1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 #define NULL_CMD 83 #define cmd_before(conf, cmd) \ 84 do { \ 85 write_sequnlock_irq(&(conf)->resync_lock); \ 86 cmd; \ 87 } while (0) 88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 89 90 #define wait_event_barrier_cmd(conf, cond, cmd) \ 91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 92 cmd_after(conf)) 93 94 #define wait_event_barrier(conf, cond) \ 95 wait_event_barrier_cmd(conf, cond, NULL_CMD) 96 97 /* 98 * for resync bio, r10bio pointer can be retrieved from the per-bio 99 * 'struct resync_pages'. 100 */ 101 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 102 { 103 return get_resync_pages(bio)->raid_bio; 104 } 105 106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 107 { 108 struct r10conf *conf = data; 109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 110 111 /* allocate a r10bio with room for raid_disks entries in the 112 * bios array */ 113 return kzalloc(size, gfp_flags); 114 } 115 116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 117 /* amount of memory to reserve for resync requests */ 118 #define RESYNC_WINDOW (1024*1024) 119 /* maximum number of concurrent requests, memory permitting */ 120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 123 124 /* 125 * When performing a resync, we need to read and compare, so 126 * we need as many pages are there are copies. 127 * When performing a recovery, we need 2 bios, one for read, 128 * one for write (we recover only one drive per r10buf) 129 * 130 */ 131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 132 { 133 struct r10conf *conf = data; 134 struct r10bio *r10_bio; 135 struct bio *bio; 136 int j; 137 int nalloc, nalloc_rp; 138 struct resync_pages *rps; 139 140 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 141 if (!r10_bio) 142 return NULL; 143 144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 146 nalloc = conf->copies; /* resync */ 147 else 148 nalloc = 2; /* recovery */ 149 150 /* allocate once for all bios */ 151 if (!conf->have_replacement) 152 nalloc_rp = nalloc; 153 else 154 nalloc_rp = nalloc * 2; 155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 156 if (!rps) 157 goto out_free_r10bio; 158 159 /* 160 * Allocate bios. 161 */ 162 for (j = nalloc ; j-- ; ) { 163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 164 if (!bio) 165 goto out_free_bio; 166 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 167 r10_bio->devs[j].bio = bio; 168 if (!conf->have_replacement) 169 continue; 170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 171 if (!bio) 172 goto out_free_bio; 173 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 174 r10_bio->devs[j].repl_bio = bio; 175 } 176 /* 177 * Allocate RESYNC_PAGES data pages and attach them 178 * where needed. 179 */ 180 for (j = 0; j < nalloc; j++) { 181 struct bio *rbio = r10_bio->devs[j].repl_bio; 182 struct resync_pages *rp, *rp_repl; 183 184 rp = &rps[j]; 185 if (rbio) 186 rp_repl = &rps[nalloc + j]; 187 188 bio = r10_bio->devs[j].bio; 189 190 if (!j || test_bit(MD_RECOVERY_SYNC, 191 &conf->mddev->recovery)) { 192 if (resync_alloc_pages(rp, gfp_flags)) 193 goto out_free_pages; 194 } else { 195 memcpy(rp, &rps[0], sizeof(*rp)); 196 resync_get_all_pages(rp); 197 } 198 199 rp->raid_bio = r10_bio; 200 bio->bi_private = rp; 201 if (rbio) { 202 memcpy(rp_repl, rp, sizeof(*rp)); 203 rbio->bi_private = rp_repl; 204 } 205 } 206 207 return r10_bio; 208 209 out_free_pages: 210 while (--j >= 0) 211 resync_free_pages(&rps[j]); 212 213 j = 0; 214 out_free_bio: 215 for ( ; j < nalloc; j++) { 216 if (r10_bio->devs[j].bio) 217 bio_uninit(r10_bio->devs[j].bio); 218 kfree(r10_bio->devs[j].bio); 219 if (r10_bio->devs[j].repl_bio) 220 bio_uninit(r10_bio->devs[j].repl_bio); 221 kfree(r10_bio->devs[j].repl_bio); 222 } 223 kfree(rps); 224 out_free_r10bio: 225 rbio_pool_free(r10_bio, conf); 226 return NULL; 227 } 228 229 static void r10buf_pool_free(void *__r10_bio, void *data) 230 { 231 struct r10conf *conf = data; 232 struct r10bio *r10bio = __r10_bio; 233 int j; 234 struct resync_pages *rp = NULL; 235 236 for (j = conf->copies; j--; ) { 237 struct bio *bio = r10bio->devs[j].bio; 238 239 if (bio) { 240 rp = get_resync_pages(bio); 241 resync_free_pages(rp); 242 bio_uninit(bio); 243 kfree(bio); 244 } 245 246 bio = r10bio->devs[j].repl_bio; 247 if (bio) { 248 bio_uninit(bio); 249 kfree(bio); 250 } 251 } 252 253 /* resync pages array stored in the 1st bio's .bi_private */ 254 kfree(rp); 255 256 rbio_pool_free(r10bio, conf); 257 } 258 259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 260 { 261 int i; 262 263 for (i = 0; i < conf->geo.raid_disks; i++) { 264 struct bio **bio = & r10_bio->devs[i].bio; 265 if (!BIO_SPECIAL(*bio)) 266 bio_put(*bio); 267 *bio = NULL; 268 bio = &r10_bio->devs[i].repl_bio; 269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 270 bio_put(*bio); 271 *bio = NULL; 272 } 273 } 274 275 static void free_r10bio(struct r10bio *r10_bio) 276 { 277 struct r10conf *conf = r10_bio->mddev->private; 278 279 put_all_bios(conf, r10_bio); 280 mempool_free(r10_bio, &conf->r10bio_pool); 281 } 282 283 static void put_buf(struct r10bio *r10_bio) 284 { 285 struct r10conf *conf = r10_bio->mddev->private; 286 287 mempool_free(r10_bio, &conf->r10buf_pool); 288 289 lower_barrier(conf); 290 } 291 292 static void wake_up_barrier(struct r10conf *conf) 293 { 294 if (wq_has_sleeper(&conf->wait_barrier)) 295 wake_up(&conf->wait_barrier); 296 } 297 298 static void reschedule_retry(struct r10bio *r10_bio) 299 { 300 unsigned long flags; 301 struct mddev *mddev = r10_bio->mddev; 302 struct r10conf *conf = mddev->private; 303 304 spin_lock_irqsave(&conf->device_lock, flags); 305 list_add(&r10_bio->retry_list, &conf->retry_list); 306 conf->nr_queued ++; 307 spin_unlock_irqrestore(&conf->device_lock, flags); 308 309 /* wake up frozen array... */ 310 wake_up(&conf->wait_barrier); 311 312 md_wakeup_thread(mddev->thread); 313 } 314 315 /* 316 * raid_end_bio_io() is called when we have finished servicing a mirrored 317 * operation and are ready to return a success/failure code to the buffer 318 * cache layer. 319 */ 320 static void raid_end_bio_io(struct r10bio *r10_bio) 321 { 322 struct bio *bio = r10_bio->master_bio; 323 struct r10conf *conf = r10_bio->mddev->private; 324 325 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 326 bio->bi_status = BLK_STS_IOERR; 327 328 bio_endio(bio); 329 /* 330 * Wake up any possible resync thread that waits for the device 331 * to go idle. 332 */ 333 allow_barrier(conf); 334 335 free_r10bio(r10_bio); 336 } 337 338 /* 339 * Update disk head position estimator based on IRQ completion info. 340 */ 341 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 342 { 343 struct r10conf *conf = r10_bio->mddev->private; 344 345 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 346 r10_bio->devs[slot].addr + (r10_bio->sectors); 347 } 348 349 /* 350 * Find the disk number which triggered given bio 351 */ 352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 353 struct bio *bio, int *slotp, int *replp) 354 { 355 int slot; 356 int repl = 0; 357 358 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 359 if (r10_bio->devs[slot].bio == bio) 360 break; 361 if (r10_bio->devs[slot].repl_bio == bio) { 362 repl = 1; 363 break; 364 } 365 } 366 367 update_head_pos(slot, r10_bio); 368 369 if (slotp) 370 *slotp = slot; 371 if (replp) 372 *replp = repl; 373 return r10_bio->devs[slot].devnum; 374 } 375 376 static void raid10_end_read_request(struct bio *bio) 377 { 378 int uptodate = !bio->bi_status; 379 struct r10bio *r10_bio = bio->bi_private; 380 int slot; 381 struct md_rdev *rdev; 382 struct r10conf *conf = r10_bio->mddev->private; 383 384 slot = r10_bio->read_slot; 385 rdev = r10_bio->devs[slot].rdev; 386 /* 387 * this branch is our 'one mirror IO has finished' event handler: 388 */ 389 update_head_pos(slot, r10_bio); 390 391 if (uptodate) { 392 /* 393 * Set R10BIO_Uptodate in our master bio, so that 394 * we will return a good error code to the higher 395 * levels even if IO on some other mirrored buffer fails. 396 * 397 * The 'master' represents the composite IO operation to 398 * user-side. So if something waits for IO, then it will 399 * wait for the 'master' bio. 400 */ 401 set_bit(R10BIO_Uptodate, &r10_bio->state); 402 } else { 403 /* If all other devices that store this block have 404 * failed, we want to return the error upwards rather 405 * than fail the last device. Here we redefine 406 * "uptodate" to mean "Don't want to retry" 407 */ 408 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 409 rdev->raid_disk)) 410 uptodate = 1; 411 } 412 if (uptodate) { 413 raid_end_bio_io(r10_bio); 414 rdev_dec_pending(rdev, conf->mddev); 415 } else { 416 /* 417 * oops, read error - keep the refcount on the rdev 418 */ 419 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 420 mdname(conf->mddev), 421 rdev->bdev, 422 (unsigned long long)r10_bio->sector); 423 set_bit(R10BIO_ReadError, &r10_bio->state); 424 reschedule_retry(r10_bio); 425 } 426 } 427 428 static void close_write(struct r10bio *r10_bio) 429 { 430 /* clear the bitmap if all writes complete successfully */ 431 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 432 r10_bio->sectors, 433 !test_bit(R10BIO_Degraded, &r10_bio->state), 434 0); 435 md_write_end(r10_bio->mddev); 436 } 437 438 static void one_write_done(struct r10bio *r10_bio) 439 { 440 if (atomic_dec_and_test(&r10_bio->remaining)) { 441 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 442 reschedule_retry(r10_bio); 443 else { 444 close_write(r10_bio); 445 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 446 reschedule_retry(r10_bio); 447 else 448 raid_end_bio_io(r10_bio); 449 } 450 } 451 } 452 453 static void raid10_end_write_request(struct bio *bio) 454 { 455 struct r10bio *r10_bio = bio->bi_private; 456 int dev; 457 int dec_rdev = 1; 458 struct r10conf *conf = r10_bio->mddev->private; 459 int slot, repl; 460 struct md_rdev *rdev = NULL; 461 struct bio *to_put = NULL; 462 bool discard_error; 463 464 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 465 466 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 467 468 if (repl) 469 rdev = conf->mirrors[dev].replacement; 470 if (!rdev) { 471 smp_rmb(); 472 repl = 0; 473 rdev = conf->mirrors[dev].rdev; 474 } 475 /* 476 * this branch is our 'one mirror IO has finished' event handler: 477 */ 478 if (bio->bi_status && !discard_error) { 479 if (repl) 480 /* Never record new bad blocks to replacement, 481 * just fail it. 482 */ 483 md_error(rdev->mddev, rdev); 484 else { 485 set_bit(WriteErrorSeen, &rdev->flags); 486 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 487 set_bit(MD_RECOVERY_NEEDED, 488 &rdev->mddev->recovery); 489 490 dec_rdev = 0; 491 if (test_bit(FailFast, &rdev->flags) && 492 (bio->bi_opf & MD_FAILFAST)) { 493 md_error(rdev->mddev, rdev); 494 } 495 496 /* 497 * When the device is faulty, it is not necessary to 498 * handle write error. 499 */ 500 if (!test_bit(Faulty, &rdev->flags)) 501 set_bit(R10BIO_WriteError, &r10_bio->state); 502 else { 503 /* Fail the request */ 504 set_bit(R10BIO_Degraded, &r10_bio->state); 505 r10_bio->devs[slot].bio = NULL; 506 to_put = bio; 507 dec_rdev = 1; 508 } 509 } 510 } else { 511 /* 512 * Set R10BIO_Uptodate in our master bio, so that 513 * we will return a good error code for to the higher 514 * levels even if IO on some other mirrored buffer fails. 515 * 516 * The 'master' represents the composite IO operation to 517 * user-side. So if something waits for IO, then it will 518 * wait for the 'master' bio. 519 */ 520 sector_t first_bad; 521 int bad_sectors; 522 523 /* 524 * Do not set R10BIO_Uptodate if the current device is 525 * rebuilding or Faulty. This is because we cannot use 526 * such device for properly reading the data back (we could 527 * potentially use it, if the current write would have felt 528 * before rdev->recovery_offset, but for simplicity we don't 529 * check this here. 530 */ 531 if (test_bit(In_sync, &rdev->flags) && 532 !test_bit(Faulty, &rdev->flags)) 533 set_bit(R10BIO_Uptodate, &r10_bio->state); 534 535 /* Maybe we can clear some bad blocks. */ 536 if (is_badblock(rdev, 537 r10_bio->devs[slot].addr, 538 r10_bio->sectors, 539 &first_bad, &bad_sectors) && !discard_error) { 540 bio_put(bio); 541 if (repl) 542 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 543 else 544 r10_bio->devs[slot].bio = IO_MADE_GOOD; 545 dec_rdev = 0; 546 set_bit(R10BIO_MadeGood, &r10_bio->state); 547 } 548 } 549 550 /* 551 * 552 * Let's see if all mirrored write operations have finished 553 * already. 554 */ 555 one_write_done(r10_bio); 556 if (dec_rdev) 557 rdev_dec_pending(rdev, conf->mddev); 558 if (to_put) 559 bio_put(to_put); 560 } 561 562 /* 563 * RAID10 layout manager 564 * As well as the chunksize and raid_disks count, there are two 565 * parameters: near_copies and far_copies. 566 * near_copies * far_copies must be <= raid_disks. 567 * Normally one of these will be 1. 568 * If both are 1, we get raid0. 569 * If near_copies == raid_disks, we get raid1. 570 * 571 * Chunks are laid out in raid0 style with near_copies copies of the 572 * first chunk, followed by near_copies copies of the next chunk and 573 * so on. 574 * If far_copies > 1, then after 1/far_copies of the array has been assigned 575 * as described above, we start again with a device offset of near_copies. 576 * So we effectively have another copy of the whole array further down all 577 * the drives, but with blocks on different drives. 578 * With this layout, and block is never stored twice on the one device. 579 * 580 * raid10_find_phys finds the sector offset of a given virtual sector 581 * on each device that it is on. 582 * 583 * raid10_find_virt does the reverse mapping, from a device and a 584 * sector offset to a virtual address 585 */ 586 587 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 588 { 589 int n,f; 590 sector_t sector; 591 sector_t chunk; 592 sector_t stripe; 593 int dev; 594 int slot = 0; 595 int last_far_set_start, last_far_set_size; 596 597 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 598 last_far_set_start *= geo->far_set_size; 599 600 last_far_set_size = geo->far_set_size; 601 last_far_set_size += (geo->raid_disks % geo->far_set_size); 602 603 /* now calculate first sector/dev */ 604 chunk = r10bio->sector >> geo->chunk_shift; 605 sector = r10bio->sector & geo->chunk_mask; 606 607 chunk *= geo->near_copies; 608 stripe = chunk; 609 dev = sector_div(stripe, geo->raid_disks); 610 if (geo->far_offset) 611 stripe *= geo->far_copies; 612 613 sector += stripe << geo->chunk_shift; 614 615 /* and calculate all the others */ 616 for (n = 0; n < geo->near_copies; n++) { 617 int d = dev; 618 int set; 619 sector_t s = sector; 620 r10bio->devs[slot].devnum = d; 621 r10bio->devs[slot].addr = s; 622 slot++; 623 624 for (f = 1; f < geo->far_copies; f++) { 625 set = d / geo->far_set_size; 626 d += geo->near_copies; 627 628 if ((geo->raid_disks % geo->far_set_size) && 629 (d > last_far_set_start)) { 630 d -= last_far_set_start; 631 d %= last_far_set_size; 632 d += last_far_set_start; 633 } else { 634 d %= geo->far_set_size; 635 d += geo->far_set_size * set; 636 } 637 s += geo->stride; 638 r10bio->devs[slot].devnum = d; 639 r10bio->devs[slot].addr = s; 640 slot++; 641 } 642 dev++; 643 if (dev >= geo->raid_disks) { 644 dev = 0; 645 sector += (geo->chunk_mask + 1); 646 } 647 } 648 } 649 650 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 651 { 652 struct geom *geo = &conf->geo; 653 654 if (conf->reshape_progress != MaxSector && 655 ((r10bio->sector >= conf->reshape_progress) != 656 conf->mddev->reshape_backwards)) { 657 set_bit(R10BIO_Previous, &r10bio->state); 658 geo = &conf->prev; 659 } else 660 clear_bit(R10BIO_Previous, &r10bio->state); 661 662 __raid10_find_phys(geo, r10bio); 663 } 664 665 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 666 { 667 sector_t offset, chunk, vchunk; 668 /* Never use conf->prev as this is only called during resync 669 * or recovery, so reshape isn't happening 670 */ 671 struct geom *geo = &conf->geo; 672 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 673 int far_set_size = geo->far_set_size; 674 int last_far_set_start; 675 676 if (geo->raid_disks % geo->far_set_size) { 677 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 678 last_far_set_start *= geo->far_set_size; 679 680 if (dev >= last_far_set_start) { 681 far_set_size = geo->far_set_size; 682 far_set_size += (geo->raid_disks % geo->far_set_size); 683 far_set_start = last_far_set_start; 684 } 685 } 686 687 offset = sector & geo->chunk_mask; 688 if (geo->far_offset) { 689 int fc; 690 chunk = sector >> geo->chunk_shift; 691 fc = sector_div(chunk, geo->far_copies); 692 dev -= fc * geo->near_copies; 693 if (dev < far_set_start) 694 dev += far_set_size; 695 } else { 696 while (sector >= geo->stride) { 697 sector -= geo->stride; 698 if (dev < (geo->near_copies + far_set_start)) 699 dev += far_set_size - geo->near_copies; 700 else 701 dev -= geo->near_copies; 702 } 703 chunk = sector >> geo->chunk_shift; 704 } 705 vchunk = chunk * geo->raid_disks + dev; 706 sector_div(vchunk, geo->near_copies); 707 return (vchunk << geo->chunk_shift) + offset; 708 } 709 710 /* 711 * This routine returns the disk from which the requested read should 712 * be done. There is a per-array 'next expected sequential IO' sector 713 * number - if this matches on the next IO then we use the last disk. 714 * There is also a per-disk 'last know head position' sector that is 715 * maintained from IRQ contexts, both the normal and the resync IO 716 * completion handlers update this position correctly. If there is no 717 * perfect sequential match then we pick the disk whose head is closest. 718 * 719 * If there are 2 mirrors in the same 2 devices, performance degrades 720 * because position is mirror, not device based. 721 * 722 * The rdev for the device selected will have nr_pending incremented. 723 */ 724 725 /* 726 * FIXME: possibly should rethink readbalancing and do it differently 727 * depending on near_copies / far_copies geometry. 728 */ 729 static struct md_rdev *read_balance(struct r10conf *conf, 730 struct r10bio *r10_bio, 731 int *max_sectors) 732 { 733 const sector_t this_sector = r10_bio->sector; 734 int disk, slot; 735 int sectors = r10_bio->sectors; 736 int best_good_sectors; 737 sector_t new_distance, best_dist; 738 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 739 int do_balance; 740 int best_dist_slot, best_pending_slot; 741 bool has_nonrot_disk = false; 742 unsigned int min_pending; 743 struct geom *geo = &conf->geo; 744 745 raid10_find_phys(conf, r10_bio); 746 rcu_read_lock(); 747 best_dist_slot = -1; 748 min_pending = UINT_MAX; 749 best_dist_rdev = NULL; 750 best_pending_rdev = NULL; 751 best_dist = MaxSector; 752 best_good_sectors = 0; 753 do_balance = 1; 754 clear_bit(R10BIO_FailFast, &r10_bio->state); 755 /* 756 * Check if we can balance. We can balance on the whole 757 * device if no resync is going on (recovery is ok), or below 758 * the resync window. We take the first readable disk when 759 * above the resync window. 760 */ 761 if ((conf->mddev->recovery_cp < MaxSector 762 && (this_sector + sectors >= conf->next_resync)) || 763 (mddev_is_clustered(conf->mddev) && 764 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 765 this_sector + sectors))) 766 do_balance = 0; 767 768 for (slot = 0; slot < conf->copies ; slot++) { 769 sector_t first_bad; 770 int bad_sectors; 771 sector_t dev_sector; 772 unsigned int pending; 773 bool nonrot; 774 775 if (r10_bio->devs[slot].bio == IO_BLOCKED) 776 continue; 777 disk = r10_bio->devs[slot].devnum; 778 rdev = rcu_dereference(conf->mirrors[disk].replacement); 779 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 780 r10_bio->devs[slot].addr + sectors > 781 rdev->recovery_offset) { 782 /* 783 * Read replacement first to prevent reading both rdev 784 * and replacement as NULL during replacement replace 785 * rdev. 786 */ 787 smp_mb(); 788 rdev = rcu_dereference(conf->mirrors[disk].rdev); 789 } 790 if (rdev == NULL || 791 test_bit(Faulty, &rdev->flags)) 792 continue; 793 if (!test_bit(In_sync, &rdev->flags) && 794 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 795 continue; 796 797 dev_sector = r10_bio->devs[slot].addr; 798 if (is_badblock(rdev, dev_sector, sectors, 799 &first_bad, &bad_sectors)) { 800 if (best_dist < MaxSector) 801 /* Already have a better slot */ 802 continue; 803 if (first_bad <= dev_sector) { 804 /* Cannot read here. If this is the 805 * 'primary' device, then we must not read 806 * beyond 'bad_sectors' from another device. 807 */ 808 bad_sectors -= (dev_sector - first_bad); 809 if (!do_balance && sectors > bad_sectors) 810 sectors = bad_sectors; 811 if (best_good_sectors > sectors) 812 best_good_sectors = sectors; 813 } else { 814 sector_t good_sectors = 815 first_bad - dev_sector; 816 if (good_sectors > best_good_sectors) { 817 best_good_sectors = good_sectors; 818 best_dist_slot = slot; 819 best_dist_rdev = rdev; 820 } 821 if (!do_balance) 822 /* Must read from here */ 823 break; 824 } 825 continue; 826 } else 827 best_good_sectors = sectors; 828 829 if (!do_balance) 830 break; 831 832 nonrot = bdev_nonrot(rdev->bdev); 833 has_nonrot_disk |= nonrot; 834 pending = atomic_read(&rdev->nr_pending); 835 if (min_pending > pending && nonrot) { 836 min_pending = pending; 837 best_pending_slot = slot; 838 best_pending_rdev = rdev; 839 } 840 841 if (best_dist_slot >= 0) 842 /* At least 2 disks to choose from so failfast is OK */ 843 set_bit(R10BIO_FailFast, &r10_bio->state); 844 /* This optimisation is debatable, and completely destroys 845 * sequential read speed for 'far copies' arrays. So only 846 * keep it for 'near' arrays, and review those later. 847 */ 848 if (geo->near_copies > 1 && !pending) 849 new_distance = 0; 850 851 /* for far > 1 always use the lowest address */ 852 else if (geo->far_copies > 1) 853 new_distance = r10_bio->devs[slot].addr; 854 else 855 new_distance = abs(r10_bio->devs[slot].addr - 856 conf->mirrors[disk].head_position); 857 858 if (new_distance < best_dist) { 859 best_dist = new_distance; 860 best_dist_slot = slot; 861 best_dist_rdev = rdev; 862 } 863 } 864 if (slot >= conf->copies) { 865 if (has_nonrot_disk) { 866 slot = best_pending_slot; 867 rdev = best_pending_rdev; 868 } else { 869 slot = best_dist_slot; 870 rdev = best_dist_rdev; 871 } 872 } 873 874 if (slot >= 0) { 875 atomic_inc(&rdev->nr_pending); 876 r10_bio->read_slot = slot; 877 } else 878 rdev = NULL; 879 rcu_read_unlock(); 880 *max_sectors = best_good_sectors; 881 882 return rdev; 883 } 884 885 static void flush_pending_writes(struct r10conf *conf) 886 { 887 /* Any writes that have been queued but are awaiting 888 * bitmap updates get flushed here. 889 */ 890 spin_lock_irq(&conf->device_lock); 891 892 if (conf->pending_bio_list.head) { 893 struct blk_plug plug; 894 struct bio *bio; 895 896 bio = bio_list_get(&conf->pending_bio_list); 897 spin_unlock_irq(&conf->device_lock); 898 899 /* 900 * As this is called in a wait_event() loop (see freeze_array), 901 * current->state might be TASK_UNINTERRUPTIBLE which will 902 * cause a warning when we prepare to wait again. As it is 903 * rare that this path is taken, it is perfectly safe to force 904 * us to go around the wait_event() loop again, so the warning 905 * is a false-positive. Silence the warning by resetting 906 * thread state 907 */ 908 __set_current_state(TASK_RUNNING); 909 910 blk_start_plug(&plug); 911 raid1_prepare_flush_writes(conf->mddev->bitmap); 912 wake_up(&conf->wait_barrier); 913 914 while (bio) { /* submit pending writes */ 915 struct bio *next = bio->bi_next; 916 917 raid1_submit_write(bio); 918 bio = next; 919 cond_resched(); 920 } 921 blk_finish_plug(&plug); 922 } else 923 spin_unlock_irq(&conf->device_lock); 924 } 925 926 /* Barriers.... 927 * Sometimes we need to suspend IO while we do something else, 928 * either some resync/recovery, or reconfigure the array. 929 * To do this we raise a 'barrier'. 930 * The 'barrier' is a counter that can be raised multiple times 931 * to count how many activities are happening which preclude 932 * normal IO. 933 * We can only raise the barrier if there is no pending IO. 934 * i.e. if nr_pending == 0. 935 * We choose only to raise the barrier if no-one is waiting for the 936 * barrier to go down. This means that as soon as an IO request 937 * is ready, no other operations which require a barrier will start 938 * until the IO request has had a chance. 939 * 940 * So: regular IO calls 'wait_barrier'. When that returns there 941 * is no backgroup IO happening, It must arrange to call 942 * allow_barrier when it has finished its IO. 943 * backgroup IO calls must call raise_barrier. Once that returns 944 * there is no normal IO happeing. It must arrange to call 945 * lower_barrier when the particular background IO completes. 946 */ 947 948 static void raise_barrier(struct r10conf *conf, int force) 949 { 950 write_seqlock_irq(&conf->resync_lock); 951 952 if (WARN_ON_ONCE(force && !conf->barrier)) 953 force = false; 954 955 /* Wait until no block IO is waiting (unless 'force') */ 956 wait_event_barrier(conf, force || !conf->nr_waiting); 957 958 /* block any new IO from starting */ 959 WRITE_ONCE(conf->barrier, conf->barrier + 1); 960 961 /* Now wait for all pending IO to complete */ 962 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 963 conf->barrier < RESYNC_DEPTH); 964 965 write_sequnlock_irq(&conf->resync_lock); 966 } 967 968 static void lower_barrier(struct r10conf *conf) 969 { 970 unsigned long flags; 971 972 write_seqlock_irqsave(&conf->resync_lock, flags); 973 WRITE_ONCE(conf->barrier, conf->barrier - 1); 974 write_sequnlock_irqrestore(&conf->resync_lock, flags); 975 wake_up(&conf->wait_barrier); 976 } 977 978 static bool stop_waiting_barrier(struct r10conf *conf) 979 { 980 struct bio_list *bio_list = current->bio_list; 981 struct md_thread *thread; 982 983 /* barrier is dropped */ 984 if (!conf->barrier) 985 return true; 986 987 /* 988 * If there are already pending requests (preventing the barrier from 989 * rising completely), and the pre-process bio queue isn't empty, then 990 * don't wait, as we need to empty that queue to get the nr_pending 991 * count down. 992 */ 993 if (atomic_read(&conf->nr_pending) && bio_list && 994 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 995 return true; 996 997 /* daemon thread must exist while handling io */ 998 thread = rcu_dereference_protected(conf->mddev->thread, true); 999 /* 1000 * move on if io is issued from raid10d(), nr_pending is not released 1001 * from original io(see handle_read_error()). All raise barrier is 1002 * blocked until this io is done. 1003 */ 1004 if (thread->tsk == current) { 1005 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 1006 return true; 1007 } 1008 1009 return false; 1010 } 1011 1012 static bool wait_barrier_nolock(struct r10conf *conf) 1013 { 1014 unsigned int seq = read_seqbegin(&conf->resync_lock); 1015 1016 if (READ_ONCE(conf->barrier)) 1017 return false; 1018 1019 atomic_inc(&conf->nr_pending); 1020 if (!read_seqretry(&conf->resync_lock, seq)) 1021 return true; 1022 1023 if (atomic_dec_and_test(&conf->nr_pending)) 1024 wake_up_barrier(conf); 1025 1026 return false; 1027 } 1028 1029 static bool wait_barrier(struct r10conf *conf, bool nowait) 1030 { 1031 bool ret = true; 1032 1033 if (wait_barrier_nolock(conf)) 1034 return true; 1035 1036 write_seqlock_irq(&conf->resync_lock); 1037 if (conf->barrier) { 1038 /* Return false when nowait flag is set */ 1039 if (nowait) { 1040 ret = false; 1041 } else { 1042 conf->nr_waiting++; 1043 raid10_log(conf->mddev, "wait barrier"); 1044 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1045 conf->nr_waiting--; 1046 } 1047 if (!conf->nr_waiting) 1048 wake_up(&conf->wait_barrier); 1049 } 1050 /* Only increment nr_pending when we wait */ 1051 if (ret) 1052 atomic_inc(&conf->nr_pending); 1053 write_sequnlock_irq(&conf->resync_lock); 1054 return ret; 1055 } 1056 1057 static void allow_barrier(struct r10conf *conf) 1058 { 1059 if ((atomic_dec_and_test(&conf->nr_pending)) || 1060 (conf->array_freeze_pending)) 1061 wake_up_barrier(conf); 1062 } 1063 1064 static void freeze_array(struct r10conf *conf, int extra) 1065 { 1066 /* stop syncio and normal IO and wait for everything to 1067 * go quiet. 1068 * We increment barrier and nr_waiting, and then 1069 * wait until nr_pending match nr_queued+extra 1070 * This is called in the context of one normal IO request 1071 * that has failed. Thus any sync request that might be pending 1072 * will be blocked by nr_pending, and we need to wait for 1073 * pending IO requests to complete or be queued for re-try. 1074 * Thus the number queued (nr_queued) plus this request (extra) 1075 * must match the number of pending IOs (nr_pending) before 1076 * we continue. 1077 */ 1078 write_seqlock_irq(&conf->resync_lock); 1079 conf->array_freeze_pending++; 1080 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1081 conf->nr_waiting++; 1082 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1083 conf->nr_queued + extra, flush_pending_writes(conf)); 1084 conf->array_freeze_pending--; 1085 write_sequnlock_irq(&conf->resync_lock); 1086 } 1087 1088 static void unfreeze_array(struct r10conf *conf) 1089 { 1090 /* reverse the effect of the freeze */ 1091 write_seqlock_irq(&conf->resync_lock); 1092 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1093 conf->nr_waiting--; 1094 wake_up(&conf->wait_barrier); 1095 write_sequnlock_irq(&conf->resync_lock); 1096 } 1097 1098 static sector_t choose_data_offset(struct r10bio *r10_bio, 1099 struct md_rdev *rdev) 1100 { 1101 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1102 test_bit(R10BIO_Previous, &r10_bio->state)) 1103 return rdev->data_offset; 1104 else 1105 return rdev->new_data_offset; 1106 } 1107 1108 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1109 { 1110 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1111 struct mddev *mddev = plug->cb.data; 1112 struct r10conf *conf = mddev->private; 1113 struct bio *bio; 1114 1115 if (from_schedule) { 1116 spin_lock_irq(&conf->device_lock); 1117 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1118 spin_unlock_irq(&conf->device_lock); 1119 wake_up_barrier(conf); 1120 md_wakeup_thread(mddev->thread); 1121 kfree(plug); 1122 return; 1123 } 1124 1125 /* we aren't scheduling, so we can do the write-out directly. */ 1126 bio = bio_list_get(&plug->pending); 1127 raid1_prepare_flush_writes(mddev->bitmap); 1128 wake_up_barrier(conf); 1129 1130 while (bio) { /* submit pending writes */ 1131 struct bio *next = bio->bi_next; 1132 1133 raid1_submit_write(bio); 1134 bio = next; 1135 cond_resched(); 1136 } 1137 kfree(plug); 1138 } 1139 1140 /* 1141 * 1. Register the new request and wait if the reconstruction thread has put 1142 * up a bar for new requests. Continue immediately if no resync is active 1143 * currently. 1144 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1145 */ 1146 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1147 struct bio *bio, sector_t sectors) 1148 { 1149 /* Bail out if REQ_NOWAIT is set for the bio */ 1150 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1151 bio_wouldblock_error(bio); 1152 return false; 1153 } 1154 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1155 bio->bi_iter.bi_sector < conf->reshape_progress && 1156 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1157 allow_barrier(conf); 1158 if (bio->bi_opf & REQ_NOWAIT) { 1159 bio_wouldblock_error(bio); 1160 return false; 1161 } 1162 raid10_log(conf->mddev, "wait reshape"); 1163 wait_event(conf->wait_barrier, 1164 conf->reshape_progress <= bio->bi_iter.bi_sector || 1165 conf->reshape_progress >= bio->bi_iter.bi_sector + 1166 sectors); 1167 wait_barrier(conf, false); 1168 } 1169 return true; 1170 } 1171 1172 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1173 struct r10bio *r10_bio, bool io_accounting) 1174 { 1175 struct r10conf *conf = mddev->private; 1176 struct bio *read_bio; 1177 const enum req_op op = bio_op(bio); 1178 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1179 int max_sectors; 1180 struct md_rdev *rdev; 1181 char b[BDEVNAME_SIZE]; 1182 int slot = r10_bio->read_slot; 1183 struct md_rdev *err_rdev = NULL; 1184 gfp_t gfp = GFP_NOIO; 1185 1186 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1187 /* 1188 * This is an error retry, but we cannot 1189 * safely dereference the rdev in the r10_bio, 1190 * we must use the one in conf. 1191 * If it has already been disconnected (unlikely) 1192 * we lose the device name in error messages. 1193 */ 1194 int disk; 1195 /* 1196 * As we are blocking raid10, it is a little safer to 1197 * use __GFP_HIGH. 1198 */ 1199 gfp = GFP_NOIO | __GFP_HIGH; 1200 1201 rcu_read_lock(); 1202 disk = r10_bio->devs[slot].devnum; 1203 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1204 if (err_rdev) 1205 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1206 else { 1207 strcpy(b, "???"); 1208 /* This never gets dereferenced */ 1209 err_rdev = r10_bio->devs[slot].rdev; 1210 } 1211 rcu_read_unlock(); 1212 } 1213 1214 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1215 return; 1216 rdev = read_balance(conf, r10_bio, &max_sectors); 1217 if (!rdev) { 1218 if (err_rdev) { 1219 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1220 mdname(mddev), b, 1221 (unsigned long long)r10_bio->sector); 1222 } 1223 raid_end_bio_io(r10_bio); 1224 return; 1225 } 1226 if (err_rdev) 1227 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1228 mdname(mddev), 1229 rdev->bdev, 1230 (unsigned long long)r10_bio->sector); 1231 if (max_sectors < bio_sectors(bio)) { 1232 struct bio *split = bio_split(bio, max_sectors, 1233 gfp, &conf->bio_split); 1234 bio_chain(split, bio); 1235 allow_barrier(conf); 1236 submit_bio_noacct(bio); 1237 wait_barrier(conf, false); 1238 bio = split; 1239 r10_bio->master_bio = bio; 1240 r10_bio->sectors = max_sectors; 1241 } 1242 slot = r10_bio->read_slot; 1243 1244 if (io_accounting) { 1245 md_account_bio(mddev, &bio); 1246 r10_bio->master_bio = bio; 1247 } 1248 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1249 1250 r10_bio->devs[slot].bio = read_bio; 1251 r10_bio->devs[slot].rdev = rdev; 1252 1253 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1254 choose_data_offset(r10_bio, rdev); 1255 read_bio->bi_end_io = raid10_end_read_request; 1256 read_bio->bi_opf = op | do_sync; 1257 if (test_bit(FailFast, &rdev->flags) && 1258 test_bit(R10BIO_FailFast, &r10_bio->state)) 1259 read_bio->bi_opf |= MD_FAILFAST; 1260 read_bio->bi_private = r10_bio; 1261 1262 if (mddev->gendisk) 1263 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1264 r10_bio->sector); 1265 submit_bio_noacct(read_bio); 1266 return; 1267 } 1268 1269 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1270 struct bio *bio, bool replacement, 1271 int n_copy) 1272 { 1273 const enum req_op op = bio_op(bio); 1274 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1275 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA; 1276 unsigned long flags; 1277 struct r10conf *conf = mddev->private; 1278 struct md_rdev *rdev; 1279 int devnum = r10_bio->devs[n_copy].devnum; 1280 struct bio *mbio; 1281 1282 if (replacement) { 1283 rdev = conf->mirrors[devnum].replacement; 1284 if (rdev == NULL) { 1285 /* Replacement just got moved to main 'rdev' */ 1286 smp_mb(); 1287 rdev = conf->mirrors[devnum].rdev; 1288 } 1289 } else 1290 rdev = conf->mirrors[devnum].rdev; 1291 1292 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1293 if (replacement) 1294 r10_bio->devs[n_copy].repl_bio = mbio; 1295 else 1296 r10_bio->devs[n_copy].bio = mbio; 1297 1298 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1299 choose_data_offset(r10_bio, rdev)); 1300 mbio->bi_end_io = raid10_end_write_request; 1301 mbio->bi_opf = op | do_sync | do_fua; 1302 if (!replacement && test_bit(FailFast, 1303 &conf->mirrors[devnum].rdev->flags) 1304 && enough(conf, devnum)) 1305 mbio->bi_opf |= MD_FAILFAST; 1306 mbio->bi_private = r10_bio; 1307 1308 if (conf->mddev->gendisk) 1309 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk), 1310 r10_bio->sector); 1311 /* flush_pending_writes() needs access to the rdev so...*/ 1312 mbio->bi_bdev = (void *)rdev; 1313 1314 atomic_inc(&r10_bio->remaining); 1315 1316 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) { 1317 spin_lock_irqsave(&conf->device_lock, flags); 1318 bio_list_add(&conf->pending_bio_list, mbio); 1319 spin_unlock_irqrestore(&conf->device_lock, flags); 1320 md_wakeup_thread(mddev->thread); 1321 } 1322 } 1323 1324 static struct md_rdev *dereference_rdev_and_rrdev(struct raid10_info *mirror, 1325 struct md_rdev **prrdev) 1326 { 1327 struct md_rdev *rdev, *rrdev; 1328 1329 rrdev = rcu_dereference(mirror->replacement); 1330 /* 1331 * Read replacement first to prevent reading both rdev and 1332 * replacement as NULL during replacement replace rdev. 1333 */ 1334 smp_mb(); 1335 rdev = rcu_dereference(mirror->rdev); 1336 if (rdev == rrdev) 1337 rrdev = NULL; 1338 1339 *prrdev = rrdev; 1340 return rdev; 1341 } 1342 1343 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1344 { 1345 int i; 1346 struct r10conf *conf = mddev->private; 1347 struct md_rdev *blocked_rdev; 1348 1349 retry_wait: 1350 blocked_rdev = NULL; 1351 rcu_read_lock(); 1352 for (i = 0; i < conf->copies; i++) { 1353 struct md_rdev *rdev, *rrdev; 1354 1355 rdev = dereference_rdev_and_rrdev(&conf->mirrors[i], &rrdev); 1356 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1357 atomic_inc(&rdev->nr_pending); 1358 blocked_rdev = rdev; 1359 break; 1360 } 1361 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1362 atomic_inc(&rrdev->nr_pending); 1363 blocked_rdev = rrdev; 1364 break; 1365 } 1366 1367 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1368 sector_t first_bad; 1369 sector_t dev_sector = r10_bio->devs[i].addr; 1370 int bad_sectors; 1371 int is_bad; 1372 1373 /* 1374 * Discard request doesn't care the write result 1375 * so it doesn't need to wait blocked disk here. 1376 */ 1377 if (!r10_bio->sectors) 1378 continue; 1379 1380 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors, 1381 &first_bad, &bad_sectors); 1382 if (is_bad < 0) { 1383 /* 1384 * Mustn't write here until the bad block 1385 * is acknowledged 1386 */ 1387 atomic_inc(&rdev->nr_pending); 1388 set_bit(BlockedBadBlocks, &rdev->flags); 1389 blocked_rdev = rdev; 1390 break; 1391 } 1392 } 1393 } 1394 rcu_read_unlock(); 1395 1396 if (unlikely(blocked_rdev)) { 1397 /* Have to wait for this device to get unblocked, then retry */ 1398 allow_barrier(conf); 1399 raid10_log(conf->mddev, "%s wait rdev %d blocked", 1400 __func__, blocked_rdev->raid_disk); 1401 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1402 wait_barrier(conf, false); 1403 goto retry_wait; 1404 } 1405 } 1406 1407 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1408 struct r10bio *r10_bio) 1409 { 1410 struct r10conf *conf = mddev->private; 1411 int i; 1412 sector_t sectors; 1413 int max_sectors; 1414 1415 if ((mddev_is_clustered(mddev) && 1416 md_cluster_ops->area_resyncing(mddev, WRITE, 1417 bio->bi_iter.bi_sector, 1418 bio_end_sector(bio)))) { 1419 DEFINE_WAIT(w); 1420 /* Bail out if REQ_NOWAIT is set for the bio */ 1421 if (bio->bi_opf & REQ_NOWAIT) { 1422 bio_wouldblock_error(bio); 1423 return; 1424 } 1425 for (;;) { 1426 prepare_to_wait(&conf->wait_barrier, 1427 &w, TASK_IDLE); 1428 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1429 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1430 break; 1431 schedule(); 1432 } 1433 finish_wait(&conf->wait_barrier, &w); 1434 } 1435 1436 sectors = r10_bio->sectors; 1437 if (!regular_request_wait(mddev, conf, bio, sectors)) 1438 return; 1439 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1440 (mddev->reshape_backwards 1441 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1442 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1443 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1444 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1445 /* Need to update reshape_position in metadata */ 1446 mddev->reshape_position = conf->reshape_progress; 1447 set_mask_bits(&mddev->sb_flags, 0, 1448 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1449 md_wakeup_thread(mddev->thread); 1450 if (bio->bi_opf & REQ_NOWAIT) { 1451 allow_barrier(conf); 1452 bio_wouldblock_error(bio); 1453 return; 1454 } 1455 raid10_log(conf->mddev, "wait reshape metadata"); 1456 wait_event(mddev->sb_wait, 1457 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1458 1459 conf->reshape_safe = mddev->reshape_position; 1460 } 1461 1462 /* first select target devices under rcu_lock and 1463 * inc refcount on their rdev. Record them by setting 1464 * bios[x] to bio 1465 * If there are known/acknowledged bad blocks on any device 1466 * on which we have seen a write error, we want to avoid 1467 * writing to those blocks. This potentially requires several 1468 * writes to write around the bad blocks. Each set of writes 1469 * gets its own r10_bio with a set of bios attached. 1470 */ 1471 1472 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1473 raid10_find_phys(conf, r10_bio); 1474 1475 wait_blocked_dev(mddev, r10_bio); 1476 1477 rcu_read_lock(); 1478 max_sectors = r10_bio->sectors; 1479 1480 for (i = 0; i < conf->copies; i++) { 1481 int d = r10_bio->devs[i].devnum; 1482 struct md_rdev *rdev, *rrdev; 1483 1484 rdev = dereference_rdev_and_rrdev(&conf->mirrors[d], &rrdev); 1485 if (rdev && (test_bit(Faulty, &rdev->flags))) 1486 rdev = NULL; 1487 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1488 rrdev = NULL; 1489 1490 r10_bio->devs[i].bio = NULL; 1491 r10_bio->devs[i].repl_bio = NULL; 1492 1493 if (!rdev && !rrdev) { 1494 set_bit(R10BIO_Degraded, &r10_bio->state); 1495 continue; 1496 } 1497 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1498 sector_t first_bad; 1499 sector_t dev_sector = r10_bio->devs[i].addr; 1500 int bad_sectors; 1501 int is_bad; 1502 1503 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1504 &first_bad, &bad_sectors); 1505 if (is_bad && first_bad <= dev_sector) { 1506 /* Cannot write here at all */ 1507 bad_sectors -= (dev_sector - first_bad); 1508 if (bad_sectors < max_sectors) 1509 /* Mustn't write more than bad_sectors 1510 * to other devices yet 1511 */ 1512 max_sectors = bad_sectors; 1513 /* We don't set R10BIO_Degraded as that 1514 * only applies if the disk is missing, 1515 * so it might be re-added, and we want to 1516 * know to recover this chunk. 1517 * In this case the device is here, and the 1518 * fact that this chunk is not in-sync is 1519 * recorded in the bad block log. 1520 */ 1521 continue; 1522 } 1523 if (is_bad) { 1524 int good_sectors = first_bad - dev_sector; 1525 if (good_sectors < max_sectors) 1526 max_sectors = good_sectors; 1527 } 1528 } 1529 if (rdev) { 1530 r10_bio->devs[i].bio = bio; 1531 atomic_inc(&rdev->nr_pending); 1532 } 1533 if (rrdev) { 1534 r10_bio->devs[i].repl_bio = bio; 1535 atomic_inc(&rrdev->nr_pending); 1536 } 1537 } 1538 rcu_read_unlock(); 1539 1540 if (max_sectors < r10_bio->sectors) 1541 r10_bio->sectors = max_sectors; 1542 1543 if (r10_bio->sectors < bio_sectors(bio)) { 1544 struct bio *split = bio_split(bio, r10_bio->sectors, 1545 GFP_NOIO, &conf->bio_split); 1546 bio_chain(split, bio); 1547 allow_barrier(conf); 1548 submit_bio_noacct(bio); 1549 wait_barrier(conf, false); 1550 bio = split; 1551 r10_bio->master_bio = bio; 1552 } 1553 1554 md_account_bio(mddev, &bio); 1555 r10_bio->master_bio = bio; 1556 atomic_set(&r10_bio->remaining, 1); 1557 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1558 1559 for (i = 0; i < conf->copies; i++) { 1560 if (r10_bio->devs[i].bio) 1561 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1562 if (r10_bio->devs[i].repl_bio) 1563 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1564 } 1565 one_write_done(r10_bio); 1566 } 1567 1568 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1569 { 1570 struct r10conf *conf = mddev->private; 1571 struct r10bio *r10_bio; 1572 1573 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1574 1575 r10_bio->master_bio = bio; 1576 r10_bio->sectors = sectors; 1577 1578 r10_bio->mddev = mddev; 1579 r10_bio->sector = bio->bi_iter.bi_sector; 1580 r10_bio->state = 0; 1581 r10_bio->read_slot = -1; 1582 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1583 conf->geo.raid_disks); 1584 1585 if (bio_data_dir(bio) == READ) 1586 raid10_read_request(mddev, bio, r10_bio, true); 1587 else 1588 raid10_write_request(mddev, bio, r10_bio); 1589 } 1590 1591 static void raid_end_discard_bio(struct r10bio *r10bio) 1592 { 1593 struct r10conf *conf = r10bio->mddev->private; 1594 struct r10bio *first_r10bio; 1595 1596 while (atomic_dec_and_test(&r10bio->remaining)) { 1597 1598 allow_barrier(conf); 1599 1600 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1601 first_r10bio = (struct r10bio *)r10bio->master_bio; 1602 free_r10bio(r10bio); 1603 r10bio = first_r10bio; 1604 } else { 1605 md_write_end(r10bio->mddev); 1606 bio_endio(r10bio->master_bio); 1607 free_r10bio(r10bio); 1608 break; 1609 } 1610 } 1611 } 1612 1613 static void raid10_end_discard_request(struct bio *bio) 1614 { 1615 struct r10bio *r10_bio = bio->bi_private; 1616 struct r10conf *conf = r10_bio->mddev->private; 1617 struct md_rdev *rdev = NULL; 1618 int dev; 1619 int slot, repl; 1620 1621 /* 1622 * We don't care the return value of discard bio 1623 */ 1624 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1625 set_bit(R10BIO_Uptodate, &r10_bio->state); 1626 1627 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1628 if (repl) 1629 rdev = conf->mirrors[dev].replacement; 1630 if (!rdev) { 1631 /* 1632 * raid10_remove_disk uses smp_mb to make sure rdev is set to 1633 * replacement before setting replacement to NULL. It can read 1634 * rdev first without barrier protect even replacement is NULL 1635 */ 1636 smp_rmb(); 1637 rdev = conf->mirrors[dev].rdev; 1638 } 1639 1640 raid_end_discard_bio(r10_bio); 1641 rdev_dec_pending(rdev, conf->mddev); 1642 } 1643 1644 /* 1645 * There are some limitations to handle discard bio 1646 * 1st, the discard size is bigger than stripe_size*2. 1647 * 2st, if the discard bio spans reshape progress, we use the old way to 1648 * handle discard bio 1649 */ 1650 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1651 { 1652 struct r10conf *conf = mddev->private; 1653 struct geom *geo = &conf->geo; 1654 int far_copies = geo->far_copies; 1655 bool first_copy = true; 1656 struct r10bio *r10_bio, *first_r10bio; 1657 struct bio *split; 1658 int disk; 1659 sector_t chunk; 1660 unsigned int stripe_size; 1661 unsigned int stripe_data_disks; 1662 sector_t split_size; 1663 sector_t bio_start, bio_end; 1664 sector_t first_stripe_index, last_stripe_index; 1665 sector_t start_disk_offset; 1666 unsigned int start_disk_index; 1667 sector_t end_disk_offset; 1668 unsigned int end_disk_index; 1669 unsigned int remainder; 1670 1671 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1672 return -EAGAIN; 1673 1674 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { 1675 bio_wouldblock_error(bio); 1676 return 0; 1677 } 1678 wait_barrier(conf, false); 1679 1680 /* 1681 * Check reshape again to avoid reshape happens after checking 1682 * MD_RECOVERY_RESHAPE and before wait_barrier 1683 */ 1684 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1685 goto out; 1686 1687 if (geo->near_copies) 1688 stripe_data_disks = geo->raid_disks / geo->near_copies + 1689 geo->raid_disks % geo->near_copies; 1690 else 1691 stripe_data_disks = geo->raid_disks; 1692 1693 stripe_size = stripe_data_disks << geo->chunk_shift; 1694 1695 bio_start = bio->bi_iter.bi_sector; 1696 bio_end = bio_end_sector(bio); 1697 1698 /* 1699 * Maybe one discard bio is smaller than strip size or across one 1700 * stripe and discard region is larger than one stripe size. For far 1701 * offset layout, if the discard region is not aligned with stripe 1702 * size, there is hole when we submit discard bio to member disk. 1703 * For simplicity, we only handle discard bio which discard region 1704 * is bigger than stripe_size * 2 1705 */ 1706 if (bio_sectors(bio) < stripe_size*2) 1707 goto out; 1708 1709 /* 1710 * Keep bio aligned with strip size. 1711 */ 1712 div_u64_rem(bio_start, stripe_size, &remainder); 1713 if (remainder) { 1714 split_size = stripe_size - remainder; 1715 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1716 bio_chain(split, bio); 1717 allow_barrier(conf); 1718 /* Resend the fist split part */ 1719 submit_bio_noacct(split); 1720 wait_barrier(conf, false); 1721 } 1722 div_u64_rem(bio_end, stripe_size, &remainder); 1723 if (remainder) { 1724 split_size = bio_sectors(bio) - remainder; 1725 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1726 bio_chain(split, bio); 1727 allow_barrier(conf); 1728 /* Resend the second split part */ 1729 submit_bio_noacct(bio); 1730 bio = split; 1731 wait_barrier(conf, false); 1732 } 1733 1734 bio_start = bio->bi_iter.bi_sector; 1735 bio_end = bio_end_sector(bio); 1736 1737 /* 1738 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1739 * One stripe contains the chunks from all member disk (one chunk from 1740 * one disk at the same HBA address). For layout detail, see 'man md 4' 1741 */ 1742 chunk = bio_start >> geo->chunk_shift; 1743 chunk *= geo->near_copies; 1744 first_stripe_index = chunk; 1745 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1746 if (geo->far_offset) 1747 first_stripe_index *= geo->far_copies; 1748 start_disk_offset = (bio_start & geo->chunk_mask) + 1749 (first_stripe_index << geo->chunk_shift); 1750 1751 chunk = bio_end >> geo->chunk_shift; 1752 chunk *= geo->near_copies; 1753 last_stripe_index = chunk; 1754 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1755 if (geo->far_offset) 1756 last_stripe_index *= geo->far_copies; 1757 end_disk_offset = (bio_end & geo->chunk_mask) + 1758 (last_stripe_index << geo->chunk_shift); 1759 1760 retry_discard: 1761 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1762 r10_bio->mddev = mddev; 1763 r10_bio->state = 0; 1764 r10_bio->sectors = 0; 1765 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1766 wait_blocked_dev(mddev, r10_bio); 1767 1768 /* 1769 * For far layout it needs more than one r10bio to cover all regions. 1770 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1771 * to record the discard bio. Other r10bio->master_bio record the first 1772 * r10bio. The first r10bio only release after all other r10bios finish. 1773 * The discard bio returns only first r10bio finishes 1774 */ 1775 if (first_copy) { 1776 r10_bio->master_bio = bio; 1777 set_bit(R10BIO_Discard, &r10_bio->state); 1778 first_copy = false; 1779 first_r10bio = r10_bio; 1780 } else 1781 r10_bio->master_bio = (struct bio *)first_r10bio; 1782 1783 /* 1784 * first select target devices under rcu_lock and 1785 * inc refcount on their rdev. Record them by setting 1786 * bios[x] to bio 1787 */ 1788 rcu_read_lock(); 1789 for (disk = 0; disk < geo->raid_disks; disk++) { 1790 struct md_rdev *rdev, *rrdev; 1791 1792 rdev = dereference_rdev_and_rrdev(&conf->mirrors[disk], &rrdev); 1793 r10_bio->devs[disk].bio = NULL; 1794 r10_bio->devs[disk].repl_bio = NULL; 1795 1796 if (rdev && (test_bit(Faulty, &rdev->flags))) 1797 rdev = NULL; 1798 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1799 rrdev = NULL; 1800 if (!rdev && !rrdev) 1801 continue; 1802 1803 if (rdev) { 1804 r10_bio->devs[disk].bio = bio; 1805 atomic_inc(&rdev->nr_pending); 1806 } 1807 if (rrdev) { 1808 r10_bio->devs[disk].repl_bio = bio; 1809 atomic_inc(&rrdev->nr_pending); 1810 } 1811 } 1812 rcu_read_unlock(); 1813 1814 atomic_set(&r10_bio->remaining, 1); 1815 for (disk = 0; disk < geo->raid_disks; disk++) { 1816 sector_t dev_start, dev_end; 1817 struct bio *mbio, *rbio = NULL; 1818 1819 /* 1820 * Now start to calculate the start and end address for each disk. 1821 * The space between dev_start and dev_end is the discard region. 1822 * 1823 * For dev_start, it needs to consider three conditions: 1824 * 1st, the disk is before start_disk, you can imagine the disk in 1825 * the next stripe. So the dev_start is the start address of next 1826 * stripe. 1827 * 2st, the disk is after start_disk, it means the disk is at the 1828 * same stripe of first disk 1829 * 3st, the first disk itself, we can use start_disk_offset directly 1830 */ 1831 if (disk < start_disk_index) 1832 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1833 else if (disk > start_disk_index) 1834 dev_start = first_stripe_index * mddev->chunk_sectors; 1835 else 1836 dev_start = start_disk_offset; 1837 1838 if (disk < end_disk_index) 1839 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1840 else if (disk > end_disk_index) 1841 dev_end = last_stripe_index * mddev->chunk_sectors; 1842 else 1843 dev_end = end_disk_offset; 1844 1845 /* 1846 * It only handles discard bio which size is >= stripe size, so 1847 * dev_end > dev_start all the time. 1848 * It doesn't need to use rcu lock to get rdev here. We already 1849 * add rdev->nr_pending in the first loop. 1850 */ 1851 if (r10_bio->devs[disk].bio) { 1852 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1853 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1854 &mddev->bio_set); 1855 mbio->bi_end_io = raid10_end_discard_request; 1856 mbio->bi_private = r10_bio; 1857 r10_bio->devs[disk].bio = mbio; 1858 r10_bio->devs[disk].devnum = disk; 1859 atomic_inc(&r10_bio->remaining); 1860 md_submit_discard_bio(mddev, rdev, mbio, 1861 dev_start + choose_data_offset(r10_bio, rdev), 1862 dev_end - dev_start); 1863 bio_endio(mbio); 1864 } 1865 if (r10_bio->devs[disk].repl_bio) { 1866 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1867 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1868 &mddev->bio_set); 1869 rbio->bi_end_io = raid10_end_discard_request; 1870 rbio->bi_private = r10_bio; 1871 r10_bio->devs[disk].repl_bio = rbio; 1872 r10_bio->devs[disk].devnum = disk; 1873 atomic_inc(&r10_bio->remaining); 1874 md_submit_discard_bio(mddev, rrdev, rbio, 1875 dev_start + choose_data_offset(r10_bio, rrdev), 1876 dev_end - dev_start); 1877 bio_endio(rbio); 1878 } 1879 } 1880 1881 if (!geo->far_offset && --far_copies) { 1882 first_stripe_index += geo->stride >> geo->chunk_shift; 1883 start_disk_offset += geo->stride; 1884 last_stripe_index += geo->stride >> geo->chunk_shift; 1885 end_disk_offset += geo->stride; 1886 atomic_inc(&first_r10bio->remaining); 1887 raid_end_discard_bio(r10_bio); 1888 wait_barrier(conf, false); 1889 goto retry_discard; 1890 } 1891 1892 raid_end_discard_bio(r10_bio); 1893 1894 return 0; 1895 out: 1896 allow_barrier(conf); 1897 return -EAGAIN; 1898 } 1899 1900 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1901 { 1902 struct r10conf *conf = mddev->private; 1903 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1904 int chunk_sects = chunk_mask + 1; 1905 int sectors = bio_sectors(bio); 1906 1907 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1908 && md_flush_request(mddev, bio)) 1909 return true; 1910 1911 if (!md_write_start(mddev, bio)) 1912 return false; 1913 1914 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1915 if (!raid10_handle_discard(mddev, bio)) 1916 return true; 1917 1918 /* 1919 * If this request crosses a chunk boundary, we need to split 1920 * it. 1921 */ 1922 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1923 sectors > chunk_sects 1924 && (conf->geo.near_copies < conf->geo.raid_disks 1925 || conf->prev.near_copies < 1926 conf->prev.raid_disks))) 1927 sectors = chunk_sects - 1928 (bio->bi_iter.bi_sector & 1929 (chunk_sects - 1)); 1930 __make_request(mddev, bio, sectors); 1931 1932 /* In case raid10d snuck in to freeze_array */ 1933 wake_up_barrier(conf); 1934 return true; 1935 } 1936 1937 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1938 { 1939 struct r10conf *conf = mddev->private; 1940 int i; 1941 1942 if (conf->geo.near_copies < conf->geo.raid_disks) 1943 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1944 if (conf->geo.near_copies > 1) 1945 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1946 if (conf->geo.far_copies > 1) { 1947 if (conf->geo.far_offset) 1948 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1949 else 1950 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1951 if (conf->geo.far_set_size != conf->geo.raid_disks) 1952 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1953 } 1954 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1955 conf->geo.raid_disks - mddev->degraded); 1956 rcu_read_lock(); 1957 for (i = 0; i < conf->geo.raid_disks; i++) { 1958 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1959 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1960 } 1961 rcu_read_unlock(); 1962 seq_printf(seq, "]"); 1963 } 1964 1965 /* check if there are enough drives for 1966 * every block to appear on atleast one. 1967 * Don't consider the device numbered 'ignore' 1968 * as we might be about to remove it. 1969 */ 1970 static int _enough(struct r10conf *conf, int previous, int ignore) 1971 { 1972 int first = 0; 1973 int has_enough = 0; 1974 int disks, ncopies; 1975 if (previous) { 1976 disks = conf->prev.raid_disks; 1977 ncopies = conf->prev.near_copies; 1978 } else { 1979 disks = conf->geo.raid_disks; 1980 ncopies = conf->geo.near_copies; 1981 } 1982 1983 rcu_read_lock(); 1984 do { 1985 int n = conf->copies; 1986 int cnt = 0; 1987 int this = first; 1988 while (n--) { 1989 struct md_rdev *rdev; 1990 if (this != ignore && 1991 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1992 test_bit(In_sync, &rdev->flags)) 1993 cnt++; 1994 this = (this+1) % disks; 1995 } 1996 if (cnt == 0) 1997 goto out; 1998 first = (first + ncopies) % disks; 1999 } while (first != 0); 2000 has_enough = 1; 2001 out: 2002 rcu_read_unlock(); 2003 return has_enough; 2004 } 2005 2006 static int enough(struct r10conf *conf, int ignore) 2007 { 2008 /* when calling 'enough', both 'prev' and 'geo' must 2009 * be stable. 2010 * This is ensured if ->reconfig_mutex or ->device_lock 2011 * is held. 2012 */ 2013 return _enough(conf, 0, ignore) && 2014 _enough(conf, 1, ignore); 2015 } 2016 2017 /** 2018 * raid10_error() - RAID10 error handler. 2019 * @mddev: affected md device. 2020 * @rdev: member device to fail. 2021 * 2022 * The routine acknowledges &rdev failure and determines new @mddev state. 2023 * If it failed, then: 2024 * - &MD_BROKEN flag is set in &mddev->flags. 2025 * Otherwise, it must be degraded: 2026 * - recovery is interrupted. 2027 * - &mddev->degraded is bumped. 2028 * 2029 * @rdev is marked as &Faulty excluding case when array is failed and 2030 * &mddev->fail_last_dev is off. 2031 */ 2032 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 2033 { 2034 struct r10conf *conf = mddev->private; 2035 unsigned long flags; 2036 2037 spin_lock_irqsave(&conf->device_lock, flags); 2038 2039 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 2040 set_bit(MD_BROKEN, &mddev->flags); 2041 2042 if (!mddev->fail_last_dev) { 2043 spin_unlock_irqrestore(&conf->device_lock, flags); 2044 return; 2045 } 2046 } 2047 if (test_and_clear_bit(In_sync, &rdev->flags)) 2048 mddev->degraded++; 2049 2050 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2051 set_bit(Blocked, &rdev->flags); 2052 set_bit(Faulty, &rdev->flags); 2053 set_mask_bits(&mddev->sb_flags, 0, 2054 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2055 spin_unlock_irqrestore(&conf->device_lock, flags); 2056 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 2057 "md/raid10:%s: Operation continuing on %d devices.\n", 2058 mdname(mddev), rdev->bdev, 2059 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 2060 } 2061 2062 static void print_conf(struct r10conf *conf) 2063 { 2064 int i; 2065 struct md_rdev *rdev; 2066 2067 pr_debug("RAID10 conf printout:\n"); 2068 if (!conf) { 2069 pr_debug("(!conf)\n"); 2070 return; 2071 } 2072 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2073 conf->geo.raid_disks); 2074 2075 /* This is only called with ->reconfix_mutex held, so 2076 * rcu protection of rdev is not needed */ 2077 for (i = 0; i < conf->geo.raid_disks; i++) { 2078 rdev = conf->mirrors[i].rdev; 2079 if (rdev) 2080 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2081 i, !test_bit(In_sync, &rdev->flags), 2082 !test_bit(Faulty, &rdev->flags), 2083 rdev->bdev); 2084 } 2085 } 2086 2087 static void close_sync(struct r10conf *conf) 2088 { 2089 wait_barrier(conf, false); 2090 allow_barrier(conf); 2091 2092 mempool_exit(&conf->r10buf_pool); 2093 } 2094 2095 static int raid10_spare_active(struct mddev *mddev) 2096 { 2097 int i; 2098 struct r10conf *conf = mddev->private; 2099 struct raid10_info *tmp; 2100 int count = 0; 2101 unsigned long flags; 2102 2103 /* 2104 * Find all non-in_sync disks within the RAID10 configuration 2105 * and mark them in_sync 2106 */ 2107 for (i = 0; i < conf->geo.raid_disks; i++) { 2108 tmp = conf->mirrors + i; 2109 if (tmp->replacement 2110 && tmp->replacement->recovery_offset == MaxSector 2111 && !test_bit(Faulty, &tmp->replacement->flags) 2112 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2113 /* Replacement has just become active */ 2114 if (!tmp->rdev 2115 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2116 count++; 2117 if (tmp->rdev) { 2118 /* Replaced device not technically faulty, 2119 * but we need to be sure it gets removed 2120 * and never re-added. 2121 */ 2122 set_bit(Faulty, &tmp->rdev->flags); 2123 sysfs_notify_dirent_safe( 2124 tmp->rdev->sysfs_state); 2125 } 2126 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2127 } else if (tmp->rdev 2128 && tmp->rdev->recovery_offset == MaxSector 2129 && !test_bit(Faulty, &tmp->rdev->flags) 2130 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2131 count++; 2132 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2133 } 2134 } 2135 spin_lock_irqsave(&conf->device_lock, flags); 2136 mddev->degraded -= count; 2137 spin_unlock_irqrestore(&conf->device_lock, flags); 2138 2139 print_conf(conf); 2140 return count; 2141 } 2142 2143 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2144 { 2145 struct r10conf *conf = mddev->private; 2146 int err = -EEXIST; 2147 int mirror, repl_slot = -1; 2148 int first = 0; 2149 int last = conf->geo.raid_disks - 1; 2150 struct raid10_info *p; 2151 2152 if (mddev->recovery_cp < MaxSector) 2153 /* only hot-add to in-sync arrays, as recovery is 2154 * very different from resync 2155 */ 2156 return -EBUSY; 2157 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2158 return -EINVAL; 2159 2160 if (md_integrity_add_rdev(rdev, mddev)) 2161 return -ENXIO; 2162 2163 if (rdev->raid_disk >= 0) 2164 first = last = rdev->raid_disk; 2165 2166 if (rdev->saved_raid_disk >= first && 2167 rdev->saved_raid_disk < conf->geo.raid_disks && 2168 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2169 mirror = rdev->saved_raid_disk; 2170 else 2171 mirror = first; 2172 for ( ; mirror <= last ; mirror++) { 2173 p = &conf->mirrors[mirror]; 2174 if (p->recovery_disabled == mddev->recovery_disabled) 2175 continue; 2176 if (p->rdev) { 2177 if (test_bit(WantReplacement, &p->rdev->flags) && 2178 p->replacement == NULL && repl_slot < 0) 2179 repl_slot = mirror; 2180 continue; 2181 } 2182 2183 if (mddev->gendisk) 2184 disk_stack_limits(mddev->gendisk, rdev->bdev, 2185 rdev->data_offset << 9); 2186 2187 p->head_position = 0; 2188 p->recovery_disabled = mddev->recovery_disabled - 1; 2189 rdev->raid_disk = mirror; 2190 err = 0; 2191 if (rdev->saved_raid_disk != mirror) 2192 conf->fullsync = 1; 2193 rcu_assign_pointer(p->rdev, rdev); 2194 break; 2195 } 2196 2197 if (err && repl_slot >= 0) { 2198 p = &conf->mirrors[repl_slot]; 2199 clear_bit(In_sync, &rdev->flags); 2200 set_bit(Replacement, &rdev->flags); 2201 rdev->raid_disk = repl_slot; 2202 err = 0; 2203 if (mddev->gendisk) 2204 disk_stack_limits(mddev->gendisk, rdev->bdev, 2205 rdev->data_offset << 9); 2206 conf->fullsync = 1; 2207 rcu_assign_pointer(p->replacement, rdev); 2208 } 2209 2210 print_conf(conf); 2211 return err; 2212 } 2213 2214 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2215 { 2216 struct r10conf *conf = mddev->private; 2217 int err = 0; 2218 int number = rdev->raid_disk; 2219 struct md_rdev **rdevp; 2220 struct raid10_info *p; 2221 2222 print_conf(conf); 2223 if (unlikely(number >= mddev->raid_disks)) 2224 return 0; 2225 p = conf->mirrors + number; 2226 if (rdev == p->rdev) 2227 rdevp = &p->rdev; 2228 else if (rdev == p->replacement) 2229 rdevp = &p->replacement; 2230 else 2231 return 0; 2232 2233 if (test_bit(In_sync, &rdev->flags) || 2234 atomic_read(&rdev->nr_pending)) { 2235 err = -EBUSY; 2236 goto abort; 2237 } 2238 /* Only remove non-faulty devices if recovery 2239 * is not possible. 2240 */ 2241 if (!test_bit(Faulty, &rdev->flags) && 2242 mddev->recovery_disabled != p->recovery_disabled && 2243 (!p->replacement || p->replacement == rdev) && 2244 number < conf->geo.raid_disks && 2245 enough(conf, -1)) { 2246 err = -EBUSY; 2247 goto abort; 2248 } 2249 *rdevp = NULL; 2250 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 2251 synchronize_rcu(); 2252 if (atomic_read(&rdev->nr_pending)) { 2253 /* lost the race, try later */ 2254 err = -EBUSY; 2255 *rdevp = rdev; 2256 goto abort; 2257 } 2258 } 2259 if (p->replacement) { 2260 /* We must have just cleared 'rdev' */ 2261 p->rdev = p->replacement; 2262 clear_bit(Replacement, &p->replacement->flags); 2263 smp_mb(); /* Make sure other CPUs may see both as identical 2264 * but will never see neither -- if they are careful. 2265 */ 2266 p->replacement = NULL; 2267 } 2268 2269 clear_bit(WantReplacement, &rdev->flags); 2270 err = md_integrity_register(mddev); 2271 2272 abort: 2273 2274 print_conf(conf); 2275 return err; 2276 } 2277 2278 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2279 { 2280 struct r10conf *conf = r10_bio->mddev->private; 2281 2282 if (!bio->bi_status) 2283 set_bit(R10BIO_Uptodate, &r10_bio->state); 2284 else 2285 /* The write handler will notice the lack of 2286 * R10BIO_Uptodate and record any errors etc 2287 */ 2288 atomic_add(r10_bio->sectors, 2289 &conf->mirrors[d].rdev->corrected_errors); 2290 2291 /* for reconstruct, we always reschedule after a read. 2292 * for resync, only after all reads 2293 */ 2294 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2295 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2296 atomic_dec_and_test(&r10_bio->remaining)) { 2297 /* we have read all the blocks, 2298 * do the comparison in process context in raid10d 2299 */ 2300 reschedule_retry(r10_bio); 2301 } 2302 } 2303 2304 static void end_sync_read(struct bio *bio) 2305 { 2306 struct r10bio *r10_bio = get_resync_r10bio(bio); 2307 struct r10conf *conf = r10_bio->mddev->private; 2308 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2309 2310 __end_sync_read(r10_bio, bio, d); 2311 } 2312 2313 static void end_reshape_read(struct bio *bio) 2314 { 2315 /* reshape read bio isn't allocated from r10buf_pool */ 2316 struct r10bio *r10_bio = bio->bi_private; 2317 2318 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2319 } 2320 2321 static void end_sync_request(struct r10bio *r10_bio) 2322 { 2323 struct mddev *mddev = r10_bio->mddev; 2324 2325 while (atomic_dec_and_test(&r10_bio->remaining)) { 2326 if (r10_bio->master_bio == NULL) { 2327 /* the primary of several recovery bios */ 2328 sector_t s = r10_bio->sectors; 2329 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2330 test_bit(R10BIO_WriteError, &r10_bio->state)) 2331 reschedule_retry(r10_bio); 2332 else 2333 put_buf(r10_bio); 2334 md_done_sync(mddev, s, 1); 2335 break; 2336 } else { 2337 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2338 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2339 test_bit(R10BIO_WriteError, &r10_bio->state)) 2340 reschedule_retry(r10_bio); 2341 else 2342 put_buf(r10_bio); 2343 r10_bio = r10_bio2; 2344 } 2345 } 2346 } 2347 2348 static void end_sync_write(struct bio *bio) 2349 { 2350 struct r10bio *r10_bio = get_resync_r10bio(bio); 2351 struct mddev *mddev = r10_bio->mddev; 2352 struct r10conf *conf = mddev->private; 2353 int d; 2354 sector_t first_bad; 2355 int bad_sectors; 2356 int slot; 2357 int repl; 2358 struct md_rdev *rdev = NULL; 2359 2360 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2361 if (repl) 2362 rdev = conf->mirrors[d].replacement; 2363 else 2364 rdev = conf->mirrors[d].rdev; 2365 2366 if (bio->bi_status) { 2367 if (repl) 2368 md_error(mddev, rdev); 2369 else { 2370 set_bit(WriteErrorSeen, &rdev->flags); 2371 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2372 set_bit(MD_RECOVERY_NEEDED, 2373 &rdev->mddev->recovery); 2374 set_bit(R10BIO_WriteError, &r10_bio->state); 2375 } 2376 } else if (is_badblock(rdev, 2377 r10_bio->devs[slot].addr, 2378 r10_bio->sectors, 2379 &first_bad, &bad_sectors)) 2380 set_bit(R10BIO_MadeGood, &r10_bio->state); 2381 2382 rdev_dec_pending(rdev, mddev); 2383 2384 end_sync_request(r10_bio); 2385 } 2386 2387 /* 2388 * Note: sync and recover and handled very differently for raid10 2389 * This code is for resync. 2390 * For resync, we read through virtual addresses and read all blocks. 2391 * If there is any error, we schedule a write. The lowest numbered 2392 * drive is authoritative. 2393 * However requests come for physical address, so we need to map. 2394 * For every physical address there are raid_disks/copies virtual addresses, 2395 * which is always are least one, but is not necessarly an integer. 2396 * This means that a physical address can span multiple chunks, so we may 2397 * have to submit multiple io requests for a single sync request. 2398 */ 2399 /* 2400 * We check if all blocks are in-sync and only write to blocks that 2401 * aren't in sync 2402 */ 2403 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2404 { 2405 struct r10conf *conf = mddev->private; 2406 int i, first; 2407 struct bio *tbio, *fbio; 2408 int vcnt; 2409 struct page **tpages, **fpages; 2410 2411 atomic_set(&r10_bio->remaining, 1); 2412 2413 /* find the first device with a block */ 2414 for (i=0; i<conf->copies; i++) 2415 if (!r10_bio->devs[i].bio->bi_status) 2416 break; 2417 2418 if (i == conf->copies) 2419 goto done; 2420 2421 first = i; 2422 fbio = r10_bio->devs[i].bio; 2423 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2424 fbio->bi_iter.bi_idx = 0; 2425 fpages = get_resync_pages(fbio)->pages; 2426 2427 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2428 /* now find blocks with errors */ 2429 for (i=0 ; i < conf->copies ; i++) { 2430 int j, d; 2431 struct md_rdev *rdev; 2432 struct resync_pages *rp; 2433 2434 tbio = r10_bio->devs[i].bio; 2435 2436 if (tbio->bi_end_io != end_sync_read) 2437 continue; 2438 if (i == first) 2439 continue; 2440 2441 tpages = get_resync_pages(tbio)->pages; 2442 d = r10_bio->devs[i].devnum; 2443 rdev = conf->mirrors[d].rdev; 2444 if (!r10_bio->devs[i].bio->bi_status) { 2445 /* We know that the bi_io_vec layout is the same for 2446 * both 'first' and 'i', so we just compare them. 2447 * All vec entries are PAGE_SIZE; 2448 */ 2449 int sectors = r10_bio->sectors; 2450 for (j = 0; j < vcnt; j++) { 2451 int len = PAGE_SIZE; 2452 if (sectors < (len / 512)) 2453 len = sectors * 512; 2454 if (memcmp(page_address(fpages[j]), 2455 page_address(tpages[j]), 2456 len)) 2457 break; 2458 sectors -= len/512; 2459 } 2460 if (j == vcnt) 2461 continue; 2462 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2463 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2464 /* Don't fix anything. */ 2465 continue; 2466 } else if (test_bit(FailFast, &rdev->flags)) { 2467 /* Just give up on this device */ 2468 md_error(rdev->mddev, rdev); 2469 continue; 2470 } 2471 /* Ok, we need to write this bio, either to correct an 2472 * inconsistency or to correct an unreadable block. 2473 * First we need to fixup bv_offset, bv_len and 2474 * bi_vecs, as the read request might have corrupted these 2475 */ 2476 rp = get_resync_pages(tbio); 2477 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2478 2479 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2480 2481 rp->raid_bio = r10_bio; 2482 tbio->bi_private = rp; 2483 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2484 tbio->bi_end_io = end_sync_write; 2485 2486 bio_copy_data(tbio, fbio); 2487 2488 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2489 atomic_inc(&r10_bio->remaining); 2490 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2491 2492 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2493 tbio->bi_opf |= MD_FAILFAST; 2494 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2495 submit_bio_noacct(tbio); 2496 } 2497 2498 /* Now write out to any replacement devices 2499 * that are active 2500 */ 2501 for (i = 0; i < conf->copies; i++) { 2502 int d; 2503 2504 tbio = r10_bio->devs[i].repl_bio; 2505 if (!tbio || !tbio->bi_end_io) 2506 continue; 2507 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2508 && r10_bio->devs[i].bio != fbio) 2509 bio_copy_data(tbio, fbio); 2510 d = r10_bio->devs[i].devnum; 2511 atomic_inc(&r10_bio->remaining); 2512 md_sync_acct(conf->mirrors[d].replacement->bdev, 2513 bio_sectors(tbio)); 2514 submit_bio_noacct(tbio); 2515 } 2516 2517 done: 2518 if (atomic_dec_and_test(&r10_bio->remaining)) { 2519 md_done_sync(mddev, r10_bio->sectors, 1); 2520 put_buf(r10_bio); 2521 } 2522 } 2523 2524 /* 2525 * Now for the recovery code. 2526 * Recovery happens across physical sectors. 2527 * We recover all non-is_sync drives by finding the virtual address of 2528 * each, and then choose a working drive that also has that virt address. 2529 * There is a separate r10_bio for each non-in_sync drive. 2530 * Only the first two slots are in use. The first for reading, 2531 * The second for writing. 2532 * 2533 */ 2534 static void fix_recovery_read_error(struct r10bio *r10_bio) 2535 { 2536 /* We got a read error during recovery. 2537 * We repeat the read in smaller page-sized sections. 2538 * If a read succeeds, write it to the new device or record 2539 * a bad block if we cannot. 2540 * If a read fails, record a bad block on both old and 2541 * new devices. 2542 */ 2543 struct mddev *mddev = r10_bio->mddev; 2544 struct r10conf *conf = mddev->private; 2545 struct bio *bio = r10_bio->devs[0].bio; 2546 sector_t sect = 0; 2547 int sectors = r10_bio->sectors; 2548 int idx = 0; 2549 int dr = r10_bio->devs[0].devnum; 2550 int dw = r10_bio->devs[1].devnum; 2551 struct page **pages = get_resync_pages(bio)->pages; 2552 2553 while (sectors) { 2554 int s = sectors; 2555 struct md_rdev *rdev; 2556 sector_t addr; 2557 int ok; 2558 2559 if (s > (PAGE_SIZE>>9)) 2560 s = PAGE_SIZE >> 9; 2561 2562 rdev = conf->mirrors[dr].rdev; 2563 addr = r10_bio->devs[0].addr + sect, 2564 ok = sync_page_io(rdev, 2565 addr, 2566 s << 9, 2567 pages[idx], 2568 REQ_OP_READ, false); 2569 if (ok) { 2570 rdev = conf->mirrors[dw].rdev; 2571 addr = r10_bio->devs[1].addr + sect; 2572 ok = sync_page_io(rdev, 2573 addr, 2574 s << 9, 2575 pages[idx], 2576 REQ_OP_WRITE, false); 2577 if (!ok) { 2578 set_bit(WriteErrorSeen, &rdev->flags); 2579 if (!test_and_set_bit(WantReplacement, 2580 &rdev->flags)) 2581 set_bit(MD_RECOVERY_NEEDED, 2582 &rdev->mddev->recovery); 2583 } 2584 } 2585 if (!ok) { 2586 /* We don't worry if we cannot set a bad block - 2587 * it really is bad so there is no loss in not 2588 * recording it yet 2589 */ 2590 rdev_set_badblocks(rdev, addr, s, 0); 2591 2592 if (rdev != conf->mirrors[dw].rdev) { 2593 /* need bad block on destination too */ 2594 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2595 addr = r10_bio->devs[1].addr + sect; 2596 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2597 if (!ok) { 2598 /* just abort the recovery */ 2599 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2600 mdname(mddev)); 2601 2602 conf->mirrors[dw].recovery_disabled 2603 = mddev->recovery_disabled; 2604 set_bit(MD_RECOVERY_INTR, 2605 &mddev->recovery); 2606 break; 2607 } 2608 } 2609 } 2610 2611 sectors -= s; 2612 sect += s; 2613 idx++; 2614 } 2615 } 2616 2617 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2618 { 2619 struct r10conf *conf = mddev->private; 2620 int d; 2621 struct bio *wbio = r10_bio->devs[1].bio; 2622 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2623 2624 /* Need to test wbio2->bi_end_io before we call 2625 * submit_bio_noacct as if the former is NULL, 2626 * the latter is free to free wbio2. 2627 */ 2628 if (wbio2 && !wbio2->bi_end_io) 2629 wbio2 = NULL; 2630 2631 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2632 fix_recovery_read_error(r10_bio); 2633 if (wbio->bi_end_io) 2634 end_sync_request(r10_bio); 2635 if (wbio2) 2636 end_sync_request(r10_bio); 2637 return; 2638 } 2639 2640 /* 2641 * share the pages with the first bio 2642 * and submit the write request 2643 */ 2644 d = r10_bio->devs[1].devnum; 2645 if (wbio->bi_end_io) { 2646 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2647 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2648 submit_bio_noacct(wbio); 2649 } 2650 if (wbio2) { 2651 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2652 md_sync_acct(conf->mirrors[d].replacement->bdev, 2653 bio_sectors(wbio2)); 2654 submit_bio_noacct(wbio2); 2655 } 2656 } 2657 2658 /* 2659 * Used by fix_read_error() to decay the per rdev read_errors. 2660 * We halve the read error count for every hour that has elapsed 2661 * since the last recorded read error. 2662 * 2663 */ 2664 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2665 { 2666 long cur_time_mon; 2667 unsigned long hours_since_last; 2668 unsigned int read_errors = atomic_read(&rdev->read_errors); 2669 2670 cur_time_mon = ktime_get_seconds(); 2671 2672 if (rdev->last_read_error == 0) { 2673 /* first time we've seen a read error */ 2674 rdev->last_read_error = cur_time_mon; 2675 return; 2676 } 2677 2678 hours_since_last = (long)(cur_time_mon - 2679 rdev->last_read_error) / 3600; 2680 2681 rdev->last_read_error = cur_time_mon; 2682 2683 /* 2684 * if hours_since_last is > the number of bits in read_errors 2685 * just set read errors to 0. We do this to avoid 2686 * overflowing the shift of read_errors by hours_since_last. 2687 */ 2688 if (hours_since_last >= 8 * sizeof(read_errors)) 2689 atomic_set(&rdev->read_errors, 0); 2690 else 2691 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2692 } 2693 2694 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2695 int sectors, struct page *page, enum req_op op) 2696 { 2697 sector_t first_bad; 2698 int bad_sectors; 2699 2700 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2701 && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2702 return -1; 2703 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2704 /* success */ 2705 return 1; 2706 if (op == REQ_OP_WRITE) { 2707 set_bit(WriteErrorSeen, &rdev->flags); 2708 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2709 set_bit(MD_RECOVERY_NEEDED, 2710 &rdev->mddev->recovery); 2711 } 2712 /* need to record an error - either for the block or the device */ 2713 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2714 md_error(rdev->mddev, rdev); 2715 return 0; 2716 } 2717 2718 /* 2719 * This is a kernel thread which: 2720 * 2721 * 1. Retries failed read operations on working mirrors. 2722 * 2. Updates the raid superblock when problems encounter. 2723 * 3. Performs writes following reads for array synchronising. 2724 */ 2725 2726 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2727 { 2728 int sect = 0; /* Offset from r10_bio->sector */ 2729 int sectors = r10_bio->sectors, slot = r10_bio->read_slot; 2730 struct md_rdev *rdev; 2731 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2732 int d = r10_bio->devs[slot].devnum; 2733 2734 /* still own a reference to this rdev, so it cannot 2735 * have been cleared recently. 2736 */ 2737 rdev = conf->mirrors[d].rdev; 2738 2739 if (test_bit(Faulty, &rdev->flags)) 2740 /* drive has already been failed, just ignore any 2741 more fix_read_error() attempts */ 2742 return; 2743 2744 check_decay_read_errors(mddev, rdev); 2745 atomic_inc(&rdev->read_errors); 2746 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2747 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2748 mdname(mddev), rdev->bdev, 2749 atomic_read(&rdev->read_errors), max_read_errors); 2750 pr_notice("md/raid10:%s: %pg: Failing raid device\n", 2751 mdname(mddev), rdev->bdev); 2752 md_error(mddev, rdev); 2753 r10_bio->devs[slot].bio = IO_BLOCKED; 2754 return; 2755 } 2756 2757 while(sectors) { 2758 int s = sectors; 2759 int sl = slot; 2760 int success = 0; 2761 int start; 2762 2763 if (s > (PAGE_SIZE>>9)) 2764 s = PAGE_SIZE >> 9; 2765 2766 rcu_read_lock(); 2767 do { 2768 sector_t first_bad; 2769 int bad_sectors; 2770 2771 d = r10_bio->devs[sl].devnum; 2772 rdev = rcu_dereference(conf->mirrors[d].rdev); 2773 if (rdev && 2774 test_bit(In_sync, &rdev->flags) && 2775 !test_bit(Faulty, &rdev->flags) && 2776 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2777 &first_bad, &bad_sectors) == 0) { 2778 atomic_inc(&rdev->nr_pending); 2779 rcu_read_unlock(); 2780 success = sync_page_io(rdev, 2781 r10_bio->devs[sl].addr + 2782 sect, 2783 s<<9, 2784 conf->tmppage, 2785 REQ_OP_READ, false); 2786 rdev_dec_pending(rdev, mddev); 2787 rcu_read_lock(); 2788 if (success) 2789 break; 2790 } 2791 sl++; 2792 if (sl == conf->copies) 2793 sl = 0; 2794 } while (sl != slot); 2795 rcu_read_unlock(); 2796 2797 if (!success) { 2798 /* Cannot read from anywhere, just mark the block 2799 * as bad on the first device to discourage future 2800 * reads. 2801 */ 2802 int dn = r10_bio->devs[slot].devnum; 2803 rdev = conf->mirrors[dn].rdev; 2804 2805 if (!rdev_set_badblocks( 2806 rdev, 2807 r10_bio->devs[slot].addr 2808 + sect, 2809 s, 0)) { 2810 md_error(mddev, rdev); 2811 r10_bio->devs[slot].bio 2812 = IO_BLOCKED; 2813 } 2814 break; 2815 } 2816 2817 start = sl; 2818 /* write it back and re-read */ 2819 rcu_read_lock(); 2820 while (sl != slot) { 2821 if (sl==0) 2822 sl = conf->copies; 2823 sl--; 2824 d = r10_bio->devs[sl].devnum; 2825 rdev = rcu_dereference(conf->mirrors[d].rdev); 2826 if (!rdev || 2827 test_bit(Faulty, &rdev->flags) || 2828 !test_bit(In_sync, &rdev->flags)) 2829 continue; 2830 2831 atomic_inc(&rdev->nr_pending); 2832 rcu_read_unlock(); 2833 if (r10_sync_page_io(rdev, 2834 r10_bio->devs[sl].addr + 2835 sect, 2836 s, conf->tmppage, REQ_OP_WRITE) 2837 == 0) { 2838 /* Well, this device is dead */ 2839 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2840 mdname(mddev), s, 2841 (unsigned long long)( 2842 sect + 2843 choose_data_offset(r10_bio, 2844 rdev)), 2845 rdev->bdev); 2846 pr_notice("md/raid10:%s: %pg: failing drive\n", 2847 mdname(mddev), 2848 rdev->bdev); 2849 } 2850 rdev_dec_pending(rdev, mddev); 2851 rcu_read_lock(); 2852 } 2853 sl = start; 2854 while (sl != slot) { 2855 if (sl==0) 2856 sl = conf->copies; 2857 sl--; 2858 d = r10_bio->devs[sl].devnum; 2859 rdev = rcu_dereference(conf->mirrors[d].rdev); 2860 if (!rdev || 2861 test_bit(Faulty, &rdev->flags) || 2862 !test_bit(In_sync, &rdev->flags)) 2863 continue; 2864 2865 atomic_inc(&rdev->nr_pending); 2866 rcu_read_unlock(); 2867 switch (r10_sync_page_io(rdev, 2868 r10_bio->devs[sl].addr + 2869 sect, 2870 s, conf->tmppage, REQ_OP_READ)) { 2871 case 0: 2872 /* Well, this device is dead */ 2873 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2874 mdname(mddev), s, 2875 (unsigned long long)( 2876 sect + 2877 choose_data_offset(r10_bio, rdev)), 2878 rdev->bdev); 2879 pr_notice("md/raid10:%s: %pg: failing drive\n", 2880 mdname(mddev), 2881 rdev->bdev); 2882 break; 2883 case 1: 2884 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2885 mdname(mddev), s, 2886 (unsigned long long)( 2887 sect + 2888 choose_data_offset(r10_bio, rdev)), 2889 rdev->bdev); 2890 atomic_add(s, &rdev->corrected_errors); 2891 } 2892 2893 rdev_dec_pending(rdev, mddev); 2894 rcu_read_lock(); 2895 } 2896 rcu_read_unlock(); 2897 2898 sectors -= s; 2899 sect += s; 2900 } 2901 } 2902 2903 static int narrow_write_error(struct r10bio *r10_bio, int i) 2904 { 2905 struct bio *bio = r10_bio->master_bio; 2906 struct mddev *mddev = r10_bio->mddev; 2907 struct r10conf *conf = mddev->private; 2908 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2909 /* bio has the data to be written to slot 'i' where 2910 * we just recently had a write error. 2911 * We repeatedly clone the bio and trim down to one block, 2912 * then try the write. Where the write fails we record 2913 * a bad block. 2914 * It is conceivable that the bio doesn't exactly align with 2915 * blocks. We must handle this. 2916 * 2917 * We currently own a reference to the rdev. 2918 */ 2919 2920 int block_sectors; 2921 sector_t sector; 2922 int sectors; 2923 int sect_to_write = r10_bio->sectors; 2924 int ok = 1; 2925 2926 if (rdev->badblocks.shift < 0) 2927 return 0; 2928 2929 block_sectors = roundup(1 << rdev->badblocks.shift, 2930 bdev_logical_block_size(rdev->bdev) >> 9); 2931 sector = r10_bio->sector; 2932 sectors = ((r10_bio->sector + block_sectors) 2933 & ~(sector_t)(block_sectors - 1)) 2934 - sector; 2935 2936 while (sect_to_write) { 2937 struct bio *wbio; 2938 sector_t wsector; 2939 if (sectors > sect_to_write) 2940 sectors = sect_to_write; 2941 /* Write at 'sector' for 'sectors' */ 2942 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2943 &mddev->bio_set); 2944 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2945 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2946 wbio->bi_iter.bi_sector = wsector + 2947 choose_data_offset(r10_bio, rdev); 2948 wbio->bi_opf = REQ_OP_WRITE; 2949 2950 if (submit_bio_wait(wbio) < 0) 2951 /* Failure! */ 2952 ok = rdev_set_badblocks(rdev, wsector, 2953 sectors, 0) 2954 && ok; 2955 2956 bio_put(wbio); 2957 sect_to_write -= sectors; 2958 sector += sectors; 2959 sectors = block_sectors; 2960 } 2961 return ok; 2962 } 2963 2964 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2965 { 2966 int slot = r10_bio->read_slot; 2967 struct bio *bio; 2968 struct r10conf *conf = mddev->private; 2969 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2970 2971 /* we got a read error. Maybe the drive is bad. Maybe just 2972 * the block and we can fix it. 2973 * We freeze all other IO, and try reading the block from 2974 * other devices. When we find one, we re-write 2975 * and check it that fixes the read error. 2976 * This is all done synchronously while the array is 2977 * frozen. 2978 */ 2979 bio = r10_bio->devs[slot].bio; 2980 bio_put(bio); 2981 r10_bio->devs[slot].bio = NULL; 2982 2983 if (mddev->ro) 2984 r10_bio->devs[slot].bio = IO_BLOCKED; 2985 else if (!test_bit(FailFast, &rdev->flags)) { 2986 freeze_array(conf, 1); 2987 fix_read_error(conf, mddev, r10_bio); 2988 unfreeze_array(conf); 2989 } else 2990 md_error(mddev, rdev); 2991 2992 rdev_dec_pending(rdev, mddev); 2993 r10_bio->state = 0; 2994 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false); 2995 /* 2996 * allow_barrier after re-submit to ensure no sync io 2997 * can be issued while regular io pending. 2998 */ 2999 allow_barrier(conf); 3000 } 3001 3002 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 3003 { 3004 /* Some sort of write request has finished and it 3005 * succeeded in writing where we thought there was a 3006 * bad block. So forget the bad block. 3007 * Or possibly if failed and we need to record 3008 * a bad block. 3009 */ 3010 int m; 3011 struct md_rdev *rdev; 3012 3013 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 3014 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 3015 for (m = 0; m < conf->copies; m++) { 3016 int dev = r10_bio->devs[m].devnum; 3017 rdev = conf->mirrors[dev].rdev; 3018 if (r10_bio->devs[m].bio == NULL || 3019 r10_bio->devs[m].bio->bi_end_io == NULL) 3020 continue; 3021 if (!r10_bio->devs[m].bio->bi_status) { 3022 rdev_clear_badblocks( 3023 rdev, 3024 r10_bio->devs[m].addr, 3025 r10_bio->sectors, 0); 3026 } else { 3027 if (!rdev_set_badblocks( 3028 rdev, 3029 r10_bio->devs[m].addr, 3030 r10_bio->sectors, 0)) 3031 md_error(conf->mddev, rdev); 3032 } 3033 rdev = conf->mirrors[dev].replacement; 3034 if (r10_bio->devs[m].repl_bio == NULL || 3035 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 3036 continue; 3037 3038 if (!r10_bio->devs[m].repl_bio->bi_status) { 3039 rdev_clear_badblocks( 3040 rdev, 3041 r10_bio->devs[m].addr, 3042 r10_bio->sectors, 0); 3043 } else { 3044 if (!rdev_set_badblocks( 3045 rdev, 3046 r10_bio->devs[m].addr, 3047 r10_bio->sectors, 0)) 3048 md_error(conf->mddev, rdev); 3049 } 3050 } 3051 put_buf(r10_bio); 3052 } else { 3053 bool fail = false; 3054 for (m = 0; m < conf->copies; m++) { 3055 int dev = r10_bio->devs[m].devnum; 3056 struct bio *bio = r10_bio->devs[m].bio; 3057 rdev = conf->mirrors[dev].rdev; 3058 if (bio == IO_MADE_GOOD) { 3059 rdev_clear_badblocks( 3060 rdev, 3061 r10_bio->devs[m].addr, 3062 r10_bio->sectors, 0); 3063 rdev_dec_pending(rdev, conf->mddev); 3064 } else if (bio != NULL && bio->bi_status) { 3065 fail = true; 3066 if (!narrow_write_error(r10_bio, m)) { 3067 md_error(conf->mddev, rdev); 3068 set_bit(R10BIO_Degraded, 3069 &r10_bio->state); 3070 } 3071 rdev_dec_pending(rdev, conf->mddev); 3072 } 3073 bio = r10_bio->devs[m].repl_bio; 3074 rdev = conf->mirrors[dev].replacement; 3075 if (rdev && bio == IO_MADE_GOOD) { 3076 rdev_clear_badblocks( 3077 rdev, 3078 r10_bio->devs[m].addr, 3079 r10_bio->sectors, 0); 3080 rdev_dec_pending(rdev, conf->mddev); 3081 } 3082 } 3083 if (fail) { 3084 spin_lock_irq(&conf->device_lock); 3085 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 3086 conf->nr_queued++; 3087 spin_unlock_irq(&conf->device_lock); 3088 /* 3089 * In case freeze_array() is waiting for condition 3090 * nr_pending == nr_queued + extra to be true. 3091 */ 3092 wake_up(&conf->wait_barrier); 3093 md_wakeup_thread(conf->mddev->thread); 3094 } else { 3095 if (test_bit(R10BIO_WriteError, 3096 &r10_bio->state)) 3097 close_write(r10_bio); 3098 raid_end_bio_io(r10_bio); 3099 } 3100 } 3101 } 3102 3103 static void raid10d(struct md_thread *thread) 3104 { 3105 struct mddev *mddev = thread->mddev; 3106 struct r10bio *r10_bio; 3107 unsigned long flags; 3108 struct r10conf *conf = mddev->private; 3109 struct list_head *head = &conf->retry_list; 3110 struct blk_plug plug; 3111 3112 md_check_recovery(mddev); 3113 3114 if (!list_empty_careful(&conf->bio_end_io_list) && 3115 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3116 LIST_HEAD(tmp); 3117 spin_lock_irqsave(&conf->device_lock, flags); 3118 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3119 while (!list_empty(&conf->bio_end_io_list)) { 3120 list_move(conf->bio_end_io_list.prev, &tmp); 3121 conf->nr_queued--; 3122 } 3123 } 3124 spin_unlock_irqrestore(&conf->device_lock, flags); 3125 while (!list_empty(&tmp)) { 3126 r10_bio = list_first_entry(&tmp, struct r10bio, 3127 retry_list); 3128 list_del(&r10_bio->retry_list); 3129 if (mddev->degraded) 3130 set_bit(R10BIO_Degraded, &r10_bio->state); 3131 3132 if (test_bit(R10BIO_WriteError, 3133 &r10_bio->state)) 3134 close_write(r10_bio); 3135 raid_end_bio_io(r10_bio); 3136 } 3137 } 3138 3139 blk_start_plug(&plug); 3140 for (;;) { 3141 3142 flush_pending_writes(conf); 3143 3144 spin_lock_irqsave(&conf->device_lock, flags); 3145 if (list_empty(head)) { 3146 spin_unlock_irqrestore(&conf->device_lock, flags); 3147 break; 3148 } 3149 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3150 list_del(head->prev); 3151 conf->nr_queued--; 3152 spin_unlock_irqrestore(&conf->device_lock, flags); 3153 3154 mddev = r10_bio->mddev; 3155 conf = mddev->private; 3156 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3157 test_bit(R10BIO_WriteError, &r10_bio->state)) 3158 handle_write_completed(conf, r10_bio); 3159 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3160 reshape_request_write(mddev, r10_bio); 3161 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3162 sync_request_write(mddev, r10_bio); 3163 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3164 recovery_request_write(mddev, r10_bio); 3165 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3166 handle_read_error(mddev, r10_bio); 3167 else 3168 WARN_ON_ONCE(1); 3169 3170 cond_resched(); 3171 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3172 md_check_recovery(mddev); 3173 } 3174 blk_finish_plug(&plug); 3175 } 3176 3177 static int init_resync(struct r10conf *conf) 3178 { 3179 int ret, buffs, i; 3180 3181 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3182 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3183 conf->have_replacement = 0; 3184 for (i = 0; i < conf->geo.raid_disks; i++) 3185 if (conf->mirrors[i].replacement) 3186 conf->have_replacement = 1; 3187 ret = mempool_init(&conf->r10buf_pool, buffs, 3188 r10buf_pool_alloc, r10buf_pool_free, conf); 3189 if (ret) 3190 return ret; 3191 conf->next_resync = 0; 3192 return 0; 3193 } 3194 3195 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3196 { 3197 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3198 struct rsync_pages *rp; 3199 struct bio *bio; 3200 int nalloc; 3201 int i; 3202 3203 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3204 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3205 nalloc = conf->copies; /* resync */ 3206 else 3207 nalloc = 2; /* recovery */ 3208 3209 for (i = 0; i < nalloc; i++) { 3210 bio = r10bio->devs[i].bio; 3211 rp = bio->bi_private; 3212 bio_reset(bio, NULL, 0); 3213 bio->bi_private = rp; 3214 bio = r10bio->devs[i].repl_bio; 3215 if (bio) { 3216 rp = bio->bi_private; 3217 bio_reset(bio, NULL, 0); 3218 bio->bi_private = rp; 3219 } 3220 } 3221 return r10bio; 3222 } 3223 3224 /* 3225 * Set cluster_sync_high since we need other nodes to add the 3226 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3227 */ 3228 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3229 { 3230 sector_t window_size; 3231 int extra_chunk, chunks; 3232 3233 /* 3234 * First, here we define "stripe" as a unit which across 3235 * all member devices one time, so we get chunks by use 3236 * raid_disks / near_copies. Otherwise, if near_copies is 3237 * close to raid_disks, then resync window could increases 3238 * linearly with the increase of raid_disks, which means 3239 * we will suspend a really large IO window while it is not 3240 * necessary. If raid_disks is not divisible by near_copies, 3241 * an extra chunk is needed to ensure the whole "stripe" is 3242 * covered. 3243 */ 3244 3245 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3246 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3247 extra_chunk = 0; 3248 else 3249 extra_chunk = 1; 3250 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3251 3252 /* 3253 * At least use a 32M window to align with raid1's resync window 3254 */ 3255 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3256 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3257 3258 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3259 } 3260 3261 /* 3262 * perform a "sync" on one "block" 3263 * 3264 * We need to make sure that no normal I/O request - particularly write 3265 * requests - conflict with active sync requests. 3266 * 3267 * This is achieved by tracking pending requests and a 'barrier' concept 3268 * that can be installed to exclude normal IO requests. 3269 * 3270 * Resync and recovery are handled very differently. 3271 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3272 * 3273 * For resync, we iterate over virtual addresses, read all copies, 3274 * and update if there are differences. If only one copy is live, 3275 * skip it. 3276 * For recovery, we iterate over physical addresses, read a good 3277 * value for each non-in_sync drive, and over-write. 3278 * 3279 * So, for recovery we may have several outstanding complex requests for a 3280 * given address, one for each out-of-sync device. We model this by allocating 3281 * a number of r10_bio structures, one for each out-of-sync device. 3282 * As we setup these structures, we collect all bio's together into a list 3283 * which we then process collectively to add pages, and then process again 3284 * to pass to submit_bio_noacct. 3285 * 3286 * The r10_bio structures are linked using a borrowed master_bio pointer. 3287 * This link is counted in ->remaining. When the r10_bio that points to NULL 3288 * has its remaining count decremented to 0, the whole complex operation 3289 * is complete. 3290 * 3291 */ 3292 3293 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3294 int *skipped) 3295 { 3296 struct r10conf *conf = mddev->private; 3297 struct r10bio *r10_bio; 3298 struct bio *biolist = NULL, *bio; 3299 sector_t max_sector, nr_sectors; 3300 int i; 3301 int max_sync; 3302 sector_t sync_blocks; 3303 sector_t sectors_skipped = 0; 3304 int chunks_skipped = 0; 3305 sector_t chunk_mask = conf->geo.chunk_mask; 3306 int page_idx = 0; 3307 int error_disk = -1; 3308 3309 /* 3310 * Allow skipping a full rebuild for incremental assembly 3311 * of a clean array, like RAID1 does. 3312 */ 3313 if (mddev->bitmap == NULL && 3314 mddev->recovery_cp == MaxSector && 3315 mddev->reshape_position == MaxSector && 3316 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3317 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3318 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3319 conf->fullsync == 0) { 3320 *skipped = 1; 3321 return mddev->dev_sectors - sector_nr; 3322 } 3323 3324 if (!mempool_initialized(&conf->r10buf_pool)) 3325 if (init_resync(conf)) 3326 return 0; 3327 3328 skipped: 3329 max_sector = mddev->dev_sectors; 3330 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 3331 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3332 max_sector = mddev->resync_max_sectors; 3333 if (sector_nr >= max_sector) { 3334 conf->cluster_sync_low = 0; 3335 conf->cluster_sync_high = 0; 3336 3337 /* If we aborted, we need to abort the 3338 * sync on the 'current' bitmap chucks (there can 3339 * be several when recovering multiple devices). 3340 * as we may have started syncing it but not finished. 3341 * We can find the current address in 3342 * mddev->curr_resync, but for recovery, 3343 * we need to convert that to several 3344 * virtual addresses. 3345 */ 3346 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3347 end_reshape(conf); 3348 close_sync(conf); 3349 return 0; 3350 } 3351 3352 if (mddev->curr_resync < max_sector) { /* aborted */ 3353 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3354 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3355 &sync_blocks, 1); 3356 else for (i = 0; i < conf->geo.raid_disks; i++) { 3357 sector_t sect = 3358 raid10_find_virt(conf, mddev->curr_resync, i); 3359 md_bitmap_end_sync(mddev->bitmap, sect, 3360 &sync_blocks, 1); 3361 } 3362 } else { 3363 /* completed sync */ 3364 if ((!mddev->bitmap || conf->fullsync) 3365 && conf->have_replacement 3366 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3367 /* Completed a full sync so the replacements 3368 * are now fully recovered. 3369 */ 3370 rcu_read_lock(); 3371 for (i = 0; i < conf->geo.raid_disks; i++) { 3372 struct md_rdev *rdev = 3373 rcu_dereference(conf->mirrors[i].replacement); 3374 if (rdev) 3375 rdev->recovery_offset = MaxSector; 3376 } 3377 rcu_read_unlock(); 3378 } 3379 conf->fullsync = 0; 3380 } 3381 md_bitmap_close_sync(mddev->bitmap); 3382 close_sync(conf); 3383 *skipped = 1; 3384 return sectors_skipped; 3385 } 3386 3387 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3388 return reshape_request(mddev, sector_nr, skipped); 3389 3390 if (chunks_skipped >= conf->geo.raid_disks) { 3391 pr_err("md/raid10:%s: %s fails\n", mdname(mddev), 3392 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"); 3393 if (error_disk >= 0 && 3394 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3395 /* 3396 * recovery fails, set mirrors.recovery_disabled, 3397 * device shouldn't be added to there. 3398 */ 3399 conf->mirrors[error_disk].recovery_disabled = 3400 mddev->recovery_disabled; 3401 return 0; 3402 } 3403 /* 3404 * if there has been nothing to do on any drive, 3405 * then there is nothing to do at all. 3406 */ 3407 *skipped = 1; 3408 return (max_sector - sector_nr) + sectors_skipped; 3409 } 3410 3411 if (max_sector > mddev->resync_max) 3412 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3413 3414 /* make sure whole request will fit in a chunk - if chunks 3415 * are meaningful 3416 */ 3417 if (conf->geo.near_copies < conf->geo.raid_disks && 3418 max_sector > (sector_nr | chunk_mask)) 3419 max_sector = (sector_nr | chunk_mask) + 1; 3420 3421 /* 3422 * If there is non-resync activity waiting for a turn, then let it 3423 * though before starting on this new sync request. 3424 */ 3425 if (conf->nr_waiting) 3426 schedule_timeout_uninterruptible(1); 3427 3428 /* Again, very different code for resync and recovery. 3429 * Both must result in an r10bio with a list of bios that 3430 * have bi_end_io, bi_sector, bi_bdev set, 3431 * and bi_private set to the r10bio. 3432 * For recovery, we may actually create several r10bios 3433 * with 2 bios in each, that correspond to the bios in the main one. 3434 * In this case, the subordinate r10bios link back through a 3435 * borrowed master_bio pointer, and the counter in the master 3436 * includes a ref from each subordinate. 3437 */ 3438 /* First, we decide what to do and set ->bi_end_io 3439 * To end_sync_read if we want to read, and 3440 * end_sync_write if we will want to write. 3441 */ 3442 3443 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3444 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3445 /* recovery... the complicated one */ 3446 int j; 3447 r10_bio = NULL; 3448 3449 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3450 int still_degraded; 3451 struct r10bio *rb2; 3452 sector_t sect; 3453 int must_sync; 3454 int any_working; 3455 struct raid10_info *mirror = &conf->mirrors[i]; 3456 struct md_rdev *mrdev, *mreplace; 3457 3458 rcu_read_lock(); 3459 mrdev = rcu_dereference(mirror->rdev); 3460 mreplace = rcu_dereference(mirror->replacement); 3461 3462 if (mrdev && (test_bit(Faulty, &mrdev->flags) || 3463 test_bit(In_sync, &mrdev->flags))) 3464 mrdev = NULL; 3465 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3466 mreplace = NULL; 3467 3468 if (!mrdev && !mreplace) { 3469 rcu_read_unlock(); 3470 continue; 3471 } 3472 3473 still_degraded = 0; 3474 /* want to reconstruct this device */ 3475 rb2 = r10_bio; 3476 sect = raid10_find_virt(conf, sector_nr, i); 3477 if (sect >= mddev->resync_max_sectors) { 3478 /* last stripe is not complete - don't 3479 * try to recover this sector. 3480 */ 3481 rcu_read_unlock(); 3482 continue; 3483 } 3484 /* Unless we are doing a full sync, or a replacement 3485 * we only need to recover the block if it is set in 3486 * the bitmap 3487 */ 3488 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3489 &sync_blocks, 1); 3490 if (sync_blocks < max_sync) 3491 max_sync = sync_blocks; 3492 if (!must_sync && 3493 mreplace == NULL && 3494 !conf->fullsync) { 3495 /* yep, skip the sync_blocks here, but don't assume 3496 * that there will never be anything to do here 3497 */ 3498 chunks_skipped = -1; 3499 rcu_read_unlock(); 3500 continue; 3501 } 3502 if (mrdev) 3503 atomic_inc(&mrdev->nr_pending); 3504 if (mreplace) 3505 atomic_inc(&mreplace->nr_pending); 3506 rcu_read_unlock(); 3507 3508 r10_bio = raid10_alloc_init_r10buf(conf); 3509 r10_bio->state = 0; 3510 raise_barrier(conf, rb2 != NULL); 3511 atomic_set(&r10_bio->remaining, 0); 3512 3513 r10_bio->master_bio = (struct bio*)rb2; 3514 if (rb2) 3515 atomic_inc(&rb2->remaining); 3516 r10_bio->mddev = mddev; 3517 set_bit(R10BIO_IsRecover, &r10_bio->state); 3518 r10_bio->sector = sect; 3519 3520 raid10_find_phys(conf, r10_bio); 3521 3522 /* Need to check if the array will still be 3523 * degraded 3524 */ 3525 rcu_read_lock(); 3526 for (j = 0; j < conf->geo.raid_disks; j++) { 3527 struct md_rdev *rdev = rcu_dereference( 3528 conf->mirrors[j].rdev); 3529 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3530 still_degraded = 1; 3531 break; 3532 } 3533 } 3534 3535 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3536 &sync_blocks, still_degraded); 3537 3538 any_working = 0; 3539 for (j=0; j<conf->copies;j++) { 3540 int k; 3541 int d = r10_bio->devs[j].devnum; 3542 sector_t from_addr, to_addr; 3543 struct md_rdev *rdev = 3544 rcu_dereference(conf->mirrors[d].rdev); 3545 sector_t sector, first_bad; 3546 int bad_sectors; 3547 if (!rdev || 3548 !test_bit(In_sync, &rdev->flags)) 3549 continue; 3550 /* This is where we read from */ 3551 any_working = 1; 3552 sector = r10_bio->devs[j].addr; 3553 3554 if (is_badblock(rdev, sector, max_sync, 3555 &first_bad, &bad_sectors)) { 3556 if (first_bad > sector) 3557 max_sync = first_bad - sector; 3558 else { 3559 bad_sectors -= (sector 3560 - first_bad); 3561 if (max_sync > bad_sectors) 3562 max_sync = bad_sectors; 3563 continue; 3564 } 3565 } 3566 bio = r10_bio->devs[0].bio; 3567 bio->bi_next = biolist; 3568 biolist = bio; 3569 bio->bi_end_io = end_sync_read; 3570 bio->bi_opf = REQ_OP_READ; 3571 if (test_bit(FailFast, &rdev->flags)) 3572 bio->bi_opf |= MD_FAILFAST; 3573 from_addr = r10_bio->devs[j].addr; 3574 bio->bi_iter.bi_sector = from_addr + 3575 rdev->data_offset; 3576 bio_set_dev(bio, rdev->bdev); 3577 atomic_inc(&rdev->nr_pending); 3578 /* and we write to 'i' (if not in_sync) */ 3579 3580 for (k=0; k<conf->copies; k++) 3581 if (r10_bio->devs[k].devnum == i) 3582 break; 3583 BUG_ON(k == conf->copies); 3584 to_addr = r10_bio->devs[k].addr; 3585 r10_bio->devs[0].devnum = d; 3586 r10_bio->devs[0].addr = from_addr; 3587 r10_bio->devs[1].devnum = i; 3588 r10_bio->devs[1].addr = to_addr; 3589 3590 if (mrdev) { 3591 bio = r10_bio->devs[1].bio; 3592 bio->bi_next = biolist; 3593 biolist = bio; 3594 bio->bi_end_io = end_sync_write; 3595 bio->bi_opf = REQ_OP_WRITE; 3596 bio->bi_iter.bi_sector = to_addr 3597 + mrdev->data_offset; 3598 bio_set_dev(bio, mrdev->bdev); 3599 atomic_inc(&r10_bio->remaining); 3600 } else 3601 r10_bio->devs[1].bio->bi_end_io = NULL; 3602 3603 /* and maybe write to replacement */ 3604 bio = r10_bio->devs[1].repl_bio; 3605 if (bio) 3606 bio->bi_end_io = NULL; 3607 /* Note: if replace is not NULL, then bio 3608 * cannot be NULL as r10buf_pool_alloc will 3609 * have allocated it. 3610 */ 3611 if (!mreplace) 3612 break; 3613 bio->bi_next = biolist; 3614 biolist = bio; 3615 bio->bi_end_io = end_sync_write; 3616 bio->bi_opf = REQ_OP_WRITE; 3617 bio->bi_iter.bi_sector = to_addr + 3618 mreplace->data_offset; 3619 bio_set_dev(bio, mreplace->bdev); 3620 atomic_inc(&r10_bio->remaining); 3621 break; 3622 } 3623 rcu_read_unlock(); 3624 if (j == conf->copies) { 3625 /* Cannot recover, so abort the recovery or 3626 * record a bad block */ 3627 if (any_working) { 3628 /* problem is that there are bad blocks 3629 * on other device(s) 3630 */ 3631 int k; 3632 for (k = 0; k < conf->copies; k++) 3633 if (r10_bio->devs[k].devnum == i) 3634 break; 3635 if (mrdev && !test_bit(In_sync, 3636 &mrdev->flags) 3637 && !rdev_set_badblocks( 3638 mrdev, 3639 r10_bio->devs[k].addr, 3640 max_sync, 0)) 3641 any_working = 0; 3642 if (mreplace && 3643 !rdev_set_badblocks( 3644 mreplace, 3645 r10_bio->devs[k].addr, 3646 max_sync, 0)) 3647 any_working = 0; 3648 } 3649 if (!any_working) { 3650 if (!test_and_set_bit(MD_RECOVERY_INTR, 3651 &mddev->recovery)) 3652 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3653 mdname(mddev)); 3654 mirror->recovery_disabled 3655 = mddev->recovery_disabled; 3656 } else { 3657 error_disk = i; 3658 } 3659 put_buf(r10_bio); 3660 if (rb2) 3661 atomic_dec(&rb2->remaining); 3662 r10_bio = rb2; 3663 if (mrdev) 3664 rdev_dec_pending(mrdev, mddev); 3665 if (mreplace) 3666 rdev_dec_pending(mreplace, mddev); 3667 break; 3668 } 3669 if (mrdev) 3670 rdev_dec_pending(mrdev, mddev); 3671 if (mreplace) 3672 rdev_dec_pending(mreplace, mddev); 3673 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3674 /* Only want this if there is elsewhere to 3675 * read from. 'j' is currently the first 3676 * readable copy. 3677 */ 3678 int targets = 1; 3679 for (; j < conf->copies; j++) { 3680 int d = r10_bio->devs[j].devnum; 3681 if (conf->mirrors[d].rdev && 3682 test_bit(In_sync, 3683 &conf->mirrors[d].rdev->flags)) 3684 targets++; 3685 } 3686 if (targets == 1) 3687 r10_bio->devs[0].bio->bi_opf 3688 &= ~MD_FAILFAST; 3689 } 3690 } 3691 if (biolist == NULL) { 3692 while (r10_bio) { 3693 struct r10bio *rb2 = r10_bio; 3694 r10_bio = (struct r10bio*) rb2->master_bio; 3695 rb2->master_bio = NULL; 3696 put_buf(rb2); 3697 } 3698 goto giveup; 3699 } 3700 } else { 3701 /* resync. Schedule a read for every block at this virt offset */ 3702 int count = 0; 3703 3704 /* 3705 * Since curr_resync_completed could probably not update in 3706 * time, and we will set cluster_sync_low based on it. 3707 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3708 * safety reason, which ensures curr_resync_completed is 3709 * updated in bitmap_cond_end_sync. 3710 */ 3711 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3712 mddev_is_clustered(mddev) && 3713 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3714 3715 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3716 &sync_blocks, mddev->degraded) && 3717 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3718 &mddev->recovery)) { 3719 /* We can skip this block */ 3720 *skipped = 1; 3721 return sync_blocks + sectors_skipped; 3722 } 3723 if (sync_blocks < max_sync) 3724 max_sync = sync_blocks; 3725 r10_bio = raid10_alloc_init_r10buf(conf); 3726 r10_bio->state = 0; 3727 3728 r10_bio->mddev = mddev; 3729 atomic_set(&r10_bio->remaining, 0); 3730 raise_barrier(conf, 0); 3731 conf->next_resync = sector_nr; 3732 3733 r10_bio->master_bio = NULL; 3734 r10_bio->sector = sector_nr; 3735 set_bit(R10BIO_IsSync, &r10_bio->state); 3736 raid10_find_phys(conf, r10_bio); 3737 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3738 3739 for (i = 0; i < conf->copies; i++) { 3740 int d = r10_bio->devs[i].devnum; 3741 sector_t first_bad, sector; 3742 int bad_sectors; 3743 struct md_rdev *rdev; 3744 3745 if (r10_bio->devs[i].repl_bio) 3746 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3747 3748 bio = r10_bio->devs[i].bio; 3749 bio->bi_status = BLK_STS_IOERR; 3750 rcu_read_lock(); 3751 rdev = rcu_dereference(conf->mirrors[d].rdev); 3752 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3753 rcu_read_unlock(); 3754 continue; 3755 } 3756 sector = r10_bio->devs[i].addr; 3757 if (is_badblock(rdev, sector, max_sync, 3758 &first_bad, &bad_sectors)) { 3759 if (first_bad > sector) 3760 max_sync = first_bad - sector; 3761 else { 3762 bad_sectors -= (sector - first_bad); 3763 if (max_sync > bad_sectors) 3764 max_sync = bad_sectors; 3765 rcu_read_unlock(); 3766 continue; 3767 } 3768 } 3769 atomic_inc(&rdev->nr_pending); 3770 atomic_inc(&r10_bio->remaining); 3771 bio->bi_next = biolist; 3772 biolist = bio; 3773 bio->bi_end_io = end_sync_read; 3774 bio->bi_opf = REQ_OP_READ; 3775 if (test_bit(FailFast, &rdev->flags)) 3776 bio->bi_opf |= MD_FAILFAST; 3777 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3778 bio_set_dev(bio, rdev->bdev); 3779 count++; 3780 3781 rdev = rcu_dereference(conf->mirrors[d].replacement); 3782 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3783 rcu_read_unlock(); 3784 continue; 3785 } 3786 atomic_inc(&rdev->nr_pending); 3787 3788 /* Need to set up for writing to the replacement */ 3789 bio = r10_bio->devs[i].repl_bio; 3790 bio->bi_status = BLK_STS_IOERR; 3791 3792 sector = r10_bio->devs[i].addr; 3793 bio->bi_next = biolist; 3794 biolist = bio; 3795 bio->bi_end_io = end_sync_write; 3796 bio->bi_opf = REQ_OP_WRITE; 3797 if (test_bit(FailFast, &rdev->flags)) 3798 bio->bi_opf |= MD_FAILFAST; 3799 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3800 bio_set_dev(bio, rdev->bdev); 3801 count++; 3802 rcu_read_unlock(); 3803 } 3804 3805 if (count < 2) { 3806 for (i=0; i<conf->copies; i++) { 3807 int d = r10_bio->devs[i].devnum; 3808 if (r10_bio->devs[i].bio->bi_end_io) 3809 rdev_dec_pending(conf->mirrors[d].rdev, 3810 mddev); 3811 if (r10_bio->devs[i].repl_bio && 3812 r10_bio->devs[i].repl_bio->bi_end_io) 3813 rdev_dec_pending( 3814 conf->mirrors[d].replacement, 3815 mddev); 3816 } 3817 put_buf(r10_bio); 3818 biolist = NULL; 3819 goto giveup; 3820 } 3821 } 3822 3823 nr_sectors = 0; 3824 if (sector_nr + max_sync < max_sector) 3825 max_sector = sector_nr + max_sync; 3826 do { 3827 struct page *page; 3828 int len = PAGE_SIZE; 3829 if (sector_nr + (len>>9) > max_sector) 3830 len = (max_sector - sector_nr) << 9; 3831 if (len == 0) 3832 break; 3833 for (bio= biolist ; bio ; bio=bio->bi_next) { 3834 struct resync_pages *rp = get_resync_pages(bio); 3835 page = resync_fetch_page(rp, page_idx); 3836 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 3837 bio->bi_status = BLK_STS_RESOURCE; 3838 bio_endio(bio); 3839 goto giveup; 3840 } 3841 } 3842 nr_sectors += len>>9; 3843 sector_nr += len>>9; 3844 } while (++page_idx < RESYNC_PAGES); 3845 r10_bio->sectors = nr_sectors; 3846 3847 if (mddev_is_clustered(mddev) && 3848 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3849 /* It is resync not recovery */ 3850 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3851 conf->cluster_sync_low = mddev->curr_resync_completed; 3852 raid10_set_cluster_sync_high(conf); 3853 /* Send resync message */ 3854 md_cluster_ops->resync_info_update(mddev, 3855 conf->cluster_sync_low, 3856 conf->cluster_sync_high); 3857 } 3858 } else if (mddev_is_clustered(mddev)) { 3859 /* This is recovery not resync */ 3860 sector_t sect_va1, sect_va2; 3861 bool broadcast_msg = false; 3862 3863 for (i = 0; i < conf->geo.raid_disks; i++) { 3864 /* 3865 * sector_nr is a device address for recovery, so we 3866 * need translate it to array address before compare 3867 * with cluster_sync_high. 3868 */ 3869 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3870 3871 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3872 broadcast_msg = true; 3873 /* 3874 * curr_resync_completed is similar as 3875 * sector_nr, so make the translation too. 3876 */ 3877 sect_va2 = raid10_find_virt(conf, 3878 mddev->curr_resync_completed, i); 3879 3880 if (conf->cluster_sync_low == 0 || 3881 conf->cluster_sync_low > sect_va2) 3882 conf->cluster_sync_low = sect_va2; 3883 } 3884 } 3885 if (broadcast_msg) { 3886 raid10_set_cluster_sync_high(conf); 3887 md_cluster_ops->resync_info_update(mddev, 3888 conf->cluster_sync_low, 3889 conf->cluster_sync_high); 3890 } 3891 } 3892 3893 while (biolist) { 3894 bio = biolist; 3895 biolist = biolist->bi_next; 3896 3897 bio->bi_next = NULL; 3898 r10_bio = get_resync_r10bio(bio); 3899 r10_bio->sectors = nr_sectors; 3900 3901 if (bio->bi_end_io == end_sync_read) { 3902 md_sync_acct_bio(bio, nr_sectors); 3903 bio->bi_status = 0; 3904 submit_bio_noacct(bio); 3905 } 3906 } 3907 3908 if (sectors_skipped) 3909 /* pretend they weren't skipped, it makes 3910 * no important difference in this case 3911 */ 3912 md_done_sync(mddev, sectors_skipped, 1); 3913 3914 return sectors_skipped + nr_sectors; 3915 giveup: 3916 /* There is nowhere to write, so all non-sync 3917 * drives must be failed or in resync, all drives 3918 * have a bad block, so try the next chunk... 3919 */ 3920 if (sector_nr + max_sync < max_sector) 3921 max_sector = sector_nr + max_sync; 3922 3923 sectors_skipped += (max_sector - sector_nr); 3924 chunks_skipped ++; 3925 sector_nr = max_sector; 3926 goto skipped; 3927 } 3928 3929 static sector_t 3930 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3931 { 3932 sector_t size; 3933 struct r10conf *conf = mddev->private; 3934 3935 if (!raid_disks) 3936 raid_disks = min(conf->geo.raid_disks, 3937 conf->prev.raid_disks); 3938 if (!sectors) 3939 sectors = conf->dev_sectors; 3940 3941 size = sectors >> conf->geo.chunk_shift; 3942 sector_div(size, conf->geo.far_copies); 3943 size = size * raid_disks; 3944 sector_div(size, conf->geo.near_copies); 3945 3946 return size << conf->geo.chunk_shift; 3947 } 3948 3949 static void calc_sectors(struct r10conf *conf, sector_t size) 3950 { 3951 /* Calculate the number of sectors-per-device that will 3952 * actually be used, and set conf->dev_sectors and 3953 * conf->stride 3954 */ 3955 3956 size = size >> conf->geo.chunk_shift; 3957 sector_div(size, conf->geo.far_copies); 3958 size = size * conf->geo.raid_disks; 3959 sector_div(size, conf->geo.near_copies); 3960 /* 'size' is now the number of chunks in the array */ 3961 /* calculate "used chunks per device" */ 3962 size = size * conf->copies; 3963 3964 /* We need to round up when dividing by raid_disks to 3965 * get the stride size. 3966 */ 3967 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3968 3969 conf->dev_sectors = size << conf->geo.chunk_shift; 3970 3971 if (conf->geo.far_offset) 3972 conf->geo.stride = 1 << conf->geo.chunk_shift; 3973 else { 3974 sector_div(size, conf->geo.far_copies); 3975 conf->geo.stride = size << conf->geo.chunk_shift; 3976 } 3977 } 3978 3979 enum geo_type {geo_new, geo_old, geo_start}; 3980 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3981 { 3982 int nc, fc, fo; 3983 int layout, chunk, disks; 3984 switch (new) { 3985 case geo_old: 3986 layout = mddev->layout; 3987 chunk = mddev->chunk_sectors; 3988 disks = mddev->raid_disks - mddev->delta_disks; 3989 break; 3990 case geo_new: 3991 layout = mddev->new_layout; 3992 chunk = mddev->new_chunk_sectors; 3993 disks = mddev->raid_disks; 3994 break; 3995 default: /* avoid 'may be unused' warnings */ 3996 case geo_start: /* new when starting reshape - raid_disks not 3997 * updated yet. */ 3998 layout = mddev->new_layout; 3999 chunk = mddev->new_chunk_sectors; 4000 disks = mddev->raid_disks + mddev->delta_disks; 4001 break; 4002 } 4003 if (layout >> 19) 4004 return -1; 4005 if (chunk < (PAGE_SIZE >> 9) || 4006 !is_power_of_2(chunk)) 4007 return -2; 4008 nc = layout & 255; 4009 fc = (layout >> 8) & 255; 4010 fo = layout & (1<<16); 4011 geo->raid_disks = disks; 4012 geo->near_copies = nc; 4013 geo->far_copies = fc; 4014 geo->far_offset = fo; 4015 switch (layout >> 17) { 4016 case 0: /* original layout. simple but not always optimal */ 4017 geo->far_set_size = disks; 4018 break; 4019 case 1: /* "improved" layout which was buggy. Hopefully no-one is 4020 * actually using this, but leave code here just in case.*/ 4021 geo->far_set_size = disks/fc; 4022 WARN(geo->far_set_size < fc, 4023 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 4024 break; 4025 case 2: /* "improved" layout fixed to match documentation */ 4026 geo->far_set_size = fc * nc; 4027 break; 4028 default: /* Not a valid layout */ 4029 return -1; 4030 } 4031 geo->chunk_mask = chunk - 1; 4032 geo->chunk_shift = ffz(~chunk); 4033 return nc*fc; 4034 } 4035 4036 static void raid10_free_conf(struct r10conf *conf) 4037 { 4038 if (!conf) 4039 return; 4040 4041 mempool_exit(&conf->r10bio_pool); 4042 kfree(conf->mirrors); 4043 kfree(conf->mirrors_old); 4044 kfree(conf->mirrors_new); 4045 safe_put_page(conf->tmppage); 4046 bioset_exit(&conf->bio_split); 4047 kfree(conf); 4048 } 4049 4050 static struct r10conf *setup_conf(struct mddev *mddev) 4051 { 4052 struct r10conf *conf = NULL; 4053 int err = -EINVAL; 4054 struct geom geo; 4055 int copies; 4056 4057 copies = setup_geo(&geo, mddev, geo_new); 4058 4059 if (copies == -2) { 4060 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 4061 mdname(mddev), PAGE_SIZE); 4062 goto out; 4063 } 4064 4065 if (copies < 2 || copies > mddev->raid_disks) { 4066 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 4067 mdname(mddev), mddev->new_layout); 4068 goto out; 4069 } 4070 4071 err = -ENOMEM; 4072 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 4073 if (!conf) 4074 goto out; 4075 4076 /* FIXME calc properly */ 4077 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 4078 sizeof(struct raid10_info), 4079 GFP_KERNEL); 4080 if (!conf->mirrors) 4081 goto out; 4082 4083 conf->tmppage = alloc_page(GFP_KERNEL); 4084 if (!conf->tmppage) 4085 goto out; 4086 4087 conf->geo = geo; 4088 conf->copies = copies; 4089 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 4090 rbio_pool_free, conf); 4091 if (err) 4092 goto out; 4093 4094 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 4095 if (err) 4096 goto out; 4097 4098 calc_sectors(conf, mddev->dev_sectors); 4099 if (mddev->reshape_position == MaxSector) { 4100 conf->prev = conf->geo; 4101 conf->reshape_progress = MaxSector; 4102 } else { 4103 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 4104 err = -EINVAL; 4105 goto out; 4106 } 4107 conf->reshape_progress = mddev->reshape_position; 4108 if (conf->prev.far_offset) 4109 conf->prev.stride = 1 << conf->prev.chunk_shift; 4110 else 4111 /* far_copies must be 1 */ 4112 conf->prev.stride = conf->dev_sectors; 4113 } 4114 conf->reshape_safe = conf->reshape_progress; 4115 spin_lock_init(&conf->device_lock); 4116 INIT_LIST_HEAD(&conf->retry_list); 4117 INIT_LIST_HEAD(&conf->bio_end_io_list); 4118 4119 seqlock_init(&conf->resync_lock); 4120 init_waitqueue_head(&conf->wait_barrier); 4121 atomic_set(&conf->nr_pending, 0); 4122 4123 err = -ENOMEM; 4124 rcu_assign_pointer(conf->thread, 4125 md_register_thread(raid10d, mddev, "raid10")); 4126 if (!conf->thread) 4127 goto out; 4128 4129 conf->mddev = mddev; 4130 return conf; 4131 4132 out: 4133 raid10_free_conf(conf); 4134 return ERR_PTR(err); 4135 } 4136 4137 static void raid10_set_io_opt(struct r10conf *conf) 4138 { 4139 int raid_disks = conf->geo.raid_disks; 4140 4141 if (!(conf->geo.raid_disks % conf->geo.near_copies)) 4142 raid_disks /= conf->geo.near_copies; 4143 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) * 4144 raid_disks); 4145 } 4146 4147 static int raid10_run(struct mddev *mddev) 4148 { 4149 struct r10conf *conf; 4150 int i, disk_idx; 4151 struct raid10_info *disk; 4152 struct md_rdev *rdev; 4153 sector_t size; 4154 sector_t min_offset_diff = 0; 4155 int first = 1; 4156 4157 if (mddev->private == NULL) { 4158 conf = setup_conf(mddev); 4159 if (IS_ERR(conf)) 4160 return PTR_ERR(conf); 4161 mddev->private = conf; 4162 } 4163 conf = mddev->private; 4164 if (!conf) 4165 goto out; 4166 4167 rcu_assign_pointer(mddev->thread, conf->thread); 4168 rcu_assign_pointer(conf->thread, NULL); 4169 4170 if (mddev_is_clustered(conf->mddev)) { 4171 int fc, fo; 4172 4173 fc = (mddev->layout >> 8) & 255; 4174 fo = mddev->layout & (1<<16); 4175 if (fc > 1 || fo > 0) { 4176 pr_err("only near layout is supported by clustered" 4177 " raid10\n"); 4178 goto out_free_conf; 4179 } 4180 } 4181 4182 if (mddev->queue) { 4183 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 4184 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); 4185 raid10_set_io_opt(conf); 4186 } 4187 4188 rdev_for_each(rdev, mddev) { 4189 long long diff; 4190 4191 disk_idx = rdev->raid_disk; 4192 if (disk_idx < 0) 4193 continue; 4194 if (disk_idx >= conf->geo.raid_disks && 4195 disk_idx >= conf->prev.raid_disks) 4196 continue; 4197 disk = conf->mirrors + disk_idx; 4198 4199 if (test_bit(Replacement, &rdev->flags)) { 4200 if (disk->replacement) 4201 goto out_free_conf; 4202 disk->replacement = rdev; 4203 } else { 4204 if (disk->rdev) 4205 goto out_free_conf; 4206 disk->rdev = rdev; 4207 } 4208 diff = (rdev->new_data_offset - rdev->data_offset); 4209 if (!mddev->reshape_backwards) 4210 diff = -diff; 4211 if (diff < 0) 4212 diff = 0; 4213 if (first || diff < min_offset_diff) 4214 min_offset_diff = diff; 4215 4216 if (mddev->gendisk) 4217 disk_stack_limits(mddev->gendisk, rdev->bdev, 4218 rdev->data_offset << 9); 4219 4220 disk->head_position = 0; 4221 first = 0; 4222 } 4223 4224 /* need to check that every block has at least one working mirror */ 4225 if (!enough(conf, -1)) { 4226 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4227 mdname(mddev)); 4228 goto out_free_conf; 4229 } 4230 4231 if (conf->reshape_progress != MaxSector) { 4232 /* must ensure that shape change is supported */ 4233 if (conf->geo.far_copies != 1 && 4234 conf->geo.far_offset == 0) 4235 goto out_free_conf; 4236 if (conf->prev.far_copies != 1 && 4237 conf->prev.far_offset == 0) 4238 goto out_free_conf; 4239 } 4240 4241 mddev->degraded = 0; 4242 for (i = 0; 4243 i < conf->geo.raid_disks 4244 || i < conf->prev.raid_disks; 4245 i++) { 4246 4247 disk = conf->mirrors + i; 4248 4249 if (!disk->rdev && disk->replacement) { 4250 /* The replacement is all we have - use it */ 4251 disk->rdev = disk->replacement; 4252 disk->replacement = NULL; 4253 clear_bit(Replacement, &disk->rdev->flags); 4254 } 4255 4256 if (!disk->rdev || 4257 !test_bit(In_sync, &disk->rdev->flags)) { 4258 disk->head_position = 0; 4259 mddev->degraded++; 4260 if (disk->rdev && 4261 disk->rdev->saved_raid_disk < 0) 4262 conf->fullsync = 1; 4263 } 4264 4265 if (disk->replacement && 4266 !test_bit(In_sync, &disk->replacement->flags) && 4267 disk->replacement->saved_raid_disk < 0) { 4268 conf->fullsync = 1; 4269 } 4270 4271 disk->recovery_disabled = mddev->recovery_disabled - 1; 4272 } 4273 4274 if (mddev->recovery_cp != MaxSector) 4275 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4276 mdname(mddev)); 4277 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4278 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4279 conf->geo.raid_disks); 4280 /* 4281 * Ok, everything is just fine now 4282 */ 4283 mddev->dev_sectors = conf->dev_sectors; 4284 size = raid10_size(mddev, 0, 0); 4285 md_set_array_sectors(mddev, size); 4286 mddev->resync_max_sectors = size; 4287 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4288 4289 if (md_integrity_register(mddev)) 4290 goto out_free_conf; 4291 4292 if (conf->reshape_progress != MaxSector) { 4293 unsigned long before_length, after_length; 4294 4295 before_length = ((1 << conf->prev.chunk_shift) * 4296 conf->prev.far_copies); 4297 after_length = ((1 << conf->geo.chunk_shift) * 4298 conf->geo.far_copies); 4299 4300 if (max(before_length, after_length) > min_offset_diff) { 4301 /* This cannot work */ 4302 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4303 goto out_free_conf; 4304 } 4305 conf->offset_diff = min_offset_diff; 4306 4307 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4308 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4309 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4310 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4311 rcu_assign_pointer(mddev->sync_thread, 4312 md_register_thread(md_do_sync, mddev, "reshape")); 4313 if (!mddev->sync_thread) 4314 goto out_free_conf; 4315 } 4316 4317 return 0; 4318 4319 out_free_conf: 4320 md_unregister_thread(mddev, &mddev->thread); 4321 raid10_free_conf(conf); 4322 mddev->private = NULL; 4323 out: 4324 return -EIO; 4325 } 4326 4327 static void raid10_free(struct mddev *mddev, void *priv) 4328 { 4329 raid10_free_conf(priv); 4330 } 4331 4332 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4333 { 4334 struct r10conf *conf = mddev->private; 4335 4336 if (quiesce) 4337 raise_barrier(conf, 0); 4338 else 4339 lower_barrier(conf); 4340 } 4341 4342 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4343 { 4344 /* Resize of 'far' arrays is not supported. 4345 * For 'near' and 'offset' arrays we can set the 4346 * number of sectors used to be an appropriate multiple 4347 * of the chunk size. 4348 * For 'offset', this is far_copies*chunksize. 4349 * For 'near' the multiplier is the LCM of 4350 * near_copies and raid_disks. 4351 * So if far_copies > 1 && !far_offset, fail. 4352 * Else find LCM(raid_disks, near_copy)*far_copies and 4353 * multiply by chunk_size. Then round to this number. 4354 * This is mostly done by raid10_size() 4355 */ 4356 struct r10conf *conf = mddev->private; 4357 sector_t oldsize, size; 4358 4359 if (mddev->reshape_position != MaxSector) 4360 return -EBUSY; 4361 4362 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4363 return -EINVAL; 4364 4365 oldsize = raid10_size(mddev, 0, 0); 4366 size = raid10_size(mddev, sectors, 0); 4367 if (mddev->external_size && 4368 mddev->array_sectors > size) 4369 return -EINVAL; 4370 if (mddev->bitmap) { 4371 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4372 if (ret) 4373 return ret; 4374 } 4375 md_set_array_sectors(mddev, size); 4376 if (sectors > mddev->dev_sectors && 4377 mddev->recovery_cp > oldsize) { 4378 mddev->recovery_cp = oldsize; 4379 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4380 } 4381 calc_sectors(conf, sectors); 4382 mddev->dev_sectors = conf->dev_sectors; 4383 mddev->resync_max_sectors = size; 4384 return 0; 4385 } 4386 4387 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4388 { 4389 struct md_rdev *rdev; 4390 struct r10conf *conf; 4391 4392 if (mddev->degraded > 0) { 4393 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4394 mdname(mddev)); 4395 return ERR_PTR(-EINVAL); 4396 } 4397 sector_div(size, devs); 4398 4399 /* Set new parameters */ 4400 mddev->new_level = 10; 4401 /* new layout: far_copies = 1, near_copies = 2 */ 4402 mddev->new_layout = (1<<8) + 2; 4403 mddev->new_chunk_sectors = mddev->chunk_sectors; 4404 mddev->delta_disks = mddev->raid_disks; 4405 mddev->raid_disks *= 2; 4406 /* make sure it will be not marked as dirty */ 4407 mddev->recovery_cp = MaxSector; 4408 mddev->dev_sectors = size; 4409 4410 conf = setup_conf(mddev); 4411 if (!IS_ERR(conf)) { 4412 rdev_for_each(rdev, mddev) 4413 if (rdev->raid_disk >= 0) { 4414 rdev->new_raid_disk = rdev->raid_disk * 2; 4415 rdev->sectors = size; 4416 } 4417 } 4418 4419 return conf; 4420 } 4421 4422 static void *raid10_takeover(struct mddev *mddev) 4423 { 4424 struct r0conf *raid0_conf; 4425 4426 /* raid10 can take over: 4427 * raid0 - providing it has only two drives 4428 */ 4429 if (mddev->level == 0) { 4430 /* for raid0 takeover only one zone is supported */ 4431 raid0_conf = mddev->private; 4432 if (raid0_conf->nr_strip_zones > 1) { 4433 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4434 mdname(mddev)); 4435 return ERR_PTR(-EINVAL); 4436 } 4437 return raid10_takeover_raid0(mddev, 4438 raid0_conf->strip_zone->zone_end, 4439 raid0_conf->strip_zone->nb_dev); 4440 } 4441 return ERR_PTR(-EINVAL); 4442 } 4443 4444 static int raid10_check_reshape(struct mddev *mddev) 4445 { 4446 /* Called when there is a request to change 4447 * - layout (to ->new_layout) 4448 * - chunk size (to ->new_chunk_sectors) 4449 * - raid_disks (by delta_disks) 4450 * or when trying to restart a reshape that was ongoing. 4451 * 4452 * We need to validate the request and possibly allocate 4453 * space if that might be an issue later. 4454 * 4455 * Currently we reject any reshape of a 'far' mode array, 4456 * allow chunk size to change if new is generally acceptable, 4457 * allow raid_disks to increase, and allow 4458 * a switch between 'near' mode and 'offset' mode. 4459 */ 4460 struct r10conf *conf = mddev->private; 4461 struct geom geo; 4462 4463 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4464 return -EINVAL; 4465 4466 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4467 /* mustn't change number of copies */ 4468 return -EINVAL; 4469 if (geo.far_copies > 1 && !geo.far_offset) 4470 /* Cannot switch to 'far' mode */ 4471 return -EINVAL; 4472 4473 if (mddev->array_sectors & geo.chunk_mask) 4474 /* not factor of array size */ 4475 return -EINVAL; 4476 4477 if (!enough(conf, -1)) 4478 return -EINVAL; 4479 4480 kfree(conf->mirrors_new); 4481 conf->mirrors_new = NULL; 4482 if (mddev->delta_disks > 0) { 4483 /* allocate new 'mirrors' list */ 4484 conf->mirrors_new = 4485 kcalloc(mddev->raid_disks + mddev->delta_disks, 4486 sizeof(struct raid10_info), 4487 GFP_KERNEL); 4488 if (!conf->mirrors_new) 4489 return -ENOMEM; 4490 } 4491 return 0; 4492 } 4493 4494 /* 4495 * Need to check if array has failed when deciding whether to: 4496 * - start an array 4497 * - remove non-faulty devices 4498 * - add a spare 4499 * - allow a reshape 4500 * This determination is simple when no reshape is happening. 4501 * However if there is a reshape, we need to carefully check 4502 * both the before and after sections. 4503 * This is because some failed devices may only affect one 4504 * of the two sections, and some non-in_sync devices may 4505 * be insync in the section most affected by failed devices. 4506 */ 4507 static int calc_degraded(struct r10conf *conf) 4508 { 4509 int degraded, degraded2; 4510 int i; 4511 4512 rcu_read_lock(); 4513 degraded = 0; 4514 /* 'prev' section first */ 4515 for (i = 0; i < conf->prev.raid_disks; i++) { 4516 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4517 if (!rdev || test_bit(Faulty, &rdev->flags)) 4518 degraded++; 4519 else if (!test_bit(In_sync, &rdev->flags)) 4520 /* When we can reduce the number of devices in 4521 * an array, this might not contribute to 4522 * 'degraded'. It does now. 4523 */ 4524 degraded++; 4525 } 4526 rcu_read_unlock(); 4527 if (conf->geo.raid_disks == conf->prev.raid_disks) 4528 return degraded; 4529 rcu_read_lock(); 4530 degraded2 = 0; 4531 for (i = 0; i < conf->geo.raid_disks; i++) { 4532 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4533 if (!rdev || test_bit(Faulty, &rdev->flags)) 4534 degraded2++; 4535 else if (!test_bit(In_sync, &rdev->flags)) { 4536 /* If reshape is increasing the number of devices, 4537 * this section has already been recovered, so 4538 * it doesn't contribute to degraded. 4539 * else it does. 4540 */ 4541 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4542 degraded2++; 4543 } 4544 } 4545 rcu_read_unlock(); 4546 if (degraded2 > degraded) 4547 return degraded2; 4548 return degraded; 4549 } 4550 4551 static int raid10_start_reshape(struct mddev *mddev) 4552 { 4553 /* A 'reshape' has been requested. This commits 4554 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4555 * This also checks if there are enough spares and adds them 4556 * to the array. 4557 * We currently require enough spares to make the final 4558 * array non-degraded. We also require that the difference 4559 * between old and new data_offset - on each device - is 4560 * enough that we never risk over-writing. 4561 */ 4562 4563 unsigned long before_length, after_length; 4564 sector_t min_offset_diff = 0; 4565 int first = 1; 4566 struct geom new; 4567 struct r10conf *conf = mddev->private; 4568 struct md_rdev *rdev; 4569 int spares = 0; 4570 int ret; 4571 4572 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4573 return -EBUSY; 4574 4575 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4576 return -EINVAL; 4577 4578 before_length = ((1 << conf->prev.chunk_shift) * 4579 conf->prev.far_copies); 4580 after_length = ((1 << conf->geo.chunk_shift) * 4581 conf->geo.far_copies); 4582 4583 rdev_for_each(rdev, mddev) { 4584 if (!test_bit(In_sync, &rdev->flags) 4585 && !test_bit(Faulty, &rdev->flags)) 4586 spares++; 4587 if (rdev->raid_disk >= 0) { 4588 long long diff = (rdev->new_data_offset 4589 - rdev->data_offset); 4590 if (!mddev->reshape_backwards) 4591 diff = -diff; 4592 if (diff < 0) 4593 diff = 0; 4594 if (first || diff < min_offset_diff) 4595 min_offset_diff = diff; 4596 first = 0; 4597 } 4598 } 4599 4600 if (max(before_length, after_length) > min_offset_diff) 4601 return -EINVAL; 4602 4603 if (spares < mddev->delta_disks) 4604 return -EINVAL; 4605 4606 conf->offset_diff = min_offset_diff; 4607 spin_lock_irq(&conf->device_lock); 4608 if (conf->mirrors_new) { 4609 memcpy(conf->mirrors_new, conf->mirrors, 4610 sizeof(struct raid10_info)*conf->prev.raid_disks); 4611 smp_mb(); 4612 kfree(conf->mirrors_old); 4613 conf->mirrors_old = conf->mirrors; 4614 conf->mirrors = conf->mirrors_new; 4615 conf->mirrors_new = NULL; 4616 } 4617 setup_geo(&conf->geo, mddev, geo_start); 4618 smp_mb(); 4619 if (mddev->reshape_backwards) { 4620 sector_t size = raid10_size(mddev, 0, 0); 4621 if (size < mddev->array_sectors) { 4622 spin_unlock_irq(&conf->device_lock); 4623 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4624 mdname(mddev)); 4625 return -EINVAL; 4626 } 4627 mddev->resync_max_sectors = size; 4628 conf->reshape_progress = size; 4629 } else 4630 conf->reshape_progress = 0; 4631 conf->reshape_safe = conf->reshape_progress; 4632 spin_unlock_irq(&conf->device_lock); 4633 4634 if (mddev->delta_disks && mddev->bitmap) { 4635 struct mdp_superblock_1 *sb = NULL; 4636 sector_t oldsize, newsize; 4637 4638 oldsize = raid10_size(mddev, 0, 0); 4639 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4640 4641 if (!mddev_is_clustered(mddev)) { 4642 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4643 if (ret) 4644 goto abort; 4645 else 4646 goto out; 4647 } 4648 4649 rdev_for_each(rdev, mddev) { 4650 if (rdev->raid_disk > -1 && 4651 !test_bit(Faulty, &rdev->flags)) 4652 sb = page_address(rdev->sb_page); 4653 } 4654 4655 /* 4656 * some node is already performing reshape, and no need to 4657 * call md_bitmap_resize again since it should be called when 4658 * receiving BITMAP_RESIZE msg 4659 */ 4660 if ((sb && (le32_to_cpu(sb->feature_map) & 4661 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4662 goto out; 4663 4664 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4665 if (ret) 4666 goto abort; 4667 4668 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4669 if (ret) { 4670 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4671 goto abort; 4672 } 4673 } 4674 out: 4675 if (mddev->delta_disks > 0) { 4676 rdev_for_each(rdev, mddev) 4677 if (rdev->raid_disk < 0 && 4678 !test_bit(Faulty, &rdev->flags)) { 4679 if (raid10_add_disk(mddev, rdev) == 0) { 4680 if (rdev->raid_disk >= 4681 conf->prev.raid_disks) 4682 set_bit(In_sync, &rdev->flags); 4683 else 4684 rdev->recovery_offset = 0; 4685 4686 /* Failure here is OK */ 4687 sysfs_link_rdev(mddev, rdev); 4688 } 4689 } else if (rdev->raid_disk >= conf->prev.raid_disks 4690 && !test_bit(Faulty, &rdev->flags)) { 4691 /* This is a spare that was manually added */ 4692 set_bit(In_sync, &rdev->flags); 4693 } 4694 } 4695 /* When a reshape changes the number of devices, 4696 * ->degraded is measured against the larger of the 4697 * pre and post numbers. 4698 */ 4699 spin_lock_irq(&conf->device_lock); 4700 mddev->degraded = calc_degraded(conf); 4701 spin_unlock_irq(&conf->device_lock); 4702 mddev->raid_disks = conf->geo.raid_disks; 4703 mddev->reshape_position = conf->reshape_progress; 4704 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4705 4706 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4707 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4708 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4709 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4710 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4711 4712 rcu_assign_pointer(mddev->sync_thread, 4713 md_register_thread(md_do_sync, mddev, "reshape")); 4714 if (!mddev->sync_thread) { 4715 ret = -EAGAIN; 4716 goto abort; 4717 } 4718 conf->reshape_checkpoint = jiffies; 4719 md_wakeup_thread(mddev->sync_thread); 4720 md_new_event(); 4721 return 0; 4722 4723 abort: 4724 mddev->recovery = 0; 4725 spin_lock_irq(&conf->device_lock); 4726 conf->geo = conf->prev; 4727 mddev->raid_disks = conf->geo.raid_disks; 4728 rdev_for_each(rdev, mddev) 4729 rdev->new_data_offset = rdev->data_offset; 4730 smp_wmb(); 4731 conf->reshape_progress = MaxSector; 4732 conf->reshape_safe = MaxSector; 4733 mddev->reshape_position = MaxSector; 4734 spin_unlock_irq(&conf->device_lock); 4735 return ret; 4736 } 4737 4738 /* Calculate the last device-address that could contain 4739 * any block from the chunk that includes the array-address 's' 4740 * and report the next address. 4741 * i.e. the address returned will be chunk-aligned and after 4742 * any data that is in the chunk containing 's'. 4743 */ 4744 static sector_t last_dev_address(sector_t s, struct geom *geo) 4745 { 4746 s = (s | geo->chunk_mask) + 1; 4747 s >>= geo->chunk_shift; 4748 s *= geo->near_copies; 4749 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4750 s *= geo->far_copies; 4751 s <<= geo->chunk_shift; 4752 return s; 4753 } 4754 4755 /* Calculate the first device-address that could contain 4756 * any block from the chunk that includes the array-address 's'. 4757 * This too will be the start of a chunk 4758 */ 4759 static sector_t first_dev_address(sector_t s, struct geom *geo) 4760 { 4761 s >>= geo->chunk_shift; 4762 s *= geo->near_copies; 4763 sector_div(s, geo->raid_disks); 4764 s *= geo->far_copies; 4765 s <<= geo->chunk_shift; 4766 return s; 4767 } 4768 4769 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4770 int *skipped) 4771 { 4772 /* We simply copy at most one chunk (smallest of old and new) 4773 * at a time, possibly less if that exceeds RESYNC_PAGES, 4774 * or we hit a bad block or something. 4775 * This might mean we pause for normal IO in the middle of 4776 * a chunk, but that is not a problem as mddev->reshape_position 4777 * can record any location. 4778 * 4779 * If we will want to write to a location that isn't 4780 * yet recorded as 'safe' (i.e. in metadata on disk) then 4781 * we need to flush all reshape requests and update the metadata. 4782 * 4783 * When reshaping forwards (e.g. to more devices), we interpret 4784 * 'safe' as the earliest block which might not have been copied 4785 * down yet. We divide this by previous stripe size and multiply 4786 * by previous stripe length to get lowest device offset that we 4787 * cannot write to yet. 4788 * We interpret 'sector_nr' as an address that we want to write to. 4789 * From this we use last_device_address() to find where we might 4790 * write to, and first_device_address on the 'safe' position. 4791 * If this 'next' write position is after the 'safe' position, 4792 * we must update the metadata to increase the 'safe' position. 4793 * 4794 * When reshaping backwards, we round in the opposite direction 4795 * and perform the reverse test: next write position must not be 4796 * less than current safe position. 4797 * 4798 * In all this the minimum difference in data offsets 4799 * (conf->offset_diff - always positive) allows a bit of slack, 4800 * so next can be after 'safe', but not by more than offset_diff 4801 * 4802 * We need to prepare all the bios here before we start any IO 4803 * to ensure the size we choose is acceptable to all devices. 4804 * The means one for each copy for write-out and an extra one for 4805 * read-in. 4806 * We store the read-in bio in ->master_bio and the others in 4807 * ->devs[x].bio and ->devs[x].repl_bio. 4808 */ 4809 struct r10conf *conf = mddev->private; 4810 struct r10bio *r10_bio; 4811 sector_t next, safe, last; 4812 int max_sectors; 4813 int nr_sectors; 4814 int s; 4815 struct md_rdev *rdev; 4816 int need_flush = 0; 4817 struct bio *blist; 4818 struct bio *bio, *read_bio; 4819 int sectors_done = 0; 4820 struct page **pages; 4821 4822 if (sector_nr == 0) { 4823 /* If restarting in the middle, skip the initial sectors */ 4824 if (mddev->reshape_backwards && 4825 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4826 sector_nr = (raid10_size(mddev, 0, 0) 4827 - conf->reshape_progress); 4828 } else if (!mddev->reshape_backwards && 4829 conf->reshape_progress > 0) 4830 sector_nr = conf->reshape_progress; 4831 if (sector_nr) { 4832 mddev->curr_resync_completed = sector_nr; 4833 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4834 *skipped = 1; 4835 return sector_nr; 4836 } 4837 } 4838 4839 /* We don't use sector_nr to track where we are up to 4840 * as that doesn't work well for ->reshape_backwards. 4841 * So just use ->reshape_progress. 4842 */ 4843 if (mddev->reshape_backwards) { 4844 /* 'next' is the earliest device address that we might 4845 * write to for this chunk in the new layout 4846 */ 4847 next = first_dev_address(conf->reshape_progress - 1, 4848 &conf->geo); 4849 4850 /* 'safe' is the last device address that we might read from 4851 * in the old layout after a restart 4852 */ 4853 safe = last_dev_address(conf->reshape_safe - 1, 4854 &conf->prev); 4855 4856 if (next + conf->offset_diff < safe) 4857 need_flush = 1; 4858 4859 last = conf->reshape_progress - 1; 4860 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4861 & conf->prev.chunk_mask); 4862 if (sector_nr + RESYNC_SECTORS < last) 4863 sector_nr = last + 1 - RESYNC_SECTORS; 4864 } else { 4865 /* 'next' is after the last device address that we 4866 * might write to for this chunk in the new layout 4867 */ 4868 next = last_dev_address(conf->reshape_progress, &conf->geo); 4869 4870 /* 'safe' is the earliest device address that we might 4871 * read from in the old layout after a restart 4872 */ 4873 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4874 4875 /* Need to update metadata if 'next' might be beyond 'safe' 4876 * as that would possibly corrupt data 4877 */ 4878 if (next > safe + conf->offset_diff) 4879 need_flush = 1; 4880 4881 sector_nr = conf->reshape_progress; 4882 last = sector_nr | (conf->geo.chunk_mask 4883 & conf->prev.chunk_mask); 4884 4885 if (sector_nr + RESYNC_SECTORS <= last) 4886 last = sector_nr + RESYNC_SECTORS - 1; 4887 } 4888 4889 if (need_flush || 4890 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4891 /* Need to update reshape_position in metadata */ 4892 wait_barrier(conf, false); 4893 mddev->reshape_position = conf->reshape_progress; 4894 if (mddev->reshape_backwards) 4895 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4896 - conf->reshape_progress; 4897 else 4898 mddev->curr_resync_completed = conf->reshape_progress; 4899 conf->reshape_checkpoint = jiffies; 4900 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4901 md_wakeup_thread(mddev->thread); 4902 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4903 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4904 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4905 allow_barrier(conf); 4906 return sectors_done; 4907 } 4908 conf->reshape_safe = mddev->reshape_position; 4909 allow_barrier(conf); 4910 } 4911 4912 raise_barrier(conf, 0); 4913 read_more: 4914 /* Now schedule reads for blocks from sector_nr to last */ 4915 r10_bio = raid10_alloc_init_r10buf(conf); 4916 r10_bio->state = 0; 4917 raise_barrier(conf, 1); 4918 atomic_set(&r10_bio->remaining, 0); 4919 r10_bio->mddev = mddev; 4920 r10_bio->sector = sector_nr; 4921 set_bit(R10BIO_IsReshape, &r10_bio->state); 4922 r10_bio->sectors = last - sector_nr + 1; 4923 rdev = read_balance(conf, r10_bio, &max_sectors); 4924 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4925 4926 if (!rdev) { 4927 /* Cannot read from here, so need to record bad blocks 4928 * on all the target devices. 4929 */ 4930 // FIXME 4931 mempool_free(r10_bio, &conf->r10buf_pool); 4932 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4933 return sectors_done; 4934 } 4935 4936 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4937 GFP_KERNEL, &mddev->bio_set); 4938 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4939 + rdev->data_offset); 4940 read_bio->bi_private = r10_bio; 4941 read_bio->bi_end_io = end_reshape_read; 4942 r10_bio->master_bio = read_bio; 4943 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4944 4945 /* 4946 * Broadcast RESYNC message to other nodes, so all nodes would not 4947 * write to the region to avoid conflict. 4948 */ 4949 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4950 struct mdp_superblock_1 *sb = NULL; 4951 int sb_reshape_pos = 0; 4952 4953 conf->cluster_sync_low = sector_nr; 4954 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4955 sb = page_address(rdev->sb_page); 4956 if (sb) { 4957 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4958 /* 4959 * Set cluster_sync_low again if next address for array 4960 * reshape is less than cluster_sync_low. Since we can't 4961 * update cluster_sync_low until it has finished reshape. 4962 */ 4963 if (sb_reshape_pos < conf->cluster_sync_low) 4964 conf->cluster_sync_low = sb_reshape_pos; 4965 } 4966 4967 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4968 conf->cluster_sync_high); 4969 } 4970 4971 /* Now find the locations in the new layout */ 4972 __raid10_find_phys(&conf->geo, r10_bio); 4973 4974 blist = read_bio; 4975 read_bio->bi_next = NULL; 4976 4977 rcu_read_lock(); 4978 for (s = 0; s < conf->copies*2; s++) { 4979 struct bio *b; 4980 int d = r10_bio->devs[s/2].devnum; 4981 struct md_rdev *rdev2; 4982 if (s&1) { 4983 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4984 b = r10_bio->devs[s/2].repl_bio; 4985 } else { 4986 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4987 b = r10_bio->devs[s/2].bio; 4988 } 4989 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4990 continue; 4991 4992 bio_set_dev(b, rdev2->bdev); 4993 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4994 rdev2->new_data_offset; 4995 b->bi_end_io = end_reshape_write; 4996 b->bi_opf = REQ_OP_WRITE; 4997 b->bi_next = blist; 4998 blist = b; 4999 } 5000 5001 /* Now add as many pages as possible to all of these bios. */ 5002 5003 nr_sectors = 0; 5004 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5005 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 5006 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 5007 int len = (max_sectors - s) << 9; 5008 if (len > PAGE_SIZE) 5009 len = PAGE_SIZE; 5010 for (bio = blist; bio ; bio = bio->bi_next) { 5011 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 5012 bio->bi_status = BLK_STS_RESOURCE; 5013 bio_endio(bio); 5014 return sectors_done; 5015 } 5016 } 5017 sector_nr += len >> 9; 5018 nr_sectors += len >> 9; 5019 } 5020 rcu_read_unlock(); 5021 r10_bio->sectors = nr_sectors; 5022 5023 /* Now submit the read */ 5024 md_sync_acct_bio(read_bio, r10_bio->sectors); 5025 atomic_inc(&r10_bio->remaining); 5026 read_bio->bi_next = NULL; 5027 submit_bio_noacct(read_bio); 5028 sectors_done += nr_sectors; 5029 if (sector_nr <= last) 5030 goto read_more; 5031 5032 lower_barrier(conf); 5033 5034 /* Now that we have done the whole section we can 5035 * update reshape_progress 5036 */ 5037 if (mddev->reshape_backwards) 5038 conf->reshape_progress -= sectors_done; 5039 else 5040 conf->reshape_progress += sectors_done; 5041 5042 return sectors_done; 5043 } 5044 5045 static void end_reshape_request(struct r10bio *r10_bio); 5046 static int handle_reshape_read_error(struct mddev *mddev, 5047 struct r10bio *r10_bio); 5048 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 5049 { 5050 /* Reshape read completed. Hopefully we have a block 5051 * to write out. 5052 * If we got a read error then we do sync 1-page reads from 5053 * elsewhere until we find the data - or give up. 5054 */ 5055 struct r10conf *conf = mddev->private; 5056 int s; 5057 5058 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 5059 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 5060 /* Reshape has been aborted */ 5061 md_done_sync(mddev, r10_bio->sectors, 0); 5062 return; 5063 } 5064 5065 /* We definitely have the data in the pages, schedule the 5066 * writes. 5067 */ 5068 atomic_set(&r10_bio->remaining, 1); 5069 for (s = 0; s < conf->copies*2; s++) { 5070 struct bio *b; 5071 int d = r10_bio->devs[s/2].devnum; 5072 struct md_rdev *rdev; 5073 rcu_read_lock(); 5074 if (s&1) { 5075 rdev = rcu_dereference(conf->mirrors[d].replacement); 5076 b = r10_bio->devs[s/2].repl_bio; 5077 } else { 5078 rdev = rcu_dereference(conf->mirrors[d].rdev); 5079 b = r10_bio->devs[s/2].bio; 5080 } 5081 if (!rdev || test_bit(Faulty, &rdev->flags)) { 5082 rcu_read_unlock(); 5083 continue; 5084 } 5085 atomic_inc(&rdev->nr_pending); 5086 rcu_read_unlock(); 5087 md_sync_acct_bio(b, r10_bio->sectors); 5088 atomic_inc(&r10_bio->remaining); 5089 b->bi_next = NULL; 5090 submit_bio_noacct(b); 5091 } 5092 end_reshape_request(r10_bio); 5093 } 5094 5095 static void end_reshape(struct r10conf *conf) 5096 { 5097 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 5098 return; 5099 5100 spin_lock_irq(&conf->device_lock); 5101 conf->prev = conf->geo; 5102 md_finish_reshape(conf->mddev); 5103 smp_wmb(); 5104 conf->reshape_progress = MaxSector; 5105 conf->reshape_safe = MaxSector; 5106 spin_unlock_irq(&conf->device_lock); 5107 5108 if (conf->mddev->queue) 5109 raid10_set_io_opt(conf); 5110 conf->fullsync = 0; 5111 } 5112 5113 static void raid10_update_reshape_pos(struct mddev *mddev) 5114 { 5115 struct r10conf *conf = mddev->private; 5116 sector_t lo, hi; 5117 5118 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 5119 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 5120 || mddev->reshape_position == MaxSector) 5121 conf->reshape_progress = mddev->reshape_position; 5122 else 5123 WARN_ON_ONCE(1); 5124 } 5125 5126 static int handle_reshape_read_error(struct mddev *mddev, 5127 struct r10bio *r10_bio) 5128 { 5129 /* Use sync reads to get the blocks from somewhere else */ 5130 int sectors = r10_bio->sectors; 5131 struct r10conf *conf = mddev->private; 5132 struct r10bio *r10b; 5133 int slot = 0; 5134 int idx = 0; 5135 struct page **pages; 5136 5137 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 5138 if (!r10b) { 5139 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5140 return -ENOMEM; 5141 } 5142 5143 /* reshape IOs share pages from .devs[0].bio */ 5144 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5145 5146 r10b->sector = r10_bio->sector; 5147 __raid10_find_phys(&conf->prev, r10b); 5148 5149 while (sectors) { 5150 int s = sectors; 5151 int success = 0; 5152 int first_slot = slot; 5153 5154 if (s > (PAGE_SIZE >> 9)) 5155 s = PAGE_SIZE >> 9; 5156 5157 rcu_read_lock(); 5158 while (!success) { 5159 int d = r10b->devs[slot].devnum; 5160 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5161 sector_t addr; 5162 if (rdev == NULL || 5163 test_bit(Faulty, &rdev->flags) || 5164 !test_bit(In_sync, &rdev->flags)) 5165 goto failed; 5166 5167 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5168 atomic_inc(&rdev->nr_pending); 5169 rcu_read_unlock(); 5170 success = sync_page_io(rdev, 5171 addr, 5172 s << 9, 5173 pages[idx], 5174 REQ_OP_READ, false); 5175 rdev_dec_pending(rdev, mddev); 5176 rcu_read_lock(); 5177 if (success) 5178 break; 5179 failed: 5180 slot++; 5181 if (slot >= conf->copies) 5182 slot = 0; 5183 if (slot == first_slot) 5184 break; 5185 } 5186 rcu_read_unlock(); 5187 if (!success) { 5188 /* couldn't read this block, must give up */ 5189 set_bit(MD_RECOVERY_INTR, 5190 &mddev->recovery); 5191 kfree(r10b); 5192 return -EIO; 5193 } 5194 sectors -= s; 5195 idx++; 5196 } 5197 kfree(r10b); 5198 return 0; 5199 } 5200 5201 static void end_reshape_write(struct bio *bio) 5202 { 5203 struct r10bio *r10_bio = get_resync_r10bio(bio); 5204 struct mddev *mddev = r10_bio->mddev; 5205 struct r10conf *conf = mddev->private; 5206 int d; 5207 int slot; 5208 int repl; 5209 struct md_rdev *rdev = NULL; 5210 5211 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5212 if (repl) 5213 rdev = conf->mirrors[d].replacement; 5214 if (!rdev) { 5215 smp_mb(); 5216 rdev = conf->mirrors[d].rdev; 5217 } 5218 5219 if (bio->bi_status) { 5220 /* FIXME should record badblock */ 5221 md_error(mddev, rdev); 5222 } 5223 5224 rdev_dec_pending(rdev, mddev); 5225 end_reshape_request(r10_bio); 5226 } 5227 5228 static void end_reshape_request(struct r10bio *r10_bio) 5229 { 5230 if (!atomic_dec_and_test(&r10_bio->remaining)) 5231 return; 5232 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5233 bio_put(r10_bio->master_bio); 5234 put_buf(r10_bio); 5235 } 5236 5237 static void raid10_finish_reshape(struct mddev *mddev) 5238 { 5239 struct r10conf *conf = mddev->private; 5240 5241 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5242 return; 5243 5244 if (mddev->delta_disks > 0) { 5245 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5246 mddev->recovery_cp = mddev->resync_max_sectors; 5247 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5248 } 5249 mddev->resync_max_sectors = mddev->array_sectors; 5250 } else { 5251 int d; 5252 rcu_read_lock(); 5253 for (d = conf->geo.raid_disks ; 5254 d < conf->geo.raid_disks - mddev->delta_disks; 5255 d++) { 5256 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5257 if (rdev) 5258 clear_bit(In_sync, &rdev->flags); 5259 rdev = rcu_dereference(conf->mirrors[d].replacement); 5260 if (rdev) 5261 clear_bit(In_sync, &rdev->flags); 5262 } 5263 rcu_read_unlock(); 5264 } 5265 mddev->layout = mddev->new_layout; 5266 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5267 mddev->reshape_position = MaxSector; 5268 mddev->delta_disks = 0; 5269 mddev->reshape_backwards = 0; 5270 } 5271 5272 static struct md_personality raid10_personality = 5273 { 5274 .name = "raid10", 5275 .level = 10, 5276 .owner = THIS_MODULE, 5277 .make_request = raid10_make_request, 5278 .run = raid10_run, 5279 .free = raid10_free, 5280 .status = raid10_status, 5281 .error_handler = raid10_error, 5282 .hot_add_disk = raid10_add_disk, 5283 .hot_remove_disk= raid10_remove_disk, 5284 .spare_active = raid10_spare_active, 5285 .sync_request = raid10_sync_request, 5286 .quiesce = raid10_quiesce, 5287 .size = raid10_size, 5288 .resize = raid10_resize, 5289 .takeover = raid10_takeover, 5290 .check_reshape = raid10_check_reshape, 5291 .start_reshape = raid10_start_reshape, 5292 .finish_reshape = raid10_finish_reshape, 5293 .update_reshape_pos = raid10_update_reshape_pos, 5294 }; 5295 5296 static int __init raid_init(void) 5297 { 5298 return register_md_personality(&raid10_personality); 5299 } 5300 5301 static void raid_exit(void) 5302 { 5303 unregister_md_personality(&raid10_personality); 5304 } 5305 5306 module_init(raid_init); 5307 module_exit(raid_exit); 5308 MODULE_LICENSE("GPL"); 5309 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5310 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5311 MODULE_ALIAS("md-raid10"); 5312 MODULE_ALIAS("md-level-10"); 5313