1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * 43 * The data to be stored is divided into chunks using chunksize. Each device 44 * is divided into far_copies sections. In each section, chunks are laid out 45 * in a style similar to raid0, but near_copies copies of each chunk is stored 46 * (each on a different drive). The starting device for each section is offset 47 * near_copies from the starting device of the previous section. Thus there 48 * are (near_copies * far_copies) of each chunk, and each is on a different 49 * drive. near_copies and far_copies must be at least one, and their product 50 * is at most raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of being very far 54 * apart on disk, there are adjacent stripes. 55 * 56 * The far and offset algorithms are handled slightly differently if 57 * 'use_far_sets' is true. In this case, the array's devices are grouped into 58 * sets that are (near_copies * far_copies) in size. The far copied stripes 59 * are still shifted by 'near_copies' devices, but this shifting stays confined 60 * to the set rather than the entire array. This is done to improve the number 61 * of device combinations that can fail without causing the array to fail. 62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 63 * on a device): 64 * A B C D A B C D E 65 * ... ... 66 * D A B C E A B C D 67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 68 * [A B] [C D] [A B] [C D E] 69 * |...| |...| |...| | ... | 70 * [B A] [D C] [B A] [E C D] 71 */ 72 73 /* 74 * Number of guaranteed r10bios in case of extreme VM load: 75 */ 76 #define NR_RAID10_BIOS 256 77 78 /* when we get a read error on a read-only array, we redirect to another 79 * device without failing the first device, or trying to over-write to 80 * correct the read error. To keep track of bad blocks on a per-bio 81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 82 */ 83 #define IO_BLOCKED ((struct bio *)1) 84 /* When we successfully write to a known bad-block, we need to remove the 85 * bad-block marking which must be done from process context. So we record 86 * the success by setting devs[n].bio to IO_MADE_GOOD 87 */ 88 #define IO_MADE_GOOD ((struct bio *)2) 89 90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 91 92 /* When there are this many requests queued to be written by 93 * the raid10 thread, we become 'congested' to provide back-pressure 94 * for writeback. 95 */ 96 static int max_queued_requests = 1024; 97 98 static void allow_barrier(struct r10conf *conf); 99 static void lower_barrier(struct r10conf *conf); 100 static int _enough(struct r10conf *conf, int previous, int ignore); 101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 102 int *skipped); 103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 104 static void end_reshape_write(struct bio *bio, int error); 105 static void end_reshape(struct r10conf *conf); 106 107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 108 { 109 struct r10conf *conf = data; 110 int size = offsetof(struct r10bio, devs[conf->copies]); 111 112 /* allocate a r10bio with room for raid_disks entries in the 113 * bios array */ 114 return kzalloc(size, gfp_flags); 115 } 116 117 static void r10bio_pool_free(void *r10_bio, void *data) 118 { 119 kfree(r10_bio); 120 } 121 122 /* Maximum size of each resync request */ 123 #define RESYNC_BLOCK_SIZE (64*1024) 124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 125 /* amount of memory to reserve for resync requests */ 126 #define RESYNC_WINDOW (1024*1024) 127 /* maximum number of concurrent requests, memory permitting */ 128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 129 130 /* 131 * When performing a resync, we need to read and compare, so 132 * we need as many pages are there are copies. 133 * When performing a recovery, we need 2 bios, one for read, 134 * one for write (we recover only one drive per r10buf) 135 * 136 */ 137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 138 { 139 struct r10conf *conf = data; 140 struct page *page; 141 struct r10bio *r10_bio; 142 struct bio *bio; 143 int i, j; 144 int nalloc; 145 146 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 147 if (!r10_bio) 148 return NULL; 149 150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 152 nalloc = conf->copies; /* resync */ 153 else 154 nalloc = 2; /* recovery */ 155 156 /* 157 * Allocate bios. 158 */ 159 for (j = nalloc ; j-- ; ) { 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 161 if (!bio) 162 goto out_free_bio; 163 r10_bio->devs[j].bio = bio; 164 if (!conf->have_replacement) 165 continue; 166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 167 if (!bio) 168 goto out_free_bio; 169 r10_bio->devs[j].repl_bio = bio; 170 } 171 /* 172 * Allocate RESYNC_PAGES data pages and attach them 173 * where needed. 174 */ 175 for (j = 0 ; j < nalloc; j++) { 176 struct bio *rbio = r10_bio->devs[j].repl_bio; 177 bio = r10_bio->devs[j].bio; 178 for (i = 0; i < RESYNC_PAGES; i++) { 179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 180 &conf->mddev->recovery)) { 181 /* we can share bv_page's during recovery 182 * and reshape */ 183 struct bio *rbio = r10_bio->devs[0].bio; 184 page = rbio->bi_io_vec[i].bv_page; 185 get_page(page); 186 } else 187 page = alloc_page(gfp_flags); 188 if (unlikely(!page)) 189 goto out_free_pages; 190 191 bio->bi_io_vec[i].bv_page = page; 192 if (rbio) 193 rbio->bi_io_vec[i].bv_page = page; 194 } 195 } 196 197 return r10_bio; 198 199 out_free_pages: 200 for ( ; i > 0 ; i--) 201 safe_put_page(bio->bi_io_vec[i-1].bv_page); 202 while (j--) 203 for (i = 0; i < RESYNC_PAGES ; i++) 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 205 j = 0; 206 out_free_bio: 207 for ( ; j < nalloc; j++) { 208 if (r10_bio->devs[j].bio) 209 bio_put(r10_bio->devs[j].bio); 210 if (r10_bio->devs[j].repl_bio) 211 bio_put(r10_bio->devs[j].repl_bio); 212 } 213 r10bio_pool_free(r10_bio, conf); 214 return NULL; 215 } 216 217 static void r10buf_pool_free(void *__r10_bio, void *data) 218 { 219 int i; 220 struct r10conf *conf = data; 221 struct r10bio *r10bio = __r10_bio; 222 int j; 223 224 for (j=0; j < conf->copies; j++) { 225 struct bio *bio = r10bio->devs[j].bio; 226 if (bio) { 227 for (i = 0; i < RESYNC_PAGES; i++) { 228 safe_put_page(bio->bi_io_vec[i].bv_page); 229 bio->bi_io_vec[i].bv_page = NULL; 230 } 231 bio_put(bio); 232 } 233 bio = r10bio->devs[j].repl_bio; 234 if (bio) 235 bio_put(bio); 236 } 237 r10bio_pool_free(r10bio, conf); 238 } 239 240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->copies; i++) { 245 struct bio **bio = & r10_bio->devs[i].bio; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 bio = &r10_bio->devs[i].repl_bio; 250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 251 bio_put(*bio); 252 *bio = NULL; 253 } 254 } 255 256 static void free_r10bio(struct r10bio *r10_bio) 257 { 258 struct r10conf *conf = r10_bio->mddev->private; 259 260 put_all_bios(conf, r10_bio); 261 mempool_free(r10_bio, conf->r10bio_pool); 262 } 263 264 static void put_buf(struct r10bio *r10_bio) 265 { 266 struct r10conf *conf = r10_bio->mddev->private; 267 268 mempool_free(r10_bio, conf->r10buf_pool); 269 270 lower_barrier(conf); 271 } 272 273 static void reschedule_retry(struct r10bio *r10_bio) 274 { 275 unsigned long flags; 276 struct mddev *mddev = r10_bio->mddev; 277 struct r10conf *conf = mddev->private; 278 279 spin_lock_irqsave(&conf->device_lock, flags); 280 list_add(&r10_bio->retry_list, &conf->retry_list); 281 conf->nr_queued ++; 282 spin_unlock_irqrestore(&conf->device_lock, flags); 283 284 /* wake up frozen array... */ 285 wake_up(&conf->wait_barrier); 286 287 md_wakeup_thread(mddev->thread); 288 } 289 290 /* 291 * raid_end_bio_io() is called when we have finished servicing a mirrored 292 * operation and are ready to return a success/failure code to the buffer 293 * cache layer. 294 */ 295 static void raid_end_bio_io(struct r10bio *r10_bio) 296 { 297 struct bio *bio = r10_bio->master_bio; 298 int done; 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 if (bio->bi_phys_segments) { 302 unsigned long flags; 303 spin_lock_irqsave(&conf->device_lock, flags); 304 bio->bi_phys_segments--; 305 done = (bio->bi_phys_segments == 0); 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 } else 308 done = 1; 309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 310 clear_bit(BIO_UPTODATE, &bio->bi_flags); 311 if (done) { 312 bio_endio(bio, 0); 313 /* 314 * Wake up any possible resync thread that waits for the device 315 * to go idle. 316 */ 317 allow_barrier(conf); 318 } 319 free_r10bio(r10_bio); 320 } 321 322 /* 323 * Update disk head position estimator based on IRQ completion info. 324 */ 325 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 326 { 327 struct r10conf *conf = r10_bio->mddev->private; 328 329 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 330 r10_bio->devs[slot].addr + (r10_bio->sectors); 331 } 332 333 /* 334 * Find the disk number which triggered given bio 335 */ 336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 337 struct bio *bio, int *slotp, int *replp) 338 { 339 int slot; 340 int repl = 0; 341 342 for (slot = 0; slot < conf->copies; slot++) { 343 if (r10_bio->devs[slot].bio == bio) 344 break; 345 if (r10_bio->devs[slot].repl_bio == bio) { 346 repl = 1; 347 break; 348 } 349 } 350 351 BUG_ON(slot == conf->copies); 352 update_head_pos(slot, r10_bio); 353 354 if (slotp) 355 *slotp = slot; 356 if (replp) 357 *replp = repl; 358 return r10_bio->devs[slot].devnum; 359 } 360 361 static void raid10_end_read_request(struct bio *bio, int error) 362 { 363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 364 struct r10bio *r10_bio = bio->bi_private; 365 int slot, dev; 366 struct md_rdev *rdev; 367 struct r10conf *conf = r10_bio->mddev->private; 368 369 slot = r10_bio->read_slot; 370 dev = r10_bio->devs[slot].devnum; 371 rdev = r10_bio->devs[slot].rdev; 372 /* 373 * this branch is our 'one mirror IO has finished' event handler: 374 */ 375 update_head_pos(slot, r10_bio); 376 377 if (uptodate) { 378 /* 379 * Set R10BIO_Uptodate in our master bio, so that 380 * we will return a good error code to the higher 381 * levels even if IO on some other mirrored buffer fails. 382 * 383 * The 'master' represents the composite IO operation to 384 * user-side. So if something waits for IO, then it will 385 * wait for the 'master' bio. 386 */ 387 set_bit(R10BIO_Uptodate, &r10_bio->state); 388 } else { 389 /* If all other devices that store this block have 390 * failed, we want to return the error upwards rather 391 * than fail the last device. Here we redefine 392 * "uptodate" to mean "Don't want to retry" 393 */ 394 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 395 rdev->raid_disk)) 396 uptodate = 1; 397 } 398 if (uptodate) { 399 raid_end_bio_io(r10_bio); 400 rdev_dec_pending(rdev, conf->mddev); 401 } else { 402 /* 403 * oops, read error - keep the refcount on the rdev 404 */ 405 char b[BDEVNAME_SIZE]; 406 printk_ratelimited(KERN_ERR 407 "md/raid10:%s: %s: rescheduling sector %llu\n", 408 mdname(conf->mddev), 409 bdevname(rdev->bdev, b), 410 (unsigned long long)r10_bio->sector); 411 set_bit(R10BIO_ReadError, &r10_bio->state); 412 reschedule_retry(r10_bio); 413 } 414 } 415 416 static void close_write(struct r10bio *r10_bio) 417 { 418 /* clear the bitmap if all writes complete successfully */ 419 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 420 r10_bio->sectors, 421 !test_bit(R10BIO_Degraded, &r10_bio->state), 422 0); 423 md_write_end(r10_bio->mddev); 424 } 425 426 static void one_write_done(struct r10bio *r10_bio) 427 { 428 if (atomic_dec_and_test(&r10_bio->remaining)) { 429 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 430 reschedule_retry(r10_bio); 431 else { 432 close_write(r10_bio); 433 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 434 reschedule_retry(r10_bio); 435 else 436 raid_end_bio_io(r10_bio); 437 } 438 } 439 } 440 441 static void raid10_end_write_request(struct bio *bio, int error) 442 { 443 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 444 struct r10bio *r10_bio = bio->bi_private; 445 int dev; 446 int dec_rdev = 1; 447 struct r10conf *conf = r10_bio->mddev->private; 448 int slot, repl; 449 struct md_rdev *rdev = NULL; 450 451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 452 453 if (repl) 454 rdev = conf->mirrors[dev].replacement; 455 if (!rdev) { 456 smp_rmb(); 457 repl = 0; 458 rdev = conf->mirrors[dev].rdev; 459 } 460 /* 461 * this branch is our 'one mirror IO has finished' event handler: 462 */ 463 if (!uptodate) { 464 if (repl) 465 /* Never record new bad blocks to replacement, 466 * just fail it. 467 */ 468 md_error(rdev->mddev, rdev); 469 else { 470 set_bit(WriteErrorSeen, &rdev->flags); 471 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 472 set_bit(MD_RECOVERY_NEEDED, 473 &rdev->mddev->recovery); 474 set_bit(R10BIO_WriteError, &r10_bio->state); 475 dec_rdev = 0; 476 } 477 } else { 478 /* 479 * Set R10BIO_Uptodate in our master bio, so that 480 * we will return a good error code for to the higher 481 * levels even if IO on some other mirrored buffer fails. 482 * 483 * The 'master' represents the composite IO operation to 484 * user-side. So if something waits for IO, then it will 485 * wait for the 'master' bio. 486 */ 487 sector_t first_bad; 488 int bad_sectors; 489 490 /* 491 * Do not set R10BIO_Uptodate if the current device is 492 * rebuilding or Faulty. This is because we cannot use 493 * such device for properly reading the data back (we could 494 * potentially use it, if the current write would have felt 495 * before rdev->recovery_offset, but for simplicity we don't 496 * check this here. 497 */ 498 if (test_bit(In_sync, &rdev->flags) && 499 !test_bit(Faulty, &rdev->flags)) 500 set_bit(R10BIO_Uptodate, &r10_bio->state); 501 502 /* Maybe we can clear some bad blocks. */ 503 if (is_badblock(rdev, 504 r10_bio->devs[slot].addr, 505 r10_bio->sectors, 506 &first_bad, &bad_sectors)) { 507 bio_put(bio); 508 if (repl) 509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 510 else 511 r10_bio->devs[slot].bio = IO_MADE_GOOD; 512 dec_rdev = 0; 513 set_bit(R10BIO_MadeGood, &r10_bio->state); 514 } 515 } 516 517 /* 518 * 519 * Let's see if all mirrored write operations have finished 520 * already. 521 */ 522 one_write_done(r10_bio); 523 if (dec_rdev) 524 rdev_dec_pending(rdev, conf->mddev); 525 } 526 527 /* 528 * RAID10 layout manager 529 * As well as the chunksize and raid_disks count, there are two 530 * parameters: near_copies and far_copies. 531 * near_copies * far_copies must be <= raid_disks. 532 * Normally one of these will be 1. 533 * If both are 1, we get raid0. 534 * If near_copies == raid_disks, we get raid1. 535 * 536 * Chunks are laid out in raid0 style with near_copies copies of the 537 * first chunk, followed by near_copies copies of the next chunk and 538 * so on. 539 * If far_copies > 1, then after 1/far_copies of the array has been assigned 540 * as described above, we start again with a device offset of near_copies. 541 * So we effectively have another copy of the whole array further down all 542 * the drives, but with blocks on different drives. 543 * With this layout, and block is never stored twice on the one device. 544 * 545 * raid10_find_phys finds the sector offset of a given virtual sector 546 * on each device that it is on. 547 * 548 * raid10_find_virt does the reverse mapping, from a device and a 549 * sector offset to a virtual address 550 */ 551 552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 553 { 554 int n,f; 555 sector_t sector; 556 sector_t chunk; 557 sector_t stripe; 558 int dev; 559 int slot = 0; 560 int last_far_set_start, last_far_set_size; 561 562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 563 last_far_set_start *= geo->far_set_size; 564 565 last_far_set_size = geo->far_set_size; 566 last_far_set_size += (geo->raid_disks % geo->far_set_size); 567 568 /* now calculate first sector/dev */ 569 chunk = r10bio->sector >> geo->chunk_shift; 570 sector = r10bio->sector & geo->chunk_mask; 571 572 chunk *= geo->near_copies; 573 stripe = chunk; 574 dev = sector_div(stripe, geo->raid_disks); 575 if (geo->far_offset) 576 stripe *= geo->far_copies; 577 578 sector += stripe << geo->chunk_shift; 579 580 /* and calculate all the others */ 581 for (n = 0; n < geo->near_copies; n++) { 582 int d = dev; 583 int set; 584 sector_t s = sector; 585 r10bio->devs[slot].devnum = d; 586 r10bio->devs[slot].addr = s; 587 slot++; 588 589 for (f = 1; f < geo->far_copies; f++) { 590 set = d / geo->far_set_size; 591 d += geo->near_copies; 592 593 if ((geo->raid_disks % geo->far_set_size) && 594 (d > last_far_set_start)) { 595 d -= last_far_set_start; 596 d %= last_far_set_size; 597 d += last_far_set_start; 598 } else { 599 d %= geo->far_set_size; 600 d += geo->far_set_size * set; 601 } 602 s += geo->stride; 603 r10bio->devs[slot].devnum = d; 604 r10bio->devs[slot].addr = s; 605 slot++; 606 } 607 dev++; 608 if (dev >= geo->raid_disks) { 609 dev = 0; 610 sector += (geo->chunk_mask + 1); 611 } 612 } 613 } 614 615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 616 { 617 struct geom *geo = &conf->geo; 618 619 if (conf->reshape_progress != MaxSector && 620 ((r10bio->sector >= conf->reshape_progress) != 621 conf->mddev->reshape_backwards)) { 622 set_bit(R10BIO_Previous, &r10bio->state); 623 geo = &conf->prev; 624 } else 625 clear_bit(R10BIO_Previous, &r10bio->state); 626 627 __raid10_find_phys(geo, r10bio); 628 } 629 630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 631 { 632 sector_t offset, chunk, vchunk; 633 /* Never use conf->prev as this is only called during resync 634 * or recovery, so reshape isn't happening 635 */ 636 struct geom *geo = &conf->geo; 637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 638 int far_set_size = geo->far_set_size; 639 int last_far_set_start; 640 641 if (geo->raid_disks % geo->far_set_size) { 642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 643 last_far_set_start *= geo->far_set_size; 644 645 if (dev >= last_far_set_start) { 646 far_set_size = geo->far_set_size; 647 far_set_size += (geo->raid_disks % geo->far_set_size); 648 far_set_start = last_far_set_start; 649 } 650 } 651 652 offset = sector & geo->chunk_mask; 653 if (geo->far_offset) { 654 int fc; 655 chunk = sector >> geo->chunk_shift; 656 fc = sector_div(chunk, geo->far_copies); 657 dev -= fc * geo->near_copies; 658 if (dev < far_set_start) 659 dev += far_set_size; 660 } else { 661 while (sector >= geo->stride) { 662 sector -= geo->stride; 663 if (dev < (geo->near_copies + far_set_start)) 664 dev += far_set_size - geo->near_copies; 665 else 666 dev -= geo->near_copies; 667 } 668 chunk = sector >> geo->chunk_shift; 669 } 670 vchunk = chunk * geo->raid_disks + dev; 671 sector_div(vchunk, geo->near_copies); 672 return (vchunk << geo->chunk_shift) + offset; 673 } 674 675 /** 676 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 677 * @mddev: the md device 678 * @bvm: properties of new bio 679 * @biovec: the request that could be merged to it. 680 * 681 * Return amount of bytes we can accept at this offset 682 * This requires checking for end-of-chunk if near_copies != raid_disks, 683 * and for subordinate merge_bvec_fns if merge_check_needed. 684 */ 685 static int raid10_mergeable_bvec(struct mddev *mddev, 686 struct bvec_merge_data *bvm, 687 struct bio_vec *biovec) 688 { 689 struct r10conf *conf = mddev->private; 690 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 691 int max; 692 unsigned int chunk_sectors; 693 unsigned int bio_sectors = bvm->bi_size >> 9; 694 struct geom *geo = &conf->geo; 695 696 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 697 if (conf->reshape_progress != MaxSector && 698 ((sector >= conf->reshape_progress) != 699 conf->mddev->reshape_backwards)) 700 geo = &conf->prev; 701 702 if (geo->near_copies < geo->raid_disks) { 703 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 704 + bio_sectors)) << 9; 705 if (max < 0) 706 /* bio_add cannot handle a negative return */ 707 max = 0; 708 if (max <= biovec->bv_len && bio_sectors == 0) 709 return biovec->bv_len; 710 } else 711 max = biovec->bv_len; 712 713 if (mddev->merge_check_needed) { 714 struct { 715 struct r10bio r10_bio; 716 struct r10dev devs[conf->copies]; 717 } on_stack; 718 struct r10bio *r10_bio = &on_stack.r10_bio; 719 int s; 720 if (conf->reshape_progress != MaxSector) { 721 /* Cannot give any guidance during reshape */ 722 if (max <= biovec->bv_len && bio_sectors == 0) 723 return biovec->bv_len; 724 return 0; 725 } 726 r10_bio->sector = sector; 727 raid10_find_phys(conf, r10_bio); 728 rcu_read_lock(); 729 for (s = 0; s < conf->copies; s++) { 730 int disk = r10_bio->devs[s].devnum; 731 struct md_rdev *rdev = rcu_dereference( 732 conf->mirrors[disk].rdev); 733 if (rdev && !test_bit(Faulty, &rdev->flags)) { 734 struct request_queue *q = 735 bdev_get_queue(rdev->bdev); 736 if (q->merge_bvec_fn) { 737 bvm->bi_sector = r10_bio->devs[s].addr 738 + rdev->data_offset; 739 bvm->bi_bdev = rdev->bdev; 740 max = min(max, q->merge_bvec_fn( 741 q, bvm, biovec)); 742 } 743 } 744 rdev = rcu_dereference(conf->mirrors[disk].replacement); 745 if (rdev && !test_bit(Faulty, &rdev->flags)) { 746 struct request_queue *q = 747 bdev_get_queue(rdev->bdev); 748 if (q->merge_bvec_fn) { 749 bvm->bi_sector = r10_bio->devs[s].addr 750 + rdev->data_offset; 751 bvm->bi_bdev = rdev->bdev; 752 max = min(max, q->merge_bvec_fn( 753 q, bvm, biovec)); 754 } 755 } 756 } 757 rcu_read_unlock(); 758 } 759 return max; 760 } 761 762 /* 763 * This routine returns the disk from which the requested read should 764 * be done. There is a per-array 'next expected sequential IO' sector 765 * number - if this matches on the next IO then we use the last disk. 766 * There is also a per-disk 'last know head position' sector that is 767 * maintained from IRQ contexts, both the normal and the resync IO 768 * completion handlers update this position correctly. If there is no 769 * perfect sequential match then we pick the disk whose head is closest. 770 * 771 * If there are 2 mirrors in the same 2 devices, performance degrades 772 * because position is mirror, not device based. 773 * 774 * The rdev for the device selected will have nr_pending incremented. 775 */ 776 777 /* 778 * FIXME: possibly should rethink readbalancing and do it differently 779 * depending on near_copies / far_copies geometry. 780 */ 781 static struct md_rdev *read_balance(struct r10conf *conf, 782 struct r10bio *r10_bio, 783 int *max_sectors) 784 { 785 const sector_t this_sector = r10_bio->sector; 786 int disk, slot; 787 int sectors = r10_bio->sectors; 788 int best_good_sectors; 789 sector_t new_distance, best_dist; 790 struct md_rdev *best_rdev, *rdev = NULL; 791 int do_balance; 792 int best_slot; 793 struct geom *geo = &conf->geo; 794 795 raid10_find_phys(conf, r10_bio); 796 rcu_read_lock(); 797 retry: 798 sectors = r10_bio->sectors; 799 best_slot = -1; 800 best_rdev = NULL; 801 best_dist = MaxSector; 802 best_good_sectors = 0; 803 do_balance = 1; 804 /* 805 * Check if we can balance. We can balance on the whole 806 * device if no resync is going on (recovery is ok), or below 807 * the resync window. We take the first readable disk when 808 * above the resync window. 809 */ 810 if (conf->mddev->recovery_cp < MaxSector 811 && (this_sector + sectors >= conf->next_resync)) 812 do_balance = 0; 813 814 for (slot = 0; slot < conf->copies ; slot++) { 815 sector_t first_bad; 816 int bad_sectors; 817 sector_t dev_sector; 818 819 if (r10_bio->devs[slot].bio == IO_BLOCKED) 820 continue; 821 disk = r10_bio->devs[slot].devnum; 822 rdev = rcu_dereference(conf->mirrors[disk].replacement); 823 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 824 test_bit(Unmerged, &rdev->flags) || 825 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 826 rdev = rcu_dereference(conf->mirrors[disk].rdev); 827 if (rdev == NULL || 828 test_bit(Faulty, &rdev->flags) || 829 test_bit(Unmerged, &rdev->flags)) 830 continue; 831 if (!test_bit(In_sync, &rdev->flags) && 832 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 833 continue; 834 835 dev_sector = r10_bio->devs[slot].addr; 836 if (is_badblock(rdev, dev_sector, sectors, 837 &first_bad, &bad_sectors)) { 838 if (best_dist < MaxSector) 839 /* Already have a better slot */ 840 continue; 841 if (first_bad <= dev_sector) { 842 /* Cannot read here. If this is the 843 * 'primary' device, then we must not read 844 * beyond 'bad_sectors' from another device. 845 */ 846 bad_sectors -= (dev_sector - first_bad); 847 if (!do_balance && sectors > bad_sectors) 848 sectors = bad_sectors; 849 if (best_good_sectors > sectors) 850 best_good_sectors = sectors; 851 } else { 852 sector_t good_sectors = 853 first_bad - dev_sector; 854 if (good_sectors > best_good_sectors) { 855 best_good_sectors = good_sectors; 856 best_slot = slot; 857 best_rdev = rdev; 858 } 859 if (!do_balance) 860 /* Must read from here */ 861 break; 862 } 863 continue; 864 } else 865 best_good_sectors = sectors; 866 867 if (!do_balance) 868 break; 869 870 /* This optimisation is debatable, and completely destroys 871 * sequential read speed for 'far copies' arrays. So only 872 * keep it for 'near' arrays, and review those later. 873 */ 874 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 875 break; 876 877 /* for far > 1 always use the lowest address */ 878 if (geo->far_copies > 1) 879 new_distance = r10_bio->devs[slot].addr; 880 else 881 new_distance = abs(r10_bio->devs[slot].addr - 882 conf->mirrors[disk].head_position); 883 if (new_distance < best_dist) { 884 best_dist = new_distance; 885 best_slot = slot; 886 best_rdev = rdev; 887 } 888 } 889 if (slot >= conf->copies) { 890 slot = best_slot; 891 rdev = best_rdev; 892 } 893 894 if (slot >= 0) { 895 atomic_inc(&rdev->nr_pending); 896 if (test_bit(Faulty, &rdev->flags)) { 897 /* Cannot risk returning a device that failed 898 * before we inc'ed nr_pending 899 */ 900 rdev_dec_pending(rdev, conf->mddev); 901 goto retry; 902 } 903 r10_bio->read_slot = slot; 904 } else 905 rdev = NULL; 906 rcu_read_unlock(); 907 *max_sectors = best_good_sectors; 908 909 return rdev; 910 } 911 912 static int raid10_congested(struct mddev *mddev, int bits) 913 { 914 struct r10conf *conf = mddev->private; 915 int i, ret = 0; 916 917 if ((bits & (1 << WB_async_congested)) && 918 conf->pending_count >= max_queued_requests) 919 return 1; 920 921 rcu_read_lock(); 922 for (i = 0; 923 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 924 && ret == 0; 925 i++) { 926 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 927 if (rdev && !test_bit(Faulty, &rdev->flags)) { 928 struct request_queue *q = bdev_get_queue(rdev->bdev); 929 930 ret |= bdi_congested(&q->backing_dev_info, bits); 931 } 932 } 933 rcu_read_unlock(); 934 return ret; 935 } 936 937 static void flush_pending_writes(struct r10conf *conf) 938 { 939 /* Any writes that have been queued but are awaiting 940 * bitmap updates get flushed here. 941 */ 942 spin_lock_irq(&conf->device_lock); 943 944 if (conf->pending_bio_list.head) { 945 struct bio *bio; 946 bio = bio_list_get(&conf->pending_bio_list); 947 conf->pending_count = 0; 948 spin_unlock_irq(&conf->device_lock); 949 /* flush any pending bitmap writes to disk 950 * before proceeding w/ I/O */ 951 bitmap_unplug(conf->mddev->bitmap); 952 wake_up(&conf->wait_barrier); 953 954 while (bio) { /* submit pending writes */ 955 struct bio *next = bio->bi_next; 956 bio->bi_next = NULL; 957 if (unlikely((bio->bi_rw & REQ_DISCARD) && 958 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 959 /* Just ignore it */ 960 bio_endio(bio, 0); 961 else 962 generic_make_request(bio); 963 bio = next; 964 } 965 } else 966 spin_unlock_irq(&conf->device_lock); 967 } 968 969 /* Barriers.... 970 * Sometimes we need to suspend IO while we do something else, 971 * either some resync/recovery, or reconfigure the array. 972 * To do this we raise a 'barrier'. 973 * The 'barrier' is a counter that can be raised multiple times 974 * to count how many activities are happening which preclude 975 * normal IO. 976 * We can only raise the barrier if there is no pending IO. 977 * i.e. if nr_pending == 0. 978 * We choose only to raise the barrier if no-one is waiting for the 979 * barrier to go down. This means that as soon as an IO request 980 * is ready, no other operations which require a barrier will start 981 * until the IO request has had a chance. 982 * 983 * So: regular IO calls 'wait_barrier'. When that returns there 984 * is no backgroup IO happening, It must arrange to call 985 * allow_barrier when it has finished its IO. 986 * backgroup IO calls must call raise_barrier. Once that returns 987 * there is no normal IO happeing. It must arrange to call 988 * lower_barrier when the particular background IO completes. 989 */ 990 991 static void raise_barrier(struct r10conf *conf, int force) 992 { 993 BUG_ON(force && !conf->barrier); 994 spin_lock_irq(&conf->resync_lock); 995 996 /* Wait until no block IO is waiting (unless 'force') */ 997 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 998 conf->resync_lock); 999 1000 /* block any new IO from starting */ 1001 conf->barrier++; 1002 1003 /* Now wait for all pending IO to complete */ 1004 wait_event_lock_irq(conf->wait_barrier, 1005 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 1006 conf->resync_lock); 1007 1008 spin_unlock_irq(&conf->resync_lock); 1009 } 1010 1011 static void lower_barrier(struct r10conf *conf) 1012 { 1013 unsigned long flags; 1014 spin_lock_irqsave(&conf->resync_lock, flags); 1015 conf->barrier--; 1016 spin_unlock_irqrestore(&conf->resync_lock, flags); 1017 wake_up(&conf->wait_barrier); 1018 } 1019 1020 static void wait_barrier(struct r10conf *conf) 1021 { 1022 spin_lock_irq(&conf->resync_lock); 1023 if (conf->barrier) { 1024 conf->nr_waiting++; 1025 /* Wait for the barrier to drop. 1026 * However if there are already pending 1027 * requests (preventing the barrier from 1028 * rising completely), and the 1029 * pre-process bio queue isn't empty, 1030 * then don't wait, as we need to empty 1031 * that queue to get the nr_pending 1032 * count down. 1033 */ 1034 wait_event_lock_irq(conf->wait_barrier, 1035 !conf->barrier || 1036 (conf->nr_pending && 1037 current->bio_list && 1038 !bio_list_empty(current->bio_list)), 1039 conf->resync_lock); 1040 conf->nr_waiting--; 1041 } 1042 conf->nr_pending++; 1043 spin_unlock_irq(&conf->resync_lock); 1044 } 1045 1046 static void allow_barrier(struct r10conf *conf) 1047 { 1048 unsigned long flags; 1049 spin_lock_irqsave(&conf->resync_lock, flags); 1050 conf->nr_pending--; 1051 spin_unlock_irqrestore(&conf->resync_lock, flags); 1052 wake_up(&conf->wait_barrier); 1053 } 1054 1055 static void freeze_array(struct r10conf *conf, int extra) 1056 { 1057 /* stop syncio and normal IO and wait for everything to 1058 * go quiet. 1059 * We increment barrier and nr_waiting, and then 1060 * wait until nr_pending match nr_queued+extra 1061 * This is called in the context of one normal IO request 1062 * that has failed. Thus any sync request that might be pending 1063 * will be blocked by nr_pending, and we need to wait for 1064 * pending IO requests to complete or be queued for re-try. 1065 * Thus the number queued (nr_queued) plus this request (extra) 1066 * must match the number of pending IOs (nr_pending) before 1067 * we continue. 1068 */ 1069 spin_lock_irq(&conf->resync_lock); 1070 conf->barrier++; 1071 conf->nr_waiting++; 1072 wait_event_lock_irq_cmd(conf->wait_barrier, 1073 conf->nr_pending == conf->nr_queued+extra, 1074 conf->resync_lock, 1075 flush_pending_writes(conf)); 1076 1077 spin_unlock_irq(&conf->resync_lock); 1078 } 1079 1080 static void unfreeze_array(struct r10conf *conf) 1081 { 1082 /* reverse the effect of the freeze */ 1083 spin_lock_irq(&conf->resync_lock); 1084 conf->barrier--; 1085 conf->nr_waiting--; 1086 wake_up(&conf->wait_barrier); 1087 spin_unlock_irq(&conf->resync_lock); 1088 } 1089 1090 static sector_t choose_data_offset(struct r10bio *r10_bio, 1091 struct md_rdev *rdev) 1092 { 1093 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1094 test_bit(R10BIO_Previous, &r10_bio->state)) 1095 return rdev->data_offset; 1096 else 1097 return rdev->new_data_offset; 1098 } 1099 1100 struct raid10_plug_cb { 1101 struct blk_plug_cb cb; 1102 struct bio_list pending; 1103 int pending_cnt; 1104 }; 1105 1106 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1107 { 1108 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1109 cb); 1110 struct mddev *mddev = plug->cb.data; 1111 struct r10conf *conf = mddev->private; 1112 struct bio *bio; 1113 1114 if (from_schedule || current->bio_list) { 1115 spin_lock_irq(&conf->device_lock); 1116 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1117 conf->pending_count += plug->pending_cnt; 1118 spin_unlock_irq(&conf->device_lock); 1119 wake_up(&conf->wait_barrier); 1120 md_wakeup_thread(mddev->thread); 1121 kfree(plug); 1122 return; 1123 } 1124 1125 /* we aren't scheduling, so we can do the write-out directly. */ 1126 bio = bio_list_get(&plug->pending); 1127 bitmap_unplug(mddev->bitmap); 1128 wake_up(&conf->wait_barrier); 1129 1130 while (bio) { /* submit pending writes */ 1131 struct bio *next = bio->bi_next; 1132 bio->bi_next = NULL; 1133 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1134 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1135 /* Just ignore it */ 1136 bio_endio(bio, 0); 1137 else 1138 generic_make_request(bio); 1139 bio = next; 1140 } 1141 kfree(plug); 1142 } 1143 1144 static void __make_request(struct mddev *mddev, struct bio *bio) 1145 { 1146 struct r10conf *conf = mddev->private; 1147 struct r10bio *r10_bio; 1148 struct bio *read_bio; 1149 int i; 1150 const int rw = bio_data_dir(bio); 1151 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1152 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1153 const unsigned long do_discard = (bio->bi_rw 1154 & (REQ_DISCARD | REQ_SECURE)); 1155 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1156 unsigned long flags; 1157 struct md_rdev *blocked_rdev; 1158 struct blk_plug_cb *cb; 1159 struct raid10_plug_cb *plug = NULL; 1160 int sectors_handled; 1161 int max_sectors; 1162 int sectors; 1163 1164 /* 1165 * Register the new request and wait if the reconstruction 1166 * thread has put up a bar for new requests. 1167 * Continue immediately if no resync is active currently. 1168 */ 1169 wait_barrier(conf); 1170 1171 sectors = bio_sectors(bio); 1172 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1173 bio->bi_iter.bi_sector < conf->reshape_progress && 1174 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1175 /* IO spans the reshape position. Need to wait for 1176 * reshape to pass 1177 */ 1178 allow_barrier(conf); 1179 wait_event(conf->wait_barrier, 1180 conf->reshape_progress <= bio->bi_iter.bi_sector || 1181 conf->reshape_progress >= bio->bi_iter.bi_sector + 1182 sectors); 1183 wait_barrier(conf); 1184 } 1185 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1186 bio_data_dir(bio) == WRITE && 1187 (mddev->reshape_backwards 1188 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1189 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1190 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1191 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1192 /* Need to update reshape_position in metadata */ 1193 mddev->reshape_position = conf->reshape_progress; 1194 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1195 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1196 md_wakeup_thread(mddev->thread); 1197 wait_event(mddev->sb_wait, 1198 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1199 1200 conf->reshape_safe = mddev->reshape_position; 1201 } 1202 1203 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1204 1205 r10_bio->master_bio = bio; 1206 r10_bio->sectors = sectors; 1207 1208 r10_bio->mddev = mddev; 1209 r10_bio->sector = bio->bi_iter.bi_sector; 1210 r10_bio->state = 0; 1211 1212 /* We might need to issue multiple reads to different 1213 * devices if there are bad blocks around, so we keep 1214 * track of the number of reads in bio->bi_phys_segments. 1215 * If this is 0, there is only one r10_bio and no locking 1216 * will be needed when the request completes. If it is 1217 * non-zero, then it is the number of not-completed requests. 1218 */ 1219 bio->bi_phys_segments = 0; 1220 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1221 1222 if (rw == READ) { 1223 /* 1224 * read balancing logic: 1225 */ 1226 struct md_rdev *rdev; 1227 int slot; 1228 1229 read_again: 1230 rdev = read_balance(conf, r10_bio, &max_sectors); 1231 if (!rdev) { 1232 raid_end_bio_io(r10_bio); 1233 return; 1234 } 1235 slot = r10_bio->read_slot; 1236 1237 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1238 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector, 1239 max_sectors); 1240 1241 r10_bio->devs[slot].bio = read_bio; 1242 r10_bio->devs[slot].rdev = rdev; 1243 1244 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1245 choose_data_offset(r10_bio, rdev); 1246 read_bio->bi_bdev = rdev->bdev; 1247 read_bio->bi_end_io = raid10_end_read_request; 1248 read_bio->bi_rw = READ | do_sync; 1249 read_bio->bi_private = r10_bio; 1250 1251 if (max_sectors < r10_bio->sectors) { 1252 /* Could not read all from this device, so we will 1253 * need another r10_bio. 1254 */ 1255 sectors_handled = (r10_bio->sector + max_sectors 1256 - bio->bi_iter.bi_sector); 1257 r10_bio->sectors = max_sectors; 1258 spin_lock_irq(&conf->device_lock); 1259 if (bio->bi_phys_segments == 0) 1260 bio->bi_phys_segments = 2; 1261 else 1262 bio->bi_phys_segments++; 1263 spin_unlock_irq(&conf->device_lock); 1264 /* Cannot call generic_make_request directly 1265 * as that will be queued in __generic_make_request 1266 * and subsequent mempool_alloc might block 1267 * waiting for it. so hand bio over to raid10d. 1268 */ 1269 reschedule_retry(r10_bio); 1270 1271 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1272 1273 r10_bio->master_bio = bio; 1274 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1275 r10_bio->state = 0; 1276 r10_bio->mddev = mddev; 1277 r10_bio->sector = bio->bi_iter.bi_sector + 1278 sectors_handled; 1279 goto read_again; 1280 } else 1281 generic_make_request(read_bio); 1282 return; 1283 } 1284 1285 /* 1286 * WRITE: 1287 */ 1288 if (conf->pending_count >= max_queued_requests) { 1289 md_wakeup_thread(mddev->thread); 1290 wait_event(conf->wait_barrier, 1291 conf->pending_count < max_queued_requests); 1292 } 1293 /* first select target devices under rcu_lock and 1294 * inc refcount on their rdev. Record them by setting 1295 * bios[x] to bio 1296 * If there are known/acknowledged bad blocks on any device 1297 * on which we have seen a write error, we want to avoid 1298 * writing to those blocks. This potentially requires several 1299 * writes to write around the bad blocks. Each set of writes 1300 * gets its own r10_bio with a set of bios attached. The number 1301 * of r10_bios is recored in bio->bi_phys_segments just as with 1302 * the read case. 1303 */ 1304 1305 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1306 raid10_find_phys(conf, r10_bio); 1307 retry_write: 1308 blocked_rdev = NULL; 1309 rcu_read_lock(); 1310 max_sectors = r10_bio->sectors; 1311 1312 for (i = 0; i < conf->copies; i++) { 1313 int d = r10_bio->devs[i].devnum; 1314 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1315 struct md_rdev *rrdev = rcu_dereference( 1316 conf->mirrors[d].replacement); 1317 if (rdev == rrdev) 1318 rrdev = NULL; 1319 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1320 atomic_inc(&rdev->nr_pending); 1321 blocked_rdev = rdev; 1322 break; 1323 } 1324 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1325 atomic_inc(&rrdev->nr_pending); 1326 blocked_rdev = rrdev; 1327 break; 1328 } 1329 if (rdev && (test_bit(Faulty, &rdev->flags) 1330 || test_bit(Unmerged, &rdev->flags))) 1331 rdev = NULL; 1332 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1333 || test_bit(Unmerged, &rrdev->flags))) 1334 rrdev = NULL; 1335 1336 r10_bio->devs[i].bio = NULL; 1337 r10_bio->devs[i].repl_bio = NULL; 1338 1339 if (!rdev && !rrdev) { 1340 set_bit(R10BIO_Degraded, &r10_bio->state); 1341 continue; 1342 } 1343 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1344 sector_t first_bad; 1345 sector_t dev_sector = r10_bio->devs[i].addr; 1346 int bad_sectors; 1347 int is_bad; 1348 1349 is_bad = is_badblock(rdev, dev_sector, 1350 max_sectors, 1351 &first_bad, &bad_sectors); 1352 if (is_bad < 0) { 1353 /* Mustn't write here until the bad block 1354 * is acknowledged 1355 */ 1356 atomic_inc(&rdev->nr_pending); 1357 set_bit(BlockedBadBlocks, &rdev->flags); 1358 blocked_rdev = rdev; 1359 break; 1360 } 1361 if (is_bad && first_bad <= dev_sector) { 1362 /* Cannot write here at all */ 1363 bad_sectors -= (dev_sector - first_bad); 1364 if (bad_sectors < max_sectors) 1365 /* Mustn't write more than bad_sectors 1366 * to other devices yet 1367 */ 1368 max_sectors = bad_sectors; 1369 /* We don't set R10BIO_Degraded as that 1370 * only applies if the disk is missing, 1371 * so it might be re-added, and we want to 1372 * know to recover this chunk. 1373 * In this case the device is here, and the 1374 * fact that this chunk is not in-sync is 1375 * recorded in the bad block log. 1376 */ 1377 continue; 1378 } 1379 if (is_bad) { 1380 int good_sectors = first_bad - dev_sector; 1381 if (good_sectors < max_sectors) 1382 max_sectors = good_sectors; 1383 } 1384 } 1385 if (rdev) { 1386 r10_bio->devs[i].bio = bio; 1387 atomic_inc(&rdev->nr_pending); 1388 } 1389 if (rrdev) { 1390 r10_bio->devs[i].repl_bio = bio; 1391 atomic_inc(&rrdev->nr_pending); 1392 } 1393 } 1394 rcu_read_unlock(); 1395 1396 if (unlikely(blocked_rdev)) { 1397 /* Have to wait for this device to get unblocked, then retry */ 1398 int j; 1399 int d; 1400 1401 for (j = 0; j < i; j++) { 1402 if (r10_bio->devs[j].bio) { 1403 d = r10_bio->devs[j].devnum; 1404 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1405 } 1406 if (r10_bio->devs[j].repl_bio) { 1407 struct md_rdev *rdev; 1408 d = r10_bio->devs[j].devnum; 1409 rdev = conf->mirrors[d].replacement; 1410 if (!rdev) { 1411 /* Race with remove_disk */ 1412 smp_mb(); 1413 rdev = conf->mirrors[d].rdev; 1414 } 1415 rdev_dec_pending(rdev, mddev); 1416 } 1417 } 1418 allow_barrier(conf); 1419 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1420 wait_barrier(conf); 1421 goto retry_write; 1422 } 1423 1424 if (max_sectors < r10_bio->sectors) { 1425 /* We are splitting this into multiple parts, so 1426 * we need to prepare for allocating another r10_bio. 1427 */ 1428 r10_bio->sectors = max_sectors; 1429 spin_lock_irq(&conf->device_lock); 1430 if (bio->bi_phys_segments == 0) 1431 bio->bi_phys_segments = 2; 1432 else 1433 bio->bi_phys_segments++; 1434 spin_unlock_irq(&conf->device_lock); 1435 } 1436 sectors_handled = r10_bio->sector + max_sectors - 1437 bio->bi_iter.bi_sector; 1438 1439 atomic_set(&r10_bio->remaining, 1); 1440 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1441 1442 for (i = 0; i < conf->copies; i++) { 1443 struct bio *mbio; 1444 int d = r10_bio->devs[i].devnum; 1445 if (r10_bio->devs[i].bio) { 1446 struct md_rdev *rdev = conf->mirrors[d].rdev; 1447 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1448 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1449 max_sectors); 1450 r10_bio->devs[i].bio = mbio; 1451 1452 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 1453 choose_data_offset(r10_bio, 1454 rdev)); 1455 mbio->bi_bdev = rdev->bdev; 1456 mbio->bi_end_io = raid10_end_write_request; 1457 mbio->bi_rw = 1458 WRITE | do_sync | do_fua | do_discard | do_same; 1459 mbio->bi_private = r10_bio; 1460 1461 atomic_inc(&r10_bio->remaining); 1462 1463 cb = blk_check_plugged(raid10_unplug, mddev, 1464 sizeof(*plug)); 1465 if (cb) 1466 plug = container_of(cb, struct raid10_plug_cb, 1467 cb); 1468 else 1469 plug = NULL; 1470 spin_lock_irqsave(&conf->device_lock, flags); 1471 if (plug) { 1472 bio_list_add(&plug->pending, mbio); 1473 plug->pending_cnt++; 1474 } else { 1475 bio_list_add(&conf->pending_bio_list, mbio); 1476 conf->pending_count++; 1477 } 1478 spin_unlock_irqrestore(&conf->device_lock, flags); 1479 if (!plug) 1480 md_wakeup_thread(mddev->thread); 1481 } 1482 1483 if (r10_bio->devs[i].repl_bio) { 1484 struct md_rdev *rdev = conf->mirrors[d].replacement; 1485 if (rdev == NULL) { 1486 /* Replacement just got moved to main 'rdev' */ 1487 smp_mb(); 1488 rdev = conf->mirrors[d].rdev; 1489 } 1490 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1491 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1492 max_sectors); 1493 r10_bio->devs[i].repl_bio = mbio; 1494 1495 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr + 1496 choose_data_offset( 1497 r10_bio, rdev)); 1498 mbio->bi_bdev = rdev->bdev; 1499 mbio->bi_end_io = raid10_end_write_request; 1500 mbio->bi_rw = 1501 WRITE | do_sync | do_fua | do_discard | do_same; 1502 mbio->bi_private = r10_bio; 1503 1504 atomic_inc(&r10_bio->remaining); 1505 spin_lock_irqsave(&conf->device_lock, flags); 1506 bio_list_add(&conf->pending_bio_list, mbio); 1507 conf->pending_count++; 1508 spin_unlock_irqrestore(&conf->device_lock, flags); 1509 if (!mddev_check_plugged(mddev)) 1510 md_wakeup_thread(mddev->thread); 1511 } 1512 } 1513 1514 /* Don't remove the bias on 'remaining' (one_write_done) until 1515 * after checking if we need to go around again. 1516 */ 1517 1518 if (sectors_handled < bio_sectors(bio)) { 1519 one_write_done(r10_bio); 1520 /* We need another r10_bio. It has already been counted 1521 * in bio->bi_phys_segments. 1522 */ 1523 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1524 1525 r10_bio->master_bio = bio; 1526 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1527 1528 r10_bio->mddev = mddev; 1529 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1530 r10_bio->state = 0; 1531 goto retry_write; 1532 } 1533 one_write_done(r10_bio); 1534 } 1535 1536 static void make_request(struct mddev *mddev, struct bio *bio) 1537 { 1538 struct r10conf *conf = mddev->private; 1539 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1540 int chunk_sects = chunk_mask + 1; 1541 1542 struct bio *split; 1543 1544 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1545 md_flush_request(mddev, bio); 1546 return; 1547 } 1548 1549 md_write_start(mddev, bio); 1550 1551 do { 1552 1553 /* 1554 * If this request crosses a chunk boundary, we need to split 1555 * it. 1556 */ 1557 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1558 bio_sectors(bio) > chunk_sects 1559 && (conf->geo.near_copies < conf->geo.raid_disks 1560 || conf->prev.near_copies < 1561 conf->prev.raid_disks))) { 1562 split = bio_split(bio, chunk_sects - 1563 (bio->bi_iter.bi_sector & 1564 (chunk_sects - 1)), 1565 GFP_NOIO, fs_bio_set); 1566 bio_chain(split, bio); 1567 } else { 1568 split = bio; 1569 } 1570 1571 __make_request(mddev, split); 1572 } while (split != bio); 1573 1574 /* In case raid10d snuck in to freeze_array */ 1575 wake_up(&conf->wait_barrier); 1576 } 1577 1578 static void status(struct seq_file *seq, struct mddev *mddev) 1579 { 1580 struct r10conf *conf = mddev->private; 1581 int i; 1582 1583 if (conf->geo.near_copies < conf->geo.raid_disks) 1584 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1585 if (conf->geo.near_copies > 1) 1586 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1587 if (conf->geo.far_copies > 1) { 1588 if (conf->geo.far_offset) 1589 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1590 else 1591 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1592 } 1593 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1594 conf->geo.raid_disks - mddev->degraded); 1595 for (i = 0; i < conf->geo.raid_disks; i++) 1596 seq_printf(seq, "%s", 1597 conf->mirrors[i].rdev && 1598 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1599 seq_printf(seq, "]"); 1600 } 1601 1602 /* check if there are enough drives for 1603 * every block to appear on atleast one. 1604 * Don't consider the device numbered 'ignore' 1605 * as we might be about to remove it. 1606 */ 1607 static int _enough(struct r10conf *conf, int previous, int ignore) 1608 { 1609 int first = 0; 1610 int has_enough = 0; 1611 int disks, ncopies; 1612 if (previous) { 1613 disks = conf->prev.raid_disks; 1614 ncopies = conf->prev.near_copies; 1615 } else { 1616 disks = conf->geo.raid_disks; 1617 ncopies = conf->geo.near_copies; 1618 } 1619 1620 rcu_read_lock(); 1621 do { 1622 int n = conf->copies; 1623 int cnt = 0; 1624 int this = first; 1625 while (n--) { 1626 struct md_rdev *rdev; 1627 if (this != ignore && 1628 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1629 test_bit(In_sync, &rdev->flags)) 1630 cnt++; 1631 this = (this+1) % disks; 1632 } 1633 if (cnt == 0) 1634 goto out; 1635 first = (first + ncopies) % disks; 1636 } while (first != 0); 1637 has_enough = 1; 1638 out: 1639 rcu_read_unlock(); 1640 return has_enough; 1641 } 1642 1643 static int enough(struct r10conf *conf, int ignore) 1644 { 1645 /* when calling 'enough', both 'prev' and 'geo' must 1646 * be stable. 1647 * This is ensured if ->reconfig_mutex or ->device_lock 1648 * is held. 1649 */ 1650 return _enough(conf, 0, ignore) && 1651 _enough(conf, 1, ignore); 1652 } 1653 1654 static void error(struct mddev *mddev, struct md_rdev *rdev) 1655 { 1656 char b[BDEVNAME_SIZE]; 1657 struct r10conf *conf = mddev->private; 1658 unsigned long flags; 1659 1660 /* 1661 * If it is not operational, then we have already marked it as dead 1662 * else if it is the last working disks, ignore the error, let the 1663 * next level up know. 1664 * else mark the drive as failed 1665 */ 1666 spin_lock_irqsave(&conf->device_lock, flags); 1667 if (test_bit(In_sync, &rdev->flags) 1668 && !enough(conf, rdev->raid_disk)) { 1669 /* 1670 * Don't fail the drive, just return an IO error. 1671 */ 1672 spin_unlock_irqrestore(&conf->device_lock, flags); 1673 return; 1674 } 1675 if (test_and_clear_bit(In_sync, &rdev->flags)) 1676 mddev->degraded++; 1677 /* 1678 * If recovery is running, make sure it aborts. 1679 */ 1680 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1681 set_bit(Blocked, &rdev->flags); 1682 set_bit(Faulty, &rdev->flags); 1683 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1684 spin_unlock_irqrestore(&conf->device_lock, flags); 1685 printk(KERN_ALERT 1686 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1687 "md/raid10:%s: Operation continuing on %d devices.\n", 1688 mdname(mddev), bdevname(rdev->bdev, b), 1689 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1690 } 1691 1692 static void print_conf(struct r10conf *conf) 1693 { 1694 int i; 1695 struct raid10_info *tmp; 1696 1697 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1698 if (!conf) { 1699 printk(KERN_DEBUG "(!conf)\n"); 1700 return; 1701 } 1702 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1703 conf->geo.raid_disks); 1704 1705 for (i = 0; i < conf->geo.raid_disks; i++) { 1706 char b[BDEVNAME_SIZE]; 1707 tmp = conf->mirrors + i; 1708 if (tmp->rdev) 1709 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1710 i, !test_bit(In_sync, &tmp->rdev->flags), 1711 !test_bit(Faulty, &tmp->rdev->flags), 1712 bdevname(tmp->rdev->bdev,b)); 1713 } 1714 } 1715 1716 static void close_sync(struct r10conf *conf) 1717 { 1718 wait_barrier(conf); 1719 allow_barrier(conf); 1720 1721 mempool_destroy(conf->r10buf_pool); 1722 conf->r10buf_pool = NULL; 1723 } 1724 1725 static int raid10_spare_active(struct mddev *mddev) 1726 { 1727 int i; 1728 struct r10conf *conf = mddev->private; 1729 struct raid10_info *tmp; 1730 int count = 0; 1731 unsigned long flags; 1732 1733 /* 1734 * Find all non-in_sync disks within the RAID10 configuration 1735 * and mark them in_sync 1736 */ 1737 for (i = 0; i < conf->geo.raid_disks; i++) { 1738 tmp = conf->mirrors + i; 1739 if (tmp->replacement 1740 && tmp->replacement->recovery_offset == MaxSector 1741 && !test_bit(Faulty, &tmp->replacement->flags) 1742 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1743 /* Replacement has just become active */ 1744 if (!tmp->rdev 1745 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1746 count++; 1747 if (tmp->rdev) { 1748 /* Replaced device not technically faulty, 1749 * but we need to be sure it gets removed 1750 * and never re-added. 1751 */ 1752 set_bit(Faulty, &tmp->rdev->flags); 1753 sysfs_notify_dirent_safe( 1754 tmp->rdev->sysfs_state); 1755 } 1756 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1757 } else if (tmp->rdev 1758 && tmp->rdev->recovery_offset == MaxSector 1759 && !test_bit(Faulty, &tmp->rdev->flags) 1760 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1761 count++; 1762 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1763 } 1764 } 1765 spin_lock_irqsave(&conf->device_lock, flags); 1766 mddev->degraded -= count; 1767 spin_unlock_irqrestore(&conf->device_lock, flags); 1768 1769 print_conf(conf); 1770 return count; 1771 } 1772 1773 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1774 { 1775 struct r10conf *conf = mddev->private; 1776 int err = -EEXIST; 1777 int mirror; 1778 int first = 0; 1779 int last = conf->geo.raid_disks - 1; 1780 struct request_queue *q = bdev_get_queue(rdev->bdev); 1781 1782 if (mddev->recovery_cp < MaxSector) 1783 /* only hot-add to in-sync arrays, as recovery is 1784 * very different from resync 1785 */ 1786 return -EBUSY; 1787 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1788 return -EINVAL; 1789 1790 if (rdev->raid_disk >= 0) 1791 first = last = rdev->raid_disk; 1792 1793 if (q->merge_bvec_fn) { 1794 set_bit(Unmerged, &rdev->flags); 1795 mddev->merge_check_needed = 1; 1796 } 1797 1798 if (rdev->saved_raid_disk >= first && 1799 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1800 mirror = rdev->saved_raid_disk; 1801 else 1802 mirror = first; 1803 for ( ; mirror <= last ; mirror++) { 1804 struct raid10_info *p = &conf->mirrors[mirror]; 1805 if (p->recovery_disabled == mddev->recovery_disabled) 1806 continue; 1807 if (p->rdev) { 1808 if (!test_bit(WantReplacement, &p->rdev->flags) || 1809 p->replacement != NULL) 1810 continue; 1811 clear_bit(In_sync, &rdev->flags); 1812 set_bit(Replacement, &rdev->flags); 1813 rdev->raid_disk = mirror; 1814 err = 0; 1815 if (mddev->gendisk) 1816 disk_stack_limits(mddev->gendisk, rdev->bdev, 1817 rdev->data_offset << 9); 1818 conf->fullsync = 1; 1819 rcu_assign_pointer(p->replacement, rdev); 1820 break; 1821 } 1822 1823 if (mddev->gendisk) 1824 disk_stack_limits(mddev->gendisk, rdev->bdev, 1825 rdev->data_offset << 9); 1826 1827 p->head_position = 0; 1828 p->recovery_disabled = mddev->recovery_disabled - 1; 1829 rdev->raid_disk = mirror; 1830 err = 0; 1831 if (rdev->saved_raid_disk != mirror) 1832 conf->fullsync = 1; 1833 rcu_assign_pointer(p->rdev, rdev); 1834 break; 1835 } 1836 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1837 /* Some requests might not have seen this new 1838 * merge_bvec_fn. We must wait for them to complete 1839 * before merging the device fully. 1840 * First we make sure any code which has tested 1841 * our function has submitted the request, then 1842 * we wait for all outstanding requests to complete. 1843 */ 1844 synchronize_sched(); 1845 freeze_array(conf, 0); 1846 unfreeze_array(conf); 1847 clear_bit(Unmerged, &rdev->flags); 1848 } 1849 md_integrity_add_rdev(rdev, mddev); 1850 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1851 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1852 1853 print_conf(conf); 1854 return err; 1855 } 1856 1857 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1858 { 1859 struct r10conf *conf = mddev->private; 1860 int err = 0; 1861 int number = rdev->raid_disk; 1862 struct md_rdev **rdevp; 1863 struct raid10_info *p = conf->mirrors + number; 1864 1865 print_conf(conf); 1866 if (rdev == p->rdev) 1867 rdevp = &p->rdev; 1868 else if (rdev == p->replacement) 1869 rdevp = &p->replacement; 1870 else 1871 return 0; 1872 1873 if (test_bit(In_sync, &rdev->flags) || 1874 atomic_read(&rdev->nr_pending)) { 1875 err = -EBUSY; 1876 goto abort; 1877 } 1878 /* Only remove faulty devices if recovery 1879 * is not possible. 1880 */ 1881 if (!test_bit(Faulty, &rdev->flags) && 1882 mddev->recovery_disabled != p->recovery_disabled && 1883 (!p->replacement || p->replacement == rdev) && 1884 number < conf->geo.raid_disks && 1885 enough(conf, -1)) { 1886 err = -EBUSY; 1887 goto abort; 1888 } 1889 *rdevp = NULL; 1890 synchronize_rcu(); 1891 if (atomic_read(&rdev->nr_pending)) { 1892 /* lost the race, try later */ 1893 err = -EBUSY; 1894 *rdevp = rdev; 1895 goto abort; 1896 } else if (p->replacement) { 1897 /* We must have just cleared 'rdev' */ 1898 p->rdev = p->replacement; 1899 clear_bit(Replacement, &p->replacement->flags); 1900 smp_mb(); /* Make sure other CPUs may see both as identical 1901 * but will never see neither -- if they are careful. 1902 */ 1903 p->replacement = NULL; 1904 clear_bit(WantReplacement, &rdev->flags); 1905 } else 1906 /* We might have just remove the Replacement as faulty 1907 * Clear the flag just in case 1908 */ 1909 clear_bit(WantReplacement, &rdev->flags); 1910 1911 err = md_integrity_register(mddev); 1912 1913 abort: 1914 1915 print_conf(conf); 1916 return err; 1917 } 1918 1919 static void end_sync_read(struct bio *bio, int error) 1920 { 1921 struct r10bio *r10_bio = bio->bi_private; 1922 struct r10conf *conf = r10_bio->mddev->private; 1923 int d; 1924 1925 if (bio == r10_bio->master_bio) { 1926 /* this is a reshape read */ 1927 d = r10_bio->read_slot; /* really the read dev */ 1928 } else 1929 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1930 1931 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1932 set_bit(R10BIO_Uptodate, &r10_bio->state); 1933 else 1934 /* The write handler will notice the lack of 1935 * R10BIO_Uptodate and record any errors etc 1936 */ 1937 atomic_add(r10_bio->sectors, 1938 &conf->mirrors[d].rdev->corrected_errors); 1939 1940 /* for reconstruct, we always reschedule after a read. 1941 * for resync, only after all reads 1942 */ 1943 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1944 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1945 atomic_dec_and_test(&r10_bio->remaining)) { 1946 /* we have read all the blocks, 1947 * do the comparison in process context in raid10d 1948 */ 1949 reschedule_retry(r10_bio); 1950 } 1951 } 1952 1953 static void end_sync_request(struct r10bio *r10_bio) 1954 { 1955 struct mddev *mddev = r10_bio->mddev; 1956 1957 while (atomic_dec_and_test(&r10_bio->remaining)) { 1958 if (r10_bio->master_bio == NULL) { 1959 /* the primary of several recovery bios */ 1960 sector_t s = r10_bio->sectors; 1961 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1962 test_bit(R10BIO_WriteError, &r10_bio->state)) 1963 reschedule_retry(r10_bio); 1964 else 1965 put_buf(r10_bio); 1966 md_done_sync(mddev, s, 1); 1967 break; 1968 } else { 1969 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1970 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1971 test_bit(R10BIO_WriteError, &r10_bio->state)) 1972 reschedule_retry(r10_bio); 1973 else 1974 put_buf(r10_bio); 1975 r10_bio = r10_bio2; 1976 } 1977 } 1978 } 1979 1980 static void end_sync_write(struct bio *bio, int error) 1981 { 1982 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1983 struct r10bio *r10_bio = bio->bi_private; 1984 struct mddev *mddev = r10_bio->mddev; 1985 struct r10conf *conf = mddev->private; 1986 int d; 1987 sector_t first_bad; 1988 int bad_sectors; 1989 int slot; 1990 int repl; 1991 struct md_rdev *rdev = NULL; 1992 1993 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1994 if (repl) 1995 rdev = conf->mirrors[d].replacement; 1996 else 1997 rdev = conf->mirrors[d].rdev; 1998 1999 if (!uptodate) { 2000 if (repl) 2001 md_error(mddev, rdev); 2002 else { 2003 set_bit(WriteErrorSeen, &rdev->flags); 2004 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2005 set_bit(MD_RECOVERY_NEEDED, 2006 &rdev->mddev->recovery); 2007 set_bit(R10BIO_WriteError, &r10_bio->state); 2008 } 2009 } else if (is_badblock(rdev, 2010 r10_bio->devs[slot].addr, 2011 r10_bio->sectors, 2012 &first_bad, &bad_sectors)) 2013 set_bit(R10BIO_MadeGood, &r10_bio->state); 2014 2015 rdev_dec_pending(rdev, mddev); 2016 2017 end_sync_request(r10_bio); 2018 } 2019 2020 /* 2021 * Note: sync and recover and handled very differently for raid10 2022 * This code is for resync. 2023 * For resync, we read through virtual addresses and read all blocks. 2024 * If there is any error, we schedule a write. The lowest numbered 2025 * drive is authoritative. 2026 * However requests come for physical address, so we need to map. 2027 * For every physical address there are raid_disks/copies virtual addresses, 2028 * which is always are least one, but is not necessarly an integer. 2029 * This means that a physical address can span multiple chunks, so we may 2030 * have to submit multiple io requests for a single sync request. 2031 */ 2032 /* 2033 * We check if all blocks are in-sync and only write to blocks that 2034 * aren't in sync 2035 */ 2036 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2037 { 2038 struct r10conf *conf = mddev->private; 2039 int i, first; 2040 struct bio *tbio, *fbio; 2041 int vcnt; 2042 2043 atomic_set(&r10_bio->remaining, 1); 2044 2045 /* find the first device with a block */ 2046 for (i=0; i<conf->copies; i++) 2047 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 2048 break; 2049 2050 if (i == conf->copies) 2051 goto done; 2052 2053 first = i; 2054 fbio = r10_bio->devs[i].bio; 2055 2056 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2057 /* now find blocks with errors */ 2058 for (i=0 ; i < conf->copies ; i++) { 2059 int j, d; 2060 2061 tbio = r10_bio->devs[i].bio; 2062 2063 if (tbio->bi_end_io != end_sync_read) 2064 continue; 2065 if (i == first) 2066 continue; 2067 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2068 /* We know that the bi_io_vec layout is the same for 2069 * both 'first' and 'i', so we just compare them. 2070 * All vec entries are PAGE_SIZE; 2071 */ 2072 int sectors = r10_bio->sectors; 2073 for (j = 0; j < vcnt; j++) { 2074 int len = PAGE_SIZE; 2075 if (sectors < (len / 512)) 2076 len = sectors * 512; 2077 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2078 page_address(tbio->bi_io_vec[j].bv_page), 2079 len)) 2080 break; 2081 sectors -= len/512; 2082 } 2083 if (j == vcnt) 2084 continue; 2085 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2086 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2087 /* Don't fix anything. */ 2088 continue; 2089 } 2090 /* Ok, we need to write this bio, either to correct an 2091 * inconsistency or to correct an unreadable block. 2092 * First we need to fixup bv_offset, bv_len and 2093 * bi_vecs, as the read request might have corrupted these 2094 */ 2095 bio_reset(tbio); 2096 2097 tbio->bi_vcnt = vcnt; 2098 tbio->bi_iter.bi_size = r10_bio->sectors << 9; 2099 tbio->bi_rw = WRITE; 2100 tbio->bi_private = r10_bio; 2101 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2102 tbio->bi_end_io = end_sync_write; 2103 2104 bio_copy_data(tbio, fbio); 2105 2106 d = r10_bio->devs[i].devnum; 2107 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2108 atomic_inc(&r10_bio->remaining); 2109 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2110 2111 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2112 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2113 generic_make_request(tbio); 2114 } 2115 2116 /* Now write out to any replacement devices 2117 * that are active 2118 */ 2119 for (i = 0; i < conf->copies; i++) { 2120 int d; 2121 2122 tbio = r10_bio->devs[i].repl_bio; 2123 if (!tbio || !tbio->bi_end_io) 2124 continue; 2125 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2126 && r10_bio->devs[i].bio != fbio) 2127 bio_copy_data(tbio, fbio); 2128 d = r10_bio->devs[i].devnum; 2129 atomic_inc(&r10_bio->remaining); 2130 md_sync_acct(conf->mirrors[d].replacement->bdev, 2131 bio_sectors(tbio)); 2132 generic_make_request(tbio); 2133 } 2134 2135 done: 2136 if (atomic_dec_and_test(&r10_bio->remaining)) { 2137 md_done_sync(mddev, r10_bio->sectors, 1); 2138 put_buf(r10_bio); 2139 } 2140 } 2141 2142 /* 2143 * Now for the recovery code. 2144 * Recovery happens across physical sectors. 2145 * We recover all non-is_sync drives by finding the virtual address of 2146 * each, and then choose a working drive that also has that virt address. 2147 * There is a separate r10_bio for each non-in_sync drive. 2148 * Only the first two slots are in use. The first for reading, 2149 * The second for writing. 2150 * 2151 */ 2152 static void fix_recovery_read_error(struct r10bio *r10_bio) 2153 { 2154 /* We got a read error during recovery. 2155 * We repeat the read in smaller page-sized sections. 2156 * If a read succeeds, write it to the new device or record 2157 * a bad block if we cannot. 2158 * If a read fails, record a bad block on both old and 2159 * new devices. 2160 */ 2161 struct mddev *mddev = r10_bio->mddev; 2162 struct r10conf *conf = mddev->private; 2163 struct bio *bio = r10_bio->devs[0].bio; 2164 sector_t sect = 0; 2165 int sectors = r10_bio->sectors; 2166 int idx = 0; 2167 int dr = r10_bio->devs[0].devnum; 2168 int dw = r10_bio->devs[1].devnum; 2169 2170 while (sectors) { 2171 int s = sectors; 2172 struct md_rdev *rdev; 2173 sector_t addr; 2174 int ok; 2175 2176 if (s > (PAGE_SIZE>>9)) 2177 s = PAGE_SIZE >> 9; 2178 2179 rdev = conf->mirrors[dr].rdev; 2180 addr = r10_bio->devs[0].addr + sect, 2181 ok = sync_page_io(rdev, 2182 addr, 2183 s << 9, 2184 bio->bi_io_vec[idx].bv_page, 2185 READ, false); 2186 if (ok) { 2187 rdev = conf->mirrors[dw].rdev; 2188 addr = r10_bio->devs[1].addr + sect; 2189 ok = sync_page_io(rdev, 2190 addr, 2191 s << 9, 2192 bio->bi_io_vec[idx].bv_page, 2193 WRITE, false); 2194 if (!ok) { 2195 set_bit(WriteErrorSeen, &rdev->flags); 2196 if (!test_and_set_bit(WantReplacement, 2197 &rdev->flags)) 2198 set_bit(MD_RECOVERY_NEEDED, 2199 &rdev->mddev->recovery); 2200 } 2201 } 2202 if (!ok) { 2203 /* We don't worry if we cannot set a bad block - 2204 * it really is bad so there is no loss in not 2205 * recording it yet 2206 */ 2207 rdev_set_badblocks(rdev, addr, s, 0); 2208 2209 if (rdev != conf->mirrors[dw].rdev) { 2210 /* need bad block on destination too */ 2211 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2212 addr = r10_bio->devs[1].addr + sect; 2213 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2214 if (!ok) { 2215 /* just abort the recovery */ 2216 printk(KERN_NOTICE 2217 "md/raid10:%s: recovery aborted" 2218 " due to read error\n", 2219 mdname(mddev)); 2220 2221 conf->mirrors[dw].recovery_disabled 2222 = mddev->recovery_disabled; 2223 set_bit(MD_RECOVERY_INTR, 2224 &mddev->recovery); 2225 break; 2226 } 2227 } 2228 } 2229 2230 sectors -= s; 2231 sect += s; 2232 idx++; 2233 } 2234 } 2235 2236 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2237 { 2238 struct r10conf *conf = mddev->private; 2239 int d; 2240 struct bio *wbio, *wbio2; 2241 2242 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2243 fix_recovery_read_error(r10_bio); 2244 end_sync_request(r10_bio); 2245 return; 2246 } 2247 2248 /* 2249 * share the pages with the first bio 2250 * and submit the write request 2251 */ 2252 d = r10_bio->devs[1].devnum; 2253 wbio = r10_bio->devs[1].bio; 2254 wbio2 = r10_bio->devs[1].repl_bio; 2255 /* Need to test wbio2->bi_end_io before we call 2256 * generic_make_request as if the former is NULL, 2257 * the latter is free to free wbio2. 2258 */ 2259 if (wbio2 && !wbio2->bi_end_io) 2260 wbio2 = NULL; 2261 if (wbio->bi_end_io) { 2262 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2263 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2264 generic_make_request(wbio); 2265 } 2266 if (wbio2) { 2267 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2268 md_sync_acct(conf->mirrors[d].replacement->bdev, 2269 bio_sectors(wbio2)); 2270 generic_make_request(wbio2); 2271 } 2272 } 2273 2274 /* 2275 * Used by fix_read_error() to decay the per rdev read_errors. 2276 * We halve the read error count for every hour that has elapsed 2277 * since the last recorded read error. 2278 * 2279 */ 2280 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2281 { 2282 struct timespec cur_time_mon; 2283 unsigned long hours_since_last; 2284 unsigned int read_errors = atomic_read(&rdev->read_errors); 2285 2286 ktime_get_ts(&cur_time_mon); 2287 2288 if (rdev->last_read_error.tv_sec == 0 && 2289 rdev->last_read_error.tv_nsec == 0) { 2290 /* first time we've seen a read error */ 2291 rdev->last_read_error = cur_time_mon; 2292 return; 2293 } 2294 2295 hours_since_last = (cur_time_mon.tv_sec - 2296 rdev->last_read_error.tv_sec) / 3600; 2297 2298 rdev->last_read_error = cur_time_mon; 2299 2300 /* 2301 * if hours_since_last is > the number of bits in read_errors 2302 * just set read errors to 0. We do this to avoid 2303 * overflowing the shift of read_errors by hours_since_last. 2304 */ 2305 if (hours_since_last >= 8 * sizeof(read_errors)) 2306 atomic_set(&rdev->read_errors, 0); 2307 else 2308 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2309 } 2310 2311 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2312 int sectors, struct page *page, int rw) 2313 { 2314 sector_t first_bad; 2315 int bad_sectors; 2316 2317 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2318 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2319 return -1; 2320 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2321 /* success */ 2322 return 1; 2323 if (rw == WRITE) { 2324 set_bit(WriteErrorSeen, &rdev->flags); 2325 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2326 set_bit(MD_RECOVERY_NEEDED, 2327 &rdev->mddev->recovery); 2328 } 2329 /* need to record an error - either for the block or the device */ 2330 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2331 md_error(rdev->mddev, rdev); 2332 return 0; 2333 } 2334 2335 /* 2336 * This is a kernel thread which: 2337 * 2338 * 1. Retries failed read operations on working mirrors. 2339 * 2. Updates the raid superblock when problems encounter. 2340 * 3. Performs writes following reads for array synchronising. 2341 */ 2342 2343 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2344 { 2345 int sect = 0; /* Offset from r10_bio->sector */ 2346 int sectors = r10_bio->sectors; 2347 struct md_rdev*rdev; 2348 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2349 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2350 2351 /* still own a reference to this rdev, so it cannot 2352 * have been cleared recently. 2353 */ 2354 rdev = conf->mirrors[d].rdev; 2355 2356 if (test_bit(Faulty, &rdev->flags)) 2357 /* drive has already been failed, just ignore any 2358 more fix_read_error() attempts */ 2359 return; 2360 2361 check_decay_read_errors(mddev, rdev); 2362 atomic_inc(&rdev->read_errors); 2363 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2364 char b[BDEVNAME_SIZE]; 2365 bdevname(rdev->bdev, b); 2366 2367 printk(KERN_NOTICE 2368 "md/raid10:%s: %s: Raid device exceeded " 2369 "read_error threshold [cur %d:max %d]\n", 2370 mdname(mddev), b, 2371 atomic_read(&rdev->read_errors), max_read_errors); 2372 printk(KERN_NOTICE 2373 "md/raid10:%s: %s: Failing raid device\n", 2374 mdname(mddev), b); 2375 md_error(mddev, conf->mirrors[d].rdev); 2376 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2377 return; 2378 } 2379 2380 while(sectors) { 2381 int s = sectors; 2382 int sl = r10_bio->read_slot; 2383 int success = 0; 2384 int start; 2385 2386 if (s > (PAGE_SIZE>>9)) 2387 s = PAGE_SIZE >> 9; 2388 2389 rcu_read_lock(); 2390 do { 2391 sector_t first_bad; 2392 int bad_sectors; 2393 2394 d = r10_bio->devs[sl].devnum; 2395 rdev = rcu_dereference(conf->mirrors[d].rdev); 2396 if (rdev && 2397 !test_bit(Unmerged, &rdev->flags) && 2398 test_bit(In_sync, &rdev->flags) && 2399 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2400 &first_bad, &bad_sectors) == 0) { 2401 atomic_inc(&rdev->nr_pending); 2402 rcu_read_unlock(); 2403 success = sync_page_io(rdev, 2404 r10_bio->devs[sl].addr + 2405 sect, 2406 s<<9, 2407 conf->tmppage, READ, false); 2408 rdev_dec_pending(rdev, mddev); 2409 rcu_read_lock(); 2410 if (success) 2411 break; 2412 } 2413 sl++; 2414 if (sl == conf->copies) 2415 sl = 0; 2416 } while (!success && sl != r10_bio->read_slot); 2417 rcu_read_unlock(); 2418 2419 if (!success) { 2420 /* Cannot read from anywhere, just mark the block 2421 * as bad on the first device to discourage future 2422 * reads. 2423 */ 2424 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2425 rdev = conf->mirrors[dn].rdev; 2426 2427 if (!rdev_set_badblocks( 2428 rdev, 2429 r10_bio->devs[r10_bio->read_slot].addr 2430 + sect, 2431 s, 0)) { 2432 md_error(mddev, rdev); 2433 r10_bio->devs[r10_bio->read_slot].bio 2434 = IO_BLOCKED; 2435 } 2436 break; 2437 } 2438 2439 start = sl; 2440 /* write it back and re-read */ 2441 rcu_read_lock(); 2442 while (sl != r10_bio->read_slot) { 2443 char b[BDEVNAME_SIZE]; 2444 2445 if (sl==0) 2446 sl = conf->copies; 2447 sl--; 2448 d = r10_bio->devs[sl].devnum; 2449 rdev = rcu_dereference(conf->mirrors[d].rdev); 2450 if (!rdev || 2451 test_bit(Unmerged, &rdev->flags) || 2452 !test_bit(In_sync, &rdev->flags)) 2453 continue; 2454 2455 atomic_inc(&rdev->nr_pending); 2456 rcu_read_unlock(); 2457 if (r10_sync_page_io(rdev, 2458 r10_bio->devs[sl].addr + 2459 sect, 2460 s, conf->tmppage, WRITE) 2461 == 0) { 2462 /* Well, this device is dead */ 2463 printk(KERN_NOTICE 2464 "md/raid10:%s: read correction " 2465 "write failed" 2466 " (%d sectors at %llu on %s)\n", 2467 mdname(mddev), s, 2468 (unsigned long long)( 2469 sect + 2470 choose_data_offset(r10_bio, 2471 rdev)), 2472 bdevname(rdev->bdev, b)); 2473 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2474 "drive\n", 2475 mdname(mddev), 2476 bdevname(rdev->bdev, b)); 2477 } 2478 rdev_dec_pending(rdev, mddev); 2479 rcu_read_lock(); 2480 } 2481 sl = start; 2482 while (sl != r10_bio->read_slot) { 2483 char b[BDEVNAME_SIZE]; 2484 2485 if (sl==0) 2486 sl = conf->copies; 2487 sl--; 2488 d = r10_bio->devs[sl].devnum; 2489 rdev = rcu_dereference(conf->mirrors[d].rdev); 2490 if (!rdev || 2491 !test_bit(In_sync, &rdev->flags)) 2492 continue; 2493 2494 atomic_inc(&rdev->nr_pending); 2495 rcu_read_unlock(); 2496 switch (r10_sync_page_io(rdev, 2497 r10_bio->devs[sl].addr + 2498 sect, 2499 s, conf->tmppage, 2500 READ)) { 2501 case 0: 2502 /* Well, this device is dead */ 2503 printk(KERN_NOTICE 2504 "md/raid10:%s: unable to read back " 2505 "corrected sectors" 2506 " (%d sectors at %llu on %s)\n", 2507 mdname(mddev), s, 2508 (unsigned long long)( 2509 sect + 2510 choose_data_offset(r10_bio, rdev)), 2511 bdevname(rdev->bdev, b)); 2512 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2513 "drive\n", 2514 mdname(mddev), 2515 bdevname(rdev->bdev, b)); 2516 break; 2517 case 1: 2518 printk(KERN_INFO 2519 "md/raid10:%s: read error corrected" 2520 " (%d sectors at %llu on %s)\n", 2521 mdname(mddev), s, 2522 (unsigned long long)( 2523 sect + 2524 choose_data_offset(r10_bio, rdev)), 2525 bdevname(rdev->bdev, b)); 2526 atomic_add(s, &rdev->corrected_errors); 2527 } 2528 2529 rdev_dec_pending(rdev, mddev); 2530 rcu_read_lock(); 2531 } 2532 rcu_read_unlock(); 2533 2534 sectors -= s; 2535 sect += s; 2536 } 2537 } 2538 2539 static int narrow_write_error(struct r10bio *r10_bio, int i) 2540 { 2541 struct bio *bio = r10_bio->master_bio; 2542 struct mddev *mddev = r10_bio->mddev; 2543 struct r10conf *conf = mddev->private; 2544 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2545 /* bio has the data to be written to slot 'i' where 2546 * we just recently had a write error. 2547 * We repeatedly clone the bio and trim down to one block, 2548 * then try the write. Where the write fails we record 2549 * a bad block. 2550 * It is conceivable that the bio doesn't exactly align with 2551 * blocks. We must handle this. 2552 * 2553 * We currently own a reference to the rdev. 2554 */ 2555 2556 int block_sectors; 2557 sector_t sector; 2558 int sectors; 2559 int sect_to_write = r10_bio->sectors; 2560 int ok = 1; 2561 2562 if (rdev->badblocks.shift < 0) 2563 return 0; 2564 2565 block_sectors = roundup(1 << rdev->badblocks.shift, 2566 bdev_logical_block_size(rdev->bdev) >> 9); 2567 sector = r10_bio->sector; 2568 sectors = ((r10_bio->sector + block_sectors) 2569 & ~(sector_t)(block_sectors - 1)) 2570 - sector; 2571 2572 while (sect_to_write) { 2573 struct bio *wbio; 2574 if (sectors > sect_to_write) 2575 sectors = sect_to_write; 2576 /* Write at 'sector' for 'sectors' */ 2577 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2578 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2579 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 2580 choose_data_offset(r10_bio, rdev) + 2581 (sector - r10_bio->sector)); 2582 wbio->bi_bdev = rdev->bdev; 2583 if (submit_bio_wait(WRITE, wbio) == 0) 2584 /* Failure! */ 2585 ok = rdev_set_badblocks(rdev, sector, 2586 sectors, 0) 2587 && ok; 2588 2589 bio_put(wbio); 2590 sect_to_write -= sectors; 2591 sector += sectors; 2592 sectors = block_sectors; 2593 } 2594 return ok; 2595 } 2596 2597 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2598 { 2599 int slot = r10_bio->read_slot; 2600 struct bio *bio; 2601 struct r10conf *conf = mddev->private; 2602 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2603 char b[BDEVNAME_SIZE]; 2604 unsigned long do_sync; 2605 int max_sectors; 2606 2607 /* we got a read error. Maybe the drive is bad. Maybe just 2608 * the block and we can fix it. 2609 * We freeze all other IO, and try reading the block from 2610 * other devices. When we find one, we re-write 2611 * and check it that fixes the read error. 2612 * This is all done synchronously while the array is 2613 * frozen. 2614 */ 2615 bio = r10_bio->devs[slot].bio; 2616 bdevname(bio->bi_bdev, b); 2617 bio_put(bio); 2618 r10_bio->devs[slot].bio = NULL; 2619 2620 if (mddev->ro == 0) { 2621 freeze_array(conf, 1); 2622 fix_read_error(conf, mddev, r10_bio); 2623 unfreeze_array(conf); 2624 } else 2625 r10_bio->devs[slot].bio = IO_BLOCKED; 2626 2627 rdev_dec_pending(rdev, mddev); 2628 2629 read_more: 2630 rdev = read_balance(conf, r10_bio, &max_sectors); 2631 if (rdev == NULL) { 2632 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2633 " read error for block %llu\n", 2634 mdname(mddev), b, 2635 (unsigned long long)r10_bio->sector); 2636 raid_end_bio_io(r10_bio); 2637 return; 2638 } 2639 2640 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2641 slot = r10_bio->read_slot; 2642 printk_ratelimited( 2643 KERN_ERR 2644 "md/raid10:%s: %s: redirecting " 2645 "sector %llu to another mirror\n", 2646 mdname(mddev), 2647 bdevname(rdev->bdev, b), 2648 (unsigned long long)r10_bio->sector); 2649 bio = bio_clone_mddev(r10_bio->master_bio, 2650 GFP_NOIO, mddev); 2651 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors); 2652 r10_bio->devs[slot].bio = bio; 2653 r10_bio->devs[slot].rdev = rdev; 2654 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr 2655 + choose_data_offset(r10_bio, rdev); 2656 bio->bi_bdev = rdev->bdev; 2657 bio->bi_rw = READ | do_sync; 2658 bio->bi_private = r10_bio; 2659 bio->bi_end_io = raid10_end_read_request; 2660 if (max_sectors < r10_bio->sectors) { 2661 /* Drat - have to split this up more */ 2662 struct bio *mbio = r10_bio->master_bio; 2663 int sectors_handled = 2664 r10_bio->sector + max_sectors 2665 - mbio->bi_iter.bi_sector; 2666 r10_bio->sectors = max_sectors; 2667 spin_lock_irq(&conf->device_lock); 2668 if (mbio->bi_phys_segments == 0) 2669 mbio->bi_phys_segments = 2; 2670 else 2671 mbio->bi_phys_segments++; 2672 spin_unlock_irq(&conf->device_lock); 2673 generic_make_request(bio); 2674 2675 r10_bio = mempool_alloc(conf->r10bio_pool, 2676 GFP_NOIO); 2677 r10_bio->master_bio = mbio; 2678 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2679 r10_bio->state = 0; 2680 set_bit(R10BIO_ReadError, 2681 &r10_bio->state); 2682 r10_bio->mddev = mddev; 2683 r10_bio->sector = mbio->bi_iter.bi_sector 2684 + sectors_handled; 2685 2686 goto read_more; 2687 } else 2688 generic_make_request(bio); 2689 } 2690 2691 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2692 { 2693 /* Some sort of write request has finished and it 2694 * succeeded in writing where we thought there was a 2695 * bad block. So forget the bad block. 2696 * Or possibly if failed and we need to record 2697 * a bad block. 2698 */ 2699 int m; 2700 struct md_rdev *rdev; 2701 2702 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2703 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2704 for (m = 0; m < conf->copies; m++) { 2705 int dev = r10_bio->devs[m].devnum; 2706 rdev = conf->mirrors[dev].rdev; 2707 if (r10_bio->devs[m].bio == NULL) 2708 continue; 2709 if (test_bit(BIO_UPTODATE, 2710 &r10_bio->devs[m].bio->bi_flags)) { 2711 rdev_clear_badblocks( 2712 rdev, 2713 r10_bio->devs[m].addr, 2714 r10_bio->sectors, 0); 2715 } else { 2716 if (!rdev_set_badblocks( 2717 rdev, 2718 r10_bio->devs[m].addr, 2719 r10_bio->sectors, 0)) 2720 md_error(conf->mddev, rdev); 2721 } 2722 rdev = conf->mirrors[dev].replacement; 2723 if (r10_bio->devs[m].repl_bio == NULL) 2724 continue; 2725 if (test_bit(BIO_UPTODATE, 2726 &r10_bio->devs[m].repl_bio->bi_flags)) { 2727 rdev_clear_badblocks( 2728 rdev, 2729 r10_bio->devs[m].addr, 2730 r10_bio->sectors, 0); 2731 } else { 2732 if (!rdev_set_badblocks( 2733 rdev, 2734 r10_bio->devs[m].addr, 2735 r10_bio->sectors, 0)) 2736 md_error(conf->mddev, rdev); 2737 } 2738 } 2739 put_buf(r10_bio); 2740 } else { 2741 for (m = 0; m < conf->copies; m++) { 2742 int dev = r10_bio->devs[m].devnum; 2743 struct bio *bio = r10_bio->devs[m].bio; 2744 rdev = conf->mirrors[dev].rdev; 2745 if (bio == IO_MADE_GOOD) { 2746 rdev_clear_badblocks( 2747 rdev, 2748 r10_bio->devs[m].addr, 2749 r10_bio->sectors, 0); 2750 rdev_dec_pending(rdev, conf->mddev); 2751 } else if (bio != NULL && 2752 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2753 if (!narrow_write_error(r10_bio, m)) { 2754 md_error(conf->mddev, rdev); 2755 set_bit(R10BIO_Degraded, 2756 &r10_bio->state); 2757 } 2758 rdev_dec_pending(rdev, conf->mddev); 2759 } 2760 bio = r10_bio->devs[m].repl_bio; 2761 rdev = conf->mirrors[dev].replacement; 2762 if (rdev && bio == IO_MADE_GOOD) { 2763 rdev_clear_badblocks( 2764 rdev, 2765 r10_bio->devs[m].addr, 2766 r10_bio->sectors, 0); 2767 rdev_dec_pending(rdev, conf->mddev); 2768 } 2769 } 2770 if (test_bit(R10BIO_WriteError, 2771 &r10_bio->state)) 2772 close_write(r10_bio); 2773 raid_end_bio_io(r10_bio); 2774 } 2775 } 2776 2777 static void raid10d(struct md_thread *thread) 2778 { 2779 struct mddev *mddev = thread->mddev; 2780 struct r10bio *r10_bio; 2781 unsigned long flags; 2782 struct r10conf *conf = mddev->private; 2783 struct list_head *head = &conf->retry_list; 2784 struct blk_plug plug; 2785 2786 md_check_recovery(mddev); 2787 2788 blk_start_plug(&plug); 2789 for (;;) { 2790 2791 flush_pending_writes(conf); 2792 2793 spin_lock_irqsave(&conf->device_lock, flags); 2794 if (list_empty(head)) { 2795 spin_unlock_irqrestore(&conf->device_lock, flags); 2796 break; 2797 } 2798 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2799 list_del(head->prev); 2800 conf->nr_queued--; 2801 spin_unlock_irqrestore(&conf->device_lock, flags); 2802 2803 mddev = r10_bio->mddev; 2804 conf = mddev->private; 2805 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2806 test_bit(R10BIO_WriteError, &r10_bio->state)) 2807 handle_write_completed(conf, r10_bio); 2808 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2809 reshape_request_write(mddev, r10_bio); 2810 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2811 sync_request_write(mddev, r10_bio); 2812 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2813 recovery_request_write(mddev, r10_bio); 2814 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2815 handle_read_error(mddev, r10_bio); 2816 else { 2817 /* just a partial read to be scheduled from a 2818 * separate context 2819 */ 2820 int slot = r10_bio->read_slot; 2821 generic_make_request(r10_bio->devs[slot].bio); 2822 } 2823 2824 cond_resched(); 2825 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2826 md_check_recovery(mddev); 2827 } 2828 blk_finish_plug(&plug); 2829 } 2830 2831 static int init_resync(struct r10conf *conf) 2832 { 2833 int buffs; 2834 int i; 2835 2836 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2837 BUG_ON(conf->r10buf_pool); 2838 conf->have_replacement = 0; 2839 for (i = 0; i < conf->geo.raid_disks; i++) 2840 if (conf->mirrors[i].replacement) 2841 conf->have_replacement = 1; 2842 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2843 if (!conf->r10buf_pool) 2844 return -ENOMEM; 2845 conf->next_resync = 0; 2846 return 0; 2847 } 2848 2849 /* 2850 * perform a "sync" on one "block" 2851 * 2852 * We need to make sure that no normal I/O request - particularly write 2853 * requests - conflict with active sync requests. 2854 * 2855 * This is achieved by tracking pending requests and a 'barrier' concept 2856 * that can be installed to exclude normal IO requests. 2857 * 2858 * Resync and recovery are handled very differently. 2859 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2860 * 2861 * For resync, we iterate over virtual addresses, read all copies, 2862 * and update if there are differences. If only one copy is live, 2863 * skip it. 2864 * For recovery, we iterate over physical addresses, read a good 2865 * value for each non-in_sync drive, and over-write. 2866 * 2867 * So, for recovery we may have several outstanding complex requests for a 2868 * given address, one for each out-of-sync device. We model this by allocating 2869 * a number of r10_bio structures, one for each out-of-sync device. 2870 * As we setup these structures, we collect all bio's together into a list 2871 * which we then process collectively to add pages, and then process again 2872 * to pass to generic_make_request. 2873 * 2874 * The r10_bio structures are linked using a borrowed master_bio pointer. 2875 * This link is counted in ->remaining. When the r10_bio that points to NULL 2876 * has its remaining count decremented to 0, the whole complex operation 2877 * is complete. 2878 * 2879 */ 2880 2881 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2882 int *skipped) 2883 { 2884 struct r10conf *conf = mddev->private; 2885 struct r10bio *r10_bio; 2886 struct bio *biolist = NULL, *bio; 2887 sector_t max_sector, nr_sectors; 2888 int i; 2889 int max_sync; 2890 sector_t sync_blocks; 2891 sector_t sectors_skipped = 0; 2892 int chunks_skipped = 0; 2893 sector_t chunk_mask = conf->geo.chunk_mask; 2894 2895 if (!conf->r10buf_pool) 2896 if (init_resync(conf)) 2897 return 0; 2898 2899 /* 2900 * Allow skipping a full rebuild for incremental assembly 2901 * of a clean array, like RAID1 does. 2902 */ 2903 if (mddev->bitmap == NULL && 2904 mddev->recovery_cp == MaxSector && 2905 mddev->reshape_position == MaxSector && 2906 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2907 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2908 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2909 conf->fullsync == 0) { 2910 *skipped = 1; 2911 return mddev->dev_sectors - sector_nr; 2912 } 2913 2914 skipped: 2915 max_sector = mddev->dev_sectors; 2916 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2917 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2918 max_sector = mddev->resync_max_sectors; 2919 if (sector_nr >= max_sector) { 2920 /* If we aborted, we need to abort the 2921 * sync on the 'current' bitmap chucks (there can 2922 * be several when recovering multiple devices). 2923 * as we may have started syncing it but not finished. 2924 * We can find the current address in 2925 * mddev->curr_resync, but for recovery, 2926 * we need to convert that to several 2927 * virtual addresses. 2928 */ 2929 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2930 end_reshape(conf); 2931 close_sync(conf); 2932 return 0; 2933 } 2934 2935 if (mddev->curr_resync < max_sector) { /* aborted */ 2936 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2937 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2938 &sync_blocks, 1); 2939 else for (i = 0; i < conf->geo.raid_disks; i++) { 2940 sector_t sect = 2941 raid10_find_virt(conf, mddev->curr_resync, i); 2942 bitmap_end_sync(mddev->bitmap, sect, 2943 &sync_blocks, 1); 2944 } 2945 } else { 2946 /* completed sync */ 2947 if ((!mddev->bitmap || conf->fullsync) 2948 && conf->have_replacement 2949 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2950 /* Completed a full sync so the replacements 2951 * are now fully recovered. 2952 */ 2953 for (i = 0; i < conf->geo.raid_disks; i++) 2954 if (conf->mirrors[i].replacement) 2955 conf->mirrors[i].replacement 2956 ->recovery_offset 2957 = MaxSector; 2958 } 2959 conf->fullsync = 0; 2960 } 2961 bitmap_close_sync(mddev->bitmap); 2962 close_sync(conf); 2963 *skipped = 1; 2964 return sectors_skipped; 2965 } 2966 2967 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2968 return reshape_request(mddev, sector_nr, skipped); 2969 2970 if (chunks_skipped >= conf->geo.raid_disks) { 2971 /* if there has been nothing to do on any drive, 2972 * then there is nothing to do at all.. 2973 */ 2974 *skipped = 1; 2975 return (max_sector - sector_nr) + sectors_skipped; 2976 } 2977 2978 if (max_sector > mddev->resync_max) 2979 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2980 2981 /* make sure whole request will fit in a chunk - if chunks 2982 * are meaningful 2983 */ 2984 if (conf->geo.near_copies < conf->geo.raid_disks && 2985 max_sector > (sector_nr | chunk_mask)) 2986 max_sector = (sector_nr | chunk_mask) + 1; 2987 2988 /* Again, very different code for resync and recovery. 2989 * Both must result in an r10bio with a list of bios that 2990 * have bi_end_io, bi_sector, bi_bdev set, 2991 * and bi_private set to the r10bio. 2992 * For recovery, we may actually create several r10bios 2993 * with 2 bios in each, that correspond to the bios in the main one. 2994 * In this case, the subordinate r10bios link back through a 2995 * borrowed master_bio pointer, and the counter in the master 2996 * includes a ref from each subordinate. 2997 */ 2998 /* First, we decide what to do and set ->bi_end_io 2999 * To end_sync_read if we want to read, and 3000 * end_sync_write if we will want to write. 3001 */ 3002 3003 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3004 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3005 /* recovery... the complicated one */ 3006 int j; 3007 r10_bio = NULL; 3008 3009 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3010 int still_degraded; 3011 struct r10bio *rb2; 3012 sector_t sect; 3013 int must_sync; 3014 int any_working; 3015 struct raid10_info *mirror = &conf->mirrors[i]; 3016 3017 if ((mirror->rdev == NULL || 3018 test_bit(In_sync, &mirror->rdev->flags)) 3019 && 3020 (mirror->replacement == NULL || 3021 test_bit(Faulty, 3022 &mirror->replacement->flags))) 3023 continue; 3024 3025 still_degraded = 0; 3026 /* want to reconstruct this device */ 3027 rb2 = r10_bio; 3028 sect = raid10_find_virt(conf, sector_nr, i); 3029 if (sect >= mddev->resync_max_sectors) { 3030 /* last stripe is not complete - don't 3031 * try to recover this sector. 3032 */ 3033 continue; 3034 } 3035 /* Unless we are doing a full sync, or a replacement 3036 * we only need to recover the block if it is set in 3037 * the bitmap 3038 */ 3039 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3040 &sync_blocks, 1); 3041 if (sync_blocks < max_sync) 3042 max_sync = sync_blocks; 3043 if (!must_sync && 3044 mirror->replacement == NULL && 3045 !conf->fullsync) { 3046 /* yep, skip the sync_blocks here, but don't assume 3047 * that there will never be anything to do here 3048 */ 3049 chunks_skipped = -1; 3050 continue; 3051 } 3052 3053 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3054 r10_bio->state = 0; 3055 raise_barrier(conf, rb2 != NULL); 3056 atomic_set(&r10_bio->remaining, 0); 3057 3058 r10_bio->master_bio = (struct bio*)rb2; 3059 if (rb2) 3060 atomic_inc(&rb2->remaining); 3061 r10_bio->mddev = mddev; 3062 set_bit(R10BIO_IsRecover, &r10_bio->state); 3063 r10_bio->sector = sect; 3064 3065 raid10_find_phys(conf, r10_bio); 3066 3067 /* Need to check if the array will still be 3068 * degraded 3069 */ 3070 for (j = 0; j < conf->geo.raid_disks; j++) 3071 if (conf->mirrors[j].rdev == NULL || 3072 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3073 still_degraded = 1; 3074 break; 3075 } 3076 3077 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3078 &sync_blocks, still_degraded); 3079 3080 any_working = 0; 3081 for (j=0; j<conf->copies;j++) { 3082 int k; 3083 int d = r10_bio->devs[j].devnum; 3084 sector_t from_addr, to_addr; 3085 struct md_rdev *rdev; 3086 sector_t sector, first_bad; 3087 int bad_sectors; 3088 if (!conf->mirrors[d].rdev || 3089 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3090 continue; 3091 /* This is where we read from */ 3092 any_working = 1; 3093 rdev = conf->mirrors[d].rdev; 3094 sector = r10_bio->devs[j].addr; 3095 3096 if (is_badblock(rdev, sector, max_sync, 3097 &first_bad, &bad_sectors)) { 3098 if (first_bad > sector) 3099 max_sync = first_bad - sector; 3100 else { 3101 bad_sectors -= (sector 3102 - first_bad); 3103 if (max_sync > bad_sectors) 3104 max_sync = bad_sectors; 3105 continue; 3106 } 3107 } 3108 bio = r10_bio->devs[0].bio; 3109 bio_reset(bio); 3110 bio->bi_next = biolist; 3111 biolist = bio; 3112 bio->bi_private = r10_bio; 3113 bio->bi_end_io = end_sync_read; 3114 bio->bi_rw = READ; 3115 from_addr = r10_bio->devs[j].addr; 3116 bio->bi_iter.bi_sector = from_addr + 3117 rdev->data_offset; 3118 bio->bi_bdev = rdev->bdev; 3119 atomic_inc(&rdev->nr_pending); 3120 /* and we write to 'i' (if not in_sync) */ 3121 3122 for (k=0; k<conf->copies; k++) 3123 if (r10_bio->devs[k].devnum == i) 3124 break; 3125 BUG_ON(k == conf->copies); 3126 to_addr = r10_bio->devs[k].addr; 3127 r10_bio->devs[0].devnum = d; 3128 r10_bio->devs[0].addr = from_addr; 3129 r10_bio->devs[1].devnum = i; 3130 r10_bio->devs[1].addr = to_addr; 3131 3132 rdev = mirror->rdev; 3133 if (!test_bit(In_sync, &rdev->flags)) { 3134 bio = r10_bio->devs[1].bio; 3135 bio_reset(bio); 3136 bio->bi_next = biolist; 3137 biolist = bio; 3138 bio->bi_private = r10_bio; 3139 bio->bi_end_io = end_sync_write; 3140 bio->bi_rw = WRITE; 3141 bio->bi_iter.bi_sector = to_addr 3142 + rdev->data_offset; 3143 bio->bi_bdev = rdev->bdev; 3144 atomic_inc(&r10_bio->remaining); 3145 } else 3146 r10_bio->devs[1].bio->bi_end_io = NULL; 3147 3148 /* and maybe write to replacement */ 3149 bio = r10_bio->devs[1].repl_bio; 3150 if (bio) 3151 bio->bi_end_io = NULL; 3152 rdev = mirror->replacement; 3153 /* Note: if rdev != NULL, then bio 3154 * cannot be NULL as r10buf_pool_alloc will 3155 * have allocated it. 3156 * So the second test here is pointless. 3157 * But it keeps semantic-checkers happy, and 3158 * this comment keeps human reviewers 3159 * happy. 3160 */ 3161 if (rdev == NULL || bio == NULL || 3162 test_bit(Faulty, &rdev->flags)) 3163 break; 3164 bio_reset(bio); 3165 bio->bi_next = biolist; 3166 biolist = bio; 3167 bio->bi_private = r10_bio; 3168 bio->bi_end_io = end_sync_write; 3169 bio->bi_rw = WRITE; 3170 bio->bi_iter.bi_sector = to_addr + 3171 rdev->data_offset; 3172 bio->bi_bdev = rdev->bdev; 3173 atomic_inc(&r10_bio->remaining); 3174 break; 3175 } 3176 if (j == conf->copies) { 3177 /* Cannot recover, so abort the recovery or 3178 * record a bad block */ 3179 if (any_working) { 3180 /* problem is that there are bad blocks 3181 * on other device(s) 3182 */ 3183 int k; 3184 for (k = 0; k < conf->copies; k++) 3185 if (r10_bio->devs[k].devnum == i) 3186 break; 3187 if (!test_bit(In_sync, 3188 &mirror->rdev->flags) 3189 && !rdev_set_badblocks( 3190 mirror->rdev, 3191 r10_bio->devs[k].addr, 3192 max_sync, 0)) 3193 any_working = 0; 3194 if (mirror->replacement && 3195 !rdev_set_badblocks( 3196 mirror->replacement, 3197 r10_bio->devs[k].addr, 3198 max_sync, 0)) 3199 any_working = 0; 3200 } 3201 if (!any_working) { 3202 if (!test_and_set_bit(MD_RECOVERY_INTR, 3203 &mddev->recovery)) 3204 printk(KERN_INFO "md/raid10:%s: insufficient " 3205 "working devices for recovery.\n", 3206 mdname(mddev)); 3207 mirror->recovery_disabled 3208 = mddev->recovery_disabled; 3209 } 3210 put_buf(r10_bio); 3211 if (rb2) 3212 atomic_dec(&rb2->remaining); 3213 r10_bio = rb2; 3214 break; 3215 } 3216 } 3217 if (biolist == NULL) { 3218 while (r10_bio) { 3219 struct r10bio *rb2 = r10_bio; 3220 r10_bio = (struct r10bio*) rb2->master_bio; 3221 rb2->master_bio = NULL; 3222 put_buf(rb2); 3223 } 3224 goto giveup; 3225 } 3226 } else { 3227 /* resync. Schedule a read for every block at this virt offset */ 3228 int count = 0; 3229 3230 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3231 3232 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3233 &sync_blocks, mddev->degraded) && 3234 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3235 &mddev->recovery)) { 3236 /* We can skip this block */ 3237 *skipped = 1; 3238 return sync_blocks + sectors_skipped; 3239 } 3240 if (sync_blocks < max_sync) 3241 max_sync = sync_blocks; 3242 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3243 r10_bio->state = 0; 3244 3245 r10_bio->mddev = mddev; 3246 atomic_set(&r10_bio->remaining, 0); 3247 raise_barrier(conf, 0); 3248 conf->next_resync = sector_nr; 3249 3250 r10_bio->master_bio = NULL; 3251 r10_bio->sector = sector_nr; 3252 set_bit(R10BIO_IsSync, &r10_bio->state); 3253 raid10_find_phys(conf, r10_bio); 3254 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3255 3256 for (i = 0; i < conf->copies; i++) { 3257 int d = r10_bio->devs[i].devnum; 3258 sector_t first_bad, sector; 3259 int bad_sectors; 3260 3261 if (r10_bio->devs[i].repl_bio) 3262 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3263 3264 bio = r10_bio->devs[i].bio; 3265 bio_reset(bio); 3266 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3267 if (conf->mirrors[d].rdev == NULL || 3268 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3269 continue; 3270 sector = r10_bio->devs[i].addr; 3271 if (is_badblock(conf->mirrors[d].rdev, 3272 sector, max_sync, 3273 &first_bad, &bad_sectors)) { 3274 if (first_bad > sector) 3275 max_sync = first_bad - sector; 3276 else { 3277 bad_sectors -= (sector - first_bad); 3278 if (max_sync > bad_sectors) 3279 max_sync = bad_sectors; 3280 continue; 3281 } 3282 } 3283 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3284 atomic_inc(&r10_bio->remaining); 3285 bio->bi_next = biolist; 3286 biolist = bio; 3287 bio->bi_private = r10_bio; 3288 bio->bi_end_io = end_sync_read; 3289 bio->bi_rw = READ; 3290 bio->bi_iter.bi_sector = sector + 3291 conf->mirrors[d].rdev->data_offset; 3292 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3293 count++; 3294 3295 if (conf->mirrors[d].replacement == NULL || 3296 test_bit(Faulty, 3297 &conf->mirrors[d].replacement->flags)) 3298 continue; 3299 3300 /* Need to set up for writing to the replacement */ 3301 bio = r10_bio->devs[i].repl_bio; 3302 bio_reset(bio); 3303 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3304 3305 sector = r10_bio->devs[i].addr; 3306 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3307 bio->bi_next = biolist; 3308 biolist = bio; 3309 bio->bi_private = r10_bio; 3310 bio->bi_end_io = end_sync_write; 3311 bio->bi_rw = WRITE; 3312 bio->bi_iter.bi_sector = sector + 3313 conf->mirrors[d].replacement->data_offset; 3314 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3315 count++; 3316 } 3317 3318 if (count < 2) { 3319 for (i=0; i<conf->copies; i++) { 3320 int d = r10_bio->devs[i].devnum; 3321 if (r10_bio->devs[i].bio->bi_end_io) 3322 rdev_dec_pending(conf->mirrors[d].rdev, 3323 mddev); 3324 if (r10_bio->devs[i].repl_bio && 3325 r10_bio->devs[i].repl_bio->bi_end_io) 3326 rdev_dec_pending( 3327 conf->mirrors[d].replacement, 3328 mddev); 3329 } 3330 put_buf(r10_bio); 3331 biolist = NULL; 3332 goto giveup; 3333 } 3334 } 3335 3336 nr_sectors = 0; 3337 if (sector_nr + max_sync < max_sector) 3338 max_sector = sector_nr + max_sync; 3339 do { 3340 struct page *page; 3341 int len = PAGE_SIZE; 3342 if (sector_nr + (len>>9) > max_sector) 3343 len = (max_sector - sector_nr) << 9; 3344 if (len == 0) 3345 break; 3346 for (bio= biolist ; bio ; bio=bio->bi_next) { 3347 struct bio *bio2; 3348 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3349 if (bio_add_page(bio, page, len, 0)) 3350 continue; 3351 3352 /* stop here */ 3353 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3354 for (bio2 = biolist; 3355 bio2 && bio2 != bio; 3356 bio2 = bio2->bi_next) { 3357 /* remove last page from this bio */ 3358 bio2->bi_vcnt--; 3359 bio2->bi_iter.bi_size -= len; 3360 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags); 3361 } 3362 goto bio_full; 3363 } 3364 nr_sectors += len>>9; 3365 sector_nr += len>>9; 3366 } while (biolist->bi_vcnt < RESYNC_PAGES); 3367 bio_full: 3368 r10_bio->sectors = nr_sectors; 3369 3370 while (biolist) { 3371 bio = biolist; 3372 biolist = biolist->bi_next; 3373 3374 bio->bi_next = NULL; 3375 r10_bio = bio->bi_private; 3376 r10_bio->sectors = nr_sectors; 3377 3378 if (bio->bi_end_io == end_sync_read) { 3379 md_sync_acct(bio->bi_bdev, nr_sectors); 3380 set_bit(BIO_UPTODATE, &bio->bi_flags); 3381 generic_make_request(bio); 3382 } 3383 } 3384 3385 if (sectors_skipped) 3386 /* pretend they weren't skipped, it makes 3387 * no important difference in this case 3388 */ 3389 md_done_sync(mddev, sectors_skipped, 1); 3390 3391 return sectors_skipped + nr_sectors; 3392 giveup: 3393 /* There is nowhere to write, so all non-sync 3394 * drives must be failed or in resync, all drives 3395 * have a bad block, so try the next chunk... 3396 */ 3397 if (sector_nr + max_sync < max_sector) 3398 max_sector = sector_nr + max_sync; 3399 3400 sectors_skipped += (max_sector - sector_nr); 3401 chunks_skipped ++; 3402 sector_nr = max_sector; 3403 goto skipped; 3404 } 3405 3406 static sector_t 3407 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3408 { 3409 sector_t size; 3410 struct r10conf *conf = mddev->private; 3411 3412 if (!raid_disks) 3413 raid_disks = min(conf->geo.raid_disks, 3414 conf->prev.raid_disks); 3415 if (!sectors) 3416 sectors = conf->dev_sectors; 3417 3418 size = sectors >> conf->geo.chunk_shift; 3419 sector_div(size, conf->geo.far_copies); 3420 size = size * raid_disks; 3421 sector_div(size, conf->geo.near_copies); 3422 3423 return size << conf->geo.chunk_shift; 3424 } 3425 3426 static void calc_sectors(struct r10conf *conf, sector_t size) 3427 { 3428 /* Calculate the number of sectors-per-device that will 3429 * actually be used, and set conf->dev_sectors and 3430 * conf->stride 3431 */ 3432 3433 size = size >> conf->geo.chunk_shift; 3434 sector_div(size, conf->geo.far_copies); 3435 size = size * conf->geo.raid_disks; 3436 sector_div(size, conf->geo.near_copies); 3437 /* 'size' is now the number of chunks in the array */ 3438 /* calculate "used chunks per device" */ 3439 size = size * conf->copies; 3440 3441 /* We need to round up when dividing by raid_disks to 3442 * get the stride size. 3443 */ 3444 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3445 3446 conf->dev_sectors = size << conf->geo.chunk_shift; 3447 3448 if (conf->geo.far_offset) 3449 conf->geo.stride = 1 << conf->geo.chunk_shift; 3450 else { 3451 sector_div(size, conf->geo.far_copies); 3452 conf->geo.stride = size << conf->geo.chunk_shift; 3453 } 3454 } 3455 3456 enum geo_type {geo_new, geo_old, geo_start}; 3457 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3458 { 3459 int nc, fc, fo; 3460 int layout, chunk, disks; 3461 switch (new) { 3462 case geo_old: 3463 layout = mddev->layout; 3464 chunk = mddev->chunk_sectors; 3465 disks = mddev->raid_disks - mddev->delta_disks; 3466 break; 3467 case geo_new: 3468 layout = mddev->new_layout; 3469 chunk = mddev->new_chunk_sectors; 3470 disks = mddev->raid_disks; 3471 break; 3472 default: /* avoid 'may be unused' warnings */ 3473 case geo_start: /* new when starting reshape - raid_disks not 3474 * updated yet. */ 3475 layout = mddev->new_layout; 3476 chunk = mddev->new_chunk_sectors; 3477 disks = mddev->raid_disks + mddev->delta_disks; 3478 break; 3479 } 3480 if (layout >> 18) 3481 return -1; 3482 if (chunk < (PAGE_SIZE >> 9) || 3483 !is_power_of_2(chunk)) 3484 return -2; 3485 nc = layout & 255; 3486 fc = (layout >> 8) & 255; 3487 fo = layout & (1<<16); 3488 geo->raid_disks = disks; 3489 geo->near_copies = nc; 3490 geo->far_copies = fc; 3491 geo->far_offset = fo; 3492 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; 3493 geo->chunk_mask = chunk - 1; 3494 geo->chunk_shift = ffz(~chunk); 3495 return nc*fc; 3496 } 3497 3498 static struct r10conf *setup_conf(struct mddev *mddev) 3499 { 3500 struct r10conf *conf = NULL; 3501 int err = -EINVAL; 3502 struct geom geo; 3503 int copies; 3504 3505 copies = setup_geo(&geo, mddev, geo_new); 3506 3507 if (copies == -2) { 3508 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3509 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3510 mdname(mddev), PAGE_SIZE); 3511 goto out; 3512 } 3513 3514 if (copies < 2 || copies > mddev->raid_disks) { 3515 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3516 mdname(mddev), mddev->new_layout); 3517 goto out; 3518 } 3519 3520 err = -ENOMEM; 3521 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3522 if (!conf) 3523 goto out; 3524 3525 /* FIXME calc properly */ 3526 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3527 max(0,-mddev->delta_disks)), 3528 GFP_KERNEL); 3529 if (!conf->mirrors) 3530 goto out; 3531 3532 conf->tmppage = alloc_page(GFP_KERNEL); 3533 if (!conf->tmppage) 3534 goto out; 3535 3536 conf->geo = geo; 3537 conf->copies = copies; 3538 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3539 r10bio_pool_free, conf); 3540 if (!conf->r10bio_pool) 3541 goto out; 3542 3543 calc_sectors(conf, mddev->dev_sectors); 3544 if (mddev->reshape_position == MaxSector) { 3545 conf->prev = conf->geo; 3546 conf->reshape_progress = MaxSector; 3547 } else { 3548 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3549 err = -EINVAL; 3550 goto out; 3551 } 3552 conf->reshape_progress = mddev->reshape_position; 3553 if (conf->prev.far_offset) 3554 conf->prev.stride = 1 << conf->prev.chunk_shift; 3555 else 3556 /* far_copies must be 1 */ 3557 conf->prev.stride = conf->dev_sectors; 3558 } 3559 spin_lock_init(&conf->device_lock); 3560 INIT_LIST_HEAD(&conf->retry_list); 3561 3562 spin_lock_init(&conf->resync_lock); 3563 init_waitqueue_head(&conf->wait_barrier); 3564 3565 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3566 if (!conf->thread) 3567 goto out; 3568 3569 conf->mddev = mddev; 3570 return conf; 3571 3572 out: 3573 if (err == -ENOMEM) 3574 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3575 mdname(mddev)); 3576 if (conf) { 3577 if (conf->r10bio_pool) 3578 mempool_destroy(conf->r10bio_pool); 3579 kfree(conf->mirrors); 3580 safe_put_page(conf->tmppage); 3581 kfree(conf); 3582 } 3583 return ERR_PTR(err); 3584 } 3585 3586 static int run(struct mddev *mddev) 3587 { 3588 struct r10conf *conf; 3589 int i, disk_idx, chunk_size; 3590 struct raid10_info *disk; 3591 struct md_rdev *rdev; 3592 sector_t size; 3593 sector_t min_offset_diff = 0; 3594 int first = 1; 3595 bool discard_supported = false; 3596 3597 if (mddev->private == NULL) { 3598 conf = setup_conf(mddev); 3599 if (IS_ERR(conf)) 3600 return PTR_ERR(conf); 3601 mddev->private = conf; 3602 } 3603 conf = mddev->private; 3604 if (!conf) 3605 goto out; 3606 3607 mddev->thread = conf->thread; 3608 conf->thread = NULL; 3609 3610 chunk_size = mddev->chunk_sectors << 9; 3611 if (mddev->queue) { 3612 blk_queue_max_discard_sectors(mddev->queue, 3613 mddev->chunk_sectors); 3614 blk_queue_max_write_same_sectors(mddev->queue, 0); 3615 blk_queue_io_min(mddev->queue, chunk_size); 3616 if (conf->geo.raid_disks % conf->geo.near_copies) 3617 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3618 else 3619 blk_queue_io_opt(mddev->queue, chunk_size * 3620 (conf->geo.raid_disks / conf->geo.near_copies)); 3621 } 3622 3623 rdev_for_each(rdev, mddev) { 3624 long long diff; 3625 struct request_queue *q; 3626 3627 disk_idx = rdev->raid_disk; 3628 if (disk_idx < 0) 3629 continue; 3630 if (disk_idx >= conf->geo.raid_disks && 3631 disk_idx >= conf->prev.raid_disks) 3632 continue; 3633 disk = conf->mirrors + disk_idx; 3634 3635 if (test_bit(Replacement, &rdev->flags)) { 3636 if (disk->replacement) 3637 goto out_free_conf; 3638 disk->replacement = rdev; 3639 } else { 3640 if (disk->rdev) 3641 goto out_free_conf; 3642 disk->rdev = rdev; 3643 } 3644 q = bdev_get_queue(rdev->bdev); 3645 if (q->merge_bvec_fn) 3646 mddev->merge_check_needed = 1; 3647 diff = (rdev->new_data_offset - rdev->data_offset); 3648 if (!mddev->reshape_backwards) 3649 diff = -diff; 3650 if (diff < 0) 3651 diff = 0; 3652 if (first || diff < min_offset_diff) 3653 min_offset_diff = diff; 3654 3655 if (mddev->gendisk) 3656 disk_stack_limits(mddev->gendisk, rdev->bdev, 3657 rdev->data_offset << 9); 3658 3659 disk->head_position = 0; 3660 3661 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3662 discard_supported = true; 3663 } 3664 3665 if (mddev->queue) { 3666 if (discard_supported) 3667 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3668 mddev->queue); 3669 else 3670 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3671 mddev->queue); 3672 } 3673 /* need to check that every block has at least one working mirror */ 3674 if (!enough(conf, -1)) { 3675 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3676 mdname(mddev)); 3677 goto out_free_conf; 3678 } 3679 3680 if (conf->reshape_progress != MaxSector) { 3681 /* must ensure that shape change is supported */ 3682 if (conf->geo.far_copies != 1 && 3683 conf->geo.far_offset == 0) 3684 goto out_free_conf; 3685 if (conf->prev.far_copies != 1 && 3686 conf->prev.far_offset == 0) 3687 goto out_free_conf; 3688 } 3689 3690 mddev->degraded = 0; 3691 for (i = 0; 3692 i < conf->geo.raid_disks 3693 || i < conf->prev.raid_disks; 3694 i++) { 3695 3696 disk = conf->mirrors + i; 3697 3698 if (!disk->rdev && disk->replacement) { 3699 /* The replacement is all we have - use it */ 3700 disk->rdev = disk->replacement; 3701 disk->replacement = NULL; 3702 clear_bit(Replacement, &disk->rdev->flags); 3703 } 3704 3705 if (!disk->rdev || 3706 !test_bit(In_sync, &disk->rdev->flags)) { 3707 disk->head_position = 0; 3708 mddev->degraded++; 3709 if (disk->rdev && 3710 disk->rdev->saved_raid_disk < 0) 3711 conf->fullsync = 1; 3712 } 3713 disk->recovery_disabled = mddev->recovery_disabled - 1; 3714 } 3715 3716 if (mddev->recovery_cp != MaxSector) 3717 printk(KERN_NOTICE "md/raid10:%s: not clean" 3718 " -- starting background reconstruction\n", 3719 mdname(mddev)); 3720 printk(KERN_INFO 3721 "md/raid10:%s: active with %d out of %d devices\n", 3722 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3723 conf->geo.raid_disks); 3724 /* 3725 * Ok, everything is just fine now 3726 */ 3727 mddev->dev_sectors = conf->dev_sectors; 3728 size = raid10_size(mddev, 0, 0); 3729 md_set_array_sectors(mddev, size); 3730 mddev->resync_max_sectors = size; 3731 3732 if (mddev->queue) { 3733 int stripe = conf->geo.raid_disks * 3734 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3735 3736 /* Calculate max read-ahead size. 3737 * We need to readahead at least twice a whole stripe.... 3738 * maybe... 3739 */ 3740 stripe /= conf->geo.near_copies; 3741 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3742 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3743 } 3744 3745 if (md_integrity_register(mddev)) 3746 goto out_free_conf; 3747 3748 if (conf->reshape_progress != MaxSector) { 3749 unsigned long before_length, after_length; 3750 3751 before_length = ((1 << conf->prev.chunk_shift) * 3752 conf->prev.far_copies); 3753 after_length = ((1 << conf->geo.chunk_shift) * 3754 conf->geo.far_copies); 3755 3756 if (max(before_length, after_length) > min_offset_diff) { 3757 /* This cannot work */ 3758 printk("md/raid10: offset difference not enough to continue reshape\n"); 3759 goto out_free_conf; 3760 } 3761 conf->offset_diff = min_offset_diff; 3762 3763 conf->reshape_safe = conf->reshape_progress; 3764 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3765 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3766 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3767 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3768 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3769 "reshape"); 3770 } 3771 3772 return 0; 3773 3774 out_free_conf: 3775 md_unregister_thread(&mddev->thread); 3776 if (conf->r10bio_pool) 3777 mempool_destroy(conf->r10bio_pool); 3778 safe_put_page(conf->tmppage); 3779 kfree(conf->mirrors); 3780 kfree(conf); 3781 mddev->private = NULL; 3782 out: 3783 return -EIO; 3784 } 3785 3786 static void raid10_free(struct mddev *mddev, void *priv) 3787 { 3788 struct r10conf *conf = priv; 3789 3790 if (conf->r10bio_pool) 3791 mempool_destroy(conf->r10bio_pool); 3792 safe_put_page(conf->tmppage); 3793 kfree(conf->mirrors); 3794 kfree(conf->mirrors_old); 3795 kfree(conf->mirrors_new); 3796 kfree(conf); 3797 } 3798 3799 static void raid10_quiesce(struct mddev *mddev, int state) 3800 { 3801 struct r10conf *conf = mddev->private; 3802 3803 switch(state) { 3804 case 1: 3805 raise_barrier(conf, 0); 3806 break; 3807 case 0: 3808 lower_barrier(conf); 3809 break; 3810 } 3811 } 3812 3813 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3814 { 3815 /* Resize of 'far' arrays is not supported. 3816 * For 'near' and 'offset' arrays we can set the 3817 * number of sectors used to be an appropriate multiple 3818 * of the chunk size. 3819 * For 'offset', this is far_copies*chunksize. 3820 * For 'near' the multiplier is the LCM of 3821 * near_copies and raid_disks. 3822 * So if far_copies > 1 && !far_offset, fail. 3823 * Else find LCM(raid_disks, near_copy)*far_copies and 3824 * multiply by chunk_size. Then round to this number. 3825 * This is mostly done by raid10_size() 3826 */ 3827 struct r10conf *conf = mddev->private; 3828 sector_t oldsize, size; 3829 3830 if (mddev->reshape_position != MaxSector) 3831 return -EBUSY; 3832 3833 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3834 return -EINVAL; 3835 3836 oldsize = raid10_size(mddev, 0, 0); 3837 size = raid10_size(mddev, sectors, 0); 3838 if (mddev->external_size && 3839 mddev->array_sectors > size) 3840 return -EINVAL; 3841 if (mddev->bitmap) { 3842 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3843 if (ret) 3844 return ret; 3845 } 3846 md_set_array_sectors(mddev, size); 3847 set_capacity(mddev->gendisk, mddev->array_sectors); 3848 revalidate_disk(mddev->gendisk); 3849 if (sectors > mddev->dev_sectors && 3850 mddev->recovery_cp > oldsize) { 3851 mddev->recovery_cp = oldsize; 3852 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3853 } 3854 calc_sectors(conf, sectors); 3855 mddev->dev_sectors = conf->dev_sectors; 3856 mddev->resync_max_sectors = size; 3857 return 0; 3858 } 3859 3860 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3861 { 3862 struct md_rdev *rdev; 3863 struct r10conf *conf; 3864 3865 if (mddev->degraded > 0) { 3866 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3867 mdname(mddev)); 3868 return ERR_PTR(-EINVAL); 3869 } 3870 sector_div(size, devs); 3871 3872 /* Set new parameters */ 3873 mddev->new_level = 10; 3874 /* new layout: far_copies = 1, near_copies = 2 */ 3875 mddev->new_layout = (1<<8) + 2; 3876 mddev->new_chunk_sectors = mddev->chunk_sectors; 3877 mddev->delta_disks = mddev->raid_disks; 3878 mddev->raid_disks *= 2; 3879 /* make sure it will be not marked as dirty */ 3880 mddev->recovery_cp = MaxSector; 3881 mddev->dev_sectors = size; 3882 3883 conf = setup_conf(mddev); 3884 if (!IS_ERR(conf)) { 3885 rdev_for_each(rdev, mddev) 3886 if (rdev->raid_disk >= 0) { 3887 rdev->new_raid_disk = rdev->raid_disk * 2; 3888 rdev->sectors = size; 3889 } 3890 conf->barrier = 1; 3891 } 3892 3893 return conf; 3894 } 3895 3896 static void *raid10_takeover(struct mddev *mddev) 3897 { 3898 struct r0conf *raid0_conf; 3899 3900 /* raid10 can take over: 3901 * raid0 - providing it has only two drives 3902 */ 3903 if (mddev->level == 0) { 3904 /* for raid0 takeover only one zone is supported */ 3905 raid0_conf = mddev->private; 3906 if (raid0_conf->nr_strip_zones > 1) { 3907 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3908 " with more than one zone.\n", 3909 mdname(mddev)); 3910 return ERR_PTR(-EINVAL); 3911 } 3912 return raid10_takeover_raid0(mddev, 3913 raid0_conf->strip_zone->zone_end, 3914 raid0_conf->strip_zone->nb_dev); 3915 } 3916 return ERR_PTR(-EINVAL); 3917 } 3918 3919 static int raid10_check_reshape(struct mddev *mddev) 3920 { 3921 /* Called when there is a request to change 3922 * - layout (to ->new_layout) 3923 * - chunk size (to ->new_chunk_sectors) 3924 * - raid_disks (by delta_disks) 3925 * or when trying to restart a reshape that was ongoing. 3926 * 3927 * We need to validate the request and possibly allocate 3928 * space if that might be an issue later. 3929 * 3930 * Currently we reject any reshape of a 'far' mode array, 3931 * allow chunk size to change if new is generally acceptable, 3932 * allow raid_disks to increase, and allow 3933 * a switch between 'near' mode and 'offset' mode. 3934 */ 3935 struct r10conf *conf = mddev->private; 3936 struct geom geo; 3937 3938 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3939 return -EINVAL; 3940 3941 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3942 /* mustn't change number of copies */ 3943 return -EINVAL; 3944 if (geo.far_copies > 1 && !geo.far_offset) 3945 /* Cannot switch to 'far' mode */ 3946 return -EINVAL; 3947 3948 if (mddev->array_sectors & geo.chunk_mask) 3949 /* not factor of array size */ 3950 return -EINVAL; 3951 3952 if (!enough(conf, -1)) 3953 return -EINVAL; 3954 3955 kfree(conf->mirrors_new); 3956 conf->mirrors_new = NULL; 3957 if (mddev->delta_disks > 0) { 3958 /* allocate new 'mirrors' list */ 3959 conf->mirrors_new = kzalloc( 3960 sizeof(struct raid10_info) 3961 *(mddev->raid_disks + 3962 mddev->delta_disks), 3963 GFP_KERNEL); 3964 if (!conf->mirrors_new) 3965 return -ENOMEM; 3966 } 3967 return 0; 3968 } 3969 3970 /* 3971 * Need to check if array has failed when deciding whether to: 3972 * - start an array 3973 * - remove non-faulty devices 3974 * - add a spare 3975 * - allow a reshape 3976 * This determination is simple when no reshape is happening. 3977 * However if there is a reshape, we need to carefully check 3978 * both the before and after sections. 3979 * This is because some failed devices may only affect one 3980 * of the two sections, and some non-in_sync devices may 3981 * be insync in the section most affected by failed devices. 3982 */ 3983 static int calc_degraded(struct r10conf *conf) 3984 { 3985 int degraded, degraded2; 3986 int i; 3987 3988 rcu_read_lock(); 3989 degraded = 0; 3990 /* 'prev' section first */ 3991 for (i = 0; i < conf->prev.raid_disks; i++) { 3992 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3993 if (!rdev || test_bit(Faulty, &rdev->flags)) 3994 degraded++; 3995 else if (!test_bit(In_sync, &rdev->flags)) 3996 /* When we can reduce the number of devices in 3997 * an array, this might not contribute to 3998 * 'degraded'. It does now. 3999 */ 4000 degraded++; 4001 } 4002 rcu_read_unlock(); 4003 if (conf->geo.raid_disks == conf->prev.raid_disks) 4004 return degraded; 4005 rcu_read_lock(); 4006 degraded2 = 0; 4007 for (i = 0; i < conf->geo.raid_disks; i++) { 4008 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4009 if (!rdev || test_bit(Faulty, &rdev->flags)) 4010 degraded2++; 4011 else if (!test_bit(In_sync, &rdev->flags)) { 4012 /* If reshape is increasing the number of devices, 4013 * this section has already been recovered, so 4014 * it doesn't contribute to degraded. 4015 * else it does. 4016 */ 4017 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4018 degraded2++; 4019 } 4020 } 4021 rcu_read_unlock(); 4022 if (degraded2 > degraded) 4023 return degraded2; 4024 return degraded; 4025 } 4026 4027 static int raid10_start_reshape(struct mddev *mddev) 4028 { 4029 /* A 'reshape' has been requested. This commits 4030 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4031 * This also checks if there are enough spares and adds them 4032 * to the array. 4033 * We currently require enough spares to make the final 4034 * array non-degraded. We also require that the difference 4035 * between old and new data_offset - on each device - is 4036 * enough that we never risk over-writing. 4037 */ 4038 4039 unsigned long before_length, after_length; 4040 sector_t min_offset_diff = 0; 4041 int first = 1; 4042 struct geom new; 4043 struct r10conf *conf = mddev->private; 4044 struct md_rdev *rdev; 4045 int spares = 0; 4046 int ret; 4047 4048 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4049 return -EBUSY; 4050 4051 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4052 return -EINVAL; 4053 4054 before_length = ((1 << conf->prev.chunk_shift) * 4055 conf->prev.far_copies); 4056 after_length = ((1 << conf->geo.chunk_shift) * 4057 conf->geo.far_copies); 4058 4059 rdev_for_each(rdev, mddev) { 4060 if (!test_bit(In_sync, &rdev->flags) 4061 && !test_bit(Faulty, &rdev->flags)) 4062 spares++; 4063 if (rdev->raid_disk >= 0) { 4064 long long diff = (rdev->new_data_offset 4065 - rdev->data_offset); 4066 if (!mddev->reshape_backwards) 4067 diff = -diff; 4068 if (diff < 0) 4069 diff = 0; 4070 if (first || diff < min_offset_diff) 4071 min_offset_diff = diff; 4072 } 4073 } 4074 4075 if (max(before_length, after_length) > min_offset_diff) 4076 return -EINVAL; 4077 4078 if (spares < mddev->delta_disks) 4079 return -EINVAL; 4080 4081 conf->offset_diff = min_offset_diff; 4082 spin_lock_irq(&conf->device_lock); 4083 if (conf->mirrors_new) { 4084 memcpy(conf->mirrors_new, conf->mirrors, 4085 sizeof(struct raid10_info)*conf->prev.raid_disks); 4086 smp_mb(); 4087 kfree(conf->mirrors_old); 4088 conf->mirrors_old = conf->mirrors; 4089 conf->mirrors = conf->mirrors_new; 4090 conf->mirrors_new = NULL; 4091 } 4092 setup_geo(&conf->geo, mddev, geo_start); 4093 smp_mb(); 4094 if (mddev->reshape_backwards) { 4095 sector_t size = raid10_size(mddev, 0, 0); 4096 if (size < mddev->array_sectors) { 4097 spin_unlock_irq(&conf->device_lock); 4098 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4099 mdname(mddev)); 4100 return -EINVAL; 4101 } 4102 mddev->resync_max_sectors = size; 4103 conf->reshape_progress = size; 4104 } else 4105 conf->reshape_progress = 0; 4106 spin_unlock_irq(&conf->device_lock); 4107 4108 if (mddev->delta_disks && mddev->bitmap) { 4109 ret = bitmap_resize(mddev->bitmap, 4110 raid10_size(mddev, 0, 4111 conf->geo.raid_disks), 4112 0, 0); 4113 if (ret) 4114 goto abort; 4115 } 4116 if (mddev->delta_disks > 0) { 4117 rdev_for_each(rdev, mddev) 4118 if (rdev->raid_disk < 0 && 4119 !test_bit(Faulty, &rdev->flags)) { 4120 if (raid10_add_disk(mddev, rdev) == 0) { 4121 if (rdev->raid_disk >= 4122 conf->prev.raid_disks) 4123 set_bit(In_sync, &rdev->flags); 4124 else 4125 rdev->recovery_offset = 0; 4126 4127 if (sysfs_link_rdev(mddev, rdev)) 4128 /* Failure here is OK */; 4129 } 4130 } else if (rdev->raid_disk >= conf->prev.raid_disks 4131 && !test_bit(Faulty, &rdev->flags)) { 4132 /* This is a spare that was manually added */ 4133 set_bit(In_sync, &rdev->flags); 4134 } 4135 } 4136 /* When a reshape changes the number of devices, 4137 * ->degraded is measured against the larger of the 4138 * pre and post numbers. 4139 */ 4140 spin_lock_irq(&conf->device_lock); 4141 mddev->degraded = calc_degraded(conf); 4142 spin_unlock_irq(&conf->device_lock); 4143 mddev->raid_disks = conf->geo.raid_disks; 4144 mddev->reshape_position = conf->reshape_progress; 4145 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4146 4147 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4148 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4149 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4150 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4151 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4152 4153 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4154 "reshape"); 4155 if (!mddev->sync_thread) { 4156 ret = -EAGAIN; 4157 goto abort; 4158 } 4159 conf->reshape_checkpoint = jiffies; 4160 md_wakeup_thread(mddev->sync_thread); 4161 md_new_event(mddev); 4162 return 0; 4163 4164 abort: 4165 mddev->recovery = 0; 4166 spin_lock_irq(&conf->device_lock); 4167 conf->geo = conf->prev; 4168 mddev->raid_disks = conf->geo.raid_disks; 4169 rdev_for_each(rdev, mddev) 4170 rdev->new_data_offset = rdev->data_offset; 4171 smp_wmb(); 4172 conf->reshape_progress = MaxSector; 4173 mddev->reshape_position = MaxSector; 4174 spin_unlock_irq(&conf->device_lock); 4175 return ret; 4176 } 4177 4178 /* Calculate the last device-address that could contain 4179 * any block from the chunk that includes the array-address 's' 4180 * and report the next address. 4181 * i.e. the address returned will be chunk-aligned and after 4182 * any data that is in the chunk containing 's'. 4183 */ 4184 static sector_t last_dev_address(sector_t s, struct geom *geo) 4185 { 4186 s = (s | geo->chunk_mask) + 1; 4187 s >>= geo->chunk_shift; 4188 s *= geo->near_copies; 4189 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4190 s *= geo->far_copies; 4191 s <<= geo->chunk_shift; 4192 return s; 4193 } 4194 4195 /* Calculate the first device-address that could contain 4196 * any block from the chunk that includes the array-address 's'. 4197 * This too will be the start of a chunk 4198 */ 4199 static sector_t first_dev_address(sector_t s, struct geom *geo) 4200 { 4201 s >>= geo->chunk_shift; 4202 s *= geo->near_copies; 4203 sector_div(s, geo->raid_disks); 4204 s *= geo->far_copies; 4205 s <<= geo->chunk_shift; 4206 return s; 4207 } 4208 4209 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4210 int *skipped) 4211 { 4212 /* We simply copy at most one chunk (smallest of old and new) 4213 * at a time, possibly less if that exceeds RESYNC_PAGES, 4214 * or we hit a bad block or something. 4215 * This might mean we pause for normal IO in the middle of 4216 * a chunk, but that is not a problem was mddev->reshape_position 4217 * can record any location. 4218 * 4219 * If we will want to write to a location that isn't 4220 * yet recorded as 'safe' (i.e. in metadata on disk) then 4221 * we need to flush all reshape requests and update the metadata. 4222 * 4223 * When reshaping forwards (e.g. to more devices), we interpret 4224 * 'safe' as the earliest block which might not have been copied 4225 * down yet. We divide this by previous stripe size and multiply 4226 * by previous stripe length to get lowest device offset that we 4227 * cannot write to yet. 4228 * We interpret 'sector_nr' as an address that we want to write to. 4229 * From this we use last_device_address() to find where we might 4230 * write to, and first_device_address on the 'safe' position. 4231 * If this 'next' write position is after the 'safe' position, 4232 * we must update the metadata to increase the 'safe' position. 4233 * 4234 * When reshaping backwards, we round in the opposite direction 4235 * and perform the reverse test: next write position must not be 4236 * less than current safe position. 4237 * 4238 * In all this the minimum difference in data offsets 4239 * (conf->offset_diff - always positive) allows a bit of slack, 4240 * so next can be after 'safe', but not by more than offset_disk 4241 * 4242 * We need to prepare all the bios here before we start any IO 4243 * to ensure the size we choose is acceptable to all devices. 4244 * The means one for each copy for write-out and an extra one for 4245 * read-in. 4246 * We store the read-in bio in ->master_bio and the others in 4247 * ->devs[x].bio and ->devs[x].repl_bio. 4248 */ 4249 struct r10conf *conf = mddev->private; 4250 struct r10bio *r10_bio; 4251 sector_t next, safe, last; 4252 int max_sectors; 4253 int nr_sectors; 4254 int s; 4255 struct md_rdev *rdev; 4256 int need_flush = 0; 4257 struct bio *blist; 4258 struct bio *bio, *read_bio; 4259 int sectors_done = 0; 4260 4261 if (sector_nr == 0) { 4262 /* If restarting in the middle, skip the initial sectors */ 4263 if (mddev->reshape_backwards && 4264 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4265 sector_nr = (raid10_size(mddev, 0, 0) 4266 - conf->reshape_progress); 4267 } else if (!mddev->reshape_backwards && 4268 conf->reshape_progress > 0) 4269 sector_nr = conf->reshape_progress; 4270 if (sector_nr) { 4271 mddev->curr_resync_completed = sector_nr; 4272 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4273 *skipped = 1; 4274 return sector_nr; 4275 } 4276 } 4277 4278 /* We don't use sector_nr to track where we are up to 4279 * as that doesn't work well for ->reshape_backwards. 4280 * So just use ->reshape_progress. 4281 */ 4282 if (mddev->reshape_backwards) { 4283 /* 'next' is the earliest device address that we might 4284 * write to for this chunk in the new layout 4285 */ 4286 next = first_dev_address(conf->reshape_progress - 1, 4287 &conf->geo); 4288 4289 /* 'safe' is the last device address that we might read from 4290 * in the old layout after a restart 4291 */ 4292 safe = last_dev_address(conf->reshape_safe - 1, 4293 &conf->prev); 4294 4295 if (next + conf->offset_diff < safe) 4296 need_flush = 1; 4297 4298 last = conf->reshape_progress - 1; 4299 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4300 & conf->prev.chunk_mask); 4301 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4302 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4303 } else { 4304 /* 'next' is after the last device address that we 4305 * might write to for this chunk in the new layout 4306 */ 4307 next = last_dev_address(conf->reshape_progress, &conf->geo); 4308 4309 /* 'safe' is the earliest device address that we might 4310 * read from in the old layout after a restart 4311 */ 4312 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4313 4314 /* Need to update metadata if 'next' might be beyond 'safe' 4315 * as that would possibly corrupt data 4316 */ 4317 if (next > safe + conf->offset_diff) 4318 need_flush = 1; 4319 4320 sector_nr = conf->reshape_progress; 4321 last = sector_nr | (conf->geo.chunk_mask 4322 & conf->prev.chunk_mask); 4323 4324 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4325 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4326 } 4327 4328 if (need_flush || 4329 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4330 /* Need to update reshape_position in metadata */ 4331 wait_barrier(conf); 4332 mddev->reshape_position = conf->reshape_progress; 4333 if (mddev->reshape_backwards) 4334 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4335 - conf->reshape_progress; 4336 else 4337 mddev->curr_resync_completed = conf->reshape_progress; 4338 conf->reshape_checkpoint = jiffies; 4339 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4340 md_wakeup_thread(mddev->thread); 4341 wait_event(mddev->sb_wait, mddev->flags == 0 || 4342 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4343 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4344 allow_barrier(conf); 4345 return sectors_done; 4346 } 4347 conf->reshape_safe = mddev->reshape_position; 4348 allow_barrier(conf); 4349 } 4350 4351 read_more: 4352 /* Now schedule reads for blocks from sector_nr to last */ 4353 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4354 r10_bio->state = 0; 4355 raise_barrier(conf, sectors_done != 0); 4356 atomic_set(&r10_bio->remaining, 0); 4357 r10_bio->mddev = mddev; 4358 r10_bio->sector = sector_nr; 4359 set_bit(R10BIO_IsReshape, &r10_bio->state); 4360 r10_bio->sectors = last - sector_nr + 1; 4361 rdev = read_balance(conf, r10_bio, &max_sectors); 4362 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4363 4364 if (!rdev) { 4365 /* Cannot read from here, so need to record bad blocks 4366 * on all the target devices. 4367 */ 4368 // FIXME 4369 mempool_free(r10_bio, conf->r10buf_pool); 4370 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4371 return sectors_done; 4372 } 4373 4374 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4375 4376 read_bio->bi_bdev = rdev->bdev; 4377 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4378 + rdev->data_offset); 4379 read_bio->bi_private = r10_bio; 4380 read_bio->bi_end_io = end_sync_read; 4381 read_bio->bi_rw = READ; 4382 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4383 __set_bit(BIO_UPTODATE, &read_bio->bi_flags); 4384 read_bio->bi_vcnt = 0; 4385 read_bio->bi_iter.bi_size = 0; 4386 r10_bio->master_bio = read_bio; 4387 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4388 4389 /* Now find the locations in the new layout */ 4390 __raid10_find_phys(&conf->geo, r10_bio); 4391 4392 blist = read_bio; 4393 read_bio->bi_next = NULL; 4394 4395 for (s = 0; s < conf->copies*2; s++) { 4396 struct bio *b; 4397 int d = r10_bio->devs[s/2].devnum; 4398 struct md_rdev *rdev2; 4399 if (s&1) { 4400 rdev2 = conf->mirrors[d].replacement; 4401 b = r10_bio->devs[s/2].repl_bio; 4402 } else { 4403 rdev2 = conf->mirrors[d].rdev; 4404 b = r10_bio->devs[s/2].bio; 4405 } 4406 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4407 continue; 4408 4409 bio_reset(b); 4410 b->bi_bdev = rdev2->bdev; 4411 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4412 rdev2->new_data_offset; 4413 b->bi_private = r10_bio; 4414 b->bi_end_io = end_reshape_write; 4415 b->bi_rw = WRITE; 4416 b->bi_next = blist; 4417 blist = b; 4418 } 4419 4420 /* Now add as many pages as possible to all of these bios. */ 4421 4422 nr_sectors = 0; 4423 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4424 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4425 int len = (max_sectors - s) << 9; 4426 if (len > PAGE_SIZE) 4427 len = PAGE_SIZE; 4428 for (bio = blist; bio ; bio = bio->bi_next) { 4429 struct bio *bio2; 4430 if (bio_add_page(bio, page, len, 0)) 4431 continue; 4432 4433 /* Didn't fit, must stop */ 4434 for (bio2 = blist; 4435 bio2 && bio2 != bio; 4436 bio2 = bio2->bi_next) { 4437 /* Remove last page from this bio */ 4438 bio2->bi_vcnt--; 4439 bio2->bi_iter.bi_size -= len; 4440 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags); 4441 } 4442 goto bio_full; 4443 } 4444 sector_nr += len >> 9; 4445 nr_sectors += len >> 9; 4446 } 4447 bio_full: 4448 r10_bio->sectors = nr_sectors; 4449 4450 /* Now submit the read */ 4451 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4452 atomic_inc(&r10_bio->remaining); 4453 read_bio->bi_next = NULL; 4454 generic_make_request(read_bio); 4455 sector_nr += nr_sectors; 4456 sectors_done += nr_sectors; 4457 if (sector_nr <= last) 4458 goto read_more; 4459 4460 /* Now that we have done the whole section we can 4461 * update reshape_progress 4462 */ 4463 if (mddev->reshape_backwards) 4464 conf->reshape_progress -= sectors_done; 4465 else 4466 conf->reshape_progress += sectors_done; 4467 4468 return sectors_done; 4469 } 4470 4471 static void end_reshape_request(struct r10bio *r10_bio); 4472 static int handle_reshape_read_error(struct mddev *mddev, 4473 struct r10bio *r10_bio); 4474 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4475 { 4476 /* Reshape read completed. Hopefully we have a block 4477 * to write out. 4478 * If we got a read error then we do sync 1-page reads from 4479 * elsewhere until we find the data - or give up. 4480 */ 4481 struct r10conf *conf = mddev->private; 4482 int s; 4483 4484 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4485 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4486 /* Reshape has been aborted */ 4487 md_done_sync(mddev, r10_bio->sectors, 0); 4488 return; 4489 } 4490 4491 /* We definitely have the data in the pages, schedule the 4492 * writes. 4493 */ 4494 atomic_set(&r10_bio->remaining, 1); 4495 for (s = 0; s < conf->copies*2; s++) { 4496 struct bio *b; 4497 int d = r10_bio->devs[s/2].devnum; 4498 struct md_rdev *rdev; 4499 if (s&1) { 4500 rdev = conf->mirrors[d].replacement; 4501 b = r10_bio->devs[s/2].repl_bio; 4502 } else { 4503 rdev = conf->mirrors[d].rdev; 4504 b = r10_bio->devs[s/2].bio; 4505 } 4506 if (!rdev || test_bit(Faulty, &rdev->flags)) 4507 continue; 4508 atomic_inc(&rdev->nr_pending); 4509 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4510 atomic_inc(&r10_bio->remaining); 4511 b->bi_next = NULL; 4512 generic_make_request(b); 4513 } 4514 end_reshape_request(r10_bio); 4515 } 4516 4517 static void end_reshape(struct r10conf *conf) 4518 { 4519 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4520 return; 4521 4522 spin_lock_irq(&conf->device_lock); 4523 conf->prev = conf->geo; 4524 md_finish_reshape(conf->mddev); 4525 smp_wmb(); 4526 conf->reshape_progress = MaxSector; 4527 spin_unlock_irq(&conf->device_lock); 4528 4529 /* read-ahead size must cover two whole stripes, which is 4530 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4531 */ 4532 if (conf->mddev->queue) { 4533 int stripe = conf->geo.raid_disks * 4534 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4535 stripe /= conf->geo.near_copies; 4536 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4537 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4538 } 4539 conf->fullsync = 0; 4540 } 4541 4542 static int handle_reshape_read_error(struct mddev *mddev, 4543 struct r10bio *r10_bio) 4544 { 4545 /* Use sync reads to get the blocks from somewhere else */ 4546 int sectors = r10_bio->sectors; 4547 struct r10conf *conf = mddev->private; 4548 struct { 4549 struct r10bio r10_bio; 4550 struct r10dev devs[conf->copies]; 4551 } on_stack; 4552 struct r10bio *r10b = &on_stack.r10_bio; 4553 int slot = 0; 4554 int idx = 0; 4555 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4556 4557 r10b->sector = r10_bio->sector; 4558 __raid10_find_phys(&conf->prev, r10b); 4559 4560 while (sectors) { 4561 int s = sectors; 4562 int success = 0; 4563 int first_slot = slot; 4564 4565 if (s > (PAGE_SIZE >> 9)) 4566 s = PAGE_SIZE >> 9; 4567 4568 while (!success) { 4569 int d = r10b->devs[slot].devnum; 4570 struct md_rdev *rdev = conf->mirrors[d].rdev; 4571 sector_t addr; 4572 if (rdev == NULL || 4573 test_bit(Faulty, &rdev->flags) || 4574 !test_bit(In_sync, &rdev->flags)) 4575 goto failed; 4576 4577 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4578 success = sync_page_io(rdev, 4579 addr, 4580 s << 9, 4581 bvec[idx].bv_page, 4582 READ, false); 4583 if (success) 4584 break; 4585 failed: 4586 slot++; 4587 if (slot >= conf->copies) 4588 slot = 0; 4589 if (slot == first_slot) 4590 break; 4591 } 4592 if (!success) { 4593 /* couldn't read this block, must give up */ 4594 set_bit(MD_RECOVERY_INTR, 4595 &mddev->recovery); 4596 return -EIO; 4597 } 4598 sectors -= s; 4599 idx++; 4600 } 4601 return 0; 4602 } 4603 4604 static void end_reshape_write(struct bio *bio, int error) 4605 { 4606 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4607 struct r10bio *r10_bio = bio->bi_private; 4608 struct mddev *mddev = r10_bio->mddev; 4609 struct r10conf *conf = mddev->private; 4610 int d; 4611 int slot; 4612 int repl; 4613 struct md_rdev *rdev = NULL; 4614 4615 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4616 if (repl) 4617 rdev = conf->mirrors[d].replacement; 4618 if (!rdev) { 4619 smp_mb(); 4620 rdev = conf->mirrors[d].rdev; 4621 } 4622 4623 if (!uptodate) { 4624 /* FIXME should record badblock */ 4625 md_error(mddev, rdev); 4626 } 4627 4628 rdev_dec_pending(rdev, mddev); 4629 end_reshape_request(r10_bio); 4630 } 4631 4632 static void end_reshape_request(struct r10bio *r10_bio) 4633 { 4634 if (!atomic_dec_and_test(&r10_bio->remaining)) 4635 return; 4636 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4637 bio_put(r10_bio->master_bio); 4638 put_buf(r10_bio); 4639 } 4640 4641 static void raid10_finish_reshape(struct mddev *mddev) 4642 { 4643 struct r10conf *conf = mddev->private; 4644 4645 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4646 return; 4647 4648 if (mddev->delta_disks > 0) { 4649 sector_t size = raid10_size(mddev, 0, 0); 4650 md_set_array_sectors(mddev, size); 4651 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4652 mddev->recovery_cp = mddev->resync_max_sectors; 4653 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4654 } 4655 mddev->resync_max_sectors = size; 4656 set_capacity(mddev->gendisk, mddev->array_sectors); 4657 revalidate_disk(mddev->gendisk); 4658 } else { 4659 int d; 4660 for (d = conf->geo.raid_disks ; 4661 d < conf->geo.raid_disks - mddev->delta_disks; 4662 d++) { 4663 struct md_rdev *rdev = conf->mirrors[d].rdev; 4664 if (rdev) 4665 clear_bit(In_sync, &rdev->flags); 4666 rdev = conf->mirrors[d].replacement; 4667 if (rdev) 4668 clear_bit(In_sync, &rdev->flags); 4669 } 4670 } 4671 mddev->layout = mddev->new_layout; 4672 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4673 mddev->reshape_position = MaxSector; 4674 mddev->delta_disks = 0; 4675 mddev->reshape_backwards = 0; 4676 } 4677 4678 static struct md_personality raid10_personality = 4679 { 4680 .name = "raid10", 4681 .level = 10, 4682 .owner = THIS_MODULE, 4683 .make_request = make_request, 4684 .run = run, 4685 .free = raid10_free, 4686 .status = status, 4687 .error_handler = error, 4688 .hot_add_disk = raid10_add_disk, 4689 .hot_remove_disk= raid10_remove_disk, 4690 .spare_active = raid10_spare_active, 4691 .sync_request = sync_request, 4692 .quiesce = raid10_quiesce, 4693 .size = raid10_size, 4694 .resize = raid10_resize, 4695 .takeover = raid10_takeover, 4696 .check_reshape = raid10_check_reshape, 4697 .start_reshape = raid10_start_reshape, 4698 .finish_reshape = raid10_finish_reshape, 4699 .congested = raid10_congested, 4700 .mergeable_bvec = raid10_mergeable_bvec, 4701 }; 4702 4703 static int __init raid_init(void) 4704 { 4705 return register_md_personality(&raid10_personality); 4706 } 4707 4708 static void raid_exit(void) 4709 { 4710 unregister_md_personality(&raid10_personality); 4711 } 4712 4713 module_init(raid_init); 4714 module_exit(raid_exit); 4715 MODULE_LICENSE("GPL"); 4716 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4717 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4718 MODULE_ALIAS("md-raid10"); 4719 MODULE_ALIAS("md-level-10"); 4720 4721 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4722