1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 23 #define RAID_1_10_NAME "raid10" 24 #include "raid10.h" 25 #include "raid0.h" 26 #include "md-bitmap.h" 27 28 /* 29 * RAID10 provides a combination of RAID0 and RAID1 functionality. 30 * The layout of data is defined by 31 * chunk_size 32 * raid_disks 33 * near_copies (stored in low byte of layout) 34 * far_copies (stored in second byte of layout) 35 * far_offset (stored in bit 16 of layout ) 36 * use_far_sets (stored in bit 17 of layout ) 37 * use_far_sets_bugfixed (stored in bit 18 of layout ) 38 * 39 * The data to be stored is divided into chunks using chunksize. Each device 40 * is divided into far_copies sections. In each section, chunks are laid out 41 * in a style similar to raid0, but near_copies copies of each chunk is stored 42 * (each on a different drive). The starting device for each section is offset 43 * near_copies from the starting device of the previous section. Thus there 44 * are (near_copies * far_copies) of each chunk, and each is on a different 45 * drive. near_copies and far_copies must be at least one, and their product 46 * is at most raid_disks. 47 * 48 * If far_offset is true, then the far_copies are handled a bit differently. 49 * The copies are still in different stripes, but instead of being very far 50 * apart on disk, there are adjacent stripes. 51 * 52 * The far and offset algorithms are handled slightly differently if 53 * 'use_far_sets' is true. In this case, the array's devices are grouped into 54 * sets that are (near_copies * far_copies) in size. The far copied stripes 55 * are still shifted by 'near_copies' devices, but this shifting stays confined 56 * to the set rather than the entire array. This is done to improve the number 57 * of device combinations that can fail without causing the array to fail. 58 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 59 * on a device): 60 * A B C D A B C D E 61 * ... ... 62 * D A B C E A B C D 63 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 64 * [A B] [C D] [A B] [C D E] 65 * |...| |...| |...| | ... | 66 * [B A] [D C] [B A] [E C D] 67 */ 68 69 static void allow_barrier(struct r10conf *conf); 70 static void lower_barrier(struct r10conf *conf); 71 static int _enough(struct r10conf *conf, int previous, int ignore); 72 static int enough(struct r10conf *conf, int ignore); 73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 74 int *skipped); 75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 76 static void end_reshape_write(struct bio *bio); 77 static void end_reshape(struct r10conf *conf); 78 79 #include "raid1-10.c" 80 81 #define NULL_CMD 82 #define cmd_before(conf, cmd) \ 83 do { \ 84 write_sequnlock_irq(&(conf)->resync_lock); \ 85 cmd; \ 86 } while (0) 87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 88 89 #define wait_event_barrier_cmd(conf, cond, cmd) \ 90 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 91 cmd_after(conf)) 92 93 #define wait_event_barrier(conf, cond) \ 94 wait_event_barrier_cmd(conf, cond, NULL_CMD) 95 96 /* 97 * for resync bio, r10bio pointer can be retrieved from the per-bio 98 * 'struct resync_pages'. 99 */ 100 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 101 { 102 return get_resync_pages(bio)->raid_bio; 103 } 104 105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 106 { 107 struct r10conf *conf = data; 108 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 109 110 /* allocate a r10bio with room for raid_disks entries in the 111 * bios array */ 112 return kzalloc(size, gfp_flags); 113 } 114 115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 116 /* amount of memory to reserve for resync requests */ 117 #define RESYNC_WINDOW (1024*1024) 118 /* maximum number of concurrent requests, memory permitting */ 119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 122 123 /* 124 * When performing a resync, we need to read and compare, so 125 * we need as many pages are there are copies. 126 * When performing a recovery, we need 2 bios, one for read, 127 * one for write (we recover only one drive per r10buf) 128 * 129 */ 130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct r10conf *conf = data; 133 struct r10bio *r10_bio; 134 struct bio *bio; 135 int j; 136 int nalloc, nalloc_rp; 137 struct resync_pages *rps; 138 139 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 140 if (!r10_bio) 141 return NULL; 142 143 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 144 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 145 nalloc = conf->copies; /* resync */ 146 else 147 nalloc = 2; /* recovery */ 148 149 /* allocate once for all bios */ 150 if (!conf->have_replacement) 151 nalloc_rp = nalloc; 152 else 153 nalloc_rp = nalloc * 2; 154 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 155 if (!rps) 156 goto out_free_r10bio; 157 158 /* 159 * Allocate bios. 160 */ 161 for (j = nalloc ; j-- ; ) { 162 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 163 if (!bio) 164 goto out_free_bio; 165 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 166 r10_bio->devs[j].bio = bio; 167 if (!conf->have_replacement) 168 continue; 169 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 170 if (!bio) 171 goto out_free_bio; 172 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 173 r10_bio->devs[j].repl_bio = bio; 174 } 175 /* 176 * Allocate RESYNC_PAGES data pages and attach them 177 * where needed. 178 */ 179 for (j = 0; j < nalloc; j++) { 180 struct bio *rbio = r10_bio->devs[j].repl_bio; 181 struct resync_pages *rp, *rp_repl; 182 183 rp = &rps[j]; 184 if (rbio) 185 rp_repl = &rps[nalloc + j]; 186 187 bio = r10_bio->devs[j].bio; 188 189 if (!j || test_bit(MD_RECOVERY_SYNC, 190 &conf->mddev->recovery)) { 191 if (resync_alloc_pages(rp, gfp_flags)) 192 goto out_free_pages; 193 } else { 194 memcpy(rp, &rps[0], sizeof(*rp)); 195 resync_get_all_pages(rp); 196 } 197 198 rp->raid_bio = r10_bio; 199 bio->bi_private = rp; 200 if (rbio) { 201 memcpy(rp_repl, rp, sizeof(*rp)); 202 rbio->bi_private = rp_repl; 203 } 204 } 205 206 return r10_bio; 207 208 out_free_pages: 209 while (--j >= 0) 210 resync_free_pages(&rps[j]); 211 212 j = 0; 213 out_free_bio: 214 for ( ; j < nalloc; j++) { 215 if (r10_bio->devs[j].bio) 216 bio_uninit(r10_bio->devs[j].bio); 217 kfree(r10_bio->devs[j].bio); 218 if (r10_bio->devs[j].repl_bio) 219 bio_uninit(r10_bio->devs[j].repl_bio); 220 kfree(r10_bio->devs[j].repl_bio); 221 } 222 kfree(rps); 223 out_free_r10bio: 224 rbio_pool_free(r10_bio, conf); 225 return NULL; 226 } 227 228 static void r10buf_pool_free(void *__r10_bio, void *data) 229 { 230 struct r10conf *conf = data; 231 struct r10bio *r10bio = __r10_bio; 232 int j; 233 struct resync_pages *rp = NULL; 234 235 for (j = conf->copies; j--; ) { 236 struct bio *bio = r10bio->devs[j].bio; 237 238 if (bio) { 239 rp = get_resync_pages(bio); 240 resync_free_pages(rp); 241 bio_uninit(bio); 242 kfree(bio); 243 } 244 245 bio = r10bio->devs[j].repl_bio; 246 if (bio) { 247 bio_uninit(bio); 248 kfree(bio); 249 } 250 } 251 252 /* resync pages array stored in the 1st bio's .bi_private */ 253 kfree(rp); 254 255 rbio_pool_free(r10bio, conf); 256 } 257 258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 259 { 260 int i; 261 262 for (i = 0; i < conf->geo.raid_disks; i++) { 263 struct bio **bio = & r10_bio->devs[i].bio; 264 if (!BIO_SPECIAL(*bio)) 265 bio_put(*bio); 266 *bio = NULL; 267 bio = &r10_bio->devs[i].repl_bio; 268 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 269 bio_put(*bio); 270 *bio = NULL; 271 } 272 } 273 274 static void free_r10bio(struct r10bio *r10_bio) 275 { 276 struct r10conf *conf = r10_bio->mddev->private; 277 278 put_all_bios(conf, r10_bio); 279 mempool_free(r10_bio, &conf->r10bio_pool); 280 } 281 282 static void put_buf(struct r10bio *r10_bio) 283 { 284 struct r10conf *conf = r10_bio->mddev->private; 285 286 mempool_free(r10_bio, &conf->r10buf_pool); 287 288 lower_barrier(conf); 289 } 290 291 static void wake_up_barrier(struct r10conf *conf) 292 { 293 if (wq_has_sleeper(&conf->wait_barrier)) 294 wake_up(&conf->wait_barrier); 295 } 296 297 static void reschedule_retry(struct r10bio *r10_bio) 298 { 299 unsigned long flags; 300 struct mddev *mddev = r10_bio->mddev; 301 struct r10conf *conf = mddev->private; 302 303 spin_lock_irqsave(&conf->device_lock, flags); 304 list_add(&r10_bio->retry_list, &conf->retry_list); 305 conf->nr_queued ++; 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 308 /* wake up frozen array... */ 309 wake_up(&conf->wait_barrier); 310 311 md_wakeup_thread(mddev->thread); 312 } 313 314 /* 315 * raid_end_bio_io() is called when we have finished servicing a mirrored 316 * operation and are ready to return a success/failure code to the buffer 317 * cache layer. 318 */ 319 static void raid_end_bio_io(struct r10bio *r10_bio) 320 { 321 struct bio *bio = r10_bio->master_bio; 322 struct r10conf *conf = r10_bio->mddev->private; 323 324 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 325 bio->bi_status = BLK_STS_IOERR; 326 327 bio_endio(bio); 328 /* 329 * Wake up any possible resync thread that waits for the device 330 * to go idle. 331 */ 332 allow_barrier(conf); 333 334 free_r10bio(r10_bio); 335 } 336 337 /* 338 * Update disk head position estimator based on IRQ completion info. 339 */ 340 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 341 { 342 struct r10conf *conf = r10_bio->mddev->private; 343 344 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 345 r10_bio->devs[slot].addr + (r10_bio->sectors); 346 } 347 348 /* 349 * Find the disk number which triggered given bio 350 */ 351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 352 struct bio *bio, int *slotp, int *replp) 353 { 354 int slot; 355 int repl = 0; 356 357 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 358 if (r10_bio->devs[slot].bio == bio) 359 break; 360 if (r10_bio->devs[slot].repl_bio == bio) { 361 repl = 1; 362 break; 363 } 364 } 365 366 update_head_pos(slot, r10_bio); 367 368 if (slotp) 369 *slotp = slot; 370 if (replp) 371 *replp = repl; 372 return r10_bio->devs[slot].devnum; 373 } 374 375 static void raid10_end_read_request(struct bio *bio) 376 { 377 int uptodate = !bio->bi_status; 378 struct r10bio *r10_bio = bio->bi_private; 379 int slot; 380 struct md_rdev *rdev; 381 struct r10conf *conf = r10_bio->mddev->private; 382 383 slot = r10_bio->read_slot; 384 rdev = r10_bio->devs[slot].rdev; 385 /* 386 * this branch is our 'one mirror IO has finished' event handler: 387 */ 388 update_head_pos(slot, r10_bio); 389 390 if (uptodate) { 391 /* 392 * Set R10BIO_Uptodate in our master bio, so that 393 * we will return a good error code to the higher 394 * levels even if IO on some other mirrored buffer fails. 395 * 396 * The 'master' represents the composite IO operation to 397 * user-side. So if something waits for IO, then it will 398 * wait for the 'master' bio. 399 */ 400 set_bit(R10BIO_Uptodate, &r10_bio->state); 401 } else { 402 /* If all other devices that store this block have 403 * failed, we want to return the error upwards rather 404 * than fail the last device. Here we redefine 405 * "uptodate" to mean "Don't want to retry" 406 */ 407 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 408 rdev->raid_disk)) 409 uptodate = 1; 410 } 411 if (uptodate) { 412 raid_end_bio_io(r10_bio); 413 rdev_dec_pending(rdev, conf->mddev); 414 } else { 415 /* 416 * oops, read error - keep the refcount on the rdev 417 */ 418 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 419 mdname(conf->mddev), 420 rdev->bdev, 421 (unsigned long long)r10_bio->sector); 422 set_bit(R10BIO_ReadError, &r10_bio->state); 423 reschedule_retry(r10_bio); 424 } 425 } 426 427 static void close_write(struct r10bio *r10_bio) 428 { 429 /* clear the bitmap if all writes complete successfully */ 430 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 431 r10_bio->sectors, 432 !test_bit(R10BIO_Degraded, &r10_bio->state), 433 0); 434 md_write_end(r10_bio->mddev); 435 } 436 437 static void one_write_done(struct r10bio *r10_bio) 438 { 439 if (atomic_dec_and_test(&r10_bio->remaining)) { 440 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 441 reschedule_retry(r10_bio); 442 else { 443 close_write(r10_bio); 444 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 445 reschedule_retry(r10_bio); 446 else 447 raid_end_bio_io(r10_bio); 448 } 449 } 450 } 451 452 static void raid10_end_write_request(struct bio *bio) 453 { 454 struct r10bio *r10_bio = bio->bi_private; 455 int dev; 456 int dec_rdev = 1; 457 struct r10conf *conf = r10_bio->mddev->private; 458 int slot, repl; 459 struct md_rdev *rdev = NULL; 460 struct bio *to_put = NULL; 461 bool discard_error; 462 463 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 464 465 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 466 467 if (repl) 468 rdev = conf->mirrors[dev].replacement; 469 if (!rdev) { 470 smp_rmb(); 471 repl = 0; 472 rdev = conf->mirrors[dev].rdev; 473 } 474 /* 475 * this branch is our 'one mirror IO has finished' event handler: 476 */ 477 if (bio->bi_status && !discard_error) { 478 if (repl) 479 /* Never record new bad blocks to replacement, 480 * just fail it. 481 */ 482 md_error(rdev->mddev, rdev); 483 else { 484 set_bit(WriteErrorSeen, &rdev->flags); 485 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 486 set_bit(MD_RECOVERY_NEEDED, 487 &rdev->mddev->recovery); 488 489 dec_rdev = 0; 490 if (test_bit(FailFast, &rdev->flags) && 491 (bio->bi_opf & MD_FAILFAST)) { 492 md_error(rdev->mddev, rdev); 493 } 494 495 /* 496 * When the device is faulty, it is not necessary to 497 * handle write error. 498 */ 499 if (!test_bit(Faulty, &rdev->flags)) 500 set_bit(R10BIO_WriteError, &r10_bio->state); 501 else { 502 /* Fail the request */ 503 set_bit(R10BIO_Degraded, &r10_bio->state); 504 r10_bio->devs[slot].bio = NULL; 505 to_put = bio; 506 dec_rdev = 1; 507 } 508 } 509 } else { 510 /* 511 * Set R10BIO_Uptodate in our master bio, so that 512 * we will return a good error code for to the higher 513 * levels even if IO on some other mirrored buffer fails. 514 * 515 * The 'master' represents the composite IO operation to 516 * user-side. So if something waits for IO, then it will 517 * wait for the 'master' bio. 518 * 519 * Do not set R10BIO_Uptodate if the current device is 520 * rebuilding or Faulty. This is because we cannot use 521 * such device for properly reading the data back (we could 522 * potentially use it, if the current write would have felt 523 * before rdev->recovery_offset, but for simplicity we don't 524 * check this here. 525 */ 526 if (test_bit(In_sync, &rdev->flags) && 527 !test_bit(Faulty, &rdev->flags)) 528 set_bit(R10BIO_Uptodate, &r10_bio->state); 529 530 /* Maybe we can clear some bad blocks. */ 531 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 532 r10_bio->sectors) && 533 !discard_error) { 534 bio_put(bio); 535 if (repl) 536 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 537 else 538 r10_bio->devs[slot].bio = IO_MADE_GOOD; 539 dec_rdev = 0; 540 set_bit(R10BIO_MadeGood, &r10_bio->state); 541 } 542 } 543 544 /* 545 * 546 * Let's see if all mirrored write operations have finished 547 * already. 548 */ 549 one_write_done(r10_bio); 550 if (dec_rdev) 551 rdev_dec_pending(rdev, conf->mddev); 552 if (to_put) 553 bio_put(to_put); 554 } 555 556 /* 557 * RAID10 layout manager 558 * As well as the chunksize and raid_disks count, there are two 559 * parameters: near_copies and far_copies. 560 * near_copies * far_copies must be <= raid_disks. 561 * Normally one of these will be 1. 562 * If both are 1, we get raid0. 563 * If near_copies == raid_disks, we get raid1. 564 * 565 * Chunks are laid out in raid0 style with near_copies copies of the 566 * first chunk, followed by near_copies copies of the next chunk and 567 * so on. 568 * If far_copies > 1, then after 1/far_copies of the array has been assigned 569 * as described above, we start again with a device offset of near_copies. 570 * So we effectively have another copy of the whole array further down all 571 * the drives, but with blocks on different drives. 572 * With this layout, and block is never stored twice on the one device. 573 * 574 * raid10_find_phys finds the sector offset of a given virtual sector 575 * on each device that it is on. 576 * 577 * raid10_find_virt does the reverse mapping, from a device and a 578 * sector offset to a virtual address 579 */ 580 581 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 582 { 583 int n,f; 584 sector_t sector; 585 sector_t chunk; 586 sector_t stripe; 587 int dev; 588 int slot = 0; 589 int last_far_set_start, last_far_set_size; 590 591 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 592 last_far_set_start *= geo->far_set_size; 593 594 last_far_set_size = geo->far_set_size; 595 last_far_set_size += (geo->raid_disks % geo->far_set_size); 596 597 /* now calculate first sector/dev */ 598 chunk = r10bio->sector >> geo->chunk_shift; 599 sector = r10bio->sector & geo->chunk_mask; 600 601 chunk *= geo->near_copies; 602 stripe = chunk; 603 dev = sector_div(stripe, geo->raid_disks); 604 if (geo->far_offset) 605 stripe *= geo->far_copies; 606 607 sector += stripe << geo->chunk_shift; 608 609 /* and calculate all the others */ 610 for (n = 0; n < geo->near_copies; n++) { 611 int d = dev; 612 int set; 613 sector_t s = sector; 614 r10bio->devs[slot].devnum = d; 615 r10bio->devs[slot].addr = s; 616 slot++; 617 618 for (f = 1; f < geo->far_copies; f++) { 619 set = d / geo->far_set_size; 620 d += geo->near_copies; 621 622 if ((geo->raid_disks % geo->far_set_size) && 623 (d > last_far_set_start)) { 624 d -= last_far_set_start; 625 d %= last_far_set_size; 626 d += last_far_set_start; 627 } else { 628 d %= geo->far_set_size; 629 d += geo->far_set_size * set; 630 } 631 s += geo->stride; 632 r10bio->devs[slot].devnum = d; 633 r10bio->devs[slot].addr = s; 634 slot++; 635 } 636 dev++; 637 if (dev >= geo->raid_disks) { 638 dev = 0; 639 sector += (geo->chunk_mask + 1); 640 } 641 } 642 } 643 644 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 645 { 646 struct geom *geo = &conf->geo; 647 648 if (conf->reshape_progress != MaxSector && 649 ((r10bio->sector >= conf->reshape_progress) != 650 conf->mddev->reshape_backwards)) { 651 set_bit(R10BIO_Previous, &r10bio->state); 652 geo = &conf->prev; 653 } else 654 clear_bit(R10BIO_Previous, &r10bio->state); 655 656 __raid10_find_phys(geo, r10bio); 657 } 658 659 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 660 { 661 sector_t offset, chunk, vchunk; 662 /* Never use conf->prev as this is only called during resync 663 * or recovery, so reshape isn't happening 664 */ 665 struct geom *geo = &conf->geo; 666 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 667 int far_set_size = geo->far_set_size; 668 int last_far_set_start; 669 670 if (geo->raid_disks % geo->far_set_size) { 671 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 672 last_far_set_start *= geo->far_set_size; 673 674 if (dev >= last_far_set_start) { 675 far_set_size = geo->far_set_size; 676 far_set_size += (geo->raid_disks % geo->far_set_size); 677 far_set_start = last_far_set_start; 678 } 679 } 680 681 offset = sector & geo->chunk_mask; 682 if (geo->far_offset) { 683 int fc; 684 chunk = sector >> geo->chunk_shift; 685 fc = sector_div(chunk, geo->far_copies); 686 dev -= fc * geo->near_copies; 687 if (dev < far_set_start) 688 dev += far_set_size; 689 } else { 690 while (sector >= geo->stride) { 691 sector -= geo->stride; 692 if (dev < (geo->near_copies + far_set_start)) 693 dev += far_set_size - geo->near_copies; 694 else 695 dev -= geo->near_copies; 696 } 697 chunk = sector >> geo->chunk_shift; 698 } 699 vchunk = chunk * geo->raid_disks + dev; 700 sector_div(vchunk, geo->near_copies); 701 return (vchunk << geo->chunk_shift) + offset; 702 } 703 704 /* 705 * This routine returns the disk from which the requested read should 706 * be done. There is a per-array 'next expected sequential IO' sector 707 * number - if this matches on the next IO then we use the last disk. 708 * There is also a per-disk 'last know head position' sector that is 709 * maintained from IRQ contexts, both the normal and the resync IO 710 * completion handlers update this position correctly. If there is no 711 * perfect sequential match then we pick the disk whose head is closest. 712 * 713 * If there are 2 mirrors in the same 2 devices, performance degrades 714 * because position is mirror, not device based. 715 * 716 * The rdev for the device selected will have nr_pending incremented. 717 */ 718 719 /* 720 * FIXME: possibly should rethink readbalancing and do it differently 721 * depending on near_copies / far_copies geometry. 722 */ 723 static struct md_rdev *read_balance(struct r10conf *conf, 724 struct r10bio *r10_bio, 725 int *max_sectors) 726 { 727 const sector_t this_sector = r10_bio->sector; 728 int disk, slot; 729 int sectors = r10_bio->sectors; 730 int best_good_sectors; 731 sector_t new_distance, best_dist; 732 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 733 int do_balance; 734 int best_dist_slot, best_pending_slot; 735 bool has_nonrot_disk = false; 736 unsigned int min_pending; 737 struct geom *geo = &conf->geo; 738 739 raid10_find_phys(conf, r10_bio); 740 best_dist_slot = -1; 741 min_pending = UINT_MAX; 742 best_dist_rdev = NULL; 743 best_pending_rdev = NULL; 744 best_dist = MaxSector; 745 best_good_sectors = 0; 746 do_balance = 1; 747 clear_bit(R10BIO_FailFast, &r10_bio->state); 748 749 if (raid1_should_read_first(conf->mddev, this_sector, sectors)) 750 do_balance = 0; 751 752 for (slot = 0; slot < conf->copies ; slot++) { 753 sector_t first_bad; 754 int bad_sectors; 755 sector_t dev_sector; 756 unsigned int pending; 757 bool nonrot; 758 759 if (r10_bio->devs[slot].bio == IO_BLOCKED) 760 continue; 761 disk = r10_bio->devs[slot].devnum; 762 rdev = conf->mirrors[disk].replacement; 763 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 764 r10_bio->devs[slot].addr + sectors > 765 rdev->recovery_offset) 766 rdev = conf->mirrors[disk].rdev; 767 if (rdev == NULL || 768 test_bit(Faulty, &rdev->flags)) 769 continue; 770 if (!test_bit(In_sync, &rdev->flags) && 771 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 772 continue; 773 774 dev_sector = r10_bio->devs[slot].addr; 775 if (is_badblock(rdev, dev_sector, sectors, 776 &first_bad, &bad_sectors)) { 777 if (best_dist < MaxSector) 778 /* Already have a better slot */ 779 continue; 780 if (first_bad <= dev_sector) { 781 /* Cannot read here. If this is the 782 * 'primary' device, then we must not read 783 * beyond 'bad_sectors' from another device. 784 */ 785 bad_sectors -= (dev_sector - first_bad); 786 if (!do_balance && sectors > bad_sectors) 787 sectors = bad_sectors; 788 if (best_good_sectors > sectors) 789 best_good_sectors = sectors; 790 } else { 791 sector_t good_sectors = 792 first_bad - dev_sector; 793 if (good_sectors > best_good_sectors) { 794 best_good_sectors = good_sectors; 795 best_dist_slot = slot; 796 best_dist_rdev = rdev; 797 } 798 if (!do_balance) 799 /* Must read from here */ 800 break; 801 } 802 continue; 803 } else 804 best_good_sectors = sectors; 805 806 if (!do_balance) 807 break; 808 809 nonrot = bdev_nonrot(rdev->bdev); 810 has_nonrot_disk |= nonrot; 811 pending = atomic_read(&rdev->nr_pending); 812 if (min_pending > pending && nonrot) { 813 min_pending = pending; 814 best_pending_slot = slot; 815 best_pending_rdev = rdev; 816 } 817 818 if (best_dist_slot >= 0) 819 /* At least 2 disks to choose from so failfast is OK */ 820 set_bit(R10BIO_FailFast, &r10_bio->state); 821 /* This optimisation is debatable, and completely destroys 822 * sequential read speed for 'far copies' arrays. So only 823 * keep it for 'near' arrays, and review those later. 824 */ 825 if (geo->near_copies > 1 && !pending) 826 new_distance = 0; 827 828 /* for far > 1 always use the lowest address */ 829 else if (geo->far_copies > 1) 830 new_distance = r10_bio->devs[slot].addr; 831 else 832 new_distance = abs(r10_bio->devs[slot].addr - 833 conf->mirrors[disk].head_position); 834 835 if (new_distance < best_dist) { 836 best_dist = new_distance; 837 best_dist_slot = slot; 838 best_dist_rdev = rdev; 839 } 840 } 841 if (slot >= conf->copies) { 842 if (has_nonrot_disk) { 843 slot = best_pending_slot; 844 rdev = best_pending_rdev; 845 } else { 846 slot = best_dist_slot; 847 rdev = best_dist_rdev; 848 } 849 } 850 851 if (slot >= 0) { 852 atomic_inc(&rdev->nr_pending); 853 r10_bio->read_slot = slot; 854 } else 855 rdev = NULL; 856 *max_sectors = best_good_sectors; 857 858 return rdev; 859 } 860 861 static void flush_pending_writes(struct r10conf *conf) 862 { 863 /* Any writes that have been queued but are awaiting 864 * bitmap updates get flushed here. 865 */ 866 spin_lock_irq(&conf->device_lock); 867 868 if (conf->pending_bio_list.head) { 869 struct blk_plug plug; 870 struct bio *bio; 871 872 bio = bio_list_get(&conf->pending_bio_list); 873 spin_unlock_irq(&conf->device_lock); 874 875 /* 876 * As this is called in a wait_event() loop (see freeze_array), 877 * current->state might be TASK_UNINTERRUPTIBLE which will 878 * cause a warning when we prepare to wait again. As it is 879 * rare that this path is taken, it is perfectly safe to force 880 * us to go around the wait_event() loop again, so the warning 881 * is a false-positive. Silence the warning by resetting 882 * thread state 883 */ 884 __set_current_state(TASK_RUNNING); 885 886 blk_start_plug(&plug); 887 raid1_prepare_flush_writes(conf->mddev->bitmap); 888 wake_up(&conf->wait_barrier); 889 890 while (bio) { /* submit pending writes */ 891 struct bio *next = bio->bi_next; 892 893 raid1_submit_write(bio); 894 bio = next; 895 cond_resched(); 896 } 897 blk_finish_plug(&plug); 898 } else 899 spin_unlock_irq(&conf->device_lock); 900 } 901 902 /* Barriers.... 903 * Sometimes we need to suspend IO while we do something else, 904 * either some resync/recovery, or reconfigure the array. 905 * To do this we raise a 'barrier'. 906 * The 'barrier' is a counter that can be raised multiple times 907 * to count how many activities are happening which preclude 908 * normal IO. 909 * We can only raise the barrier if there is no pending IO. 910 * i.e. if nr_pending == 0. 911 * We choose only to raise the barrier if no-one is waiting for the 912 * barrier to go down. This means that as soon as an IO request 913 * is ready, no other operations which require a barrier will start 914 * until the IO request has had a chance. 915 * 916 * So: regular IO calls 'wait_barrier'. When that returns there 917 * is no backgroup IO happening, It must arrange to call 918 * allow_barrier when it has finished its IO. 919 * backgroup IO calls must call raise_barrier. Once that returns 920 * there is no normal IO happeing. It must arrange to call 921 * lower_barrier when the particular background IO completes. 922 */ 923 924 static void raise_barrier(struct r10conf *conf, int force) 925 { 926 write_seqlock_irq(&conf->resync_lock); 927 928 if (WARN_ON_ONCE(force && !conf->barrier)) 929 force = false; 930 931 /* Wait until no block IO is waiting (unless 'force') */ 932 wait_event_barrier(conf, force || !conf->nr_waiting); 933 934 /* block any new IO from starting */ 935 WRITE_ONCE(conf->barrier, conf->barrier + 1); 936 937 /* Now wait for all pending IO to complete */ 938 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 939 conf->barrier < RESYNC_DEPTH); 940 941 write_sequnlock_irq(&conf->resync_lock); 942 } 943 944 static void lower_barrier(struct r10conf *conf) 945 { 946 unsigned long flags; 947 948 write_seqlock_irqsave(&conf->resync_lock, flags); 949 WRITE_ONCE(conf->barrier, conf->barrier - 1); 950 write_sequnlock_irqrestore(&conf->resync_lock, flags); 951 wake_up(&conf->wait_barrier); 952 } 953 954 static bool stop_waiting_barrier(struct r10conf *conf) 955 { 956 struct bio_list *bio_list = current->bio_list; 957 struct md_thread *thread; 958 959 /* barrier is dropped */ 960 if (!conf->barrier) 961 return true; 962 963 /* 964 * If there are already pending requests (preventing the barrier from 965 * rising completely), and the pre-process bio queue isn't empty, then 966 * don't wait, as we need to empty that queue to get the nr_pending 967 * count down. 968 */ 969 if (atomic_read(&conf->nr_pending) && bio_list && 970 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 971 return true; 972 973 /* daemon thread must exist while handling io */ 974 thread = rcu_dereference_protected(conf->mddev->thread, true); 975 /* 976 * move on if io is issued from raid10d(), nr_pending is not released 977 * from original io(see handle_read_error()). All raise barrier is 978 * blocked until this io is done. 979 */ 980 if (thread->tsk == current) { 981 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 982 return true; 983 } 984 985 return false; 986 } 987 988 static bool wait_barrier_nolock(struct r10conf *conf) 989 { 990 unsigned int seq = read_seqbegin(&conf->resync_lock); 991 992 if (READ_ONCE(conf->barrier)) 993 return false; 994 995 atomic_inc(&conf->nr_pending); 996 if (!read_seqretry(&conf->resync_lock, seq)) 997 return true; 998 999 if (atomic_dec_and_test(&conf->nr_pending)) 1000 wake_up_barrier(conf); 1001 1002 return false; 1003 } 1004 1005 static bool wait_barrier(struct r10conf *conf, bool nowait) 1006 { 1007 bool ret = true; 1008 1009 if (wait_barrier_nolock(conf)) 1010 return true; 1011 1012 write_seqlock_irq(&conf->resync_lock); 1013 if (conf->barrier) { 1014 /* Return false when nowait flag is set */ 1015 if (nowait) { 1016 ret = false; 1017 } else { 1018 conf->nr_waiting++; 1019 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier"); 1020 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1021 conf->nr_waiting--; 1022 } 1023 if (!conf->nr_waiting) 1024 wake_up(&conf->wait_barrier); 1025 } 1026 /* Only increment nr_pending when we wait */ 1027 if (ret) 1028 atomic_inc(&conf->nr_pending); 1029 write_sequnlock_irq(&conf->resync_lock); 1030 return ret; 1031 } 1032 1033 static void allow_barrier(struct r10conf *conf) 1034 { 1035 if ((atomic_dec_and_test(&conf->nr_pending)) || 1036 (conf->array_freeze_pending)) 1037 wake_up_barrier(conf); 1038 } 1039 1040 static void freeze_array(struct r10conf *conf, int extra) 1041 { 1042 /* stop syncio and normal IO and wait for everything to 1043 * go quiet. 1044 * We increment barrier and nr_waiting, and then 1045 * wait until nr_pending match nr_queued+extra 1046 * This is called in the context of one normal IO request 1047 * that has failed. Thus any sync request that might be pending 1048 * will be blocked by nr_pending, and we need to wait for 1049 * pending IO requests to complete or be queued for re-try. 1050 * Thus the number queued (nr_queued) plus this request (extra) 1051 * must match the number of pending IOs (nr_pending) before 1052 * we continue. 1053 */ 1054 write_seqlock_irq(&conf->resync_lock); 1055 conf->array_freeze_pending++; 1056 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1057 conf->nr_waiting++; 1058 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1059 conf->nr_queued + extra, flush_pending_writes(conf)); 1060 conf->array_freeze_pending--; 1061 write_sequnlock_irq(&conf->resync_lock); 1062 } 1063 1064 static void unfreeze_array(struct r10conf *conf) 1065 { 1066 /* reverse the effect of the freeze */ 1067 write_seqlock_irq(&conf->resync_lock); 1068 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1069 conf->nr_waiting--; 1070 wake_up(&conf->wait_barrier); 1071 write_sequnlock_irq(&conf->resync_lock); 1072 } 1073 1074 static sector_t choose_data_offset(struct r10bio *r10_bio, 1075 struct md_rdev *rdev) 1076 { 1077 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1078 test_bit(R10BIO_Previous, &r10_bio->state)) 1079 return rdev->data_offset; 1080 else 1081 return rdev->new_data_offset; 1082 } 1083 1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1085 { 1086 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1087 struct mddev *mddev = plug->cb.data; 1088 struct r10conf *conf = mddev->private; 1089 struct bio *bio; 1090 1091 if (from_schedule) { 1092 spin_lock_irq(&conf->device_lock); 1093 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1094 spin_unlock_irq(&conf->device_lock); 1095 wake_up_barrier(conf); 1096 md_wakeup_thread(mddev->thread); 1097 kfree(plug); 1098 return; 1099 } 1100 1101 /* we aren't scheduling, so we can do the write-out directly. */ 1102 bio = bio_list_get(&plug->pending); 1103 raid1_prepare_flush_writes(mddev->bitmap); 1104 wake_up_barrier(conf); 1105 1106 while (bio) { /* submit pending writes */ 1107 struct bio *next = bio->bi_next; 1108 1109 raid1_submit_write(bio); 1110 bio = next; 1111 cond_resched(); 1112 } 1113 kfree(plug); 1114 } 1115 1116 /* 1117 * 1. Register the new request and wait if the reconstruction thread has put 1118 * up a bar for new requests. Continue immediately if no resync is active 1119 * currently. 1120 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1121 */ 1122 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1123 struct bio *bio, sector_t sectors) 1124 { 1125 /* Bail out if REQ_NOWAIT is set for the bio */ 1126 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1127 bio_wouldblock_error(bio); 1128 return false; 1129 } 1130 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1131 bio->bi_iter.bi_sector < conf->reshape_progress && 1132 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1133 allow_barrier(conf); 1134 if (bio->bi_opf & REQ_NOWAIT) { 1135 bio_wouldblock_error(bio); 1136 return false; 1137 } 1138 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape"); 1139 wait_event(conf->wait_barrier, 1140 conf->reshape_progress <= bio->bi_iter.bi_sector || 1141 conf->reshape_progress >= bio->bi_iter.bi_sector + 1142 sectors); 1143 wait_barrier(conf, false); 1144 } 1145 return true; 1146 } 1147 1148 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1149 struct r10bio *r10_bio, bool io_accounting) 1150 { 1151 struct r10conf *conf = mddev->private; 1152 struct bio *read_bio; 1153 const enum req_op op = bio_op(bio); 1154 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1155 int max_sectors; 1156 struct md_rdev *rdev; 1157 char b[BDEVNAME_SIZE]; 1158 int slot = r10_bio->read_slot; 1159 struct md_rdev *err_rdev = NULL; 1160 gfp_t gfp = GFP_NOIO; 1161 1162 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1163 /* 1164 * This is an error retry, but we cannot 1165 * safely dereference the rdev in the r10_bio, 1166 * we must use the one in conf. 1167 * If it has already been disconnected (unlikely) 1168 * we lose the device name in error messages. 1169 */ 1170 int disk; 1171 /* 1172 * As we are blocking raid10, it is a little safer to 1173 * use __GFP_HIGH. 1174 */ 1175 gfp = GFP_NOIO | __GFP_HIGH; 1176 1177 disk = r10_bio->devs[slot].devnum; 1178 err_rdev = conf->mirrors[disk].rdev; 1179 if (err_rdev) 1180 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1181 else { 1182 strcpy(b, "???"); 1183 /* This never gets dereferenced */ 1184 err_rdev = r10_bio->devs[slot].rdev; 1185 } 1186 } 1187 1188 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1189 return; 1190 rdev = read_balance(conf, r10_bio, &max_sectors); 1191 if (!rdev) { 1192 if (err_rdev) { 1193 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1194 mdname(mddev), b, 1195 (unsigned long long)r10_bio->sector); 1196 } 1197 raid_end_bio_io(r10_bio); 1198 return; 1199 } 1200 if (err_rdev) 1201 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1202 mdname(mddev), 1203 rdev->bdev, 1204 (unsigned long long)r10_bio->sector); 1205 if (max_sectors < bio_sectors(bio)) { 1206 struct bio *split = bio_split(bio, max_sectors, 1207 gfp, &conf->bio_split); 1208 bio_chain(split, bio); 1209 allow_barrier(conf); 1210 submit_bio_noacct(bio); 1211 wait_barrier(conf, false); 1212 bio = split; 1213 r10_bio->master_bio = bio; 1214 r10_bio->sectors = max_sectors; 1215 } 1216 slot = r10_bio->read_slot; 1217 1218 if (io_accounting) { 1219 md_account_bio(mddev, &bio); 1220 r10_bio->master_bio = bio; 1221 } 1222 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1223 1224 r10_bio->devs[slot].bio = read_bio; 1225 r10_bio->devs[slot].rdev = rdev; 1226 1227 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1228 choose_data_offset(r10_bio, rdev); 1229 read_bio->bi_end_io = raid10_end_read_request; 1230 read_bio->bi_opf = op | do_sync; 1231 if (test_bit(FailFast, &rdev->flags) && 1232 test_bit(R10BIO_FailFast, &r10_bio->state)) 1233 read_bio->bi_opf |= MD_FAILFAST; 1234 read_bio->bi_private = r10_bio; 1235 mddev_trace_remap(mddev, read_bio, r10_bio->sector); 1236 submit_bio_noacct(read_bio); 1237 return; 1238 } 1239 1240 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1241 struct bio *bio, bool replacement, 1242 int n_copy) 1243 { 1244 const enum req_op op = bio_op(bio); 1245 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1246 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA; 1247 unsigned long flags; 1248 struct r10conf *conf = mddev->private; 1249 struct md_rdev *rdev; 1250 int devnum = r10_bio->devs[n_copy].devnum; 1251 struct bio *mbio; 1252 1253 rdev = replacement ? conf->mirrors[devnum].replacement : 1254 conf->mirrors[devnum].rdev; 1255 1256 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1257 if (replacement) 1258 r10_bio->devs[n_copy].repl_bio = mbio; 1259 else 1260 r10_bio->devs[n_copy].bio = mbio; 1261 1262 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1263 choose_data_offset(r10_bio, rdev)); 1264 mbio->bi_end_io = raid10_end_write_request; 1265 mbio->bi_opf = op | do_sync | do_fua; 1266 if (!replacement && test_bit(FailFast, 1267 &conf->mirrors[devnum].rdev->flags) 1268 && enough(conf, devnum)) 1269 mbio->bi_opf |= MD_FAILFAST; 1270 mbio->bi_private = r10_bio; 1271 mddev_trace_remap(mddev, mbio, r10_bio->sector); 1272 /* flush_pending_writes() needs access to the rdev so...*/ 1273 mbio->bi_bdev = (void *)rdev; 1274 1275 atomic_inc(&r10_bio->remaining); 1276 1277 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) { 1278 spin_lock_irqsave(&conf->device_lock, flags); 1279 bio_list_add(&conf->pending_bio_list, mbio); 1280 spin_unlock_irqrestore(&conf->device_lock, flags); 1281 md_wakeup_thread(mddev->thread); 1282 } 1283 } 1284 1285 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1286 { 1287 int i; 1288 struct r10conf *conf = mddev->private; 1289 struct md_rdev *blocked_rdev; 1290 1291 retry_wait: 1292 blocked_rdev = NULL; 1293 for (i = 0; i < conf->copies; i++) { 1294 struct md_rdev *rdev, *rrdev; 1295 1296 rdev = conf->mirrors[i].rdev; 1297 rrdev = conf->mirrors[i].replacement; 1298 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1299 atomic_inc(&rdev->nr_pending); 1300 blocked_rdev = rdev; 1301 break; 1302 } 1303 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1304 atomic_inc(&rrdev->nr_pending); 1305 blocked_rdev = rrdev; 1306 break; 1307 } 1308 1309 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1310 sector_t dev_sector = r10_bio->devs[i].addr; 1311 1312 /* 1313 * Discard request doesn't care the write result 1314 * so it doesn't need to wait blocked disk here. 1315 */ 1316 if (!r10_bio->sectors) 1317 continue; 1318 1319 if (rdev_has_badblock(rdev, dev_sector, 1320 r10_bio->sectors) < 0) { 1321 /* 1322 * Mustn't write here until the bad block 1323 * is acknowledged 1324 */ 1325 atomic_inc(&rdev->nr_pending); 1326 set_bit(BlockedBadBlocks, &rdev->flags); 1327 blocked_rdev = rdev; 1328 break; 1329 } 1330 } 1331 } 1332 1333 if (unlikely(blocked_rdev)) { 1334 /* Have to wait for this device to get unblocked, then retry */ 1335 allow_barrier(conf); 1336 mddev_add_trace_msg(conf->mddev, 1337 "raid10 %s wait rdev %d blocked", 1338 __func__, blocked_rdev->raid_disk); 1339 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1340 wait_barrier(conf, false); 1341 goto retry_wait; 1342 } 1343 } 1344 1345 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1346 struct r10bio *r10_bio) 1347 { 1348 struct r10conf *conf = mddev->private; 1349 int i; 1350 sector_t sectors; 1351 int max_sectors; 1352 1353 if ((mddev_is_clustered(mddev) && 1354 md_cluster_ops->area_resyncing(mddev, WRITE, 1355 bio->bi_iter.bi_sector, 1356 bio_end_sector(bio)))) { 1357 DEFINE_WAIT(w); 1358 /* Bail out if REQ_NOWAIT is set for the bio */ 1359 if (bio->bi_opf & REQ_NOWAIT) { 1360 bio_wouldblock_error(bio); 1361 return; 1362 } 1363 for (;;) { 1364 prepare_to_wait(&conf->wait_barrier, 1365 &w, TASK_IDLE); 1366 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1367 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1368 break; 1369 schedule(); 1370 } 1371 finish_wait(&conf->wait_barrier, &w); 1372 } 1373 1374 sectors = r10_bio->sectors; 1375 if (!regular_request_wait(mddev, conf, bio, sectors)) 1376 return; 1377 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1378 (mddev->reshape_backwards 1379 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1380 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1381 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1382 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1383 /* Need to update reshape_position in metadata */ 1384 mddev->reshape_position = conf->reshape_progress; 1385 set_mask_bits(&mddev->sb_flags, 0, 1386 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1387 md_wakeup_thread(mddev->thread); 1388 if (bio->bi_opf & REQ_NOWAIT) { 1389 allow_barrier(conf); 1390 bio_wouldblock_error(bio); 1391 return; 1392 } 1393 mddev_add_trace_msg(conf->mddev, 1394 "raid10 wait reshape metadata"); 1395 wait_event(mddev->sb_wait, 1396 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1397 1398 conf->reshape_safe = mddev->reshape_position; 1399 } 1400 1401 /* first select target devices under rcu_lock and 1402 * inc refcount on their rdev. Record them by setting 1403 * bios[x] to bio 1404 * If there are known/acknowledged bad blocks on any device 1405 * on which we have seen a write error, we want to avoid 1406 * writing to those blocks. This potentially requires several 1407 * writes to write around the bad blocks. Each set of writes 1408 * gets its own r10_bio with a set of bios attached. 1409 */ 1410 1411 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1412 raid10_find_phys(conf, r10_bio); 1413 1414 wait_blocked_dev(mddev, r10_bio); 1415 1416 max_sectors = r10_bio->sectors; 1417 1418 for (i = 0; i < conf->copies; i++) { 1419 int d = r10_bio->devs[i].devnum; 1420 struct md_rdev *rdev, *rrdev; 1421 1422 rdev = conf->mirrors[d].rdev; 1423 rrdev = conf->mirrors[d].replacement; 1424 if (rdev && (test_bit(Faulty, &rdev->flags))) 1425 rdev = NULL; 1426 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1427 rrdev = NULL; 1428 1429 r10_bio->devs[i].bio = NULL; 1430 r10_bio->devs[i].repl_bio = NULL; 1431 1432 if (!rdev && !rrdev) { 1433 set_bit(R10BIO_Degraded, &r10_bio->state); 1434 continue; 1435 } 1436 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1437 sector_t first_bad; 1438 sector_t dev_sector = r10_bio->devs[i].addr; 1439 int bad_sectors; 1440 int is_bad; 1441 1442 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1443 &first_bad, &bad_sectors); 1444 if (is_bad && first_bad <= dev_sector) { 1445 /* Cannot write here at all */ 1446 bad_sectors -= (dev_sector - first_bad); 1447 if (bad_sectors < max_sectors) 1448 /* Mustn't write more than bad_sectors 1449 * to other devices yet 1450 */ 1451 max_sectors = bad_sectors; 1452 /* We don't set R10BIO_Degraded as that 1453 * only applies if the disk is missing, 1454 * so it might be re-added, and we want to 1455 * know to recover this chunk. 1456 * In this case the device is here, and the 1457 * fact that this chunk is not in-sync is 1458 * recorded in the bad block log. 1459 */ 1460 continue; 1461 } 1462 if (is_bad) { 1463 int good_sectors = first_bad - dev_sector; 1464 if (good_sectors < max_sectors) 1465 max_sectors = good_sectors; 1466 } 1467 } 1468 if (rdev) { 1469 r10_bio->devs[i].bio = bio; 1470 atomic_inc(&rdev->nr_pending); 1471 } 1472 if (rrdev) { 1473 r10_bio->devs[i].repl_bio = bio; 1474 atomic_inc(&rrdev->nr_pending); 1475 } 1476 } 1477 1478 if (max_sectors < r10_bio->sectors) 1479 r10_bio->sectors = max_sectors; 1480 1481 if (r10_bio->sectors < bio_sectors(bio)) { 1482 struct bio *split = bio_split(bio, r10_bio->sectors, 1483 GFP_NOIO, &conf->bio_split); 1484 bio_chain(split, bio); 1485 allow_barrier(conf); 1486 submit_bio_noacct(bio); 1487 wait_barrier(conf, false); 1488 bio = split; 1489 r10_bio->master_bio = bio; 1490 } 1491 1492 md_account_bio(mddev, &bio); 1493 r10_bio->master_bio = bio; 1494 atomic_set(&r10_bio->remaining, 1); 1495 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1496 1497 for (i = 0; i < conf->copies; i++) { 1498 if (r10_bio->devs[i].bio) 1499 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1500 if (r10_bio->devs[i].repl_bio) 1501 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1502 } 1503 one_write_done(r10_bio); 1504 } 1505 1506 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1507 { 1508 struct r10conf *conf = mddev->private; 1509 struct r10bio *r10_bio; 1510 1511 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1512 1513 r10_bio->master_bio = bio; 1514 r10_bio->sectors = sectors; 1515 1516 r10_bio->mddev = mddev; 1517 r10_bio->sector = bio->bi_iter.bi_sector; 1518 r10_bio->state = 0; 1519 r10_bio->read_slot = -1; 1520 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1521 conf->geo.raid_disks); 1522 1523 if (bio_data_dir(bio) == READ) 1524 raid10_read_request(mddev, bio, r10_bio, true); 1525 else 1526 raid10_write_request(mddev, bio, r10_bio); 1527 } 1528 1529 static void raid_end_discard_bio(struct r10bio *r10bio) 1530 { 1531 struct r10conf *conf = r10bio->mddev->private; 1532 struct r10bio *first_r10bio; 1533 1534 while (atomic_dec_and_test(&r10bio->remaining)) { 1535 1536 allow_barrier(conf); 1537 1538 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1539 first_r10bio = (struct r10bio *)r10bio->master_bio; 1540 free_r10bio(r10bio); 1541 r10bio = first_r10bio; 1542 } else { 1543 md_write_end(r10bio->mddev); 1544 bio_endio(r10bio->master_bio); 1545 free_r10bio(r10bio); 1546 break; 1547 } 1548 } 1549 } 1550 1551 static void raid10_end_discard_request(struct bio *bio) 1552 { 1553 struct r10bio *r10_bio = bio->bi_private; 1554 struct r10conf *conf = r10_bio->mddev->private; 1555 struct md_rdev *rdev = NULL; 1556 int dev; 1557 int slot, repl; 1558 1559 /* 1560 * We don't care the return value of discard bio 1561 */ 1562 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1563 set_bit(R10BIO_Uptodate, &r10_bio->state); 1564 1565 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1566 rdev = repl ? conf->mirrors[dev].replacement : 1567 conf->mirrors[dev].rdev; 1568 1569 raid_end_discard_bio(r10_bio); 1570 rdev_dec_pending(rdev, conf->mddev); 1571 } 1572 1573 /* 1574 * There are some limitations to handle discard bio 1575 * 1st, the discard size is bigger than stripe_size*2. 1576 * 2st, if the discard bio spans reshape progress, we use the old way to 1577 * handle discard bio 1578 */ 1579 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1580 { 1581 struct r10conf *conf = mddev->private; 1582 struct geom *geo = &conf->geo; 1583 int far_copies = geo->far_copies; 1584 bool first_copy = true; 1585 struct r10bio *r10_bio, *first_r10bio; 1586 struct bio *split; 1587 int disk; 1588 sector_t chunk; 1589 unsigned int stripe_size; 1590 unsigned int stripe_data_disks; 1591 sector_t split_size; 1592 sector_t bio_start, bio_end; 1593 sector_t first_stripe_index, last_stripe_index; 1594 sector_t start_disk_offset; 1595 unsigned int start_disk_index; 1596 sector_t end_disk_offset; 1597 unsigned int end_disk_index; 1598 unsigned int remainder; 1599 1600 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1601 return -EAGAIN; 1602 1603 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { 1604 bio_wouldblock_error(bio); 1605 return 0; 1606 } 1607 wait_barrier(conf, false); 1608 1609 /* 1610 * Check reshape again to avoid reshape happens after checking 1611 * MD_RECOVERY_RESHAPE and before wait_barrier 1612 */ 1613 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1614 goto out; 1615 1616 if (geo->near_copies) 1617 stripe_data_disks = geo->raid_disks / geo->near_copies + 1618 geo->raid_disks % geo->near_copies; 1619 else 1620 stripe_data_disks = geo->raid_disks; 1621 1622 stripe_size = stripe_data_disks << geo->chunk_shift; 1623 1624 bio_start = bio->bi_iter.bi_sector; 1625 bio_end = bio_end_sector(bio); 1626 1627 /* 1628 * Maybe one discard bio is smaller than strip size or across one 1629 * stripe and discard region is larger than one stripe size. For far 1630 * offset layout, if the discard region is not aligned with stripe 1631 * size, there is hole when we submit discard bio to member disk. 1632 * For simplicity, we only handle discard bio which discard region 1633 * is bigger than stripe_size * 2 1634 */ 1635 if (bio_sectors(bio) < stripe_size*2) 1636 goto out; 1637 1638 /* 1639 * Keep bio aligned with strip size. 1640 */ 1641 div_u64_rem(bio_start, stripe_size, &remainder); 1642 if (remainder) { 1643 split_size = stripe_size - remainder; 1644 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1645 bio_chain(split, bio); 1646 allow_barrier(conf); 1647 /* Resend the fist split part */ 1648 submit_bio_noacct(split); 1649 wait_barrier(conf, false); 1650 } 1651 div_u64_rem(bio_end, stripe_size, &remainder); 1652 if (remainder) { 1653 split_size = bio_sectors(bio) - remainder; 1654 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1655 bio_chain(split, bio); 1656 allow_barrier(conf); 1657 /* Resend the second split part */ 1658 submit_bio_noacct(bio); 1659 bio = split; 1660 wait_barrier(conf, false); 1661 } 1662 1663 bio_start = bio->bi_iter.bi_sector; 1664 bio_end = bio_end_sector(bio); 1665 1666 /* 1667 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1668 * One stripe contains the chunks from all member disk (one chunk from 1669 * one disk at the same HBA address). For layout detail, see 'man md 4' 1670 */ 1671 chunk = bio_start >> geo->chunk_shift; 1672 chunk *= geo->near_copies; 1673 first_stripe_index = chunk; 1674 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1675 if (geo->far_offset) 1676 first_stripe_index *= geo->far_copies; 1677 start_disk_offset = (bio_start & geo->chunk_mask) + 1678 (first_stripe_index << geo->chunk_shift); 1679 1680 chunk = bio_end >> geo->chunk_shift; 1681 chunk *= geo->near_copies; 1682 last_stripe_index = chunk; 1683 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1684 if (geo->far_offset) 1685 last_stripe_index *= geo->far_copies; 1686 end_disk_offset = (bio_end & geo->chunk_mask) + 1687 (last_stripe_index << geo->chunk_shift); 1688 1689 retry_discard: 1690 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1691 r10_bio->mddev = mddev; 1692 r10_bio->state = 0; 1693 r10_bio->sectors = 0; 1694 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1695 wait_blocked_dev(mddev, r10_bio); 1696 1697 /* 1698 * For far layout it needs more than one r10bio to cover all regions. 1699 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1700 * to record the discard bio. Other r10bio->master_bio record the first 1701 * r10bio. The first r10bio only release after all other r10bios finish. 1702 * The discard bio returns only first r10bio finishes 1703 */ 1704 if (first_copy) { 1705 r10_bio->master_bio = bio; 1706 set_bit(R10BIO_Discard, &r10_bio->state); 1707 first_copy = false; 1708 first_r10bio = r10_bio; 1709 } else 1710 r10_bio->master_bio = (struct bio *)first_r10bio; 1711 1712 /* 1713 * first select target devices under rcu_lock and 1714 * inc refcount on their rdev. Record them by setting 1715 * bios[x] to bio 1716 */ 1717 for (disk = 0; disk < geo->raid_disks; disk++) { 1718 struct md_rdev *rdev, *rrdev; 1719 1720 rdev = conf->mirrors[disk].rdev; 1721 rrdev = conf->mirrors[disk].replacement; 1722 r10_bio->devs[disk].bio = NULL; 1723 r10_bio->devs[disk].repl_bio = NULL; 1724 1725 if (rdev && (test_bit(Faulty, &rdev->flags))) 1726 rdev = NULL; 1727 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1728 rrdev = NULL; 1729 if (!rdev && !rrdev) 1730 continue; 1731 1732 if (rdev) { 1733 r10_bio->devs[disk].bio = bio; 1734 atomic_inc(&rdev->nr_pending); 1735 } 1736 if (rrdev) { 1737 r10_bio->devs[disk].repl_bio = bio; 1738 atomic_inc(&rrdev->nr_pending); 1739 } 1740 } 1741 1742 atomic_set(&r10_bio->remaining, 1); 1743 for (disk = 0; disk < geo->raid_disks; disk++) { 1744 sector_t dev_start, dev_end; 1745 struct bio *mbio, *rbio = NULL; 1746 1747 /* 1748 * Now start to calculate the start and end address for each disk. 1749 * The space between dev_start and dev_end is the discard region. 1750 * 1751 * For dev_start, it needs to consider three conditions: 1752 * 1st, the disk is before start_disk, you can imagine the disk in 1753 * the next stripe. So the dev_start is the start address of next 1754 * stripe. 1755 * 2st, the disk is after start_disk, it means the disk is at the 1756 * same stripe of first disk 1757 * 3st, the first disk itself, we can use start_disk_offset directly 1758 */ 1759 if (disk < start_disk_index) 1760 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1761 else if (disk > start_disk_index) 1762 dev_start = first_stripe_index * mddev->chunk_sectors; 1763 else 1764 dev_start = start_disk_offset; 1765 1766 if (disk < end_disk_index) 1767 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1768 else if (disk > end_disk_index) 1769 dev_end = last_stripe_index * mddev->chunk_sectors; 1770 else 1771 dev_end = end_disk_offset; 1772 1773 /* 1774 * It only handles discard bio which size is >= stripe size, so 1775 * dev_end > dev_start all the time. 1776 * It doesn't need to use rcu lock to get rdev here. We already 1777 * add rdev->nr_pending in the first loop. 1778 */ 1779 if (r10_bio->devs[disk].bio) { 1780 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1781 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1782 &mddev->bio_set); 1783 mbio->bi_end_io = raid10_end_discard_request; 1784 mbio->bi_private = r10_bio; 1785 r10_bio->devs[disk].bio = mbio; 1786 r10_bio->devs[disk].devnum = disk; 1787 atomic_inc(&r10_bio->remaining); 1788 md_submit_discard_bio(mddev, rdev, mbio, 1789 dev_start + choose_data_offset(r10_bio, rdev), 1790 dev_end - dev_start); 1791 bio_endio(mbio); 1792 } 1793 if (r10_bio->devs[disk].repl_bio) { 1794 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1795 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1796 &mddev->bio_set); 1797 rbio->bi_end_io = raid10_end_discard_request; 1798 rbio->bi_private = r10_bio; 1799 r10_bio->devs[disk].repl_bio = rbio; 1800 r10_bio->devs[disk].devnum = disk; 1801 atomic_inc(&r10_bio->remaining); 1802 md_submit_discard_bio(mddev, rrdev, rbio, 1803 dev_start + choose_data_offset(r10_bio, rrdev), 1804 dev_end - dev_start); 1805 bio_endio(rbio); 1806 } 1807 } 1808 1809 if (!geo->far_offset && --far_copies) { 1810 first_stripe_index += geo->stride >> geo->chunk_shift; 1811 start_disk_offset += geo->stride; 1812 last_stripe_index += geo->stride >> geo->chunk_shift; 1813 end_disk_offset += geo->stride; 1814 atomic_inc(&first_r10bio->remaining); 1815 raid_end_discard_bio(r10_bio); 1816 wait_barrier(conf, false); 1817 goto retry_discard; 1818 } 1819 1820 raid_end_discard_bio(r10_bio); 1821 1822 return 0; 1823 out: 1824 allow_barrier(conf); 1825 return -EAGAIN; 1826 } 1827 1828 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1829 { 1830 struct r10conf *conf = mddev->private; 1831 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1832 int chunk_sects = chunk_mask + 1; 1833 int sectors = bio_sectors(bio); 1834 1835 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1836 && md_flush_request(mddev, bio)) 1837 return true; 1838 1839 if (!md_write_start(mddev, bio)) 1840 return false; 1841 1842 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1843 if (!raid10_handle_discard(mddev, bio)) 1844 return true; 1845 1846 /* 1847 * If this request crosses a chunk boundary, we need to split 1848 * it. 1849 */ 1850 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1851 sectors > chunk_sects 1852 && (conf->geo.near_copies < conf->geo.raid_disks 1853 || conf->prev.near_copies < 1854 conf->prev.raid_disks))) 1855 sectors = chunk_sects - 1856 (bio->bi_iter.bi_sector & 1857 (chunk_sects - 1)); 1858 __make_request(mddev, bio, sectors); 1859 1860 /* In case raid10d snuck in to freeze_array */ 1861 wake_up_barrier(conf); 1862 return true; 1863 } 1864 1865 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1866 { 1867 struct r10conf *conf = mddev->private; 1868 int i; 1869 1870 lockdep_assert_held(&mddev->lock); 1871 1872 if (conf->geo.near_copies < conf->geo.raid_disks) 1873 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1874 if (conf->geo.near_copies > 1) 1875 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1876 if (conf->geo.far_copies > 1) { 1877 if (conf->geo.far_offset) 1878 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1879 else 1880 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1881 if (conf->geo.far_set_size != conf->geo.raid_disks) 1882 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1883 } 1884 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1885 conf->geo.raid_disks - mddev->degraded); 1886 for (i = 0; i < conf->geo.raid_disks; i++) { 1887 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1888 1889 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1890 } 1891 seq_printf(seq, "]"); 1892 } 1893 1894 /* check if there are enough drives for 1895 * every block to appear on atleast one. 1896 * Don't consider the device numbered 'ignore' 1897 * as we might be about to remove it. 1898 */ 1899 static int _enough(struct r10conf *conf, int previous, int ignore) 1900 { 1901 int first = 0; 1902 int has_enough = 0; 1903 int disks, ncopies; 1904 if (previous) { 1905 disks = conf->prev.raid_disks; 1906 ncopies = conf->prev.near_copies; 1907 } else { 1908 disks = conf->geo.raid_disks; 1909 ncopies = conf->geo.near_copies; 1910 } 1911 1912 do { 1913 int n = conf->copies; 1914 int cnt = 0; 1915 int this = first; 1916 while (n--) { 1917 struct md_rdev *rdev; 1918 if (this != ignore && 1919 (rdev = conf->mirrors[this].rdev) && 1920 test_bit(In_sync, &rdev->flags)) 1921 cnt++; 1922 this = (this+1) % disks; 1923 } 1924 if (cnt == 0) 1925 goto out; 1926 first = (first + ncopies) % disks; 1927 } while (first != 0); 1928 has_enough = 1; 1929 out: 1930 return has_enough; 1931 } 1932 1933 static int enough(struct r10conf *conf, int ignore) 1934 { 1935 /* when calling 'enough', both 'prev' and 'geo' must 1936 * be stable. 1937 * This is ensured if ->reconfig_mutex or ->device_lock 1938 * is held. 1939 */ 1940 return _enough(conf, 0, ignore) && 1941 _enough(conf, 1, ignore); 1942 } 1943 1944 /** 1945 * raid10_error() - RAID10 error handler. 1946 * @mddev: affected md device. 1947 * @rdev: member device to fail. 1948 * 1949 * The routine acknowledges &rdev failure and determines new @mddev state. 1950 * If it failed, then: 1951 * - &MD_BROKEN flag is set in &mddev->flags. 1952 * Otherwise, it must be degraded: 1953 * - recovery is interrupted. 1954 * - &mddev->degraded is bumped. 1955 * 1956 * @rdev is marked as &Faulty excluding case when array is failed and 1957 * &mddev->fail_last_dev is off. 1958 */ 1959 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1960 { 1961 struct r10conf *conf = mddev->private; 1962 unsigned long flags; 1963 1964 spin_lock_irqsave(&conf->device_lock, flags); 1965 1966 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 1967 set_bit(MD_BROKEN, &mddev->flags); 1968 1969 if (!mddev->fail_last_dev) { 1970 spin_unlock_irqrestore(&conf->device_lock, flags); 1971 return; 1972 } 1973 } 1974 if (test_and_clear_bit(In_sync, &rdev->flags)) 1975 mddev->degraded++; 1976 1977 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1978 set_bit(Blocked, &rdev->flags); 1979 set_bit(Faulty, &rdev->flags); 1980 set_mask_bits(&mddev->sb_flags, 0, 1981 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1982 spin_unlock_irqrestore(&conf->device_lock, flags); 1983 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 1984 "md/raid10:%s: Operation continuing on %d devices.\n", 1985 mdname(mddev), rdev->bdev, 1986 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1987 } 1988 1989 static void print_conf(struct r10conf *conf) 1990 { 1991 int i; 1992 struct md_rdev *rdev; 1993 1994 pr_debug("RAID10 conf printout:\n"); 1995 if (!conf) { 1996 pr_debug("(!conf)\n"); 1997 return; 1998 } 1999 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2000 conf->geo.raid_disks); 2001 2002 lockdep_assert_held(&conf->mddev->reconfig_mutex); 2003 for (i = 0; i < conf->geo.raid_disks; i++) { 2004 rdev = conf->mirrors[i].rdev; 2005 if (rdev) 2006 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2007 i, !test_bit(In_sync, &rdev->flags), 2008 !test_bit(Faulty, &rdev->flags), 2009 rdev->bdev); 2010 } 2011 } 2012 2013 static void close_sync(struct r10conf *conf) 2014 { 2015 wait_barrier(conf, false); 2016 allow_barrier(conf); 2017 2018 mempool_exit(&conf->r10buf_pool); 2019 } 2020 2021 static int raid10_spare_active(struct mddev *mddev) 2022 { 2023 int i; 2024 struct r10conf *conf = mddev->private; 2025 struct raid10_info *tmp; 2026 int count = 0; 2027 unsigned long flags; 2028 2029 /* 2030 * Find all non-in_sync disks within the RAID10 configuration 2031 * and mark them in_sync 2032 */ 2033 for (i = 0; i < conf->geo.raid_disks; i++) { 2034 tmp = conf->mirrors + i; 2035 if (tmp->replacement 2036 && tmp->replacement->recovery_offset == MaxSector 2037 && !test_bit(Faulty, &tmp->replacement->flags) 2038 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2039 /* Replacement has just become active */ 2040 if (!tmp->rdev 2041 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2042 count++; 2043 if (tmp->rdev) { 2044 /* Replaced device not technically faulty, 2045 * but we need to be sure it gets removed 2046 * and never re-added. 2047 */ 2048 set_bit(Faulty, &tmp->rdev->flags); 2049 sysfs_notify_dirent_safe( 2050 tmp->rdev->sysfs_state); 2051 } 2052 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2053 } else if (tmp->rdev 2054 && tmp->rdev->recovery_offset == MaxSector 2055 && !test_bit(Faulty, &tmp->rdev->flags) 2056 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2057 count++; 2058 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2059 } 2060 } 2061 spin_lock_irqsave(&conf->device_lock, flags); 2062 mddev->degraded -= count; 2063 spin_unlock_irqrestore(&conf->device_lock, flags); 2064 2065 print_conf(conf); 2066 return count; 2067 } 2068 2069 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2070 { 2071 struct r10conf *conf = mddev->private; 2072 int err = -EEXIST; 2073 int mirror, repl_slot = -1; 2074 int first = 0; 2075 int last = conf->geo.raid_disks - 1; 2076 struct raid10_info *p; 2077 2078 if (mddev->recovery_cp < MaxSector) 2079 /* only hot-add to in-sync arrays, as recovery is 2080 * very different from resync 2081 */ 2082 return -EBUSY; 2083 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2084 return -EINVAL; 2085 2086 if (md_integrity_add_rdev(rdev, mddev)) 2087 return -ENXIO; 2088 2089 if (rdev->raid_disk >= 0) 2090 first = last = rdev->raid_disk; 2091 2092 if (rdev->saved_raid_disk >= first && 2093 rdev->saved_raid_disk < conf->geo.raid_disks && 2094 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2095 mirror = rdev->saved_raid_disk; 2096 else 2097 mirror = first; 2098 for ( ; mirror <= last ; mirror++) { 2099 p = &conf->mirrors[mirror]; 2100 if (p->recovery_disabled == mddev->recovery_disabled) 2101 continue; 2102 if (p->rdev) { 2103 if (test_bit(WantReplacement, &p->rdev->flags) && 2104 p->replacement == NULL && repl_slot < 0) 2105 repl_slot = mirror; 2106 continue; 2107 } 2108 2109 err = mddev_stack_new_rdev(mddev, rdev); 2110 if (err) 2111 return err; 2112 p->head_position = 0; 2113 p->recovery_disabled = mddev->recovery_disabled - 1; 2114 rdev->raid_disk = mirror; 2115 err = 0; 2116 if (rdev->saved_raid_disk != mirror) 2117 conf->fullsync = 1; 2118 WRITE_ONCE(p->rdev, rdev); 2119 break; 2120 } 2121 2122 if (err && repl_slot >= 0) { 2123 p = &conf->mirrors[repl_slot]; 2124 clear_bit(In_sync, &rdev->flags); 2125 set_bit(Replacement, &rdev->flags); 2126 rdev->raid_disk = repl_slot; 2127 err = mddev_stack_new_rdev(mddev, rdev); 2128 if (err) 2129 return err; 2130 conf->fullsync = 1; 2131 WRITE_ONCE(p->replacement, rdev); 2132 } 2133 2134 print_conf(conf); 2135 return err; 2136 } 2137 2138 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2139 { 2140 struct r10conf *conf = mddev->private; 2141 int err = 0; 2142 int number = rdev->raid_disk; 2143 struct md_rdev **rdevp; 2144 struct raid10_info *p; 2145 2146 print_conf(conf); 2147 if (unlikely(number >= mddev->raid_disks)) 2148 return 0; 2149 p = conf->mirrors + number; 2150 if (rdev == p->rdev) 2151 rdevp = &p->rdev; 2152 else if (rdev == p->replacement) 2153 rdevp = &p->replacement; 2154 else 2155 return 0; 2156 2157 if (test_bit(In_sync, &rdev->flags) || 2158 atomic_read(&rdev->nr_pending)) { 2159 err = -EBUSY; 2160 goto abort; 2161 } 2162 /* Only remove non-faulty devices if recovery 2163 * is not possible. 2164 */ 2165 if (!test_bit(Faulty, &rdev->flags) && 2166 mddev->recovery_disabled != p->recovery_disabled && 2167 (!p->replacement || p->replacement == rdev) && 2168 number < conf->geo.raid_disks && 2169 enough(conf, -1)) { 2170 err = -EBUSY; 2171 goto abort; 2172 } 2173 WRITE_ONCE(*rdevp, NULL); 2174 if (p->replacement) { 2175 /* We must have just cleared 'rdev' */ 2176 WRITE_ONCE(p->rdev, p->replacement); 2177 clear_bit(Replacement, &p->replacement->flags); 2178 WRITE_ONCE(p->replacement, NULL); 2179 } 2180 2181 clear_bit(WantReplacement, &rdev->flags); 2182 err = md_integrity_register(mddev); 2183 2184 abort: 2185 2186 print_conf(conf); 2187 return err; 2188 } 2189 2190 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2191 { 2192 struct r10conf *conf = r10_bio->mddev->private; 2193 2194 if (!bio->bi_status) 2195 set_bit(R10BIO_Uptodate, &r10_bio->state); 2196 else 2197 /* The write handler will notice the lack of 2198 * R10BIO_Uptodate and record any errors etc 2199 */ 2200 atomic_add(r10_bio->sectors, 2201 &conf->mirrors[d].rdev->corrected_errors); 2202 2203 /* for reconstruct, we always reschedule after a read. 2204 * for resync, only after all reads 2205 */ 2206 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2207 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2208 atomic_dec_and_test(&r10_bio->remaining)) { 2209 /* we have read all the blocks, 2210 * do the comparison in process context in raid10d 2211 */ 2212 reschedule_retry(r10_bio); 2213 } 2214 } 2215 2216 static void end_sync_read(struct bio *bio) 2217 { 2218 struct r10bio *r10_bio = get_resync_r10bio(bio); 2219 struct r10conf *conf = r10_bio->mddev->private; 2220 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2221 2222 __end_sync_read(r10_bio, bio, d); 2223 } 2224 2225 static void end_reshape_read(struct bio *bio) 2226 { 2227 /* reshape read bio isn't allocated from r10buf_pool */ 2228 struct r10bio *r10_bio = bio->bi_private; 2229 2230 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2231 } 2232 2233 static void end_sync_request(struct r10bio *r10_bio) 2234 { 2235 struct mddev *mddev = r10_bio->mddev; 2236 2237 while (atomic_dec_and_test(&r10_bio->remaining)) { 2238 if (r10_bio->master_bio == NULL) { 2239 /* the primary of several recovery bios */ 2240 sector_t s = r10_bio->sectors; 2241 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2242 test_bit(R10BIO_WriteError, &r10_bio->state)) 2243 reschedule_retry(r10_bio); 2244 else 2245 put_buf(r10_bio); 2246 md_done_sync(mddev, s, 1); 2247 break; 2248 } else { 2249 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2250 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2251 test_bit(R10BIO_WriteError, &r10_bio->state)) 2252 reschedule_retry(r10_bio); 2253 else 2254 put_buf(r10_bio); 2255 r10_bio = r10_bio2; 2256 } 2257 } 2258 } 2259 2260 static void end_sync_write(struct bio *bio) 2261 { 2262 struct r10bio *r10_bio = get_resync_r10bio(bio); 2263 struct mddev *mddev = r10_bio->mddev; 2264 struct r10conf *conf = mddev->private; 2265 int d; 2266 int slot; 2267 int repl; 2268 struct md_rdev *rdev = NULL; 2269 2270 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2271 if (repl) 2272 rdev = conf->mirrors[d].replacement; 2273 else 2274 rdev = conf->mirrors[d].rdev; 2275 2276 if (bio->bi_status) { 2277 if (repl) 2278 md_error(mddev, rdev); 2279 else { 2280 set_bit(WriteErrorSeen, &rdev->flags); 2281 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2282 set_bit(MD_RECOVERY_NEEDED, 2283 &rdev->mddev->recovery); 2284 set_bit(R10BIO_WriteError, &r10_bio->state); 2285 } 2286 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 2287 r10_bio->sectors)) { 2288 set_bit(R10BIO_MadeGood, &r10_bio->state); 2289 } 2290 2291 rdev_dec_pending(rdev, mddev); 2292 2293 end_sync_request(r10_bio); 2294 } 2295 2296 /* 2297 * Note: sync and recover and handled very differently for raid10 2298 * This code is for resync. 2299 * For resync, we read through virtual addresses and read all blocks. 2300 * If there is any error, we schedule a write. The lowest numbered 2301 * drive is authoritative. 2302 * However requests come for physical address, so we need to map. 2303 * For every physical address there are raid_disks/copies virtual addresses, 2304 * which is always are least one, but is not necessarly an integer. 2305 * This means that a physical address can span multiple chunks, so we may 2306 * have to submit multiple io requests for a single sync request. 2307 */ 2308 /* 2309 * We check if all blocks are in-sync and only write to blocks that 2310 * aren't in sync 2311 */ 2312 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2313 { 2314 struct r10conf *conf = mddev->private; 2315 int i, first; 2316 struct bio *tbio, *fbio; 2317 int vcnt; 2318 struct page **tpages, **fpages; 2319 2320 atomic_set(&r10_bio->remaining, 1); 2321 2322 /* find the first device with a block */ 2323 for (i=0; i<conf->copies; i++) 2324 if (!r10_bio->devs[i].bio->bi_status) 2325 break; 2326 2327 if (i == conf->copies) 2328 goto done; 2329 2330 first = i; 2331 fbio = r10_bio->devs[i].bio; 2332 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2333 fbio->bi_iter.bi_idx = 0; 2334 fpages = get_resync_pages(fbio)->pages; 2335 2336 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2337 /* now find blocks with errors */ 2338 for (i=0 ; i < conf->copies ; i++) { 2339 int j, d; 2340 struct md_rdev *rdev; 2341 struct resync_pages *rp; 2342 2343 tbio = r10_bio->devs[i].bio; 2344 2345 if (tbio->bi_end_io != end_sync_read) 2346 continue; 2347 if (i == first) 2348 continue; 2349 2350 tpages = get_resync_pages(tbio)->pages; 2351 d = r10_bio->devs[i].devnum; 2352 rdev = conf->mirrors[d].rdev; 2353 if (!r10_bio->devs[i].bio->bi_status) { 2354 /* We know that the bi_io_vec layout is the same for 2355 * both 'first' and 'i', so we just compare them. 2356 * All vec entries are PAGE_SIZE; 2357 */ 2358 int sectors = r10_bio->sectors; 2359 for (j = 0; j < vcnt; j++) { 2360 int len = PAGE_SIZE; 2361 if (sectors < (len / 512)) 2362 len = sectors * 512; 2363 if (memcmp(page_address(fpages[j]), 2364 page_address(tpages[j]), 2365 len)) 2366 break; 2367 sectors -= len/512; 2368 } 2369 if (j == vcnt) 2370 continue; 2371 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2372 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2373 /* Don't fix anything. */ 2374 continue; 2375 } else if (test_bit(FailFast, &rdev->flags)) { 2376 /* Just give up on this device */ 2377 md_error(rdev->mddev, rdev); 2378 continue; 2379 } 2380 /* Ok, we need to write this bio, either to correct an 2381 * inconsistency or to correct an unreadable block. 2382 * First we need to fixup bv_offset, bv_len and 2383 * bi_vecs, as the read request might have corrupted these 2384 */ 2385 rp = get_resync_pages(tbio); 2386 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2387 2388 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2389 2390 rp->raid_bio = r10_bio; 2391 tbio->bi_private = rp; 2392 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2393 tbio->bi_end_io = end_sync_write; 2394 2395 bio_copy_data(tbio, fbio); 2396 2397 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2398 atomic_inc(&r10_bio->remaining); 2399 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2400 2401 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2402 tbio->bi_opf |= MD_FAILFAST; 2403 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2404 submit_bio_noacct(tbio); 2405 } 2406 2407 /* Now write out to any replacement devices 2408 * that are active 2409 */ 2410 for (i = 0; i < conf->copies; i++) { 2411 int d; 2412 2413 tbio = r10_bio->devs[i].repl_bio; 2414 if (!tbio || !tbio->bi_end_io) 2415 continue; 2416 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2417 && r10_bio->devs[i].bio != fbio) 2418 bio_copy_data(tbio, fbio); 2419 d = r10_bio->devs[i].devnum; 2420 atomic_inc(&r10_bio->remaining); 2421 md_sync_acct(conf->mirrors[d].replacement->bdev, 2422 bio_sectors(tbio)); 2423 submit_bio_noacct(tbio); 2424 } 2425 2426 done: 2427 if (atomic_dec_and_test(&r10_bio->remaining)) { 2428 md_done_sync(mddev, r10_bio->sectors, 1); 2429 put_buf(r10_bio); 2430 } 2431 } 2432 2433 /* 2434 * Now for the recovery code. 2435 * Recovery happens across physical sectors. 2436 * We recover all non-is_sync drives by finding the virtual address of 2437 * each, and then choose a working drive that also has that virt address. 2438 * There is a separate r10_bio for each non-in_sync drive. 2439 * Only the first two slots are in use. The first for reading, 2440 * The second for writing. 2441 * 2442 */ 2443 static void fix_recovery_read_error(struct r10bio *r10_bio) 2444 { 2445 /* We got a read error during recovery. 2446 * We repeat the read in smaller page-sized sections. 2447 * If a read succeeds, write it to the new device or record 2448 * a bad block if we cannot. 2449 * If a read fails, record a bad block on both old and 2450 * new devices. 2451 */ 2452 struct mddev *mddev = r10_bio->mddev; 2453 struct r10conf *conf = mddev->private; 2454 struct bio *bio = r10_bio->devs[0].bio; 2455 sector_t sect = 0; 2456 int sectors = r10_bio->sectors; 2457 int idx = 0; 2458 int dr = r10_bio->devs[0].devnum; 2459 int dw = r10_bio->devs[1].devnum; 2460 struct page **pages = get_resync_pages(bio)->pages; 2461 2462 while (sectors) { 2463 int s = sectors; 2464 struct md_rdev *rdev; 2465 sector_t addr; 2466 int ok; 2467 2468 if (s > (PAGE_SIZE>>9)) 2469 s = PAGE_SIZE >> 9; 2470 2471 rdev = conf->mirrors[dr].rdev; 2472 addr = r10_bio->devs[0].addr + sect, 2473 ok = sync_page_io(rdev, 2474 addr, 2475 s << 9, 2476 pages[idx], 2477 REQ_OP_READ, false); 2478 if (ok) { 2479 rdev = conf->mirrors[dw].rdev; 2480 addr = r10_bio->devs[1].addr + sect; 2481 ok = sync_page_io(rdev, 2482 addr, 2483 s << 9, 2484 pages[idx], 2485 REQ_OP_WRITE, false); 2486 if (!ok) { 2487 set_bit(WriteErrorSeen, &rdev->flags); 2488 if (!test_and_set_bit(WantReplacement, 2489 &rdev->flags)) 2490 set_bit(MD_RECOVERY_NEEDED, 2491 &rdev->mddev->recovery); 2492 } 2493 } 2494 if (!ok) { 2495 /* We don't worry if we cannot set a bad block - 2496 * it really is bad so there is no loss in not 2497 * recording it yet 2498 */ 2499 rdev_set_badblocks(rdev, addr, s, 0); 2500 2501 if (rdev != conf->mirrors[dw].rdev) { 2502 /* need bad block on destination too */ 2503 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2504 addr = r10_bio->devs[1].addr + sect; 2505 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2506 if (!ok) { 2507 /* just abort the recovery */ 2508 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2509 mdname(mddev)); 2510 2511 conf->mirrors[dw].recovery_disabled 2512 = mddev->recovery_disabled; 2513 set_bit(MD_RECOVERY_INTR, 2514 &mddev->recovery); 2515 break; 2516 } 2517 } 2518 } 2519 2520 sectors -= s; 2521 sect += s; 2522 idx++; 2523 } 2524 } 2525 2526 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2527 { 2528 struct r10conf *conf = mddev->private; 2529 int d; 2530 struct bio *wbio = r10_bio->devs[1].bio; 2531 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2532 2533 /* Need to test wbio2->bi_end_io before we call 2534 * submit_bio_noacct as if the former is NULL, 2535 * the latter is free to free wbio2. 2536 */ 2537 if (wbio2 && !wbio2->bi_end_io) 2538 wbio2 = NULL; 2539 2540 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2541 fix_recovery_read_error(r10_bio); 2542 if (wbio->bi_end_io) 2543 end_sync_request(r10_bio); 2544 if (wbio2) 2545 end_sync_request(r10_bio); 2546 return; 2547 } 2548 2549 /* 2550 * share the pages with the first bio 2551 * and submit the write request 2552 */ 2553 d = r10_bio->devs[1].devnum; 2554 if (wbio->bi_end_io) { 2555 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2556 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2557 submit_bio_noacct(wbio); 2558 } 2559 if (wbio2) { 2560 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2561 md_sync_acct(conf->mirrors[d].replacement->bdev, 2562 bio_sectors(wbio2)); 2563 submit_bio_noacct(wbio2); 2564 } 2565 } 2566 2567 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2568 int sectors, struct page *page, enum req_op op) 2569 { 2570 if (rdev_has_badblock(rdev, sector, sectors) && 2571 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2572 return -1; 2573 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2574 /* success */ 2575 return 1; 2576 if (op == REQ_OP_WRITE) { 2577 set_bit(WriteErrorSeen, &rdev->flags); 2578 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2579 set_bit(MD_RECOVERY_NEEDED, 2580 &rdev->mddev->recovery); 2581 } 2582 /* need to record an error - either for the block or the device */ 2583 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2584 md_error(rdev->mddev, rdev); 2585 return 0; 2586 } 2587 2588 /* 2589 * This is a kernel thread which: 2590 * 2591 * 1. Retries failed read operations on working mirrors. 2592 * 2. Updates the raid superblock when problems encounter. 2593 * 3. Performs writes following reads for array synchronising. 2594 */ 2595 2596 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2597 { 2598 int sect = 0; /* Offset from r10_bio->sector */ 2599 int sectors = r10_bio->sectors, slot = r10_bio->read_slot; 2600 struct md_rdev *rdev; 2601 int d = r10_bio->devs[slot].devnum; 2602 2603 /* still own a reference to this rdev, so it cannot 2604 * have been cleared recently. 2605 */ 2606 rdev = conf->mirrors[d].rdev; 2607 2608 if (test_bit(Faulty, &rdev->flags)) 2609 /* drive has already been failed, just ignore any 2610 more fix_read_error() attempts */ 2611 return; 2612 2613 if (exceed_read_errors(mddev, rdev)) { 2614 r10_bio->devs[slot].bio = IO_BLOCKED; 2615 return; 2616 } 2617 2618 while(sectors) { 2619 int s = sectors; 2620 int sl = slot; 2621 int success = 0; 2622 int start; 2623 2624 if (s > (PAGE_SIZE>>9)) 2625 s = PAGE_SIZE >> 9; 2626 2627 do { 2628 d = r10_bio->devs[sl].devnum; 2629 rdev = conf->mirrors[d].rdev; 2630 if (rdev && 2631 test_bit(In_sync, &rdev->flags) && 2632 !test_bit(Faulty, &rdev->flags) && 2633 rdev_has_badblock(rdev, 2634 r10_bio->devs[sl].addr + sect, 2635 s) == 0) { 2636 atomic_inc(&rdev->nr_pending); 2637 success = sync_page_io(rdev, 2638 r10_bio->devs[sl].addr + 2639 sect, 2640 s<<9, 2641 conf->tmppage, 2642 REQ_OP_READ, false); 2643 rdev_dec_pending(rdev, mddev); 2644 if (success) 2645 break; 2646 } 2647 sl++; 2648 if (sl == conf->copies) 2649 sl = 0; 2650 } while (sl != slot); 2651 2652 if (!success) { 2653 /* Cannot read from anywhere, just mark the block 2654 * as bad on the first device to discourage future 2655 * reads. 2656 */ 2657 int dn = r10_bio->devs[slot].devnum; 2658 rdev = conf->mirrors[dn].rdev; 2659 2660 if (!rdev_set_badblocks( 2661 rdev, 2662 r10_bio->devs[slot].addr 2663 + sect, 2664 s, 0)) { 2665 md_error(mddev, rdev); 2666 r10_bio->devs[slot].bio 2667 = IO_BLOCKED; 2668 } 2669 break; 2670 } 2671 2672 start = sl; 2673 /* write it back and re-read */ 2674 while (sl != slot) { 2675 if (sl==0) 2676 sl = conf->copies; 2677 sl--; 2678 d = r10_bio->devs[sl].devnum; 2679 rdev = conf->mirrors[d].rdev; 2680 if (!rdev || 2681 test_bit(Faulty, &rdev->flags) || 2682 !test_bit(In_sync, &rdev->flags)) 2683 continue; 2684 2685 atomic_inc(&rdev->nr_pending); 2686 if (r10_sync_page_io(rdev, 2687 r10_bio->devs[sl].addr + 2688 sect, 2689 s, conf->tmppage, REQ_OP_WRITE) 2690 == 0) { 2691 /* Well, this device is dead */ 2692 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2693 mdname(mddev), s, 2694 (unsigned long long)( 2695 sect + 2696 choose_data_offset(r10_bio, 2697 rdev)), 2698 rdev->bdev); 2699 pr_notice("md/raid10:%s: %pg: failing drive\n", 2700 mdname(mddev), 2701 rdev->bdev); 2702 } 2703 rdev_dec_pending(rdev, mddev); 2704 } 2705 sl = start; 2706 while (sl != slot) { 2707 if (sl==0) 2708 sl = conf->copies; 2709 sl--; 2710 d = r10_bio->devs[sl].devnum; 2711 rdev = conf->mirrors[d].rdev; 2712 if (!rdev || 2713 test_bit(Faulty, &rdev->flags) || 2714 !test_bit(In_sync, &rdev->flags)) 2715 continue; 2716 2717 atomic_inc(&rdev->nr_pending); 2718 switch (r10_sync_page_io(rdev, 2719 r10_bio->devs[sl].addr + 2720 sect, 2721 s, conf->tmppage, REQ_OP_READ)) { 2722 case 0: 2723 /* Well, this device is dead */ 2724 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2725 mdname(mddev), s, 2726 (unsigned long long)( 2727 sect + 2728 choose_data_offset(r10_bio, rdev)), 2729 rdev->bdev); 2730 pr_notice("md/raid10:%s: %pg: failing drive\n", 2731 mdname(mddev), 2732 rdev->bdev); 2733 break; 2734 case 1: 2735 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2736 mdname(mddev), s, 2737 (unsigned long long)( 2738 sect + 2739 choose_data_offset(r10_bio, rdev)), 2740 rdev->bdev); 2741 atomic_add(s, &rdev->corrected_errors); 2742 } 2743 2744 rdev_dec_pending(rdev, mddev); 2745 } 2746 2747 sectors -= s; 2748 sect += s; 2749 } 2750 } 2751 2752 static int narrow_write_error(struct r10bio *r10_bio, int i) 2753 { 2754 struct bio *bio = r10_bio->master_bio; 2755 struct mddev *mddev = r10_bio->mddev; 2756 struct r10conf *conf = mddev->private; 2757 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2758 /* bio has the data to be written to slot 'i' where 2759 * we just recently had a write error. 2760 * We repeatedly clone the bio and trim down to one block, 2761 * then try the write. Where the write fails we record 2762 * a bad block. 2763 * It is conceivable that the bio doesn't exactly align with 2764 * blocks. We must handle this. 2765 * 2766 * We currently own a reference to the rdev. 2767 */ 2768 2769 int block_sectors; 2770 sector_t sector; 2771 int sectors; 2772 int sect_to_write = r10_bio->sectors; 2773 int ok = 1; 2774 2775 if (rdev->badblocks.shift < 0) 2776 return 0; 2777 2778 block_sectors = roundup(1 << rdev->badblocks.shift, 2779 bdev_logical_block_size(rdev->bdev) >> 9); 2780 sector = r10_bio->sector; 2781 sectors = ((r10_bio->sector + block_sectors) 2782 & ~(sector_t)(block_sectors - 1)) 2783 - sector; 2784 2785 while (sect_to_write) { 2786 struct bio *wbio; 2787 sector_t wsector; 2788 if (sectors > sect_to_write) 2789 sectors = sect_to_write; 2790 /* Write at 'sector' for 'sectors' */ 2791 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2792 &mddev->bio_set); 2793 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2794 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2795 wbio->bi_iter.bi_sector = wsector + 2796 choose_data_offset(r10_bio, rdev); 2797 wbio->bi_opf = REQ_OP_WRITE; 2798 2799 if (submit_bio_wait(wbio) < 0) 2800 /* Failure! */ 2801 ok = rdev_set_badblocks(rdev, wsector, 2802 sectors, 0) 2803 && ok; 2804 2805 bio_put(wbio); 2806 sect_to_write -= sectors; 2807 sector += sectors; 2808 sectors = block_sectors; 2809 } 2810 return ok; 2811 } 2812 2813 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2814 { 2815 int slot = r10_bio->read_slot; 2816 struct bio *bio; 2817 struct r10conf *conf = mddev->private; 2818 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2819 2820 /* we got a read error. Maybe the drive is bad. Maybe just 2821 * the block and we can fix it. 2822 * We freeze all other IO, and try reading the block from 2823 * other devices. When we find one, we re-write 2824 * and check it that fixes the read error. 2825 * This is all done synchronously while the array is 2826 * frozen. 2827 */ 2828 bio = r10_bio->devs[slot].bio; 2829 bio_put(bio); 2830 r10_bio->devs[slot].bio = NULL; 2831 2832 if (mddev->ro) 2833 r10_bio->devs[slot].bio = IO_BLOCKED; 2834 else if (!test_bit(FailFast, &rdev->flags)) { 2835 freeze_array(conf, 1); 2836 fix_read_error(conf, mddev, r10_bio); 2837 unfreeze_array(conf); 2838 } else 2839 md_error(mddev, rdev); 2840 2841 rdev_dec_pending(rdev, mddev); 2842 r10_bio->state = 0; 2843 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false); 2844 /* 2845 * allow_barrier after re-submit to ensure no sync io 2846 * can be issued while regular io pending. 2847 */ 2848 allow_barrier(conf); 2849 } 2850 2851 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2852 { 2853 /* Some sort of write request has finished and it 2854 * succeeded in writing where we thought there was a 2855 * bad block. So forget the bad block. 2856 * Or possibly if failed and we need to record 2857 * a bad block. 2858 */ 2859 int m; 2860 struct md_rdev *rdev; 2861 2862 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2863 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2864 for (m = 0; m < conf->copies; m++) { 2865 int dev = r10_bio->devs[m].devnum; 2866 rdev = conf->mirrors[dev].rdev; 2867 if (r10_bio->devs[m].bio == NULL || 2868 r10_bio->devs[m].bio->bi_end_io == NULL) 2869 continue; 2870 if (!r10_bio->devs[m].bio->bi_status) { 2871 rdev_clear_badblocks( 2872 rdev, 2873 r10_bio->devs[m].addr, 2874 r10_bio->sectors, 0); 2875 } else { 2876 if (!rdev_set_badblocks( 2877 rdev, 2878 r10_bio->devs[m].addr, 2879 r10_bio->sectors, 0)) 2880 md_error(conf->mddev, rdev); 2881 } 2882 rdev = conf->mirrors[dev].replacement; 2883 if (r10_bio->devs[m].repl_bio == NULL || 2884 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2885 continue; 2886 2887 if (!r10_bio->devs[m].repl_bio->bi_status) { 2888 rdev_clear_badblocks( 2889 rdev, 2890 r10_bio->devs[m].addr, 2891 r10_bio->sectors, 0); 2892 } else { 2893 if (!rdev_set_badblocks( 2894 rdev, 2895 r10_bio->devs[m].addr, 2896 r10_bio->sectors, 0)) 2897 md_error(conf->mddev, rdev); 2898 } 2899 } 2900 put_buf(r10_bio); 2901 } else { 2902 bool fail = false; 2903 for (m = 0; m < conf->copies; m++) { 2904 int dev = r10_bio->devs[m].devnum; 2905 struct bio *bio = r10_bio->devs[m].bio; 2906 rdev = conf->mirrors[dev].rdev; 2907 if (bio == IO_MADE_GOOD) { 2908 rdev_clear_badblocks( 2909 rdev, 2910 r10_bio->devs[m].addr, 2911 r10_bio->sectors, 0); 2912 rdev_dec_pending(rdev, conf->mddev); 2913 } else if (bio != NULL && bio->bi_status) { 2914 fail = true; 2915 if (!narrow_write_error(r10_bio, m)) { 2916 md_error(conf->mddev, rdev); 2917 set_bit(R10BIO_Degraded, 2918 &r10_bio->state); 2919 } 2920 rdev_dec_pending(rdev, conf->mddev); 2921 } 2922 bio = r10_bio->devs[m].repl_bio; 2923 rdev = conf->mirrors[dev].replacement; 2924 if (rdev && bio == IO_MADE_GOOD) { 2925 rdev_clear_badblocks( 2926 rdev, 2927 r10_bio->devs[m].addr, 2928 r10_bio->sectors, 0); 2929 rdev_dec_pending(rdev, conf->mddev); 2930 } 2931 } 2932 if (fail) { 2933 spin_lock_irq(&conf->device_lock); 2934 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2935 conf->nr_queued++; 2936 spin_unlock_irq(&conf->device_lock); 2937 /* 2938 * In case freeze_array() is waiting for condition 2939 * nr_pending == nr_queued + extra to be true. 2940 */ 2941 wake_up(&conf->wait_barrier); 2942 md_wakeup_thread(conf->mddev->thread); 2943 } else { 2944 if (test_bit(R10BIO_WriteError, 2945 &r10_bio->state)) 2946 close_write(r10_bio); 2947 raid_end_bio_io(r10_bio); 2948 } 2949 } 2950 } 2951 2952 static void raid10d(struct md_thread *thread) 2953 { 2954 struct mddev *mddev = thread->mddev; 2955 struct r10bio *r10_bio; 2956 unsigned long flags; 2957 struct r10conf *conf = mddev->private; 2958 struct list_head *head = &conf->retry_list; 2959 struct blk_plug plug; 2960 2961 md_check_recovery(mddev); 2962 2963 if (!list_empty_careful(&conf->bio_end_io_list) && 2964 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2965 LIST_HEAD(tmp); 2966 spin_lock_irqsave(&conf->device_lock, flags); 2967 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2968 while (!list_empty(&conf->bio_end_io_list)) { 2969 list_move(conf->bio_end_io_list.prev, &tmp); 2970 conf->nr_queued--; 2971 } 2972 } 2973 spin_unlock_irqrestore(&conf->device_lock, flags); 2974 while (!list_empty(&tmp)) { 2975 r10_bio = list_first_entry(&tmp, struct r10bio, 2976 retry_list); 2977 list_del(&r10_bio->retry_list); 2978 if (mddev->degraded) 2979 set_bit(R10BIO_Degraded, &r10_bio->state); 2980 2981 if (test_bit(R10BIO_WriteError, 2982 &r10_bio->state)) 2983 close_write(r10_bio); 2984 raid_end_bio_io(r10_bio); 2985 } 2986 } 2987 2988 blk_start_plug(&plug); 2989 for (;;) { 2990 2991 flush_pending_writes(conf); 2992 2993 spin_lock_irqsave(&conf->device_lock, flags); 2994 if (list_empty(head)) { 2995 spin_unlock_irqrestore(&conf->device_lock, flags); 2996 break; 2997 } 2998 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2999 list_del(head->prev); 3000 conf->nr_queued--; 3001 spin_unlock_irqrestore(&conf->device_lock, flags); 3002 3003 mddev = r10_bio->mddev; 3004 conf = mddev->private; 3005 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3006 test_bit(R10BIO_WriteError, &r10_bio->state)) 3007 handle_write_completed(conf, r10_bio); 3008 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3009 reshape_request_write(mddev, r10_bio); 3010 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3011 sync_request_write(mddev, r10_bio); 3012 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3013 recovery_request_write(mddev, r10_bio); 3014 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3015 handle_read_error(mddev, r10_bio); 3016 else 3017 WARN_ON_ONCE(1); 3018 3019 cond_resched(); 3020 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3021 md_check_recovery(mddev); 3022 } 3023 blk_finish_plug(&plug); 3024 } 3025 3026 static int init_resync(struct r10conf *conf) 3027 { 3028 int ret, buffs, i; 3029 3030 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3031 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3032 conf->have_replacement = 0; 3033 for (i = 0; i < conf->geo.raid_disks; i++) 3034 if (conf->mirrors[i].replacement) 3035 conf->have_replacement = 1; 3036 ret = mempool_init(&conf->r10buf_pool, buffs, 3037 r10buf_pool_alloc, r10buf_pool_free, conf); 3038 if (ret) 3039 return ret; 3040 conf->next_resync = 0; 3041 return 0; 3042 } 3043 3044 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3045 { 3046 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3047 struct rsync_pages *rp; 3048 struct bio *bio; 3049 int nalloc; 3050 int i; 3051 3052 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3053 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3054 nalloc = conf->copies; /* resync */ 3055 else 3056 nalloc = 2; /* recovery */ 3057 3058 for (i = 0; i < nalloc; i++) { 3059 bio = r10bio->devs[i].bio; 3060 rp = bio->bi_private; 3061 bio_reset(bio, NULL, 0); 3062 bio->bi_private = rp; 3063 bio = r10bio->devs[i].repl_bio; 3064 if (bio) { 3065 rp = bio->bi_private; 3066 bio_reset(bio, NULL, 0); 3067 bio->bi_private = rp; 3068 } 3069 } 3070 return r10bio; 3071 } 3072 3073 /* 3074 * Set cluster_sync_high since we need other nodes to add the 3075 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3076 */ 3077 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3078 { 3079 sector_t window_size; 3080 int extra_chunk, chunks; 3081 3082 /* 3083 * First, here we define "stripe" as a unit which across 3084 * all member devices one time, so we get chunks by use 3085 * raid_disks / near_copies. Otherwise, if near_copies is 3086 * close to raid_disks, then resync window could increases 3087 * linearly with the increase of raid_disks, which means 3088 * we will suspend a really large IO window while it is not 3089 * necessary. If raid_disks is not divisible by near_copies, 3090 * an extra chunk is needed to ensure the whole "stripe" is 3091 * covered. 3092 */ 3093 3094 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3095 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3096 extra_chunk = 0; 3097 else 3098 extra_chunk = 1; 3099 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3100 3101 /* 3102 * At least use a 32M window to align with raid1's resync window 3103 */ 3104 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3105 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3106 3107 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3108 } 3109 3110 /* 3111 * perform a "sync" on one "block" 3112 * 3113 * We need to make sure that no normal I/O request - particularly write 3114 * requests - conflict with active sync requests. 3115 * 3116 * This is achieved by tracking pending requests and a 'barrier' concept 3117 * that can be installed to exclude normal IO requests. 3118 * 3119 * Resync and recovery are handled very differently. 3120 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3121 * 3122 * For resync, we iterate over virtual addresses, read all copies, 3123 * and update if there are differences. If only one copy is live, 3124 * skip it. 3125 * For recovery, we iterate over physical addresses, read a good 3126 * value for each non-in_sync drive, and over-write. 3127 * 3128 * So, for recovery we may have several outstanding complex requests for a 3129 * given address, one for each out-of-sync device. We model this by allocating 3130 * a number of r10_bio structures, one for each out-of-sync device. 3131 * As we setup these structures, we collect all bio's together into a list 3132 * which we then process collectively to add pages, and then process again 3133 * to pass to submit_bio_noacct. 3134 * 3135 * The r10_bio structures are linked using a borrowed master_bio pointer. 3136 * This link is counted in ->remaining. When the r10_bio that points to NULL 3137 * has its remaining count decremented to 0, the whole complex operation 3138 * is complete. 3139 * 3140 */ 3141 3142 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3143 int *skipped) 3144 { 3145 struct r10conf *conf = mddev->private; 3146 struct r10bio *r10_bio; 3147 struct bio *biolist = NULL, *bio; 3148 sector_t max_sector, nr_sectors; 3149 int i; 3150 int max_sync; 3151 sector_t sync_blocks; 3152 sector_t sectors_skipped = 0; 3153 int chunks_skipped = 0; 3154 sector_t chunk_mask = conf->geo.chunk_mask; 3155 int page_idx = 0; 3156 int error_disk = -1; 3157 3158 /* 3159 * Allow skipping a full rebuild for incremental assembly 3160 * of a clean array, like RAID1 does. 3161 */ 3162 if (mddev->bitmap == NULL && 3163 mddev->recovery_cp == MaxSector && 3164 mddev->reshape_position == MaxSector && 3165 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3166 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3167 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3168 conf->fullsync == 0) { 3169 *skipped = 1; 3170 return mddev->dev_sectors - sector_nr; 3171 } 3172 3173 if (!mempool_initialized(&conf->r10buf_pool)) 3174 if (init_resync(conf)) 3175 return 0; 3176 3177 skipped: 3178 max_sector = mddev->dev_sectors; 3179 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 3180 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3181 max_sector = mddev->resync_max_sectors; 3182 if (sector_nr >= max_sector) { 3183 conf->cluster_sync_low = 0; 3184 conf->cluster_sync_high = 0; 3185 3186 /* If we aborted, we need to abort the 3187 * sync on the 'current' bitmap chucks (there can 3188 * be several when recovering multiple devices). 3189 * as we may have started syncing it but not finished. 3190 * We can find the current address in 3191 * mddev->curr_resync, but for recovery, 3192 * we need to convert that to several 3193 * virtual addresses. 3194 */ 3195 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3196 end_reshape(conf); 3197 close_sync(conf); 3198 return 0; 3199 } 3200 3201 if (mddev->curr_resync < max_sector) { /* aborted */ 3202 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3203 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3204 &sync_blocks, 1); 3205 else for (i = 0; i < conf->geo.raid_disks; i++) { 3206 sector_t sect = 3207 raid10_find_virt(conf, mddev->curr_resync, i); 3208 md_bitmap_end_sync(mddev->bitmap, sect, 3209 &sync_blocks, 1); 3210 } 3211 } else { 3212 /* completed sync */ 3213 if ((!mddev->bitmap || conf->fullsync) 3214 && conf->have_replacement 3215 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3216 /* Completed a full sync so the replacements 3217 * are now fully recovered. 3218 */ 3219 for (i = 0; i < conf->geo.raid_disks; i++) { 3220 struct md_rdev *rdev = 3221 conf->mirrors[i].replacement; 3222 3223 if (rdev) 3224 rdev->recovery_offset = MaxSector; 3225 } 3226 } 3227 conf->fullsync = 0; 3228 } 3229 md_bitmap_close_sync(mddev->bitmap); 3230 close_sync(conf); 3231 *skipped = 1; 3232 return sectors_skipped; 3233 } 3234 3235 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3236 return reshape_request(mddev, sector_nr, skipped); 3237 3238 if (chunks_skipped >= conf->geo.raid_disks) { 3239 pr_err("md/raid10:%s: %s fails\n", mdname(mddev), 3240 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"); 3241 if (error_disk >= 0 && 3242 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3243 /* 3244 * recovery fails, set mirrors.recovery_disabled, 3245 * device shouldn't be added to there. 3246 */ 3247 conf->mirrors[error_disk].recovery_disabled = 3248 mddev->recovery_disabled; 3249 return 0; 3250 } 3251 /* 3252 * if there has been nothing to do on any drive, 3253 * then there is nothing to do at all. 3254 */ 3255 *skipped = 1; 3256 return (max_sector - sector_nr) + sectors_skipped; 3257 } 3258 3259 if (max_sector > mddev->resync_max) 3260 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3261 3262 /* make sure whole request will fit in a chunk - if chunks 3263 * are meaningful 3264 */ 3265 if (conf->geo.near_copies < conf->geo.raid_disks && 3266 max_sector > (sector_nr | chunk_mask)) 3267 max_sector = (sector_nr | chunk_mask) + 1; 3268 3269 /* 3270 * If there is non-resync activity waiting for a turn, then let it 3271 * though before starting on this new sync request. 3272 */ 3273 if (conf->nr_waiting) 3274 schedule_timeout_uninterruptible(1); 3275 3276 /* Again, very different code for resync and recovery. 3277 * Both must result in an r10bio with a list of bios that 3278 * have bi_end_io, bi_sector, bi_bdev set, 3279 * and bi_private set to the r10bio. 3280 * For recovery, we may actually create several r10bios 3281 * with 2 bios in each, that correspond to the bios in the main one. 3282 * In this case, the subordinate r10bios link back through a 3283 * borrowed master_bio pointer, and the counter in the master 3284 * includes a ref from each subordinate. 3285 */ 3286 /* First, we decide what to do and set ->bi_end_io 3287 * To end_sync_read if we want to read, and 3288 * end_sync_write if we will want to write. 3289 */ 3290 3291 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3292 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3293 /* recovery... the complicated one */ 3294 int j; 3295 r10_bio = NULL; 3296 3297 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3298 int still_degraded; 3299 struct r10bio *rb2; 3300 sector_t sect; 3301 int must_sync; 3302 int any_working; 3303 struct raid10_info *mirror = &conf->mirrors[i]; 3304 struct md_rdev *mrdev, *mreplace; 3305 3306 mrdev = mirror->rdev; 3307 mreplace = mirror->replacement; 3308 3309 if (mrdev && (test_bit(Faulty, &mrdev->flags) || 3310 test_bit(In_sync, &mrdev->flags))) 3311 mrdev = NULL; 3312 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3313 mreplace = NULL; 3314 3315 if (!mrdev && !mreplace) 3316 continue; 3317 3318 still_degraded = 0; 3319 /* want to reconstruct this device */ 3320 rb2 = r10_bio; 3321 sect = raid10_find_virt(conf, sector_nr, i); 3322 if (sect >= mddev->resync_max_sectors) 3323 /* last stripe is not complete - don't 3324 * try to recover this sector. 3325 */ 3326 continue; 3327 /* Unless we are doing a full sync, or a replacement 3328 * we only need to recover the block if it is set in 3329 * the bitmap 3330 */ 3331 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3332 &sync_blocks, 1); 3333 if (sync_blocks < max_sync) 3334 max_sync = sync_blocks; 3335 if (!must_sync && 3336 mreplace == NULL && 3337 !conf->fullsync) { 3338 /* yep, skip the sync_blocks here, but don't assume 3339 * that there will never be anything to do here 3340 */ 3341 chunks_skipped = -1; 3342 continue; 3343 } 3344 if (mrdev) 3345 atomic_inc(&mrdev->nr_pending); 3346 if (mreplace) 3347 atomic_inc(&mreplace->nr_pending); 3348 3349 r10_bio = raid10_alloc_init_r10buf(conf); 3350 r10_bio->state = 0; 3351 raise_barrier(conf, rb2 != NULL); 3352 atomic_set(&r10_bio->remaining, 0); 3353 3354 r10_bio->master_bio = (struct bio*)rb2; 3355 if (rb2) 3356 atomic_inc(&rb2->remaining); 3357 r10_bio->mddev = mddev; 3358 set_bit(R10BIO_IsRecover, &r10_bio->state); 3359 r10_bio->sector = sect; 3360 3361 raid10_find_phys(conf, r10_bio); 3362 3363 /* Need to check if the array will still be 3364 * degraded 3365 */ 3366 for (j = 0; j < conf->geo.raid_disks; j++) { 3367 struct md_rdev *rdev = conf->mirrors[j].rdev; 3368 3369 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3370 still_degraded = 1; 3371 break; 3372 } 3373 } 3374 3375 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3376 &sync_blocks, still_degraded); 3377 3378 any_working = 0; 3379 for (j=0; j<conf->copies;j++) { 3380 int k; 3381 int d = r10_bio->devs[j].devnum; 3382 sector_t from_addr, to_addr; 3383 struct md_rdev *rdev = conf->mirrors[d].rdev; 3384 sector_t sector, first_bad; 3385 int bad_sectors; 3386 if (!rdev || 3387 !test_bit(In_sync, &rdev->flags)) 3388 continue; 3389 /* This is where we read from */ 3390 any_working = 1; 3391 sector = r10_bio->devs[j].addr; 3392 3393 if (is_badblock(rdev, sector, max_sync, 3394 &first_bad, &bad_sectors)) { 3395 if (first_bad > sector) 3396 max_sync = first_bad - sector; 3397 else { 3398 bad_sectors -= (sector 3399 - first_bad); 3400 if (max_sync > bad_sectors) 3401 max_sync = bad_sectors; 3402 continue; 3403 } 3404 } 3405 bio = r10_bio->devs[0].bio; 3406 bio->bi_next = biolist; 3407 biolist = bio; 3408 bio->bi_end_io = end_sync_read; 3409 bio->bi_opf = REQ_OP_READ; 3410 if (test_bit(FailFast, &rdev->flags)) 3411 bio->bi_opf |= MD_FAILFAST; 3412 from_addr = r10_bio->devs[j].addr; 3413 bio->bi_iter.bi_sector = from_addr + 3414 rdev->data_offset; 3415 bio_set_dev(bio, rdev->bdev); 3416 atomic_inc(&rdev->nr_pending); 3417 /* and we write to 'i' (if not in_sync) */ 3418 3419 for (k=0; k<conf->copies; k++) 3420 if (r10_bio->devs[k].devnum == i) 3421 break; 3422 BUG_ON(k == conf->copies); 3423 to_addr = r10_bio->devs[k].addr; 3424 r10_bio->devs[0].devnum = d; 3425 r10_bio->devs[0].addr = from_addr; 3426 r10_bio->devs[1].devnum = i; 3427 r10_bio->devs[1].addr = to_addr; 3428 3429 if (mrdev) { 3430 bio = r10_bio->devs[1].bio; 3431 bio->bi_next = biolist; 3432 biolist = bio; 3433 bio->bi_end_io = end_sync_write; 3434 bio->bi_opf = REQ_OP_WRITE; 3435 bio->bi_iter.bi_sector = to_addr 3436 + mrdev->data_offset; 3437 bio_set_dev(bio, mrdev->bdev); 3438 atomic_inc(&r10_bio->remaining); 3439 } else 3440 r10_bio->devs[1].bio->bi_end_io = NULL; 3441 3442 /* and maybe write to replacement */ 3443 bio = r10_bio->devs[1].repl_bio; 3444 if (bio) 3445 bio->bi_end_io = NULL; 3446 /* Note: if replace is not NULL, then bio 3447 * cannot be NULL as r10buf_pool_alloc will 3448 * have allocated it. 3449 */ 3450 if (!mreplace) 3451 break; 3452 bio->bi_next = biolist; 3453 biolist = bio; 3454 bio->bi_end_io = end_sync_write; 3455 bio->bi_opf = REQ_OP_WRITE; 3456 bio->bi_iter.bi_sector = to_addr + 3457 mreplace->data_offset; 3458 bio_set_dev(bio, mreplace->bdev); 3459 atomic_inc(&r10_bio->remaining); 3460 break; 3461 } 3462 if (j == conf->copies) { 3463 /* Cannot recover, so abort the recovery or 3464 * record a bad block */ 3465 if (any_working) { 3466 /* problem is that there are bad blocks 3467 * on other device(s) 3468 */ 3469 int k; 3470 for (k = 0; k < conf->copies; k++) 3471 if (r10_bio->devs[k].devnum == i) 3472 break; 3473 if (mrdev && !test_bit(In_sync, 3474 &mrdev->flags) 3475 && !rdev_set_badblocks( 3476 mrdev, 3477 r10_bio->devs[k].addr, 3478 max_sync, 0)) 3479 any_working = 0; 3480 if (mreplace && 3481 !rdev_set_badblocks( 3482 mreplace, 3483 r10_bio->devs[k].addr, 3484 max_sync, 0)) 3485 any_working = 0; 3486 } 3487 if (!any_working) { 3488 if (!test_and_set_bit(MD_RECOVERY_INTR, 3489 &mddev->recovery)) 3490 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3491 mdname(mddev)); 3492 mirror->recovery_disabled 3493 = mddev->recovery_disabled; 3494 } else { 3495 error_disk = i; 3496 } 3497 put_buf(r10_bio); 3498 if (rb2) 3499 atomic_dec(&rb2->remaining); 3500 r10_bio = rb2; 3501 if (mrdev) 3502 rdev_dec_pending(mrdev, mddev); 3503 if (mreplace) 3504 rdev_dec_pending(mreplace, mddev); 3505 break; 3506 } 3507 if (mrdev) 3508 rdev_dec_pending(mrdev, mddev); 3509 if (mreplace) 3510 rdev_dec_pending(mreplace, mddev); 3511 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3512 /* Only want this if there is elsewhere to 3513 * read from. 'j' is currently the first 3514 * readable copy. 3515 */ 3516 int targets = 1; 3517 for (; j < conf->copies; j++) { 3518 int d = r10_bio->devs[j].devnum; 3519 if (conf->mirrors[d].rdev && 3520 test_bit(In_sync, 3521 &conf->mirrors[d].rdev->flags)) 3522 targets++; 3523 } 3524 if (targets == 1) 3525 r10_bio->devs[0].bio->bi_opf 3526 &= ~MD_FAILFAST; 3527 } 3528 } 3529 if (biolist == NULL) { 3530 while (r10_bio) { 3531 struct r10bio *rb2 = r10_bio; 3532 r10_bio = (struct r10bio*) rb2->master_bio; 3533 rb2->master_bio = NULL; 3534 put_buf(rb2); 3535 } 3536 goto giveup; 3537 } 3538 } else { 3539 /* resync. Schedule a read for every block at this virt offset */ 3540 int count = 0; 3541 3542 /* 3543 * Since curr_resync_completed could probably not update in 3544 * time, and we will set cluster_sync_low based on it. 3545 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3546 * safety reason, which ensures curr_resync_completed is 3547 * updated in bitmap_cond_end_sync. 3548 */ 3549 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3550 mddev_is_clustered(mddev) && 3551 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3552 3553 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3554 &sync_blocks, mddev->degraded) && 3555 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3556 &mddev->recovery)) { 3557 /* We can skip this block */ 3558 *skipped = 1; 3559 return sync_blocks + sectors_skipped; 3560 } 3561 if (sync_blocks < max_sync) 3562 max_sync = sync_blocks; 3563 r10_bio = raid10_alloc_init_r10buf(conf); 3564 r10_bio->state = 0; 3565 3566 r10_bio->mddev = mddev; 3567 atomic_set(&r10_bio->remaining, 0); 3568 raise_barrier(conf, 0); 3569 conf->next_resync = sector_nr; 3570 3571 r10_bio->master_bio = NULL; 3572 r10_bio->sector = sector_nr; 3573 set_bit(R10BIO_IsSync, &r10_bio->state); 3574 raid10_find_phys(conf, r10_bio); 3575 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3576 3577 for (i = 0; i < conf->copies; i++) { 3578 int d = r10_bio->devs[i].devnum; 3579 sector_t first_bad, sector; 3580 int bad_sectors; 3581 struct md_rdev *rdev; 3582 3583 if (r10_bio->devs[i].repl_bio) 3584 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3585 3586 bio = r10_bio->devs[i].bio; 3587 bio->bi_status = BLK_STS_IOERR; 3588 rdev = conf->mirrors[d].rdev; 3589 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3590 continue; 3591 3592 sector = r10_bio->devs[i].addr; 3593 if (is_badblock(rdev, sector, max_sync, 3594 &first_bad, &bad_sectors)) { 3595 if (first_bad > sector) 3596 max_sync = first_bad - sector; 3597 else { 3598 bad_sectors -= (sector - first_bad); 3599 if (max_sync > bad_sectors) 3600 max_sync = bad_sectors; 3601 continue; 3602 } 3603 } 3604 atomic_inc(&rdev->nr_pending); 3605 atomic_inc(&r10_bio->remaining); 3606 bio->bi_next = biolist; 3607 biolist = bio; 3608 bio->bi_end_io = end_sync_read; 3609 bio->bi_opf = REQ_OP_READ; 3610 if (test_bit(FailFast, &rdev->flags)) 3611 bio->bi_opf |= MD_FAILFAST; 3612 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3613 bio_set_dev(bio, rdev->bdev); 3614 count++; 3615 3616 rdev = conf->mirrors[d].replacement; 3617 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3618 continue; 3619 3620 atomic_inc(&rdev->nr_pending); 3621 3622 /* Need to set up for writing to the replacement */ 3623 bio = r10_bio->devs[i].repl_bio; 3624 bio->bi_status = BLK_STS_IOERR; 3625 3626 sector = r10_bio->devs[i].addr; 3627 bio->bi_next = biolist; 3628 biolist = bio; 3629 bio->bi_end_io = end_sync_write; 3630 bio->bi_opf = REQ_OP_WRITE; 3631 if (test_bit(FailFast, &rdev->flags)) 3632 bio->bi_opf |= MD_FAILFAST; 3633 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3634 bio_set_dev(bio, rdev->bdev); 3635 count++; 3636 } 3637 3638 if (count < 2) { 3639 for (i=0; i<conf->copies; i++) { 3640 int d = r10_bio->devs[i].devnum; 3641 if (r10_bio->devs[i].bio->bi_end_io) 3642 rdev_dec_pending(conf->mirrors[d].rdev, 3643 mddev); 3644 if (r10_bio->devs[i].repl_bio && 3645 r10_bio->devs[i].repl_bio->bi_end_io) 3646 rdev_dec_pending( 3647 conf->mirrors[d].replacement, 3648 mddev); 3649 } 3650 put_buf(r10_bio); 3651 biolist = NULL; 3652 goto giveup; 3653 } 3654 } 3655 3656 nr_sectors = 0; 3657 if (sector_nr + max_sync < max_sector) 3658 max_sector = sector_nr + max_sync; 3659 do { 3660 struct page *page; 3661 int len = PAGE_SIZE; 3662 if (sector_nr + (len>>9) > max_sector) 3663 len = (max_sector - sector_nr) << 9; 3664 if (len == 0) 3665 break; 3666 for (bio= biolist ; bio ; bio=bio->bi_next) { 3667 struct resync_pages *rp = get_resync_pages(bio); 3668 page = resync_fetch_page(rp, page_idx); 3669 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 3670 bio->bi_status = BLK_STS_RESOURCE; 3671 bio_endio(bio); 3672 goto giveup; 3673 } 3674 } 3675 nr_sectors += len>>9; 3676 sector_nr += len>>9; 3677 } while (++page_idx < RESYNC_PAGES); 3678 r10_bio->sectors = nr_sectors; 3679 3680 if (mddev_is_clustered(mddev) && 3681 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3682 /* It is resync not recovery */ 3683 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3684 conf->cluster_sync_low = mddev->curr_resync_completed; 3685 raid10_set_cluster_sync_high(conf); 3686 /* Send resync message */ 3687 md_cluster_ops->resync_info_update(mddev, 3688 conf->cluster_sync_low, 3689 conf->cluster_sync_high); 3690 } 3691 } else if (mddev_is_clustered(mddev)) { 3692 /* This is recovery not resync */ 3693 sector_t sect_va1, sect_va2; 3694 bool broadcast_msg = false; 3695 3696 for (i = 0; i < conf->geo.raid_disks; i++) { 3697 /* 3698 * sector_nr is a device address for recovery, so we 3699 * need translate it to array address before compare 3700 * with cluster_sync_high. 3701 */ 3702 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3703 3704 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3705 broadcast_msg = true; 3706 /* 3707 * curr_resync_completed is similar as 3708 * sector_nr, so make the translation too. 3709 */ 3710 sect_va2 = raid10_find_virt(conf, 3711 mddev->curr_resync_completed, i); 3712 3713 if (conf->cluster_sync_low == 0 || 3714 conf->cluster_sync_low > sect_va2) 3715 conf->cluster_sync_low = sect_va2; 3716 } 3717 } 3718 if (broadcast_msg) { 3719 raid10_set_cluster_sync_high(conf); 3720 md_cluster_ops->resync_info_update(mddev, 3721 conf->cluster_sync_low, 3722 conf->cluster_sync_high); 3723 } 3724 } 3725 3726 while (biolist) { 3727 bio = biolist; 3728 biolist = biolist->bi_next; 3729 3730 bio->bi_next = NULL; 3731 r10_bio = get_resync_r10bio(bio); 3732 r10_bio->sectors = nr_sectors; 3733 3734 if (bio->bi_end_io == end_sync_read) { 3735 md_sync_acct_bio(bio, nr_sectors); 3736 bio->bi_status = 0; 3737 submit_bio_noacct(bio); 3738 } 3739 } 3740 3741 if (sectors_skipped) 3742 /* pretend they weren't skipped, it makes 3743 * no important difference in this case 3744 */ 3745 md_done_sync(mddev, sectors_skipped, 1); 3746 3747 return sectors_skipped + nr_sectors; 3748 giveup: 3749 /* There is nowhere to write, so all non-sync 3750 * drives must be failed or in resync, all drives 3751 * have a bad block, so try the next chunk... 3752 */ 3753 if (sector_nr + max_sync < max_sector) 3754 max_sector = sector_nr + max_sync; 3755 3756 sectors_skipped += (max_sector - sector_nr); 3757 chunks_skipped ++; 3758 sector_nr = max_sector; 3759 goto skipped; 3760 } 3761 3762 static sector_t 3763 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3764 { 3765 sector_t size; 3766 struct r10conf *conf = mddev->private; 3767 3768 if (!raid_disks) 3769 raid_disks = min(conf->geo.raid_disks, 3770 conf->prev.raid_disks); 3771 if (!sectors) 3772 sectors = conf->dev_sectors; 3773 3774 size = sectors >> conf->geo.chunk_shift; 3775 sector_div(size, conf->geo.far_copies); 3776 size = size * raid_disks; 3777 sector_div(size, conf->geo.near_copies); 3778 3779 return size << conf->geo.chunk_shift; 3780 } 3781 3782 static void calc_sectors(struct r10conf *conf, sector_t size) 3783 { 3784 /* Calculate the number of sectors-per-device that will 3785 * actually be used, and set conf->dev_sectors and 3786 * conf->stride 3787 */ 3788 3789 size = size >> conf->geo.chunk_shift; 3790 sector_div(size, conf->geo.far_copies); 3791 size = size * conf->geo.raid_disks; 3792 sector_div(size, conf->geo.near_copies); 3793 /* 'size' is now the number of chunks in the array */ 3794 /* calculate "used chunks per device" */ 3795 size = size * conf->copies; 3796 3797 /* We need to round up when dividing by raid_disks to 3798 * get the stride size. 3799 */ 3800 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3801 3802 conf->dev_sectors = size << conf->geo.chunk_shift; 3803 3804 if (conf->geo.far_offset) 3805 conf->geo.stride = 1 << conf->geo.chunk_shift; 3806 else { 3807 sector_div(size, conf->geo.far_copies); 3808 conf->geo.stride = size << conf->geo.chunk_shift; 3809 } 3810 } 3811 3812 enum geo_type {geo_new, geo_old, geo_start}; 3813 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3814 { 3815 int nc, fc, fo; 3816 int layout, chunk, disks; 3817 switch (new) { 3818 case geo_old: 3819 layout = mddev->layout; 3820 chunk = mddev->chunk_sectors; 3821 disks = mddev->raid_disks - mddev->delta_disks; 3822 break; 3823 case geo_new: 3824 layout = mddev->new_layout; 3825 chunk = mddev->new_chunk_sectors; 3826 disks = mddev->raid_disks; 3827 break; 3828 default: /* avoid 'may be unused' warnings */ 3829 case geo_start: /* new when starting reshape - raid_disks not 3830 * updated yet. */ 3831 layout = mddev->new_layout; 3832 chunk = mddev->new_chunk_sectors; 3833 disks = mddev->raid_disks + mddev->delta_disks; 3834 break; 3835 } 3836 if (layout >> 19) 3837 return -1; 3838 if (chunk < (PAGE_SIZE >> 9) || 3839 !is_power_of_2(chunk)) 3840 return -2; 3841 nc = layout & 255; 3842 fc = (layout >> 8) & 255; 3843 fo = layout & (1<<16); 3844 geo->raid_disks = disks; 3845 geo->near_copies = nc; 3846 geo->far_copies = fc; 3847 geo->far_offset = fo; 3848 switch (layout >> 17) { 3849 case 0: /* original layout. simple but not always optimal */ 3850 geo->far_set_size = disks; 3851 break; 3852 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3853 * actually using this, but leave code here just in case.*/ 3854 geo->far_set_size = disks/fc; 3855 WARN(geo->far_set_size < fc, 3856 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3857 break; 3858 case 2: /* "improved" layout fixed to match documentation */ 3859 geo->far_set_size = fc * nc; 3860 break; 3861 default: /* Not a valid layout */ 3862 return -1; 3863 } 3864 geo->chunk_mask = chunk - 1; 3865 geo->chunk_shift = ffz(~chunk); 3866 return nc*fc; 3867 } 3868 3869 static void raid10_free_conf(struct r10conf *conf) 3870 { 3871 if (!conf) 3872 return; 3873 3874 mempool_exit(&conf->r10bio_pool); 3875 kfree(conf->mirrors); 3876 kfree(conf->mirrors_old); 3877 kfree(conf->mirrors_new); 3878 safe_put_page(conf->tmppage); 3879 bioset_exit(&conf->bio_split); 3880 kfree(conf); 3881 } 3882 3883 static struct r10conf *setup_conf(struct mddev *mddev) 3884 { 3885 struct r10conf *conf = NULL; 3886 int err = -EINVAL; 3887 struct geom geo; 3888 int copies; 3889 3890 copies = setup_geo(&geo, mddev, geo_new); 3891 3892 if (copies == -2) { 3893 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3894 mdname(mddev), PAGE_SIZE); 3895 goto out; 3896 } 3897 3898 if (copies < 2 || copies > mddev->raid_disks) { 3899 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3900 mdname(mddev), mddev->new_layout); 3901 goto out; 3902 } 3903 3904 err = -ENOMEM; 3905 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3906 if (!conf) 3907 goto out; 3908 3909 /* FIXME calc properly */ 3910 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3911 sizeof(struct raid10_info), 3912 GFP_KERNEL); 3913 if (!conf->mirrors) 3914 goto out; 3915 3916 conf->tmppage = alloc_page(GFP_KERNEL); 3917 if (!conf->tmppage) 3918 goto out; 3919 3920 conf->geo = geo; 3921 conf->copies = copies; 3922 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3923 rbio_pool_free, conf); 3924 if (err) 3925 goto out; 3926 3927 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3928 if (err) 3929 goto out; 3930 3931 calc_sectors(conf, mddev->dev_sectors); 3932 if (mddev->reshape_position == MaxSector) { 3933 conf->prev = conf->geo; 3934 conf->reshape_progress = MaxSector; 3935 } else { 3936 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3937 err = -EINVAL; 3938 goto out; 3939 } 3940 conf->reshape_progress = mddev->reshape_position; 3941 if (conf->prev.far_offset) 3942 conf->prev.stride = 1 << conf->prev.chunk_shift; 3943 else 3944 /* far_copies must be 1 */ 3945 conf->prev.stride = conf->dev_sectors; 3946 } 3947 conf->reshape_safe = conf->reshape_progress; 3948 spin_lock_init(&conf->device_lock); 3949 INIT_LIST_HEAD(&conf->retry_list); 3950 INIT_LIST_HEAD(&conf->bio_end_io_list); 3951 3952 seqlock_init(&conf->resync_lock); 3953 init_waitqueue_head(&conf->wait_barrier); 3954 atomic_set(&conf->nr_pending, 0); 3955 3956 err = -ENOMEM; 3957 rcu_assign_pointer(conf->thread, 3958 md_register_thread(raid10d, mddev, "raid10")); 3959 if (!conf->thread) 3960 goto out; 3961 3962 conf->mddev = mddev; 3963 return conf; 3964 3965 out: 3966 raid10_free_conf(conf); 3967 return ERR_PTR(err); 3968 } 3969 3970 static unsigned int raid10_nr_stripes(struct r10conf *conf) 3971 { 3972 unsigned int raid_disks = conf->geo.raid_disks; 3973 3974 if (conf->geo.raid_disks % conf->geo.near_copies) 3975 return raid_disks; 3976 return raid_disks / conf->geo.near_copies; 3977 } 3978 3979 static int raid10_set_queue_limits(struct mddev *mddev) 3980 { 3981 struct r10conf *conf = mddev->private; 3982 struct queue_limits lim; 3983 3984 blk_set_stacking_limits(&lim); 3985 lim.max_write_zeroes_sectors = 0; 3986 lim.io_min = mddev->chunk_sectors << 9; 3987 lim.io_opt = lim.io_min * raid10_nr_stripes(conf); 3988 mddev_stack_rdev_limits(mddev, &lim); 3989 return queue_limits_set(mddev->gendisk->queue, &lim); 3990 } 3991 3992 static int raid10_run(struct mddev *mddev) 3993 { 3994 struct r10conf *conf; 3995 int i, disk_idx; 3996 struct raid10_info *disk; 3997 struct md_rdev *rdev; 3998 sector_t size; 3999 sector_t min_offset_diff = 0; 4000 int first = 1; 4001 int ret = -EIO; 4002 4003 if (mddev->private == NULL) { 4004 conf = setup_conf(mddev); 4005 if (IS_ERR(conf)) 4006 return PTR_ERR(conf); 4007 mddev->private = conf; 4008 } 4009 conf = mddev->private; 4010 if (!conf) 4011 goto out; 4012 4013 rcu_assign_pointer(mddev->thread, conf->thread); 4014 rcu_assign_pointer(conf->thread, NULL); 4015 4016 if (mddev_is_clustered(conf->mddev)) { 4017 int fc, fo; 4018 4019 fc = (mddev->layout >> 8) & 255; 4020 fo = mddev->layout & (1<<16); 4021 if (fc > 1 || fo > 0) { 4022 pr_err("only near layout is supported by clustered" 4023 " raid10\n"); 4024 goto out_free_conf; 4025 } 4026 } 4027 4028 rdev_for_each(rdev, mddev) { 4029 long long diff; 4030 4031 disk_idx = rdev->raid_disk; 4032 if (disk_idx < 0) 4033 continue; 4034 if (disk_idx >= conf->geo.raid_disks && 4035 disk_idx >= conf->prev.raid_disks) 4036 continue; 4037 disk = conf->mirrors + disk_idx; 4038 4039 if (test_bit(Replacement, &rdev->flags)) { 4040 if (disk->replacement) 4041 goto out_free_conf; 4042 disk->replacement = rdev; 4043 } else { 4044 if (disk->rdev) 4045 goto out_free_conf; 4046 disk->rdev = rdev; 4047 } 4048 diff = (rdev->new_data_offset - rdev->data_offset); 4049 if (!mddev->reshape_backwards) 4050 diff = -diff; 4051 if (diff < 0) 4052 diff = 0; 4053 if (first || diff < min_offset_diff) 4054 min_offset_diff = diff; 4055 4056 disk->head_position = 0; 4057 first = 0; 4058 } 4059 4060 if (!mddev_is_dm(conf->mddev)) { 4061 ret = raid10_set_queue_limits(mddev); 4062 if (ret) 4063 goto out_free_conf; 4064 } 4065 4066 /* need to check that every block has at least one working mirror */ 4067 if (!enough(conf, -1)) { 4068 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4069 mdname(mddev)); 4070 goto out_free_conf; 4071 } 4072 4073 if (conf->reshape_progress != MaxSector) { 4074 /* must ensure that shape change is supported */ 4075 if (conf->geo.far_copies != 1 && 4076 conf->geo.far_offset == 0) 4077 goto out_free_conf; 4078 if (conf->prev.far_copies != 1 && 4079 conf->prev.far_offset == 0) 4080 goto out_free_conf; 4081 } 4082 4083 mddev->degraded = 0; 4084 for (i = 0; 4085 i < conf->geo.raid_disks 4086 || i < conf->prev.raid_disks; 4087 i++) { 4088 4089 disk = conf->mirrors + i; 4090 4091 if (!disk->rdev && disk->replacement) { 4092 /* The replacement is all we have - use it */ 4093 disk->rdev = disk->replacement; 4094 disk->replacement = NULL; 4095 clear_bit(Replacement, &disk->rdev->flags); 4096 } 4097 4098 if (!disk->rdev || 4099 !test_bit(In_sync, &disk->rdev->flags)) { 4100 disk->head_position = 0; 4101 mddev->degraded++; 4102 if (disk->rdev && 4103 disk->rdev->saved_raid_disk < 0) 4104 conf->fullsync = 1; 4105 } 4106 4107 if (disk->replacement && 4108 !test_bit(In_sync, &disk->replacement->flags) && 4109 disk->replacement->saved_raid_disk < 0) { 4110 conf->fullsync = 1; 4111 } 4112 4113 disk->recovery_disabled = mddev->recovery_disabled - 1; 4114 } 4115 4116 if (mddev->recovery_cp != MaxSector) 4117 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4118 mdname(mddev)); 4119 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4120 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4121 conf->geo.raid_disks); 4122 /* 4123 * Ok, everything is just fine now 4124 */ 4125 mddev->dev_sectors = conf->dev_sectors; 4126 size = raid10_size(mddev, 0, 0); 4127 md_set_array_sectors(mddev, size); 4128 mddev->resync_max_sectors = size; 4129 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4130 4131 if (md_integrity_register(mddev)) 4132 goto out_free_conf; 4133 4134 if (conf->reshape_progress != MaxSector) { 4135 unsigned long before_length, after_length; 4136 4137 before_length = ((1 << conf->prev.chunk_shift) * 4138 conf->prev.far_copies); 4139 after_length = ((1 << conf->geo.chunk_shift) * 4140 conf->geo.far_copies); 4141 4142 if (max(before_length, after_length) > min_offset_diff) { 4143 /* This cannot work */ 4144 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4145 goto out_free_conf; 4146 } 4147 conf->offset_diff = min_offset_diff; 4148 4149 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4150 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4151 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4152 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4153 } 4154 4155 return 0; 4156 4157 out_free_conf: 4158 md_unregister_thread(mddev, &mddev->thread); 4159 raid10_free_conf(conf); 4160 mddev->private = NULL; 4161 out: 4162 return ret; 4163 } 4164 4165 static void raid10_free(struct mddev *mddev, void *priv) 4166 { 4167 raid10_free_conf(priv); 4168 } 4169 4170 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4171 { 4172 struct r10conf *conf = mddev->private; 4173 4174 if (quiesce) 4175 raise_barrier(conf, 0); 4176 else 4177 lower_barrier(conf); 4178 } 4179 4180 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4181 { 4182 /* Resize of 'far' arrays is not supported. 4183 * For 'near' and 'offset' arrays we can set the 4184 * number of sectors used to be an appropriate multiple 4185 * of the chunk size. 4186 * For 'offset', this is far_copies*chunksize. 4187 * For 'near' the multiplier is the LCM of 4188 * near_copies and raid_disks. 4189 * So if far_copies > 1 && !far_offset, fail. 4190 * Else find LCM(raid_disks, near_copy)*far_copies and 4191 * multiply by chunk_size. Then round to this number. 4192 * This is mostly done by raid10_size() 4193 */ 4194 struct r10conf *conf = mddev->private; 4195 sector_t oldsize, size; 4196 4197 if (mddev->reshape_position != MaxSector) 4198 return -EBUSY; 4199 4200 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4201 return -EINVAL; 4202 4203 oldsize = raid10_size(mddev, 0, 0); 4204 size = raid10_size(mddev, sectors, 0); 4205 if (mddev->external_size && 4206 mddev->array_sectors > size) 4207 return -EINVAL; 4208 if (mddev->bitmap) { 4209 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4210 if (ret) 4211 return ret; 4212 } 4213 md_set_array_sectors(mddev, size); 4214 if (sectors > mddev->dev_sectors && 4215 mddev->recovery_cp > oldsize) { 4216 mddev->recovery_cp = oldsize; 4217 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4218 } 4219 calc_sectors(conf, sectors); 4220 mddev->dev_sectors = conf->dev_sectors; 4221 mddev->resync_max_sectors = size; 4222 return 0; 4223 } 4224 4225 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4226 { 4227 struct md_rdev *rdev; 4228 struct r10conf *conf; 4229 4230 if (mddev->degraded > 0) { 4231 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4232 mdname(mddev)); 4233 return ERR_PTR(-EINVAL); 4234 } 4235 sector_div(size, devs); 4236 4237 /* Set new parameters */ 4238 mddev->new_level = 10; 4239 /* new layout: far_copies = 1, near_copies = 2 */ 4240 mddev->new_layout = (1<<8) + 2; 4241 mddev->new_chunk_sectors = mddev->chunk_sectors; 4242 mddev->delta_disks = mddev->raid_disks; 4243 mddev->raid_disks *= 2; 4244 /* make sure it will be not marked as dirty */ 4245 mddev->recovery_cp = MaxSector; 4246 mddev->dev_sectors = size; 4247 4248 conf = setup_conf(mddev); 4249 if (!IS_ERR(conf)) { 4250 rdev_for_each(rdev, mddev) 4251 if (rdev->raid_disk >= 0) { 4252 rdev->new_raid_disk = rdev->raid_disk * 2; 4253 rdev->sectors = size; 4254 } 4255 } 4256 4257 return conf; 4258 } 4259 4260 static void *raid10_takeover(struct mddev *mddev) 4261 { 4262 struct r0conf *raid0_conf; 4263 4264 /* raid10 can take over: 4265 * raid0 - providing it has only two drives 4266 */ 4267 if (mddev->level == 0) { 4268 /* for raid0 takeover only one zone is supported */ 4269 raid0_conf = mddev->private; 4270 if (raid0_conf->nr_strip_zones > 1) { 4271 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4272 mdname(mddev)); 4273 return ERR_PTR(-EINVAL); 4274 } 4275 return raid10_takeover_raid0(mddev, 4276 raid0_conf->strip_zone->zone_end, 4277 raid0_conf->strip_zone->nb_dev); 4278 } 4279 return ERR_PTR(-EINVAL); 4280 } 4281 4282 static int raid10_check_reshape(struct mddev *mddev) 4283 { 4284 /* Called when there is a request to change 4285 * - layout (to ->new_layout) 4286 * - chunk size (to ->new_chunk_sectors) 4287 * - raid_disks (by delta_disks) 4288 * or when trying to restart a reshape that was ongoing. 4289 * 4290 * We need to validate the request and possibly allocate 4291 * space if that might be an issue later. 4292 * 4293 * Currently we reject any reshape of a 'far' mode array, 4294 * allow chunk size to change if new is generally acceptable, 4295 * allow raid_disks to increase, and allow 4296 * a switch between 'near' mode and 'offset' mode. 4297 */ 4298 struct r10conf *conf = mddev->private; 4299 struct geom geo; 4300 4301 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4302 return -EINVAL; 4303 4304 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4305 /* mustn't change number of copies */ 4306 return -EINVAL; 4307 if (geo.far_copies > 1 && !geo.far_offset) 4308 /* Cannot switch to 'far' mode */ 4309 return -EINVAL; 4310 4311 if (mddev->array_sectors & geo.chunk_mask) 4312 /* not factor of array size */ 4313 return -EINVAL; 4314 4315 if (!enough(conf, -1)) 4316 return -EINVAL; 4317 4318 kfree(conf->mirrors_new); 4319 conf->mirrors_new = NULL; 4320 if (mddev->delta_disks > 0) { 4321 /* allocate new 'mirrors' list */ 4322 conf->mirrors_new = 4323 kcalloc(mddev->raid_disks + mddev->delta_disks, 4324 sizeof(struct raid10_info), 4325 GFP_KERNEL); 4326 if (!conf->mirrors_new) 4327 return -ENOMEM; 4328 } 4329 return 0; 4330 } 4331 4332 /* 4333 * Need to check if array has failed when deciding whether to: 4334 * - start an array 4335 * - remove non-faulty devices 4336 * - add a spare 4337 * - allow a reshape 4338 * This determination is simple when no reshape is happening. 4339 * However if there is a reshape, we need to carefully check 4340 * both the before and after sections. 4341 * This is because some failed devices may only affect one 4342 * of the two sections, and some non-in_sync devices may 4343 * be insync in the section most affected by failed devices. 4344 */ 4345 static int calc_degraded(struct r10conf *conf) 4346 { 4347 int degraded, degraded2; 4348 int i; 4349 4350 degraded = 0; 4351 /* 'prev' section first */ 4352 for (i = 0; i < conf->prev.raid_disks; i++) { 4353 struct md_rdev *rdev = conf->mirrors[i].rdev; 4354 4355 if (!rdev || test_bit(Faulty, &rdev->flags)) 4356 degraded++; 4357 else if (!test_bit(In_sync, &rdev->flags)) 4358 /* When we can reduce the number of devices in 4359 * an array, this might not contribute to 4360 * 'degraded'. It does now. 4361 */ 4362 degraded++; 4363 } 4364 if (conf->geo.raid_disks == conf->prev.raid_disks) 4365 return degraded; 4366 degraded2 = 0; 4367 for (i = 0; i < conf->geo.raid_disks; i++) { 4368 struct md_rdev *rdev = conf->mirrors[i].rdev; 4369 4370 if (!rdev || test_bit(Faulty, &rdev->flags)) 4371 degraded2++; 4372 else if (!test_bit(In_sync, &rdev->flags)) { 4373 /* If reshape is increasing the number of devices, 4374 * this section has already been recovered, so 4375 * it doesn't contribute to degraded. 4376 * else it does. 4377 */ 4378 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4379 degraded2++; 4380 } 4381 } 4382 if (degraded2 > degraded) 4383 return degraded2; 4384 return degraded; 4385 } 4386 4387 static int raid10_start_reshape(struct mddev *mddev) 4388 { 4389 /* A 'reshape' has been requested. This commits 4390 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4391 * This also checks if there are enough spares and adds them 4392 * to the array. 4393 * We currently require enough spares to make the final 4394 * array non-degraded. We also require that the difference 4395 * between old and new data_offset - on each device - is 4396 * enough that we never risk over-writing. 4397 */ 4398 4399 unsigned long before_length, after_length; 4400 sector_t min_offset_diff = 0; 4401 int first = 1; 4402 struct geom new; 4403 struct r10conf *conf = mddev->private; 4404 struct md_rdev *rdev; 4405 int spares = 0; 4406 int ret; 4407 4408 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4409 return -EBUSY; 4410 4411 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4412 return -EINVAL; 4413 4414 before_length = ((1 << conf->prev.chunk_shift) * 4415 conf->prev.far_copies); 4416 after_length = ((1 << conf->geo.chunk_shift) * 4417 conf->geo.far_copies); 4418 4419 rdev_for_each(rdev, mddev) { 4420 if (!test_bit(In_sync, &rdev->flags) 4421 && !test_bit(Faulty, &rdev->flags)) 4422 spares++; 4423 if (rdev->raid_disk >= 0) { 4424 long long diff = (rdev->new_data_offset 4425 - rdev->data_offset); 4426 if (!mddev->reshape_backwards) 4427 diff = -diff; 4428 if (diff < 0) 4429 diff = 0; 4430 if (first || diff < min_offset_diff) 4431 min_offset_diff = diff; 4432 first = 0; 4433 } 4434 } 4435 4436 if (max(before_length, after_length) > min_offset_diff) 4437 return -EINVAL; 4438 4439 if (spares < mddev->delta_disks) 4440 return -EINVAL; 4441 4442 conf->offset_diff = min_offset_diff; 4443 spin_lock_irq(&conf->device_lock); 4444 if (conf->mirrors_new) { 4445 memcpy(conf->mirrors_new, conf->mirrors, 4446 sizeof(struct raid10_info)*conf->prev.raid_disks); 4447 smp_mb(); 4448 kfree(conf->mirrors_old); 4449 conf->mirrors_old = conf->mirrors; 4450 conf->mirrors = conf->mirrors_new; 4451 conf->mirrors_new = NULL; 4452 } 4453 setup_geo(&conf->geo, mddev, geo_start); 4454 smp_mb(); 4455 if (mddev->reshape_backwards) { 4456 sector_t size = raid10_size(mddev, 0, 0); 4457 if (size < mddev->array_sectors) { 4458 spin_unlock_irq(&conf->device_lock); 4459 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4460 mdname(mddev)); 4461 return -EINVAL; 4462 } 4463 mddev->resync_max_sectors = size; 4464 conf->reshape_progress = size; 4465 } else 4466 conf->reshape_progress = 0; 4467 conf->reshape_safe = conf->reshape_progress; 4468 spin_unlock_irq(&conf->device_lock); 4469 4470 if (mddev->delta_disks && mddev->bitmap) { 4471 struct mdp_superblock_1 *sb = NULL; 4472 sector_t oldsize, newsize; 4473 4474 oldsize = raid10_size(mddev, 0, 0); 4475 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4476 4477 if (!mddev_is_clustered(mddev)) { 4478 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4479 if (ret) 4480 goto abort; 4481 else 4482 goto out; 4483 } 4484 4485 rdev_for_each(rdev, mddev) { 4486 if (rdev->raid_disk > -1 && 4487 !test_bit(Faulty, &rdev->flags)) 4488 sb = page_address(rdev->sb_page); 4489 } 4490 4491 /* 4492 * some node is already performing reshape, and no need to 4493 * call md_bitmap_resize again since it should be called when 4494 * receiving BITMAP_RESIZE msg 4495 */ 4496 if ((sb && (le32_to_cpu(sb->feature_map) & 4497 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4498 goto out; 4499 4500 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4501 if (ret) 4502 goto abort; 4503 4504 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4505 if (ret) { 4506 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4507 goto abort; 4508 } 4509 } 4510 out: 4511 if (mddev->delta_disks > 0) { 4512 rdev_for_each(rdev, mddev) 4513 if (rdev->raid_disk < 0 && 4514 !test_bit(Faulty, &rdev->flags)) { 4515 if (raid10_add_disk(mddev, rdev) == 0) { 4516 if (rdev->raid_disk >= 4517 conf->prev.raid_disks) 4518 set_bit(In_sync, &rdev->flags); 4519 else 4520 rdev->recovery_offset = 0; 4521 4522 /* Failure here is OK */ 4523 sysfs_link_rdev(mddev, rdev); 4524 } 4525 } else if (rdev->raid_disk >= conf->prev.raid_disks 4526 && !test_bit(Faulty, &rdev->flags)) { 4527 /* This is a spare that was manually added */ 4528 set_bit(In_sync, &rdev->flags); 4529 } 4530 } 4531 /* When a reshape changes the number of devices, 4532 * ->degraded is measured against the larger of the 4533 * pre and post numbers. 4534 */ 4535 spin_lock_irq(&conf->device_lock); 4536 mddev->degraded = calc_degraded(conf); 4537 spin_unlock_irq(&conf->device_lock); 4538 mddev->raid_disks = conf->geo.raid_disks; 4539 mddev->reshape_position = conf->reshape_progress; 4540 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4541 4542 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4543 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4544 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4545 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4546 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4547 conf->reshape_checkpoint = jiffies; 4548 md_new_event(); 4549 return 0; 4550 4551 abort: 4552 mddev->recovery = 0; 4553 spin_lock_irq(&conf->device_lock); 4554 conf->geo = conf->prev; 4555 mddev->raid_disks = conf->geo.raid_disks; 4556 rdev_for_each(rdev, mddev) 4557 rdev->new_data_offset = rdev->data_offset; 4558 smp_wmb(); 4559 conf->reshape_progress = MaxSector; 4560 conf->reshape_safe = MaxSector; 4561 mddev->reshape_position = MaxSector; 4562 spin_unlock_irq(&conf->device_lock); 4563 return ret; 4564 } 4565 4566 /* Calculate the last device-address that could contain 4567 * any block from the chunk that includes the array-address 's' 4568 * and report the next address. 4569 * i.e. the address returned will be chunk-aligned and after 4570 * any data that is in the chunk containing 's'. 4571 */ 4572 static sector_t last_dev_address(sector_t s, struct geom *geo) 4573 { 4574 s = (s | geo->chunk_mask) + 1; 4575 s >>= geo->chunk_shift; 4576 s *= geo->near_copies; 4577 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4578 s *= geo->far_copies; 4579 s <<= geo->chunk_shift; 4580 return s; 4581 } 4582 4583 /* Calculate the first device-address that could contain 4584 * any block from the chunk that includes the array-address 's'. 4585 * This too will be the start of a chunk 4586 */ 4587 static sector_t first_dev_address(sector_t s, struct geom *geo) 4588 { 4589 s >>= geo->chunk_shift; 4590 s *= geo->near_copies; 4591 sector_div(s, geo->raid_disks); 4592 s *= geo->far_copies; 4593 s <<= geo->chunk_shift; 4594 return s; 4595 } 4596 4597 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4598 int *skipped) 4599 { 4600 /* We simply copy at most one chunk (smallest of old and new) 4601 * at a time, possibly less if that exceeds RESYNC_PAGES, 4602 * or we hit a bad block or something. 4603 * This might mean we pause for normal IO in the middle of 4604 * a chunk, but that is not a problem as mddev->reshape_position 4605 * can record any location. 4606 * 4607 * If we will want to write to a location that isn't 4608 * yet recorded as 'safe' (i.e. in metadata on disk) then 4609 * we need to flush all reshape requests and update the metadata. 4610 * 4611 * When reshaping forwards (e.g. to more devices), we interpret 4612 * 'safe' as the earliest block which might not have been copied 4613 * down yet. We divide this by previous stripe size and multiply 4614 * by previous stripe length to get lowest device offset that we 4615 * cannot write to yet. 4616 * We interpret 'sector_nr' as an address that we want to write to. 4617 * From this we use last_device_address() to find where we might 4618 * write to, and first_device_address on the 'safe' position. 4619 * If this 'next' write position is after the 'safe' position, 4620 * we must update the metadata to increase the 'safe' position. 4621 * 4622 * When reshaping backwards, we round in the opposite direction 4623 * and perform the reverse test: next write position must not be 4624 * less than current safe position. 4625 * 4626 * In all this the minimum difference in data offsets 4627 * (conf->offset_diff - always positive) allows a bit of slack, 4628 * so next can be after 'safe', but not by more than offset_diff 4629 * 4630 * We need to prepare all the bios here before we start any IO 4631 * to ensure the size we choose is acceptable to all devices. 4632 * The means one for each copy for write-out and an extra one for 4633 * read-in. 4634 * We store the read-in bio in ->master_bio and the others in 4635 * ->devs[x].bio and ->devs[x].repl_bio. 4636 */ 4637 struct r10conf *conf = mddev->private; 4638 struct r10bio *r10_bio; 4639 sector_t next, safe, last; 4640 int max_sectors; 4641 int nr_sectors; 4642 int s; 4643 struct md_rdev *rdev; 4644 int need_flush = 0; 4645 struct bio *blist; 4646 struct bio *bio, *read_bio; 4647 int sectors_done = 0; 4648 struct page **pages; 4649 4650 if (sector_nr == 0) { 4651 /* If restarting in the middle, skip the initial sectors */ 4652 if (mddev->reshape_backwards && 4653 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4654 sector_nr = (raid10_size(mddev, 0, 0) 4655 - conf->reshape_progress); 4656 } else if (!mddev->reshape_backwards && 4657 conf->reshape_progress > 0) 4658 sector_nr = conf->reshape_progress; 4659 if (sector_nr) { 4660 mddev->curr_resync_completed = sector_nr; 4661 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4662 *skipped = 1; 4663 return sector_nr; 4664 } 4665 } 4666 4667 /* We don't use sector_nr to track where we are up to 4668 * as that doesn't work well for ->reshape_backwards. 4669 * So just use ->reshape_progress. 4670 */ 4671 if (mddev->reshape_backwards) { 4672 /* 'next' is the earliest device address that we might 4673 * write to for this chunk in the new layout 4674 */ 4675 next = first_dev_address(conf->reshape_progress - 1, 4676 &conf->geo); 4677 4678 /* 'safe' is the last device address that we might read from 4679 * in the old layout after a restart 4680 */ 4681 safe = last_dev_address(conf->reshape_safe - 1, 4682 &conf->prev); 4683 4684 if (next + conf->offset_diff < safe) 4685 need_flush = 1; 4686 4687 last = conf->reshape_progress - 1; 4688 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4689 & conf->prev.chunk_mask); 4690 if (sector_nr + RESYNC_SECTORS < last) 4691 sector_nr = last + 1 - RESYNC_SECTORS; 4692 } else { 4693 /* 'next' is after the last device address that we 4694 * might write to for this chunk in the new layout 4695 */ 4696 next = last_dev_address(conf->reshape_progress, &conf->geo); 4697 4698 /* 'safe' is the earliest device address that we might 4699 * read from in the old layout after a restart 4700 */ 4701 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4702 4703 /* Need to update metadata if 'next' might be beyond 'safe' 4704 * as that would possibly corrupt data 4705 */ 4706 if (next > safe + conf->offset_diff) 4707 need_flush = 1; 4708 4709 sector_nr = conf->reshape_progress; 4710 last = sector_nr | (conf->geo.chunk_mask 4711 & conf->prev.chunk_mask); 4712 4713 if (sector_nr + RESYNC_SECTORS <= last) 4714 last = sector_nr + RESYNC_SECTORS - 1; 4715 } 4716 4717 if (need_flush || 4718 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4719 /* Need to update reshape_position in metadata */ 4720 wait_barrier(conf, false); 4721 mddev->reshape_position = conf->reshape_progress; 4722 if (mddev->reshape_backwards) 4723 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4724 - conf->reshape_progress; 4725 else 4726 mddev->curr_resync_completed = conf->reshape_progress; 4727 conf->reshape_checkpoint = jiffies; 4728 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4729 md_wakeup_thread(mddev->thread); 4730 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4731 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4732 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4733 allow_barrier(conf); 4734 return sectors_done; 4735 } 4736 conf->reshape_safe = mddev->reshape_position; 4737 allow_barrier(conf); 4738 } 4739 4740 raise_barrier(conf, 0); 4741 read_more: 4742 /* Now schedule reads for blocks from sector_nr to last */ 4743 r10_bio = raid10_alloc_init_r10buf(conf); 4744 r10_bio->state = 0; 4745 raise_barrier(conf, 1); 4746 atomic_set(&r10_bio->remaining, 0); 4747 r10_bio->mddev = mddev; 4748 r10_bio->sector = sector_nr; 4749 set_bit(R10BIO_IsReshape, &r10_bio->state); 4750 r10_bio->sectors = last - sector_nr + 1; 4751 rdev = read_balance(conf, r10_bio, &max_sectors); 4752 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4753 4754 if (!rdev) { 4755 /* Cannot read from here, so need to record bad blocks 4756 * on all the target devices. 4757 */ 4758 // FIXME 4759 mempool_free(r10_bio, &conf->r10buf_pool); 4760 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4761 return sectors_done; 4762 } 4763 4764 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4765 GFP_KERNEL, &mddev->bio_set); 4766 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4767 + rdev->data_offset); 4768 read_bio->bi_private = r10_bio; 4769 read_bio->bi_end_io = end_reshape_read; 4770 r10_bio->master_bio = read_bio; 4771 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4772 4773 /* 4774 * Broadcast RESYNC message to other nodes, so all nodes would not 4775 * write to the region to avoid conflict. 4776 */ 4777 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4778 struct mdp_superblock_1 *sb = NULL; 4779 int sb_reshape_pos = 0; 4780 4781 conf->cluster_sync_low = sector_nr; 4782 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4783 sb = page_address(rdev->sb_page); 4784 if (sb) { 4785 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4786 /* 4787 * Set cluster_sync_low again if next address for array 4788 * reshape is less than cluster_sync_low. Since we can't 4789 * update cluster_sync_low until it has finished reshape. 4790 */ 4791 if (sb_reshape_pos < conf->cluster_sync_low) 4792 conf->cluster_sync_low = sb_reshape_pos; 4793 } 4794 4795 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4796 conf->cluster_sync_high); 4797 } 4798 4799 /* Now find the locations in the new layout */ 4800 __raid10_find_phys(&conf->geo, r10_bio); 4801 4802 blist = read_bio; 4803 read_bio->bi_next = NULL; 4804 4805 for (s = 0; s < conf->copies*2; s++) { 4806 struct bio *b; 4807 int d = r10_bio->devs[s/2].devnum; 4808 struct md_rdev *rdev2; 4809 if (s&1) { 4810 rdev2 = conf->mirrors[d].replacement; 4811 b = r10_bio->devs[s/2].repl_bio; 4812 } else { 4813 rdev2 = conf->mirrors[d].rdev; 4814 b = r10_bio->devs[s/2].bio; 4815 } 4816 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4817 continue; 4818 4819 bio_set_dev(b, rdev2->bdev); 4820 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4821 rdev2->new_data_offset; 4822 b->bi_end_io = end_reshape_write; 4823 b->bi_opf = REQ_OP_WRITE; 4824 b->bi_next = blist; 4825 blist = b; 4826 } 4827 4828 /* Now add as many pages as possible to all of these bios. */ 4829 4830 nr_sectors = 0; 4831 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4832 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4833 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4834 int len = (max_sectors - s) << 9; 4835 if (len > PAGE_SIZE) 4836 len = PAGE_SIZE; 4837 for (bio = blist; bio ; bio = bio->bi_next) { 4838 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 4839 bio->bi_status = BLK_STS_RESOURCE; 4840 bio_endio(bio); 4841 return sectors_done; 4842 } 4843 } 4844 sector_nr += len >> 9; 4845 nr_sectors += len >> 9; 4846 } 4847 r10_bio->sectors = nr_sectors; 4848 4849 /* Now submit the read */ 4850 md_sync_acct_bio(read_bio, r10_bio->sectors); 4851 atomic_inc(&r10_bio->remaining); 4852 read_bio->bi_next = NULL; 4853 submit_bio_noacct(read_bio); 4854 sectors_done += nr_sectors; 4855 if (sector_nr <= last) 4856 goto read_more; 4857 4858 lower_barrier(conf); 4859 4860 /* Now that we have done the whole section we can 4861 * update reshape_progress 4862 */ 4863 if (mddev->reshape_backwards) 4864 conf->reshape_progress -= sectors_done; 4865 else 4866 conf->reshape_progress += sectors_done; 4867 4868 return sectors_done; 4869 } 4870 4871 static void end_reshape_request(struct r10bio *r10_bio); 4872 static int handle_reshape_read_error(struct mddev *mddev, 4873 struct r10bio *r10_bio); 4874 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4875 { 4876 /* Reshape read completed. Hopefully we have a block 4877 * to write out. 4878 * If we got a read error then we do sync 1-page reads from 4879 * elsewhere until we find the data - or give up. 4880 */ 4881 struct r10conf *conf = mddev->private; 4882 int s; 4883 4884 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4885 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4886 /* Reshape has been aborted */ 4887 md_done_sync(mddev, r10_bio->sectors, 0); 4888 return; 4889 } 4890 4891 /* We definitely have the data in the pages, schedule the 4892 * writes. 4893 */ 4894 atomic_set(&r10_bio->remaining, 1); 4895 for (s = 0; s < conf->copies*2; s++) { 4896 struct bio *b; 4897 int d = r10_bio->devs[s/2].devnum; 4898 struct md_rdev *rdev; 4899 if (s&1) { 4900 rdev = conf->mirrors[d].replacement; 4901 b = r10_bio->devs[s/2].repl_bio; 4902 } else { 4903 rdev = conf->mirrors[d].rdev; 4904 b = r10_bio->devs[s/2].bio; 4905 } 4906 if (!rdev || test_bit(Faulty, &rdev->flags)) 4907 continue; 4908 4909 atomic_inc(&rdev->nr_pending); 4910 md_sync_acct_bio(b, r10_bio->sectors); 4911 atomic_inc(&r10_bio->remaining); 4912 b->bi_next = NULL; 4913 submit_bio_noacct(b); 4914 } 4915 end_reshape_request(r10_bio); 4916 } 4917 4918 static void end_reshape(struct r10conf *conf) 4919 { 4920 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4921 return; 4922 4923 spin_lock_irq(&conf->device_lock); 4924 conf->prev = conf->geo; 4925 md_finish_reshape(conf->mddev); 4926 smp_wmb(); 4927 conf->reshape_progress = MaxSector; 4928 conf->reshape_safe = MaxSector; 4929 spin_unlock_irq(&conf->device_lock); 4930 4931 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf)); 4932 conf->fullsync = 0; 4933 } 4934 4935 static void raid10_update_reshape_pos(struct mddev *mddev) 4936 { 4937 struct r10conf *conf = mddev->private; 4938 sector_t lo, hi; 4939 4940 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4941 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4942 || mddev->reshape_position == MaxSector) 4943 conf->reshape_progress = mddev->reshape_position; 4944 else 4945 WARN_ON_ONCE(1); 4946 } 4947 4948 static int handle_reshape_read_error(struct mddev *mddev, 4949 struct r10bio *r10_bio) 4950 { 4951 /* Use sync reads to get the blocks from somewhere else */ 4952 int sectors = r10_bio->sectors; 4953 struct r10conf *conf = mddev->private; 4954 struct r10bio *r10b; 4955 int slot = 0; 4956 int idx = 0; 4957 struct page **pages; 4958 4959 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4960 if (!r10b) { 4961 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4962 return -ENOMEM; 4963 } 4964 4965 /* reshape IOs share pages from .devs[0].bio */ 4966 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4967 4968 r10b->sector = r10_bio->sector; 4969 __raid10_find_phys(&conf->prev, r10b); 4970 4971 while (sectors) { 4972 int s = sectors; 4973 int success = 0; 4974 int first_slot = slot; 4975 4976 if (s > (PAGE_SIZE >> 9)) 4977 s = PAGE_SIZE >> 9; 4978 4979 while (!success) { 4980 int d = r10b->devs[slot].devnum; 4981 struct md_rdev *rdev = conf->mirrors[d].rdev; 4982 sector_t addr; 4983 if (rdev == NULL || 4984 test_bit(Faulty, &rdev->flags) || 4985 !test_bit(In_sync, &rdev->flags)) 4986 goto failed; 4987 4988 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4989 atomic_inc(&rdev->nr_pending); 4990 success = sync_page_io(rdev, 4991 addr, 4992 s << 9, 4993 pages[idx], 4994 REQ_OP_READ, false); 4995 rdev_dec_pending(rdev, mddev); 4996 if (success) 4997 break; 4998 failed: 4999 slot++; 5000 if (slot >= conf->copies) 5001 slot = 0; 5002 if (slot == first_slot) 5003 break; 5004 } 5005 if (!success) { 5006 /* couldn't read this block, must give up */ 5007 set_bit(MD_RECOVERY_INTR, 5008 &mddev->recovery); 5009 kfree(r10b); 5010 return -EIO; 5011 } 5012 sectors -= s; 5013 idx++; 5014 } 5015 kfree(r10b); 5016 return 0; 5017 } 5018 5019 static void end_reshape_write(struct bio *bio) 5020 { 5021 struct r10bio *r10_bio = get_resync_r10bio(bio); 5022 struct mddev *mddev = r10_bio->mddev; 5023 struct r10conf *conf = mddev->private; 5024 int d; 5025 int slot; 5026 int repl; 5027 struct md_rdev *rdev = NULL; 5028 5029 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5030 rdev = repl ? conf->mirrors[d].replacement : 5031 conf->mirrors[d].rdev; 5032 5033 if (bio->bi_status) { 5034 /* FIXME should record badblock */ 5035 md_error(mddev, rdev); 5036 } 5037 5038 rdev_dec_pending(rdev, mddev); 5039 end_reshape_request(r10_bio); 5040 } 5041 5042 static void end_reshape_request(struct r10bio *r10_bio) 5043 { 5044 if (!atomic_dec_and_test(&r10_bio->remaining)) 5045 return; 5046 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5047 bio_put(r10_bio->master_bio); 5048 put_buf(r10_bio); 5049 } 5050 5051 static void raid10_finish_reshape(struct mddev *mddev) 5052 { 5053 struct r10conf *conf = mddev->private; 5054 5055 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5056 return; 5057 5058 if (mddev->delta_disks > 0) { 5059 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5060 mddev->recovery_cp = mddev->resync_max_sectors; 5061 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5062 } 5063 mddev->resync_max_sectors = mddev->array_sectors; 5064 } else { 5065 int d; 5066 for (d = conf->geo.raid_disks ; 5067 d < conf->geo.raid_disks - mddev->delta_disks; 5068 d++) { 5069 struct md_rdev *rdev = conf->mirrors[d].rdev; 5070 if (rdev) 5071 clear_bit(In_sync, &rdev->flags); 5072 rdev = conf->mirrors[d].replacement; 5073 if (rdev) 5074 clear_bit(In_sync, &rdev->flags); 5075 } 5076 } 5077 mddev->layout = mddev->new_layout; 5078 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5079 mddev->reshape_position = MaxSector; 5080 mddev->delta_disks = 0; 5081 mddev->reshape_backwards = 0; 5082 } 5083 5084 static struct md_personality raid10_personality = 5085 { 5086 .name = "raid10", 5087 .level = 10, 5088 .owner = THIS_MODULE, 5089 .make_request = raid10_make_request, 5090 .run = raid10_run, 5091 .free = raid10_free, 5092 .status = raid10_status, 5093 .error_handler = raid10_error, 5094 .hot_add_disk = raid10_add_disk, 5095 .hot_remove_disk= raid10_remove_disk, 5096 .spare_active = raid10_spare_active, 5097 .sync_request = raid10_sync_request, 5098 .quiesce = raid10_quiesce, 5099 .size = raid10_size, 5100 .resize = raid10_resize, 5101 .takeover = raid10_takeover, 5102 .check_reshape = raid10_check_reshape, 5103 .start_reshape = raid10_start_reshape, 5104 .finish_reshape = raid10_finish_reshape, 5105 .update_reshape_pos = raid10_update_reshape_pos, 5106 }; 5107 5108 static int __init raid_init(void) 5109 { 5110 return register_md_personality(&raid10_personality); 5111 } 5112 5113 static void raid_exit(void) 5114 { 5115 unregister_md_personality(&raid10_personality); 5116 } 5117 5118 module_init(raid_init); 5119 module_exit(raid_exit); 5120 MODULE_LICENSE("GPL"); 5121 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5122 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5123 MODULE_ALIAS("md-raid10"); 5124 MODULE_ALIAS("md-level-10"); 5125