1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) { 103 unplug_slaves(conf->mddev); 104 return NULL; 105 } 106 107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 108 nalloc = conf->copies; /* resync */ 109 else 110 nalloc = 2; /* recovery */ 111 112 /* 113 * Allocate bios. 114 */ 115 for (j = nalloc ; j-- ; ) { 116 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 117 if (!bio) 118 goto out_free_bio; 119 r10_bio->devs[j].bio = bio; 120 } 121 /* 122 * Allocate RESYNC_PAGES data pages and attach them 123 * where needed. 124 */ 125 for (j = 0 ; j < nalloc; j++) { 126 bio = r10_bio->devs[j].bio; 127 for (i = 0; i < RESYNC_PAGES; i++) { 128 page = alloc_page(gfp_flags); 129 if (unlikely(!page)) 130 goto out_free_pages; 131 132 bio->bi_io_vec[i].bv_page = page; 133 } 134 } 135 136 return r10_bio; 137 138 out_free_pages: 139 for ( ; i > 0 ; i--) 140 safe_put_page(bio->bi_io_vec[i-1].bv_page); 141 while (j--) 142 for (i = 0; i < RESYNC_PAGES ; i++) 143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < nalloc ) 147 bio_put(r10_bio->devs[j].bio); 148 r10bio_pool_free(r10_bio, conf); 149 return NULL; 150 } 151 152 static void r10buf_pool_free(void *__r10_bio, void *data) 153 { 154 int i; 155 conf_t *conf = data; 156 r10bio_t *r10bio = __r10_bio; 157 int j; 158 159 for (j=0; j < conf->copies; j++) { 160 struct bio *bio = r10bio->devs[j].bio; 161 if (bio) { 162 for (i = 0; i < RESYNC_PAGES; i++) { 163 safe_put_page(bio->bi_io_vec[i].bv_page); 164 bio->bi_io_vec[i].bv_page = NULL; 165 } 166 bio_put(bio); 167 } 168 } 169 r10bio_pool_free(r10bio, conf); 170 } 171 172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->copies; i++) { 177 struct bio **bio = & r10_bio->devs[i].bio; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r10bio(r10bio_t *r10_bio) 185 { 186 conf_t *conf = mddev_to_conf(r10_bio->mddev); 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r10_bio); 195 mempool_free(r10_bio, conf->r10bio_pool); 196 } 197 198 static void put_buf(r10bio_t *r10_bio) 199 { 200 conf_t *conf = mddev_to_conf(r10_bio->mddev); 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 lower_barrier(conf); 205 } 206 207 static void reschedule_retry(r10bio_t *r10_bio) 208 { 209 unsigned long flags; 210 mddev_t *mddev = r10_bio->mddev; 211 conf_t *conf = mddev_to_conf(mddev); 212 213 spin_lock_irqsave(&conf->device_lock, flags); 214 list_add(&r10_bio->retry_list, &conf->retry_list); 215 conf->nr_queued ++; 216 spin_unlock_irqrestore(&conf->device_lock, flags); 217 218 md_wakeup_thread(mddev->thread); 219 } 220 221 /* 222 * raid_end_bio_io() is called when we have finished servicing a mirrored 223 * operation and are ready to return a success/failure code to the buffer 224 * cache layer. 225 */ 226 static void raid_end_bio_io(r10bio_t *r10_bio) 227 { 228 struct bio *bio = r10_bio->master_bio; 229 230 bio_endio(bio, 231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 232 free_r10bio(r10_bio); 233 } 234 235 /* 236 * Update disk head position estimator based on IRQ completion info. 237 */ 238 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 239 { 240 conf_t *conf = mddev_to_conf(r10_bio->mddev); 241 242 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 243 r10_bio->devs[slot].addr + (r10_bio->sectors); 244 } 245 246 static void raid10_end_read_request(struct bio *bio, int error) 247 { 248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 250 int slot, dev; 251 conf_t *conf = mddev_to_conf(r10_bio->mddev); 252 253 254 slot = r10_bio->read_slot; 255 dev = r10_bio->devs[slot].devnum; 256 /* 257 * this branch is our 'one mirror IO has finished' event handler: 258 */ 259 update_head_pos(slot, r10_bio); 260 261 if (uptodate) { 262 /* 263 * Set R10BIO_Uptodate in our master bio, so that 264 * we will return a good error code to the higher 265 * levels even if IO on some other mirrored buffer fails. 266 * 267 * The 'master' represents the composite IO operation to 268 * user-side. So if something waits for IO, then it will 269 * wait for the 'master' bio. 270 */ 271 set_bit(R10BIO_Uptodate, &r10_bio->state); 272 raid_end_bio_io(r10_bio); 273 } else { 274 /* 275 * oops, read error: 276 */ 277 char b[BDEVNAME_SIZE]; 278 if (printk_ratelimit()) 279 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 280 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 281 reschedule_retry(r10_bio); 282 } 283 284 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 285 } 286 287 static void raid10_end_write_request(struct bio *bio, int error) 288 { 289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 291 int slot, dev; 292 conf_t *conf = mddev_to_conf(r10_bio->mddev); 293 294 for (slot = 0; slot < conf->copies; slot++) 295 if (r10_bio->devs[slot].bio == bio) 296 break; 297 dev = r10_bio->devs[slot].devnum; 298 299 /* 300 * this branch is our 'one mirror IO has finished' event handler: 301 */ 302 if (!uptodate) { 303 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 304 /* an I/O failed, we can't clear the bitmap */ 305 set_bit(R10BIO_Degraded, &r10_bio->state); 306 } else 307 /* 308 * Set R10BIO_Uptodate in our master bio, so that 309 * we will return a good error code for to the higher 310 * levels even if IO on some other mirrored buffer fails. 311 * 312 * The 'master' represents the composite IO operation to 313 * user-side. So if something waits for IO, then it will 314 * wait for the 'master' bio. 315 */ 316 set_bit(R10BIO_Uptodate, &r10_bio->state); 317 318 update_head_pos(slot, r10_bio); 319 320 /* 321 * 322 * Let's see if all mirrored write operations have finished 323 * already. 324 */ 325 if (atomic_dec_and_test(&r10_bio->remaining)) { 326 /* clear the bitmap if all writes complete successfully */ 327 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 328 r10_bio->sectors, 329 !test_bit(R10BIO_Degraded, &r10_bio->state), 330 0); 331 md_write_end(r10_bio->mddev); 332 raid_end_bio_io(r10_bio); 333 } 334 335 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 336 } 337 338 339 /* 340 * RAID10 layout manager 341 * Aswell as the chunksize and raid_disks count, there are two 342 * parameters: near_copies and far_copies. 343 * near_copies * far_copies must be <= raid_disks. 344 * Normally one of these will be 1. 345 * If both are 1, we get raid0. 346 * If near_copies == raid_disks, we get raid1. 347 * 348 * Chunks are layed out in raid0 style with near_copies copies of the 349 * first chunk, followed by near_copies copies of the next chunk and 350 * so on. 351 * If far_copies > 1, then after 1/far_copies of the array has been assigned 352 * as described above, we start again with a device offset of near_copies. 353 * So we effectively have another copy of the whole array further down all 354 * the drives, but with blocks on different drives. 355 * With this layout, and block is never stored twice on the one device. 356 * 357 * raid10_find_phys finds the sector offset of a given virtual sector 358 * on each device that it is on. 359 * 360 * raid10_find_virt does the reverse mapping, from a device and a 361 * sector offset to a virtual address 362 */ 363 364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 365 { 366 int n,f; 367 sector_t sector; 368 sector_t chunk; 369 sector_t stripe; 370 int dev; 371 372 int slot = 0; 373 374 /* now calculate first sector/dev */ 375 chunk = r10bio->sector >> conf->chunk_shift; 376 sector = r10bio->sector & conf->chunk_mask; 377 378 chunk *= conf->near_copies; 379 stripe = chunk; 380 dev = sector_div(stripe, conf->raid_disks); 381 if (conf->far_offset) 382 stripe *= conf->far_copies; 383 384 sector += stripe << conf->chunk_shift; 385 386 /* and calculate all the others */ 387 for (n=0; n < conf->near_copies; n++) { 388 int d = dev; 389 sector_t s = sector; 390 r10bio->devs[slot].addr = sector; 391 r10bio->devs[slot].devnum = d; 392 slot++; 393 394 for (f = 1; f < conf->far_copies; f++) { 395 d += conf->near_copies; 396 if (d >= conf->raid_disks) 397 d -= conf->raid_disks; 398 s += conf->stride; 399 r10bio->devs[slot].devnum = d; 400 r10bio->devs[slot].addr = s; 401 slot++; 402 } 403 dev++; 404 if (dev >= conf->raid_disks) { 405 dev = 0; 406 sector += (conf->chunk_mask + 1); 407 } 408 } 409 BUG_ON(slot != conf->copies); 410 } 411 412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 413 { 414 sector_t offset, chunk, vchunk; 415 416 offset = sector & conf->chunk_mask; 417 if (conf->far_offset) { 418 int fc; 419 chunk = sector >> conf->chunk_shift; 420 fc = sector_div(chunk, conf->far_copies); 421 dev -= fc * conf->near_copies; 422 if (dev < 0) 423 dev += conf->raid_disks; 424 } else { 425 while (sector >= conf->stride) { 426 sector -= conf->stride; 427 if (dev < conf->near_copies) 428 dev += conf->raid_disks - conf->near_copies; 429 else 430 dev -= conf->near_copies; 431 } 432 chunk = sector >> conf->chunk_shift; 433 } 434 vchunk = chunk * conf->raid_disks + dev; 435 sector_div(vchunk, conf->near_copies); 436 return (vchunk << conf->chunk_shift) + offset; 437 } 438 439 /** 440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 441 * @q: request queue 442 * @bio: the buffer head that's been built up so far 443 * @biovec: the request that could be merged to it. 444 * 445 * Return amount of bytes we can accept at this offset 446 * If near_copies == raid_disk, there are no striping issues, 447 * but in that case, the function isn't called at all. 448 */ 449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio, 450 struct bio_vec *bio_vec) 451 { 452 mddev_t *mddev = q->queuedata; 453 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 454 int max; 455 unsigned int chunk_sectors = mddev->chunk_size >> 9; 456 unsigned int bio_sectors = bio->bi_size >> 9; 457 458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 459 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 460 if (max <= bio_vec->bv_len && bio_sectors == 0) 461 return bio_vec->bv_len; 462 else 463 return max; 464 } 465 466 /* 467 * This routine returns the disk from which the requested read should 468 * be done. There is a per-array 'next expected sequential IO' sector 469 * number - if this matches on the next IO then we use the last disk. 470 * There is also a per-disk 'last know head position' sector that is 471 * maintained from IRQ contexts, both the normal and the resync IO 472 * completion handlers update this position correctly. If there is no 473 * perfect sequential match then we pick the disk whose head is closest. 474 * 475 * If there are 2 mirrors in the same 2 devices, performance degrades 476 * because position is mirror, not device based. 477 * 478 * The rdev for the device selected will have nr_pending incremented. 479 */ 480 481 /* 482 * FIXME: possibly should rethink readbalancing and do it differently 483 * depending on near_copies / far_copies geometry. 484 */ 485 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 486 { 487 const unsigned long this_sector = r10_bio->sector; 488 int disk, slot, nslot; 489 const int sectors = r10_bio->sectors; 490 sector_t new_distance, current_distance; 491 mdk_rdev_t *rdev; 492 493 raid10_find_phys(conf, r10_bio); 494 rcu_read_lock(); 495 /* 496 * Check if we can balance. We can balance on the whole 497 * device if no resync is going on (recovery is ok), or below 498 * the resync window. We take the first readable disk when 499 * above the resync window. 500 */ 501 if (conf->mddev->recovery_cp < MaxSector 502 && (this_sector + sectors >= conf->next_resync)) { 503 /* make sure that disk is operational */ 504 slot = 0; 505 disk = r10_bio->devs[slot].devnum; 506 507 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 508 r10_bio->devs[slot].bio == IO_BLOCKED || 509 !test_bit(In_sync, &rdev->flags)) { 510 slot++; 511 if (slot == conf->copies) { 512 slot = 0; 513 disk = -1; 514 break; 515 } 516 disk = r10_bio->devs[slot].devnum; 517 } 518 goto rb_out; 519 } 520 521 522 /* make sure the disk is operational */ 523 slot = 0; 524 disk = r10_bio->devs[slot].devnum; 525 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 526 r10_bio->devs[slot].bio == IO_BLOCKED || 527 !test_bit(In_sync, &rdev->flags)) { 528 slot ++; 529 if (slot == conf->copies) { 530 disk = -1; 531 goto rb_out; 532 } 533 disk = r10_bio->devs[slot].devnum; 534 } 535 536 537 current_distance = abs(r10_bio->devs[slot].addr - 538 conf->mirrors[disk].head_position); 539 540 /* Find the disk whose head is closest */ 541 542 for (nslot = slot; nslot < conf->copies; nslot++) { 543 int ndisk = r10_bio->devs[nslot].devnum; 544 545 546 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 547 r10_bio->devs[nslot].bio == IO_BLOCKED || 548 !test_bit(In_sync, &rdev->flags)) 549 continue; 550 551 /* This optimisation is debatable, and completely destroys 552 * sequential read speed for 'far copies' arrays. So only 553 * keep it for 'near' arrays, and review those later. 554 */ 555 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 556 disk = ndisk; 557 slot = nslot; 558 break; 559 } 560 new_distance = abs(r10_bio->devs[nslot].addr - 561 conf->mirrors[ndisk].head_position); 562 if (new_distance < current_distance) { 563 current_distance = new_distance; 564 disk = ndisk; 565 slot = nslot; 566 } 567 } 568 569 rb_out: 570 r10_bio->read_slot = slot; 571 /* conf->next_seq_sect = this_sector + sectors;*/ 572 573 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 574 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 575 else 576 disk = -1; 577 rcu_read_unlock(); 578 579 return disk; 580 } 581 582 static void unplug_slaves(mddev_t *mddev) 583 { 584 conf_t *conf = mddev_to_conf(mddev); 585 int i; 586 587 rcu_read_lock(); 588 for (i=0; i<mddev->raid_disks; i++) { 589 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 590 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 591 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 592 593 atomic_inc(&rdev->nr_pending); 594 rcu_read_unlock(); 595 596 if (r_queue->unplug_fn) 597 r_queue->unplug_fn(r_queue); 598 599 rdev_dec_pending(rdev, mddev); 600 rcu_read_lock(); 601 } 602 } 603 rcu_read_unlock(); 604 } 605 606 static void raid10_unplug(struct request_queue *q) 607 { 608 mddev_t *mddev = q->queuedata; 609 610 unplug_slaves(q->queuedata); 611 md_wakeup_thread(mddev->thread); 612 } 613 614 static int raid10_congested(void *data, int bits) 615 { 616 mddev_t *mddev = data; 617 conf_t *conf = mddev_to_conf(mddev); 618 int i, ret = 0; 619 620 rcu_read_lock(); 621 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 622 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 623 if (rdev && !test_bit(Faulty, &rdev->flags)) { 624 struct request_queue *q = bdev_get_queue(rdev->bdev); 625 626 ret |= bdi_congested(&q->backing_dev_info, bits); 627 } 628 } 629 rcu_read_unlock(); 630 return ret; 631 } 632 633 634 /* Barriers.... 635 * Sometimes we need to suspend IO while we do something else, 636 * either some resync/recovery, or reconfigure the array. 637 * To do this we raise a 'barrier'. 638 * The 'barrier' is a counter that can be raised multiple times 639 * to count how many activities are happening which preclude 640 * normal IO. 641 * We can only raise the barrier if there is no pending IO. 642 * i.e. if nr_pending == 0. 643 * We choose only to raise the barrier if no-one is waiting for the 644 * barrier to go down. This means that as soon as an IO request 645 * is ready, no other operations which require a barrier will start 646 * until the IO request has had a chance. 647 * 648 * So: regular IO calls 'wait_barrier'. When that returns there 649 * is no backgroup IO happening, It must arrange to call 650 * allow_barrier when it has finished its IO. 651 * backgroup IO calls must call raise_barrier. Once that returns 652 * there is no normal IO happeing. It must arrange to call 653 * lower_barrier when the particular background IO completes. 654 */ 655 #define RESYNC_DEPTH 32 656 657 static void raise_barrier(conf_t *conf, int force) 658 { 659 BUG_ON(force && !conf->barrier); 660 spin_lock_irq(&conf->resync_lock); 661 662 /* Wait until no block IO is waiting (unless 'force') */ 663 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 664 conf->resync_lock, 665 raid10_unplug(conf->mddev->queue)); 666 667 /* block any new IO from starting */ 668 conf->barrier++; 669 670 /* No wait for all pending IO to complete */ 671 wait_event_lock_irq(conf->wait_barrier, 672 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 673 conf->resync_lock, 674 raid10_unplug(conf->mddev->queue)); 675 676 spin_unlock_irq(&conf->resync_lock); 677 } 678 679 static void lower_barrier(conf_t *conf) 680 { 681 unsigned long flags; 682 spin_lock_irqsave(&conf->resync_lock, flags); 683 conf->barrier--; 684 spin_unlock_irqrestore(&conf->resync_lock, flags); 685 wake_up(&conf->wait_barrier); 686 } 687 688 static void wait_barrier(conf_t *conf) 689 { 690 spin_lock_irq(&conf->resync_lock); 691 if (conf->barrier) { 692 conf->nr_waiting++; 693 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 694 conf->resync_lock, 695 raid10_unplug(conf->mddev->queue)); 696 conf->nr_waiting--; 697 } 698 conf->nr_pending++; 699 spin_unlock_irq(&conf->resync_lock); 700 } 701 702 static void allow_barrier(conf_t *conf) 703 { 704 unsigned long flags; 705 spin_lock_irqsave(&conf->resync_lock, flags); 706 conf->nr_pending--; 707 spin_unlock_irqrestore(&conf->resync_lock, flags); 708 wake_up(&conf->wait_barrier); 709 } 710 711 static void freeze_array(conf_t *conf) 712 { 713 /* stop syncio and normal IO and wait for everything to 714 * go quiet. 715 * We increment barrier and nr_waiting, and then 716 * wait until barrier+nr_pending match nr_queued+2 717 */ 718 spin_lock_irq(&conf->resync_lock); 719 conf->barrier++; 720 conf->nr_waiting++; 721 wait_event_lock_irq(conf->wait_barrier, 722 conf->barrier+conf->nr_pending == conf->nr_queued+2, 723 conf->resync_lock, 724 raid10_unplug(conf->mddev->queue)); 725 spin_unlock_irq(&conf->resync_lock); 726 } 727 728 static void unfreeze_array(conf_t *conf) 729 { 730 /* reverse the effect of the freeze */ 731 spin_lock_irq(&conf->resync_lock); 732 conf->barrier--; 733 conf->nr_waiting--; 734 wake_up(&conf->wait_barrier); 735 spin_unlock_irq(&conf->resync_lock); 736 } 737 738 static int make_request(struct request_queue *q, struct bio * bio) 739 { 740 mddev_t *mddev = q->queuedata; 741 conf_t *conf = mddev_to_conf(mddev); 742 mirror_info_t *mirror; 743 r10bio_t *r10_bio; 744 struct bio *read_bio; 745 int i; 746 int chunk_sects = conf->chunk_mask + 1; 747 const int rw = bio_data_dir(bio); 748 const int do_sync = bio_sync(bio); 749 struct bio_list bl; 750 unsigned long flags; 751 752 if (unlikely(bio_barrier(bio))) { 753 bio_endio(bio, -EOPNOTSUPP); 754 return 0; 755 } 756 757 /* If this request crosses a chunk boundary, we need to 758 * split it. This will only happen for 1 PAGE (or less) requests. 759 */ 760 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 761 > chunk_sects && 762 conf->near_copies < conf->raid_disks)) { 763 struct bio_pair *bp; 764 /* Sanity check -- queue functions should prevent this happening */ 765 if (bio->bi_vcnt != 1 || 766 bio->bi_idx != 0) 767 goto bad_map; 768 /* This is a one page bio that upper layers 769 * refuse to split for us, so we need to split it. 770 */ 771 bp = bio_split(bio, bio_split_pool, 772 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 773 if (make_request(q, &bp->bio1)) 774 generic_make_request(&bp->bio1); 775 if (make_request(q, &bp->bio2)) 776 generic_make_request(&bp->bio2); 777 778 bio_pair_release(bp); 779 return 0; 780 bad_map: 781 printk("raid10_make_request bug: can't convert block across chunks" 782 " or bigger than %dk %llu %d\n", chunk_sects/2, 783 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 784 785 bio_io_error(bio); 786 return 0; 787 } 788 789 md_write_start(mddev, bio); 790 791 /* 792 * Register the new request and wait if the reconstruction 793 * thread has put up a bar for new requests. 794 * Continue immediately if no resync is active currently. 795 */ 796 wait_barrier(conf); 797 798 disk_stat_inc(mddev->gendisk, ios[rw]); 799 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 800 801 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 802 803 r10_bio->master_bio = bio; 804 r10_bio->sectors = bio->bi_size >> 9; 805 806 r10_bio->mddev = mddev; 807 r10_bio->sector = bio->bi_sector; 808 r10_bio->state = 0; 809 810 if (rw == READ) { 811 /* 812 * read balancing logic: 813 */ 814 int disk = read_balance(conf, r10_bio); 815 int slot = r10_bio->read_slot; 816 if (disk < 0) { 817 raid_end_bio_io(r10_bio); 818 return 0; 819 } 820 mirror = conf->mirrors + disk; 821 822 read_bio = bio_clone(bio, GFP_NOIO); 823 824 r10_bio->devs[slot].bio = read_bio; 825 826 read_bio->bi_sector = r10_bio->devs[slot].addr + 827 mirror->rdev->data_offset; 828 read_bio->bi_bdev = mirror->rdev->bdev; 829 read_bio->bi_end_io = raid10_end_read_request; 830 read_bio->bi_rw = READ | do_sync; 831 read_bio->bi_private = r10_bio; 832 833 generic_make_request(read_bio); 834 return 0; 835 } 836 837 /* 838 * WRITE: 839 */ 840 /* first select target devices under spinlock and 841 * inc refcount on their rdev. Record them by setting 842 * bios[x] to bio 843 */ 844 raid10_find_phys(conf, r10_bio); 845 rcu_read_lock(); 846 for (i = 0; i < conf->copies; i++) { 847 int d = r10_bio->devs[i].devnum; 848 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 849 if (rdev && 850 !test_bit(Faulty, &rdev->flags)) { 851 atomic_inc(&rdev->nr_pending); 852 r10_bio->devs[i].bio = bio; 853 } else { 854 r10_bio->devs[i].bio = NULL; 855 set_bit(R10BIO_Degraded, &r10_bio->state); 856 } 857 } 858 rcu_read_unlock(); 859 860 atomic_set(&r10_bio->remaining, 0); 861 862 bio_list_init(&bl); 863 for (i = 0; i < conf->copies; i++) { 864 struct bio *mbio; 865 int d = r10_bio->devs[i].devnum; 866 if (!r10_bio->devs[i].bio) 867 continue; 868 869 mbio = bio_clone(bio, GFP_NOIO); 870 r10_bio->devs[i].bio = mbio; 871 872 mbio->bi_sector = r10_bio->devs[i].addr+ 873 conf->mirrors[d].rdev->data_offset; 874 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 875 mbio->bi_end_io = raid10_end_write_request; 876 mbio->bi_rw = WRITE | do_sync; 877 mbio->bi_private = r10_bio; 878 879 atomic_inc(&r10_bio->remaining); 880 bio_list_add(&bl, mbio); 881 } 882 883 if (unlikely(!atomic_read(&r10_bio->remaining))) { 884 /* the array is dead */ 885 md_write_end(mddev); 886 raid_end_bio_io(r10_bio); 887 return 0; 888 } 889 890 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 891 spin_lock_irqsave(&conf->device_lock, flags); 892 bio_list_merge(&conf->pending_bio_list, &bl); 893 blk_plug_device(mddev->queue); 894 spin_unlock_irqrestore(&conf->device_lock, flags); 895 896 if (do_sync) 897 md_wakeup_thread(mddev->thread); 898 899 return 0; 900 } 901 902 static void status(struct seq_file *seq, mddev_t *mddev) 903 { 904 conf_t *conf = mddev_to_conf(mddev); 905 int i; 906 907 if (conf->near_copies < conf->raid_disks) 908 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 909 if (conf->near_copies > 1) 910 seq_printf(seq, " %d near-copies", conf->near_copies); 911 if (conf->far_copies > 1) { 912 if (conf->far_offset) 913 seq_printf(seq, " %d offset-copies", conf->far_copies); 914 else 915 seq_printf(seq, " %d far-copies", conf->far_copies); 916 } 917 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 918 conf->raid_disks - mddev->degraded); 919 for (i = 0; i < conf->raid_disks; i++) 920 seq_printf(seq, "%s", 921 conf->mirrors[i].rdev && 922 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 923 seq_printf(seq, "]"); 924 } 925 926 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 927 { 928 char b[BDEVNAME_SIZE]; 929 conf_t *conf = mddev_to_conf(mddev); 930 931 /* 932 * If it is not operational, then we have already marked it as dead 933 * else if it is the last working disks, ignore the error, let the 934 * next level up know. 935 * else mark the drive as failed 936 */ 937 if (test_bit(In_sync, &rdev->flags) 938 && conf->raid_disks-mddev->degraded == 1) 939 /* 940 * Don't fail the drive, just return an IO error. 941 * The test should really be more sophisticated than 942 * "working_disks == 1", but it isn't critical, and 943 * can wait until we do more sophisticated "is the drive 944 * really dead" tests... 945 */ 946 return; 947 if (test_and_clear_bit(In_sync, &rdev->flags)) { 948 unsigned long flags; 949 spin_lock_irqsave(&conf->device_lock, flags); 950 mddev->degraded++; 951 spin_unlock_irqrestore(&conf->device_lock, flags); 952 /* 953 * if recovery is running, make sure it aborts. 954 */ 955 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 956 } 957 set_bit(Faulty, &rdev->flags); 958 set_bit(MD_CHANGE_DEVS, &mddev->flags); 959 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 960 " Operation continuing on %d devices\n", 961 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 962 } 963 964 static void print_conf(conf_t *conf) 965 { 966 int i; 967 mirror_info_t *tmp; 968 969 printk("RAID10 conf printout:\n"); 970 if (!conf) { 971 printk("(!conf)\n"); 972 return; 973 } 974 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 975 conf->raid_disks); 976 977 for (i = 0; i < conf->raid_disks; i++) { 978 char b[BDEVNAME_SIZE]; 979 tmp = conf->mirrors + i; 980 if (tmp->rdev) 981 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 982 i, !test_bit(In_sync, &tmp->rdev->flags), 983 !test_bit(Faulty, &tmp->rdev->flags), 984 bdevname(tmp->rdev->bdev,b)); 985 } 986 } 987 988 static void close_sync(conf_t *conf) 989 { 990 wait_barrier(conf); 991 allow_barrier(conf); 992 993 mempool_destroy(conf->r10buf_pool); 994 conf->r10buf_pool = NULL; 995 } 996 997 /* check if there are enough drives for 998 * every block to appear on atleast one 999 */ 1000 static int enough(conf_t *conf) 1001 { 1002 int first = 0; 1003 1004 do { 1005 int n = conf->copies; 1006 int cnt = 0; 1007 while (n--) { 1008 if (conf->mirrors[first].rdev) 1009 cnt++; 1010 first = (first+1) % conf->raid_disks; 1011 } 1012 if (cnt == 0) 1013 return 0; 1014 } while (first != 0); 1015 return 1; 1016 } 1017 1018 static int raid10_spare_active(mddev_t *mddev) 1019 { 1020 int i; 1021 conf_t *conf = mddev->private; 1022 mirror_info_t *tmp; 1023 1024 /* 1025 * Find all non-in_sync disks within the RAID10 configuration 1026 * and mark them in_sync 1027 */ 1028 for (i = 0; i < conf->raid_disks; i++) { 1029 tmp = conf->mirrors + i; 1030 if (tmp->rdev 1031 && !test_bit(Faulty, &tmp->rdev->flags) 1032 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1033 unsigned long flags; 1034 spin_lock_irqsave(&conf->device_lock, flags); 1035 mddev->degraded--; 1036 spin_unlock_irqrestore(&conf->device_lock, flags); 1037 } 1038 } 1039 1040 print_conf(conf); 1041 return 0; 1042 } 1043 1044 1045 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1046 { 1047 conf_t *conf = mddev->private; 1048 int found = 0; 1049 int mirror; 1050 mirror_info_t *p; 1051 1052 if (mddev->recovery_cp < MaxSector) 1053 /* only hot-add to in-sync arrays, as recovery is 1054 * very different from resync 1055 */ 1056 return 0; 1057 if (!enough(conf)) 1058 return 0; 1059 1060 if (rdev->saved_raid_disk >= 0 && 1061 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1062 mirror = rdev->saved_raid_disk; 1063 else 1064 mirror = 0; 1065 for ( ; mirror < mddev->raid_disks; mirror++) 1066 if ( !(p=conf->mirrors+mirror)->rdev) { 1067 1068 blk_queue_stack_limits(mddev->queue, 1069 rdev->bdev->bd_disk->queue); 1070 /* as we don't honour merge_bvec_fn, we must never risk 1071 * violating it, so limit ->max_sector to one PAGE, as 1072 * a one page request is never in violation. 1073 */ 1074 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1075 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1076 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1077 1078 p->head_position = 0; 1079 rdev->raid_disk = mirror; 1080 found = 1; 1081 if (rdev->saved_raid_disk != mirror) 1082 conf->fullsync = 1; 1083 rcu_assign_pointer(p->rdev, rdev); 1084 break; 1085 } 1086 1087 print_conf(conf); 1088 return found; 1089 } 1090 1091 static int raid10_remove_disk(mddev_t *mddev, int number) 1092 { 1093 conf_t *conf = mddev->private; 1094 int err = 0; 1095 mdk_rdev_t *rdev; 1096 mirror_info_t *p = conf->mirrors+ number; 1097 1098 print_conf(conf); 1099 rdev = p->rdev; 1100 if (rdev) { 1101 if (test_bit(In_sync, &rdev->flags) || 1102 atomic_read(&rdev->nr_pending)) { 1103 err = -EBUSY; 1104 goto abort; 1105 } 1106 p->rdev = NULL; 1107 synchronize_rcu(); 1108 if (atomic_read(&rdev->nr_pending)) { 1109 /* lost the race, try later */ 1110 err = -EBUSY; 1111 p->rdev = rdev; 1112 } 1113 } 1114 abort: 1115 1116 print_conf(conf); 1117 return err; 1118 } 1119 1120 1121 static void end_sync_read(struct bio *bio, int error) 1122 { 1123 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1124 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1125 int i,d; 1126 1127 for (i=0; i<conf->copies; i++) 1128 if (r10_bio->devs[i].bio == bio) 1129 break; 1130 BUG_ON(i == conf->copies); 1131 update_head_pos(i, r10_bio); 1132 d = r10_bio->devs[i].devnum; 1133 1134 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1135 set_bit(R10BIO_Uptodate, &r10_bio->state); 1136 else { 1137 atomic_add(r10_bio->sectors, 1138 &conf->mirrors[d].rdev->corrected_errors); 1139 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1140 md_error(r10_bio->mddev, 1141 conf->mirrors[d].rdev); 1142 } 1143 1144 /* for reconstruct, we always reschedule after a read. 1145 * for resync, only after all reads 1146 */ 1147 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1148 atomic_dec_and_test(&r10_bio->remaining)) { 1149 /* we have read all the blocks, 1150 * do the comparison in process context in raid10d 1151 */ 1152 reschedule_retry(r10_bio); 1153 } 1154 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1155 } 1156 1157 static void end_sync_write(struct bio *bio, int error) 1158 { 1159 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1160 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1161 mddev_t *mddev = r10_bio->mddev; 1162 conf_t *conf = mddev_to_conf(mddev); 1163 int i,d; 1164 1165 for (i = 0; i < conf->copies; i++) 1166 if (r10_bio->devs[i].bio == bio) 1167 break; 1168 d = r10_bio->devs[i].devnum; 1169 1170 if (!uptodate) 1171 md_error(mddev, conf->mirrors[d].rdev); 1172 update_head_pos(i, r10_bio); 1173 1174 while (atomic_dec_and_test(&r10_bio->remaining)) { 1175 if (r10_bio->master_bio == NULL) { 1176 /* the primary of several recovery bios */ 1177 md_done_sync(mddev, r10_bio->sectors, 1); 1178 put_buf(r10_bio); 1179 break; 1180 } else { 1181 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1182 put_buf(r10_bio); 1183 r10_bio = r10_bio2; 1184 } 1185 } 1186 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1187 } 1188 1189 /* 1190 * Note: sync and recover and handled very differently for raid10 1191 * This code is for resync. 1192 * For resync, we read through virtual addresses and read all blocks. 1193 * If there is any error, we schedule a write. The lowest numbered 1194 * drive is authoritative. 1195 * However requests come for physical address, so we need to map. 1196 * For every physical address there are raid_disks/copies virtual addresses, 1197 * which is always are least one, but is not necessarly an integer. 1198 * This means that a physical address can span multiple chunks, so we may 1199 * have to submit multiple io requests for a single sync request. 1200 */ 1201 /* 1202 * We check if all blocks are in-sync and only write to blocks that 1203 * aren't in sync 1204 */ 1205 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1206 { 1207 conf_t *conf = mddev_to_conf(mddev); 1208 int i, first; 1209 struct bio *tbio, *fbio; 1210 1211 atomic_set(&r10_bio->remaining, 1); 1212 1213 /* find the first device with a block */ 1214 for (i=0; i<conf->copies; i++) 1215 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1216 break; 1217 1218 if (i == conf->copies) 1219 goto done; 1220 1221 first = i; 1222 fbio = r10_bio->devs[i].bio; 1223 1224 /* now find blocks with errors */ 1225 for (i=0 ; i < conf->copies ; i++) { 1226 int j, d; 1227 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1228 1229 tbio = r10_bio->devs[i].bio; 1230 1231 if (tbio->bi_end_io != end_sync_read) 1232 continue; 1233 if (i == first) 1234 continue; 1235 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1236 /* We know that the bi_io_vec layout is the same for 1237 * both 'first' and 'i', so we just compare them. 1238 * All vec entries are PAGE_SIZE; 1239 */ 1240 for (j = 0; j < vcnt; j++) 1241 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1242 page_address(tbio->bi_io_vec[j].bv_page), 1243 PAGE_SIZE)) 1244 break; 1245 if (j == vcnt) 1246 continue; 1247 mddev->resync_mismatches += r10_bio->sectors; 1248 } 1249 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1250 /* Don't fix anything. */ 1251 continue; 1252 /* Ok, we need to write this bio 1253 * First we need to fixup bv_offset, bv_len and 1254 * bi_vecs, as the read request might have corrupted these 1255 */ 1256 tbio->bi_vcnt = vcnt; 1257 tbio->bi_size = r10_bio->sectors << 9; 1258 tbio->bi_idx = 0; 1259 tbio->bi_phys_segments = 0; 1260 tbio->bi_hw_segments = 0; 1261 tbio->bi_hw_front_size = 0; 1262 tbio->bi_hw_back_size = 0; 1263 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1264 tbio->bi_flags |= 1 << BIO_UPTODATE; 1265 tbio->bi_next = NULL; 1266 tbio->bi_rw = WRITE; 1267 tbio->bi_private = r10_bio; 1268 tbio->bi_sector = r10_bio->devs[i].addr; 1269 1270 for (j=0; j < vcnt ; j++) { 1271 tbio->bi_io_vec[j].bv_offset = 0; 1272 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1273 1274 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1275 page_address(fbio->bi_io_vec[j].bv_page), 1276 PAGE_SIZE); 1277 } 1278 tbio->bi_end_io = end_sync_write; 1279 1280 d = r10_bio->devs[i].devnum; 1281 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1282 atomic_inc(&r10_bio->remaining); 1283 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1284 1285 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1286 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1287 generic_make_request(tbio); 1288 } 1289 1290 done: 1291 if (atomic_dec_and_test(&r10_bio->remaining)) { 1292 md_done_sync(mddev, r10_bio->sectors, 1); 1293 put_buf(r10_bio); 1294 } 1295 } 1296 1297 /* 1298 * Now for the recovery code. 1299 * Recovery happens across physical sectors. 1300 * We recover all non-is_sync drives by finding the virtual address of 1301 * each, and then choose a working drive that also has that virt address. 1302 * There is a separate r10_bio for each non-in_sync drive. 1303 * Only the first two slots are in use. The first for reading, 1304 * The second for writing. 1305 * 1306 */ 1307 1308 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1309 { 1310 conf_t *conf = mddev_to_conf(mddev); 1311 int i, d; 1312 struct bio *bio, *wbio; 1313 1314 1315 /* move the pages across to the second bio 1316 * and submit the write request 1317 */ 1318 bio = r10_bio->devs[0].bio; 1319 wbio = r10_bio->devs[1].bio; 1320 for (i=0; i < wbio->bi_vcnt; i++) { 1321 struct page *p = bio->bi_io_vec[i].bv_page; 1322 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1323 wbio->bi_io_vec[i].bv_page = p; 1324 } 1325 d = r10_bio->devs[1].devnum; 1326 1327 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1328 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1329 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1330 generic_make_request(wbio); 1331 else 1332 bio_endio(wbio, -EIO); 1333 } 1334 1335 1336 /* 1337 * This is a kernel thread which: 1338 * 1339 * 1. Retries failed read operations on working mirrors. 1340 * 2. Updates the raid superblock when problems encounter. 1341 * 3. Performs writes following reads for array synchronising. 1342 */ 1343 1344 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1345 { 1346 int sect = 0; /* Offset from r10_bio->sector */ 1347 int sectors = r10_bio->sectors; 1348 mdk_rdev_t*rdev; 1349 while(sectors) { 1350 int s = sectors; 1351 int sl = r10_bio->read_slot; 1352 int success = 0; 1353 int start; 1354 1355 if (s > (PAGE_SIZE>>9)) 1356 s = PAGE_SIZE >> 9; 1357 1358 rcu_read_lock(); 1359 do { 1360 int d = r10_bio->devs[sl].devnum; 1361 rdev = rcu_dereference(conf->mirrors[d].rdev); 1362 if (rdev && 1363 test_bit(In_sync, &rdev->flags)) { 1364 atomic_inc(&rdev->nr_pending); 1365 rcu_read_unlock(); 1366 success = sync_page_io(rdev->bdev, 1367 r10_bio->devs[sl].addr + 1368 sect + rdev->data_offset, 1369 s<<9, 1370 conf->tmppage, READ); 1371 rdev_dec_pending(rdev, mddev); 1372 rcu_read_lock(); 1373 if (success) 1374 break; 1375 } 1376 sl++; 1377 if (sl == conf->copies) 1378 sl = 0; 1379 } while (!success && sl != r10_bio->read_slot); 1380 rcu_read_unlock(); 1381 1382 if (!success) { 1383 /* Cannot read from anywhere -- bye bye array */ 1384 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1385 md_error(mddev, conf->mirrors[dn].rdev); 1386 break; 1387 } 1388 1389 start = sl; 1390 /* write it back and re-read */ 1391 rcu_read_lock(); 1392 while (sl != r10_bio->read_slot) { 1393 int d; 1394 if (sl==0) 1395 sl = conf->copies; 1396 sl--; 1397 d = r10_bio->devs[sl].devnum; 1398 rdev = rcu_dereference(conf->mirrors[d].rdev); 1399 if (rdev && 1400 test_bit(In_sync, &rdev->flags)) { 1401 atomic_inc(&rdev->nr_pending); 1402 rcu_read_unlock(); 1403 atomic_add(s, &rdev->corrected_errors); 1404 if (sync_page_io(rdev->bdev, 1405 r10_bio->devs[sl].addr + 1406 sect + rdev->data_offset, 1407 s<<9, conf->tmppage, WRITE) 1408 == 0) 1409 /* Well, this device is dead */ 1410 md_error(mddev, rdev); 1411 rdev_dec_pending(rdev, mddev); 1412 rcu_read_lock(); 1413 } 1414 } 1415 sl = start; 1416 while (sl != r10_bio->read_slot) { 1417 int d; 1418 if (sl==0) 1419 sl = conf->copies; 1420 sl--; 1421 d = r10_bio->devs[sl].devnum; 1422 rdev = rcu_dereference(conf->mirrors[d].rdev); 1423 if (rdev && 1424 test_bit(In_sync, &rdev->flags)) { 1425 char b[BDEVNAME_SIZE]; 1426 atomic_inc(&rdev->nr_pending); 1427 rcu_read_unlock(); 1428 if (sync_page_io(rdev->bdev, 1429 r10_bio->devs[sl].addr + 1430 sect + rdev->data_offset, 1431 s<<9, conf->tmppage, READ) == 0) 1432 /* Well, this device is dead */ 1433 md_error(mddev, rdev); 1434 else 1435 printk(KERN_INFO 1436 "raid10:%s: read error corrected" 1437 " (%d sectors at %llu on %s)\n", 1438 mdname(mddev), s, 1439 (unsigned long long)(sect+ 1440 rdev->data_offset), 1441 bdevname(rdev->bdev, b)); 1442 1443 rdev_dec_pending(rdev, mddev); 1444 rcu_read_lock(); 1445 } 1446 } 1447 rcu_read_unlock(); 1448 1449 sectors -= s; 1450 sect += s; 1451 } 1452 } 1453 1454 static void raid10d(mddev_t *mddev) 1455 { 1456 r10bio_t *r10_bio; 1457 struct bio *bio; 1458 unsigned long flags; 1459 conf_t *conf = mddev_to_conf(mddev); 1460 struct list_head *head = &conf->retry_list; 1461 int unplug=0; 1462 mdk_rdev_t *rdev; 1463 1464 md_check_recovery(mddev); 1465 1466 for (;;) { 1467 char b[BDEVNAME_SIZE]; 1468 spin_lock_irqsave(&conf->device_lock, flags); 1469 1470 if (conf->pending_bio_list.head) { 1471 bio = bio_list_get(&conf->pending_bio_list); 1472 blk_remove_plug(mddev->queue); 1473 spin_unlock_irqrestore(&conf->device_lock, flags); 1474 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1475 bitmap_unplug(mddev->bitmap); 1476 1477 while (bio) { /* submit pending writes */ 1478 struct bio *next = bio->bi_next; 1479 bio->bi_next = NULL; 1480 generic_make_request(bio); 1481 bio = next; 1482 } 1483 unplug = 1; 1484 1485 continue; 1486 } 1487 1488 if (list_empty(head)) 1489 break; 1490 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1491 list_del(head->prev); 1492 conf->nr_queued--; 1493 spin_unlock_irqrestore(&conf->device_lock, flags); 1494 1495 mddev = r10_bio->mddev; 1496 conf = mddev_to_conf(mddev); 1497 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1498 sync_request_write(mddev, r10_bio); 1499 unplug = 1; 1500 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1501 recovery_request_write(mddev, r10_bio); 1502 unplug = 1; 1503 } else { 1504 int mirror; 1505 /* we got a read error. Maybe the drive is bad. Maybe just 1506 * the block and we can fix it. 1507 * We freeze all other IO, and try reading the block from 1508 * other devices. When we find one, we re-write 1509 * and check it that fixes the read error. 1510 * This is all done synchronously while the array is 1511 * frozen. 1512 */ 1513 if (mddev->ro == 0) { 1514 freeze_array(conf); 1515 fix_read_error(conf, mddev, r10_bio); 1516 unfreeze_array(conf); 1517 } 1518 1519 bio = r10_bio->devs[r10_bio->read_slot].bio; 1520 r10_bio->devs[r10_bio->read_slot].bio = 1521 mddev->ro ? IO_BLOCKED : NULL; 1522 mirror = read_balance(conf, r10_bio); 1523 if (mirror == -1) { 1524 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1525 " read error for block %llu\n", 1526 bdevname(bio->bi_bdev,b), 1527 (unsigned long long)r10_bio->sector); 1528 raid_end_bio_io(r10_bio); 1529 bio_put(bio); 1530 } else { 1531 const int do_sync = bio_sync(r10_bio->master_bio); 1532 bio_put(bio); 1533 rdev = conf->mirrors[mirror].rdev; 1534 if (printk_ratelimit()) 1535 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1536 " another mirror\n", 1537 bdevname(rdev->bdev,b), 1538 (unsigned long long)r10_bio->sector); 1539 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1540 r10_bio->devs[r10_bio->read_slot].bio = bio; 1541 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1542 + rdev->data_offset; 1543 bio->bi_bdev = rdev->bdev; 1544 bio->bi_rw = READ | do_sync; 1545 bio->bi_private = r10_bio; 1546 bio->bi_end_io = raid10_end_read_request; 1547 unplug = 1; 1548 generic_make_request(bio); 1549 } 1550 } 1551 } 1552 spin_unlock_irqrestore(&conf->device_lock, flags); 1553 if (unplug) 1554 unplug_slaves(mddev); 1555 } 1556 1557 1558 static int init_resync(conf_t *conf) 1559 { 1560 int buffs; 1561 1562 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1563 BUG_ON(conf->r10buf_pool); 1564 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1565 if (!conf->r10buf_pool) 1566 return -ENOMEM; 1567 conf->next_resync = 0; 1568 return 0; 1569 } 1570 1571 /* 1572 * perform a "sync" on one "block" 1573 * 1574 * We need to make sure that no normal I/O request - particularly write 1575 * requests - conflict with active sync requests. 1576 * 1577 * This is achieved by tracking pending requests and a 'barrier' concept 1578 * that can be installed to exclude normal IO requests. 1579 * 1580 * Resync and recovery are handled very differently. 1581 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1582 * 1583 * For resync, we iterate over virtual addresses, read all copies, 1584 * and update if there are differences. If only one copy is live, 1585 * skip it. 1586 * For recovery, we iterate over physical addresses, read a good 1587 * value for each non-in_sync drive, and over-write. 1588 * 1589 * So, for recovery we may have several outstanding complex requests for a 1590 * given address, one for each out-of-sync device. We model this by allocating 1591 * a number of r10_bio structures, one for each out-of-sync device. 1592 * As we setup these structures, we collect all bio's together into a list 1593 * which we then process collectively to add pages, and then process again 1594 * to pass to generic_make_request. 1595 * 1596 * The r10_bio structures are linked using a borrowed master_bio pointer. 1597 * This link is counted in ->remaining. When the r10_bio that points to NULL 1598 * has its remaining count decremented to 0, the whole complex operation 1599 * is complete. 1600 * 1601 */ 1602 1603 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1604 { 1605 conf_t *conf = mddev_to_conf(mddev); 1606 r10bio_t *r10_bio; 1607 struct bio *biolist = NULL, *bio; 1608 sector_t max_sector, nr_sectors; 1609 int disk; 1610 int i; 1611 int max_sync; 1612 int sync_blocks; 1613 1614 sector_t sectors_skipped = 0; 1615 int chunks_skipped = 0; 1616 1617 if (!conf->r10buf_pool) 1618 if (init_resync(conf)) 1619 return 0; 1620 1621 skipped: 1622 max_sector = mddev->size << 1; 1623 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1624 max_sector = mddev->resync_max_sectors; 1625 if (sector_nr >= max_sector) { 1626 /* If we aborted, we need to abort the 1627 * sync on the 'current' bitmap chucks (there can 1628 * be several when recovering multiple devices). 1629 * as we may have started syncing it but not finished. 1630 * We can find the current address in 1631 * mddev->curr_resync, but for recovery, 1632 * we need to convert that to several 1633 * virtual addresses. 1634 */ 1635 if (mddev->curr_resync < max_sector) { /* aborted */ 1636 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1637 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1638 &sync_blocks, 1); 1639 else for (i=0; i<conf->raid_disks; i++) { 1640 sector_t sect = 1641 raid10_find_virt(conf, mddev->curr_resync, i); 1642 bitmap_end_sync(mddev->bitmap, sect, 1643 &sync_blocks, 1); 1644 } 1645 } else /* completed sync */ 1646 conf->fullsync = 0; 1647 1648 bitmap_close_sync(mddev->bitmap); 1649 close_sync(conf); 1650 *skipped = 1; 1651 return sectors_skipped; 1652 } 1653 if (chunks_skipped >= conf->raid_disks) { 1654 /* if there has been nothing to do on any drive, 1655 * then there is nothing to do at all.. 1656 */ 1657 *skipped = 1; 1658 return (max_sector - sector_nr) + sectors_skipped; 1659 } 1660 1661 /* make sure whole request will fit in a chunk - if chunks 1662 * are meaningful 1663 */ 1664 if (conf->near_copies < conf->raid_disks && 1665 max_sector > (sector_nr | conf->chunk_mask)) 1666 max_sector = (sector_nr | conf->chunk_mask) + 1; 1667 /* 1668 * If there is non-resync activity waiting for us then 1669 * put in a delay to throttle resync. 1670 */ 1671 if (!go_faster && conf->nr_waiting) 1672 msleep_interruptible(1000); 1673 1674 /* Again, very different code for resync and recovery. 1675 * Both must result in an r10bio with a list of bios that 1676 * have bi_end_io, bi_sector, bi_bdev set, 1677 * and bi_private set to the r10bio. 1678 * For recovery, we may actually create several r10bios 1679 * with 2 bios in each, that correspond to the bios in the main one. 1680 * In this case, the subordinate r10bios link back through a 1681 * borrowed master_bio pointer, and the counter in the master 1682 * includes a ref from each subordinate. 1683 */ 1684 /* First, we decide what to do and set ->bi_end_io 1685 * To end_sync_read if we want to read, and 1686 * end_sync_write if we will want to write. 1687 */ 1688 1689 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1690 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1691 /* recovery... the complicated one */ 1692 int i, j, k; 1693 r10_bio = NULL; 1694 1695 for (i=0 ; i<conf->raid_disks; i++) 1696 if (conf->mirrors[i].rdev && 1697 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1698 int still_degraded = 0; 1699 /* want to reconstruct this device */ 1700 r10bio_t *rb2 = r10_bio; 1701 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1702 int must_sync; 1703 /* Unless we are doing a full sync, we only need 1704 * to recover the block if it is set in the bitmap 1705 */ 1706 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1707 &sync_blocks, 1); 1708 if (sync_blocks < max_sync) 1709 max_sync = sync_blocks; 1710 if (!must_sync && 1711 !conf->fullsync) { 1712 /* yep, skip the sync_blocks here, but don't assume 1713 * that there will never be anything to do here 1714 */ 1715 chunks_skipped = -1; 1716 continue; 1717 } 1718 1719 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1720 raise_barrier(conf, rb2 != NULL); 1721 atomic_set(&r10_bio->remaining, 0); 1722 1723 r10_bio->master_bio = (struct bio*)rb2; 1724 if (rb2) 1725 atomic_inc(&rb2->remaining); 1726 r10_bio->mddev = mddev; 1727 set_bit(R10BIO_IsRecover, &r10_bio->state); 1728 r10_bio->sector = sect; 1729 1730 raid10_find_phys(conf, r10_bio); 1731 /* Need to check if this section will still be 1732 * degraded 1733 */ 1734 for (j=0; j<conf->copies;j++) { 1735 int d = r10_bio->devs[j].devnum; 1736 if (conf->mirrors[d].rdev == NULL || 1737 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1738 still_degraded = 1; 1739 break; 1740 } 1741 } 1742 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1743 &sync_blocks, still_degraded); 1744 1745 for (j=0; j<conf->copies;j++) { 1746 int d = r10_bio->devs[j].devnum; 1747 if (conf->mirrors[d].rdev && 1748 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1749 /* This is where we read from */ 1750 bio = r10_bio->devs[0].bio; 1751 bio->bi_next = biolist; 1752 biolist = bio; 1753 bio->bi_private = r10_bio; 1754 bio->bi_end_io = end_sync_read; 1755 bio->bi_rw = READ; 1756 bio->bi_sector = r10_bio->devs[j].addr + 1757 conf->mirrors[d].rdev->data_offset; 1758 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1759 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1760 atomic_inc(&r10_bio->remaining); 1761 /* and we write to 'i' */ 1762 1763 for (k=0; k<conf->copies; k++) 1764 if (r10_bio->devs[k].devnum == i) 1765 break; 1766 BUG_ON(k == conf->copies); 1767 bio = r10_bio->devs[1].bio; 1768 bio->bi_next = biolist; 1769 biolist = bio; 1770 bio->bi_private = r10_bio; 1771 bio->bi_end_io = end_sync_write; 1772 bio->bi_rw = WRITE; 1773 bio->bi_sector = r10_bio->devs[k].addr + 1774 conf->mirrors[i].rdev->data_offset; 1775 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1776 1777 r10_bio->devs[0].devnum = d; 1778 r10_bio->devs[1].devnum = i; 1779 1780 break; 1781 } 1782 } 1783 if (j == conf->copies) { 1784 /* Cannot recover, so abort the recovery */ 1785 put_buf(r10_bio); 1786 r10_bio = rb2; 1787 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) 1788 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1789 mdname(mddev)); 1790 break; 1791 } 1792 } 1793 if (biolist == NULL) { 1794 while (r10_bio) { 1795 r10bio_t *rb2 = r10_bio; 1796 r10_bio = (r10bio_t*) rb2->master_bio; 1797 rb2->master_bio = NULL; 1798 put_buf(rb2); 1799 } 1800 goto giveup; 1801 } 1802 } else { 1803 /* resync. Schedule a read for every block at this virt offset */ 1804 int count = 0; 1805 1806 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1807 &sync_blocks, mddev->degraded) && 1808 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1809 /* We can skip this block */ 1810 *skipped = 1; 1811 return sync_blocks + sectors_skipped; 1812 } 1813 if (sync_blocks < max_sync) 1814 max_sync = sync_blocks; 1815 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1816 1817 r10_bio->mddev = mddev; 1818 atomic_set(&r10_bio->remaining, 0); 1819 raise_barrier(conf, 0); 1820 conf->next_resync = sector_nr; 1821 1822 r10_bio->master_bio = NULL; 1823 r10_bio->sector = sector_nr; 1824 set_bit(R10BIO_IsSync, &r10_bio->state); 1825 raid10_find_phys(conf, r10_bio); 1826 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1827 1828 for (i=0; i<conf->copies; i++) { 1829 int d = r10_bio->devs[i].devnum; 1830 bio = r10_bio->devs[i].bio; 1831 bio->bi_end_io = NULL; 1832 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1833 if (conf->mirrors[d].rdev == NULL || 1834 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1835 continue; 1836 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1837 atomic_inc(&r10_bio->remaining); 1838 bio->bi_next = biolist; 1839 biolist = bio; 1840 bio->bi_private = r10_bio; 1841 bio->bi_end_io = end_sync_read; 1842 bio->bi_rw = READ; 1843 bio->bi_sector = r10_bio->devs[i].addr + 1844 conf->mirrors[d].rdev->data_offset; 1845 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1846 count++; 1847 } 1848 1849 if (count < 2) { 1850 for (i=0; i<conf->copies; i++) { 1851 int d = r10_bio->devs[i].devnum; 1852 if (r10_bio->devs[i].bio->bi_end_io) 1853 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1854 } 1855 put_buf(r10_bio); 1856 biolist = NULL; 1857 goto giveup; 1858 } 1859 } 1860 1861 for (bio = biolist; bio ; bio=bio->bi_next) { 1862 1863 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1864 if (bio->bi_end_io) 1865 bio->bi_flags |= 1 << BIO_UPTODATE; 1866 bio->bi_vcnt = 0; 1867 bio->bi_idx = 0; 1868 bio->bi_phys_segments = 0; 1869 bio->bi_hw_segments = 0; 1870 bio->bi_size = 0; 1871 } 1872 1873 nr_sectors = 0; 1874 if (sector_nr + max_sync < max_sector) 1875 max_sector = sector_nr + max_sync; 1876 do { 1877 struct page *page; 1878 int len = PAGE_SIZE; 1879 disk = 0; 1880 if (sector_nr + (len>>9) > max_sector) 1881 len = (max_sector - sector_nr) << 9; 1882 if (len == 0) 1883 break; 1884 for (bio= biolist ; bio ; bio=bio->bi_next) { 1885 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1886 if (bio_add_page(bio, page, len, 0) == 0) { 1887 /* stop here */ 1888 struct bio *bio2; 1889 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1890 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1891 /* remove last page from this bio */ 1892 bio2->bi_vcnt--; 1893 bio2->bi_size -= len; 1894 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1895 } 1896 goto bio_full; 1897 } 1898 disk = i; 1899 } 1900 nr_sectors += len>>9; 1901 sector_nr += len>>9; 1902 } while (biolist->bi_vcnt < RESYNC_PAGES); 1903 bio_full: 1904 r10_bio->sectors = nr_sectors; 1905 1906 while (biolist) { 1907 bio = biolist; 1908 biolist = biolist->bi_next; 1909 1910 bio->bi_next = NULL; 1911 r10_bio = bio->bi_private; 1912 r10_bio->sectors = nr_sectors; 1913 1914 if (bio->bi_end_io == end_sync_read) { 1915 md_sync_acct(bio->bi_bdev, nr_sectors); 1916 generic_make_request(bio); 1917 } 1918 } 1919 1920 if (sectors_skipped) 1921 /* pretend they weren't skipped, it makes 1922 * no important difference in this case 1923 */ 1924 md_done_sync(mddev, sectors_skipped, 1); 1925 1926 return sectors_skipped + nr_sectors; 1927 giveup: 1928 /* There is nowhere to write, so all non-sync 1929 * drives must be failed, so try the next chunk... 1930 */ 1931 { 1932 sector_t sec = max_sector - sector_nr; 1933 sectors_skipped += sec; 1934 chunks_skipped ++; 1935 sector_nr = max_sector; 1936 goto skipped; 1937 } 1938 } 1939 1940 static int run(mddev_t *mddev) 1941 { 1942 conf_t *conf; 1943 int i, disk_idx; 1944 mirror_info_t *disk; 1945 mdk_rdev_t *rdev; 1946 struct list_head *tmp; 1947 int nc, fc, fo; 1948 sector_t stride, size; 1949 1950 if (mddev->chunk_size == 0) { 1951 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 1952 return -EINVAL; 1953 } 1954 1955 nc = mddev->layout & 255; 1956 fc = (mddev->layout >> 8) & 255; 1957 fo = mddev->layout & (1<<16); 1958 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 1959 (mddev->layout >> 17)) { 1960 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 1961 mdname(mddev), mddev->layout); 1962 goto out; 1963 } 1964 /* 1965 * copy the already verified devices into our private RAID10 1966 * bookkeeping area. [whatever we allocate in run(), 1967 * should be freed in stop()] 1968 */ 1969 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1970 mddev->private = conf; 1971 if (!conf) { 1972 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1973 mdname(mddev)); 1974 goto out; 1975 } 1976 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1977 GFP_KERNEL); 1978 if (!conf->mirrors) { 1979 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1980 mdname(mddev)); 1981 goto out_free_conf; 1982 } 1983 1984 conf->tmppage = alloc_page(GFP_KERNEL); 1985 if (!conf->tmppage) 1986 goto out_free_conf; 1987 1988 conf->mddev = mddev; 1989 conf->raid_disks = mddev->raid_disks; 1990 conf->near_copies = nc; 1991 conf->far_copies = fc; 1992 conf->copies = nc*fc; 1993 conf->far_offset = fo; 1994 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 1995 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 1996 size = mddev->size >> (conf->chunk_shift-1); 1997 sector_div(size, fc); 1998 size = size * conf->raid_disks; 1999 sector_div(size, nc); 2000 /* 'size' is now the number of chunks in the array */ 2001 /* calculate "used chunks per device" in 'stride' */ 2002 stride = size * conf->copies; 2003 2004 /* We need to round up when dividing by raid_disks to 2005 * get the stride size. 2006 */ 2007 stride += conf->raid_disks - 1; 2008 sector_div(stride, conf->raid_disks); 2009 mddev->size = stride << (conf->chunk_shift-1); 2010 2011 if (fo) 2012 stride = 1; 2013 else 2014 sector_div(stride, fc); 2015 conf->stride = stride << conf->chunk_shift; 2016 2017 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2018 r10bio_pool_free, conf); 2019 if (!conf->r10bio_pool) { 2020 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2021 mdname(mddev)); 2022 goto out_free_conf; 2023 } 2024 2025 ITERATE_RDEV(mddev, rdev, tmp) { 2026 disk_idx = rdev->raid_disk; 2027 if (disk_idx >= mddev->raid_disks 2028 || disk_idx < 0) 2029 continue; 2030 disk = conf->mirrors + disk_idx; 2031 2032 disk->rdev = rdev; 2033 2034 blk_queue_stack_limits(mddev->queue, 2035 rdev->bdev->bd_disk->queue); 2036 /* as we don't honour merge_bvec_fn, we must never risk 2037 * violating it, so limit ->max_sector to one PAGE, as 2038 * a one page request is never in violation. 2039 */ 2040 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2041 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2042 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2043 2044 disk->head_position = 0; 2045 } 2046 spin_lock_init(&conf->device_lock); 2047 INIT_LIST_HEAD(&conf->retry_list); 2048 2049 spin_lock_init(&conf->resync_lock); 2050 init_waitqueue_head(&conf->wait_barrier); 2051 2052 /* need to check that every block has at least one working mirror */ 2053 if (!enough(conf)) { 2054 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2055 mdname(mddev)); 2056 goto out_free_conf; 2057 } 2058 2059 mddev->degraded = 0; 2060 for (i = 0; i < conf->raid_disks; i++) { 2061 2062 disk = conf->mirrors + i; 2063 2064 if (!disk->rdev || 2065 !test_bit(In_sync, &disk->rdev->flags)) { 2066 disk->head_position = 0; 2067 mddev->degraded++; 2068 } 2069 } 2070 2071 2072 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2073 if (!mddev->thread) { 2074 printk(KERN_ERR 2075 "raid10: couldn't allocate thread for %s\n", 2076 mdname(mddev)); 2077 goto out_free_conf; 2078 } 2079 2080 printk(KERN_INFO 2081 "raid10: raid set %s active with %d out of %d devices\n", 2082 mdname(mddev), mddev->raid_disks - mddev->degraded, 2083 mddev->raid_disks); 2084 /* 2085 * Ok, everything is just fine now 2086 */ 2087 mddev->array_size = size << (conf->chunk_shift-1); 2088 mddev->resync_max_sectors = size << conf->chunk_shift; 2089 2090 mddev->queue->unplug_fn = raid10_unplug; 2091 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2092 mddev->queue->backing_dev_info.congested_data = mddev; 2093 2094 /* Calculate max read-ahead size. 2095 * We need to readahead at least twice a whole stripe.... 2096 * maybe... 2097 */ 2098 { 2099 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2100 stripe /= conf->near_copies; 2101 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2102 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2103 } 2104 2105 if (conf->near_copies < mddev->raid_disks) 2106 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2107 return 0; 2108 2109 out_free_conf: 2110 if (conf->r10bio_pool) 2111 mempool_destroy(conf->r10bio_pool); 2112 safe_put_page(conf->tmppage); 2113 kfree(conf->mirrors); 2114 kfree(conf); 2115 mddev->private = NULL; 2116 out: 2117 return -EIO; 2118 } 2119 2120 static int stop(mddev_t *mddev) 2121 { 2122 conf_t *conf = mddev_to_conf(mddev); 2123 2124 md_unregister_thread(mddev->thread); 2125 mddev->thread = NULL; 2126 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2127 if (conf->r10bio_pool) 2128 mempool_destroy(conf->r10bio_pool); 2129 kfree(conf->mirrors); 2130 kfree(conf); 2131 mddev->private = NULL; 2132 return 0; 2133 } 2134 2135 static void raid10_quiesce(mddev_t *mddev, int state) 2136 { 2137 conf_t *conf = mddev_to_conf(mddev); 2138 2139 switch(state) { 2140 case 1: 2141 raise_barrier(conf, 0); 2142 break; 2143 case 0: 2144 lower_barrier(conf); 2145 break; 2146 } 2147 if (mddev->thread) { 2148 if (mddev->bitmap) 2149 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2150 else 2151 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2152 md_wakeup_thread(mddev->thread); 2153 } 2154 } 2155 2156 static struct mdk_personality raid10_personality = 2157 { 2158 .name = "raid10", 2159 .level = 10, 2160 .owner = THIS_MODULE, 2161 .make_request = make_request, 2162 .run = run, 2163 .stop = stop, 2164 .status = status, 2165 .error_handler = error, 2166 .hot_add_disk = raid10_add_disk, 2167 .hot_remove_disk= raid10_remove_disk, 2168 .spare_active = raid10_spare_active, 2169 .sync_request = sync_request, 2170 .quiesce = raid10_quiesce, 2171 }; 2172 2173 static int __init raid_init(void) 2174 { 2175 return register_md_personality(&raid10_personality); 2176 } 2177 2178 static void raid_exit(void) 2179 { 2180 unregister_md_personality(&raid10_personality); 2181 } 2182 2183 module_init(raid_init); 2184 module_exit(raid_exit); 2185 MODULE_LICENSE("GPL"); 2186 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2187 MODULE_ALIAS("md-raid10"); 2188 MODULE_ALIAS("md-level-10"); 2189