xref: /linux/drivers/md/raid10.c (revision 04c71976500352d02f60616d2b960267d8c5fe24)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
24 
25 /*
26  * RAID10 provides a combination of RAID0 and RAID1 functionality.
27  * The layout of data is defined by
28  *    chunk_size
29  *    raid_disks
30  *    near_copies (stored in low byte of layout)
31  *    far_copies (stored in second byte of layout)
32  *    far_offset (stored in bit 16 of layout )
33  *
34  * The data to be stored is divided into chunks using chunksize.
35  * Each device is divided into far_copies sections.
36  * In each section, chunks are laid out in a style similar to raid0, but
37  * near_copies copies of each chunk is stored (each on a different drive).
38  * The starting device for each section is offset near_copies from the starting
39  * device of the previous section.
40  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41  * drive.
42  * near_copies and far_copies must be at least one, and their product is at most
43  * raid_disks.
44  *
45  * If far_offset is true, then the far_copies are handled a bit differently.
46  * The copies are still in different stripes, but instead of be very far apart
47  * on disk, there are adjacent stripes.
48  */
49 
50 /*
51  * Number of guaranteed r10bios in case of extreme VM load:
52  */
53 #define	NR_RAID10_BIOS 256
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	conf_t *conf = data;
63 	r10bio_t *r10_bio;
64 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
65 
66 	/* allocate a r10bio with room for raid_disks entries in the bios array */
67 	r10_bio = kzalloc(size, gfp_flags);
68 	if (!r10_bio)
69 		unplug_slaves(conf->mddev);
70 
71 	return r10_bio;
72 }
73 
74 static void r10bio_pool_free(void *r10_bio, void *data)
75 {
76 	kfree(r10_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 /*
86  * When performing a resync, we need to read and compare, so
87  * we need as many pages are there are copies.
88  * When performing a recovery, we need 2 bios, one for read,
89  * one for write (we recover only one drive per r10buf)
90  *
91  */
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	conf_t *conf = data;
95 	struct page *page;
96 	r10bio_t *r10_bio;
97 	struct bio *bio;
98 	int i, j;
99 	int nalloc;
100 
101 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 	if (!r10_bio) {
103 		unplug_slaves(conf->mddev);
104 		return NULL;
105 	}
106 
107 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 		nalloc = conf->copies; /* resync */
109 	else
110 		nalloc = 2; /* recovery */
111 
112 	/*
113 	 * Allocate bios.
114 	 */
115 	for (j = nalloc ; j-- ; ) {
116 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
117 		if (!bio)
118 			goto out_free_bio;
119 		r10_bio->devs[j].bio = bio;
120 	}
121 	/*
122 	 * Allocate RESYNC_PAGES data pages and attach them
123 	 * where needed.
124 	 */
125 	for (j = 0 ; j < nalloc; j++) {
126 		bio = r10_bio->devs[j].bio;
127 		for (i = 0; i < RESYNC_PAGES; i++) {
128 			page = alloc_page(gfp_flags);
129 			if (unlikely(!page))
130 				goto out_free_pages;
131 
132 			bio->bi_io_vec[i].bv_page = page;
133 		}
134 	}
135 
136 	return r10_bio;
137 
138 out_free_pages:
139 	for ( ; i > 0 ; i--)
140 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
141 	while (j--)
142 		for (i = 0; i < RESYNC_PAGES ; i++)
143 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
144 	j = -1;
145 out_free_bio:
146 	while ( ++j < nalloc )
147 		bio_put(r10_bio->devs[j].bio);
148 	r10bio_pool_free(r10_bio, conf);
149 	return NULL;
150 }
151 
152 static void r10buf_pool_free(void *__r10_bio, void *data)
153 {
154 	int i;
155 	conf_t *conf = data;
156 	r10bio_t *r10bio = __r10_bio;
157 	int j;
158 
159 	for (j=0; j < conf->copies; j++) {
160 		struct bio *bio = r10bio->devs[j].bio;
161 		if (bio) {
162 			for (i = 0; i < RESYNC_PAGES; i++) {
163 				safe_put_page(bio->bi_io_vec[i].bv_page);
164 				bio->bi_io_vec[i].bv_page = NULL;
165 			}
166 			bio_put(bio);
167 		}
168 	}
169 	r10bio_pool_free(r10bio, conf);
170 }
171 
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->copies; i++) {
177 		struct bio **bio = & r10_bio->devs[i].bio;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r10bio(r10bio_t *r10_bio)
185 {
186 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r10_bio);
195 	mempool_free(r10_bio, conf->r10bio_pool);
196 }
197 
198 static void put_buf(r10bio_t *r10_bio)
199 {
200 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
201 
202 	mempool_free(r10_bio, conf->r10buf_pool);
203 
204 	lower_barrier(conf);
205 }
206 
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209 	unsigned long flags;
210 	mddev_t *mddev = r10_bio->mddev;
211 	conf_t *conf = mddev_to_conf(mddev);
212 
213 	spin_lock_irqsave(&conf->device_lock, flags);
214 	list_add(&r10_bio->retry_list, &conf->retry_list);
215 	conf->nr_queued ++;
216 	spin_unlock_irqrestore(&conf->device_lock, flags);
217 
218 	md_wakeup_thread(mddev->thread);
219 }
220 
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void raid_end_bio_io(r10bio_t *r10_bio)
227 {
228 	struct bio *bio = r10_bio->master_bio;
229 
230 	bio_endio(bio,
231 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232 	free_r10bio(r10_bio);
233 }
234 
235 /*
236  * Update disk head position estimator based on IRQ completion info.
237  */
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
239 {
240 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
241 
242 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243 		r10_bio->devs[slot].addr + (r10_bio->sectors);
244 }
245 
246 static void raid10_end_read_request(struct bio *bio, int error)
247 {
248 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
250 	int slot, dev;
251 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
252 
253 
254 	slot = r10_bio->read_slot;
255 	dev = r10_bio->devs[slot].devnum;
256 	/*
257 	 * this branch is our 'one mirror IO has finished' event handler:
258 	 */
259 	update_head_pos(slot, r10_bio);
260 
261 	if (uptodate) {
262 		/*
263 		 * Set R10BIO_Uptodate in our master bio, so that
264 		 * we will return a good error code to the higher
265 		 * levels even if IO on some other mirrored buffer fails.
266 		 *
267 		 * The 'master' represents the composite IO operation to
268 		 * user-side. So if something waits for IO, then it will
269 		 * wait for the 'master' bio.
270 		 */
271 		set_bit(R10BIO_Uptodate, &r10_bio->state);
272 		raid_end_bio_io(r10_bio);
273 	} else {
274 		/*
275 		 * oops, read error:
276 		 */
277 		char b[BDEVNAME_SIZE];
278 		if (printk_ratelimit())
279 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
280 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
281 		reschedule_retry(r10_bio);
282 	}
283 
284 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
285 }
286 
287 static void raid10_end_write_request(struct bio *bio, int error)
288 {
289 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
291 	int slot, dev;
292 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
293 
294 	for (slot = 0; slot < conf->copies; slot++)
295 		if (r10_bio->devs[slot].bio == bio)
296 			break;
297 	dev = r10_bio->devs[slot].devnum;
298 
299 	/*
300 	 * this branch is our 'one mirror IO has finished' event handler:
301 	 */
302 	if (!uptodate) {
303 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
304 		/* an I/O failed, we can't clear the bitmap */
305 		set_bit(R10BIO_Degraded, &r10_bio->state);
306 	} else
307 		/*
308 		 * Set R10BIO_Uptodate in our master bio, so that
309 		 * we will return a good error code for to the higher
310 		 * levels even if IO on some other mirrored buffer fails.
311 		 *
312 		 * The 'master' represents the composite IO operation to
313 		 * user-side. So if something waits for IO, then it will
314 		 * wait for the 'master' bio.
315 		 */
316 		set_bit(R10BIO_Uptodate, &r10_bio->state);
317 
318 	update_head_pos(slot, r10_bio);
319 
320 	/*
321 	 *
322 	 * Let's see if all mirrored write operations have finished
323 	 * already.
324 	 */
325 	if (atomic_dec_and_test(&r10_bio->remaining)) {
326 		/* clear the bitmap if all writes complete successfully */
327 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
328 				r10_bio->sectors,
329 				!test_bit(R10BIO_Degraded, &r10_bio->state),
330 				0);
331 		md_write_end(r10_bio->mddev);
332 		raid_end_bio_io(r10_bio);
333 	}
334 
335 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
336 }
337 
338 
339 /*
340  * RAID10 layout manager
341  * Aswell as the chunksize and raid_disks count, there are two
342  * parameters: near_copies and far_copies.
343  * near_copies * far_copies must be <= raid_disks.
344  * Normally one of these will be 1.
345  * If both are 1, we get raid0.
346  * If near_copies == raid_disks, we get raid1.
347  *
348  * Chunks are layed out in raid0 style with near_copies copies of the
349  * first chunk, followed by near_copies copies of the next chunk and
350  * so on.
351  * If far_copies > 1, then after 1/far_copies of the array has been assigned
352  * as described above, we start again with a device offset of near_copies.
353  * So we effectively have another copy of the whole array further down all
354  * the drives, but with blocks on different drives.
355  * With this layout, and block is never stored twice on the one device.
356  *
357  * raid10_find_phys finds the sector offset of a given virtual sector
358  * on each device that it is on.
359  *
360  * raid10_find_virt does the reverse mapping, from a device and a
361  * sector offset to a virtual address
362  */
363 
364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
365 {
366 	int n,f;
367 	sector_t sector;
368 	sector_t chunk;
369 	sector_t stripe;
370 	int dev;
371 
372 	int slot = 0;
373 
374 	/* now calculate first sector/dev */
375 	chunk = r10bio->sector >> conf->chunk_shift;
376 	sector = r10bio->sector & conf->chunk_mask;
377 
378 	chunk *= conf->near_copies;
379 	stripe = chunk;
380 	dev = sector_div(stripe, conf->raid_disks);
381 	if (conf->far_offset)
382 		stripe *= conf->far_copies;
383 
384 	sector += stripe << conf->chunk_shift;
385 
386 	/* and calculate all the others */
387 	for (n=0; n < conf->near_copies; n++) {
388 		int d = dev;
389 		sector_t s = sector;
390 		r10bio->devs[slot].addr = sector;
391 		r10bio->devs[slot].devnum = d;
392 		slot++;
393 
394 		for (f = 1; f < conf->far_copies; f++) {
395 			d += conf->near_copies;
396 			if (d >= conf->raid_disks)
397 				d -= conf->raid_disks;
398 			s += conf->stride;
399 			r10bio->devs[slot].devnum = d;
400 			r10bio->devs[slot].addr = s;
401 			slot++;
402 		}
403 		dev++;
404 		if (dev >= conf->raid_disks) {
405 			dev = 0;
406 			sector += (conf->chunk_mask + 1);
407 		}
408 	}
409 	BUG_ON(slot != conf->copies);
410 }
411 
412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
413 {
414 	sector_t offset, chunk, vchunk;
415 
416 	offset = sector & conf->chunk_mask;
417 	if (conf->far_offset) {
418 		int fc;
419 		chunk = sector >> conf->chunk_shift;
420 		fc = sector_div(chunk, conf->far_copies);
421 		dev -= fc * conf->near_copies;
422 		if (dev < 0)
423 			dev += conf->raid_disks;
424 	} else {
425 		while (sector >= conf->stride) {
426 			sector -= conf->stride;
427 			if (dev < conf->near_copies)
428 				dev += conf->raid_disks - conf->near_copies;
429 			else
430 				dev -= conf->near_copies;
431 		}
432 		chunk = sector >> conf->chunk_shift;
433 	}
434 	vchunk = chunk * conf->raid_disks + dev;
435 	sector_div(vchunk, conf->near_copies);
436 	return (vchunk << conf->chunk_shift) + offset;
437 }
438 
439 /**
440  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
441  *	@q: request queue
442  *	@bio: the buffer head that's been built up so far
443  *	@biovec: the request that could be merged to it.
444  *
445  *	Return amount of bytes we can accept at this offset
446  *      If near_copies == raid_disk, there are no striping issues,
447  *      but in that case, the function isn't called at all.
448  */
449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio,
450 				struct bio_vec *bio_vec)
451 {
452 	mddev_t *mddev = q->queuedata;
453 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
454 	int max;
455 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
456 	unsigned int bio_sectors = bio->bi_size >> 9;
457 
458 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
459 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
460 	if (max <= bio_vec->bv_len && bio_sectors == 0)
461 		return bio_vec->bv_len;
462 	else
463 		return max;
464 }
465 
466 /*
467  * This routine returns the disk from which the requested read should
468  * be done. There is a per-array 'next expected sequential IO' sector
469  * number - if this matches on the next IO then we use the last disk.
470  * There is also a per-disk 'last know head position' sector that is
471  * maintained from IRQ contexts, both the normal and the resync IO
472  * completion handlers update this position correctly. If there is no
473  * perfect sequential match then we pick the disk whose head is closest.
474  *
475  * If there are 2 mirrors in the same 2 devices, performance degrades
476  * because position is mirror, not device based.
477  *
478  * The rdev for the device selected will have nr_pending incremented.
479  */
480 
481 /*
482  * FIXME: possibly should rethink readbalancing and do it differently
483  * depending on near_copies / far_copies geometry.
484  */
485 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
486 {
487 	const unsigned long this_sector = r10_bio->sector;
488 	int disk, slot, nslot;
489 	const int sectors = r10_bio->sectors;
490 	sector_t new_distance, current_distance;
491 	mdk_rdev_t *rdev;
492 
493 	raid10_find_phys(conf, r10_bio);
494 	rcu_read_lock();
495 	/*
496 	 * Check if we can balance. We can balance on the whole
497 	 * device if no resync is going on (recovery is ok), or below
498 	 * the resync window. We take the first readable disk when
499 	 * above the resync window.
500 	 */
501 	if (conf->mddev->recovery_cp < MaxSector
502 	    && (this_sector + sectors >= conf->next_resync)) {
503 		/* make sure that disk is operational */
504 		slot = 0;
505 		disk = r10_bio->devs[slot].devnum;
506 
507 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
508 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
509 		       !test_bit(In_sync, &rdev->flags)) {
510 			slot++;
511 			if (slot == conf->copies) {
512 				slot = 0;
513 				disk = -1;
514 				break;
515 			}
516 			disk = r10_bio->devs[slot].devnum;
517 		}
518 		goto rb_out;
519 	}
520 
521 
522 	/* make sure the disk is operational */
523 	slot = 0;
524 	disk = r10_bio->devs[slot].devnum;
525 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
526 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
527 	       !test_bit(In_sync, &rdev->flags)) {
528 		slot ++;
529 		if (slot == conf->copies) {
530 			disk = -1;
531 			goto rb_out;
532 		}
533 		disk = r10_bio->devs[slot].devnum;
534 	}
535 
536 
537 	current_distance = abs(r10_bio->devs[slot].addr -
538 			       conf->mirrors[disk].head_position);
539 
540 	/* Find the disk whose head is closest */
541 
542 	for (nslot = slot; nslot < conf->copies; nslot++) {
543 		int ndisk = r10_bio->devs[nslot].devnum;
544 
545 
546 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
547 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
548 		    !test_bit(In_sync, &rdev->flags))
549 			continue;
550 
551 		/* This optimisation is debatable, and completely destroys
552 		 * sequential read speed for 'far copies' arrays.  So only
553 		 * keep it for 'near' arrays, and review those later.
554 		 */
555 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
556 			disk = ndisk;
557 			slot = nslot;
558 			break;
559 		}
560 		new_distance = abs(r10_bio->devs[nslot].addr -
561 				   conf->mirrors[ndisk].head_position);
562 		if (new_distance < current_distance) {
563 			current_distance = new_distance;
564 			disk = ndisk;
565 			slot = nslot;
566 		}
567 	}
568 
569 rb_out:
570 	r10_bio->read_slot = slot;
571 /*	conf->next_seq_sect = this_sector + sectors;*/
572 
573 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
574 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
575 	else
576 		disk = -1;
577 	rcu_read_unlock();
578 
579 	return disk;
580 }
581 
582 static void unplug_slaves(mddev_t *mddev)
583 {
584 	conf_t *conf = mddev_to_conf(mddev);
585 	int i;
586 
587 	rcu_read_lock();
588 	for (i=0; i<mddev->raid_disks; i++) {
589 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
590 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
591 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
592 
593 			atomic_inc(&rdev->nr_pending);
594 			rcu_read_unlock();
595 
596 			if (r_queue->unplug_fn)
597 				r_queue->unplug_fn(r_queue);
598 
599 			rdev_dec_pending(rdev, mddev);
600 			rcu_read_lock();
601 		}
602 	}
603 	rcu_read_unlock();
604 }
605 
606 static void raid10_unplug(struct request_queue *q)
607 {
608 	mddev_t *mddev = q->queuedata;
609 
610 	unplug_slaves(q->queuedata);
611 	md_wakeup_thread(mddev->thread);
612 }
613 
614 static int raid10_congested(void *data, int bits)
615 {
616 	mddev_t *mddev = data;
617 	conf_t *conf = mddev_to_conf(mddev);
618 	int i, ret = 0;
619 
620 	rcu_read_lock();
621 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
622 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
623 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
624 			struct request_queue *q = bdev_get_queue(rdev->bdev);
625 
626 			ret |= bdi_congested(&q->backing_dev_info, bits);
627 		}
628 	}
629 	rcu_read_unlock();
630 	return ret;
631 }
632 
633 
634 /* Barriers....
635  * Sometimes we need to suspend IO while we do something else,
636  * either some resync/recovery, or reconfigure the array.
637  * To do this we raise a 'barrier'.
638  * The 'barrier' is a counter that can be raised multiple times
639  * to count how many activities are happening which preclude
640  * normal IO.
641  * We can only raise the barrier if there is no pending IO.
642  * i.e. if nr_pending == 0.
643  * We choose only to raise the barrier if no-one is waiting for the
644  * barrier to go down.  This means that as soon as an IO request
645  * is ready, no other operations which require a barrier will start
646  * until the IO request has had a chance.
647  *
648  * So: regular IO calls 'wait_barrier'.  When that returns there
649  *    is no backgroup IO happening,  It must arrange to call
650  *    allow_barrier when it has finished its IO.
651  * backgroup IO calls must call raise_barrier.  Once that returns
652  *    there is no normal IO happeing.  It must arrange to call
653  *    lower_barrier when the particular background IO completes.
654  */
655 #define RESYNC_DEPTH 32
656 
657 static void raise_barrier(conf_t *conf, int force)
658 {
659 	BUG_ON(force && !conf->barrier);
660 	spin_lock_irq(&conf->resync_lock);
661 
662 	/* Wait until no block IO is waiting (unless 'force') */
663 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
664 			    conf->resync_lock,
665 			    raid10_unplug(conf->mddev->queue));
666 
667 	/* block any new IO from starting */
668 	conf->barrier++;
669 
670 	/* No wait for all pending IO to complete */
671 	wait_event_lock_irq(conf->wait_barrier,
672 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
673 			    conf->resync_lock,
674 			    raid10_unplug(conf->mddev->queue));
675 
676 	spin_unlock_irq(&conf->resync_lock);
677 }
678 
679 static void lower_barrier(conf_t *conf)
680 {
681 	unsigned long flags;
682 	spin_lock_irqsave(&conf->resync_lock, flags);
683 	conf->barrier--;
684 	spin_unlock_irqrestore(&conf->resync_lock, flags);
685 	wake_up(&conf->wait_barrier);
686 }
687 
688 static void wait_barrier(conf_t *conf)
689 {
690 	spin_lock_irq(&conf->resync_lock);
691 	if (conf->barrier) {
692 		conf->nr_waiting++;
693 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
694 				    conf->resync_lock,
695 				    raid10_unplug(conf->mddev->queue));
696 		conf->nr_waiting--;
697 	}
698 	conf->nr_pending++;
699 	spin_unlock_irq(&conf->resync_lock);
700 }
701 
702 static void allow_barrier(conf_t *conf)
703 {
704 	unsigned long flags;
705 	spin_lock_irqsave(&conf->resync_lock, flags);
706 	conf->nr_pending--;
707 	spin_unlock_irqrestore(&conf->resync_lock, flags);
708 	wake_up(&conf->wait_barrier);
709 }
710 
711 static void freeze_array(conf_t *conf)
712 {
713 	/* stop syncio and normal IO and wait for everything to
714 	 * go quiet.
715 	 * We increment barrier and nr_waiting, and then
716 	 * wait until barrier+nr_pending match nr_queued+2
717 	 */
718 	spin_lock_irq(&conf->resync_lock);
719 	conf->barrier++;
720 	conf->nr_waiting++;
721 	wait_event_lock_irq(conf->wait_barrier,
722 			    conf->barrier+conf->nr_pending == conf->nr_queued+2,
723 			    conf->resync_lock,
724 			    raid10_unplug(conf->mddev->queue));
725 	spin_unlock_irq(&conf->resync_lock);
726 }
727 
728 static void unfreeze_array(conf_t *conf)
729 {
730 	/* reverse the effect of the freeze */
731 	spin_lock_irq(&conf->resync_lock);
732 	conf->barrier--;
733 	conf->nr_waiting--;
734 	wake_up(&conf->wait_barrier);
735 	spin_unlock_irq(&conf->resync_lock);
736 }
737 
738 static int make_request(struct request_queue *q, struct bio * bio)
739 {
740 	mddev_t *mddev = q->queuedata;
741 	conf_t *conf = mddev_to_conf(mddev);
742 	mirror_info_t *mirror;
743 	r10bio_t *r10_bio;
744 	struct bio *read_bio;
745 	int i;
746 	int chunk_sects = conf->chunk_mask + 1;
747 	const int rw = bio_data_dir(bio);
748 	const int do_sync = bio_sync(bio);
749 	struct bio_list bl;
750 	unsigned long flags;
751 
752 	if (unlikely(bio_barrier(bio))) {
753 		bio_endio(bio, -EOPNOTSUPP);
754 		return 0;
755 	}
756 
757 	/* If this request crosses a chunk boundary, we need to
758 	 * split it.  This will only happen for 1 PAGE (or less) requests.
759 	 */
760 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
761 		      > chunk_sects &&
762 		    conf->near_copies < conf->raid_disks)) {
763 		struct bio_pair *bp;
764 		/* Sanity check -- queue functions should prevent this happening */
765 		if (bio->bi_vcnt != 1 ||
766 		    bio->bi_idx != 0)
767 			goto bad_map;
768 		/* This is a one page bio that upper layers
769 		 * refuse to split for us, so we need to split it.
770 		 */
771 		bp = bio_split(bio, bio_split_pool,
772 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
773 		if (make_request(q, &bp->bio1))
774 			generic_make_request(&bp->bio1);
775 		if (make_request(q, &bp->bio2))
776 			generic_make_request(&bp->bio2);
777 
778 		bio_pair_release(bp);
779 		return 0;
780 	bad_map:
781 		printk("raid10_make_request bug: can't convert block across chunks"
782 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
783 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
784 
785 		bio_io_error(bio);
786 		return 0;
787 	}
788 
789 	md_write_start(mddev, bio);
790 
791 	/*
792 	 * Register the new request and wait if the reconstruction
793 	 * thread has put up a bar for new requests.
794 	 * Continue immediately if no resync is active currently.
795 	 */
796 	wait_barrier(conf);
797 
798 	disk_stat_inc(mddev->gendisk, ios[rw]);
799 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
800 
801 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
802 
803 	r10_bio->master_bio = bio;
804 	r10_bio->sectors = bio->bi_size >> 9;
805 
806 	r10_bio->mddev = mddev;
807 	r10_bio->sector = bio->bi_sector;
808 	r10_bio->state = 0;
809 
810 	if (rw == READ) {
811 		/*
812 		 * read balancing logic:
813 		 */
814 		int disk = read_balance(conf, r10_bio);
815 		int slot = r10_bio->read_slot;
816 		if (disk < 0) {
817 			raid_end_bio_io(r10_bio);
818 			return 0;
819 		}
820 		mirror = conf->mirrors + disk;
821 
822 		read_bio = bio_clone(bio, GFP_NOIO);
823 
824 		r10_bio->devs[slot].bio = read_bio;
825 
826 		read_bio->bi_sector = r10_bio->devs[slot].addr +
827 			mirror->rdev->data_offset;
828 		read_bio->bi_bdev = mirror->rdev->bdev;
829 		read_bio->bi_end_io = raid10_end_read_request;
830 		read_bio->bi_rw = READ | do_sync;
831 		read_bio->bi_private = r10_bio;
832 
833 		generic_make_request(read_bio);
834 		return 0;
835 	}
836 
837 	/*
838 	 * WRITE:
839 	 */
840 	/* first select target devices under spinlock and
841 	 * inc refcount on their rdev.  Record them by setting
842 	 * bios[x] to bio
843 	 */
844 	raid10_find_phys(conf, r10_bio);
845 	rcu_read_lock();
846 	for (i = 0;  i < conf->copies; i++) {
847 		int d = r10_bio->devs[i].devnum;
848 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
849 		if (rdev &&
850 		    !test_bit(Faulty, &rdev->flags)) {
851 			atomic_inc(&rdev->nr_pending);
852 			r10_bio->devs[i].bio = bio;
853 		} else {
854 			r10_bio->devs[i].bio = NULL;
855 			set_bit(R10BIO_Degraded, &r10_bio->state);
856 		}
857 	}
858 	rcu_read_unlock();
859 
860 	atomic_set(&r10_bio->remaining, 0);
861 
862 	bio_list_init(&bl);
863 	for (i = 0; i < conf->copies; i++) {
864 		struct bio *mbio;
865 		int d = r10_bio->devs[i].devnum;
866 		if (!r10_bio->devs[i].bio)
867 			continue;
868 
869 		mbio = bio_clone(bio, GFP_NOIO);
870 		r10_bio->devs[i].bio = mbio;
871 
872 		mbio->bi_sector	= r10_bio->devs[i].addr+
873 			conf->mirrors[d].rdev->data_offset;
874 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
875 		mbio->bi_end_io	= raid10_end_write_request;
876 		mbio->bi_rw = WRITE | do_sync;
877 		mbio->bi_private = r10_bio;
878 
879 		atomic_inc(&r10_bio->remaining);
880 		bio_list_add(&bl, mbio);
881 	}
882 
883 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
884 		/* the array is dead */
885 		md_write_end(mddev);
886 		raid_end_bio_io(r10_bio);
887 		return 0;
888 	}
889 
890 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
891 	spin_lock_irqsave(&conf->device_lock, flags);
892 	bio_list_merge(&conf->pending_bio_list, &bl);
893 	blk_plug_device(mddev->queue);
894 	spin_unlock_irqrestore(&conf->device_lock, flags);
895 
896 	if (do_sync)
897 		md_wakeup_thread(mddev->thread);
898 
899 	return 0;
900 }
901 
902 static void status(struct seq_file *seq, mddev_t *mddev)
903 {
904 	conf_t *conf = mddev_to_conf(mddev);
905 	int i;
906 
907 	if (conf->near_copies < conf->raid_disks)
908 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
909 	if (conf->near_copies > 1)
910 		seq_printf(seq, " %d near-copies", conf->near_copies);
911 	if (conf->far_copies > 1) {
912 		if (conf->far_offset)
913 			seq_printf(seq, " %d offset-copies", conf->far_copies);
914 		else
915 			seq_printf(seq, " %d far-copies", conf->far_copies);
916 	}
917 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
918 					conf->raid_disks - mddev->degraded);
919 	for (i = 0; i < conf->raid_disks; i++)
920 		seq_printf(seq, "%s",
921 			      conf->mirrors[i].rdev &&
922 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
923 	seq_printf(seq, "]");
924 }
925 
926 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
927 {
928 	char b[BDEVNAME_SIZE];
929 	conf_t *conf = mddev_to_conf(mddev);
930 
931 	/*
932 	 * If it is not operational, then we have already marked it as dead
933 	 * else if it is the last working disks, ignore the error, let the
934 	 * next level up know.
935 	 * else mark the drive as failed
936 	 */
937 	if (test_bit(In_sync, &rdev->flags)
938 	    && conf->raid_disks-mddev->degraded == 1)
939 		/*
940 		 * Don't fail the drive, just return an IO error.
941 		 * The test should really be more sophisticated than
942 		 * "working_disks == 1", but it isn't critical, and
943 		 * can wait until we do more sophisticated "is the drive
944 		 * really dead" tests...
945 		 */
946 		return;
947 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
948 		unsigned long flags;
949 		spin_lock_irqsave(&conf->device_lock, flags);
950 		mddev->degraded++;
951 		spin_unlock_irqrestore(&conf->device_lock, flags);
952 		/*
953 		 * if recovery is running, make sure it aborts.
954 		 */
955 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
956 	}
957 	set_bit(Faulty, &rdev->flags);
958 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
959 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
960 		"	Operation continuing on %d devices\n",
961 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
962 }
963 
964 static void print_conf(conf_t *conf)
965 {
966 	int i;
967 	mirror_info_t *tmp;
968 
969 	printk("RAID10 conf printout:\n");
970 	if (!conf) {
971 		printk("(!conf)\n");
972 		return;
973 	}
974 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
975 		conf->raid_disks);
976 
977 	for (i = 0; i < conf->raid_disks; i++) {
978 		char b[BDEVNAME_SIZE];
979 		tmp = conf->mirrors + i;
980 		if (tmp->rdev)
981 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
982 				i, !test_bit(In_sync, &tmp->rdev->flags),
983 			        !test_bit(Faulty, &tmp->rdev->flags),
984 				bdevname(tmp->rdev->bdev,b));
985 	}
986 }
987 
988 static void close_sync(conf_t *conf)
989 {
990 	wait_barrier(conf);
991 	allow_barrier(conf);
992 
993 	mempool_destroy(conf->r10buf_pool);
994 	conf->r10buf_pool = NULL;
995 }
996 
997 /* check if there are enough drives for
998  * every block to appear on atleast one
999  */
1000 static int enough(conf_t *conf)
1001 {
1002 	int first = 0;
1003 
1004 	do {
1005 		int n = conf->copies;
1006 		int cnt = 0;
1007 		while (n--) {
1008 			if (conf->mirrors[first].rdev)
1009 				cnt++;
1010 			first = (first+1) % conf->raid_disks;
1011 		}
1012 		if (cnt == 0)
1013 			return 0;
1014 	} while (first != 0);
1015 	return 1;
1016 }
1017 
1018 static int raid10_spare_active(mddev_t *mddev)
1019 {
1020 	int i;
1021 	conf_t *conf = mddev->private;
1022 	mirror_info_t *tmp;
1023 
1024 	/*
1025 	 * Find all non-in_sync disks within the RAID10 configuration
1026 	 * and mark them in_sync
1027 	 */
1028 	for (i = 0; i < conf->raid_disks; i++) {
1029 		tmp = conf->mirrors + i;
1030 		if (tmp->rdev
1031 		    && !test_bit(Faulty, &tmp->rdev->flags)
1032 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1033 			unsigned long flags;
1034 			spin_lock_irqsave(&conf->device_lock, flags);
1035 			mddev->degraded--;
1036 			spin_unlock_irqrestore(&conf->device_lock, flags);
1037 		}
1038 	}
1039 
1040 	print_conf(conf);
1041 	return 0;
1042 }
1043 
1044 
1045 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1046 {
1047 	conf_t *conf = mddev->private;
1048 	int found = 0;
1049 	int mirror;
1050 	mirror_info_t *p;
1051 
1052 	if (mddev->recovery_cp < MaxSector)
1053 		/* only hot-add to in-sync arrays, as recovery is
1054 		 * very different from resync
1055 		 */
1056 		return 0;
1057 	if (!enough(conf))
1058 		return 0;
1059 
1060 	if (rdev->saved_raid_disk >= 0 &&
1061 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1062 		mirror = rdev->saved_raid_disk;
1063 	else
1064 		mirror = 0;
1065 	for ( ; mirror < mddev->raid_disks; mirror++)
1066 		if ( !(p=conf->mirrors+mirror)->rdev) {
1067 
1068 			blk_queue_stack_limits(mddev->queue,
1069 					       rdev->bdev->bd_disk->queue);
1070 			/* as we don't honour merge_bvec_fn, we must never risk
1071 			 * violating it, so limit ->max_sector to one PAGE, as
1072 			 * a one page request is never in violation.
1073 			 */
1074 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1075 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1076 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
1077 
1078 			p->head_position = 0;
1079 			rdev->raid_disk = mirror;
1080 			found = 1;
1081 			if (rdev->saved_raid_disk != mirror)
1082 				conf->fullsync = 1;
1083 			rcu_assign_pointer(p->rdev, rdev);
1084 			break;
1085 		}
1086 
1087 	print_conf(conf);
1088 	return found;
1089 }
1090 
1091 static int raid10_remove_disk(mddev_t *mddev, int number)
1092 {
1093 	conf_t *conf = mddev->private;
1094 	int err = 0;
1095 	mdk_rdev_t *rdev;
1096 	mirror_info_t *p = conf->mirrors+ number;
1097 
1098 	print_conf(conf);
1099 	rdev = p->rdev;
1100 	if (rdev) {
1101 		if (test_bit(In_sync, &rdev->flags) ||
1102 		    atomic_read(&rdev->nr_pending)) {
1103 			err = -EBUSY;
1104 			goto abort;
1105 		}
1106 		p->rdev = NULL;
1107 		synchronize_rcu();
1108 		if (atomic_read(&rdev->nr_pending)) {
1109 			/* lost the race, try later */
1110 			err = -EBUSY;
1111 			p->rdev = rdev;
1112 		}
1113 	}
1114 abort:
1115 
1116 	print_conf(conf);
1117 	return err;
1118 }
1119 
1120 
1121 static void end_sync_read(struct bio *bio, int error)
1122 {
1123 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1124 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1125 	int i,d;
1126 
1127 	for (i=0; i<conf->copies; i++)
1128 		if (r10_bio->devs[i].bio == bio)
1129 			break;
1130 	BUG_ON(i == conf->copies);
1131 	update_head_pos(i, r10_bio);
1132 	d = r10_bio->devs[i].devnum;
1133 
1134 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1135 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1136 	else {
1137 		atomic_add(r10_bio->sectors,
1138 			   &conf->mirrors[d].rdev->corrected_errors);
1139 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1140 			md_error(r10_bio->mddev,
1141 				 conf->mirrors[d].rdev);
1142 	}
1143 
1144 	/* for reconstruct, we always reschedule after a read.
1145 	 * for resync, only after all reads
1146 	 */
1147 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1148 	    atomic_dec_and_test(&r10_bio->remaining)) {
1149 		/* we have read all the blocks,
1150 		 * do the comparison in process context in raid10d
1151 		 */
1152 		reschedule_retry(r10_bio);
1153 	}
1154 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1155 }
1156 
1157 static void end_sync_write(struct bio *bio, int error)
1158 {
1159 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1160 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1161 	mddev_t *mddev = r10_bio->mddev;
1162 	conf_t *conf = mddev_to_conf(mddev);
1163 	int i,d;
1164 
1165 	for (i = 0; i < conf->copies; i++)
1166 		if (r10_bio->devs[i].bio == bio)
1167 			break;
1168 	d = r10_bio->devs[i].devnum;
1169 
1170 	if (!uptodate)
1171 		md_error(mddev, conf->mirrors[d].rdev);
1172 	update_head_pos(i, r10_bio);
1173 
1174 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1175 		if (r10_bio->master_bio == NULL) {
1176 			/* the primary of several recovery bios */
1177 			md_done_sync(mddev, r10_bio->sectors, 1);
1178 			put_buf(r10_bio);
1179 			break;
1180 		} else {
1181 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1182 			put_buf(r10_bio);
1183 			r10_bio = r10_bio2;
1184 		}
1185 	}
1186 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1187 }
1188 
1189 /*
1190  * Note: sync and recover and handled very differently for raid10
1191  * This code is for resync.
1192  * For resync, we read through virtual addresses and read all blocks.
1193  * If there is any error, we schedule a write.  The lowest numbered
1194  * drive is authoritative.
1195  * However requests come for physical address, so we need to map.
1196  * For every physical address there are raid_disks/copies virtual addresses,
1197  * which is always are least one, but is not necessarly an integer.
1198  * This means that a physical address can span multiple chunks, so we may
1199  * have to submit multiple io requests for a single sync request.
1200  */
1201 /*
1202  * We check if all blocks are in-sync and only write to blocks that
1203  * aren't in sync
1204  */
1205 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1206 {
1207 	conf_t *conf = mddev_to_conf(mddev);
1208 	int i, first;
1209 	struct bio *tbio, *fbio;
1210 
1211 	atomic_set(&r10_bio->remaining, 1);
1212 
1213 	/* find the first device with a block */
1214 	for (i=0; i<conf->copies; i++)
1215 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1216 			break;
1217 
1218 	if (i == conf->copies)
1219 		goto done;
1220 
1221 	first = i;
1222 	fbio = r10_bio->devs[i].bio;
1223 
1224 	/* now find blocks with errors */
1225 	for (i=0 ; i < conf->copies ; i++) {
1226 		int  j, d;
1227 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1228 
1229 		tbio = r10_bio->devs[i].bio;
1230 
1231 		if (tbio->bi_end_io != end_sync_read)
1232 			continue;
1233 		if (i == first)
1234 			continue;
1235 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1236 			/* We know that the bi_io_vec layout is the same for
1237 			 * both 'first' and 'i', so we just compare them.
1238 			 * All vec entries are PAGE_SIZE;
1239 			 */
1240 			for (j = 0; j < vcnt; j++)
1241 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1242 					   page_address(tbio->bi_io_vec[j].bv_page),
1243 					   PAGE_SIZE))
1244 					break;
1245 			if (j == vcnt)
1246 				continue;
1247 			mddev->resync_mismatches += r10_bio->sectors;
1248 		}
1249 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1250 			/* Don't fix anything. */
1251 			continue;
1252 		/* Ok, we need to write this bio
1253 		 * First we need to fixup bv_offset, bv_len and
1254 		 * bi_vecs, as the read request might have corrupted these
1255 		 */
1256 		tbio->bi_vcnt = vcnt;
1257 		tbio->bi_size = r10_bio->sectors << 9;
1258 		tbio->bi_idx = 0;
1259 		tbio->bi_phys_segments = 0;
1260 		tbio->bi_hw_segments = 0;
1261 		tbio->bi_hw_front_size = 0;
1262 		tbio->bi_hw_back_size = 0;
1263 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1264 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1265 		tbio->bi_next = NULL;
1266 		tbio->bi_rw = WRITE;
1267 		tbio->bi_private = r10_bio;
1268 		tbio->bi_sector = r10_bio->devs[i].addr;
1269 
1270 		for (j=0; j < vcnt ; j++) {
1271 			tbio->bi_io_vec[j].bv_offset = 0;
1272 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1273 
1274 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1275 			       page_address(fbio->bi_io_vec[j].bv_page),
1276 			       PAGE_SIZE);
1277 		}
1278 		tbio->bi_end_io = end_sync_write;
1279 
1280 		d = r10_bio->devs[i].devnum;
1281 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1282 		atomic_inc(&r10_bio->remaining);
1283 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1284 
1285 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1286 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1287 		generic_make_request(tbio);
1288 	}
1289 
1290 done:
1291 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1292 		md_done_sync(mddev, r10_bio->sectors, 1);
1293 		put_buf(r10_bio);
1294 	}
1295 }
1296 
1297 /*
1298  * Now for the recovery code.
1299  * Recovery happens across physical sectors.
1300  * We recover all non-is_sync drives by finding the virtual address of
1301  * each, and then choose a working drive that also has that virt address.
1302  * There is a separate r10_bio for each non-in_sync drive.
1303  * Only the first two slots are in use. The first for reading,
1304  * The second for writing.
1305  *
1306  */
1307 
1308 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1309 {
1310 	conf_t *conf = mddev_to_conf(mddev);
1311 	int i, d;
1312 	struct bio *bio, *wbio;
1313 
1314 
1315 	/* move the pages across to the second bio
1316 	 * and submit the write request
1317 	 */
1318 	bio = r10_bio->devs[0].bio;
1319 	wbio = r10_bio->devs[1].bio;
1320 	for (i=0; i < wbio->bi_vcnt; i++) {
1321 		struct page *p = bio->bi_io_vec[i].bv_page;
1322 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1323 		wbio->bi_io_vec[i].bv_page = p;
1324 	}
1325 	d = r10_bio->devs[1].devnum;
1326 
1327 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1328 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1329 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1330 		generic_make_request(wbio);
1331 	else
1332 		bio_endio(wbio, -EIO);
1333 }
1334 
1335 
1336 /*
1337  * This is a kernel thread which:
1338  *
1339  *	1.	Retries failed read operations on working mirrors.
1340  *	2.	Updates the raid superblock when problems encounter.
1341  *	3.	Performs writes following reads for array synchronising.
1342  */
1343 
1344 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1345 {
1346 	int sect = 0; /* Offset from r10_bio->sector */
1347 	int sectors = r10_bio->sectors;
1348 	mdk_rdev_t*rdev;
1349 	while(sectors) {
1350 		int s = sectors;
1351 		int sl = r10_bio->read_slot;
1352 		int success = 0;
1353 		int start;
1354 
1355 		if (s > (PAGE_SIZE>>9))
1356 			s = PAGE_SIZE >> 9;
1357 
1358 		rcu_read_lock();
1359 		do {
1360 			int d = r10_bio->devs[sl].devnum;
1361 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1362 			if (rdev &&
1363 			    test_bit(In_sync, &rdev->flags)) {
1364 				atomic_inc(&rdev->nr_pending);
1365 				rcu_read_unlock();
1366 				success = sync_page_io(rdev->bdev,
1367 						       r10_bio->devs[sl].addr +
1368 						       sect + rdev->data_offset,
1369 						       s<<9,
1370 						       conf->tmppage, READ);
1371 				rdev_dec_pending(rdev, mddev);
1372 				rcu_read_lock();
1373 				if (success)
1374 					break;
1375 			}
1376 			sl++;
1377 			if (sl == conf->copies)
1378 				sl = 0;
1379 		} while (!success && sl != r10_bio->read_slot);
1380 		rcu_read_unlock();
1381 
1382 		if (!success) {
1383 			/* Cannot read from anywhere -- bye bye array */
1384 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1385 			md_error(mddev, conf->mirrors[dn].rdev);
1386 			break;
1387 		}
1388 
1389 		start = sl;
1390 		/* write it back and re-read */
1391 		rcu_read_lock();
1392 		while (sl != r10_bio->read_slot) {
1393 			int d;
1394 			if (sl==0)
1395 				sl = conf->copies;
1396 			sl--;
1397 			d = r10_bio->devs[sl].devnum;
1398 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1399 			if (rdev &&
1400 			    test_bit(In_sync, &rdev->flags)) {
1401 				atomic_inc(&rdev->nr_pending);
1402 				rcu_read_unlock();
1403 				atomic_add(s, &rdev->corrected_errors);
1404 				if (sync_page_io(rdev->bdev,
1405 						 r10_bio->devs[sl].addr +
1406 						 sect + rdev->data_offset,
1407 						 s<<9, conf->tmppage, WRITE)
1408 				    == 0)
1409 					/* Well, this device is dead */
1410 					md_error(mddev, rdev);
1411 				rdev_dec_pending(rdev, mddev);
1412 				rcu_read_lock();
1413 			}
1414 		}
1415 		sl = start;
1416 		while (sl != r10_bio->read_slot) {
1417 			int d;
1418 			if (sl==0)
1419 				sl = conf->copies;
1420 			sl--;
1421 			d = r10_bio->devs[sl].devnum;
1422 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1423 			if (rdev &&
1424 			    test_bit(In_sync, &rdev->flags)) {
1425 				char b[BDEVNAME_SIZE];
1426 				atomic_inc(&rdev->nr_pending);
1427 				rcu_read_unlock();
1428 				if (sync_page_io(rdev->bdev,
1429 						 r10_bio->devs[sl].addr +
1430 						 sect + rdev->data_offset,
1431 						 s<<9, conf->tmppage, READ) == 0)
1432 					/* Well, this device is dead */
1433 					md_error(mddev, rdev);
1434 				else
1435 					printk(KERN_INFO
1436 					       "raid10:%s: read error corrected"
1437 					       " (%d sectors at %llu on %s)\n",
1438 					       mdname(mddev), s,
1439 					       (unsigned long long)(sect+
1440 					            rdev->data_offset),
1441 					       bdevname(rdev->bdev, b));
1442 
1443 				rdev_dec_pending(rdev, mddev);
1444 				rcu_read_lock();
1445 			}
1446 		}
1447 		rcu_read_unlock();
1448 
1449 		sectors -= s;
1450 		sect += s;
1451 	}
1452 }
1453 
1454 static void raid10d(mddev_t *mddev)
1455 {
1456 	r10bio_t *r10_bio;
1457 	struct bio *bio;
1458 	unsigned long flags;
1459 	conf_t *conf = mddev_to_conf(mddev);
1460 	struct list_head *head = &conf->retry_list;
1461 	int unplug=0;
1462 	mdk_rdev_t *rdev;
1463 
1464 	md_check_recovery(mddev);
1465 
1466 	for (;;) {
1467 		char b[BDEVNAME_SIZE];
1468 		spin_lock_irqsave(&conf->device_lock, flags);
1469 
1470 		if (conf->pending_bio_list.head) {
1471 			bio = bio_list_get(&conf->pending_bio_list);
1472 			blk_remove_plug(mddev->queue);
1473 			spin_unlock_irqrestore(&conf->device_lock, flags);
1474 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1475 			bitmap_unplug(mddev->bitmap);
1476 
1477 			while (bio) { /* submit pending writes */
1478 				struct bio *next = bio->bi_next;
1479 				bio->bi_next = NULL;
1480 				generic_make_request(bio);
1481 				bio = next;
1482 			}
1483 			unplug = 1;
1484 
1485 			continue;
1486 		}
1487 
1488 		if (list_empty(head))
1489 			break;
1490 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1491 		list_del(head->prev);
1492 		conf->nr_queued--;
1493 		spin_unlock_irqrestore(&conf->device_lock, flags);
1494 
1495 		mddev = r10_bio->mddev;
1496 		conf = mddev_to_conf(mddev);
1497 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1498 			sync_request_write(mddev, r10_bio);
1499 			unplug = 1;
1500 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1501 			recovery_request_write(mddev, r10_bio);
1502 			unplug = 1;
1503 		} else {
1504 			int mirror;
1505 			/* we got a read error. Maybe the drive is bad.  Maybe just
1506 			 * the block and we can fix it.
1507 			 * We freeze all other IO, and try reading the block from
1508 			 * other devices.  When we find one, we re-write
1509 			 * and check it that fixes the read error.
1510 			 * This is all done synchronously while the array is
1511 			 * frozen.
1512 			 */
1513 			if (mddev->ro == 0) {
1514 				freeze_array(conf);
1515 				fix_read_error(conf, mddev, r10_bio);
1516 				unfreeze_array(conf);
1517 			}
1518 
1519 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1520 			r10_bio->devs[r10_bio->read_slot].bio =
1521 				mddev->ro ? IO_BLOCKED : NULL;
1522 			mirror = read_balance(conf, r10_bio);
1523 			if (mirror == -1) {
1524 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1525 				       " read error for block %llu\n",
1526 				       bdevname(bio->bi_bdev,b),
1527 				       (unsigned long long)r10_bio->sector);
1528 				raid_end_bio_io(r10_bio);
1529 				bio_put(bio);
1530 			} else {
1531 				const int do_sync = bio_sync(r10_bio->master_bio);
1532 				bio_put(bio);
1533 				rdev = conf->mirrors[mirror].rdev;
1534 				if (printk_ratelimit())
1535 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1536 					       " another mirror\n",
1537 					       bdevname(rdev->bdev,b),
1538 					       (unsigned long long)r10_bio->sector);
1539 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1540 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1541 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1542 					+ rdev->data_offset;
1543 				bio->bi_bdev = rdev->bdev;
1544 				bio->bi_rw = READ | do_sync;
1545 				bio->bi_private = r10_bio;
1546 				bio->bi_end_io = raid10_end_read_request;
1547 				unplug = 1;
1548 				generic_make_request(bio);
1549 			}
1550 		}
1551 	}
1552 	spin_unlock_irqrestore(&conf->device_lock, flags);
1553 	if (unplug)
1554 		unplug_slaves(mddev);
1555 }
1556 
1557 
1558 static int init_resync(conf_t *conf)
1559 {
1560 	int buffs;
1561 
1562 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1563 	BUG_ON(conf->r10buf_pool);
1564 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1565 	if (!conf->r10buf_pool)
1566 		return -ENOMEM;
1567 	conf->next_resync = 0;
1568 	return 0;
1569 }
1570 
1571 /*
1572  * perform a "sync" on one "block"
1573  *
1574  * We need to make sure that no normal I/O request - particularly write
1575  * requests - conflict with active sync requests.
1576  *
1577  * This is achieved by tracking pending requests and a 'barrier' concept
1578  * that can be installed to exclude normal IO requests.
1579  *
1580  * Resync and recovery are handled very differently.
1581  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1582  *
1583  * For resync, we iterate over virtual addresses, read all copies,
1584  * and update if there are differences.  If only one copy is live,
1585  * skip it.
1586  * For recovery, we iterate over physical addresses, read a good
1587  * value for each non-in_sync drive, and over-write.
1588  *
1589  * So, for recovery we may have several outstanding complex requests for a
1590  * given address, one for each out-of-sync device.  We model this by allocating
1591  * a number of r10_bio structures, one for each out-of-sync device.
1592  * As we setup these structures, we collect all bio's together into a list
1593  * which we then process collectively to add pages, and then process again
1594  * to pass to generic_make_request.
1595  *
1596  * The r10_bio structures are linked using a borrowed master_bio pointer.
1597  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1598  * has its remaining count decremented to 0, the whole complex operation
1599  * is complete.
1600  *
1601  */
1602 
1603 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1604 {
1605 	conf_t *conf = mddev_to_conf(mddev);
1606 	r10bio_t *r10_bio;
1607 	struct bio *biolist = NULL, *bio;
1608 	sector_t max_sector, nr_sectors;
1609 	int disk;
1610 	int i;
1611 	int max_sync;
1612 	int sync_blocks;
1613 
1614 	sector_t sectors_skipped = 0;
1615 	int chunks_skipped = 0;
1616 
1617 	if (!conf->r10buf_pool)
1618 		if (init_resync(conf))
1619 			return 0;
1620 
1621  skipped:
1622 	max_sector = mddev->size << 1;
1623 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1624 		max_sector = mddev->resync_max_sectors;
1625 	if (sector_nr >= max_sector) {
1626 		/* If we aborted, we need to abort the
1627 		 * sync on the 'current' bitmap chucks (there can
1628 		 * be several when recovering multiple devices).
1629 		 * as we may have started syncing it but not finished.
1630 		 * We can find the current address in
1631 		 * mddev->curr_resync, but for recovery,
1632 		 * we need to convert that to several
1633 		 * virtual addresses.
1634 		 */
1635 		if (mddev->curr_resync < max_sector) { /* aborted */
1636 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1637 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1638 						&sync_blocks, 1);
1639 			else for (i=0; i<conf->raid_disks; i++) {
1640 				sector_t sect =
1641 					raid10_find_virt(conf, mddev->curr_resync, i);
1642 				bitmap_end_sync(mddev->bitmap, sect,
1643 						&sync_blocks, 1);
1644 			}
1645 		} else /* completed sync */
1646 			conf->fullsync = 0;
1647 
1648 		bitmap_close_sync(mddev->bitmap);
1649 		close_sync(conf);
1650 		*skipped = 1;
1651 		return sectors_skipped;
1652 	}
1653 	if (chunks_skipped >= conf->raid_disks) {
1654 		/* if there has been nothing to do on any drive,
1655 		 * then there is nothing to do at all..
1656 		 */
1657 		*skipped = 1;
1658 		return (max_sector - sector_nr) + sectors_skipped;
1659 	}
1660 
1661 	/* make sure whole request will fit in a chunk - if chunks
1662 	 * are meaningful
1663 	 */
1664 	if (conf->near_copies < conf->raid_disks &&
1665 	    max_sector > (sector_nr | conf->chunk_mask))
1666 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1667 	/*
1668 	 * If there is non-resync activity waiting for us then
1669 	 * put in a delay to throttle resync.
1670 	 */
1671 	if (!go_faster && conf->nr_waiting)
1672 		msleep_interruptible(1000);
1673 
1674 	/* Again, very different code for resync and recovery.
1675 	 * Both must result in an r10bio with a list of bios that
1676 	 * have bi_end_io, bi_sector, bi_bdev set,
1677 	 * and bi_private set to the r10bio.
1678 	 * For recovery, we may actually create several r10bios
1679 	 * with 2 bios in each, that correspond to the bios in the main one.
1680 	 * In this case, the subordinate r10bios link back through a
1681 	 * borrowed master_bio pointer, and the counter in the master
1682 	 * includes a ref from each subordinate.
1683 	 */
1684 	/* First, we decide what to do and set ->bi_end_io
1685 	 * To end_sync_read if we want to read, and
1686 	 * end_sync_write if we will want to write.
1687 	 */
1688 
1689 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1690 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1691 		/* recovery... the complicated one */
1692 		int i, j, k;
1693 		r10_bio = NULL;
1694 
1695 		for (i=0 ; i<conf->raid_disks; i++)
1696 			if (conf->mirrors[i].rdev &&
1697 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1698 				int still_degraded = 0;
1699 				/* want to reconstruct this device */
1700 				r10bio_t *rb2 = r10_bio;
1701 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1702 				int must_sync;
1703 				/* Unless we are doing a full sync, we only need
1704 				 * to recover the block if it is set in the bitmap
1705 				 */
1706 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1707 							      &sync_blocks, 1);
1708 				if (sync_blocks < max_sync)
1709 					max_sync = sync_blocks;
1710 				if (!must_sync &&
1711 				    !conf->fullsync) {
1712 					/* yep, skip the sync_blocks here, but don't assume
1713 					 * that there will never be anything to do here
1714 					 */
1715 					chunks_skipped = -1;
1716 					continue;
1717 				}
1718 
1719 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1720 				raise_barrier(conf, rb2 != NULL);
1721 				atomic_set(&r10_bio->remaining, 0);
1722 
1723 				r10_bio->master_bio = (struct bio*)rb2;
1724 				if (rb2)
1725 					atomic_inc(&rb2->remaining);
1726 				r10_bio->mddev = mddev;
1727 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1728 				r10_bio->sector = sect;
1729 
1730 				raid10_find_phys(conf, r10_bio);
1731 				/* Need to check if this section will still be
1732 				 * degraded
1733 				 */
1734 				for (j=0; j<conf->copies;j++) {
1735 					int d = r10_bio->devs[j].devnum;
1736 					if (conf->mirrors[d].rdev == NULL ||
1737 					    test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1738 						still_degraded = 1;
1739 						break;
1740 					}
1741 				}
1742 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1743 							      &sync_blocks, still_degraded);
1744 
1745 				for (j=0; j<conf->copies;j++) {
1746 					int d = r10_bio->devs[j].devnum;
1747 					if (conf->mirrors[d].rdev &&
1748 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1749 						/* This is where we read from */
1750 						bio = r10_bio->devs[0].bio;
1751 						bio->bi_next = biolist;
1752 						biolist = bio;
1753 						bio->bi_private = r10_bio;
1754 						bio->bi_end_io = end_sync_read;
1755 						bio->bi_rw = READ;
1756 						bio->bi_sector = r10_bio->devs[j].addr +
1757 							conf->mirrors[d].rdev->data_offset;
1758 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1759 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1760 						atomic_inc(&r10_bio->remaining);
1761 						/* and we write to 'i' */
1762 
1763 						for (k=0; k<conf->copies; k++)
1764 							if (r10_bio->devs[k].devnum == i)
1765 								break;
1766 						BUG_ON(k == conf->copies);
1767 						bio = r10_bio->devs[1].bio;
1768 						bio->bi_next = biolist;
1769 						biolist = bio;
1770 						bio->bi_private = r10_bio;
1771 						bio->bi_end_io = end_sync_write;
1772 						bio->bi_rw = WRITE;
1773 						bio->bi_sector = r10_bio->devs[k].addr +
1774 							conf->mirrors[i].rdev->data_offset;
1775 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1776 
1777 						r10_bio->devs[0].devnum = d;
1778 						r10_bio->devs[1].devnum = i;
1779 
1780 						break;
1781 					}
1782 				}
1783 				if (j == conf->copies) {
1784 					/* Cannot recover, so abort the recovery */
1785 					put_buf(r10_bio);
1786 					r10_bio = rb2;
1787 					if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1788 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1789 						       mdname(mddev));
1790 					break;
1791 				}
1792 			}
1793 		if (biolist == NULL) {
1794 			while (r10_bio) {
1795 				r10bio_t *rb2 = r10_bio;
1796 				r10_bio = (r10bio_t*) rb2->master_bio;
1797 				rb2->master_bio = NULL;
1798 				put_buf(rb2);
1799 			}
1800 			goto giveup;
1801 		}
1802 	} else {
1803 		/* resync. Schedule a read for every block at this virt offset */
1804 		int count = 0;
1805 
1806 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1807 				       &sync_blocks, mddev->degraded) &&
1808 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1809 			/* We can skip this block */
1810 			*skipped = 1;
1811 			return sync_blocks + sectors_skipped;
1812 		}
1813 		if (sync_blocks < max_sync)
1814 			max_sync = sync_blocks;
1815 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1816 
1817 		r10_bio->mddev = mddev;
1818 		atomic_set(&r10_bio->remaining, 0);
1819 		raise_barrier(conf, 0);
1820 		conf->next_resync = sector_nr;
1821 
1822 		r10_bio->master_bio = NULL;
1823 		r10_bio->sector = sector_nr;
1824 		set_bit(R10BIO_IsSync, &r10_bio->state);
1825 		raid10_find_phys(conf, r10_bio);
1826 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1827 
1828 		for (i=0; i<conf->copies; i++) {
1829 			int d = r10_bio->devs[i].devnum;
1830 			bio = r10_bio->devs[i].bio;
1831 			bio->bi_end_io = NULL;
1832 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1833 			if (conf->mirrors[d].rdev == NULL ||
1834 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1835 				continue;
1836 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1837 			atomic_inc(&r10_bio->remaining);
1838 			bio->bi_next = biolist;
1839 			biolist = bio;
1840 			bio->bi_private = r10_bio;
1841 			bio->bi_end_io = end_sync_read;
1842 			bio->bi_rw = READ;
1843 			bio->bi_sector = r10_bio->devs[i].addr +
1844 				conf->mirrors[d].rdev->data_offset;
1845 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1846 			count++;
1847 		}
1848 
1849 		if (count < 2) {
1850 			for (i=0; i<conf->copies; i++) {
1851 				int d = r10_bio->devs[i].devnum;
1852 				if (r10_bio->devs[i].bio->bi_end_io)
1853 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1854 			}
1855 			put_buf(r10_bio);
1856 			biolist = NULL;
1857 			goto giveup;
1858 		}
1859 	}
1860 
1861 	for (bio = biolist; bio ; bio=bio->bi_next) {
1862 
1863 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1864 		if (bio->bi_end_io)
1865 			bio->bi_flags |= 1 << BIO_UPTODATE;
1866 		bio->bi_vcnt = 0;
1867 		bio->bi_idx = 0;
1868 		bio->bi_phys_segments = 0;
1869 		bio->bi_hw_segments = 0;
1870 		bio->bi_size = 0;
1871 	}
1872 
1873 	nr_sectors = 0;
1874 	if (sector_nr + max_sync < max_sector)
1875 		max_sector = sector_nr + max_sync;
1876 	do {
1877 		struct page *page;
1878 		int len = PAGE_SIZE;
1879 		disk = 0;
1880 		if (sector_nr + (len>>9) > max_sector)
1881 			len = (max_sector - sector_nr) << 9;
1882 		if (len == 0)
1883 			break;
1884 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1885 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1886 			if (bio_add_page(bio, page, len, 0) == 0) {
1887 				/* stop here */
1888 				struct bio *bio2;
1889 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1890 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1891 					/* remove last page from this bio */
1892 					bio2->bi_vcnt--;
1893 					bio2->bi_size -= len;
1894 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1895 				}
1896 				goto bio_full;
1897 			}
1898 			disk = i;
1899 		}
1900 		nr_sectors += len>>9;
1901 		sector_nr += len>>9;
1902 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1903  bio_full:
1904 	r10_bio->sectors = nr_sectors;
1905 
1906 	while (biolist) {
1907 		bio = biolist;
1908 		biolist = biolist->bi_next;
1909 
1910 		bio->bi_next = NULL;
1911 		r10_bio = bio->bi_private;
1912 		r10_bio->sectors = nr_sectors;
1913 
1914 		if (bio->bi_end_io == end_sync_read) {
1915 			md_sync_acct(bio->bi_bdev, nr_sectors);
1916 			generic_make_request(bio);
1917 		}
1918 	}
1919 
1920 	if (sectors_skipped)
1921 		/* pretend they weren't skipped, it makes
1922 		 * no important difference in this case
1923 		 */
1924 		md_done_sync(mddev, sectors_skipped, 1);
1925 
1926 	return sectors_skipped + nr_sectors;
1927  giveup:
1928 	/* There is nowhere to write, so all non-sync
1929 	 * drives must be failed, so try the next chunk...
1930 	 */
1931 	{
1932 	sector_t sec = max_sector - sector_nr;
1933 	sectors_skipped += sec;
1934 	chunks_skipped ++;
1935 	sector_nr = max_sector;
1936 	goto skipped;
1937 	}
1938 }
1939 
1940 static int run(mddev_t *mddev)
1941 {
1942 	conf_t *conf;
1943 	int i, disk_idx;
1944 	mirror_info_t *disk;
1945 	mdk_rdev_t *rdev;
1946 	struct list_head *tmp;
1947 	int nc, fc, fo;
1948 	sector_t stride, size;
1949 
1950 	if (mddev->chunk_size == 0) {
1951 		printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
1952 		return -EINVAL;
1953 	}
1954 
1955 	nc = mddev->layout & 255;
1956 	fc = (mddev->layout >> 8) & 255;
1957 	fo = mddev->layout & (1<<16);
1958 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1959 	    (mddev->layout >> 17)) {
1960 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1961 		       mdname(mddev), mddev->layout);
1962 		goto out;
1963 	}
1964 	/*
1965 	 * copy the already verified devices into our private RAID10
1966 	 * bookkeeping area. [whatever we allocate in run(),
1967 	 * should be freed in stop()]
1968 	 */
1969 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1970 	mddev->private = conf;
1971 	if (!conf) {
1972 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1973 			mdname(mddev));
1974 		goto out;
1975 	}
1976 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1977 				 GFP_KERNEL);
1978 	if (!conf->mirrors) {
1979 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1980 		       mdname(mddev));
1981 		goto out_free_conf;
1982 	}
1983 
1984 	conf->tmppage = alloc_page(GFP_KERNEL);
1985 	if (!conf->tmppage)
1986 		goto out_free_conf;
1987 
1988 	conf->mddev = mddev;
1989 	conf->raid_disks = mddev->raid_disks;
1990 	conf->near_copies = nc;
1991 	conf->far_copies = fc;
1992 	conf->copies = nc*fc;
1993 	conf->far_offset = fo;
1994 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1995 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1996 	size = mddev->size >> (conf->chunk_shift-1);
1997 	sector_div(size, fc);
1998 	size = size * conf->raid_disks;
1999 	sector_div(size, nc);
2000 	/* 'size' is now the number of chunks in the array */
2001 	/* calculate "used chunks per device" in 'stride' */
2002 	stride = size * conf->copies;
2003 
2004 	/* We need to round up when dividing by raid_disks to
2005 	 * get the stride size.
2006 	 */
2007 	stride += conf->raid_disks - 1;
2008 	sector_div(stride, conf->raid_disks);
2009 	mddev->size = stride  << (conf->chunk_shift-1);
2010 
2011 	if (fo)
2012 		stride = 1;
2013 	else
2014 		sector_div(stride, fc);
2015 	conf->stride = stride << conf->chunk_shift;
2016 
2017 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2018 						r10bio_pool_free, conf);
2019 	if (!conf->r10bio_pool) {
2020 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2021 			mdname(mddev));
2022 		goto out_free_conf;
2023 	}
2024 
2025 	ITERATE_RDEV(mddev, rdev, tmp) {
2026 		disk_idx = rdev->raid_disk;
2027 		if (disk_idx >= mddev->raid_disks
2028 		    || disk_idx < 0)
2029 			continue;
2030 		disk = conf->mirrors + disk_idx;
2031 
2032 		disk->rdev = rdev;
2033 
2034 		blk_queue_stack_limits(mddev->queue,
2035 				       rdev->bdev->bd_disk->queue);
2036 		/* as we don't honour merge_bvec_fn, we must never risk
2037 		 * violating it, so limit ->max_sector to one PAGE, as
2038 		 * a one page request is never in violation.
2039 		 */
2040 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2041 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
2042 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
2043 
2044 		disk->head_position = 0;
2045 	}
2046 	spin_lock_init(&conf->device_lock);
2047 	INIT_LIST_HEAD(&conf->retry_list);
2048 
2049 	spin_lock_init(&conf->resync_lock);
2050 	init_waitqueue_head(&conf->wait_barrier);
2051 
2052 	/* need to check that every block has at least one working mirror */
2053 	if (!enough(conf)) {
2054 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2055 		       mdname(mddev));
2056 		goto out_free_conf;
2057 	}
2058 
2059 	mddev->degraded = 0;
2060 	for (i = 0; i < conf->raid_disks; i++) {
2061 
2062 		disk = conf->mirrors + i;
2063 
2064 		if (!disk->rdev ||
2065 		    !test_bit(In_sync, &disk->rdev->flags)) {
2066 			disk->head_position = 0;
2067 			mddev->degraded++;
2068 		}
2069 	}
2070 
2071 
2072 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2073 	if (!mddev->thread) {
2074 		printk(KERN_ERR
2075 		       "raid10: couldn't allocate thread for %s\n",
2076 		       mdname(mddev));
2077 		goto out_free_conf;
2078 	}
2079 
2080 	printk(KERN_INFO
2081 		"raid10: raid set %s active with %d out of %d devices\n",
2082 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2083 		mddev->raid_disks);
2084 	/*
2085 	 * Ok, everything is just fine now
2086 	 */
2087 	mddev->array_size = size << (conf->chunk_shift-1);
2088 	mddev->resync_max_sectors = size << conf->chunk_shift;
2089 
2090 	mddev->queue->unplug_fn = raid10_unplug;
2091 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2092 	mddev->queue->backing_dev_info.congested_data = mddev;
2093 
2094 	/* Calculate max read-ahead size.
2095 	 * We need to readahead at least twice a whole stripe....
2096 	 * maybe...
2097 	 */
2098 	{
2099 		int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2100 		stripe /= conf->near_copies;
2101 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2102 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2103 	}
2104 
2105 	if (conf->near_copies < mddev->raid_disks)
2106 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2107 	return 0;
2108 
2109 out_free_conf:
2110 	if (conf->r10bio_pool)
2111 		mempool_destroy(conf->r10bio_pool);
2112 	safe_put_page(conf->tmppage);
2113 	kfree(conf->mirrors);
2114 	kfree(conf);
2115 	mddev->private = NULL;
2116 out:
2117 	return -EIO;
2118 }
2119 
2120 static int stop(mddev_t *mddev)
2121 {
2122 	conf_t *conf = mddev_to_conf(mddev);
2123 
2124 	md_unregister_thread(mddev->thread);
2125 	mddev->thread = NULL;
2126 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2127 	if (conf->r10bio_pool)
2128 		mempool_destroy(conf->r10bio_pool);
2129 	kfree(conf->mirrors);
2130 	kfree(conf);
2131 	mddev->private = NULL;
2132 	return 0;
2133 }
2134 
2135 static void raid10_quiesce(mddev_t *mddev, int state)
2136 {
2137 	conf_t *conf = mddev_to_conf(mddev);
2138 
2139 	switch(state) {
2140 	case 1:
2141 		raise_barrier(conf, 0);
2142 		break;
2143 	case 0:
2144 		lower_barrier(conf);
2145 		break;
2146 	}
2147 	if (mddev->thread) {
2148 		if (mddev->bitmap)
2149 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2150 		else
2151 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2152 		md_wakeup_thread(mddev->thread);
2153 	}
2154 }
2155 
2156 static struct mdk_personality raid10_personality =
2157 {
2158 	.name		= "raid10",
2159 	.level		= 10,
2160 	.owner		= THIS_MODULE,
2161 	.make_request	= make_request,
2162 	.run		= run,
2163 	.stop		= stop,
2164 	.status		= status,
2165 	.error_handler	= error,
2166 	.hot_add_disk	= raid10_add_disk,
2167 	.hot_remove_disk= raid10_remove_disk,
2168 	.spare_active	= raid10_spare_active,
2169 	.sync_request	= sync_request,
2170 	.quiesce	= raid10_quiesce,
2171 };
2172 
2173 static int __init raid_init(void)
2174 {
2175 	return register_md_personality(&raid10_personality);
2176 }
2177 
2178 static void raid_exit(void)
2179 {
2180 	unregister_md_personality(&raid10_personality);
2181 }
2182 
2183 module_init(raid_init);
2184 module_exit(raid_exit);
2185 MODULE_LICENSE("GPL");
2186 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2187 MODULE_ALIAS("md-raid10");
2188 MODULE_ALIAS("md-level-10");
2189