xref: /linux/drivers/md/raid10.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106 
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 	if (done) {
312 		bio_endio(bio, 0);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 	slot = r10_bio->read_slot;
370 	dev = r10_bio->devs[slot].devnum;
371 	rdev = r10_bio->devs[slot].rdev;
372 	/*
373 	 * this branch is our 'one mirror IO has finished' event handler:
374 	 */
375 	update_head_pos(slot, r10_bio);
376 
377 	if (uptodate) {
378 		/*
379 		 * Set R10BIO_Uptodate in our master bio, so that
380 		 * we will return a good error code to the higher
381 		 * levels even if IO on some other mirrored buffer fails.
382 		 *
383 		 * The 'master' represents the composite IO operation to
384 		 * user-side. So if something waits for IO, then it will
385 		 * wait for the 'master' bio.
386 		 */
387 		set_bit(R10BIO_Uptodate, &r10_bio->state);
388 	} else {
389 		/* If all other devices that store this block have
390 		 * failed, we want to return the error upwards rather
391 		 * than fail the last device.  Here we redefine
392 		 * "uptodate" to mean "Don't want to retry"
393 		 */
394 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395 			     rdev->raid_disk))
396 			uptodate = 1;
397 	}
398 	if (uptodate) {
399 		raid_end_bio_io(r10_bio);
400 		rdev_dec_pending(rdev, conf->mddev);
401 	} else {
402 		/*
403 		 * oops, read error - keep the refcount on the rdev
404 		 */
405 		char b[BDEVNAME_SIZE];
406 		printk_ratelimited(KERN_ERR
407 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
408 				   mdname(conf->mddev),
409 				   bdevname(rdev->bdev, b),
410 				   (unsigned long long)r10_bio->sector);
411 		set_bit(R10BIO_ReadError, &r10_bio->state);
412 		reschedule_retry(r10_bio);
413 	}
414 }
415 
416 static void close_write(struct r10bio *r10_bio)
417 {
418 	/* clear the bitmap if all writes complete successfully */
419 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420 			r10_bio->sectors,
421 			!test_bit(R10BIO_Degraded, &r10_bio->state),
422 			0);
423 	md_write_end(r10_bio->mddev);
424 }
425 
426 static void one_write_done(struct r10bio *r10_bio)
427 {
428 	if (atomic_dec_and_test(&r10_bio->remaining)) {
429 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
430 			reschedule_retry(r10_bio);
431 		else {
432 			close_write(r10_bio);
433 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434 				reschedule_retry(r10_bio);
435 			else
436 				raid_end_bio_io(r10_bio);
437 		}
438 	}
439 }
440 
441 static void raid10_end_write_request(struct bio *bio, int error)
442 {
443 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
444 	struct r10bio *r10_bio = bio->bi_private;
445 	int dev;
446 	int dec_rdev = 1;
447 	struct r10conf *conf = r10_bio->mddev->private;
448 	int slot, repl;
449 	struct md_rdev *rdev = NULL;
450 
451 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452 
453 	if (repl)
454 		rdev = conf->mirrors[dev].replacement;
455 	if (!rdev) {
456 		smp_rmb();
457 		repl = 0;
458 		rdev = conf->mirrors[dev].rdev;
459 	}
460 	/*
461 	 * this branch is our 'one mirror IO has finished' event handler:
462 	 */
463 	if (!uptodate) {
464 		if (repl)
465 			/* Never record new bad blocks to replacement,
466 			 * just fail it.
467 			 */
468 			md_error(rdev->mddev, rdev);
469 		else {
470 			set_bit(WriteErrorSeen,	&rdev->flags);
471 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 				set_bit(MD_RECOVERY_NEEDED,
473 					&rdev->mddev->recovery);
474 			set_bit(R10BIO_WriteError, &r10_bio->state);
475 			dec_rdev = 0;
476 		}
477 	} else {
478 		/*
479 		 * Set R10BIO_Uptodate in our master bio, so that
480 		 * we will return a good error code for to the higher
481 		 * levels even if IO on some other mirrored buffer fails.
482 		 *
483 		 * The 'master' represents the composite IO operation to
484 		 * user-side. So if something waits for IO, then it will
485 		 * wait for the 'master' bio.
486 		 */
487 		sector_t first_bad;
488 		int bad_sectors;
489 
490 		/*
491 		 * Do not set R10BIO_Uptodate if the current device is
492 		 * rebuilding or Faulty. This is because we cannot use
493 		 * such device for properly reading the data back (we could
494 		 * potentially use it, if the current write would have felt
495 		 * before rdev->recovery_offset, but for simplicity we don't
496 		 * check this here.
497 		 */
498 		if (test_bit(In_sync, &rdev->flags) &&
499 		    !test_bit(Faulty, &rdev->flags))
500 			set_bit(R10BIO_Uptodate, &r10_bio->state);
501 
502 		/* Maybe we can clear some bad blocks. */
503 		if (is_badblock(rdev,
504 				r10_bio->devs[slot].addr,
505 				r10_bio->sectors,
506 				&first_bad, &bad_sectors)) {
507 			bio_put(bio);
508 			if (repl)
509 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 			else
511 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 			dec_rdev = 0;
513 			set_bit(R10BIO_MadeGood, &r10_bio->state);
514 		}
515 	}
516 
517 	/*
518 	 *
519 	 * Let's see if all mirrored write operations have finished
520 	 * already.
521 	 */
522 	one_write_done(r10_bio);
523 	if (dec_rdev)
524 		rdev_dec_pending(rdev, conf->mddev);
525 }
526 
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551 
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 	int n,f;
555 	sector_t sector;
556 	sector_t chunk;
557 	sector_t stripe;
558 	int dev;
559 	int slot = 0;
560 	int last_far_set_start, last_far_set_size;
561 
562 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 	last_far_set_start *= geo->far_set_size;
564 
565 	last_far_set_size = geo->far_set_size;
566 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
567 
568 	/* now calculate first sector/dev */
569 	chunk = r10bio->sector >> geo->chunk_shift;
570 	sector = r10bio->sector & geo->chunk_mask;
571 
572 	chunk *= geo->near_copies;
573 	stripe = chunk;
574 	dev = sector_div(stripe, geo->raid_disks);
575 	if (geo->far_offset)
576 		stripe *= geo->far_copies;
577 
578 	sector += stripe << geo->chunk_shift;
579 
580 	/* and calculate all the others */
581 	for (n = 0; n < geo->near_copies; n++) {
582 		int d = dev;
583 		int set;
584 		sector_t s = sector;
585 		r10bio->devs[slot].devnum = d;
586 		r10bio->devs[slot].addr = s;
587 		slot++;
588 
589 		for (f = 1; f < geo->far_copies; f++) {
590 			set = d / geo->far_set_size;
591 			d += geo->near_copies;
592 
593 			if ((geo->raid_disks % geo->far_set_size) &&
594 			    (d > last_far_set_start)) {
595 				d -= last_far_set_start;
596 				d %= last_far_set_size;
597 				d += last_far_set_start;
598 			} else {
599 				d %= geo->far_set_size;
600 				d += geo->far_set_size * set;
601 			}
602 			s += geo->stride;
603 			r10bio->devs[slot].devnum = d;
604 			r10bio->devs[slot].addr = s;
605 			slot++;
606 		}
607 		dev++;
608 		if (dev >= geo->raid_disks) {
609 			dev = 0;
610 			sector += (geo->chunk_mask + 1);
611 		}
612 	}
613 }
614 
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 	struct geom *geo = &conf->geo;
618 
619 	if (conf->reshape_progress != MaxSector &&
620 	    ((r10bio->sector >= conf->reshape_progress) !=
621 	     conf->mddev->reshape_backwards)) {
622 		set_bit(R10BIO_Previous, &r10bio->state);
623 		geo = &conf->prev;
624 	} else
625 		clear_bit(R10BIO_Previous, &r10bio->state);
626 
627 	__raid10_find_phys(geo, r10bio);
628 }
629 
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 	sector_t offset, chunk, vchunk;
633 	/* Never use conf->prev as this is only called during resync
634 	 * or recovery, so reshape isn't happening
635 	 */
636 	struct geom *geo = &conf->geo;
637 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 	int far_set_size = geo->far_set_size;
639 	int last_far_set_start;
640 
641 	if (geo->raid_disks % geo->far_set_size) {
642 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 		last_far_set_start *= geo->far_set_size;
644 
645 		if (dev >= last_far_set_start) {
646 			far_set_size = geo->far_set_size;
647 			far_set_size += (geo->raid_disks % geo->far_set_size);
648 			far_set_start = last_far_set_start;
649 		}
650 	}
651 
652 	offset = sector & geo->chunk_mask;
653 	if (geo->far_offset) {
654 		int fc;
655 		chunk = sector >> geo->chunk_shift;
656 		fc = sector_div(chunk, geo->far_copies);
657 		dev -= fc * geo->near_copies;
658 		if (dev < far_set_start)
659 			dev += far_set_size;
660 	} else {
661 		while (sector >= geo->stride) {
662 			sector -= geo->stride;
663 			if (dev < (geo->near_copies + far_set_start))
664 				dev += far_set_size - geo->near_copies;
665 			else
666 				dev -= geo->near_copies;
667 		}
668 		chunk = sector >> geo->chunk_shift;
669 	}
670 	vchunk = chunk * geo->raid_disks + dev;
671 	sector_div(vchunk, geo->near_copies);
672 	return (vchunk << geo->chunk_shift) + offset;
673 }
674 
675 /**
676  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
677  *	@mddev: the md device
678  *	@bvm: properties of new bio
679  *	@biovec: the request that could be merged to it.
680  *
681  *	Return amount of bytes we can accept at this offset
682  *	This requires checking for end-of-chunk if near_copies != raid_disks,
683  *	and for subordinate merge_bvec_fns if merge_check_needed.
684  */
685 static int raid10_mergeable_bvec(struct mddev *mddev,
686 				 struct bvec_merge_data *bvm,
687 				 struct bio_vec *biovec)
688 {
689 	struct r10conf *conf = mddev->private;
690 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
691 	int max;
692 	unsigned int chunk_sectors;
693 	unsigned int bio_sectors = bvm->bi_size >> 9;
694 	struct geom *geo = &conf->geo;
695 
696 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
697 	if (conf->reshape_progress != MaxSector &&
698 	    ((sector >= conf->reshape_progress) !=
699 	     conf->mddev->reshape_backwards))
700 		geo = &conf->prev;
701 
702 	if (geo->near_copies < geo->raid_disks) {
703 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
704 					+ bio_sectors)) << 9;
705 		if (max < 0)
706 			/* bio_add cannot handle a negative return */
707 			max = 0;
708 		if (max <= biovec->bv_len && bio_sectors == 0)
709 			return biovec->bv_len;
710 	} else
711 		max = biovec->bv_len;
712 
713 	if (mddev->merge_check_needed) {
714 		struct {
715 			struct r10bio r10_bio;
716 			struct r10dev devs[conf->copies];
717 		} on_stack;
718 		struct r10bio *r10_bio = &on_stack.r10_bio;
719 		int s;
720 		if (conf->reshape_progress != MaxSector) {
721 			/* Cannot give any guidance during reshape */
722 			if (max <= biovec->bv_len && bio_sectors == 0)
723 				return biovec->bv_len;
724 			return 0;
725 		}
726 		r10_bio->sector = sector;
727 		raid10_find_phys(conf, r10_bio);
728 		rcu_read_lock();
729 		for (s = 0; s < conf->copies; s++) {
730 			int disk = r10_bio->devs[s].devnum;
731 			struct md_rdev *rdev = rcu_dereference(
732 				conf->mirrors[disk].rdev);
733 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
734 				struct request_queue *q =
735 					bdev_get_queue(rdev->bdev);
736 				if (q->merge_bvec_fn) {
737 					bvm->bi_sector = r10_bio->devs[s].addr
738 						+ rdev->data_offset;
739 					bvm->bi_bdev = rdev->bdev;
740 					max = min(max, q->merge_bvec_fn(
741 							  q, bvm, biovec));
742 				}
743 			}
744 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
745 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
746 				struct request_queue *q =
747 					bdev_get_queue(rdev->bdev);
748 				if (q->merge_bvec_fn) {
749 					bvm->bi_sector = r10_bio->devs[s].addr
750 						+ rdev->data_offset;
751 					bvm->bi_bdev = rdev->bdev;
752 					max = min(max, q->merge_bvec_fn(
753 							  q, bvm, biovec));
754 				}
755 			}
756 		}
757 		rcu_read_unlock();
758 	}
759 	return max;
760 }
761 
762 /*
763  * This routine returns the disk from which the requested read should
764  * be done. There is a per-array 'next expected sequential IO' sector
765  * number - if this matches on the next IO then we use the last disk.
766  * There is also a per-disk 'last know head position' sector that is
767  * maintained from IRQ contexts, both the normal and the resync IO
768  * completion handlers update this position correctly. If there is no
769  * perfect sequential match then we pick the disk whose head is closest.
770  *
771  * If there are 2 mirrors in the same 2 devices, performance degrades
772  * because position is mirror, not device based.
773  *
774  * The rdev for the device selected will have nr_pending incremented.
775  */
776 
777 /*
778  * FIXME: possibly should rethink readbalancing and do it differently
779  * depending on near_copies / far_copies geometry.
780  */
781 static struct md_rdev *read_balance(struct r10conf *conf,
782 				    struct r10bio *r10_bio,
783 				    int *max_sectors)
784 {
785 	const sector_t this_sector = r10_bio->sector;
786 	int disk, slot;
787 	int sectors = r10_bio->sectors;
788 	int best_good_sectors;
789 	sector_t new_distance, best_dist;
790 	struct md_rdev *best_rdev, *rdev = NULL;
791 	int do_balance;
792 	int best_slot;
793 	struct geom *geo = &conf->geo;
794 
795 	raid10_find_phys(conf, r10_bio);
796 	rcu_read_lock();
797 retry:
798 	sectors = r10_bio->sectors;
799 	best_slot = -1;
800 	best_rdev = NULL;
801 	best_dist = MaxSector;
802 	best_good_sectors = 0;
803 	do_balance = 1;
804 	/*
805 	 * Check if we can balance. We can balance on the whole
806 	 * device if no resync is going on (recovery is ok), or below
807 	 * the resync window. We take the first readable disk when
808 	 * above the resync window.
809 	 */
810 	if (conf->mddev->recovery_cp < MaxSector
811 	    && (this_sector + sectors >= conf->next_resync))
812 		do_balance = 0;
813 
814 	for (slot = 0; slot < conf->copies ; slot++) {
815 		sector_t first_bad;
816 		int bad_sectors;
817 		sector_t dev_sector;
818 
819 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
820 			continue;
821 		disk = r10_bio->devs[slot].devnum;
822 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
823 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
824 		    test_bit(Unmerged, &rdev->flags) ||
825 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
826 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
827 		if (rdev == NULL ||
828 		    test_bit(Faulty, &rdev->flags) ||
829 		    test_bit(Unmerged, &rdev->flags))
830 			continue;
831 		if (!test_bit(In_sync, &rdev->flags) &&
832 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
833 			continue;
834 
835 		dev_sector = r10_bio->devs[slot].addr;
836 		if (is_badblock(rdev, dev_sector, sectors,
837 				&first_bad, &bad_sectors)) {
838 			if (best_dist < MaxSector)
839 				/* Already have a better slot */
840 				continue;
841 			if (first_bad <= dev_sector) {
842 				/* Cannot read here.  If this is the
843 				 * 'primary' device, then we must not read
844 				 * beyond 'bad_sectors' from another device.
845 				 */
846 				bad_sectors -= (dev_sector - first_bad);
847 				if (!do_balance && sectors > bad_sectors)
848 					sectors = bad_sectors;
849 				if (best_good_sectors > sectors)
850 					best_good_sectors = sectors;
851 			} else {
852 				sector_t good_sectors =
853 					first_bad - dev_sector;
854 				if (good_sectors > best_good_sectors) {
855 					best_good_sectors = good_sectors;
856 					best_slot = slot;
857 					best_rdev = rdev;
858 				}
859 				if (!do_balance)
860 					/* Must read from here */
861 					break;
862 			}
863 			continue;
864 		} else
865 			best_good_sectors = sectors;
866 
867 		if (!do_balance)
868 			break;
869 
870 		/* This optimisation is debatable, and completely destroys
871 		 * sequential read speed for 'far copies' arrays.  So only
872 		 * keep it for 'near' arrays, and review those later.
873 		 */
874 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
875 			break;
876 
877 		/* for far > 1 always use the lowest address */
878 		if (geo->far_copies > 1)
879 			new_distance = r10_bio->devs[slot].addr;
880 		else
881 			new_distance = abs(r10_bio->devs[slot].addr -
882 					   conf->mirrors[disk].head_position);
883 		if (new_distance < best_dist) {
884 			best_dist = new_distance;
885 			best_slot = slot;
886 			best_rdev = rdev;
887 		}
888 	}
889 	if (slot >= conf->copies) {
890 		slot = best_slot;
891 		rdev = best_rdev;
892 	}
893 
894 	if (slot >= 0) {
895 		atomic_inc(&rdev->nr_pending);
896 		if (test_bit(Faulty, &rdev->flags)) {
897 			/* Cannot risk returning a device that failed
898 			 * before we inc'ed nr_pending
899 			 */
900 			rdev_dec_pending(rdev, conf->mddev);
901 			goto retry;
902 		}
903 		r10_bio->read_slot = slot;
904 	} else
905 		rdev = NULL;
906 	rcu_read_unlock();
907 	*max_sectors = best_good_sectors;
908 
909 	return rdev;
910 }
911 
912 static int raid10_congested(struct mddev *mddev, int bits)
913 {
914 	struct r10conf *conf = mddev->private;
915 	int i, ret = 0;
916 
917 	if ((bits & (1 << WB_async_congested)) &&
918 	    conf->pending_count >= max_queued_requests)
919 		return 1;
920 
921 	rcu_read_lock();
922 	for (i = 0;
923 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
924 		     && ret == 0;
925 	     i++) {
926 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
927 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
928 			struct request_queue *q = bdev_get_queue(rdev->bdev);
929 
930 			ret |= bdi_congested(&q->backing_dev_info, bits);
931 		}
932 	}
933 	rcu_read_unlock();
934 	return ret;
935 }
936 
937 static void flush_pending_writes(struct r10conf *conf)
938 {
939 	/* Any writes that have been queued but are awaiting
940 	 * bitmap updates get flushed here.
941 	 */
942 	spin_lock_irq(&conf->device_lock);
943 
944 	if (conf->pending_bio_list.head) {
945 		struct bio *bio;
946 		bio = bio_list_get(&conf->pending_bio_list);
947 		conf->pending_count = 0;
948 		spin_unlock_irq(&conf->device_lock);
949 		/* flush any pending bitmap writes to disk
950 		 * before proceeding w/ I/O */
951 		bitmap_unplug(conf->mddev->bitmap);
952 		wake_up(&conf->wait_barrier);
953 
954 		while (bio) { /* submit pending writes */
955 			struct bio *next = bio->bi_next;
956 			bio->bi_next = NULL;
957 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
958 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
959 				/* Just ignore it */
960 				bio_endio(bio, 0);
961 			else
962 				generic_make_request(bio);
963 			bio = next;
964 		}
965 	} else
966 		spin_unlock_irq(&conf->device_lock);
967 }
968 
969 /* Barriers....
970  * Sometimes we need to suspend IO while we do something else,
971  * either some resync/recovery, or reconfigure the array.
972  * To do this we raise a 'barrier'.
973  * The 'barrier' is a counter that can be raised multiple times
974  * to count how many activities are happening which preclude
975  * normal IO.
976  * We can only raise the barrier if there is no pending IO.
977  * i.e. if nr_pending == 0.
978  * We choose only to raise the barrier if no-one is waiting for the
979  * barrier to go down.  This means that as soon as an IO request
980  * is ready, no other operations which require a barrier will start
981  * until the IO request has had a chance.
982  *
983  * So: regular IO calls 'wait_barrier'.  When that returns there
984  *    is no backgroup IO happening,  It must arrange to call
985  *    allow_barrier when it has finished its IO.
986  * backgroup IO calls must call raise_barrier.  Once that returns
987  *    there is no normal IO happeing.  It must arrange to call
988  *    lower_barrier when the particular background IO completes.
989  */
990 
991 static void raise_barrier(struct r10conf *conf, int force)
992 {
993 	BUG_ON(force && !conf->barrier);
994 	spin_lock_irq(&conf->resync_lock);
995 
996 	/* Wait until no block IO is waiting (unless 'force') */
997 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
998 			    conf->resync_lock);
999 
1000 	/* block any new IO from starting */
1001 	conf->barrier++;
1002 
1003 	/* Now wait for all pending IO to complete */
1004 	wait_event_lock_irq(conf->wait_barrier,
1005 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1006 			    conf->resync_lock);
1007 
1008 	spin_unlock_irq(&conf->resync_lock);
1009 }
1010 
1011 static void lower_barrier(struct r10conf *conf)
1012 {
1013 	unsigned long flags;
1014 	spin_lock_irqsave(&conf->resync_lock, flags);
1015 	conf->barrier--;
1016 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1017 	wake_up(&conf->wait_barrier);
1018 }
1019 
1020 static void wait_barrier(struct r10conf *conf)
1021 {
1022 	spin_lock_irq(&conf->resync_lock);
1023 	if (conf->barrier) {
1024 		conf->nr_waiting++;
1025 		/* Wait for the barrier to drop.
1026 		 * However if there are already pending
1027 		 * requests (preventing the barrier from
1028 		 * rising completely), and the
1029 		 * pre-process bio queue isn't empty,
1030 		 * then don't wait, as we need to empty
1031 		 * that queue to get the nr_pending
1032 		 * count down.
1033 		 */
1034 		wait_event_lock_irq(conf->wait_barrier,
1035 				    !conf->barrier ||
1036 				    (conf->nr_pending &&
1037 				     current->bio_list &&
1038 				     !bio_list_empty(current->bio_list)),
1039 				    conf->resync_lock);
1040 		conf->nr_waiting--;
1041 	}
1042 	conf->nr_pending++;
1043 	spin_unlock_irq(&conf->resync_lock);
1044 }
1045 
1046 static void allow_barrier(struct r10conf *conf)
1047 {
1048 	unsigned long flags;
1049 	spin_lock_irqsave(&conf->resync_lock, flags);
1050 	conf->nr_pending--;
1051 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1052 	wake_up(&conf->wait_barrier);
1053 }
1054 
1055 static void freeze_array(struct r10conf *conf, int extra)
1056 {
1057 	/* stop syncio and normal IO and wait for everything to
1058 	 * go quiet.
1059 	 * We increment barrier and nr_waiting, and then
1060 	 * wait until nr_pending match nr_queued+extra
1061 	 * This is called in the context of one normal IO request
1062 	 * that has failed. Thus any sync request that might be pending
1063 	 * will be blocked by nr_pending, and we need to wait for
1064 	 * pending IO requests to complete or be queued for re-try.
1065 	 * Thus the number queued (nr_queued) plus this request (extra)
1066 	 * must match the number of pending IOs (nr_pending) before
1067 	 * we continue.
1068 	 */
1069 	spin_lock_irq(&conf->resync_lock);
1070 	conf->barrier++;
1071 	conf->nr_waiting++;
1072 	wait_event_lock_irq_cmd(conf->wait_barrier,
1073 				conf->nr_pending == conf->nr_queued+extra,
1074 				conf->resync_lock,
1075 				flush_pending_writes(conf));
1076 
1077 	spin_unlock_irq(&conf->resync_lock);
1078 }
1079 
1080 static void unfreeze_array(struct r10conf *conf)
1081 {
1082 	/* reverse the effect of the freeze */
1083 	spin_lock_irq(&conf->resync_lock);
1084 	conf->barrier--;
1085 	conf->nr_waiting--;
1086 	wake_up(&conf->wait_barrier);
1087 	spin_unlock_irq(&conf->resync_lock);
1088 }
1089 
1090 static sector_t choose_data_offset(struct r10bio *r10_bio,
1091 				   struct md_rdev *rdev)
1092 {
1093 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1094 	    test_bit(R10BIO_Previous, &r10_bio->state))
1095 		return rdev->data_offset;
1096 	else
1097 		return rdev->new_data_offset;
1098 }
1099 
1100 struct raid10_plug_cb {
1101 	struct blk_plug_cb	cb;
1102 	struct bio_list		pending;
1103 	int			pending_cnt;
1104 };
1105 
1106 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1107 {
1108 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1109 						   cb);
1110 	struct mddev *mddev = plug->cb.data;
1111 	struct r10conf *conf = mddev->private;
1112 	struct bio *bio;
1113 
1114 	if (from_schedule || current->bio_list) {
1115 		spin_lock_irq(&conf->device_lock);
1116 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1117 		conf->pending_count += plug->pending_cnt;
1118 		spin_unlock_irq(&conf->device_lock);
1119 		wake_up(&conf->wait_barrier);
1120 		md_wakeup_thread(mddev->thread);
1121 		kfree(plug);
1122 		return;
1123 	}
1124 
1125 	/* we aren't scheduling, so we can do the write-out directly. */
1126 	bio = bio_list_get(&plug->pending);
1127 	bitmap_unplug(mddev->bitmap);
1128 	wake_up(&conf->wait_barrier);
1129 
1130 	while (bio) { /* submit pending writes */
1131 		struct bio *next = bio->bi_next;
1132 		bio->bi_next = NULL;
1133 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1134 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1135 			/* Just ignore it */
1136 			bio_endio(bio, 0);
1137 		else
1138 			generic_make_request(bio);
1139 		bio = next;
1140 	}
1141 	kfree(plug);
1142 }
1143 
1144 static void __make_request(struct mddev *mddev, struct bio *bio)
1145 {
1146 	struct r10conf *conf = mddev->private;
1147 	struct r10bio *r10_bio;
1148 	struct bio *read_bio;
1149 	int i;
1150 	const int rw = bio_data_dir(bio);
1151 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1152 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1153 	const unsigned long do_discard = (bio->bi_rw
1154 					  & (REQ_DISCARD | REQ_SECURE));
1155 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1156 	unsigned long flags;
1157 	struct md_rdev *blocked_rdev;
1158 	struct blk_plug_cb *cb;
1159 	struct raid10_plug_cb *plug = NULL;
1160 	int sectors_handled;
1161 	int max_sectors;
1162 	int sectors;
1163 
1164 	/*
1165 	 * Register the new request and wait if the reconstruction
1166 	 * thread has put up a bar for new requests.
1167 	 * Continue immediately if no resync is active currently.
1168 	 */
1169 	wait_barrier(conf);
1170 
1171 	sectors = bio_sectors(bio);
1172 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1173 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1174 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1175 		/* IO spans the reshape position.  Need to wait for
1176 		 * reshape to pass
1177 		 */
1178 		allow_barrier(conf);
1179 		wait_event(conf->wait_barrier,
1180 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1181 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1182 			   sectors);
1183 		wait_barrier(conf);
1184 	}
1185 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1186 	    bio_data_dir(bio) == WRITE &&
1187 	    (mddev->reshape_backwards
1188 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1189 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1190 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1191 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1192 		/* Need to update reshape_position in metadata */
1193 		mddev->reshape_position = conf->reshape_progress;
1194 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1195 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1196 		md_wakeup_thread(mddev->thread);
1197 		wait_event(mddev->sb_wait,
1198 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1199 
1200 		conf->reshape_safe = mddev->reshape_position;
1201 	}
1202 
1203 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1204 
1205 	r10_bio->master_bio = bio;
1206 	r10_bio->sectors = sectors;
1207 
1208 	r10_bio->mddev = mddev;
1209 	r10_bio->sector = bio->bi_iter.bi_sector;
1210 	r10_bio->state = 0;
1211 
1212 	/* We might need to issue multiple reads to different
1213 	 * devices if there are bad blocks around, so we keep
1214 	 * track of the number of reads in bio->bi_phys_segments.
1215 	 * If this is 0, there is only one r10_bio and no locking
1216 	 * will be needed when the request completes.  If it is
1217 	 * non-zero, then it is the number of not-completed requests.
1218 	 */
1219 	bio->bi_phys_segments = 0;
1220 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1221 
1222 	if (rw == READ) {
1223 		/*
1224 		 * read balancing logic:
1225 		 */
1226 		struct md_rdev *rdev;
1227 		int slot;
1228 
1229 read_again:
1230 		rdev = read_balance(conf, r10_bio, &max_sectors);
1231 		if (!rdev) {
1232 			raid_end_bio_io(r10_bio);
1233 			return;
1234 		}
1235 		slot = r10_bio->read_slot;
1236 
1237 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1238 		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1239 			 max_sectors);
1240 
1241 		r10_bio->devs[slot].bio = read_bio;
1242 		r10_bio->devs[slot].rdev = rdev;
1243 
1244 		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1245 			choose_data_offset(r10_bio, rdev);
1246 		read_bio->bi_bdev = rdev->bdev;
1247 		read_bio->bi_end_io = raid10_end_read_request;
1248 		read_bio->bi_rw = READ | do_sync;
1249 		read_bio->bi_private = r10_bio;
1250 
1251 		if (max_sectors < r10_bio->sectors) {
1252 			/* Could not read all from this device, so we will
1253 			 * need another r10_bio.
1254 			 */
1255 			sectors_handled = (r10_bio->sector + max_sectors
1256 					   - bio->bi_iter.bi_sector);
1257 			r10_bio->sectors = max_sectors;
1258 			spin_lock_irq(&conf->device_lock);
1259 			if (bio->bi_phys_segments == 0)
1260 				bio->bi_phys_segments = 2;
1261 			else
1262 				bio->bi_phys_segments++;
1263 			spin_unlock_irq(&conf->device_lock);
1264 			/* Cannot call generic_make_request directly
1265 			 * as that will be queued in __generic_make_request
1266 			 * and subsequent mempool_alloc might block
1267 			 * waiting for it.  so hand bio over to raid10d.
1268 			 */
1269 			reschedule_retry(r10_bio);
1270 
1271 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1272 
1273 			r10_bio->master_bio = bio;
1274 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1275 			r10_bio->state = 0;
1276 			r10_bio->mddev = mddev;
1277 			r10_bio->sector = bio->bi_iter.bi_sector +
1278 				sectors_handled;
1279 			goto read_again;
1280 		} else
1281 			generic_make_request(read_bio);
1282 		return;
1283 	}
1284 
1285 	/*
1286 	 * WRITE:
1287 	 */
1288 	if (conf->pending_count >= max_queued_requests) {
1289 		md_wakeup_thread(mddev->thread);
1290 		wait_event(conf->wait_barrier,
1291 			   conf->pending_count < max_queued_requests);
1292 	}
1293 	/* first select target devices under rcu_lock and
1294 	 * inc refcount on their rdev.  Record them by setting
1295 	 * bios[x] to bio
1296 	 * If there are known/acknowledged bad blocks on any device
1297 	 * on which we have seen a write error, we want to avoid
1298 	 * writing to those blocks.  This potentially requires several
1299 	 * writes to write around the bad blocks.  Each set of writes
1300 	 * gets its own r10_bio with a set of bios attached.  The number
1301 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1302 	 * the read case.
1303 	 */
1304 
1305 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1306 	raid10_find_phys(conf, r10_bio);
1307 retry_write:
1308 	blocked_rdev = NULL;
1309 	rcu_read_lock();
1310 	max_sectors = r10_bio->sectors;
1311 
1312 	for (i = 0;  i < conf->copies; i++) {
1313 		int d = r10_bio->devs[i].devnum;
1314 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1315 		struct md_rdev *rrdev = rcu_dereference(
1316 			conf->mirrors[d].replacement);
1317 		if (rdev == rrdev)
1318 			rrdev = NULL;
1319 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1320 			atomic_inc(&rdev->nr_pending);
1321 			blocked_rdev = rdev;
1322 			break;
1323 		}
1324 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1325 			atomic_inc(&rrdev->nr_pending);
1326 			blocked_rdev = rrdev;
1327 			break;
1328 		}
1329 		if (rdev && (test_bit(Faulty, &rdev->flags)
1330 			     || test_bit(Unmerged, &rdev->flags)))
1331 			rdev = NULL;
1332 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1333 			      || test_bit(Unmerged, &rrdev->flags)))
1334 			rrdev = NULL;
1335 
1336 		r10_bio->devs[i].bio = NULL;
1337 		r10_bio->devs[i].repl_bio = NULL;
1338 
1339 		if (!rdev && !rrdev) {
1340 			set_bit(R10BIO_Degraded, &r10_bio->state);
1341 			continue;
1342 		}
1343 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1344 			sector_t first_bad;
1345 			sector_t dev_sector = r10_bio->devs[i].addr;
1346 			int bad_sectors;
1347 			int is_bad;
1348 
1349 			is_bad = is_badblock(rdev, dev_sector,
1350 					     max_sectors,
1351 					     &first_bad, &bad_sectors);
1352 			if (is_bad < 0) {
1353 				/* Mustn't write here until the bad block
1354 				 * is acknowledged
1355 				 */
1356 				atomic_inc(&rdev->nr_pending);
1357 				set_bit(BlockedBadBlocks, &rdev->flags);
1358 				blocked_rdev = rdev;
1359 				break;
1360 			}
1361 			if (is_bad && first_bad <= dev_sector) {
1362 				/* Cannot write here at all */
1363 				bad_sectors -= (dev_sector - first_bad);
1364 				if (bad_sectors < max_sectors)
1365 					/* Mustn't write more than bad_sectors
1366 					 * to other devices yet
1367 					 */
1368 					max_sectors = bad_sectors;
1369 				/* We don't set R10BIO_Degraded as that
1370 				 * only applies if the disk is missing,
1371 				 * so it might be re-added, and we want to
1372 				 * know to recover this chunk.
1373 				 * In this case the device is here, and the
1374 				 * fact that this chunk is not in-sync is
1375 				 * recorded in the bad block log.
1376 				 */
1377 				continue;
1378 			}
1379 			if (is_bad) {
1380 				int good_sectors = first_bad - dev_sector;
1381 				if (good_sectors < max_sectors)
1382 					max_sectors = good_sectors;
1383 			}
1384 		}
1385 		if (rdev) {
1386 			r10_bio->devs[i].bio = bio;
1387 			atomic_inc(&rdev->nr_pending);
1388 		}
1389 		if (rrdev) {
1390 			r10_bio->devs[i].repl_bio = bio;
1391 			atomic_inc(&rrdev->nr_pending);
1392 		}
1393 	}
1394 	rcu_read_unlock();
1395 
1396 	if (unlikely(blocked_rdev)) {
1397 		/* Have to wait for this device to get unblocked, then retry */
1398 		int j;
1399 		int d;
1400 
1401 		for (j = 0; j < i; j++) {
1402 			if (r10_bio->devs[j].bio) {
1403 				d = r10_bio->devs[j].devnum;
1404 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1405 			}
1406 			if (r10_bio->devs[j].repl_bio) {
1407 				struct md_rdev *rdev;
1408 				d = r10_bio->devs[j].devnum;
1409 				rdev = conf->mirrors[d].replacement;
1410 				if (!rdev) {
1411 					/* Race with remove_disk */
1412 					smp_mb();
1413 					rdev = conf->mirrors[d].rdev;
1414 				}
1415 				rdev_dec_pending(rdev, mddev);
1416 			}
1417 		}
1418 		allow_barrier(conf);
1419 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1420 		wait_barrier(conf);
1421 		goto retry_write;
1422 	}
1423 
1424 	if (max_sectors < r10_bio->sectors) {
1425 		/* We are splitting this into multiple parts, so
1426 		 * we need to prepare for allocating another r10_bio.
1427 		 */
1428 		r10_bio->sectors = max_sectors;
1429 		spin_lock_irq(&conf->device_lock);
1430 		if (bio->bi_phys_segments == 0)
1431 			bio->bi_phys_segments = 2;
1432 		else
1433 			bio->bi_phys_segments++;
1434 		spin_unlock_irq(&conf->device_lock);
1435 	}
1436 	sectors_handled = r10_bio->sector + max_sectors -
1437 		bio->bi_iter.bi_sector;
1438 
1439 	atomic_set(&r10_bio->remaining, 1);
1440 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1441 
1442 	for (i = 0; i < conf->copies; i++) {
1443 		struct bio *mbio;
1444 		int d = r10_bio->devs[i].devnum;
1445 		if (r10_bio->devs[i].bio) {
1446 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1447 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1448 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1449 				 max_sectors);
1450 			r10_bio->devs[i].bio = mbio;
1451 
1452 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1453 					   choose_data_offset(r10_bio,
1454 							      rdev));
1455 			mbio->bi_bdev = rdev->bdev;
1456 			mbio->bi_end_io	= raid10_end_write_request;
1457 			mbio->bi_rw =
1458 				WRITE | do_sync | do_fua | do_discard | do_same;
1459 			mbio->bi_private = r10_bio;
1460 
1461 			atomic_inc(&r10_bio->remaining);
1462 
1463 			cb = blk_check_plugged(raid10_unplug, mddev,
1464 					       sizeof(*plug));
1465 			if (cb)
1466 				plug = container_of(cb, struct raid10_plug_cb,
1467 						    cb);
1468 			else
1469 				plug = NULL;
1470 			spin_lock_irqsave(&conf->device_lock, flags);
1471 			if (plug) {
1472 				bio_list_add(&plug->pending, mbio);
1473 				plug->pending_cnt++;
1474 			} else {
1475 				bio_list_add(&conf->pending_bio_list, mbio);
1476 				conf->pending_count++;
1477 			}
1478 			spin_unlock_irqrestore(&conf->device_lock, flags);
1479 			if (!plug)
1480 				md_wakeup_thread(mddev->thread);
1481 		}
1482 
1483 		if (r10_bio->devs[i].repl_bio) {
1484 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1485 			if (rdev == NULL) {
1486 				/* Replacement just got moved to main 'rdev' */
1487 				smp_mb();
1488 				rdev = conf->mirrors[d].rdev;
1489 			}
1490 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1491 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1492 				 max_sectors);
1493 			r10_bio->devs[i].repl_bio = mbio;
1494 
1495 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1496 					   choose_data_offset(
1497 						   r10_bio, rdev));
1498 			mbio->bi_bdev = rdev->bdev;
1499 			mbio->bi_end_io	= raid10_end_write_request;
1500 			mbio->bi_rw =
1501 				WRITE | do_sync | do_fua | do_discard | do_same;
1502 			mbio->bi_private = r10_bio;
1503 
1504 			atomic_inc(&r10_bio->remaining);
1505 			spin_lock_irqsave(&conf->device_lock, flags);
1506 			bio_list_add(&conf->pending_bio_list, mbio);
1507 			conf->pending_count++;
1508 			spin_unlock_irqrestore(&conf->device_lock, flags);
1509 			if (!mddev_check_plugged(mddev))
1510 				md_wakeup_thread(mddev->thread);
1511 		}
1512 	}
1513 
1514 	/* Don't remove the bias on 'remaining' (one_write_done) until
1515 	 * after checking if we need to go around again.
1516 	 */
1517 
1518 	if (sectors_handled < bio_sectors(bio)) {
1519 		one_write_done(r10_bio);
1520 		/* We need another r10_bio.  It has already been counted
1521 		 * in bio->bi_phys_segments.
1522 		 */
1523 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1524 
1525 		r10_bio->master_bio = bio;
1526 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1527 
1528 		r10_bio->mddev = mddev;
1529 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1530 		r10_bio->state = 0;
1531 		goto retry_write;
1532 	}
1533 	one_write_done(r10_bio);
1534 }
1535 
1536 static void make_request(struct mddev *mddev, struct bio *bio)
1537 {
1538 	struct r10conf *conf = mddev->private;
1539 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1540 	int chunk_sects = chunk_mask + 1;
1541 
1542 	struct bio *split;
1543 
1544 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1545 		md_flush_request(mddev, bio);
1546 		return;
1547 	}
1548 
1549 	md_write_start(mddev, bio);
1550 
1551 	do {
1552 
1553 		/*
1554 		 * If this request crosses a chunk boundary, we need to split
1555 		 * it.
1556 		 */
1557 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1558 			     bio_sectors(bio) > chunk_sects
1559 			     && (conf->geo.near_copies < conf->geo.raid_disks
1560 				 || conf->prev.near_copies <
1561 				 conf->prev.raid_disks))) {
1562 			split = bio_split(bio, chunk_sects -
1563 					  (bio->bi_iter.bi_sector &
1564 					   (chunk_sects - 1)),
1565 					  GFP_NOIO, fs_bio_set);
1566 			bio_chain(split, bio);
1567 		} else {
1568 			split = bio;
1569 		}
1570 
1571 		__make_request(mddev, split);
1572 	} while (split != bio);
1573 
1574 	/* In case raid10d snuck in to freeze_array */
1575 	wake_up(&conf->wait_barrier);
1576 }
1577 
1578 static void status(struct seq_file *seq, struct mddev *mddev)
1579 {
1580 	struct r10conf *conf = mddev->private;
1581 	int i;
1582 
1583 	if (conf->geo.near_copies < conf->geo.raid_disks)
1584 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1585 	if (conf->geo.near_copies > 1)
1586 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1587 	if (conf->geo.far_copies > 1) {
1588 		if (conf->geo.far_offset)
1589 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1590 		else
1591 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1592 	}
1593 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1594 					conf->geo.raid_disks - mddev->degraded);
1595 	for (i = 0; i < conf->geo.raid_disks; i++)
1596 		seq_printf(seq, "%s",
1597 			      conf->mirrors[i].rdev &&
1598 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1599 	seq_printf(seq, "]");
1600 }
1601 
1602 /* check if there are enough drives for
1603  * every block to appear on atleast one.
1604  * Don't consider the device numbered 'ignore'
1605  * as we might be about to remove it.
1606  */
1607 static int _enough(struct r10conf *conf, int previous, int ignore)
1608 {
1609 	int first = 0;
1610 	int has_enough = 0;
1611 	int disks, ncopies;
1612 	if (previous) {
1613 		disks = conf->prev.raid_disks;
1614 		ncopies = conf->prev.near_copies;
1615 	} else {
1616 		disks = conf->geo.raid_disks;
1617 		ncopies = conf->geo.near_copies;
1618 	}
1619 
1620 	rcu_read_lock();
1621 	do {
1622 		int n = conf->copies;
1623 		int cnt = 0;
1624 		int this = first;
1625 		while (n--) {
1626 			struct md_rdev *rdev;
1627 			if (this != ignore &&
1628 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1629 			    test_bit(In_sync, &rdev->flags))
1630 				cnt++;
1631 			this = (this+1) % disks;
1632 		}
1633 		if (cnt == 0)
1634 			goto out;
1635 		first = (first + ncopies) % disks;
1636 	} while (first != 0);
1637 	has_enough = 1;
1638 out:
1639 	rcu_read_unlock();
1640 	return has_enough;
1641 }
1642 
1643 static int enough(struct r10conf *conf, int ignore)
1644 {
1645 	/* when calling 'enough', both 'prev' and 'geo' must
1646 	 * be stable.
1647 	 * This is ensured if ->reconfig_mutex or ->device_lock
1648 	 * is held.
1649 	 */
1650 	return _enough(conf, 0, ignore) &&
1651 		_enough(conf, 1, ignore);
1652 }
1653 
1654 static void error(struct mddev *mddev, struct md_rdev *rdev)
1655 {
1656 	char b[BDEVNAME_SIZE];
1657 	struct r10conf *conf = mddev->private;
1658 	unsigned long flags;
1659 
1660 	/*
1661 	 * If it is not operational, then we have already marked it as dead
1662 	 * else if it is the last working disks, ignore the error, let the
1663 	 * next level up know.
1664 	 * else mark the drive as failed
1665 	 */
1666 	spin_lock_irqsave(&conf->device_lock, flags);
1667 	if (test_bit(In_sync, &rdev->flags)
1668 	    && !enough(conf, rdev->raid_disk)) {
1669 		/*
1670 		 * Don't fail the drive, just return an IO error.
1671 		 */
1672 		spin_unlock_irqrestore(&conf->device_lock, flags);
1673 		return;
1674 	}
1675 	if (test_and_clear_bit(In_sync, &rdev->flags))
1676 		mddev->degraded++;
1677 	/*
1678 	 * If recovery is running, make sure it aborts.
1679 	 */
1680 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1681 	set_bit(Blocked, &rdev->flags);
1682 	set_bit(Faulty, &rdev->flags);
1683 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1684 	spin_unlock_irqrestore(&conf->device_lock, flags);
1685 	printk(KERN_ALERT
1686 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1687 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1688 	       mdname(mddev), bdevname(rdev->bdev, b),
1689 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1690 }
1691 
1692 static void print_conf(struct r10conf *conf)
1693 {
1694 	int i;
1695 	struct raid10_info *tmp;
1696 
1697 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1698 	if (!conf) {
1699 		printk(KERN_DEBUG "(!conf)\n");
1700 		return;
1701 	}
1702 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1703 		conf->geo.raid_disks);
1704 
1705 	for (i = 0; i < conf->geo.raid_disks; i++) {
1706 		char b[BDEVNAME_SIZE];
1707 		tmp = conf->mirrors + i;
1708 		if (tmp->rdev)
1709 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1710 				i, !test_bit(In_sync, &tmp->rdev->flags),
1711 			        !test_bit(Faulty, &tmp->rdev->flags),
1712 				bdevname(tmp->rdev->bdev,b));
1713 	}
1714 }
1715 
1716 static void close_sync(struct r10conf *conf)
1717 {
1718 	wait_barrier(conf);
1719 	allow_barrier(conf);
1720 
1721 	mempool_destroy(conf->r10buf_pool);
1722 	conf->r10buf_pool = NULL;
1723 }
1724 
1725 static int raid10_spare_active(struct mddev *mddev)
1726 {
1727 	int i;
1728 	struct r10conf *conf = mddev->private;
1729 	struct raid10_info *tmp;
1730 	int count = 0;
1731 	unsigned long flags;
1732 
1733 	/*
1734 	 * Find all non-in_sync disks within the RAID10 configuration
1735 	 * and mark them in_sync
1736 	 */
1737 	for (i = 0; i < conf->geo.raid_disks; i++) {
1738 		tmp = conf->mirrors + i;
1739 		if (tmp->replacement
1740 		    && tmp->replacement->recovery_offset == MaxSector
1741 		    && !test_bit(Faulty, &tmp->replacement->flags)
1742 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1743 			/* Replacement has just become active */
1744 			if (!tmp->rdev
1745 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1746 				count++;
1747 			if (tmp->rdev) {
1748 				/* Replaced device not technically faulty,
1749 				 * but we need to be sure it gets removed
1750 				 * and never re-added.
1751 				 */
1752 				set_bit(Faulty, &tmp->rdev->flags);
1753 				sysfs_notify_dirent_safe(
1754 					tmp->rdev->sysfs_state);
1755 			}
1756 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1757 		} else if (tmp->rdev
1758 			   && tmp->rdev->recovery_offset == MaxSector
1759 			   && !test_bit(Faulty, &tmp->rdev->flags)
1760 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1761 			count++;
1762 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1763 		}
1764 	}
1765 	spin_lock_irqsave(&conf->device_lock, flags);
1766 	mddev->degraded -= count;
1767 	spin_unlock_irqrestore(&conf->device_lock, flags);
1768 
1769 	print_conf(conf);
1770 	return count;
1771 }
1772 
1773 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1774 {
1775 	struct r10conf *conf = mddev->private;
1776 	int err = -EEXIST;
1777 	int mirror;
1778 	int first = 0;
1779 	int last = conf->geo.raid_disks - 1;
1780 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1781 
1782 	if (mddev->recovery_cp < MaxSector)
1783 		/* only hot-add to in-sync arrays, as recovery is
1784 		 * very different from resync
1785 		 */
1786 		return -EBUSY;
1787 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1788 		return -EINVAL;
1789 
1790 	if (rdev->raid_disk >= 0)
1791 		first = last = rdev->raid_disk;
1792 
1793 	if (q->merge_bvec_fn) {
1794 		set_bit(Unmerged, &rdev->flags);
1795 		mddev->merge_check_needed = 1;
1796 	}
1797 
1798 	if (rdev->saved_raid_disk >= first &&
1799 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1800 		mirror = rdev->saved_raid_disk;
1801 	else
1802 		mirror = first;
1803 	for ( ; mirror <= last ; mirror++) {
1804 		struct raid10_info *p = &conf->mirrors[mirror];
1805 		if (p->recovery_disabled == mddev->recovery_disabled)
1806 			continue;
1807 		if (p->rdev) {
1808 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1809 			    p->replacement != NULL)
1810 				continue;
1811 			clear_bit(In_sync, &rdev->flags);
1812 			set_bit(Replacement, &rdev->flags);
1813 			rdev->raid_disk = mirror;
1814 			err = 0;
1815 			if (mddev->gendisk)
1816 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1817 						  rdev->data_offset << 9);
1818 			conf->fullsync = 1;
1819 			rcu_assign_pointer(p->replacement, rdev);
1820 			break;
1821 		}
1822 
1823 		if (mddev->gendisk)
1824 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1825 					  rdev->data_offset << 9);
1826 
1827 		p->head_position = 0;
1828 		p->recovery_disabled = mddev->recovery_disabled - 1;
1829 		rdev->raid_disk = mirror;
1830 		err = 0;
1831 		if (rdev->saved_raid_disk != mirror)
1832 			conf->fullsync = 1;
1833 		rcu_assign_pointer(p->rdev, rdev);
1834 		break;
1835 	}
1836 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1837 		/* Some requests might not have seen this new
1838 		 * merge_bvec_fn.  We must wait for them to complete
1839 		 * before merging the device fully.
1840 		 * First we make sure any code which has tested
1841 		 * our function has submitted the request, then
1842 		 * we wait for all outstanding requests to complete.
1843 		 */
1844 		synchronize_sched();
1845 		freeze_array(conf, 0);
1846 		unfreeze_array(conf);
1847 		clear_bit(Unmerged, &rdev->flags);
1848 	}
1849 	md_integrity_add_rdev(rdev, mddev);
1850 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1851 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1852 
1853 	print_conf(conf);
1854 	return err;
1855 }
1856 
1857 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1858 {
1859 	struct r10conf *conf = mddev->private;
1860 	int err = 0;
1861 	int number = rdev->raid_disk;
1862 	struct md_rdev **rdevp;
1863 	struct raid10_info *p = conf->mirrors + number;
1864 
1865 	print_conf(conf);
1866 	if (rdev == p->rdev)
1867 		rdevp = &p->rdev;
1868 	else if (rdev == p->replacement)
1869 		rdevp = &p->replacement;
1870 	else
1871 		return 0;
1872 
1873 	if (test_bit(In_sync, &rdev->flags) ||
1874 	    atomic_read(&rdev->nr_pending)) {
1875 		err = -EBUSY;
1876 		goto abort;
1877 	}
1878 	/* Only remove faulty devices if recovery
1879 	 * is not possible.
1880 	 */
1881 	if (!test_bit(Faulty, &rdev->flags) &&
1882 	    mddev->recovery_disabled != p->recovery_disabled &&
1883 	    (!p->replacement || p->replacement == rdev) &&
1884 	    number < conf->geo.raid_disks &&
1885 	    enough(conf, -1)) {
1886 		err = -EBUSY;
1887 		goto abort;
1888 	}
1889 	*rdevp = NULL;
1890 	synchronize_rcu();
1891 	if (atomic_read(&rdev->nr_pending)) {
1892 		/* lost the race, try later */
1893 		err = -EBUSY;
1894 		*rdevp = rdev;
1895 		goto abort;
1896 	} else if (p->replacement) {
1897 		/* We must have just cleared 'rdev' */
1898 		p->rdev = p->replacement;
1899 		clear_bit(Replacement, &p->replacement->flags);
1900 		smp_mb(); /* Make sure other CPUs may see both as identical
1901 			   * but will never see neither -- if they are careful.
1902 			   */
1903 		p->replacement = NULL;
1904 		clear_bit(WantReplacement, &rdev->flags);
1905 	} else
1906 		/* We might have just remove the Replacement as faulty
1907 		 * Clear the flag just in case
1908 		 */
1909 		clear_bit(WantReplacement, &rdev->flags);
1910 
1911 	err = md_integrity_register(mddev);
1912 
1913 abort:
1914 
1915 	print_conf(conf);
1916 	return err;
1917 }
1918 
1919 static void end_sync_read(struct bio *bio, int error)
1920 {
1921 	struct r10bio *r10_bio = bio->bi_private;
1922 	struct r10conf *conf = r10_bio->mddev->private;
1923 	int d;
1924 
1925 	if (bio == r10_bio->master_bio) {
1926 		/* this is a reshape read */
1927 		d = r10_bio->read_slot; /* really the read dev */
1928 	} else
1929 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1930 
1931 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1932 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1933 	else
1934 		/* The write handler will notice the lack of
1935 		 * R10BIO_Uptodate and record any errors etc
1936 		 */
1937 		atomic_add(r10_bio->sectors,
1938 			   &conf->mirrors[d].rdev->corrected_errors);
1939 
1940 	/* for reconstruct, we always reschedule after a read.
1941 	 * for resync, only after all reads
1942 	 */
1943 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1944 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1945 	    atomic_dec_and_test(&r10_bio->remaining)) {
1946 		/* we have read all the blocks,
1947 		 * do the comparison in process context in raid10d
1948 		 */
1949 		reschedule_retry(r10_bio);
1950 	}
1951 }
1952 
1953 static void end_sync_request(struct r10bio *r10_bio)
1954 {
1955 	struct mddev *mddev = r10_bio->mddev;
1956 
1957 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1958 		if (r10_bio->master_bio == NULL) {
1959 			/* the primary of several recovery bios */
1960 			sector_t s = r10_bio->sectors;
1961 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1962 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1963 				reschedule_retry(r10_bio);
1964 			else
1965 				put_buf(r10_bio);
1966 			md_done_sync(mddev, s, 1);
1967 			break;
1968 		} else {
1969 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1970 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1971 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1972 				reschedule_retry(r10_bio);
1973 			else
1974 				put_buf(r10_bio);
1975 			r10_bio = r10_bio2;
1976 		}
1977 	}
1978 }
1979 
1980 static void end_sync_write(struct bio *bio, int error)
1981 {
1982 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1983 	struct r10bio *r10_bio = bio->bi_private;
1984 	struct mddev *mddev = r10_bio->mddev;
1985 	struct r10conf *conf = mddev->private;
1986 	int d;
1987 	sector_t first_bad;
1988 	int bad_sectors;
1989 	int slot;
1990 	int repl;
1991 	struct md_rdev *rdev = NULL;
1992 
1993 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1994 	if (repl)
1995 		rdev = conf->mirrors[d].replacement;
1996 	else
1997 		rdev = conf->mirrors[d].rdev;
1998 
1999 	if (!uptodate) {
2000 		if (repl)
2001 			md_error(mddev, rdev);
2002 		else {
2003 			set_bit(WriteErrorSeen, &rdev->flags);
2004 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2005 				set_bit(MD_RECOVERY_NEEDED,
2006 					&rdev->mddev->recovery);
2007 			set_bit(R10BIO_WriteError, &r10_bio->state);
2008 		}
2009 	} else if (is_badblock(rdev,
2010 			     r10_bio->devs[slot].addr,
2011 			     r10_bio->sectors,
2012 			     &first_bad, &bad_sectors))
2013 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2014 
2015 	rdev_dec_pending(rdev, mddev);
2016 
2017 	end_sync_request(r10_bio);
2018 }
2019 
2020 /*
2021  * Note: sync and recover and handled very differently for raid10
2022  * This code is for resync.
2023  * For resync, we read through virtual addresses and read all blocks.
2024  * If there is any error, we schedule a write.  The lowest numbered
2025  * drive is authoritative.
2026  * However requests come for physical address, so we need to map.
2027  * For every physical address there are raid_disks/copies virtual addresses,
2028  * which is always are least one, but is not necessarly an integer.
2029  * This means that a physical address can span multiple chunks, so we may
2030  * have to submit multiple io requests for a single sync request.
2031  */
2032 /*
2033  * We check if all blocks are in-sync and only write to blocks that
2034  * aren't in sync
2035  */
2036 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2037 {
2038 	struct r10conf *conf = mddev->private;
2039 	int i, first;
2040 	struct bio *tbio, *fbio;
2041 	int vcnt;
2042 
2043 	atomic_set(&r10_bio->remaining, 1);
2044 
2045 	/* find the first device with a block */
2046 	for (i=0; i<conf->copies; i++)
2047 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2048 			break;
2049 
2050 	if (i == conf->copies)
2051 		goto done;
2052 
2053 	first = i;
2054 	fbio = r10_bio->devs[i].bio;
2055 
2056 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2057 	/* now find blocks with errors */
2058 	for (i=0 ; i < conf->copies ; i++) {
2059 		int  j, d;
2060 
2061 		tbio = r10_bio->devs[i].bio;
2062 
2063 		if (tbio->bi_end_io != end_sync_read)
2064 			continue;
2065 		if (i == first)
2066 			continue;
2067 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2068 			/* We know that the bi_io_vec layout is the same for
2069 			 * both 'first' and 'i', so we just compare them.
2070 			 * All vec entries are PAGE_SIZE;
2071 			 */
2072 			int sectors = r10_bio->sectors;
2073 			for (j = 0; j < vcnt; j++) {
2074 				int len = PAGE_SIZE;
2075 				if (sectors < (len / 512))
2076 					len = sectors * 512;
2077 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2078 					   page_address(tbio->bi_io_vec[j].bv_page),
2079 					   len))
2080 					break;
2081 				sectors -= len/512;
2082 			}
2083 			if (j == vcnt)
2084 				continue;
2085 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2086 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2087 				/* Don't fix anything. */
2088 				continue;
2089 		}
2090 		/* Ok, we need to write this bio, either to correct an
2091 		 * inconsistency or to correct an unreadable block.
2092 		 * First we need to fixup bv_offset, bv_len and
2093 		 * bi_vecs, as the read request might have corrupted these
2094 		 */
2095 		bio_reset(tbio);
2096 
2097 		tbio->bi_vcnt = vcnt;
2098 		tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2099 		tbio->bi_rw = WRITE;
2100 		tbio->bi_private = r10_bio;
2101 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2102 		tbio->bi_end_io = end_sync_write;
2103 
2104 		bio_copy_data(tbio, fbio);
2105 
2106 		d = r10_bio->devs[i].devnum;
2107 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2108 		atomic_inc(&r10_bio->remaining);
2109 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2110 
2111 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2112 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2113 		generic_make_request(tbio);
2114 	}
2115 
2116 	/* Now write out to any replacement devices
2117 	 * that are active
2118 	 */
2119 	for (i = 0; i < conf->copies; i++) {
2120 		int d;
2121 
2122 		tbio = r10_bio->devs[i].repl_bio;
2123 		if (!tbio || !tbio->bi_end_io)
2124 			continue;
2125 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2126 		    && r10_bio->devs[i].bio != fbio)
2127 			bio_copy_data(tbio, fbio);
2128 		d = r10_bio->devs[i].devnum;
2129 		atomic_inc(&r10_bio->remaining);
2130 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2131 			     bio_sectors(tbio));
2132 		generic_make_request(tbio);
2133 	}
2134 
2135 done:
2136 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2137 		md_done_sync(mddev, r10_bio->sectors, 1);
2138 		put_buf(r10_bio);
2139 	}
2140 }
2141 
2142 /*
2143  * Now for the recovery code.
2144  * Recovery happens across physical sectors.
2145  * We recover all non-is_sync drives by finding the virtual address of
2146  * each, and then choose a working drive that also has that virt address.
2147  * There is a separate r10_bio for each non-in_sync drive.
2148  * Only the first two slots are in use. The first for reading,
2149  * The second for writing.
2150  *
2151  */
2152 static void fix_recovery_read_error(struct r10bio *r10_bio)
2153 {
2154 	/* We got a read error during recovery.
2155 	 * We repeat the read in smaller page-sized sections.
2156 	 * If a read succeeds, write it to the new device or record
2157 	 * a bad block if we cannot.
2158 	 * If a read fails, record a bad block on both old and
2159 	 * new devices.
2160 	 */
2161 	struct mddev *mddev = r10_bio->mddev;
2162 	struct r10conf *conf = mddev->private;
2163 	struct bio *bio = r10_bio->devs[0].bio;
2164 	sector_t sect = 0;
2165 	int sectors = r10_bio->sectors;
2166 	int idx = 0;
2167 	int dr = r10_bio->devs[0].devnum;
2168 	int dw = r10_bio->devs[1].devnum;
2169 
2170 	while (sectors) {
2171 		int s = sectors;
2172 		struct md_rdev *rdev;
2173 		sector_t addr;
2174 		int ok;
2175 
2176 		if (s > (PAGE_SIZE>>9))
2177 			s = PAGE_SIZE >> 9;
2178 
2179 		rdev = conf->mirrors[dr].rdev;
2180 		addr = r10_bio->devs[0].addr + sect,
2181 		ok = sync_page_io(rdev,
2182 				  addr,
2183 				  s << 9,
2184 				  bio->bi_io_vec[idx].bv_page,
2185 				  READ, false);
2186 		if (ok) {
2187 			rdev = conf->mirrors[dw].rdev;
2188 			addr = r10_bio->devs[1].addr + sect;
2189 			ok = sync_page_io(rdev,
2190 					  addr,
2191 					  s << 9,
2192 					  bio->bi_io_vec[idx].bv_page,
2193 					  WRITE, false);
2194 			if (!ok) {
2195 				set_bit(WriteErrorSeen, &rdev->flags);
2196 				if (!test_and_set_bit(WantReplacement,
2197 						      &rdev->flags))
2198 					set_bit(MD_RECOVERY_NEEDED,
2199 						&rdev->mddev->recovery);
2200 			}
2201 		}
2202 		if (!ok) {
2203 			/* We don't worry if we cannot set a bad block -
2204 			 * it really is bad so there is no loss in not
2205 			 * recording it yet
2206 			 */
2207 			rdev_set_badblocks(rdev, addr, s, 0);
2208 
2209 			if (rdev != conf->mirrors[dw].rdev) {
2210 				/* need bad block on destination too */
2211 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2212 				addr = r10_bio->devs[1].addr + sect;
2213 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2214 				if (!ok) {
2215 					/* just abort the recovery */
2216 					printk(KERN_NOTICE
2217 					       "md/raid10:%s: recovery aborted"
2218 					       " due to read error\n",
2219 					       mdname(mddev));
2220 
2221 					conf->mirrors[dw].recovery_disabled
2222 						= mddev->recovery_disabled;
2223 					set_bit(MD_RECOVERY_INTR,
2224 						&mddev->recovery);
2225 					break;
2226 				}
2227 			}
2228 		}
2229 
2230 		sectors -= s;
2231 		sect += s;
2232 		idx++;
2233 	}
2234 }
2235 
2236 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2237 {
2238 	struct r10conf *conf = mddev->private;
2239 	int d;
2240 	struct bio *wbio, *wbio2;
2241 
2242 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2243 		fix_recovery_read_error(r10_bio);
2244 		end_sync_request(r10_bio);
2245 		return;
2246 	}
2247 
2248 	/*
2249 	 * share the pages with the first bio
2250 	 * and submit the write request
2251 	 */
2252 	d = r10_bio->devs[1].devnum;
2253 	wbio = r10_bio->devs[1].bio;
2254 	wbio2 = r10_bio->devs[1].repl_bio;
2255 	/* Need to test wbio2->bi_end_io before we call
2256 	 * generic_make_request as if the former is NULL,
2257 	 * the latter is free to free wbio2.
2258 	 */
2259 	if (wbio2 && !wbio2->bi_end_io)
2260 		wbio2 = NULL;
2261 	if (wbio->bi_end_io) {
2262 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2263 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2264 		generic_make_request(wbio);
2265 	}
2266 	if (wbio2) {
2267 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2268 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2269 			     bio_sectors(wbio2));
2270 		generic_make_request(wbio2);
2271 	}
2272 }
2273 
2274 /*
2275  * Used by fix_read_error() to decay the per rdev read_errors.
2276  * We halve the read error count for every hour that has elapsed
2277  * since the last recorded read error.
2278  *
2279  */
2280 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2281 {
2282 	struct timespec cur_time_mon;
2283 	unsigned long hours_since_last;
2284 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2285 
2286 	ktime_get_ts(&cur_time_mon);
2287 
2288 	if (rdev->last_read_error.tv_sec == 0 &&
2289 	    rdev->last_read_error.tv_nsec == 0) {
2290 		/* first time we've seen a read error */
2291 		rdev->last_read_error = cur_time_mon;
2292 		return;
2293 	}
2294 
2295 	hours_since_last = (cur_time_mon.tv_sec -
2296 			    rdev->last_read_error.tv_sec) / 3600;
2297 
2298 	rdev->last_read_error = cur_time_mon;
2299 
2300 	/*
2301 	 * if hours_since_last is > the number of bits in read_errors
2302 	 * just set read errors to 0. We do this to avoid
2303 	 * overflowing the shift of read_errors by hours_since_last.
2304 	 */
2305 	if (hours_since_last >= 8 * sizeof(read_errors))
2306 		atomic_set(&rdev->read_errors, 0);
2307 	else
2308 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2309 }
2310 
2311 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2312 			    int sectors, struct page *page, int rw)
2313 {
2314 	sector_t first_bad;
2315 	int bad_sectors;
2316 
2317 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2318 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2319 		return -1;
2320 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2321 		/* success */
2322 		return 1;
2323 	if (rw == WRITE) {
2324 		set_bit(WriteErrorSeen, &rdev->flags);
2325 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2326 			set_bit(MD_RECOVERY_NEEDED,
2327 				&rdev->mddev->recovery);
2328 	}
2329 	/* need to record an error - either for the block or the device */
2330 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2331 		md_error(rdev->mddev, rdev);
2332 	return 0;
2333 }
2334 
2335 /*
2336  * This is a kernel thread which:
2337  *
2338  *	1.	Retries failed read operations on working mirrors.
2339  *	2.	Updates the raid superblock when problems encounter.
2340  *	3.	Performs writes following reads for array synchronising.
2341  */
2342 
2343 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2344 {
2345 	int sect = 0; /* Offset from r10_bio->sector */
2346 	int sectors = r10_bio->sectors;
2347 	struct md_rdev*rdev;
2348 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2349 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2350 
2351 	/* still own a reference to this rdev, so it cannot
2352 	 * have been cleared recently.
2353 	 */
2354 	rdev = conf->mirrors[d].rdev;
2355 
2356 	if (test_bit(Faulty, &rdev->flags))
2357 		/* drive has already been failed, just ignore any
2358 		   more fix_read_error() attempts */
2359 		return;
2360 
2361 	check_decay_read_errors(mddev, rdev);
2362 	atomic_inc(&rdev->read_errors);
2363 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2364 		char b[BDEVNAME_SIZE];
2365 		bdevname(rdev->bdev, b);
2366 
2367 		printk(KERN_NOTICE
2368 		       "md/raid10:%s: %s: Raid device exceeded "
2369 		       "read_error threshold [cur %d:max %d]\n",
2370 		       mdname(mddev), b,
2371 		       atomic_read(&rdev->read_errors), max_read_errors);
2372 		printk(KERN_NOTICE
2373 		       "md/raid10:%s: %s: Failing raid device\n",
2374 		       mdname(mddev), b);
2375 		md_error(mddev, conf->mirrors[d].rdev);
2376 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2377 		return;
2378 	}
2379 
2380 	while(sectors) {
2381 		int s = sectors;
2382 		int sl = r10_bio->read_slot;
2383 		int success = 0;
2384 		int start;
2385 
2386 		if (s > (PAGE_SIZE>>9))
2387 			s = PAGE_SIZE >> 9;
2388 
2389 		rcu_read_lock();
2390 		do {
2391 			sector_t first_bad;
2392 			int bad_sectors;
2393 
2394 			d = r10_bio->devs[sl].devnum;
2395 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2396 			if (rdev &&
2397 			    !test_bit(Unmerged, &rdev->flags) &&
2398 			    test_bit(In_sync, &rdev->flags) &&
2399 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2400 					&first_bad, &bad_sectors) == 0) {
2401 				atomic_inc(&rdev->nr_pending);
2402 				rcu_read_unlock();
2403 				success = sync_page_io(rdev,
2404 						       r10_bio->devs[sl].addr +
2405 						       sect,
2406 						       s<<9,
2407 						       conf->tmppage, READ, false);
2408 				rdev_dec_pending(rdev, mddev);
2409 				rcu_read_lock();
2410 				if (success)
2411 					break;
2412 			}
2413 			sl++;
2414 			if (sl == conf->copies)
2415 				sl = 0;
2416 		} while (!success && sl != r10_bio->read_slot);
2417 		rcu_read_unlock();
2418 
2419 		if (!success) {
2420 			/* Cannot read from anywhere, just mark the block
2421 			 * as bad on the first device to discourage future
2422 			 * reads.
2423 			 */
2424 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2425 			rdev = conf->mirrors[dn].rdev;
2426 
2427 			if (!rdev_set_badblocks(
2428 				    rdev,
2429 				    r10_bio->devs[r10_bio->read_slot].addr
2430 				    + sect,
2431 				    s, 0)) {
2432 				md_error(mddev, rdev);
2433 				r10_bio->devs[r10_bio->read_slot].bio
2434 					= IO_BLOCKED;
2435 			}
2436 			break;
2437 		}
2438 
2439 		start = sl;
2440 		/* write it back and re-read */
2441 		rcu_read_lock();
2442 		while (sl != r10_bio->read_slot) {
2443 			char b[BDEVNAME_SIZE];
2444 
2445 			if (sl==0)
2446 				sl = conf->copies;
2447 			sl--;
2448 			d = r10_bio->devs[sl].devnum;
2449 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2450 			if (!rdev ||
2451 			    test_bit(Unmerged, &rdev->flags) ||
2452 			    !test_bit(In_sync, &rdev->flags))
2453 				continue;
2454 
2455 			atomic_inc(&rdev->nr_pending);
2456 			rcu_read_unlock();
2457 			if (r10_sync_page_io(rdev,
2458 					     r10_bio->devs[sl].addr +
2459 					     sect,
2460 					     s, conf->tmppage, WRITE)
2461 			    == 0) {
2462 				/* Well, this device is dead */
2463 				printk(KERN_NOTICE
2464 				       "md/raid10:%s: read correction "
2465 				       "write failed"
2466 				       " (%d sectors at %llu on %s)\n",
2467 				       mdname(mddev), s,
2468 				       (unsigned long long)(
2469 					       sect +
2470 					       choose_data_offset(r10_bio,
2471 								  rdev)),
2472 				       bdevname(rdev->bdev, b));
2473 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2474 				       "drive\n",
2475 				       mdname(mddev),
2476 				       bdevname(rdev->bdev, b));
2477 			}
2478 			rdev_dec_pending(rdev, mddev);
2479 			rcu_read_lock();
2480 		}
2481 		sl = start;
2482 		while (sl != r10_bio->read_slot) {
2483 			char b[BDEVNAME_SIZE];
2484 
2485 			if (sl==0)
2486 				sl = conf->copies;
2487 			sl--;
2488 			d = r10_bio->devs[sl].devnum;
2489 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2490 			if (!rdev ||
2491 			    !test_bit(In_sync, &rdev->flags))
2492 				continue;
2493 
2494 			atomic_inc(&rdev->nr_pending);
2495 			rcu_read_unlock();
2496 			switch (r10_sync_page_io(rdev,
2497 					     r10_bio->devs[sl].addr +
2498 					     sect,
2499 					     s, conf->tmppage,
2500 						 READ)) {
2501 			case 0:
2502 				/* Well, this device is dead */
2503 				printk(KERN_NOTICE
2504 				       "md/raid10:%s: unable to read back "
2505 				       "corrected sectors"
2506 				       " (%d sectors at %llu on %s)\n",
2507 				       mdname(mddev), s,
2508 				       (unsigned long long)(
2509 					       sect +
2510 					       choose_data_offset(r10_bio, rdev)),
2511 				       bdevname(rdev->bdev, b));
2512 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2513 				       "drive\n",
2514 				       mdname(mddev),
2515 				       bdevname(rdev->bdev, b));
2516 				break;
2517 			case 1:
2518 				printk(KERN_INFO
2519 				       "md/raid10:%s: read error corrected"
2520 				       " (%d sectors at %llu on %s)\n",
2521 				       mdname(mddev), s,
2522 				       (unsigned long long)(
2523 					       sect +
2524 					       choose_data_offset(r10_bio, rdev)),
2525 				       bdevname(rdev->bdev, b));
2526 				atomic_add(s, &rdev->corrected_errors);
2527 			}
2528 
2529 			rdev_dec_pending(rdev, mddev);
2530 			rcu_read_lock();
2531 		}
2532 		rcu_read_unlock();
2533 
2534 		sectors -= s;
2535 		sect += s;
2536 	}
2537 }
2538 
2539 static int narrow_write_error(struct r10bio *r10_bio, int i)
2540 {
2541 	struct bio *bio = r10_bio->master_bio;
2542 	struct mddev *mddev = r10_bio->mddev;
2543 	struct r10conf *conf = mddev->private;
2544 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2545 	/* bio has the data to be written to slot 'i' where
2546 	 * we just recently had a write error.
2547 	 * We repeatedly clone the bio and trim down to one block,
2548 	 * then try the write.  Where the write fails we record
2549 	 * a bad block.
2550 	 * It is conceivable that the bio doesn't exactly align with
2551 	 * blocks.  We must handle this.
2552 	 *
2553 	 * We currently own a reference to the rdev.
2554 	 */
2555 
2556 	int block_sectors;
2557 	sector_t sector;
2558 	int sectors;
2559 	int sect_to_write = r10_bio->sectors;
2560 	int ok = 1;
2561 
2562 	if (rdev->badblocks.shift < 0)
2563 		return 0;
2564 
2565 	block_sectors = roundup(1 << rdev->badblocks.shift,
2566 				bdev_logical_block_size(rdev->bdev) >> 9);
2567 	sector = r10_bio->sector;
2568 	sectors = ((r10_bio->sector + block_sectors)
2569 		   & ~(sector_t)(block_sectors - 1))
2570 		- sector;
2571 
2572 	while (sect_to_write) {
2573 		struct bio *wbio;
2574 		if (sectors > sect_to_write)
2575 			sectors = sect_to_write;
2576 		/* Write at 'sector' for 'sectors' */
2577 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2578 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2579 		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2580 				   choose_data_offset(r10_bio, rdev) +
2581 				   (sector - r10_bio->sector));
2582 		wbio->bi_bdev = rdev->bdev;
2583 		if (submit_bio_wait(WRITE, wbio) == 0)
2584 			/* Failure! */
2585 			ok = rdev_set_badblocks(rdev, sector,
2586 						sectors, 0)
2587 				&& ok;
2588 
2589 		bio_put(wbio);
2590 		sect_to_write -= sectors;
2591 		sector += sectors;
2592 		sectors = block_sectors;
2593 	}
2594 	return ok;
2595 }
2596 
2597 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2598 {
2599 	int slot = r10_bio->read_slot;
2600 	struct bio *bio;
2601 	struct r10conf *conf = mddev->private;
2602 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2603 	char b[BDEVNAME_SIZE];
2604 	unsigned long do_sync;
2605 	int max_sectors;
2606 
2607 	/* we got a read error. Maybe the drive is bad.  Maybe just
2608 	 * the block and we can fix it.
2609 	 * We freeze all other IO, and try reading the block from
2610 	 * other devices.  When we find one, we re-write
2611 	 * and check it that fixes the read error.
2612 	 * This is all done synchronously while the array is
2613 	 * frozen.
2614 	 */
2615 	bio = r10_bio->devs[slot].bio;
2616 	bdevname(bio->bi_bdev, b);
2617 	bio_put(bio);
2618 	r10_bio->devs[slot].bio = NULL;
2619 
2620 	if (mddev->ro == 0) {
2621 		freeze_array(conf, 1);
2622 		fix_read_error(conf, mddev, r10_bio);
2623 		unfreeze_array(conf);
2624 	} else
2625 		r10_bio->devs[slot].bio = IO_BLOCKED;
2626 
2627 	rdev_dec_pending(rdev, mddev);
2628 
2629 read_more:
2630 	rdev = read_balance(conf, r10_bio, &max_sectors);
2631 	if (rdev == NULL) {
2632 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2633 		       " read error for block %llu\n",
2634 		       mdname(mddev), b,
2635 		       (unsigned long long)r10_bio->sector);
2636 		raid_end_bio_io(r10_bio);
2637 		return;
2638 	}
2639 
2640 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2641 	slot = r10_bio->read_slot;
2642 	printk_ratelimited(
2643 		KERN_ERR
2644 		"md/raid10:%s: %s: redirecting "
2645 		"sector %llu to another mirror\n",
2646 		mdname(mddev),
2647 		bdevname(rdev->bdev, b),
2648 		(unsigned long long)r10_bio->sector);
2649 	bio = bio_clone_mddev(r10_bio->master_bio,
2650 			      GFP_NOIO, mddev);
2651 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2652 	r10_bio->devs[slot].bio = bio;
2653 	r10_bio->devs[slot].rdev = rdev;
2654 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2655 		+ choose_data_offset(r10_bio, rdev);
2656 	bio->bi_bdev = rdev->bdev;
2657 	bio->bi_rw = READ | do_sync;
2658 	bio->bi_private = r10_bio;
2659 	bio->bi_end_io = raid10_end_read_request;
2660 	if (max_sectors < r10_bio->sectors) {
2661 		/* Drat - have to split this up more */
2662 		struct bio *mbio = r10_bio->master_bio;
2663 		int sectors_handled =
2664 			r10_bio->sector + max_sectors
2665 			- mbio->bi_iter.bi_sector;
2666 		r10_bio->sectors = max_sectors;
2667 		spin_lock_irq(&conf->device_lock);
2668 		if (mbio->bi_phys_segments == 0)
2669 			mbio->bi_phys_segments = 2;
2670 		else
2671 			mbio->bi_phys_segments++;
2672 		spin_unlock_irq(&conf->device_lock);
2673 		generic_make_request(bio);
2674 
2675 		r10_bio = mempool_alloc(conf->r10bio_pool,
2676 					GFP_NOIO);
2677 		r10_bio->master_bio = mbio;
2678 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2679 		r10_bio->state = 0;
2680 		set_bit(R10BIO_ReadError,
2681 			&r10_bio->state);
2682 		r10_bio->mddev = mddev;
2683 		r10_bio->sector = mbio->bi_iter.bi_sector
2684 			+ sectors_handled;
2685 
2686 		goto read_more;
2687 	} else
2688 		generic_make_request(bio);
2689 }
2690 
2691 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2692 {
2693 	/* Some sort of write request has finished and it
2694 	 * succeeded in writing where we thought there was a
2695 	 * bad block.  So forget the bad block.
2696 	 * Or possibly if failed and we need to record
2697 	 * a bad block.
2698 	 */
2699 	int m;
2700 	struct md_rdev *rdev;
2701 
2702 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2703 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2704 		for (m = 0; m < conf->copies; m++) {
2705 			int dev = r10_bio->devs[m].devnum;
2706 			rdev = conf->mirrors[dev].rdev;
2707 			if (r10_bio->devs[m].bio == NULL)
2708 				continue;
2709 			if (test_bit(BIO_UPTODATE,
2710 				     &r10_bio->devs[m].bio->bi_flags)) {
2711 				rdev_clear_badblocks(
2712 					rdev,
2713 					r10_bio->devs[m].addr,
2714 					r10_bio->sectors, 0);
2715 			} else {
2716 				if (!rdev_set_badblocks(
2717 					    rdev,
2718 					    r10_bio->devs[m].addr,
2719 					    r10_bio->sectors, 0))
2720 					md_error(conf->mddev, rdev);
2721 			}
2722 			rdev = conf->mirrors[dev].replacement;
2723 			if (r10_bio->devs[m].repl_bio == NULL)
2724 				continue;
2725 			if (test_bit(BIO_UPTODATE,
2726 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2727 				rdev_clear_badblocks(
2728 					rdev,
2729 					r10_bio->devs[m].addr,
2730 					r10_bio->sectors, 0);
2731 			} else {
2732 				if (!rdev_set_badblocks(
2733 					    rdev,
2734 					    r10_bio->devs[m].addr,
2735 					    r10_bio->sectors, 0))
2736 					md_error(conf->mddev, rdev);
2737 			}
2738 		}
2739 		put_buf(r10_bio);
2740 	} else {
2741 		for (m = 0; m < conf->copies; m++) {
2742 			int dev = r10_bio->devs[m].devnum;
2743 			struct bio *bio = r10_bio->devs[m].bio;
2744 			rdev = conf->mirrors[dev].rdev;
2745 			if (bio == IO_MADE_GOOD) {
2746 				rdev_clear_badblocks(
2747 					rdev,
2748 					r10_bio->devs[m].addr,
2749 					r10_bio->sectors, 0);
2750 				rdev_dec_pending(rdev, conf->mddev);
2751 			} else if (bio != NULL &&
2752 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2753 				if (!narrow_write_error(r10_bio, m)) {
2754 					md_error(conf->mddev, rdev);
2755 					set_bit(R10BIO_Degraded,
2756 						&r10_bio->state);
2757 				}
2758 				rdev_dec_pending(rdev, conf->mddev);
2759 			}
2760 			bio = r10_bio->devs[m].repl_bio;
2761 			rdev = conf->mirrors[dev].replacement;
2762 			if (rdev && bio == IO_MADE_GOOD) {
2763 				rdev_clear_badblocks(
2764 					rdev,
2765 					r10_bio->devs[m].addr,
2766 					r10_bio->sectors, 0);
2767 				rdev_dec_pending(rdev, conf->mddev);
2768 			}
2769 		}
2770 		if (test_bit(R10BIO_WriteError,
2771 			     &r10_bio->state))
2772 			close_write(r10_bio);
2773 		raid_end_bio_io(r10_bio);
2774 	}
2775 }
2776 
2777 static void raid10d(struct md_thread *thread)
2778 {
2779 	struct mddev *mddev = thread->mddev;
2780 	struct r10bio *r10_bio;
2781 	unsigned long flags;
2782 	struct r10conf *conf = mddev->private;
2783 	struct list_head *head = &conf->retry_list;
2784 	struct blk_plug plug;
2785 
2786 	md_check_recovery(mddev);
2787 
2788 	blk_start_plug(&plug);
2789 	for (;;) {
2790 
2791 		flush_pending_writes(conf);
2792 
2793 		spin_lock_irqsave(&conf->device_lock, flags);
2794 		if (list_empty(head)) {
2795 			spin_unlock_irqrestore(&conf->device_lock, flags);
2796 			break;
2797 		}
2798 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2799 		list_del(head->prev);
2800 		conf->nr_queued--;
2801 		spin_unlock_irqrestore(&conf->device_lock, flags);
2802 
2803 		mddev = r10_bio->mddev;
2804 		conf = mddev->private;
2805 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2806 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2807 			handle_write_completed(conf, r10_bio);
2808 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2809 			reshape_request_write(mddev, r10_bio);
2810 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2811 			sync_request_write(mddev, r10_bio);
2812 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2813 			recovery_request_write(mddev, r10_bio);
2814 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2815 			handle_read_error(mddev, r10_bio);
2816 		else {
2817 			/* just a partial read to be scheduled from a
2818 			 * separate context
2819 			 */
2820 			int slot = r10_bio->read_slot;
2821 			generic_make_request(r10_bio->devs[slot].bio);
2822 		}
2823 
2824 		cond_resched();
2825 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2826 			md_check_recovery(mddev);
2827 	}
2828 	blk_finish_plug(&plug);
2829 }
2830 
2831 static int init_resync(struct r10conf *conf)
2832 {
2833 	int buffs;
2834 	int i;
2835 
2836 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2837 	BUG_ON(conf->r10buf_pool);
2838 	conf->have_replacement = 0;
2839 	for (i = 0; i < conf->geo.raid_disks; i++)
2840 		if (conf->mirrors[i].replacement)
2841 			conf->have_replacement = 1;
2842 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2843 	if (!conf->r10buf_pool)
2844 		return -ENOMEM;
2845 	conf->next_resync = 0;
2846 	return 0;
2847 }
2848 
2849 /*
2850  * perform a "sync" on one "block"
2851  *
2852  * We need to make sure that no normal I/O request - particularly write
2853  * requests - conflict with active sync requests.
2854  *
2855  * This is achieved by tracking pending requests and a 'barrier' concept
2856  * that can be installed to exclude normal IO requests.
2857  *
2858  * Resync and recovery are handled very differently.
2859  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2860  *
2861  * For resync, we iterate over virtual addresses, read all copies,
2862  * and update if there are differences.  If only one copy is live,
2863  * skip it.
2864  * For recovery, we iterate over physical addresses, read a good
2865  * value for each non-in_sync drive, and over-write.
2866  *
2867  * So, for recovery we may have several outstanding complex requests for a
2868  * given address, one for each out-of-sync device.  We model this by allocating
2869  * a number of r10_bio structures, one for each out-of-sync device.
2870  * As we setup these structures, we collect all bio's together into a list
2871  * which we then process collectively to add pages, and then process again
2872  * to pass to generic_make_request.
2873  *
2874  * The r10_bio structures are linked using a borrowed master_bio pointer.
2875  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2876  * has its remaining count decremented to 0, the whole complex operation
2877  * is complete.
2878  *
2879  */
2880 
2881 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2882 			     int *skipped)
2883 {
2884 	struct r10conf *conf = mddev->private;
2885 	struct r10bio *r10_bio;
2886 	struct bio *biolist = NULL, *bio;
2887 	sector_t max_sector, nr_sectors;
2888 	int i;
2889 	int max_sync;
2890 	sector_t sync_blocks;
2891 	sector_t sectors_skipped = 0;
2892 	int chunks_skipped = 0;
2893 	sector_t chunk_mask = conf->geo.chunk_mask;
2894 
2895 	if (!conf->r10buf_pool)
2896 		if (init_resync(conf))
2897 			return 0;
2898 
2899 	/*
2900 	 * Allow skipping a full rebuild for incremental assembly
2901 	 * of a clean array, like RAID1 does.
2902 	 */
2903 	if (mddev->bitmap == NULL &&
2904 	    mddev->recovery_cp == MaxSector &&
2905 	    mddev->reshape_position == MaxSector &&
2906 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2907 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2908 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2909 	    conf->fullsync == 0) {
2910 		*skipped = 1;
2911 		return mddev->dev_sectors - sector_nr;
2912 	}
2913 
2914  skipped:
2915 	max_sector = mddev->dev_sectors;
2916 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2917 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2918 		max_sector = mddev->resync_max_sectors;
2919 	if (sector_nr >= max_sector) {
2920 		/* If we aborted, we need to abort the
2921 		 * sync on the 'current' bitmap chucks (there can
2922 		 * be several when recovering multiple devices).
2923 		 * as we may have started syncing it but not finished.
2924 		 * We can find the current address in
2925 		 * mddev->curr_resync, but for recovery,
2926 		 * we need to convert that to several
2927 		 * virtual addresses.
2928 		 */
2929 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2930 			end_reshape(conf);
2931 			close_sync(conf);
2932 			return 0;
2933 		}
2934 
2935 		if (mddev->curr_resync < max_sector) { /* aborted */
2936 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2937 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2938 						&sync_blocks, 1);
2939 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2940 				sector_t sect =
2941 					raid10_find_virt(conf, mddev->curr_resync, i);
2942 				bitmap_end_sync(mddev->bitmap, sect,
2943 						&sync_blocks, 1);
2944 			}
2945 		} else {
2946 			/* completed sync */
2947 			if ((!mddev->bitmap || conf->fullsync)
2948 			    && conf->have_replacement
2949 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2950 				/* Completed a full sync so the replacements
2951 				 * are now fully recovered.
2952 				 */
2953 				for (i = 0; i < conf->geo.raid_disks; i++)
2954 					if (conf->mirrors[i].replacement)
2955 						conf->mirrors[i].replacement
2956 							->recovery_offset
2957 							= MaxSector;
2958 			}
2959 			conf->fullsync = 0;
2960 		}
2961 		bitmap_close_sync(mddev->bitmap);
2962 		close_sync(conf);
2963 		*skipped = 1;
2964 		return sectors_skipped;
2965 	}
2966 
2967 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2968 		return reshape_request(mddev, sector_nr, skipped);
2969 
2970 	if (chunks_skipped >= conf->geo.raid_disks) {
2971 		/* if there has been nothing to do on any drive,
2972 		 * then there is nothing to do at all..
2973 		 */
2974 		*skipped = 1;
2975 		return (max_sector - sector_nr) + sectors_skipped;
2976 	}
2977 
2978 	if (max_sector > mddev->resync_max)
2979 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2980 
2981 	/* make sure whole request will fit in a chunk - if chunks
2982 	 * are meaningful
2983 	 */
2984 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2985 	    max_sector > (sector_nr | chunk_mask))
2986 		max_sector = (sector_nr | chunk_mask) + 1;
2987 
2988 	/* Again, very different code for resync and recovery.
2989 	 * Both must result in an r10bio with a list of bios that
2990 	 * have bi_end_io, bi_sector, bi_bdev set,
2991 	 * and bi_private set to the r10bio.
2992 	 * For recovery, we may actually create several r10bios
2993 	 * with 2 bios in each, that correspond to the bios in the main one.
2994 	 * In this case, the subordinate r10bios link back through a
2995 	 * borrowed master_bio pointer, and the counter in the master
2996 	 * includes a ref from each subordinate.
2997 	 */
2998 	/* First, we decide what to do and set ->bi_end_io
2999 	 * To end_sync_read if we want to read, and
3000 	 * end_sync_write if we will want to write.
3001 	 */
3002 
3003 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3004 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3005 		/* recovery... the complicated one */
3006 		int j;
3007 		r10_bio = NULL;
3008 
3009 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3010 			int still_degraded;
3011 			struct r10bio *rb2;
3012 			sector_t sect;
3013 			int must_sync;
3014 			int any_working;
3015 			struct raid10_info *mirror = &conf->mirrors[i];
3016 
3017 			if ((mirror->rdev == NULL ||
3018 			     test_bit(In_sync, &mirror->rdev->flags))
3019 			    &&
3020 			    (mirror->replacement == NULL ||
3021 			     test_bit(Faulty,
3022 				      &mirror->replacement->flags)))
3023 				continue;
3024 
3025 			still_degraded = 0;
3026 			/* want to reconstruct this device */
3027 			rb2 = r10_bio;
3028 			sect = raid10_find_virt(conf, sector_nr, i);
3029 			if (sect >= mddev->resync_max_sectors) {
3030 				/* last stripe is not complete - don't
3031 				 * try to recover this sector.
3032 				 */
3033 				continue;
3034 			}
3035 			/* Unless we are doing a full sync, or a replacement
3036 			 * we only need to recover the block if it is set in
3037 			 * the bitmap
3038 			 */
3039 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3040 						      &sync_blocks, 1);
3041 			if (sync_blocks < max_sync)
3042 				max_sync = sync_blocks;
3043 			if (!must_sync &&
3044 			    mirror->replacement == NULL &&
3045 			    !conf->fullsync) {
3046 				/* yep, skip the sync_blocks here, but don't assume
3047 				 * that there will never be anything to do here
3048 				 */
3049 				chunks_skipped = -1;
3050 				continue;
3051 			}
3052 
3053 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3054 			r10_bio->state = 0;
3055 			raise_barrier(conf, rb2 != NULL);
3056 			atomic_set(&r10_bio->remaining, 0);
3057 
3058 			r10_bio->master_bio = (struct bio*)rb2;
3059 			if (rb2)
3060 				atomic_inc(&rb2->remaining);
3061 			r10_bio->mddev = mddev;
3062 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3063 			r10_bio->sector = sect;
3064 
3065 			raid10_find_phys(conf, r10_bio);
3066 
3067 			/* Need to check if the array will still be
3068 			 * degraded
3069 			 */
3070 			for (j = 0; j < conf->geo.raid_disks; j++)
3071 				if (conf->mirrors[j].rdev == NULL ||
3072 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3073 					still_degraded = 1;
3074 					break;
3075 				}
3076 
3077 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3078 						      &sync_blocks, still_degraded);
3079 
3080 			any_working = 0;
3081 			for (j=0; j<conf->copies;j++) {
3082 				int k;
3083 				int d = r10_bio->devs[j].devnum;
3084 				sector_t from_addr, to_addr;
3085 				struct md_rdev *rdev;
3086 				sector_t sector, first_bad;
3087 				int bad_sectors;
3088 				if (!conf->mirrors[d].rdev ||
3089 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3090 					continue;
3091 				/* This is where we read from */
3092 				any_working = 1;
3093 				rdev = conf->mirrors[d].rdev;
3094 				sector = r10_bio->devs[j].addr;
3095 
3096 				if (is_badblock(rdev, sector, max_sync,
3097 						&first_bad, &bad_sectors)) {
3098 					if (first_bad > sector)
3099 						max_sync = first_bad - sector;
3100 					else {
3101 						bad_sectors -= (sector
3102 								- first_bad);
3103 						if (max_sync > bad_sectors)
3104 							max_sync = bad_sectors;
3105 						continue;
3106 					}
3107 				}
3108 				bio = r10_bio->devs[0].bio;
3109 				bio_reset(bio);
3110 				bio->bi_next = biolist;
3111 				biolist = bio;
3112 				bio->bi_private = r10_bio;
3113 				bio->bi_end_io = end_sync_read;
3114 				bio->bi_rw = READ;
3115 				from_addr = r10_bio->devs[j].addr;
3116 				bio->bi_iter.bi_sector = from_addr +
3117 					rdev->data_offset;
3118 				bio->bi_bdev = rdev->bdev;
3119 				atomic_inc(&rdev->nr_pending);
3120 				/* and we write to 'i' (if not in_sync) */
3121 
3122 				for (k=0; k<conf->copies; k++)
3123 					if (r10_bio->devs[k].devnum == i)
3124 						break;
3125 				BUG_ON(k == conf->copies);
3126 				to_addr = r10_bio->devs[k].addr;
3127 				r10_bio->devs[0].devnum = d;
3128 				r10_bio->devs[0].addr = from_addr;
3129 				r10_bio->devs[1].devnum = i;
3130 				r10_bio->devs[1].addr = to_addr;
3131 
3132 				rdev = mirror->rdev;
3133 				if (!test_bit(In_sync, &rdev->flags)) {
3134 					bio = r10_bio->devs[1].bio;
3135 					bio_reset(bio);
3136 					bio->bi_next = biolist;
3137 					biolist = bio;
3138 					bio->bi_private = r10_bio;
3139 					bio->bi_end_io = end_sync_write;
3140 					bio->bi_rw = WRITE;
3141 					bio->bi_iter.bi_sector = to_addr
3142 						+ rdev->data_offset;
3143 					bio->bi_bdev = rdev->bdev;
3144 					atomic_inc(&r10_bio->remaining);
3145 				} else
3146 					r10_bio->devs[1].bio->bi_end_io = NULL;
3147 
3148 				/* and maybe write to replacement */
3149 				bio = r10_bio->devs[1].repl_bio;
3150 				if (bio)
3151 					bio->bi_end_io = NULL;
3152 				rdev = mirror->replacement;
3153 				/* Note: if rdev != NULL, then bio
3154 				 * cannot be NULL as r10buf_pool_alloc will
3155 				 * have allocated it.
3156 				 * So the second test here is pointless.
3157 				 * But it keeps semantic-checkers happy, and
3158 				 * this comment keeps human reviewers
3159 				 * happy.
3160 				 */
3161 				if (rdev == NULL || bio == NULL ||
3162 				    test_bit(Faulty, &rdev->flags))
3163 					break;
3164 				bio_reset(bio);
3165 				bio->bi_next = biolist;
3166 				biolist = bio;
3167 				bio->bi_private = r10_bio;
3168 				bio->bi_end_io = end_sync_write;
3169 				bio->bi_rw = WRITE;
3170 				bio->bi_iter.bi_sector = to_addr +
3171 					rdev->data_offset;
3172 				bio->bi_bdev = rdev->bdev;
3173 				atomic_inc(&r10_bio->remaining);
3174 				break;
3175 			}
3176 			if (j == conf->copies) {
3177 				/* Cannot recover, so abort the recovery or
3178 				 * record a bad block */
3179 				if (any_working) {
3180 					/* problem is that there are bad blocks
3181 					 * on other device(s)
3182 					 */
3183 					int k;
3184 					for (k = 0; k < conf->copies; k++)
3185 						if (r10_bio->devs[k].devnum == i)
3186 							break;
3187 					if (!test_bit(In_sync,
3188 						      &mirror->rdev->flags)
3189 					    && !rdev_set_badblocks(
3190 						    mirror->rdev,
3191 						    r10_bio->devs[k].addr,
3192 						    max_sync, 0))
3193 						any_working = 0;
3194 					if (mirror->replacement &&
3195 					    !rdev_set_badblocks(
3196 						    mirror->replacement,
3197 						    r10_bio->devs[k].addr,
3198 						    max_sync, 0))
3199 						any_working = 0;
3200 				}
3201 				if (!any_working)  {
3202 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3203 							      &mddev->recovery))
3204 						printk(KERN_INFO "md/raid10:%s: insufficient "
3205 						       "working devices for recovery.\n",
3206 						       mdname(mddev));
3207 					mirror->recovery_disabled
3208 						= mddev->recovery_disabled;
3209 				}
3210 				put_buf(r10_bio);
3211 				if (rb2)
3212 					atomic_dec(&rb2->remaining);
3213 				r10_bio = rb2;
3214 				break;
3215 			}
3216 		}
3217 		if (biolist == NULL) {
3218 			while (r10_bio) {
3219 				struct r10bio *rb2 = r10_bio;
3220 				r10_bio = (struct r10bio*) rb2->master_bio;
3221 				rb2->master_bio = NULL;
3222 				put_buf(rb2);
3223 			}
3224 			goto giveup;
3225 		}
3226 	} else {
3227 		/* resync. Schedule a read for every block at this virt offset */
3228 		int count = 0;
3229 
3230 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3231 
3232 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3233 				       &sync_blocks, mddev->degraded) &&
3234 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3235 						 &mddev->recovery)) {
3236 			/* We can skip this block */
3237 			*skipped = 1;
3238 			return sync_blocks + sectors_skipped;
3239 		}
3240 		if (sync_blocks < max_sync)
3241 			max_sync = sync_blocks;
3242 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3243 		r10_bio->state = 0;
3244 
3245 		r10_bio->mddev = mddev;
3246 		atomic_set(&r10_bio->remaining, 0);
3247 		raise_barrier(conf, 0);
3248 		conf->next_resync = sector_nr;
3249 
3250 		r10_bio->master_bio = NULL;
3251 		r10_bio->sector = sector_nr;
3252 		set_bit(R10BIO_IsSync, &r10_bio->state);
3253 		raid10_find_phys(conf, r10_bio);
3254 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3255 
3256 		for (i = 0; i < conf->copies; i++) {
3257 			int d = r10_bio->devs[i].devnum;
3258 			sector_t first_bad, sector;
3259 			int bad_sectors;
3260 
3261 			if (r10_bio->devs[i].repl_bio)
3262 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3263 
3264 			bio = r10_bio->devs[i].bio;
3265 			bio_reset(bio);
3266 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3267 			if (conf->mirrors[d].rdev == NULL ||
3268 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3269 				continue;
3270 			sector = r10_bio->devs[i].addr;
3271 			if (is_badblock(conf->mirrors[d].rdev,
3272 					sector, max_sync,
3273 					&first_bad, &bad_sectors)) {
3274 				if (first_bad > sector)
3275 					max_sync = first_bad - sector;
3276 				else {
3277 					bad_sectors -= (sector - first_bad);
3278 					if (max_sync > bad_sectors)
3279 						max_sync = bad_sectors;
3280 					continue;
3281 				}
3282 			}
3283 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3284 			atomic_inc(&r10_bio->remaining);
3285 			bio->bi_next = biolist;
3286 			biolist = bio;
3287 			bio->bi_private = r10_bio;
3288 			bio->bi_end_io = end_sync_read;
3289 			bio->bi_rw = READ;
3290 			bio->bi_iter.bi_sector = sector +
3291 				conf->mirrors[d].rdev->data_offset;
3292 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3293 			count++;
3294 
3295 			if (conf->mirrors[d].replacement == NULL ||
3296 			    test_bit(Faulty,
3297 				     &conf->mirrors[d].replacement->flags))
3298 				continue;
3299 
3300 			/* Need to set up for writing to the replacement */
3301 			bio = r10_bio->devs[i].repl_bio;
3302 			bio_reset(bio);
3303 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3304 
3305 			sector = r10_bio->devs[i].addr;
3306 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3307 			bio->bi_next = biolist;
3308 			biolist = bio;
3309 			bio->bi_private = r10_bio;
3310 			bio->bi_end_io = end_sync_write;
3311 			bio->bi_rw = WRITE;
3312 			bio->bi_iter.bi_sector = sector +
3313 				conf->mirrors[d].replacement->data_offset;
3314 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3315 			count++;
3316 		}
3317 
3318 		if (count < 2) {
3319 			for (i=0; i<conf->copies; i++) {
3320 				int d = r10_bio->devs[i].devnum;
3321 				if (r10_bio->devs[i].bio->bi_end_io)
3322 					rdev_dec_pending(conf->mirrors[d].rdev,
3323 							 mddev);
3324 				if (r10_bio->devs[i].repl_bio &&
3325 				    r10_bio->devs[i].repl_bio->bi_end_io)
3326 					rdev_dec_pending(
3327 						conf->mirrors[d].replacement,
3328 						mddev);
3329 			}
3330 			put_buf(r10_bio);
3331 			biolist = NULL;
3332 			goto giveup;
3333 		}
3334 	}
3335 
3336 	nr_sectors = 0;
3337 	if (sector_nr + max_sync < max_sector)
3338 		max_sector = sector_nr + max_sync;
3339 	do {
3340 		struct page *page;
3341 		int len = PAGE_SIZE;
3342 		if (sector_nr + (len>>9) > max_sector)
3343 			len = (max_sector - sector_nr) << 9;
3344 		if (len == 0)
3345 			break;
3346 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3347 			struct bio *bio2;
3348 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3349 			if (bio_add_page(bio, page, len, 0))
3350 				continue;
3351 
3352 			/* stop here */
3353 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3354 			for (bio2 = biolist;
3355 			     bio2 && bio2 != bio;
3356 			     bio2 = bio2->bi_next) {
3357 				/* remove last page from this bio */
3358 				bio2->bi_vcnt--;
3359 				bio2->bi_iter.bi_size -= len;
3360 				__clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
3361 			}
3362 			goto bio_full;
3363 		}
3364 		nr_sectors += len>>9;
3365 		sector_nr += len>>9;
3366 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3367  bio_full:
3368 	r10_bio->sectors = nr_sectors;
3369 
3370 	while (biolist) {
3371 		bio = biolist;
3372 		biolist = biolist->bi_next;
3373 
3374 		bio->bi_next = NULL;
3375 		r10_bio = bio->bi_private;
3376 		r10_bio->sectors = nr_sectors;
3377 
3378 		if (bio->bi_end_io == end_sync_read) {
3379 			md_sync_acct(bio->bi_bdev, nr_sectors);
3380 			set_bit(BIO_UPTODATE, &bio->bi_flags);
3381 			generic_make_request(bio);
3382 		}
3383 	}
3384 
3385 	if (sectors_skipped)
3386 		/* pretend they weren't skipped, it makes
3387 		 * no important difference in this case
3388 		 */
3389 		md_done_sync(mddev, sectors_skipped, 1);
3390 
3391 	return sectors_skipped + nr_sectors;
3392  giveup:
3393 	/* There is nowhere to write, so all non-sync
3394 	 * drives must be failed or in resync, all drives
3395 	 * have a bad block, so try the next chunk...
3396 	 */
3397 	if (sector_nr + max_sync < max_sector)
3398 		max_sector = sector_nr + max_sync;
3399 
3400 	sectors_skipped += (max_sector - sector_nr);
3401 	chunks_skipped ++;
3402 	sector_nr = max_sector;
3403 	goto skipped;
3404 }
3405 
3406 static sector_t
3407 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3408 {
3409 	sector_t size;
3410 	struct r10conf *conf = mddev->private;
3411 
3412 	if (!raid_disks)
3413 		raid_disks = min(conf->geo.raid_disks,
3414 				 conf->prev.raid_disks);
3415 	if (!sectors)
3416 		sectors = conf->dev_sectors;
3417 
3418 	size = sectors >> conf->geo.chunk_shift;
3419 	sector_div(size, conf->geo.far_copies);
3420 	size = size * raid_disks;
3421 	sector_div(size, conf->geo.near_copies);
3422 
3423 	return size << conf->geo.chunk_shift;
3424 }
3425 
3426 static void calc_sectors(struct r10conf *conf, sector_t size)
3427 {
3428 	/* Calculate the number of sectors-per-device that will
3429 	 * actually be used, and set conf->dev_sectors and
3430 	 * conf->stride
3431 	 */
3432 
3433 	size = size >> conf->geo.chunk_shift;
3434 	sector_div(size, conf->geo.far_copies);
3435 	size = size * conf->geo.raid_disks;
3436 	sector_div(size, conf->geo.near_copies);
3437 	/* 'size' is now the number of chunks in the array */
3438 	/* calculate "used chunks per device" */
3439 	size = size * conf->copies;
3440 
3441 	/* We need to round up when dividing by raid_disks to
3442 	 * get the stride size.
3443 	 */
3444 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3445 
3446 	conf->dev_sectors = size << conf->geo.chunk_shift;
3447 
3448 	if (conf->geo.far_offset)
3449 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3450 	else {
3451 		sector_div(size, conf->geo.far_copies);
3452 		conf->geo.stride = size << conf->geo.chunk_shift;
3453 	}
3454 }
3455 
3456 enum geo_type {geo_new, geo_old, geo_start};
3457 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3458 {
3459 	int nc, fc, fo;
3460 	int layout, chunk, disks;
3461 	switch (new) {
3462 	case geo_old:
3463 		layout = mddev->layout;
3464 		chunk = mddev->chunk_sectors;
3465 		disks = mddev->raid_disks - mddev->delta_disks;
3466 		break;
3467 	case geo_new:
3468 		layout = mddev->new_layout;
3469 		chunk = mddev->new_chunk_sectors;
3470 		disks = mddev->raid_disks;
3471 		break;
3472 	default: /* avoid 'may be unused' warnings */
3473 	case geo_start: /* new when starting reshape - raid_disks not
3474 			 * updated yet. */
3475 		layout = mddev->new_layout;
3476 		chunk = mddev->new_chunk_sectors;
3477 		disks = mddev->raid_disks + mddev->delta_disks;
3478 		break;
3479 	}
3480 	if (layout >> 18)
3481 		return -1;
3482 	if (chunk < (PAGE_SIZE >> 9) ||
3483 	    !is_power_of_2(chunk))
3484 		return -2;
3485 	nc = layout & 255;
3486 	fc = (layout >> 8) & 255;
3487 	fo = layout & (1<<16);
3488 	geo->raid_disks = disks;
3489 	geo->near_copies = nc;
3490 	geo->far_copies = fc;
3491 	geo->far_offset = fo;
3492 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3493 	geo->chunk_mask = chunk - 1;
3494 	geo->chunk_shift = ffz(~chunk);
3495 	return nc*fc;
3496 }
3497 
3498 static struct r10conf *setup_conf(struct mddev *mddev)
3499 {
3500 	struct r10conf *conf = NULL;
3501 	int err = -EINVAL;
3502 	struct geom geo;
3503 	int copies;
3504 
3505 	copies = setup_geo(&geo, mddev, geo_new);
3506 
3507 	if (copies == -2) {
3508 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3509 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3510 		       mdname(mddev), PAGE_SIZE);
3511 		goto out;
3512 	}
3513 
3514 	if (copies < 2 || copies > mddev->raid_disks) {
3515 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3516 		       mdname(mddev), mddev->new_layout);
3517 		goto out;
3518 	}
3519 
3520 	err = -ENOMEM;
3521 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3522 	if (!conf)
3523 		goto out;
3524 
3525 	/* FIXME calc properly */
3526 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3527 							    max(0,-mddev->delta_disks)),
3528 				GFP_KERNEL);
3529 	if (!conf->mirrors)
3530 		goto out;
3531 
3532 	conf->tmppage = alloc_page(GFP_KERNEL);
3533 	if (!conf->tmppage)
3534 		goto out;
3535 
3536 	conf->geo = geo;
3537 	conf->copies = copies;
3538 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3539 					   r10bio_pool_free, conf);
3540 	if (!conf->r10bio_pool)
3541 		goto out;
3542 
3543 	calc_sectors(conf, mddev->dev_sectors);
3544 	if (mddev->reshape_position == MaxSector) {
3545 		conf->prev = conf->geo;
3546 		conf->reshape_progress = MaxSector;
3547 	} else {
3548 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3549 			err = -EINVAL;
3550 			goto out;
3551 		}
3552 		conf->reshape_progress = mddev->reshape_position;
3553 		if (conf->prev.far_offset)
3554 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3555 		else
3556 			/* far_copies must be 1 */
3557 			conf->prev.stride = conf->dev_sectors;
3558 	}
3559 	spin_lock_init(&conf->device_lock);
3560 	INIT_LIST_HEAD(&conf->retry_list);
3561 
3562 	spin_lock_init(&conf->resync_lock);
3563 	init_waitqueue_head(&conf->wait_barrier);
3564 
3565 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3566 	if (!conf->thread)
3567 		goto out;
3568 
3569 	conf->mddev = mddev;
3570 	return conf;
3571 
3572  out:
3573 	if (err == -ENOMEM)
3574 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3575 		       mdname(mddev));
3576 	if (conf) {
3577 		if (conf->r10bio_pool)
3578 			mempool_destroy(conf->r10bio_pool);
3579 		kfree(conf->mirrors);
3580 		safe_put_page(conf->tmppage);
3581 		kfree(conf);
3582 	}
3583 	return ERR_PTR(err);
3584 }
3585 
3586 static int run(struct mddev *mddev)
3587 {
3588 	struct r10conf *conf;
3589 	int i, disk_idx, chunk_size;
3590 	struct raid10_info *disk;
3591 	struct md_rdev *rdev;
3592 	sector_t size;
3593 	sector_t min_offset_diff = 0;
3594 	int first = 1;
3595 	bool discard_supported = false;
3596 
3597 	if (mddev->private == NULL) {
3598 		conf = setup_conf(mddev);
3599 		if (IS_ERR(conf))
3600 			return PTR_ERR(conf);
3601 		mddev->private = conf;
3602 	}
3603 	conf = mddev->private;
3604 	if (!conf)
3605 		goto out;
3606 
3607 	mddev->thread = conf->thread;
3608 	conf->thread = NULL;
3609 
3610 	chunk_size = mddev->chunk_sectors << 9;
3611 	if (mddev->queue) {
3612 		blk_queue_max_discard_sectors(mddev->queue,
3613 					      mddev->chunk_sectors);
3614 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3615 		blk_queue_io_min(mddev->queue, chunk_size);
3616 		if (conf->geo.raid_disks % conf->geo.near_copies)
3617 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3618 		else
3619 			blk_queue_io_opt(mddev->queue, chunk_size *
3620 					 (conf->geo.raid_disks / conf->geo.near_copies));
3621 	}
3622 
3623 	rdev_for_each(rdev, mddev) {
3624 		long long diff;
3625 		struct request_queue *q;
3626 
3627 		disk_idx = rdev->raid_disk;
3628 		if (disk_idx < 0)
3629 			continue;
3630 		if (disk_idx >= conf->geo.raid_disks &&
3631 		    disk_idx >= conf->prev.raid_disks)
3632 			continue;
3633 		disk = conf->mirrors + disk_idx;
3634 
3635 		if (test_bit(Replacement, &rdev->flags)) {
3636 			if (disk->replacement)
3637 				goto out_free_conf;
3638 			disk->replacement = rdev;
3639 		} else {
3640 			if (disk->rdev)
3641 				goto out_free_conf;
3642 			disk->rdev = rdev;
3643 		}
3644 		q = bdev_get_queue(rdev->bdev);
3645 		if (q->merge_bvec_fn)
3646 			mddev->merge_check_needed = 1;
3647 		diff = (rdev->new_data_offset - rdev->data_offset);
3648 		if (!mddev->reshape_backwards)
3649 			diff = -diff;
3650 		if (diff < 0)
3651 			diff = 0;
3652 		if (first || diff < min_offset_diff)
3653 			min_offset_diff = diff;
3654 
3655 		if (mddev->gendisk)
3656 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3657 					  rdev->data_offset << 9);
3658 
3659 		disk->head_position = 0;
3660 
3661 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3662 			discard_supported = true;
3663 	}
3664 
3665 	if (mddev->queue) {
3666 		if (discard_supported)
3667 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3668 						mddev->queue);
3669 		else
3670 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3671 						  mddev->queue);
3672 	}
3673 	/* need to check that every block has at least one working mirror */
3674 	if (!enough(conf, -1)) {
3675 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3676 		       mdname(mddev));
3677 		goto out_free_conf;
3678 	}
3679 
3680 	if (conf->reshape_progress != MaxSector) {
3681 		/* must ensure that shape change is supported */
3682 		if (conf->geo.far_copies != 1 &&
3683 		    conf->geo.far_offset == 0)
3684 			goto out_free_conf;
3685 		if (conf->prev.far_copies != 1 &&
3686 		    conf->prev.far_offset == 0)
3687 			goto out_free_conf;
3688 	}
3689 
3690 	mddev->degraded = 0;
3691 	for (i = 0;
3692 	     i < conf->geo.raid_disks
3693 		     || i < conf->prev.raid_disks;
3694 	     i++) {
3695 
3696 		disk = conf->mirrors + i;
3697 
3698 		if (!disk->rdev && disk->replacement) {
3699 			/* The replacement is all we have - use it */
3700 			disk->rdev = disk->replacement;
3701 			disk->replacement = NULL;
3702 			clear_bit(Replacement, &disk->rdev->flags);
3703 		}
3704 
3705 		if (!disk->rdev ||
3706 		    !test_bit(In_sync, &disk->rdev->flags)) {
3707 			disk->head_position = 0;
3708 			mddev->degraded++;
3709 			if (disk->rdev &&
3710 			    disk->rdev->saved_raid_disk < 0)
3711 				conf->fullsync = 1;
3712 		}
3713 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3714 	}
3715 
3716 	if (mddev->recovery_cp != MaxSector)
3717 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3718 		       " -- starting background reconstruction\n",
3719 		       mdname(mddev));
3720 	printk(KERN_INFO
3721 		"md/raid10:%s: active with %d out of %d devices\n",
3722 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3723 		conf->geo.raid_disks);
3724 	/*
3725 	 * Ok, everything is just fine now
3726 	 */
3727 	mddev->dev_sectors = conf->dev_sectors;
3728 	size = raid10_size(mddev, 0, 0);
3729 	md_set_array_sectors(mddev, size);
3730 	mddev->resync_max_sectors = size;
3731 
3732 	if (mddev->queue) {
3733 		int stripe = conf->geo.raid_disks *
3734 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3735 
3736 		/* Calculate max read-ahead size.
3737 		 * We need to readahead at least twice a whole stripe....
3738 		 * maybe...
3739 		 */
3740 		stripe /= conf->geo.near_copies;
3741 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3742 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3743 	}
3744 
3745 	if (md_integrity_register(mddev))
3746 		goto out_free_conf;
3747 
3748 	if (conf->reshape_progress != MaxSector) {
3749 		unsigned long before_length, after_length;
3750 
3751 		before_length = ((1 << conf->prev.chunk_shift) *
3752 				 conf->prev.far_copies);
3753 		after_length = ((1 << conf->geo.chunk_shift) *
3754 				conf->geo.far_copies);
3755 
3756 		if (max(before_length, after_length) > min_offset_diff) {
3757 			/* This cannot work */
3758 			printk("md/raid10: offset difference not enough to continue reshape\n");
3759 			goto out_free_conf;
3760 		}
3761 		conf->offset_diff = min_offset_diff;
3762 
3763 		conf->reshape_safe = conf->reshape_progress;
3764 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3765 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3766 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3767 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3768 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3769 							"reshape");
3770 	}
3771 
3772 	return 0;
3773 
3774 out_free_conf:
3775 	md_unregister_thread(&mddev->thread);
3776 	if (conf->r10bio_pool)
3777 		mempool_destroy(conf->r10bio_pool);
3778 	safe_put_page(conf->tmppage);
3779 	kfree(conf->mirrors);
3780 	kfree(conf);
3781 	mddev->private = NULL;
3782 out:
3783 	return -EIO;
3784 }
3785 
3786 static void raid10_free(struct mddev *mddev, void *priv)
3787 {
3788 	struct r10conf *conf = priv;
3789 
3790 	if (conf->r10bio_pool)
3791 		mempool_destroy(conf->r10bio_pool);
3792 	safe_put_page(conf->tmppage);
3793 	kfree(conf->mirrors);
3794 	kfree(conf->mirrors_old);
3795 	kfree(conf->mirrors_new);
3796 	kfree(conf);
3797 }
3798 
3799 static void raid10_quiesce(struct mddev *mddev, int state)
3800 {
3801 	struct r10conf *conf = mddev->private;
3802 
3803 	switch(state) {
3804 	case 1:
3805 		raise_barrier(conf, 0);
3806 		break;
3807 	case 0:
3808 		lower_barrier(conf);
3809 		break;
3810 	}
3811 }
3812 
3813 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3814 {
3815 	/* Resize of 'far' arrays is not supported.
3816 	 * For 'near' and 'offset' arrays we can set the
3817 	 * number of sectors used to be an appropriate multiple
3818 	 * of the chunk size.
3819 	 * For 'offset', this is far_copies*chunksize.
3820 	 * For 'near' the multiplier is the LCM of
3821 	 * near_copies and raid_disks.
3822 	 * So if far_copies > 1 && !far_offset, fail.
3823 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3824 	 * multiply by chunk_size.  Then round to this number.
3825 	 * This is mostly done by raid10_size()
3826 	 */
3827 	struct r10conf *conf = mddev->private;
3828 	sector_t oldsize, size;
3829 
3830 	if (mddev->reshape_position != MaxSector)
3831 		return -EBUSY;
3832 
3833 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3834 		return -EINVAL;
3835 
3836 	oldsize = raid10_size(mddev, 0, 0);
3837 	size = raid10_size(mddev, sectors, 0);
3838 	if (mddev->external_size &&
3839 	    mddev->array_sectors > size)
3840 		return -EINVAL;
3841 	if (mddev->bitmap) {
3842 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3843 		if (ret)
3844 			return ret;
3845 	}
3846 	md_set_array_sectors(mddev, size);
3847 	set_capacity(mddev->gendisk, mddev->array_sectors);
3848 	revalidate_disk(mddev->gendisk);
3849 	if (sectors > mddev->dev_sectors &&
3850 	    mddev->recovery_cp > oldsize) {
3851 		mddev->recovery_cp = oldsize;
3852 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3853 	}
3854 	calc_sectors(conf, sectors);
3855 	mddev->dev_sectors = conf->dev_sectors;
3856 	mddev->resync_max_sectors = size;
3857 	return 0;
3858 }
3859 
3860 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3861 {
3862 	struct md_rdev *rdev;
3863 	struct r10conf *conf;
3864 
3865 	if (mddev->degraded > 0) {
3866 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3867 		       mdname(mddev));
3868 		return ERR_PTR(-EINVAL);
3869 	}
3870 	sector_div(size, devs);
3871 
3872 	/* Set new parameters */
3873 	mddev->new_level = 10;
3874 	/* new layout: far_copies = 1, near_copies = 2 */
3875 	mddev->new_layout = (1<<8) + 2;
3876 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3877 	mddev->delta_disks = mddev->raid_disks;
3878 	mddev->raid_disks *= 2;
3879 	/* make sure it will be not marked as dirty */
3880 	mddev->recovery_cp = MaxSector;
3881 	mddev->dev_sectors = size;
3882 
3883 	conf = setup_conf(mddev);
3884 	if (!IS_ERR(conf)) {
3885 		rdev_for_each(rdev, mddev)
3886 			if (rdev->raid_disk >= 0) {
3887 				rdev->new_raid_disk = rdev->raid_disk * 2;
3888 				rdev->sectors = size;
3889 			}
3890 		conf->barrier = 1;
3891 	}
3892 
3893 	return conf;
3894 }
3895 
3896 static void *raid10_takeover(struct mddev *mddev)
3897 {
3898 	struct r0conf *raid0_conf;
3899 
3900 	/* raid10 can take over:
3901 	 *  raid0 - providing it has only two drives
3902 	 */
3903 	if (mddev->level == 0) {
3904 		/* for raid0 takeover only one zone is supported */
3905 		raid0_conf = mddev->private;
3906 		if (raid0_conf->nr_strip_zones > 1) {
3907 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3908 			       " with more than one zone.\n",
3909 			       mdname(mddev));
3910 			return ERR_PTR(-EINVAL);
3911 		}
3912 		return raid10_takeover_raid0(mddev,
3913 			raid0_conf->strip_zone->zone_end,
3914 			raid0_conf->strip_zone->nb_dev);
3915 	}
3916 	return ERR_PTR(-EINVAL);
3917 }
3918 
3919 static int raid10_check_reshape(struct mddev *mddev)
3920 {
3921 	/* Called when there is a request to change
3922 	 * - layout (to ->new_layout)
3923 	 * - chunk size (to ->new_chunk_sectors)
3924 	 * - raid_disks (by delta_disks)
3925 	 * or when trying to restart a reshape that was ongoing.
3926 	 *
3927 	 * We need to validate the request and possibly allocate
3928 	 * space if that might be an issue later.
3929 	 *
3930 	 * Currently we reject any reshape of a 'far' mode array,
3931 	 * allow chunk size to change if new is generally acceptable,
3932 	 * allow raid_disks to increase, and allow
3933 	 * a switch between 'near' mode and 'offset' mode.
3934 	 */
3935 	struct r10conf *conf = mddev->private;
3936 	struct geom geo;
3937 
3938 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3939 		return -EINVAL;
3940 
3941 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3942 		/* mustn't change number of copies */
3943 		return -EINVAL;
3944 	if (geo.far_copies > 1 && !geo.far_offset)
3945 		/* Cannot switch to 'far' mode */
3946 		return -EINVAL;
3947 
3948 	if (mddev->array_sectors & geo.chunk_mask)
3949 			/* not factor of array size */
3950 			return -EINVAL;
3951 
3952 	if (!enough(conf, -1))
3953 		return -EINVAL;
3954 
3955 	kfree(conf->mirrors_new);
3956 	conf->mirrors_new = NULL;
3957 	if (mddev->delta_disks > 0) {
3958 		/* allocate new 'mirrors' list */
3959 		conf->mirrors_new = kzalloc(
3960 			sizeof(struct raid10_info)
3961 			*(mddev->raid_disks +
3962 			  mddev->delta_disks),
3963 			GFP_KERNEL);
3964 		if (!conf->mirrors_new)
3965 			return -ENOMEM;
3966 	}
3967 	return 0;
3968 }
3969 
3970 /*
3971  * Need to check if array has failed when deciding whether to:
3972  *  - start an array
3973  *  - remove non-faulty devices
3974  *  - add a spare
3975  *  - allow a reshape
3976  * This determination is simple when no reshape is happening.
3977  * However if there is a reshape, we need to carefully check
3978  * both the before and after sections.
3979  * This is because some failed devices may only affect one
3980  * of the two sections, and some non-in_sync devices may
3981  * be insync in the section most affected by failed devices.
3982  */
3983 static int calc_degraded(struct r10conf *conf)
3984 {
3985 	int degraded, degraded2;
3986 	int i;
3987 
3988 	rcu_read_lock();
3989 	degraded = 0;
3990 	/* 'prev' section first */
3991 	for (i = 0; i < conf->prev.raid_disks; i++) {
3992 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3993 		if (!rdev || test_bit(Faulty, &rdev->flags))
3994 			degraded++;
3995 		else if (!test_bit(In_sync, &rdev->flags))
3996 			/* When we can reduce the number of devices in
3997 			 * an array, this might not contribute to
3998 			 * 'degraded'.  It does now.
3999 			 */
4000 			degraded++;
4001 	}
4002 	rcu_read_unlock();
4003 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4004 		return degraded;
4005 	rcu_read_lock();
4006 	degraded2 = 0;
4007 	for (i = 0; i < conf->geo.raid_disks; i++) {
4008 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4009 		if (!rdev || test_bit(Faulty, &rdev->flags))
4010 			degraded2++;
4011 		else if (!test_bit(In_sync, &rdev->flags)) {
4012 			/* If reshape is increasing the number of devices,
4013 			 * this section has already been recovered, so
4014 			 * it doesn't contribute to degraded.
4015 			 * else it does.
4016 			 */
4017 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4018 				degraded2++;
4019 		}
4020 	}
4021 	rcu_read_unlock();
4022 	if (degraded2 > degraded)
4023 		return degraded2;
4024 	return degraded;
4025 }
4026 
4027 static int raid10_start_reshape(struct mddev *mddev)
4028 {
4029 	/* A 'reshape' has been requested. This commits
4030 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4031 	 * This also checks if there are enough spares and adds them
4032 	 * to the array.
4033 	 * We currently require enough spares to make the final
4034 	 * array non-degraded.  We also require that the difference
4035 	 * between old and new data_offset - on each device - is
4036 	 * enough that we never risk over-writing.
4037 	 */
4038 
4039 	unsigned long before_length, after_length;
4040 	sector_t min_offset_diff = 0;
4041 	int first = 1;
4042 	struct geom new;
4043 	struct r10conf *conf = mddev->private;
4044 	struct md_rdev *rdev;
4045 	int spares = 0;
4046 	int ret;
4047 
4048 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4049 		return -EBUSY;
4050 
4051 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4052 		return -EINVAL;
4053 
4054 	before_length = ((1 << conf->prev.chunk_shift) *
4055 			 conf->prev.far_copies);
4056 	after_length = ((1 << conf->geo.chunk_shift) *
4057 			conf->geo.far_copies);
4058 
4059 	rdev_for_each(rdev, mddev) {
4060 		if (!test_bit(In_sync, &rdev->flags)
4061 		    && !test_bit(Faulty, &rdev->flags))
4062 			spares++;
4063 		if (rdev->raid_disk >= 0) {
4064 			long long diff = (rdev->new_data_offset
4065 					  - rdev->data_offset);
4066 			if (!mddev->reshape_backwards)
4067 				diff = -diff;
4068 			if (diff < 0)
4069 				diff = 0;
4070 			if (first || diff < min_offset_diff)
4071 				min_offset_diff = diff;
4072 		}
4073 	}
4074 
4075 	if (max(before_length, after_length) > min_offset_diff)
4076 		return -EINVAL;
4077 
4078 	if (spares < mddev->delta_disks)
4079 		return -EINVAL;
4080 
4081 	conf->offset_diff = min_offset_diff;
4082 	spin_lock_irq(&conf->device_lock);
4083 	if (conf->mirrors_new) {
4084 		memcpy(conf->mirrors_new, conf->mirrors,
4085 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4086 		smp_mb();
4087 		kfree(conf->mirrors_old);
4088 		conf->mirrors_old = conf->mirrors;
4089 		conf->mirrors = conf->mirrors_new;
4090 		conf->mirrors_new = NULL;
4091 	}
4092 	setup_geo(&conf->geo, mddev, geo_start);
4093 	smp_mb();
4094 	if (mddev->reshape_backwards) {
4095 		sector_t size = raid10_size(mddev, 0, 0);
4096 		if (size < mddev->array_sectors) {
4097 			spin_unlock_irq(&conf->device_lock);
4098 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4099 			       mdname(mddev));
4100 			return -EINVAL;
4101 		}
4102 		mddev->resync_max_sectors = size;
4103 		conf->reshape_progress = size;
4104 	} else
4105 		conf->reshape_progress = 0;
4106 	spin_unlock_irq(&conf->device_lock);
4107 
4108 	if (mddev->delta_disks && mddev->bitmap) {
4109 		ret = bitmap_resize(mddev->bitmap,
4110 				    raid10_size(mddev, 0,
4111 						conf->geo.raid_disks),
4112 				    0, 0);
4113 		if (ret)
4114 			goto abort;
4115 	}
4116 	if (mddev->delta_disks > 0) {
4117 		rdev_for_each(rdev, mddev)
4118 			if (rdev->raid_disk < 0 &&
4119 			    !test_bit(Faulty, &rdev->flags)) {
4120 				if (raid10_add_disk(mddev, rdev) == 0) {
4121 					if (rdev->raid_disk >=
4122 					    conf->prev.raid_disks)
4123 						set_bit(In_sync, &rdev->flags);
4124 					else
4125 						rdev->recovery_offset = 0;
4126 
4127 					if (sysfs_link_rdev(mddev, rdev))
4128 						/* Failure here  is OK */;
4129 				}
4130 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4131 				   && !test_bit(Faulty, &rdev->flags)) {
4132 				/* This is a spare that was manually added */
4133 				set_bit(In_sync, &rdev->flags);
4134 			}
4135 	}
4136 	/* When a reshape changes the number of devices,
4137 	 * ->degraded is measured against the larger of the
4138 	 * pre and  post numbers.
4139 	 */
4140 	spin_lock_irq(&conf->device_lock);
4141 	mddev->degraded = calc_degraded(conf);
4142 	spin_unlock_irq(&conf->device_lock);
4143 	mddev->raid_disks = conf->geo.raid_disks;
4144 	mddev->reshape_position = conf->reshape_progress;
4145 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4146 
4147 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4148 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4149 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4150 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4151 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4152 
4153 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4154 						"reshape");
4155 	if (!mddev->sync_thread) {
4156 		ret = -EAGAIN;
4157 		goto abort;
4158 	}
4159 	conf->reshape_checkpoint = jiffies;
4160 	md_wakeup_thread(mddev->sync_thread);
4161 	md_new_event(mddev);
4162 	return 0;
4163 
4164 abort:
4165 	mddev->recovery = 0;
4166 	spin_lock_irq(&conf->device_lock);
4167 	conf->geo = conf->prev;
4168 	mddev->raid_disks = conf->geo.raid_disks;
4169 	rdev_for_each(rdev, mddev)
4170 		rdev->new_data_offset = rdev->data_offset;
4171 	smp_wmb();
4172 	conf->reshape_progress = MaxSector;
4173 	mddev->reshape_position = MaxSector;
4174 	spin_unlock_irq(&conf->device_lock);
4175 	return ret;
4176 }
4177 
4178 /* Calculate the last device-address that could contain
4179  * any block from the chunk that includes the array-address 's'
4180  * and report the next address.
4181  * i.e. the address returned will be chunk-aligned and after
4182  * any data that is in the chunk containing 's'.
4183  */
4184 static sector_t last_dev_address(sector_t s, struct geom *geo)
4185 {
4186 	s = (s | geo->chunk_mask) + 1;
4187 	s >>= geo->chunk_shift;
4188 	s *= geo->near_copies;
4189 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4190 	s *= geo->far_copies;
4191 	s <<= geo->chunk_shift;
4192 	return s;
4193 }
4194 
4195 /* Calculate the first device-address that could contain
4196  * any block from the chunk that includes the array-address 's'.
4197  * This too will be the start of a chunk
4198  */
4199 static sector_t first_dev_address(sector_t s, struct geom *geo)
4200 {
4201 	s >>= geo->chunk_shift;
4202 	s *= geo->near_copies;
4203 	sector_div(s, geo->raid_disks);
4204 	s *= geo->far_copies;
4205 	s <<= geo->chunk_shift;
4206 	return s;
4207 }
4208 
4209 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4210 				int *skipped)
4211 {
4212 	/* We simply copy at most one chunk (smallest of old and new)
4213 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4214 	 * or we hit a bad block or something.
4215 	 * This might mean we pause for normal IO in the middle of
4216 	 * a chunk, but that is not a problem was mddev->reshape_position
4217 	 * can record any location.
4218 	 *
4219 	 * If we will want to write to a location that isn't
4220 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4221 	 * we need to flush all reshape requests and update the metadata.
4222 	 *
4223 	 * When reshaping forwards (e.g. to more devices), we interpret
4224 	 * 'safe' as the earliest block which might not have been copied
4225 	 * down yet.  We divide this by previous stripe size and multiply
4226 	 * by previous stripe length to get lowest device offset that we
4227 	 * cannot write to yet.
4228 	 * We interpret 'sector_nr' as an address that we want to write to.
4229 	 * From this we use last_device_address() to find where we might
4230 	 * write to, and first_device_address on the  'safe' position.
4231 	 * If this 'next' write position is after the 'safe' position,
4232 	 * we must update the metadata to increase the 'safe' position.
4233 	 *
4234 	 * When reshaping backwards, we round in the opposite direction
4235 	 * and perform the reverse test:  next write position must not be
4236 	 * less than current safe position.
4237 	 *
4238 	 * In all this the minimum difference in data offsets
4239 	 * (conf->offset_diff - always positive) allows a bit of slack,
4240 	 * so next can be after 'safe', but not by more than offset_disk
4241 	 *
4242 	 * We need to prepare all the bios here before we start any IO
4243 	 * to ensure the size we choose is acceptable to all devices.
4244 	 * The means one for each copy for write-out and an extra one for
4245 	 * read-in.
4246 	 * We store the read-in bio in ->master_bio and the others in
4247 	 * ->devs[x].bio and ->devs[x].repl_bio.
4248 	 */
4249 	struct r10conf *conf = mddev->private;
4250 	struct r10bio *r10_bio;
4251 	sector_t next, safe, last;
4252 	int max_sectors;
4253 	int nr_sectors;
4254 	int s;
4255 	struct md_rdev *rdev;
4256 	int need_flush = 0;
4257 	struct bio *blist;
4258 	struct bio *bio, *read_bio;
4259 	int sectors_done = 0;
4260 
4261 	if (sector_nr == 0) {
4262 		/* If restarting in the middle, skip the initial sectors */
4263 		if (mddev->reshape_backwards &&
4264 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4265 			sector_nr = (raid10_size(mddev, 0, 0)
4266 				     - conf->reshape_progress);
4267 		} else if (!mddev->reshape_backwards &&
4268 			   conf->reshape_progress > 0)
4269 			sector_nr = conf->reshape_progress;
4270 		if (sector_nr) {
4271 			mddev->curr_resync_completed = sector_nr;
4272 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4273 			*skipped = 1;
4274 			return sector_nr;
4275 		}
4276 	}
4277 
4278 	/* We don't use sector_nr to track where we are up to
4279 	 * as that doesn't work well for ->reshape_backwards.
4280 	 * So just use ->reshape_progress.
4281 	 */
4282 	if (mddev->reshape_backwards) {
4283 		/* 'next' is the earliest device address that we might
4284 		 * write to for this chunk in the new layout
4285 		 */
4286 		next = first_dev_address(conf->reshape_progress - 1,
4287 					 &conf->geo);
4288 
4289 		/* 'safe' is the last device address that we might read from
4290 		 * in the old layout after a restart
4291 		 */
4292 		safe = last_dev_address(conf->reshape_safe - 1,
4293 					&conf->prev);
4294 
4295 		if (next + conf->offset_diff < safe)
4296 			need_flush = 1;
4297 
4298 		last = conf->reshape_progress - 1;
4299 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4300 					       & conf->prev.chunk_mask);
4301 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4302 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4303 	} else {
4304 		/* 'next' is after the last device address that we
4305 		 * might write to for this chunk in the new layout
4306 		 */
4307 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4308 
4309 		/* 'safe' is the earliest device address that we might
4310 		 * read from in the old layout after a restart
4311 		 */
4312 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4313 
4314 		/* Need to update metadata if 'next' might be beyond 'safe'
4315 		 * as that would possibly corrupt data
4316 		 */
4317 		if (next > safe + conf->offset_diff)
4318 			need_flush = 1;
4319 
4320 		sector_nr = conf->reshape_progress;
4321 		last  = sector_nr | (conf->geo.chunk_mask
4322 				     & conf->prev.chunk_mask);
4323 
4324 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4325 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4326 	}
4327 
4328 	if (need_flush ||
4329 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4330 		/* Need to update reshape_position in metadata */
4331 		wait_barrier(conf);
4332 		mddev->reshape_position = conf->reshape_progress;
4333 		if (mddev->reshape_backwards)
4334 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4335 				- conf->reshape_progress;
4336 		else
4337 			mddev->curr_resync_completed = conf->reshape_progress;
4338 		conf->reshape_checkpoint = jiffies;
4339 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4340 		md_wakeup_thread(mddev->thread);
4341 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4342 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4343 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4344 			allow_barrier(conf);
4345 			return sectors_done;
4346 		}
4347 		conf->reshape_safe = mddev->reshape_position;
4348 		allow_barrier(conf);
4349 	}
4350 
4351 read_more:
4352 	/* Now schedule reads for blocks from sector_nr to last */
4353 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4354 	r10_bio->state = 0;
4355 	raise_barrier(conf, sectors_done != 0);
4356 	atomic_set(&r10_bio->remaining, 0);
4357 	r10_bio->mddev = mddev;
4358 	r10_bio->sector = sector_nr;
4359 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4360 	r10_bio->sectors = last - sector_nr + 1;
4361 	rdev = read_balance(conf, r10_bio, &max_sectors);
4362 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4363 
4364 	if (!rdev) {
4365 		/* Cannot read from here, so need to record bad blocks
4366 		 * on all the target devices.
4367 		 */
4368 		// FIXME
4369 		mempool_free(r10_bio, conf->r10buf_pool);
4370 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4371 		return sectors_done;
4372 	}
4373 
4374 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4375 
4376 	read_bio->bi_bdev = rdev->bdev;
4377 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4378 			       + rdev->data_offset);
4379 	read_bio->bi_private = r10_bio;
4380 	read_bio->bi_end_io = end_sync_read;
4381 	read_bio->bi_rw = READ;
4382 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4383 	__set_bit(BIO_UPTODATE, &read_bio->bi_flags);
4384 	read_bio->bi_vcnt = 0;
4385 	read_bio->bi_iter.bi_size = 0;
4386 	r10_bio->master_bio = read_bio;
4387 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4388 
4389 	/* Now find the locations in the new layout */
4390 	__raid10_find_phys(&conf->geo, r10_bio);
4391 
4392 	blist = read_bio;
4393 	read_bio->bi_next = NULL;
4394 
4395 	for (s = 0; s < conf->copies*2; s++) {
4396 		struct bio *b;
4397 		int d = r10_bio->devs[s/2].devnum;
4398 		struct md_rdev *rdev2;
4399 		if (s&1) {
4400 			rdev2 = conf->mirrors[d].replacement;
4401 			b = r10_bio->devs[s/2].repl_bio;
4402 		} else {
4403 			rdev2 = conf->mirrors[d].rdev;
4404 			b = r10_bio->devs[s/2].bio;
4405 		}
4406 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4407 			continue;
4408 
4409 		bio_reset(b);
4410 		b->bi_bdev = rdev2->bdev;
4411 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4412 			rdev2->new_data_offset;
4413 		b->bi_private = r10_bio;
4414 		b->bi_end_io = end_reshape_write;
4415 		b->bi_rw = WRITE;
4416 		b->bi_next = blist;
4417 		blist = b;
4418 	}
4419 
4420 	/* Now add as many pages as possible to all of these bios. */
4421 
4422 	nr_sectors = 0;
4423 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4424 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4425 		int len = (max_sectors - s) << 9;
4426 		if (len > PAGE_SIZE)
4427 			len = PAGE_SIZE;
4428 		for (bio = blist; bio ; bio = bio->bi_next) {
4429 			struct bio *bio2;
4430 			if (bio_add_page(bio, page, len, 0))
4431 				continue;
4432 
4433 			/* Didn't fit, must stop */
4434 			for (bio2 = blist;
4435 			     bio2 && bio2 != bio;
4436 			     bio2 = bio2->bi_next) {
4437 				/* Remove last page from this bio */
4438 				bio2->bi_vcnt--;
4439 				bio2->bi_iter.bi_size -= len;
4440 				__clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
4441 			}
4442 			goto bio_full;
4443 		}
4444 		sector_nr += len >> 9;
4445 		nr_sectors += len >> 9;
4446 	}
4447 bio_full:
4448 	r10_bio->sectors = nr_sectors;
4449 
4450 	/* Now submit the read */
4451 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4452 	atomic_inc(&r10_bio->remaining);
4453 	read_bio->bi_next = NULL;
4454 	generic_make_request(read_bio);
4455 	sector_nr += nr_sectors;
4456 	sectors_done += nr_sectors;
4457 	if (sector_nr <= last)
4458 		goto read_more;
4459 
4460 	/* Now that we have done the whole section we can
4461 	 * update reshape_progress
4462 	 */
4463 	if (mddev->reshape_backwards)
4464 		conf->reshape_progress -= sectors_done;
4465 	else
4466 		conf->reshape_progress += sectors_done;
4467 
4468 	return sectors_done;
4469 }
4470 
4471 static void end_reshape_request(struct r10bio *r10_bio);
4472 static int handle_reshape_read_error(struct mddev *mddev,
4473 				     struct r10bio *r10_bio);
4474 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4475 {
4476 	/* Reshape read completed.  Hopefully we have a block
4477 	 * to write out.
4478 	 * If we got a read error then we do sync 1-page reads from
4479 	 * elsewhere until we find the data - or give up.
4480 	 */
4481 	struct r10conf *conf = mddev->private;
4482 	int s;
4483 
4484 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4485 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4486 			/* Reshape has been aborted */
4487 			md_done_sync(mddev, r10_bio->sectors, 0);
4488 			return;
4489 		}
4490 
4491 	/* We definitely have the data in the pages, schedule the
4492 	 * writes.
4493 	 */
4494 	atomic_set(&r10_bio->remaining, 1);
4495 	for (s = 0; s < conf->copies*2; s++) {
4496 		struct bio *b;
4497 		int d = r10_bio->devs[s/2].devnum;
4498 		struct md_rdev *rdev;
4499 		if (s&1) {
4500 			rdev = conf->mirrors[d].replacement;
4501 			b = r10_bio->devs[s/2].repl_bio;
4502 		} else {
4503 			rdev = conf->mirrors[d].rdev;
4504 			b = r10_bio->devs[s/2].bio;
4505 		}
4506 		if (!rdev || test_bit(Faulty, &rdev->flags))
4507 			continue;
4508 		atomic_inc(&rdev->nr_pending);
4509 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4510 		atomic_inc(&r10_bio->remaining);
4511 		b->bi_next = NULL;
4512 		generic_make_request(b);
4513 	}
4514 	end_reshape_request(r10_bio);
4515 }
4516 
4517 static void end_reshape(struct r10conf *conf)
4518 {
4519 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4520 		return;
4521 
4522 	spin_lock_irq(&conf->device_lock);
4523 	conf->prev = conf->geo;
4524 	md_finish_reshape(conf->mddev);
4525 	smp_wmb();
4526 	conf->reshape_progress = MaxSector;
4527 	spin_unlock_irq(&conf->device_lock);
4528 
4529 	/* read-ahead size must cover two whole stripes, which is
4530 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4531 	 */
4532 	if (conf->mddev->queue) {
4533 		int stripe = conf->geo.raid_disks *
4534 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4535 		stripe /= conf->geo.near_copies;
4536 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4537 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4538 	}
4539 	conf->fullsync = 0;
4540 }
4541 
4542 static int handle_reshape_read_error(struct mddev *mddev,
4543 				     struct r10bio *r10_bio)
4544 {
4545 	/* Use sync reads to get the blocks from somewhere else */
4546 	int sectors = r10_bio->sectors;
4547 	struct r10conf *conf = mddev->private;
4548 	struct {
4549 		struct r10bio r10_bio;
4550 		struct r10dev devs[conf->copies];
4551 	} on_stack;
4552 	struct r10bio *r10b = &on_stack.r10_bio;
4553 	int slot = 0;
4554 	int idx = 0;
4555 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4556 
4557 	r10b->sector = r10_bio->sector;
4558 	__raid10_find_phys(&conf->prev, r10b);
4559 
4560 	while (sectors) {
4561 		int s = sectors;
4562 		int success = 0;
4563 		int first_slot = slot;
4564 
4565 		if (s > (PAGE_SIZE >> 9))
4566 			s = PAGE_SIZE >> 9;
4567 
4568 		while (!success) {
4569 			int d = r10b->devs[slot].devnum;
4570 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4571 			sector_t addr;
4572 			if (rdev == NULL ||
4573 			    test_bit(Faulty, &rdev->flags) ||
4574 			    !test_bit(In_sync, &rdev->flags))
4575 				goto failed;
4576 
4577 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4578 			success = sync_page_io(rdev,
4579 					       addr,
4580 					       s << 9,
4581 					       bvec[idx].bv_page,
4582 					       READ, false);
4583 			if (success)
4584 				break;
4585 		failed:
4586 			slot++;
4587 			if (slot >= conf->copies)
4588 				slot = 0;
4589 			if (slot == first_slot)
4590 				break;
4591 		}
4592 		if (!success) {
4593 			/* couldn't read this block, must give up */
4594 			set_bit(MD_RECOVERY_INTR,
4595 				&mddev->recovery);
4596 			return -EIO;
4597 		}
4598 		sectors -= s;
4599 		idx++;
4600 	}
4601 	return 0;
4602 }
4603 
4604 static void end_reshape_write(struct bio *bio, int error)
4605 {
4606 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4607 	struct r10bio *r10_bio = bio->bi_private;
4608 	struct mddev *mddev = r10_bio->mddev;
4609 	struct r10conf *conf = mddev->private;
4610 	int d;
4611 	int slot;
4612 	int repl;
4613 	struct md_rdev *rdev = NULL;
4614 
4615 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4616 	if (repl)
4617 		rdev = conf->mirrors[d].replacement;
4618 	if (!rdev) {
4619 		smp_mb();
4620 		rdev = conf->mirrors[d].rdev;
4621 	}
4622 
4623 	if (!uptodate) {
4624 		/* FIXME should record badblock */
4625 		md_error(mddev, rdev);
4626 	}
4627 
4628 	rdev_dec_pending(rdev, mddev);
4629 	end_reshape_request(r10_bio);
4630 }
4631 
4632 static void end_reshape_request(struct r10bio *r10_bio)
4633 {
4634 	if (!atomic_dec_and_test(&r10_bio->remaining))
4635 		return;
4636 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4637 	bio_put(r10_bio->master_bio);
4638 	put_buf(r10_bio);
4639 }
4640 
4641 static void raid10_finish_reshape(struct mddev *mddev)
4642 {
4643 	struct r10conf *conf = mddev->private;
4644 
4645 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4646 		return;
4647 
4648 	if (mddev->delta_disks > 0) {
4649 		sector_t size = raid10_size(mddev, 0, 0);
4650 		md_set_array_sectors(mddev, size);
4651 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4652 			mddev->recovery_cp = mddev->resync_max_sectors;
4653 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4654 		}
4655 		mddev->resync_max_sectors = size;
4656 		set_capacity(mddev->gendisk, mddev->array_sectors);
4657 		revalidate_disk(mddev->gendisk);
4658 	} else {
4659 		int d;
4660 		for (d = conf->geo.raid_disks ;
4661 		     d < conf->geo.raid_disks - mddev->delta_disks;
4662 		     d++) {
4663 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4664 			if (rdev)
4665 				clear_bit(In_sync, &rdev->flags);
4666 			rdev = conf->mirrors[d].replacement;
4667 			if (rdev)
4668 				clear_bit(In_sync, &rdev->flags);
4669 		}
4670 	}
4671 	mddev->layout = mddev->new_layout;
4672 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4673 	mddev->reshape_position = MaxSector;
4674 	mddev->delta_disks = 0;
4675 	mddev->reshape_backwards = 0;
4676 }
4677 
4678 static struct md_personality raid10_personality =
4679 {
4680 	.name		= "raid10",
4681 	.level		= 10,
4682 	.owner		= THIS_MODULE,
4683 	.make_request	= make_request,
4684 	.run		= run,
4685 	.free		= raid10_free,
4686 	.status		= status,
4687 	.error_handler	= error,
4688 	.hot_add_disk	= raid10_add_disk,
4689 	.hot_remove_disk= raid10_remove_disk,
4690 	.spare_active	= raid10_spare_active,
4691 	.sync_request	= sync_request,
4692 	.quiesce	= raid10_quiesce,
4693 	.size		= raid10_size,
4694 	.resize		= raid10_resize,
4695 	.takeover	= raid10_takeover,
4696 	.check_reshape	= raid10_check_reshape,
4697 	.start_reshape	= raid10_start_reshape,
4698 	.finish_reshape	= raid10_finish_reshape,
4699 	.congested	= raid10_congested,
4700 	.mergeable_bvec	= raid10_mergeable_bvec,
4701 };
4702 
4703 static int __init raid_init(void)
4704 {
4705 	return register_md_personality(&raid10_personality);
4706 }
4707 
4708 static void raid_exit(void)
4709 {
4710 	unregister_md_personality(&raid10_personality);
4711 }
4712 
4713 module_init(raid_init);
4714 module_exit(raid_exit);
4715 MODULE_LICENSE("GPL");
4716 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4717 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4718 MODULE_ALIAS("md-raid10");
4719 MODULE_ALIAS("md-level-10");
4720 
4721 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4722