 conf->reshape_safe = conf->reshape_progress; 4621 spin_unlock_irq(&conf->device_lock); 4622 4623 if (mddev->delta_disks && mddev->bitmap) { 4624 struct mdp_superblock_1 *sb = NULL; 4625 sector_t oldsize, newsize; 4626 4627 oldsize = raid10_size(mddev, 0, 0); 4628 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4629 4630 if (!mddev_is_clustered(mddev)) { 4631 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4632 if (ret) 4633 goto abort; 4634 else 4635 goto out; 4636 } 4637 4638 rdev_for_each(rdev, mddev) { 4639 if (rdev->raid_disk > -1 && 4640 !test_bit(Faulty, &rdev->flags)) 4641 sb = page_address(rdev->sb_page); 4642 } 4643 4644 /* 4645 * some node is already performing reshape, and no need to 4646 * call md_bitmap_resize again since it should be called when 4647 * receiving BITMAP_RESIZE msg 4648 */ 4649 if ((sb && (le32_to_cpu(sb->feature_map) & 4650 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4651 goto out; 4652 4653 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4654 if (ret) 4655 goto abort; 4656 4657 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4658 if (ret) { 4659 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4660 goto abort; 4661 } 4662 } 4663 out: 4664 if (mddev->delta_disks > 0) { 4665 rdev_for_each(rdev, mddev) 4666 if (rdev->raid_disk < 0 && 4667 !test_bit(Faulty, &rdev->flags)) { 4668 if (raid10_add_disk(mddev, rdev) == 0) { 4669 if (rdev->raid_disk >= 4670 conf->prev.raid_disks) 4671 set_bit(In_sync, &rdev->flags); 4672 else 4673 rdev->recovery_offset = 0; 4674 4675 /* Failure here is OK */ 4676 sysfs_link_rdev(mddev, rdev); 4677 } 4678 } else if (rdev->raid_disk >= conf->prev.raid_disks 4679 && !test_bit(Faulty, &rdev->flags)) { 4680 /* This is a spare that was manually added */ 4681 set_bit(In_sync, &rdev->flags); 4682 } 4683 } 4684 /* When a reshape changes the number of devices, 4685 * ->degraded is measured against the larger of the 4686 * pre and post numbers. 4687 */ 4688 spin_lock_irq(&conf->device_lock); 4689 mddev->degraded = calc_degraded(conf); 4690 spin_unlock_irq(&conf->device_lock); 4691 mddev->raid_disks = conf->geo.raid_disks; 4692 mddev->reshape_position = conf->reshape_progress; 4693 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4694 4695 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4696 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4697 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4698 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4699 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4700 4701 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4702 "reshape"); 4703 if (!mddev->sync_thread) { 4704 ret = -EAGAIN; 4705 goto abort; 4706 } 4707 conf->reshape_checkpoint = jiffies; 4708 md_wakeup_thread(mddev->sync_thread); 4709 md_new_event(); 4710 return 0; 4711 4712 abort: 4713 mddev->recovery = 0; 4714 spin_lock_irq(&conf->device_lock); 4715 conf->geo = conf->prev; 4716 mddev->raid_disks = conf->geo.raid_disks; 4717 rdev_for_each(rdev, mddev) 4718 rdev->new_data_offset = rdev->data_offset; 4719 smp_wmb(); 4720 conf->reshape_progress = MaxSector; 4721 conf->reshape_safe = MaxSector; 4722 mddev->reshape_position = MaxSector; 4723 spin_unlock_irq(&conf->device_lock); 4724 return ret; 4725 } 4726 4727 /* Calculate the last device-address that could contain 4728 * any block from the chunk that includes the array-address 's' 4729 * and report the next address. 4730 * i.e. the address returned will be chunk-aligned and after 4731 * any data that is in the chunk containing 's'. 4732 */ 4733 static sector_t last_dev_address(sector_t s, struct geom *geo) 4734 { 4735 s = (s | geo->chunk_mask) + 1; 4736 s >>= geo->chunk_shift; 4737 s *= geo->near_copies; 4738 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4739 s *= geo->far_copies; 4740 s <<= geo->chunk_shift; 4741 return s; 4742 } 4743 4744 /* Calculate the first device-address that could contain 4745 * any block from the chunk that includes the array-address 's'. 4746 * This too will be the start of a chunk 4747 */ 4748 static sector_t first_dev_address(sector_t s, struct geom *geo) 4749 { 4750 s >>= geo->chunk_shift; 4751 s *= geo->near_copies; 4752 sector_div(s, geo->raid_disks); 4753 s *= geo->far_copies; 4754 s <<= geo->chunk_shift; 4755 return s; 4756 } 4757 4758 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4759 int *skipped) 4760 { 4761 /* We simply copy at most one chunk (smallest of old and new) 4762 * at a time, possibly less if that exceeds RESYNC_PAGES, 4763 * or we hit a bad block or something. 4764 * This might mean we pause for normal IO in the middle of 4765 * a chunk, but that is not a problem as mddev->reshape_position 4766 * can record any location. 4767 * 4768 * If we will want to write to a location that isn't 4769 * yet recorded as 'safe' (i.e. in metadata on disk) then 4770 * we need to flush all reshape requests and update the metadata. 4771 * 4772 * When reshaping forwards (e.g. to more devices), we interpret 4773 * 'safe' as the earliest block which might not have been copied 4774 * down yet. We divide this by previous stripe size and multiply 4775 * by previous stripe length to get lowest device offset that we 4776 * cannot write to yet. 4777 * We interpret 'sector_nr' as an address that we want to write to. 4778 * From this we use last_device_address() to find where we might 4779 * write to, and first_device_address on the 'safe' position. 4780 * If this 'next' write position is after the 'safe' position, 4781 * we must update the metadata to increase the 'safe' position. 4782 * 4783 * When reshaping backwards, we round in the opposite direction 4784 * and perform the reverse test: next write position must not be 4785 * less than current safe position. 4786 * 4787 * In all this the minimum difference in data offsets 4788 * (conf->offset_diff - always positive) allows a bit of slack, 4789 * so next can be after 'safe', but not by more than offset_diff 4790 * 4791 * We need to prepare all the bios here before we start any IO 4792 * to ensure the size we choose is acceptable to all devices. 4793 * The means one for each copy for write-out and an extra one for 4794 * read-in. 4795 * We store the read-in bio in ->master_bio and the others in 4796 * ->devs[x].bio and ->devs[x].repl_bio. 4797 */ 4798 struct r10conf *conf = mddev->private; 4799 struct r10bio *r10_bio; 4800 sector_t next, safe, last; 4801 int max_sectors; 4802 int nr_sectors; 4803 int s; 4804 struct md_rdev *rdev; 4805 int need_flush = 0; 4806 struct bio *blist; 4807 struct bio *bio, *read_bio; 4808 int sectors_done = 0; 4809 struct page **pages; 4810 4811 if (sector_nr == 0) { 4812 /* If restarting in the middle, skip the initial sectors */ 4813 if (mddev->reshape_backwards && 4814 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4815 sector_nr = (raid10_size(mddev, 0, 0) 4816 - conf->reshape_progress); 4817 } else if (!mddev->reshape_backwards && 4818 conf->reshape_progress > 0) 4819 sector_nr = conf->reshape_progress; 4820 if (sector_nr) { 4821 mddev->curr_resync_completed = sector_nr; 4822 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4823 *skipped = 1; 4824 return sector_nr; 4825 } 4826 } 4827 4828 /* We don't use sector_nr to track where we are up to 4829 * as that doesn't work well for ->reshape_backwards. 4830 * So just use ->reshape_progress. 4831 */ 4832 if (mddev->reshape_backwards) { 4833 /* 'next' is the earliest device address that we might 4834 * write to for this chunk in the new layout 4835 */ 4836 next = first_dev_address(conf->reshape_progress - 1, 4837 &conf->geo); 4838 4839 /* 'safe' is the last device address that we might read from 4840 * in the old layout after a restart 4841 */ 4842 safe = last_dev_address(conf->reshape_safe - 1, 4843 &conf->prev); 4844 4845 if (next + conf->offset_diff < safe) 4846 need_flush = 1; 4847 4848 last = conf->reshape_progress - 1; 4849 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4850 & conf->prev.chunk_mask); 4851 if (sector_nr + RESYNC_SECTORS < last) 4852 sector_nr = last + 1 - RESYNC_SECTORS; 4853 } else { 4854 /* 'next' is after the last device address that we 4855 * might write to for this chunk in the new layout 4856 */ 4857 next = last_dev_address(conf->reshape_progress, &conf->geo); 4858 4859 /* 'safe' is the earliest device address that we might 4860 * read from in the old layout after a restart 4861 */ 4862 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4863 4864 /* Need to update metadata if 'next' might be beyond 'safe' 4865 * as that would possibly corrupt data 4866 */ 4867 if (next > safe + conf->offset_diff) 4868 need_flush = 1; 4869 4870 sector_nr = conf->reshape_progress; 4871 last = sector_nr | (conf->geo.chunk_mask 4872 & conf->prev.chunk_mask); 4873 4874 if (sector_nr + RESYNC_SECTORS <= last) 4875 last = sector_nr + RESYNC_SECTORS - 1; 4876 } 4877 4878 if (need_flush || 4879 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4880 /* Need to update reshape_position in metadata */ 4881 wait_barrier(conf, false); 4882 mddev->reshape_position = conf->reshape_progress; 4883 if (mddev->reshape_backwards) 4884 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4885 - conf->reshape_progress; 4886 else 4887 mddev->curr_resync_completed = conf->reshape_progress; 4888 conf->reshape_checkpoint = jiffies; 4889 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4890 md_wakeup_thread(mddev->thread); 4891 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4892 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4893 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4894 allow_barrier(conf); 4895 return sectors_done; 4896 } 4897 conf->reshape_safe = mddev->reshape_position; 4898 allow_barrier(conf); 4899 } 4900 4901 raise_barrier(conf, 0); 4902 read_more: 4903 /* Now schedule reads for blocks from sector_nr to last */ 4904 r10_bio = raid10_alloc_init_r10buf(conf); 4905 r10_bio->state = 0; 4906 raise_barrier(conf, 1); 4907 atomic_set(&r10_bio->remaining, 0); 4908 r10_bio->mddev = mddev; 4909 r10_bio->sector = sector_nr; 4910 set_bit(R10BIO_IsReshape, &r10_bio->state); 4911 r10_bio->sectors = last - sector_nr + 1; 4912 rdev = read_balance(conf, r10_bio, &max_sectors); 4913 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4914 4915 if (!rdev) { 4916 /* Cannot read from here, so need to record bad blocks 4917 * on all the target devices. 4918 */ 4919 // FIXME 4920 mempool_free(r10_bio, &conf->r10buf_pool); 4921 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4922 return sectors_done; 4923 } 4924 4925 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4926 GFP_KERNEL, &mddev->bio_set); 4927 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4928 + rdev->data_offset); 4929 read_bio->bi_private = r10_bio; 4930 read_bio->bi_end_io = end_reshape_read; 4931 r10_bio->master_bio = read_bio; 4932 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4933 4934 /* 4935 * Broadcast RESYNC message to other nodes, so all nodes would not 4936 * write to the region to avoid conflict. 4937 */ 4938 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4939 struct mdp_superblock_1 *sb = NULL; 4940 int sb_reshape_pos = 0; 4941 4942 conf->cluster_sync_low = sector_nr; 4943 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4944 sb = page_address(rdev->sb_page); 4945 if (sb) { 4946 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4947 /* 4948 * Set cluster_sync_low again if next address for array 4949 * reshape is less than cluster_sync_low. Since we can't 4950 * update cluster_sync_low until it has finished reshape. 4951 */ 4952 if (sb_reshape_pos < conf->cluster_sync_low) 4953 conf->cluster_sync_low = sb_reshape_pos; 4954 } 4955 4956 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4957 conf->cluster_sync_high); 4958 } 4959 4960 /* Now find the locations in the new layout */ 4961 __raid10_find_phys(&conf->geo, r10_bio); 4962 4963 blist = read_bio; 4964 read_bio->bi_next = NULL; 4965 4966 rcu_read_lock(); 4967 for (s = 0; s < conf->copies*2; s++) { 4968 struct bio *b; 4969 int d = r10_bio->devs[s/2].devnum; 4970 struct md_rdev *rdev2; 4971 if (s&1) { 4972 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4973 b = r10_bio->devs[s/2].repl_bio; 4974 } else { 4975 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4976 b = r10_bio->devs[s/2].bio; 4977 } 4978 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4979 continue; 4980 4981 bio_set_dev(b, rdev2->bdev); 4982 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4983 rdev2->new_data_offset; 4984 b->bi_end_io = end_reshape_write; 4985 b->bi_opf = REQ_OP_WRITE; 4986 b->bi_next = blist; 4987 blist = b; 4988 } 4989 4990 /* Now add as many pages as possible to all of these bios. */ 4991 4992 nr_sectors = 0; 4993 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4994 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4995 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4996 int len = (max_sectors - s) << 9; 4997 if (len > PAGE_SIZE) 4998 len = PAGE_SIZE; 4999 for (bio = blist; bio ; bio = bio->bi_next) { 5000 /* 5001 * won't fail because the vec table is big enough 5002 * to hold all these pages 5003 */ 5004 bio_add_page(bio, page, len, 0); 5005 } 5006 sector_nr += len >> 9; 5007 nr_sectors += len >> 9; 5008 } 5009 rcu_read_unlock(); 5010 r10_bio->sectors = nr_sectors; 5011 5012 /* Now submit the read */ 5013 md_sync_acct_bio(read_bio, r10_bio->sectors); 5014 atomic_inc(&r10_bio->remaining); 5015 read_bio->bi_next = NULL; 5016 submit_bio_noacct(read_bio); 5017 sectors_done += nr_sectors; 5018 if (sector_nr <= last) 5019 goto read_more; 5020 5021 lower_barrier(conf); 5022 5023 /* Now that we have done the whole section we can 5024 * update reshape_progress 5025 */ 5026 if (mddev->reshape_backwards) 5027 conf->reshape_progress -= sectors_done; 5028 else 5029 conf->reshape_progress += sectors_done; 5030 5031 return sectors_done; 5032 } 5033 5034 static void end_reshape_request(struct r10bio *r10_bio); 5035 static int handle_reshape_read_error(struct mddev *mddev, 5036 struct r10bio *r10_bio); 5037 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 5038 { 5039 /* Reshape read completed. Hopefully we have a block 5040 * to write out. 5041 * If we got a read error then we do sync 1-page reads from 5042 * elsewhere until we find the data - or give up. 5043 */ 5044 struct r10conf *conf = mddev->private; 5045 int s; 5046 5047 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 5048 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 5049 /* Reshape has been aborted */ 5050 md_done_sync(mddev, r10_bio->sectors, 0); 5051 return; 5052 } 5053 5054 /* We definitely have the data in the pages, schedule the 5055 * writes. 5056 */ 5057 atomic_set(&r10_bio->remaining, 1); 5058 for (s = 0; s < conf->copies*2; s++) { 5059 struct bio *b; 5060 int d = r10_bio->devs[s/2].devnum; 5061 struct md_rdev *rdev; 5062 rcu_read_lock(); 5063 if (s&1) { 5064 rdev = rcu_dereference(conf->mirrors[d].replacement); 5065 b = r10_bio->devs[s/2].repl_bio; 5066 } else { 5067 rdev = rcu_dereference(conf->mirrors[d].rdev); 5068 b = r10_bio->devs[s/2].bio; 5069 } 5070 if (!rdev || test_bit(Faulty, &rdev->flags)) { 5071 rcu_read_unlock(); 5072 continue; 5073 } 5074 atomic_inc(&rdev->nr_pending); 5075 rcu_read_unlock(); 5076 md_sync_acct_bio(b, r10_bio->sectors); 5077 atomic_inc(&r10_bio->remaining); 5078 b->bi_next = NULL; 5079 submit_bio_noacct(b); 5080 } 5081 end_reshape_request(r10_bio); 5082 } 5083 5084 static void end_reshape(struct r10conf *conf) 5085 { 5086 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 5087 return; 5088 5089 spin_lock_irq(&conf->device_lock); 5090 conf->prev = conf->geo; 5091 md_finish_reshape(conf->mddev); 5092 smp_wmb(); 5093 conf->reshape_progress = MaxSector; 5094 conf->reshape_safe = MaxSector; 5095 spin_unlock_irq(&conf->device_lock); 5096 5097 if (conf->mddev->queue) 5098 raid10_set_io_opt(conf); 5099 conf->fullsync = 0; 5100 } 5101 5102 static void raid10_update_reshape_pos(struct mddev *mddev) 5103 { 5104 struct r10conf *conf = mddev->private; 5105 sector_t lo, hi; 5106 5107 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 5108 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 5109 || mddev->reshape_position == MaxSector) 5110 conf->reshape_progress = mddev->reshape_position; 5111 else 5112 WARN_ON_ONCE(1); 5113 } 5114 5115 static int handle_reshape_read_error(struct mddev *mddev, 5116 struct r10bio *r10_bio) 5117 { 5118 /* Use sync reads to get the blocks from somewhere else */ 5119 int sectors = r10_bio->sectors; 5120 struct r10conf *conf = mddev->private; 5121 struct r10bio *r10b; 5122 int slot = 0; 5123 int idx = 0; 5124 struct page **pages; 5125 5126 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 5127 if (!r10b) { 5128 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5129 return -ENOMEM; 5130 } 5131 5132 /* reshape IOs share pages from .devs[0].bio */ 5133 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5134 5135 r10b->sector = r10_bio->sector; 5136 __raid10_find_phys(&conf->prev, r10b); 5137 5138 while (sectors) { 5139 int s = sectors; 5140 int success = 0; 5141 int first_slot = slot; 5142 5143 if (s > (PAGE_SIZE >> 9)) 5144 s = PAGE_SIZE >> 9; 5145 5146 rcu_read_lock(); 5147 while (!success) { 5148 int d = r10b->devs[slot].devnum; 5149 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5150 sector_t addr; 5151 if (rdev == NULL || 5152 test_bit(Faulty, &rdev->flags) || 5153 !test_bit(In_sync, &rdev->flags)) 5154 goto failed; 5155 5156 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5157 atomic_inc(&rdev->nr_pending); 5158 rcu_read_unlock(); 5159 success = sync_page_io(rdev, 5160 addr, 5161 s << 9, 5162 pages[idx], 5163 REQ_OP_READ, false); 5164 rdev_dec_pending(rdev, mddev); 5165 rcu_read_lock(); 5166 if (success) 5167 break; 5168 failed: 5169 slot++; 5170 if (slot >= conf->copies) 5171 slot = 0; 5172 if (slot == first_slot) 5173 break; 5174 } 5175 rcu_read_unlock(); 5176 if (!success) { 5177 /* couldn't read this block, must give up */ 5178 set_bit(MD_RECOVERY_INTR, 5179 &mddev->recovery); 5180 kfree(r10b); 5181 return -EIO; 5182 } 5183 sectors -= s; 5184 idx++; 5185 } 5186 kfree(r10b); 5187 return 0; 5188 } 5189 5190 static void end_reshape_write(struct bio *bio) 5191 { 5192 struct r10bio *r10_bio = get_resync_r10bio(bio); 5193 struct mddev *mddev = r10_bio->mddev; 5194 struct r10conf *conf = mddev->private; 5195 int d; 5196 int slot; 5197 int repl; 5198 struct md_rdev *rdev = NULL; 5199 5200 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5201 if (repl) 5202 rdev = conf->mirrors[d].replacement; 5203 if (!rdev) { 5204 smp_mb(); 5205 rdev = conf->mirrors[d].rdev; 5206 } 5207 5208 if (bio->bi_status) { 5209 /* FIXME should record badblock */ 5210 md_error(mddev, rdev); 5211 } 5212 5213 rdev_dec_pending(rdev, mddev); 5214 end_reshape_request(r10_bio); 5215 } 5216 5217 static void end_reshape_request(struct r10bio *r10_bio) 5218 { 5219 if (!atomic_dec_and_test(&r10_bio->remaining)) 5220 return; 5221 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5222 bio_put(r10_bio->master_bio); 5223 put_buf(r10_bio); 5224 } 5225 5226 static void raid10_finish_reshape(struct mddev *mddev) 5227 { 5228 struct r10conf *conf = mddev->private; 5229 5230 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5231 return; 5232 5233 if (mddev->delta_disks > 0) { 5234 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5235 mddev->recovery_cp = mddev->resync_max_sectors; 5236 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5237 } 5238 mddev->resync_max_sectors = mddev->array_sectors; 5239 } else { 5240 int d; 5241 rcu_read_lock(); 5242 for (d = conf->geo.raid_disks ; 5243 d < conf->geo.raid_disks - mddev->delta_disks; 5244 d++) { 5245 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5246 if (rdev) 5247 clear_bit(In_sync, &rdev->flags); 5248 rdev = rcu_dereference(conf->mirrors[d].replacement); 5249 if (rdev) 5250 clear_bit(In_sync, &rdev->flags); 5251 } 5252 rcu_read_unlock(); 5253 } 5254 mddev->layout = mddev->new_layout; 5255 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5256 mddev->reshape_position = MaxSector; 5257 mddev->delta_disks = 0; 5258 mddev->reshape_backwards = 0; 5259 } 5260 5261 static struct md_personality raid10_personality = 5262 { 5263 .name = "raid10", 5264 .level = 10, 5265 .owner = THIS_MODULE, 5266 .make_request = raid10_make_request, 5267 .run = raid10_run, 5268 .free = raid10_free, 5269 .status = raid10_status, 5270 .error_handler = raid10_error, 5271 .hot_add_disk = raid10_add_disk, 5272 .hot_remove_disk= raid10_remove_disk, 5273 .spare_active = raid10_spare_active, 5274 .sync_request = raid10_sync_request, 5275 .quiesce = raid10_quiesce, 5276 .size = raid10_size, 5277 .resize = raid10_resize, 5278 .takeover = raid10_takeover, 5279 .check_reshape = raid10_check_reshape, 5280 .start_reshape = raid10_start_reshape, 5281 .finish_reshape = raid10_finish_reshape, 5282 .update_reshape_pos = raid10_update_reshape_pos, 5283 }; 5284 5285 static int __init raid_init(void) 5286 { 5287 return register_md_personality(&raid10_personality); 5288 } 5289 5290 static void raid_exit(void) 5291 { 5292 unregister_md_personality(&raid10_personality); 5293 } 5294 5295 module_init(raid_init); 5296 module_exit(raid_exit); 5297 MODULE_LICENSE("GPL"); 5298 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5299 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5300 MODULE_ALIAS("md-raid10"); 5301 MODULE_ALIAS("md-level-10"); 5302