1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 23 #define RAID_1_10_NAME "raid10" 24 #include "raid10.h" 25 #include "raid0.h" 26 #include "md-bitmap.h" 27 28 /* 29 * RAID10 provides a combination of RAID0 and RAID1 functionality. 30 * The layout of data is defined by 31 * chunk_size 32 * raid_disks 33 * near_copies (stored in low byte of layout) 34 * far_copies (stored in second byte of layout) 35 * far_offset (stored in bit 16 of layout ) 36 * use_far_sets (stored in bit 17 of layout ) 37 * use_far_sets_bugfixed (stored in bit 18 of layout ) 38 * 39 * The data to be stored is divided into chunks using chunksize. Each device 40 * is divided into far_copies sections. In each section, chunks are laid out 41 * in a style similar to raid0, but near_copies copies of each chunk is stored 42 * (each on a different drive). The starting device for each section is offset 43 * near_copies from the starting device of the previous section. Thus there 44 * are (near_copies * far_copies) of each chunk, and each is on a different 45 * drive. near_copies and far_copies must be at least one, and their product 46 * is at most raid_disks. 47 * 48 * If far_offset is true, then the far_copies are handled a bit differently. 49 * The copies are still in different stripes, but instead of being very far 50 * apart on disk, there are adjacent stripes. 51 * 52 * The far and offset algorithms are handled slightly differently if 53 * 'use_far_sets' is true. In this case, the array's devices are grouped into 54 * sets that are (near_copies * far_copies) in size. The far copied stripes 55 * are still shifted by 'near_copies' devices, but this shifting stays confined 56 * to the set rather than the entire array. This is done to improve the number 57 * of device combinations that can fail without causing the array to fail. 58 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 59 * on a device): 60 * A B C D A B C D E 61 * ... ... 62 * D A B C E A B C D 63 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 64 * [A B] [C D] [A B] [C D E] 65 * |...| |...| |...| | ... | 66 * [B A] [D C] [B A] [E C D] 67 */ 68 69 static void allow_barrier(struct r10conf *conf); 70 static void lower_barrier(struct r10conf *conf); 71 static int _enough(struct r10conf *conf, int previous, int ignore); 72 static int enough(struct r10conf *conf, int ignore); 73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 74 int *skipped); 75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 76 static void end_reshape_write(struct bio *bio); 77 static void end_reshape(struct r10conf *conf); 78 79 #include "raid1-10.c" 80 81 #define NULL_CMD 82 #define cmd_before(conf, cmd) \ 83 do { \ 84 write_sequnlock_irq(&(conf)->resync_lock); \ 85 cmd; \ 86 } while (0) 87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock) 88 89 #define wait_event_barrier_cmd(conf, cond, cmd) \ 90 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \ 91 cmd_after(conf)) 92 93 #define wait_event_barrier(conf, cond) \ 94 wait_event_barrier_cmd(conf, cond, NULL_CMD) 95 96 /* 97 * for resync bio, r10bio pointer can be retrieved from the per-bio 98 * 'struct resync_pages'. 99 */ 100 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 101 { 102 return get_resync_pages(bio)->raid_bio; 103 } 104 105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 106 { 107 struct r10conf *conf = data; 108 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 109 110 /* allocate a r10bio with room for raid_disks entries in the 111 * bios array */ 112 return kzalloc(size, gfp_flags); 113 } 114 115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 116 /* amount of memory to reserve for resync requests */ 117 #define RESYNC_WINDOW (1024*1024) 118 /* maximum number of concurrent requests, memory permitting */ 119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 122 123 /* 124 * When performing a resync, we need to read and compare, so 125 * we need as many pages are there are copies. 126 * When performing a recovery, we need 2 bios, one for read, 127 * one for write (we recover only one drive per r10buf) 128 * 129 */ 130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct r10conf *conf = data; 133 struct r10bio *r10_bio; 134 struct bio *bio; 135 int j; 136 int nalloc, nalloc_rp; 137 struct resync_pages *rps; 138 139 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 140 if (!r10_bio) 141 return NULL; 142 143 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 144 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 145 nalloc = conf->copies; /* resync */ 146 else 147 nalloc = 2; /* recovery */ 148 149 /* allocate once for all bios */ 150 if (!conf->have_replacement) 151 nalloc_rp = nalloc; 152 else 153 nalloc_rp = nalloc * 2; 154 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 155 if (!rps) 156 goto out_free_r10bio; 157 158 /* 159 * Allocate bios. 160 */ 161 for (j = nalloc ; j-- ; ) { 162 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 163 if (!bio) 164 goto out_free_bio; 165 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 166 r10_bio->devs[j].bio = bio; 167 if (!conf->have_replacement) 168 continue; 169 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 170 if (!bio) 171 goto out_free_bio; 172 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 173 r10_bio->devs[j].repl_bio = bio; 174 } 175 /* 176 * Allocate RESYNC_PAGES data pages and attach them 177 * where needed. 178 */ 179 for (j = 0; j < nalloc; j++) { 180 struct bio *rbio = r10_bio->devs[j].repl_bio; 181 struct resync_pages *rp, *rp_repl; 182 183 rp = &rps[j]; 184 if (rbio) 185 rp_repl = &rps[nalloc + j]; 186 187 bio = r10_bio->devs[j].bio; 188 189 if (!j || test_bit(MD_RECOVERY_SYNC, 190 &conf->mddev->recovery)) { 191 if (resync_alloc_pages(rp, gfp_flags)) 192 goto out_free_pages; 193 } else { 194 memcpy(rp, &rps[0], sizeof(*rp)); 195 resync_get_all_pages(rp); 196 } 197 198 rp->raid_bio = r10_bio; 199 bio->bi_private = rp; 200 if (rbio) { 201 memcpy(rp_repl, rp, sizeof(*rp)); 202 rbio->bi_private = rp_repl; 203 } 204 } 205 206 return r10_bio; 207 208 out_free_pages: 209 while (--j >= 0) 210 resync_free_pages(&rps[j]); 211 212 j = 0; 213 out_free_bio: 214 for ( ; j < nalloc; j++) { 215 if (r10_bio->devs[j].bio) 216 bio_uninit(r10_bio->devs[j].bio); 217 kfree(r10_bio->devs[j].bio); 218 if (r10_bio->devs[j].repl_bio) 219 bio_uninit(r10_bio->devs[j].repl_bio); 220 kfree(r10_bio->devs[j].repl_bio); 221 } 222 kfree(rps); 223 out_free_r10bio: 224 rbio_pool_free(r10_bio, conf); 225 return NULL; 226 } 227 228 static void r10buf_pool_free(void *__r10_bio, void *data) 229 { 230 struct r10conf *conf = data; 231 struct r10bio *r10bio = __r10_bio; 232 int j; 233 struct resync_pages *rp = NULL; 234 235 for (j = conf->copies; j--; ) { 236 struct bio *bio = r10bio->devs[j].bio; 237 238 if (bio) { 239 rp = get_resync_pages(bio); 240 resync_free_pages(rp); 241 bio_uninit(bio); 242 kfree(bio); 243 } 244 245 bio = r10bio->devs[j].repl_bio; 246 if (bio) { 247 bio_uninit(bio); 248 kfree(bio); 249 } 250 } 251 252 /* resync pages array stored in the 1st bio's .bi_private */ 253 kfree(rp); 254 255 rbio_pool_free(r10bio, conf); 256 } 257 258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 259 { 260 int i; 261 262 for (i = 0; i < conf->geo.raid_disks; i++) { 263 struct bio **bio = & r10_bio->devs[i].bio; 264 if (!BIO_SPECIAL(*bio)) 265 bio_put(*bio); 266 *bio = NULL; 267 bio = &r10_bio->devs[i].repl_bio; 268 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 269 bio_put(*bio); 270 *bio = NULL; 271 } 272 } 273 274 static void free_r10bio(struct r10bio *r10_bio) 275 { 276 struct r10conf *conf = r10_bio->mddev->private; 277 278 put_all_bios(conf, r10_bio); 279 mempool_free(r10_bio, &conf->r10bio_pool); 280 } 281 282 static void put_buf(struct r10bio *r10_bio) 283 { 284 struct r10conf *conf = r10_bio->mddev->private; 285 286 mempool_free(r10_bio, &conf->r10buf_pool); 287 288 lower_barrier(conf); 289 } 290 291 static void wake_up_barrier(struct r10conf *conf) 292 { 293 if (wq_has_sleeper(&conf->wait_barrier)) 294 wake_up(&conf->wait_barrier); 295 } 296 297 static void reschedule_retry(struct r10bio *r10_bio) 298 { 299 unsigned long flags; 300 struct mddev *mddev = r10_bio->mddev; 301 struct r10conf *conf = mddev->private; 302 303 spin_lock_irqsave(&conf->device_lock, flags); 304 list_add(&r10_bio->retry_list, &conf->retry_list); 305 conf->nr_queued ++; 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 308 /* wake up frozen array... */ 309 wake_up(&conf->wait_barrier); 310 311 md_wakeup_thread(mddev->thread); 312 } 313 314 /* 315 * raid_end_bio_io() is called when we have finished servicing a mirrored 316 * operation and are ready to return a success/failure code to the buffer 317 * cache layer. 318 */ 319 static void raid_end_bio_io(struct r10bio *r10_bio) 320 { 321 struct bio *bio = r10_bio->master_bio; 322 struct r10conf *conf = r10_bio->mddev->private; 323 324 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 325 bio->bi_status = BLK_STS_IOERR; 326 327 bio_endio(bio); 328 /* 329 * Wake up any possible resync thread that waits for the device 330 * to go idle. 331 */ 332 allow_barrier(conf); 333 334 free_r10bio(r10_bio); 335 } 336 337 /* 338 * Update disk head position estimator based on IRQ completion info. 339 */ 340 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 341 { 342 struct r10conf *conf = r10_bio->mddev->private; 343 344 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 345 r10_bio->devs[slot].addr + (r10_bio->sectors); 346 } 347 348 /* 349 * Find the disk number which triggered given bio 350 */ 351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 352 struct bio *bio, int *slotp, int *replp) 353 { 354 int slot; 355 int repl = 0; 356 357 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 358 if (r10_bio->devs[slot].bio == bio) 359 break; 360 if (r10_bio->devs[slot].repl_bio == bio) { 361 repl = 1; 362 break; 363 } 364 } 365 366 update_head_pos(slot, r10_bio); 367 368 if (slotp) 369 *slotp = slot; 370 if (replp) 371 *replp = repl; 372 return r10_bio->devs[slot].devnum; 373 } 374 375 static void raid10_end_read_request(struct bio *bio) 376 { 377 int uptodate = !bio->bi_status; 378 struct r10bio *r10_bio = bio->bi_private; 379 int slot; 380 struct md_rdev *rdev; 381 struct r10conf *conf = r10_bio->mddev->private; 382 383 slot = r10_bio->read_slot; 384 rdev = r10_bio->devs[slot].rdev; 385 /* 386 * this branch is our 'one mirror IO has finished' event handler: 387 */ 388 update_head_pos(slot, r10_bio); 389 390 if (uptodate) { 391 /* 392 * Set R10BIO_Uptodate in our master bio, so that 393 * we will return a good error code to the higher 394 * levels even if IO on some other mirrored buffer fails. 395 * 396 * The 'master' represents the composite IO operation to 397 * user-side. So if something waits for IO, then it will 398 * wait for the 'master' bio. 399 */ 400 set_bit(R10BIO_Uptodate, &r10_bio->state); 401 } else { 402 /* If all other devices that store this block have 403 * failed, we want to return the error upwards rather 404 * than fail the last device. Here we redefine 405 * "uptodate" to mean "Don't want to retry" 406 */ 407 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 408 rdev->raid_disk)) 409 uptodate = 1; 410 } 411 if (uptodate) { 412 raid_end_bio_io(r10_bio); 413 rdev_dec_pending(rdev, conf->mddev); 414 } else { 415 /* 416 * oops, read error - keep the refcount on the rdev 417 */ 418 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n", 419 mdname(conf->mddev), 420 rdev->bdev, 421 (unsigned long long)r10_bio->sector); 422 set_bit(R10BIO_ReadError, &r10_bio->state); 423 reschedule_retry(r10_bio); 424 } 425 } 426 427 static void close_write(struct r10bio *r10_bio) 428 { 429 struct mddev *mddev = r10_bio->mddev; 430 431 md_write_end(mddev); 432 } 433 434 static void one_write_done(struct r10bio *r10_bio) 435 { 436 if (atomic_dec_and_test(&r10_bio->remaining)) { 437 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 438 reschedule_retry(r10_bio); 439 else { 440 close_write(r10_bio); 441 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 442 reschedule_retry(r10_bio); 443 else 444 raid_end_bio_io(r10_bio); 445 } 446 } 447 } 448 449 static void raid10_end_write_request(struct bio *bio) 450 { 451 struct r10bio *r10_bio = bio->bi_private; 452 int dev; 453 int dec_rdev = 1; 454 struct r10conf *conf = r10_bio->mddev->private; 455 int slot, repl; 456 struct md_rdev *rdev = NULL; 457 struct bio *to_put = NULL; 458 bool discard_error; 459 460 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 461 462 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 463 464 if (repl) 465 rdev = conf->mirrors[dev].replacement; 466 if (!rdev) { 467 smp_rmb(); 468 repl = 0; 469 rdev = conf->mirrors[dev].rdev; 470 } 471 /* 472 * this branch is our 'one mirror IO has finished' event handler: 473 */ 474 if (bio->bi_status && !discard_error) { 475 if (repl) 476 /* Never record new bad blocks to replacement, 477 * just fail it. 478 */ 479 md_error(rdev->mddev, rdev); 480 else { 481 set_bit(WriteErrorSeen, &rdev->flags); 482 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 483 set_bit(MD_RECOVERY_NEEDED, 484 &rdev->mddev->recovery); 485 486 dec_rdev = 0; 487 if (test_bit(FailFast, &rdev->flags) && 488 (bio->bi_opf & MD_FAILFAST)) { 489 md_error(rdev->mddev, rdev); 490 } 491 492 /* 493 * When the device is faulty, it is not necessary to 494 * handle write error. 495 */ 496 if (!test_bit(Faulty, &rdev->flags)) 497 set_bit(R10BIO_WriteError, &r10_bio->state); 498 else { 499 /* Fail the request */ 500 r10_bio->devs[slot].bio = NULL; 501 to_put = bio; 502 dec_rdev = 1; 503 } 504 } 505 } else { 506 /* 507 * Set R10BIO_Uptodate in our master bio, so that 508 * we will return a good error code for to the higher 509 * levels even if IO on some other mirrored buffer fails. 510 * 511 * The 'master' represents the composite IO operation to 512 * user-side. So if something waits for IO, then it will 513 * wait for the 'master' bio. 514 * 515 * Do not set R10BIO_Uptodate if the current device is 516 * rebuilding or Faulty. This is because we cannot use 517 * such device for properly reading the data back (we could 518 * potentially use it, if the current write would have felt 519 * before rdev->recovery_offset, but for simplicity we don't 520 * check this here. 521 */ 522 if (test_bit(In_sync, &rdev->flags) && 523 !test_bit(Faulty, &rdev->flags)) 524 set_bit(R10BIO_Uptodate, &r10_bio->state); 525 526 /* Maybe we can clear some bad blocks. */ 527 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 528 r10_bio->sectors) && 529 !discard_error) { 530 bio_put(bio); 531 if (repl) 532 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 533 else 534 r10_bio->devs[slot].bio = IO_MADE_GOOD; 535 dec_rdev = 0; 536 set_bit(R10BIO_MadeGood, &r10_bio->state); 537 } 538 } 539 540 /* 541 * 542 * Let's see if all mirrored write operations have finished 543 * already. 544 */ 545 one_write_done(r10_bio); 546 if (dec_rdev) 547 rdev_dec_pending(rdev, conf->mddev); 548 if (to_put) 549 bio_put(to_put); 550 } 551 552 /* 553 * RAID10 layout manager 554 * As well as the chunksize and raid_disks count, there are two 555 * parameters: near_copies and far_copies. 556 * near_copies * far_copies must be <= raid_disks. 557 * Normally one of these will be 1. 558 * If both are 1, we get raid0. 559 * If near_copies == raid_disks, we get raid1. 560 * 561 * Chunks are laid out in raid0 style with near_copies copies of the 562 * first chunk, followed by near_copies copies of the next chunk and 563 * so on. 564 * If far_copies > 1, then after 1/far_copies of the array has been assigned 565 * as described above, we start again with a device offset of near_copies. 566 * So we effectively have another copy of the whole array further down all 567 * the drives, but with blocks on different drives. 568 * With this layout, and block is never stored twice on the one device. 569 * 570 * raid10_find_phys finds the sector offset of a given virtual sector 571 * on each device that it is on. 572 * 573 * raid10_find_virt does the reverse mapping, from a device and a 574 * sector offset to a virtual address 575 */ 576 577 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 578 { 579 int n,f; 580 sector_t sector; 581 sector_t chunk; 582 sector_t stripe; 583 int dev; 584 int slot = 0; 585 int last_far_set_start, last_far_set_size; 586 587 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 588 last_far_set_start *= geo->far_set_size; 589 590 last_far_set_size = geo->far_set_size; 591 last_far_set_size += (geo->raid_disks % geo->far_set_size); 592 593 /* now calculate first sector/dev */ 594 chunk = r10bio->sector >> geo->chunk_shift; 595 sector = r10bio->sector & geo->chunk_mask; 596 597 chunk *= geo->near_copies; 598 stripe = chunk; 599 dev = sector_div(stripe, geo->raid_disks); 600 if (geo->far_offset) 601 stripe *= geo->far_copies; 602 603 sector += stripe << geo->chunk_shift; 604 605 /* and calculate all the others */ 606 for (n = 0; n < geo->near_copies; n++) { 607 int d = dev; 608 int set; 609 sector_t s = sector; 610 r10bio->devs[slot].devnum = d; 611 r10bio->devs[slot].addr = s; 612 slot++; 613 614 for (f = 1; f < geo->far_copies; f++) { 615 set = d / geo->far_set_size; 616 d += geo->near_copies; 617 618 if ((geo->raid_disks % geo->far_set_size) && 619 (d > last_far_set_start)) { 620 d -= last_far_set_start; 621 d %= last_far_set_size; 622 d += last_far_set_start; 623 } else { 624 d %= geo->far_set_size; 625 d += geo->far_set_size * set; 626 } 627 s += geo->stride; 628 r10bio->devs[slot].devnum = d; 629 r10bio->devs[slot].addr = s; 630 slot++; 631 } 632 dev++; 633 if (dev >= geo->raid_disks) { 634 dev = 0; 635 sector += (geo->chunk_mask + 1); 636 } 637 } 638 } 639 640 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 641 { 642 struct geom *geo = &conf->geo; 643 644 if (conf->reshape_progress != MaxSector && 645 ((r10bio->sector >= conf->reshape_progress) != 646 conf->mddev->reshape_backwards)) { 647 set_bit(R10BIO_Previous, &r10bio->state); 648 geo = &conf->prev; 649 } else 650 clear_bit(R10BIO_Previous, &r10bio->state); 651 652 __raid10_find_phys(geo, r10bio); 653 } 654 655 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 656 { 657 sector_t offset, chunk, vchunk; 658 /* Never use conf->prev as this is only called during resync 659 * or recovery, so reshape isn't happening 660 */ 661 struct geom *geo = &conf->geo; 662 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 663 int far_set_size = geo->far_set_size; 664 int last_far_set_start; 665 666 if (geo->raid_disks % geo->far_set_size) { 667 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 668 last_far_set_start *= geo->far_set_size; 669 670 if (dev >= last_far_set_start) { 671 far_set_size = geo->far_set_size; 672 far_set_size += (geo->raid_disks % geo->far_set_size); 673 far_set_start = last_far_set_start; 674 } 675 } 676 677 offset = sector & geo->chunk_mask; 678 if (geo->far_offset) { 679 int fc; 680 chunk = sector >> geo->chunk_shift; 681 fc = sector_div(chunk, geo->far_copies); 682 dev -= fc * geo->near_copies; 683 if (dev < far_set_start) 684 dev += far_set_size; 685 } else { 686 while (sector >= geo->stride) { 687 sector -= geo->stride; 688 if (dev < (geo->near_copies + far_set_start)) 689 dev += far_set_size - geo->near_copies; 690 else 691 dev -= geo->near_copies; 692 } 693 chunk = sector >> geo->chunk_shift; 694 } 695 vchunk = chunk * geo->raid_disks + dev; 696 sector_div(vchunk, geo->near_copies); 697 return (vchunk << geo->chunk_shift) + offset; 698 } 699 700 /* 701 * This routine returns the disk from which the requested read should 702 * be done. There is a per-array 'next expected sequential IO' sector 703 * number - if this matches on the next IO then we use the last disk. 704 * There is also a per-disk 'last know head position' sector that is 705 * maintained from IRQ contexts, both the normal and the resync IO 706 * completion handlers update this position correctly. If there is no 707 * perfect sequential match then we pick the disk whose head is closest. 708 * 709 * If there are 2 mirrors in the same 2 devices, performance degrades 710 * because position is mirror, not device based. 711 * 712 * The rdev for the device selected will have nr_pending incremented. 713 */ 714 715 /* 716 * FIXME: possibly should rethink readbalancing and do it differently 717 * depending on near_copies / far_copies geometry. 718 */ 719 static struct md_rdev *read_balance(struct r10conf *conf, 720 struct r10bio *r10_bio, 721 int *max_sectors) 722 { 723 const sector_t this_sector = r10_bio->sector; 724 int disk, slot; 725 int sectors = r10_bio->sectors; 726 int best_good_sectors; 727 sector_t new_distance, best_dist; 728 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 729 int do_balance; 730 int best_dist_slot, best_pending_slot; 731 bool has_nonrot_disk = false; 732 unsigned int min_pending; 733 struct geom *geo = &conf->geo; 734 735 raid10_find_phys(conf, r10_bio); 736 best_dist_slot = -1; 737 min_pending = UINT_MAX; 738 best_dist_rdev = NULL; 739 best_pending_rdev = NULL; 740 best_dist = MaxSector; 741 best_good_sectors = 0; 742 do_balance = 1; 743 clear_bit(R10BIO_FailFast, &r10_bio->state); 744 745 if (raid1_should_read_first(conf->mddev, this_sector, sectors)) 746 do_balance = 0; 747 748 for (slot = 0; slot < conf->copies ; slot++) { 749 sector_t first_bad; 750 int bad_sectors; 751 sector_t dev_sector; 752 unsigned int pending; 753 bool nonrot; 754 755 if (r10_bio->devs[slot].bio == IO_BLOCKED) 756 continue; 757 disk = r10_bio->devs[slot].devnum; 758 rdev = conf->mirrors[disk].replacement; 759 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 760 r10_bio->devs[slot].addr + sectors > 761 rdev->recovery_offset) 762 rdev = conf->mirrors[disk].rdev; 763 if (rdev == NULL || 764 test_bit(Faulty, &rdev->flags)) 765 continue; 766 if (!test_bit(In_sync, &rdev->flags) && 767 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 768 continue; 769 770 dev_sector = r10_bio->devs[slot].addr; 771 if (is_badblock(rdev, dev_sector, sectors, 772 &first_bad, &bad_sectors)) { 773 if (best_dist < MaxSector) 774 /* Already have a better slot */ 775 continue; 776 if (first_bad <= dev_sector) { 777 /* Cannot read here. If this is the 778 * 'primary' device, then we must not read 779 * beyond 'bad_sectors' from another device. 780 */ 781 bad_sectors -= (dev_sector - first_bad); 782 if (!do_balance && sectors > bad_sectors) 783 sectors = bad_sectors; 784 if (best_good_sectors > sectors) 785 best_good_sectors = sectors; 786 } else { 787 sector_t good_sectors = 788 first_bad - dev_sector; 789 if (good_sectors > best_good_sectors) { 790 best_good_sectors = good_sectors; 791 best_dist_slot = slot; 792 best_dist_rdev = rdev; 793 } 794 if (!do_balance) 795 /* Must read from here */ 796 break; 797 } 798 continue; 799 } else 800 best_good_sectors = sectors; 801 802 if (!do_balance) 803 break; 804 805 nonrot = bdev_nonrot(rdev->bdev); 806 has_nonrot_disk |= nonrot; 807 pending = atomic_read(&rdev->nr_pending); 808 if (min_pending > pending && nonrot) { 809 min_pending = pending; 810 best_pending_slot = slot; 811 best_pending_rdev = rdev; 812 } 813 814 if (best_dist_slot >= 0) 815 /* At least 2 disks to choose from so failfast is OK */ 816 set_bit(R10BIO_FailFast, &r10_bio->state); 817 /* This optimisation is debatable, and completely destroys 818 * sequential read speed for 'far copies' arrays. So only 819 * keep it for 'near' arrays, and review those later. 820 */ 821 if (geo->near_copies > 1 && !pending) 822 new_distance = 0; 823 824 /* for far > 1 always use the lowest address */ 825 else if (geo->far_copies > 1) 826 new_distance = r10_bio->devs[slot].addr; 827 else 828 new_distance = abs(r10_bio->devs[slot].addr - 829 conf->mirrors[disk].head_position); 830 831 if (new_distance < best_dist) { 832 best_dist = new_distance; 833 best_dist_slot = slot; 834 best_dist_rdev = rdev; 835 } 836 } 837 if (slot >= conf->copies) { 838 if (has_nonrot_disk) { 839 slot = best_pending_slot; 840 rdev = best_pending_rdev; 841 } else { 842 slot = best_dist_slot; 843 rdev = best_dist_rdev; 844 } 845 } 846 847 if (slot >= 0) { 848 atomic_inc(&rdev->nr_pending); 849 r10_bio->read_slot = slot; 850 } else 851 rdev = NULL; 852 *max_sectors = best_good_sectors; 853 854 return rdev; 855 } 856 857 static void flush_pending_writes(struct r10conf *conf) 858 { 859 /* Any writes that have been queued but are awaiting 860 * bitmap updates get flushed here. 861 */ 862 spin_lock_irq(&conf->device_lock); 863 864 if (conf->pending_bio_list.head) { 865 struct blk_plug plug; 866 struct bio *bio; 867 868 bio = bio_list_get(&conf->pending_bio_list); 869 spin_unlock_irq(&conf->device_lock); 870 871 /* 872 * As this is called in a wait_event() loop (see freeze_array), 873 * current->state might be TASK_UNINTERRUPTIBLE which will 874 * cause a warning when we prepare to wait again. As it is 875 * rare that this path is taken, it is perfectly safe to force 876 * us to go around the wait_event() loop again, so the warning 877 * is a false-positive. Silence the warning by resetting 878 * thread state 879 */ 880 __set_current_state(TASK_RUNNING); 881 882 blk_start_plug(&plug); 883 raid1_prepare_flush_writes(conf->mddev); 884 wake_up(&conf->wait_barrier); 885 886 while (bio) { /* submit pending writes */ 887 struct bio *next = bio->bi_next; 888 889 raid1_submit_write(bio); 890 bio = next; 891 cond_resched(); 892 } 893 blk_finish_plug(&plug); 894 } else 895 spin_unlock_irq(&conf->device_lock); 896 } 897 898 /* Barriers.... 899 * Sometimes we need to suspend IO while we do something else, 900 * either some resync/recovery, or reconfigure the array. 901 * To do this we raise a 'barrier'. 902 * The 'barrier' is a counter that can be raised multiple times 903 * to count how many activities are happening which preclude 904 * normal IO. 905 * We can only raise the barrier if there is no pending IO. 906 * i.e. if nr_pending == 0. 907 * We choose only to raise the barrier if no-one is waiting for the 908 * barrier to go down. This means that as soon as an IO request 909 * is ready, no other operations which require a barrier will start 910 * until the IO request has had a chance. 911 * 912 * So: regular IO calls 'wait_barrier'. When that returns there 913 * is no backgroup IO happening, It must arrange to call 914 * allow_barrier when it has finished its IO. 915 * backgroup IO calls must call raise_barrier. Once that returns 916 * there is no normal IO happeing. It must arrange to call 917 * lower_barrier when the particular background IO completes. 918 */ 919 920 static void raise_barrier(struct r10conf *conf, int force) 921 { 922 write_seqlock_irq(&conf->resync_lock); 923 924 if (WARN_ON_ONCE(force && !conf->barrier)) 925 force = false; 926 927 /* Wait until no block IO is waiting (unless 'force') */ 928 wait_event_barrier(conf, force || !conf->nr_waiting); 929 930 /* block any new IO from starting */ 931 WRITE_ONCE(conf->barrier, conf->barrier + 1); 932 933 /* Now wait for all pending IO to complete */ 934 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) && 935 conf->barrier < RESYNC_DEPTH); 936 937 write_sequnlock_irq(&conf->resync_lock); 938 } 939 940 static void lower_barrier(struct r10conf *conf) 941 { 942 unsigned long flags; 943 944 write_seqlock_irqsave(&conf->resync_lock, flags); 945 WRITE_ONCE(conf->barrier, conf->barrier - 1); 946 write_sequnlock_irqrestore(&conf->resync_lock, flags); 947 wake_up(&conf->wait_barrier); 948 } 949 950 static bool stop_waiting_barrier(struct r10conf *conf) 951 { 952 struct bio_list *bio_list = current->bio_list; 953 struct md_thread *thread; 954 955 /* barrier is dropped */ 956 if (!conf->barrier) 957 return true; 958 959 /* 960 * If there are already pending requests (preventing the barrier from 961 * rising completely), and the pre-process bio queue isn't empty, then 962 * don't wait, as we need to empty that queue to get the nr_pending 963 * count down. 964 */ 965 if (atomic_read(&conf->nr_pending) && bio_list && 966 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1]))) 967 return true; 968 969 /* daemon thread must exist while handling io */ 970 thread = rcu_dereference_protected(conf->mddev->thread, true); 971 /* 972 * move on if io is issued from raid10d(), nr_pending is not released 973 * from original io(see handle_read_error()). All raise barrier is 974 * blocked until this io is done. 975 */ 976 if (thread->tsk == current) { 977 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0); 978 return true; 979 } 980 981 return false; 982 } 983 984 static bool wait_barrier_nolock(struct r10conf *conf) 985 { 986 unsigned int seq = read_seqbegin(&conf->resync_lock); 987 988 if (READ_ONCE(conf->barrier)) 989 return false; 990 991 atomic_inc(&conf->nr_pending); 992 if (!read_seqretry(&conf->resync_lock, seq)) 993 return true; 994 995 if (atomic_dec_and_test(&conf->nr_pending)) 996 wake_up_barrier(conf); 997 998 return false; 999 } 1000 1001 static bool wait_barrier(struct r10conf *conf, bool nowait) 1002 { 1003 bool ret = true; 1004 1005 if (wait_barrier_nolock(conf)) 1006 return true; 1007 1008 write_seqlock_irq(&conf->resync_lock); 1009 if (conf->barrier) { 1010 /* Return false when nowait flag is set */ 1011 if (nowait) { 1012 ret = false; 1013 } else { 1014 conf->nr_waiting++; 1015 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier"); 1016 wait_event_barrier(conf, stop_waiting_barrier(conf)); 1017 conf->nr_waiting--; 1018 } 1019 if (!conf->nr_waiting) 1020 wake_up(&conf->wait_barrier); 1021 } 1022 /* Only increment nr_pending when we wait */ 1023 if (ret) 1024 atomic_inc(&conf->nr_pending); 1025 write_sequnlock_irq(&conf->resync_lock); 1026 return ret; 1027 } 1028 1029 static void allow_barrier(struct r10conf *conf) 1030 { 1031 if ((atomic_dec_and_test(&conf->nr_pending)) || 1032 (conf->array_freeze_pending)) 1033 wake_up_barrier(conf); 1034 } 1035 1036 static void freeze_array(struct r10conf *conf, int extra) 1037 { 1038 /* stop syncio and normal IO and wait for everything to 1039 * go quiet. 1040 * We increment barrier and nr_waiting, and then 1041 * wait until nr_pending match nr_queued+extra 1042 * This is called in the context of one normal IO request 1043 * that has failed. Thus any sync request that might be pending 1044 * will be blocked by nr_pending, and we need to wait for 1045 * pending IO requests to complete or be queued for re-try. 1046 * Thus the number queued (nr_queued) plus this request (extra) 1047 * must match the number of pending IOs (nr_pending) before 1048 * we continue. 1049 */ 1050 write_seqlock_irq(&conf->resync_lock); 1051 conf->array_freeze_pending++; 1052 WRITE_ONCE(conf->barrier, conf->barrier + 1); 1053 conf->nr_waiting++; 1054 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) == 1055 conf->nr_queued + extra, flush_pending_writes(conf)); 1056 conf->array_freeze_pending--; 1057 write_sequnlock_irq(&conf->resync_lock); 1058 } 1059 1060 static void unfreeze_array(struct r10conf *conf) 1061 { 1062 /* reverse the effect of the freeze */ 1063 write_seqlock_irq(&conf->resync_lock); 1064 WRITE_ONCE(conf->barrier, conf->barrier - 1); 1065 conf->nr_waiting--; 1066 wake_up(&conf->wait_barrier); 1067 write_sequnlock_irq(&conf->resync_lock); 1068 } 1069 1070 static sector_t choose_data_offset(struct r10bio *r10_bio, 1071 struct md_rdev *rdev) 1072 { 1073 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1074 test_bit(R10BIO_Previous, &r10_bio->state)) 1075 return rdev->data_offset; 1076 else 1077 return rdev->new_data_offset; 1078 } 1079 1080 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1081 { 1082 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb); 1083 struct mddev *mddev = plug->cb.data; 1084 struct r10conf *conf = mddev->private; 1085 struct bio *bio; 1086 1087 if (from_schedule) { 1088 spin_lock_irq(&conf->device_lock); 1089 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1090 spin_unlock_irq(&conf->device_lock); 1091 wake_up_barrier(conf); 1092 md_wakeup_thread(mddev->thread); 1093 kfree(plug); 1094 return; 1095 } 1096 1097 /* we aren't scheduling, so we can do the write-out directly. */ 1098 bio = bio_list_get(&plug->pending); 1099 raid1_prepare_flush_writes(mddev); 1100 wake_up_barrier(conf); 1101 1102 while (bio) { /* submit pending writes */ 1103 struct bio *next = bio->bi_next; 1104 1105 raid1_submit_write(bio); 1106 bio = next; 1107 cond_resched(); 1108 } 1109 kfree(plug); 1110 } 1111 1112 /* 1113 * 1. Register the new request and wait if the reconstruction thread has put 1114 * up a bar for new requests. Continue immediately if no resync is active 1115 * currently. 1116 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1117 */ 1118 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1119 struct bio *bio, sector_t sectors) 1120 { 1121 /* Bail out if REQ_NOWAIT is set for the bio */ 1122 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1123 bio_wouldblock_error(bio); 1124 return false; 1125 } 1126 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1127 bio->bi_iter.bi_sector < conf->reshape_progress && 1128 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1129 allow_barrier(conf); 1130 if (bio->bi_opf & REQ_NOWAIT) { 1131 bio_wouldblock_error(bio); 1132 return false; 1133 } 1134 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape"); 1135 wait_event(conf->wait_barrier, 1136 conf->reshape_progress <= bio->bi_iter.bi_sector || 1137 conf->reshape_progress >= bio->bi_iter.bi_sector + 1138 sectors); 1139 wait_barrier(conf, false); 1140 } 1141 return true; 1142 } 1143 1144 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1145 struct r10bio *r10_bio, bool io_accounting) 1146 { 1147 struct r10conf *conf = mddev->private; 1148 struct bio *read_bio; 1149 const enum req_op op = bio_op(bio); 1150 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1151 int max_sectors; 1152 struct md_rdev *rdev; 1153 char b[BDEVNAME_SIZE]; 1154 int slot = r10_bio->read_slot; 1155 struct md_rdev *err_rdev = NULL; 1156 gfp_t gfp = GFP_NOIO; 1157 int error; 1158 1159 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1160 /* 1161 * This is an error retry, but we cannot 1162 * safely dereference the rdev in the r10_bio, 1163 * we must use the one in conf. 1164 * If it has already been disconnected (unlikely) 1165 * we lose the device name in error messages. 1166 */ 1167 int disk; 1168 /* 1169 * As we are blocking raid10, it is a little safer to 1170 * use __GFP_HIGH. 1171 */ 1172 gfp = GFP_NOIO | __GFP_HIGH; 1173 1174 disk = r10_bio->devs[slot].devnum; 1175 err_rdev = conf->mirrors[disk].rdev; 1176 if (err_rdev) 1177 snprintf(b, sizeof(b), "%pg", err_rdev->bdev); 1178 else { 1179 strcpy(b, "???"); 1180 /* This never gets dereferenced */ 1181 err_rdev = r10_bio->devs[slot].rdev; 1182 } 1183 } 1184 1185 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1186 return; 1187 rdev = read_balance(conf, r10_bio, &max_sectors); 1188 if (!rdev) { 1189 if (err_rdev) { 1190 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1191 mdname(mddev), b, 1192 (unsigned long long)r10_bio->sector); 1193 } 1194 raid_end_bio_io(r10_bio); 1195 return; 1196 } 1197 if (err_rdev) 1198 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n", 1199 mdname(mddev), 1200 rdev->bdev, 1201 (unsigned long long)r10_bio->sector); 1202 if (max_sectors < bio_sectors(bio)) { 1203 struct bio *split = bio_split(bio, max_sectors, 1204 gfp, &conf->bio_split); 1205 if (IS_ERR(split)) { 1206 error = PTR_ERR(split); 1207 goto err_handle; 1208 } 1209 bio_chain(split, bio); 1210 allow_barrier(conf); 1211 submit_bio_noacct(bio); 1212 wait_barrier(conf, false); 1213 bio = split; 1214 r10_bio->master_bio = bio; 1215 r10_bio->sectors = max_sectors; 1216 } 1217 slot = r10_bio->read_slot; 1218 1219 if (io_accounting) { 1220 md_account_bio(mddev, &bio); 1221 r10_bio->master_bio = bio; 1222 } 1223 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set); 1224 1225 r10_bio->devs[slot].bio = read_bio; 1226 r10_bio->devs[slot].rdev = rdev; 1227 1228 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1229 choose_data_offset(r10_bio, rdev); 1230 read_bio->bi_end_io = raid10_end_read_request; 1231 read_bio->bi_opf = op | do_sync; 1232 if (test_bit(FailFast, &rdev->flags) && 1233 test_bit(R10BIO_FailFast, &r10_bio->state)) 1234 read_bio->bi_opf |= MD_FAILFAST; 1235 read_bio->bi_private = r10_bio; 1236 mddev_trace_remap(mddev, read_bio, r10_bio->sector); 1237 submit_bio_noacct(read_bio); 1238 return; 1239 err_handle: 1240 atomic_dec(&rdev->nr_pending); 1241 bio->bi_status = errno_to_blk_status(error); 1242 set_bit(R10BIO_Uptodate, &r10_bio->state); 1243 raid_end_bio_io(r10_bio); 1244 } 1245 1246 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1247 struct bio *bio, bool replacement, 1248 int n_copy) 1249 { 1250 const enum req_op op = bio_op(bio); 1251 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1252 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA; 1253 const blk_opf_t do_atomic = bio->bi_opf & REQ_ATOMIC; 1254 unsigned long flags; 1255 struct r10conf *conf = mddev->private; 1256 struct md_rdev *rdev; 1257 int devnum = r10_bio->devs[n_copy].devnum; 1258 struct bio *mbio; 1259 1260 rdev = replacement ? conf->mirrors[devnum].replacement : 1261 conf->mirrors[devnum].rdev; 1262 1263 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set); 1264 if (replacement) 1265 r10_bio->devs[n_copy].repl_bio = mbio; 1266 else 1267 r10_bio->devs[n_copy].bio = mbio; 1268 1269 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1270 choose_data_offset(r10_bio, rdev)); 1271 mbio->bi_end_io = raid10_end_write_request; 1272 mbio->bi_opf = op | do_sync | do_fua | do_atomic; 1273 if (!replacement && test_bit(FailFast, 1274 &conf->mirrors[devnum].rdev->flags) 1275 && enough(conf, devnum)) 1276 mbio->bi_opf |= MD_FAILFAST; 1277 mbio->bi_private = r10_bio; 1278 mddev_trace_remap(mddev, mbio, r10_bio->sector); 1279 /* flush_pending_writes() needs access to the rdev so...*/ 1280 mbio->bi_bdev = (void *)rdev; 1281 1282 atomic_inc(&r10_bio->remaining); 1283 1284 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) { 1285 spin_lock_irqsave(&conf->device_lock, flags); 1286 bio_list_add(&conf->pending_bio_list, mbio); 1287 spin_unlock_irqrestore(&conf->device_lock, flags); 1288 md_wakeup_thread(mddev->thread); 1289 } 1290 } 1291 1292 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1293 { 1294 struct r10conf *conf = mddev->private; 1295 struct md_rdev *blocked_rdev; 1296 int i; 1297 1298 retry_wait: 1299 blocked_rdev = NULL; 1300 for (i = 0; i < conf->copies; i++) { 1301 struct md_rdev *rdev, *rrdev; 1302 1303 rdev = conf->mirrors[i].rdev; 1304 if (rdev) { 1305 sector_t dev_sector = r10_bio->devs[i].addr; 1306 1307 /* 1308 * Discard request doesn't care the write result 1309 * so it doesn't need to wait blocked disk here. 1310 */ 1311 if (test_bit(WriteErrorSeen, &rdev->flags) && 1312 r10_bio->sectors && 1313 rdev_has_badblock(rdev, dev_sector, 1314 r10_bio->sectors) < 0) 1315 /* 1316 * Mustn't write here until the bad 1317 * block is acknowledged 1318 */ 1319 set_bit(BlockedBadBlocks, &rdev->flags); 1320 1321 if (rdev_blocked(rdev)) { 1322 blocked_rdev = rdev; 1323 atomic_inc(&rdev->nr_pending); 1324 break; 1325 } 1326 } 1327 1328 rrdev = conf->mirrors[i].replacement; 1329 if (rrdev && rdev_blocked(rrdev)) { 1330 atomic_inc(&rrdev->nr_pending); 1331 blocked_rdev = rrdev; 1332 break; 1333 } 1334 } 1335 1336 if (unlikely(blocked_rdev)) { 1337 /* Have to wait for this device to get unblocked, then retry */ 1338 allow_barrier(conf); 1339 mddev_add_trace_msg(conf->mddev, 1340 "raid10 %s wait rdev %d blocked", 1341 __func__, blocked_rdev->raid_disk); 1342 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1343 wait_barrier(conf, false); 1344 goto retry_wait; 1345 } 1346 } 1347 1348 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1349 struct r10bio *r10_bio) 1350 { 1351 struct r10conf *conf = mddev->private; 1352 int i, k; 1353 sector_t sectors; 1354 int max_sectors; 1355 int error; 1356 1357 if ((mddev_is_clustered(mddev) && 1358 md_cluster_ops->area_resyncing(mddev, WRITE, 1359 bio->bi_iter.bi_sector, 1360 bio_end_sector(bio)))) { 1361 DEFINE_WAIT(w); 1362 /* Bail out if REQ_NOWAIT is set for the bio */ 1363 if (bio->bi_opf & REQ_NOWAIT) { 1364 bio_wouldblock_error(bio); 1365 return; 1366 } 1367 for (;;) { 1368 prepare_to_wait(&conf->wait_barrier, 1369 &w, TASK_IDLE); 1370 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1371 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1372 break; 1373 schedule(); 1374 } 1375 finish_wait(&conf->wait_barrier, &w); 1376 } 1377 1378 sectors = r10_bio->sectors; 1379 if (!regular_request_wait(mddev, conf, bio, sectors)) 1380 return; 1381 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1382 (mddev->reshape_backwards 1383 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1384 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1385 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1386 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1387 /* Need to update reshape_position in metadata */ 1388 mddev->reshape_position = conf->reshape_progress; 1389 set_mask_bits(&mddev->sb_flags, 0, 1390 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1391 md_wakeup_thread(mddev->thread); 1392 if (bio->bi_opf & REQ_NOWAIT) { 1393 allow_barrier(conf); 1394 bio_wouldblock_error(bio); 1395 return; 1396 } 1397 mddev_add_trace_msg(conf->mddev, 1398 "raid10 wait reshape metadata"); 1399 wait_event(mddev->sb_wait, 1400 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1401 1402 conf->reshape_safe = mddev->reshape_position; 1403 } 1404 1405 /* first select target devices under rcu_lock and 1406 * inc refcount on their rdev. Record them by setting 1407 * bios[x] to bio 1408 * If there are known/acknowledged bad blocks on any device 1409 * on which we have seen a write error, we want to avoid 1410 * writing to those blocks. This potentially requires several 1411 * writes to write around the bad blocks. Each set of writes 1412 * gets its own r10_bio with a set of bios attached. 1413 */ 1414 1415 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1416 raid10_find_phys(conf, r10_bio); 1417 1418 wait_blocked_dev(mddev, r10_bio); 1419 1420 max_sectors = r10_bio->sectors; 1421 1422 for (i = 0; i < conf->copies; i++) { 1423 int d = r10_bio->devs[i].devnum; 1424 struct md_rdev *rdev, *rrdev; 1425 1426 rdev = conf->mirrors[d].rdev; 1427 rrdev = conf->mirrors[d].replacement; 1428 if (rdev && (test_bit(Faulty, &rdev->flags))) 1429 rdev = NULL; 1430 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1431 rrdev = NULL; 1432 1433 r10_bio->devs[i].bio = NULL; 1434 r10_bio->devs[i].repl_bio = NULL; 1435 1436 if (!rdev && !rrdev) 1437 continue; 1438 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1439 sector_t first_bad; 1440 sector_t dev_sector = r10_bio->devs[i].addr; 1441 int bad_sectors; 1442 int is_bad; 1443 1444 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1445 &first_bad, &bad_sectors); 1446 if (is_bad && first_bad <= dev_sector) { 1447 /* Cannot write here at all */ 1448 bad_sectors -= (dev_sector - first_bad); 1449 if (bad_sectors < max_sectors) 1450 /* Mustn't write more than bad_sectors 1451 * to other devices yet 1452 */ 1453 max_sectors = bad_sectors; 1454 continue; 1455 } 1456 if (is_bad) { 1457 int good_sectors; 1458 1459 /* 1460 * We cannot atomically write this, so just 1461 * error in that case. It could be possible to 1462 * atomically write other mirrors, but the 1463 * complexity of supporting that is not worth 1464 * the benefit. 1465 */ 1466 if (bio->bi_opf & REQ_ATOMIC) { 1467 error = -EIO; 1468 goto err_handle; 1469 } 1470 1471 good_sectors = first_bad - dev_sector; 1472 if (good_sectors < max_sectors) 1473 max_sectors = good_sectors; 1474 } 1475 } 1476 if (rdev) { 1477 r10_bio->devs[i].bio = bio; 1478 atomic_inc(&rdev->nr_pending); 1479 } 1480 if (rrdev) { 1481 r10_bio->devs[i].repl_bio = bio; 1482 atomic_inc(&rrdev->nr_pending); 1483 } 1484 } 1485 1486 if (max_sectors < r10_bio->sectors) 1487 r10_bio->sectors = max_sectors; 1488 1489 if (r10_bio->sectors < bio_sectors(bio)) { 1490 struct bio *split = bio_split(bio, r10_bio->sectors, 1491 GFP_NOIO, &conf->bio_split); 1492 if (IS_ERR(split)) { 1493 error = PTR_ERR(split); 1494 goto err_handle; 1495 } 1496 bio_chain(split, bio); 1497 allow_barrier(conf); 1498 submit_bio_noacct(bio); 1499 wait_barrier(conf, false); 1500 bio = split; 1501 r10_bio->master_bio = bio; 1502 } 1503 1504 md_account_bio(mddev, &bio); 1505 r10_bio->master_bio = bio; 1506 atomic_set(&r10_bio->remaining, 1); 1507 1508 for (i = 0; i < conf->copies; i++) { 1509 if (r10_bio->devs[i].bio) 1510 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1511 if (r10_bio->devs[i].repl_bio) 1512 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1513 } 1514 one_write_done(r10_bio); 1515 return; 1516 err_handle: 1517 for (k = 0; k < i; k++) { 1518 int d = r10_bio->devs[k].devnum; 1519 struct md_rdev *rdev = conf->mirrors[d].rdev; 1520 struct md_rdev *rrdev = conf->mirrors[d].replacement; 1521 1522 if (r10_bio->devs[k].bio) { 1523 rdev_dec_pending(rdev, mddev); 1524 r10_bio->devs[k].bio = NULL; 1525 } 1526 if (r10_bio->devs[k].repl_bio) { 1527 rdev_dec_pending(rrdev, mddev); 1528 r10_bio->devs[k].repl_bio = NULL; 1529 } 1530 } 1531 1532 bio->bi_status = errno_to_blk_status(error); 1533 set_bit(R10BIO_Uptodate, &r10_bio->state); 1534 raid_end_bio_io(r10_bio); 1535 } 1536 1537 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1538 { 1539 struct r10conf *conf = mddev->private; 1540 struct r10bio *r10_bio; 1541 1542 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1543 1544 r10_bio->master_bio = bio; 1545 r10_bio->sectors = sectors; 1546 1547 r10_bio->mddev = mddev; 1548 r10_bio->sector = bio->bi_iter.bi_sector; 1549 r10_bio->state = 0; 1550 r10_bio->read_slot = -1; 1551 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1552 conf->geo.raid_disks); 1553 1554 if (bio_data_dir(bio) == READ) 1555 raid10_read_request(mddev, bio, r10_bio, true); 1556 else 1557 raid10_write_request(mddev, bio, r10_bio); 1558 } 1559 1560 static void raid_end_discard_bio(struct r10bio *r10bio) 1561 { 1562 struct r10conf *conf = r10bio->mddev->private; 1563 struct r10bio *first_r10bio; 1564 1565 while (atomic_dec_and_test(&r10bio->remaining)) { 1566 1567 allow_barrier(conf); 1568 1569 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1570 first_r10bio = (struct r10bio *)r10bio->master_bio; 1571 free_r10bio(r10bio); 1572 r10bio = first_r10bio; 1573 } else { 1574 md_write_end(r10bio->mddev); 1575 bio_endio(r10bio->master_bio); 1576 free_r10bio(r10bio); 1577 break; 1578 } 1579 } 1580 } 1581 1582 static void raid10_end_discard_request(struct bio *bio) 1583 { 1584 struct r10bio *r10_bio = bio->bi_private; 1585 struct r10conf *conf = r10_bio->mddev->private; 1586 struct md_rdev *rdev = NULL; 1587 int dev; 1588 int slot, repl; 1589 1590 /* 1591 * We don't care the return value of discard bio 1592 */ 1593 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1594 set_bit(R10BIO_Uptodate, &r10_bio->state); 1595 1596 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1597 rdev = repl ? conf->mirrors[dev].replacement : 1598 conf->mirrors[dev].rdev; 1599 1600 raid_end_discard_bio(r10_bio); 1601 rdev_dec_pending(rdev, conf->mddev); 1602 } 1603 1604 /* 1605 * There are some limitations to handle discard bio 1606 * 1st, the discard size is bigger than stripe_size*2. 1607 * 2st, if the discard bio spans reshape progress, we use the old way to 1608 * handle discard bio 1609 */ 1610 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1611 { 1612 struct r10conf *conf = mddev->private; 1613 struct geom *geo = &conf->geo; 1614 int far_copies = geo->far_copies; 1615 bool first_copy = true; 1616 struct r10bio *r10_bio, *first_r10bio; 1617 struct bio *split; 1618 int disk; 1619 sector_t chunk; 1620 unsigned int stripe_size; 1621 unsigned int stripe_data_disks; 1622 sector_t split_size; 1623 sector_t bio_start, bio_end; 1624 sector_t first_stripe_index, last_stripe_index; 1625 sector_t start_disk_offset; 1626 unsigned int start_disk_index; 1627 sector_t end_disk_offset; 1628 unsigned int end_disk_index; 1629 unsigned int remainder; 1630 1631 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1632 return -EAGAIN; 1633 1634 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { 1635 bio_wouldblock_error(bio); 1636 return 0; 1637 } 1638 wait_barrier(conf, false); 1639 1640 /* 1641 * Check reshape again to avoid reshape happens after checking 1642 * MD_RECOVERY_RESHAPE and before wait_barrier 1643 */ 1644 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1645 goto out; 1646 1647 if (geo->near_copies) 1648 stripe_data_disks = geo->raid_disks / geo->near_copies + 1649 geo->raid_disks % geo->near_copies; 1650 else 1651 stripe_data_disks = geo->raid_disks; 1652 1653 stripe_size = stripe_data_disks << geo->chunk_shift; 1654 1655 bio_start = bio->bi_iter.bi_sector; 1656 bio_end = bio_end_sector(bio); 1657 1658 /* 1659 * Maybe one discard bio is smaller than strip size or across one 1660 * stripe and discard region is larger than one stripe size. For far 1661 * offset layout, if the discard region is not aligned with stripe 1662 * size, there is hole when we submit discard bio to member disk. 1663 * For simplicity, we only handle discard bio which discard region 1664 * is bigger than stripe_size * 2 1665 */ 1666 if (bio_sectors(bio) < stripe_size*2) 1667 goto out; 1668 1669 /* 1670 * Keep bio aligned with strip size. 1671 */ 1672 div_u64_rem(bio_start, stripe_size, &remainder); 1673 if (remainder) { 1674 split_size = stripe_size - remainder; 1675 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1676 if (IS_ERR(split)) { 1677 bio->bi_status = errno_to_blk_status(PTR_ERR(split)); 1678 bio_endio(bio); 1679 return 0; 1680 } 1681 bio_chain(split, bio); 1682 allow_barrier(conf); 1683 /* Resend the fist split part */ 1684 submit_bio_noacct(split); 1685 wait_barrier(conf, false); 1686 } 1687 div_u64_rem(bio_end, stripe_size, &remainder); 1688 if (remainder) { 1689 split_size = bio_sectors(bio) - remainder; 1690 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1691 if (IS_ERR(split)) { 1692 bio->bi_status = errno_to_blk_status(PTR_ERR(split)); 1693 bio_endio(bio); 1694 return 0; 1695 } 1696 bio_chain(split, bio); 1697 allow_barrier(conf); 1698 /* Resend the second split part */ 1699 submit_bio_noacct(bio); 1700 bio = split; 1701 wait_barrier(conf, false); 1702 } 1703 1704 bio_start = bio->bi_iter.bi_sector; 1705 bio_end = bio_end_sector(bio); 1706 1707 /* 1708 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1709 * One stripe contains the chunks from all member disk (one chunk from 1710 * one disk at the same HBA address). For layout detail, see 'man md 4' 1711 */ 1712 chunk = bio_start >> geo->chunk_shift; 1713 chunk *= geo->near_copies; 1714 first_stripe_index = chunk; 1715 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1716 if (geo->far_offset) 1717 first_stripe_index *= geo->far_copies; 1718 start_disk_offset = (bio_start & geo->chunk_mask) + 1719 (first_stripe_index << geo->chunk_shift); 1720 1721 chunk = bio_end >> geo->chunk_shift; 1722 chunk *= geo->near_copies; 1723 last_stripe_index = chunk; 1724 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1725 if (geo->far_offset) 1726 last_stripe_index *= geo->far_copies; 1727 end_disk_offset = (bio_end & geo->chunk_mask) + 1728 (last_stripe_index << geo->chunk_shift); 1729 1730 retry_discard: 1731 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1732 r10_bio->mddev = mddev; 1733 r10_bio->state = 0; 1734 r10_bio->sectors = 0; 1735 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1736 wait_blocked_dev(mddev, r10_bio); 1737 1738 /* 1739 * For far layout it needs more than one r10bio to cover all regions. 1740 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1741 * to record the discard bio. Other r10bio->master_bio record the first 1742 * r10bio. The first r10bio only release after all other r10bios finish. 1743 * The discard bio returns only first r10bio finishes 1744 */ 1745 if (first_copy) { 1746 r10_bio->master_bio = bio; 1747 set_bit(R10BIO_Discard, &r10_bio->state); 1748 first_copy = false; 1749 first_r10bio = r10_bio; 1750 } else 1751 r10_bio->master_bio = (struct bio *)first_r10bio; 1752 1753 /* 1754 * first select target devices under rcu_lock and 1755 * inc refcount on their rdev. Record them by setting 1756 * bios[x] to bio 1757 */ 1758 for (disk = 0; disk < geo->raid_disks; disk++) { 1759 struct md_rdev *rdev, *rrdev; 1760 1761 rdev = conf->mirrors[disk].rdev; 1762 rrdev = conf->mirrors[disk].replacement; 1763 r10_bio->devs[disk].bio = NULL; 1764 r10_bio->devs[disk].repl_bio = NULL; 1765 1766 if (rdev && (test_bit(Faulty, &rdev->flags))) 1767 rdev = NULL; 1768 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1769 rrdev = NULL; 1770 if (!rdev && !rrdev) 1771 continue; 1772 1773 if (rdev) { 1774 r10_bio->devs[disk].bio = bio; 1775 atomic_inc(&rdev->nr_pending); 1776 } 1777 if (rrdev) { 1778 r10_bio->devs[disk].repl_bio = bio; 1779 atomic_inc(&rrdev->nr_pending); 1780 } 1781 } 1782 1783 atomic_set(&r10_bio->remaining, 1); 1784 for (disk = 0; disk < geo->raid_disks; disk++) { 1785 sector_t dev_start, dev_end; 1786 struct bio *mbio, *rbio = NULL; 1787 1788 /* 1789 * Now start to calculate the start and end address for each disk. 1790 * The space between dev_start and dev_end is the discard region. 1791 * 1792 * For dev_start, it needs to consider three conditions: 1793 * 1st, the disk is before start_disk, you can imagine the disk in 1794 * the next stripe. So the dev_start is the start address of next 1795 * stripe. 1796 * 2st, the disk is after start_disk, it means the disk is at the 1797 * same stripe of first disk 1798 * 3st, the first disk itself, we can use start_disk_offset directly 1799 */ 1800 if (disk < start_disk_index) 1801 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1802 else if (disk > start_disk_index) 1803 dev_start = first_stripe_index * mddev->chunk_sectors; 1804 else 1805 dev_start = start_disk_offset; 1806 1807 if (disk < end_disk_index) 1808 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1809 else if (disk > end_disk_index) 1810 dev_end = last_stripe_index * mddev->chunk_sectors; 1811 else 1812 dev_end = end_disk_offset; 1813 1814 /* 1815 * It only handles discard bio which size is >= stripe size, so 1816 * dev_end > dev_start all the time. 1817 * It doesn't need to use rcu lock to get rdev here. We already 1818 * add rdev->nr_pending in the first loop. 1819 */ 1820 if (r10_bio->devs[disk].bio) { 1821 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1822 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1823 &mddev->bio_set); 1824 mbio->bi_end_io = raid10_end_discard_request; 1825 mbio->bi_private = r10_bio; 1826 r10_bio->devs[disk].bio = mbio; 1827 r10_bio->devs[disk].devnum = disk; 1828 atomic_inc(&r10_bio->remaining); 1829 md_submit_discard_bio(mddev, rdev, mbio, 1830 dev_start + choose_data_offset(r10_bio, rdev), 1831 dev_end - dev_start); 1832 bio_endio(mbio); 1833 } 1834 if (r10_bio->devs[disk].repl_bio) { 1835 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1836 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1837 &mddev->bio_set); 1838 rbio->bi_end_io = raid10_end_discard_request; 1839 rbio->bi_private = r10_bio; 1840 r10_bio->devs[disk].repl_bio = rbio; 1841 r10_bio->devs[disk].devnum = disk; 1842 atomic_inc(&r10_bio->remaining); 1843 md_submit_discard_bio(mddev, rrdev, rbio, 1844 dev_start + choose_data_offset(r10_bio, rrdev), 1845 dev_end - dev_start); 1846 bio_endio(rbio); 1847 } 1848 } 1849 1850 if (!geo->far_offset && --far_copies) { 1851 first_stripe_index += geo->stride >> geo->chunk_shift; 1852 start_disk_offset += geo->stride; 1853 last_stripe_index += geo->stride >> geo->chunk_shift; 1854 end_disk_offset += geo->stride; 1855 atomic_inc(&first_r10bio->remaining); 1856 raid_end_discard_bio(r10_bio); 1857 wait_barrier(conf, false); 1858 goto retry_discard; 1859 } 1860 1861 raid_end_discard_bio(r10_bio); 1862 1863 return 0; 1864 out: 1865 allow_barrier(conf); 1866 return -EAGAIN; 1867 } 1868 1869 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1870 { 1871 struct r10conf *conf = mddev->private; 1872 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1873 int chunk_sects = chunk_mask + 1; 1874 int sectors = bio_sectors(bio); 1875 1876 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1877 && md_flush_request(mddev, bio)) 1878 return true; 1879 1880 md_write_start(mddev, bio); 1881 1882 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1883 if (!raid10_handle_discard(mddev, bio)) 1884 return true; 1885 1886 /* 1887 * If this request crosses a chunk boundary, we need to split 1888 * it. 1889 */ 1890 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1891 sectors > chunk_sects 1892 && (conf->geo.near_copies < conf->geo.raid_disks 1893 || conf->prev.near_copies < 1894 conf->prev.raid_disks))) 1895 sectors = chunk_sects - 1896 (bio->bi_iter.bi_sector & 1897 (chunk_sects - 1)); 1898 __make_request(mddev, bio, sectors); 1899 1900 /* In case raid10d snuck in to freeze_array */ 1901 wake_up_barrier(conf); 1902 return true; 1903 } 1904 1905 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1906 { 1907 struct r10conf *conf = mddev->private; 1908 int i; 1909 1910 lockdep_assert_held(&mddev->lock); 1911 1912 if (conf->geo.near_copies < conf->geo.raid_disks) 1913 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1914 if (conf->geo.near_copies > 1) 1915 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1916 if (conf->geo.far_copies > 1) { 1917 if (conf->geo.far_offset) 1918 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1919 else 1920 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1921 if (conf->geo.far_set_size != conf->geo.raid_disks) 1922 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1923 } 1924 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1925 conf->geo.raid_disks - mddev->degraded); 1926 for (i = 0; i < conf->geo.raid_disks; i++) { 1927 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1928 1929 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1930 } 1931 seq_printf(seq, "]"); 1932 } 1933 1934 /* check if there are enough drives for 1935 * every block to appear on atleast one. 1936 * Don't consider the device numbered 'ignore' 1937 * as we might be about to remove it. 1938 */ 1939 static int _enough(struct r10conf *conf, int previous, int ignore) 1940 { 1941 int first = 0; 1942 int has_enough = 0; 1943 int disks, ncopies; 1944 if (previous) { 1945 disks = conf->prev.raid_disks; 1946 ncopies = conf->prev.near_copies; 1947 } else { 1948 disks = conf->geo.raid_disks; 1949 ncopies = conf->geo.near_copies; 1950 } 1951 1952 do { 1953 int n = conf->copies; 1954 int cnt = 0; 1955 int this = first; 1956 while (n--) { 1957 struct md_rdev *rdev; 1958 if (this != ignore && 1959 (rdev = conf->mirrors[this].rdev) && 1960 test_bit(In_sync, &rdev->flags)) 1961 cnt++; 1962 this = (this+1) % disks; 1963 } 1964 if (cnt == 0) 1965 goto out; 1966 first = (first + ncopies) % disks; 1967 } while (first != 0); 1968 has_enough = 1; 1969 out: 1970 return has_enough; 1971 } 1972 1973 static int enough(struct r10conf *conf, int ignore) 1974 { 1975 /* when calling 'enough', both 'prev' and 'geo' must 1976 * be stable. 1977 * This is ensured if ->reconfig_mutex or ->device_lock 1978 * is held. 1979 */ 1980 return _enough(conf, 0, ignore) && 1981 _enough(conf, 1, ignore); 1982 } 1983 1984 /** 1985 * raid10_error() - RAID10 error handler. 1986 * @mddev: affected md device. 1987 * @rdev: member device to fail. 1988 * 1989 * The routine acknowledges &rdev failure and determines new @mddev state. 1990 * If it failed, then: 1991 * - &MD_BROKEN flag is set in &mddev->flags. 1992 * Otherwise, it must be degraded: 1993 * - recovery is interrupted. 1994 * - &mddev->degraded is bumped. 1995 * 1996 * @rdev is marked as &Faulty excluding case when array is failed and 1997 * &mddev->fail_last_dev is off. 1998 */ 1999 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 2000 { 2001 struct r10conf *conf = mddev->private; 2002 unsigned long flags; 2003 2004 spin_lock_irqsave(&conf->device_lock, flags); 2005 2006 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) { 2007 set_bit(MD_BROKEN, &mddev->flags); 2008 2009 if (!mddev->fail_last_dev) { 2010 spin_unlock_irqrestore(&conf->device_lock, flags); 2011 return; 2012 } 2013 } 2014 if (test_and_clear_bit(In_sync, &rdev->flags)) 2015 mddev->degraded++; 2016 2017 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2018 set_bit(Blocked, &rdev->flags); 2019 set_bit(Faulty, &rdev->flags); 2020 set_mask_bits(&mddev->sb_flags, 0, 2021 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2022 spin_unlock_irqrestore(&conf->device_lock, flags); 2023 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n" 2024 "md/raid10:%s: Operation continuing on %d devices.\n", 2025 mdname(mddev), rdev->bdev, 2026 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 2027 } 2028 2029 static void print_conf(struct r10conf *conf) 2030 { 2031 int i; 2032 struct md_rdev *rdev; 2033 2034 pr_debug("RAID10 conf printout:\n"); 2035 if (!conf) { 2036 pr_debug("(!conf)\n"); 2037 return; 2038 } 2039 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2040 conf->geo.raid_disks); 2041 2042 lockdep_assert_held(&conf->mddev->reconfig_mutex); 2043 for (i = 0; i < conf->geo.raid_disks; i++) { 2044 rdev = conf->mirrors[i].rdev; 2045 if (rdev) 2046 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 2047 i, !test_bit(In_sync, &rdev->flags), 2048 !test_bit(Faulty, &rdev->flags), 2049 rdev->bdev); 2050 } 2051 } 2052 2053 static void close_sync(struct r10conf *conf) 2054 { 2055 wait_barrier(conf, false); 2056 allow_barrier(conf); 2057 2058 mempool_exit(&conf->r10buf_pool); 2059 } 2060 2061 static int raid10_spare_active(struct mddev *mddev) 2062 { 2063 int i; 2064 struct r10conf *conf = mddev->private; 2065 struct raid10_info *tmp; 2066 int count = 0; 2067 unsigned long flags; 2068 2069 /* 2070 * Find all non-in_sync disks within the RAID10 configuration 2071 * and mark them in_sync 2072 */ 2073 for (i = 0; i < conf->geo.raid_disks; i++) { 2074 tmp = conf->mirrors + i; 2075 if (tmp->replacement 2076 && tmp->replacement->recovery_offset == MaxSector 2077 && !test_bit(Faulty, &tmp->replacement->flags) 2078 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2079 /* Replacement has just become active */ 2080 if (!tmp->rdev 2081 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2082 count++; 2083 if (tmp->rdev) { 2084 /* Replaced device not technically faulty, 2085 * but we need to be sure it gets removed 2086 * and never re-added. 2087 */ 2088 set_bit(Faulty, &tmp->rdev->flags); 2089 sysfs_notify_dirent_safe( 2090 tmp->rdev->sysfs_state); 2091 } 2092 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2093 } else if (tmp->rdev 2094 && tmp->rdev->recovery_offset == MaxSector 2095 && !test_bit(Faulty, &tmp->rdev->flags) 2096 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2097 count++; 2098 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2099 } 2100 } 2101 spin_lock_irqsave(&conf->device_lock, flags); 2102 mddev->degraded -= count; 2103 spin_unlock_irqrestore(&conf->device_lock, flags); 2104 2105 print_conf(conf); 2106 return count; 2107 } 2108 2109 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2110 { 2111 struct r10conf *conf = mddev->private; 2112 int err = -EEXIST; 2113 int mirror, repl_slot = -1; 2114 int first = 0; 2115 int last = conf->geo.raid_disks - 1; 2116 struct raid10_info *p; 2117 2118 if (mddev->recovery_cp < MaxSector) 2119 /* only hot-add to in-sync arrays, as recovery is 2120 * very different from resync 2121 */ 2122 return -EBUSY; 2123 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2124 return -EINVAL; 2125 2126 if (rdev->raid_disk >= 0) 2127 first = last = rdev->raid_disk; 2128 2129 if (rdev->saved_raid_disk >= first && 2130 rdev->saved_raid_disk < conf->geo.raid_disks && 2131 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2132 mirror = rdev->saved_raid_disk; 2133 else 2134 mirror = first; 2135 for ( ; mirror <= last ; mirror++) { 2136 p = &conf->mirrors[mirror]; 2137 if (p->recovery_disabled == mddev->recovery_disabled) 2138 continue; 2139 if (p->rdev) { 2140 if (test_bit(WantReplacement, &p->rdev->flags) && 2141 p->replacement == NULL && repl_slot < 0) 2142 repl_slot = mirror; 2143 continue; 2144 } 2145 2146 err = mddev_stack_new_rdev(mddev, rdev); 2147 if (err) 2148 return err; 2149 p->head_position = 0; 2150 p->recovery_disabled = mddev->recovery_disabled - 1; 2151 rdev->raid_disk = mirror; 2152 err = 0; 2153 if (rdev->saved_raid_disk != mirror) 2154 conf->fullsync = 1; 2155 WRITE_ONCE(p->rdev, rdev); 2156 break; 2157 } 2158 2159 if (err && repl_slot >= 0) { 2160 p = &conf->mirrors[repl_slot]; 2161 clear_bit(In_sync, &rdev->flags); 2162 set_bit(Replacement, &rdev->flags); 2163 rdev->raid_disk = repl_slot; 2164 err = mddev_stack_new_rdev(mddev, rdev); 2165 if (err) 2166 return err; 2167 conf->fullsync = 1; 2168 WRITE_ONCE(p->replacement, rdev); 2169 } 2170 2171 print_conf(conf); 2172 return err; 2173 } 2174 2175 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2176 { 2177 struct r10conf *conf = mddev->private; 2178 int err = 0; 2179 int number = rdev->raid_disk; 2180 struct md_rdev **rdevp; 2181 struct raid10_info *p; 2182 2183 print_conf(conf); 2184 if (unlikely(number >= mddev->raid_disks)) 2185 return 0; 2186 p = conf->mirrors + number; 2187 if (rdev == p->rdev) 2188 rdevp = &p->rdev; 2189 else if (rdev == p->replacement) 2190 rdevp = &p->replacement; 2191 else 2192 return 0; 2193 2194 if (test_bit(In_sync, &rdev->flags) || 2195 atomic_read(&rdev->nr_pending)) { 2196 err = -EBUSY; 2197 goto abort; 2198 } 2199 /* Only remove non-faulty devices if recovery 2200 * is not possible. 2201 */ 2202 if (!test_bit(Faulty, &rdev->flags) && 2203 mddev->recovery_disabled != p->recovery_disabled && 2204 (!p->replacement || p->replacement == rdev) && 2205 number < conf->geo.raid_disks && 2206 enough(conf, -1)) { 2207 err = -EBUSY; 2208 goto abort; 2209 } 2210 WRITE_ONCE(*rdevp, NULL); 2211 if (p->replacement) { 2212 /* We must have just cleared 'rdev' */ 2213 WRITE_ONCE(p->rdev, p->replacement); 2214 clear_bit(Replacement, &p->replacement->flags); 2215 WRITE_ONCE(p->replacement, NULL); 2216 } 2217 2218 clear_bit(WantReplacement, &rdev->flags); 2219 err = md_integrity_register(mddev); 2220 2221 abort: 2222 2223 print_conf(conf); 2224 return err; 2225 } 2226 2227 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2228 { 2229 struct r10conf *conf = r10_bio->mddev->private; 2230 2231 if (!bio->bi_status) 2232 set_bit(R10BIO_Uptodate, &r10_bio->state); 2233 else 2234 /* The write handler will notice the lack of 2235 * R10BIO_Uptodate and record any errors etc 2236 */ 2237 atomic_add(r10_bio->sectors, 2238 &conf->mirrors[d].rdev->corrected_errors); 2239 2240 /* for reconstruct, we always reschedule after a read. 2241 * for resync, only after all reads 2242 */ 2243 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2244 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2245 atomic_dec_and_test(&r10_bio->remaining)) { 2246 /* we have read all the blocks, 2247 * do the comparison in process context in raid10d 2248 */ 2249 reschedule_retry(r10_bio); 2250 } 2251 } 2252 2253 static void end_sync_read(struct bio *bio) 2254 { 2255 struct r10bio *r10_bio = get_resync_r10bio(bio); 2256 struct r10conf *conf = r10_bio->mddev->private; 2257 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2258 2259 __end_sync_read(r10_bio, bio, d); 2260 } 2261 2262 static void end_reshape_read(struct bio *bio) 2263 { 2264 /* reshape read bio isn't allocated from r10buf_pool */ 2265 struct r10bio *r10_bio = bio->bi_private; 2266 2267 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2268 } 2269 2270 static void end_sync_request(struct r10bio *r10_bio) 2271 { 2272 struct mddev *mddev = r10_bio->mddev; 2273 2274 while (atomic_dec_and_test(&r10_bio->remaining)) { 2275 if (r10_bio->master_bio == NULL) { 2276 /* the primary of several recovery bios */ 2277 sector_t s = r10_bio->sectors; 2278 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2279 test_bit(R10BIO_WriteError, &r10_bio->state)) 2280 reschedule_retry(r10_bio); 2281 else 2282 put_buf(r10_bio); 2283 md_done_sync(mddev, s, 1); 2284 break; 2285 } else { 2286 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2287 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2288 test_bit(R10BIO_WriteError, &r10_bio->state)) 2289 reschedule_retry(r10_bio); 2290 else 2291 put_buf(r10_bio); 2292 r10_bio = r10_bio2; 2293 } 2294 } 2295 } 2296 2297 static void end_sync_write(struct bio *bio) 2298 { 2299 struct r10bio *r10_bio = get_resync_r10bio(bio); 2300 struct mddev *mddev = r10_bio->mddev; 2301 struct r10conf *conf = mddev->private; 2302 int d; 2303 int slot; 2304 int repl; 2305 struct md_rdev *rdev = NULL; 2306 2307 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2308 if (repl) 2309 rdev = conf->mirrors[d].replacement; 2310 else 2311 rdev = conf->mirrors[d].rdev; 2312 2313 if (bio->bi_status) { 2314 if (repl) 2315 md_error(mddev, rdev); 2316 else { 2317 set_bit(WriteErrorSeen, &rdev->flags); 2318 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2319 set_bit(MD_RECOVERY_NEEDED, 2320 &rdev->mddev->recovery); 2321 set_bit(R10BIO_WriteError, &r10_bio->state); 2322 } 2323 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr, 2324 r10_bio->sectors)) { 2325 set_bit(R10BIO_MadeGood, &r10_bio->state); 2326 } 2327 2328 rdev_dec_pending(rdev, mddev); 2329 2330 end_sync_request(r10_bio); 2331 } 2332 2333 /* 2334 * Note: sync and recover and handled very differently for raid10 2335 * This code is for resync. 2336 * For resync, we read through virtual addresses and read all blocks. 2337 * If there is any error, we schedule a write. The lowest numbered 2338 * drive is authoritative. 2339 * However requests come for physical address, so we need to map. 2340 * For every physical address there are raid_disks/copies virtual addresses, 2341 * which is always are least one, but is not necessarly an integer. 2342 * This means that a physical address can span multiple chunks, so we may 2343 * have to submit multiple io requests for a single sync request. 2344 */ 2345 /* 2346 * We check if all blocks are in-sync and only write to blocks that 2347 * aren't in sync 2348 */ 2349 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2350 { 2351 struct r10conf *conf = mddev->private; 2352 int i, first; 2353 struct bio *tbio, *fbio; 2354 int vcnt; 2355 struct page **tpages, **fpages; 2356 2357 atomic_set(&r10_bio->remaining, 1); 2358 2359 /* find the first device with a block */ 2360 for (i=0; i<conf->copies; i++) 2361 if (!r10_bio->devs[i].bio->bi_status) 2362 break; 2363 2364 if (i == conf->copies) 2365 goto done; 2366 2367 first = i; 2368 fbio = r10_bio->devs[i].bio; 2369 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2370 fbio->bi_iter.bi_idx = 0; 2371 fpages = get_resync_pages(fbio)->pages; 2372 2373 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2374 /* now find blocks with errors */ 2375 for (i=0 ; i < conf->copies ; i++) { 2376 int j, d; 2377 struct md_rdev *rdev; 2378 struct resync_pages *rp; 2379 2380 tbio = r10_bio->devs[i].bio; 2381 2382 if (tbio->bi_end_io != end_sync_read) 2383 continue; 2384 if (i == first) 2385 continue; 2386 2387 tpages = get_resync_pages(tbio)->pages; 2388 d = r10_bio->devs[i].devnum; 2389 rdev = conf->mirrors[d].rdev; 2390 if (!r10_bio->devs[i].bio->bi_status) { 2391 /* We know that the bi_io_vec layout is the same for 2392 * both 'first' and 'i', so we just compare them. 2393 * All vec entries are PAGE_SIZE; 2394 */ 2395 int sectors = r10_bio->sectors; 2396 for (j = 0; j < vcnt; j++) { 2397 int len = PAGE_SIZE; 2398 if (sectors < (len / 512)) 2399 len = sectors * 512; 2400 if (memcmp(page_address(fpages[j]), 2401 page_address(tpages[j]), 2402 len)) 2403 break; 2404 sectors -= len/512; 2405 } 2406 if (j == vcnt) 2407 continue; 2408 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2409 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2410 /* Don't fix anything. */ 2411 continue; 2412 } else if (test_bit(FailFast, &rdev->flags)) { 2413 /* Just give up on this device */ 2414 md_error(rdev->mddev, rdev); 2415 continue; 2416 } 2417 /* Ok, we need to write this bio, either to correct an 2418 * inconsistency or to correct an unreadable block. 2419 * First we need to fixup bv_offset, bv_len and 2420 * bi_vecs, as the read request might have corrupted these 2421 */ 2422 rp = get_resync_pages(tbio); 2423 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE); 2424 2425 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2426 2427 rp->raid_bio = r10_bio; 2428 tbio->bi_private = rp; 2429 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2430 tbio->bi_end_io = end_sync_write; 2431 2432 bio_copy_data(tbio, fbio); 2433 2434 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2435 atomic_inc(&r10_bio->remaining); 2436 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2437 2438 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2439 tbio->bi_opf |= MD_FAILFAST; 2440 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2441 submit_bio_noacct(tbio); 2442 } 2443 2444 /* Now write out to any replacement devices 2445 * that are active 2446 */ 2447 for (i = 0; i < conf->copies; i++) { 2448 int d; 2449 2450 tbio = r10_bio->devs[i].repl_bio; 2451 if (!tbio || !tbio->bi_end_io) 2452 continue; 2453 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2454 && r10_bio->devs[i].bio != fbio) 2455 bio_copy_data(tbio, fbio); 2456 d = r10_bio->devs[i].devnum; 2457 atomic_inc(&r10_bio->remaining); 2458 md_sync_acct(conf->mirrors[d].replacement->bdev, 2459 bio_sectors(tbio)); 2460 submit_bio_noacct(tbio); 2461 } 2462 2463 done: 2464 if (atomic_dec_and_test(&r10_bio->remaining)) { 2465 md_done_sync(mddev, r10_bio->sectors, 1); 2466 put_buf(r10_bio); 2467 } 2468 } 2469 2470 /* 2471 * Now for the recovery code. 2472 * Recovery happens across physical sectors. 2473 * We recover all non-is_sync drives by finding the virtual address of 2474 * each, and then choose a working drive that also has that virt address. 2475 * There is a separate r10_bio for each non-in_sync drive. 2476 * Only the first two slots are in use. The first for reading, 2477 * The second for writing. 2478 * 2479 */ 2480 static void fix_recovery_read_error(struct r10bio *r10_bio) 2481 { 2482 /* We got a read error during recovery. 2483 * We repeat the read in smaller page-sized sections. 2484 * If a read succeeds, write it to the new device or record 2485 * a bad block if we cannot. 2486 * If a read fails, record a bad block on both old and 2487 * new devices. 2488 */ 2489 struct mddev *mddev = r10_bio->mddev; 2490 struct r10conf *conf = mddev->private; 2491 struct bio *bio = r10_bio->devs[0].bio; 2492 sector_t sect = 0; 2493 int sectors = r10_bio->sectors; 2494 int idx = 0; 2495 int dr = r10_bio->devs[0].devnum; 2496 int dw = r10_bio->devs[1].devnum; 2497 struct page **pages = get_resync_pages(bio)->pages; 2498 2499 while (sectors) { 2500 int s = sectors; 2501 struct md_rdev *rdev; 2502 sector_t addr; 2503 int ok; 2504 2505 if (s > (PAGE_SIZE>>9)) 2506 s = PAGE_SIZE >> 9; 2507 2508 rdev = conf->mirrors[dr].rdev; 2509 addr = r10_bio->devs[0].addr + sect; 2510 ok = sync_page_io(rdev, 2511 addr, 2512 s << 9, 2513 pages[idx], 2514 REQ_OP_READ, false); 2515 if (ok) { 2516 rdev = conf->mirrors[dw].rdev; 2517 addr = r10_bio->devs[1].addr + sect; 2518 ok = sync_page_io(rdev, 2519 addr, 2520 s << 9, 2521 pages[idx], 2522 REQ_OP_WRITE, false); 2523 if (!ok) { 2524 set_bit(WriteErrorSeen, &rdev->flags); 2525 if (!test_and_set_bit(WantReplacement, 2526 &rdev->flags)) 2527 set_bit(MD_RECOVERY_NEEDED, 2528 &rdev->mddev->recovery); 2529 } 2530 } 2531 if (!ok) { 2532 /* We don't worry if we cannot set a bad block - 2533 * it really is bad so there is no loss in not 2534 * recording it yet 2535 */ 2536 rdev_set_badblocks(rdev, addr, s, 0); 2537 2538 if (rdev != conf->mirrors[dw].rdev) { 2539 /* need bad block on destination too */ 2540 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2541 addr = r10_bio->devs[1].addr + sect; 2542 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2543 if (!ok) { 2544 /* just abort the recovery */ 2545 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2546 mdname(mddev)); 2547 2548 conf->mirrors[dw].recovery_disabled 2549 = mddev->recovery_disabled; 2550 set_bit(MD_RECOVERY_INTR, 2551 &mddev->recovery); 2552 break; 2553 } 2554 } 2555 } 2556 2557 sectors -= s; 2558 sect += s; 2559 idx++; 2560 } 2561 } 2562 2563 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2564 { 2565 struct r10conf *conf = mddev->private; 2566 int d; 2567 struct bio *wbio = r10_bio->devs[1].bio; 2568 struct bio *wbio2 = r10_bio->devs[1].repl_bio; 2569 2570 /* Need to test wbio2->bi_end_io before we call 2571 * submit_bio_noacct as if the former is NULL, 2572 * the latter is free to free wbio2. 2573 */ 2574 if (wbio2 && !wbio2->bi_end_io) 2575 wbio2 = NULL; 2576 2577 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2578 fix_recovery_read_error(r10_bio); 2579 if (wbio->bi_end_io) 2580 end_sync_request(r10_bio); 2581 if (wbio2) 2582 end_sync_request(r10_bio); 2583 return; 2584 } 2585 2586 /* 2587 * share the pages with the first bio 2588 * and submit the write request 2589 */ 2590 d = r10_bio->devs[1].devnum; 2591 if (wbio->bi_end_io) { 2592 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2593 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2594 submit_bio_noacct(wbio); 2595 } 2596 if (wbio2) { 2597 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2598 md_sync_acct(conf->mirrors[d].replacement->bdev, 2599 bio_sectors(wbio2)); 2600 submit_bio_noacct(wbio2); 2601 } 2602 } 2603 2604 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2605 int sectors, struct page *page, enum req_op op) 2606 { 2607 if (rdev_has_badblock(rdev, sector, sectors) && 2608 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags))) 2609 return -1; 2610 if (sync_page_io(rdev, sector, sectors << 9, page, op, false)) 2611 /* success */ 2612 return 1; 2613 if (op == REQ_OP_WRITE) { 2614 set_bit(WriteErrorSeen, &rdev->flags); 2615 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2616 set_bit(MD_RECOVERY_NEEDED, 2617 &rdev->mddev->recovery); 2618 } 2619 /* need to record an error - either for the block or the device */ 2620 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2621 md_error(rdev->mddev, rdev); 2622 return 0; 2623 } 2624 2625 /* 2626 * This is a kernel thread which: 2627 * 2628 * 1. Retries failed read operations on working mirrors. 2629 * 2. Updates the raid superblock when problems encounter. 2630 * 3. Performs writes following reads for array synchronising. 2631 */ 2632 2633 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2634 { 2635 int sect = 0; /* Offset from r10_bio->sector */ 2636 int sectors = r10_bio->sectors, slot = r10_bio->read_slot; 2637 struct md_rdev *rdev; 2638 int d = r10_bio->devs[slot].devnum; 2639 2640 /* still own a reference to this rdev, so it cannot 2641 * have been cleared recently. 2642 */ 2643 rdev = conf->mirrors[d].rdev; 2644 2645 if (test_bit(Faulty, &rdev->flags)) 2646 /* drive has already been failed, just ignore any 2647 more fix_read_error() attempts */ 2648 return; 2649 2650 if (exceed_read_errors(mddev, rdev)) { 2651 r10_bio->devs[slot].bio = IO_BLOCKED; 2652 return; 2653 } 2654 2655 while(sectors) { 2656 int s = sectors; 2657 int sl = slot; 2658 int success = 0; 2659 int start; 2660 2661 if (s > (PAGE_SIZE>>9)) 2662 s = PAGE_SIZE >> 9; 2663 2664 do { 2665 d = r10_bio->devs[sl].devnum; 2666 rdev = conf->mirrors[d].rdev; 2667 if (rdev && 2668 test_bit(In_sync, &rdev->flags) && 2669 !test_bit(Faulty, &rdev->flags) && 2670 rdev_has_badblock(rdev, 2671 r10_bio->devs[sl].addr + sect, 2672 s) == 0) { 2673 atomic_inc(&rdev->nr_pending); 2674 success = sync_page_io(rdev, 2675 r10_bio->devs[sl].addr + 2676 sect, 2677 s<<9, 2678 conf->tmppage, 2679 REQ_OP_READ, false); 2680 rdev_dec_pending(rdev, mddev); 2681 if (success) 2682 break; 2683 } 2684 sl++; 2685 if (sl == conf->copies) 2686 sl = 0; 2687 } while (sl != slot); 2688 2689 if (!success) { 2690 /* Cannot read from anywhere, just mark the block 2691 * as bad on the first device to discourage future 2692 * reads. 2693 */ 2694 int dn = r10_bio->devs[slot].devnum; 2695 rdev = conf->mirrors[dn].rdev; 2696 2697 if (!rdev_set_badblocks( 2698 rdev, 2699 r10_bio->devs[slot].addr 2700 + sect, 2701 s, 0)) { 2702 md_error(mddev, rdev); 2703 r10_bio->devs[slot].bio 2704 = IO_BLOCKED; 2705 } 2706 break; 2707 } 2708 2709 start = sl; 2710 /* write it back and re-read */ 2711 while (sl != slot) { 2712 if (sl==0) 2713 sl = conf->copies; 2714 sl--; 2715 d = r10_bio->devs[sl].devnum; 2716 rdev = conf->mirrors[d].rdev; 2717 if (!rdev || 2718 test_bit(Faulty, &rdev->flags) || 2719 !test_bit(In_sync, &rdev->flags)) 2720 continue; 2721 2722 atomic_inc(&rdev->nr_pending); 2723 if (r10_sync_page_io(rdev, 2724 r10_bio->devs[sl].addr + 2725 sect, 2726 s, conf->tmppage, REQ_OP_WRITE) 2727 == 0) { 2728 /* Well, this device is dead */ 2729 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n", 2730 mdname(mddev), s, 2731 (unsigned long long)( 2732 sect + 2733 choose_data_offset(r10_bio, 2734 rdev)), 2735 rdev->bdev); 2736 pr_notice("md/raid10:%s: %pg: failing drive\n", 2737 mdname(mddev), 2738 rdev->bdev); 2739 } 2740 rdev_dec_pending(rdev, mddev); 2741 } 2742 sl = start; 2743 while (sl != slot) { 2744 if (sl==0) 2745 sl = conf->copies; 2746 sl--; 2747 d = r10_bio->devs[sl].devnum; 2748 rdev = conf->mirrors[d].rdev; 2749 if (!rdev || 2750 test_bit(Faulty, &rdev->flags) || 2751 !test_bit(In_sync, &rdev->flags)) 2752 continue; 2753 2754 atomic_inc(&rdev->nr_pending); 2755 switch (r10_sync_page_io(rdev, 2756 r10_bio->devs[sl].addr + 2757 sect, 2758 s, conf->tmppage, REQ_OP_READ)) { 2759 case 0: 2760 /* Well, this device is dead */ 2761 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n", 2762 mdname(mddev), s, 2763 (unsigned long long)( 2764 sect + 2765 choose_data_offset(r10_bio, rdev)), 2766 rdev->bdev); 2767 pr_notice("md/raid10:%s: %pg: failing drive\n", 2768 mdname(mddev), 2769 rdev->bdev); 2770 break; 2771 case 1: 2772 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n", 2773 mdname(mddev), s, 2774 (unsigned long long)( 2775 sect + 2776 choose_data_offset(r10_bio, rdev)), 2777 rdev->bdev); 2778 atomic_add(s, &rdev->corrected_errors); 2779 } 2780 2781 rdev_dec_pending(rdev, mddev); 2782 } 2783 2784 sectors -= s; 2785 sect += s; 2786 } 2787 } 2788 2789 static int narrow_write_error(struct r10bio *r10_bio, int i) 2790 { 2791 struct bio *bio = r10_bio->master_bio; 2792 struct mddev *mddev = r10_bio->mddev; 2793 struct r10conf *conf = mddev->private; 2794 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2795 /* bio has the data to be written to slot 'i' where 2796 * we just recently had a write error. 2797 * We repeatedly clone the bio and trim down to one block, 2798 * then try the write. Where the write fails we record 2799 * a bad block. 2800 * It is conceivable that the bio doesn't exactly align with 2801 * blocks. We must handle this. 2802 * 2803 * We currently own a reference to the rdev. 2804 */ 2805 2806 int block_sectors; 2807 sector_t sector; 2808 int sectors; 2809 int sect_to_write = r10_bio->sectors; 2810 int ok = 1; 2811 2812 if (rdev->badblocks.shift < 0) 2813 return 0; 2814 2815 block_sectors = roundup(1 << rdev->badblocks.shift, 2816 bdev_logical_block_size(rdev->bdev) >> 9); 2817 sector = r10_bio->sector; 2818 sectors = ((r10_bio->sector + block_sectors) 2819 & ~(sector_t)(block_sectors - 1)) 2820 - sector; 2821 2822 while (sect_to_write) { 2823 struct bio *wbio; 2824 sector_t wsector; 2825 if (sectors > sect_to_write) 2826 sectors = sect_to_write; 2827 /* Write at 'sector' for 'sectors' */ 2828 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 2829 &mddev->bio_set); 2830 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2831 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2832 wbio->bi_iter.bi_sector = wsector + 2833 choose_data_offset(r10_bio, rdev); 2834 wbio->bi_opf = REQ_OP_WRITE; 2835 2836 if (submit_bio_wait(wbio) < 0) 2837 /* Failure! */ 2838 ok = rdev_set_badblocks(rdev, wsector, 2839 sectors, 0) 2840 && ok; 2841 2842 bio_put(wbio); 2843 sect_to_write -= sectors; 2844 sector += sectors; 2845 sectors = block_sectors; 2846 } 2847 return ok; 2848 } 2849 2850 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2851 { 2852 int slot = r10_bio->read_slot; 2853 struct bio *bio; 2854 struct r10conf *conf = mddev->private; 2855 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2856 2857 /* we got a read error. Maybe the drive is bad. Maybe just 2858 * the block and we can fix it. 2859 * We freeze all other IO, and try reading the block from 2860 * other devices. When we find one, we re-write 2861 * and check it that fixes the read error. 2862 * This is all done synchronously while the array is 2863 * frozen. 2864 */ 2865 bio = r10_bio->devs[slot].bio; 2866 bio_put(bio); 2867 r10_bio->devs[slot].bio = NULL; 2868 2869 if (mddev->ro) 2870 r10_bio->devs[slot].bio = IO_BLOCKED; 2871 else if (!test_bit(FailFast, &rdev->flags)) { 2872 freeze_array(conf, 1); 2873 fix_read_error(conf, mddev, r10_bio); 2874 unfreeze_array(conf); 2875 } else 2876 md_error(mddev, rdev); 2877 2878 rdev_dec_pending(rdev, mddev); 2879 r10_bio->state = 0; 2880 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false); 2881 /* 2882 * allow_barrier after re-submit to ensure no sync io 2883 * can be issued while regular io pending. 2884 */ 2885 allow_barrier(conf); 2886 } 2887 2888 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2889 { 2890 /* Some sort of write request has finished and it 2891 * succeeded in writing where we thought there was a 2892 * bad block. So forget the bad block. 2893 * Or possibly if failed and we need to record 2894 * a bad block. 2895 */ 2896 int m; 2897 struct md_rdev *rdev; 2898 2899 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2900 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2901 for (m = 0; m < conf->copies; m++) { 2902 int dev = r10_bio->devs[m].devnum; 2903 rdev = conf->mirrors[dev].rdev; 2904 if (r10_bio->devs[m].bio == NULL || 2905 r10_bio->devs[m].bio->bi_end_io == NULL) 2906 continue; 2907 if (!r10_bio->devs[m].bio->bi_status) { 2908 rdev_clear_badblocks( 2909 rdev, 2910 r10_bio->devs[m].addr, 2911 r10_bio->sectors, 0); 2912 } else { 2913 if (!rdev_set_badblocks( 2914 rdev, 2915 r10_bio->devs[m].addr, 2916 r10_bio->sectors, 0)) 2917 md_error(conf->mddev, rdev); 2918 } 2919 rdev = conf->mirrors[dev].replacement; 2920 if (r10_bio->devs[m].repl_bio == NULL || 2921 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2922 continue; 2923 2924 if (!r10_bio->devs[m].repl_bio->bi_status) { 2925 rdev_clear_badblocks( 2926 rdev, 2927 r10_bio->devs[m].addr, 2928 r10_bio->sectors, 0); 2929 } else { 2930 if (!rdev_set_badblocks( 2931 rdev, 2932 r10_bio->devs[m].addr, 2933 r10_bio->sectors, 0)) 2934 md_error(conf->mddev, rdev); 2935 } 2936 } 2937 put_buf(r10_bio); 2938 } else { 2939 bool fail = false; 2940 for (m = 0; m < conf->copies; m++) { 2941 int dev = r10_bio->devs[m].devnum; 2942 struct bio *bio = r10_bio->devs[m].bio; 2943 rdev = conf->mirrors[dev].rdev; 2944 if (bio == IO_MADE_GOOD) { 2945 rdev_clear_badblocks( 2946 rdev, 2947 r10_bio->devs[m].addr, 2948 r10_bio->sectors, 0); 2949 rdev_dec_pending(rdev, conf->mddev); 2950 } else if (bio != NULL && bio->bi_status) { 2951 fail = true; 2952 if (!narrow_write_error(r10_bio, m)) 2953 md_error(conf->mddev, rdev); 2954 rdev_dec_pending(rdev, conf->mddev); 2955 } 2956 bio = r10_bio->devs[m].repl_bio; 2957 rdev = conf->mirrors[dev].replacement; 2958 if (rdev && bio == IO_MADE_GOOD) { 2959 rdev_clear_badblocks( 2960 rdev, 2961 r10_bio->devs[m].addr, 2962 r10_bio->sectors, 0); 2963 rdev_dec_pending(rdev, conf->mddev); 2964 } 2965 } 2966 if (fail) { 2967 spin_lock_irq(&conf->device_lock); 2968 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2969 conf->nr_queued++; 2970 spin_unlock_irq(&conf->device_lock); 2971 /* 2972 * In case freeze_array() is waiting for condition 2973 * nr_pending == nr_queued + extra to be true. 2974 */ 2975 wake_up(&conf->wait_barrier); 2976 md_wakeup_thread(conf->mddev->thread); 2977 } else { 2978 if (test_bit(R10BIO_WriteError, 2979 &r10_bio->state)) 2980 close_write(r10_bio); 2981 raid_end_bio_io(r10_bio); 2982 } 2983 } 2984 } 2985 2986 static void raid10d(struct md_thread *thread) 2987 { 2988 struct mddev *mddev = thread->mddev; 2989 struct r10bio *r10_bio; 2990 unsigned long flags; 2991 struct r10conf *conf = mddev->private; 2992 struct list_head *head = &conf->retry_list; 2993 struct blk_plug plug; 2994 2995 md_check_recovery(mddev); 2996 2997 if (!list_empty_careful(&conf->bio_end_io_list) && 2998 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2999 LIST_HEAD(tmp); 3000 spin_lock_irqsave(&conf->device_lock, flags); 3001 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3002 while (!list_empty(&conf->bio_end_io_list)) { 3003 list_move(conf->bio_end_io_list.prev, &tmp); 3004 conf->nr_queued--; 3005 } 3006 } 3007 spin_unlock_irqrestore(&conf->device_lock, flags); 3008 while (!list_empty(&tmp)) { 3009 r10_bio = list_first_entry(&tmp, struct r10bio, 3010 retry_list); 3011 list_del(&r10_bio->retry_list); 3012 3013 if (test_bit(R10BIO_WriteError, 3014 &r10_bio->state)) 3015 close_write(r10_bio); 3016 raid_end_bio_io(r10_bio); 3017 } 3018 } 3019 3020 blk_start_plug(&plug); 3021 for (;;) { 3022 3023 flush_pending_writes(conf); 3024 3025 spin_lock_irqsave(&conf->device_lock, flags); 3026 if (list_empty(head)) { 3027 spin_unlock_irqrestore(&conf->device_lock, flags); 3028 break; 3029 } 3030 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3031 list_del(head->prev); 3032 conf->nr_queued--; 3033 spin_unlock_irqrestore(&conf->device_lock, flags); 3034 3035 mddev = r10_bio->mddev; 3036 conf = mddev->private; 3037 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3038 test_bit(R10BIO_WriteError, &r10_bio->state)) 3039 handle_write_completed(conf, r10_bio); 3040 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3041 reshape_request_write(mddev, r10_bio); 3042 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3043 sync_request_write(mddev, r10_bio); 3044 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3045 recovery_request_write(mddev, r10_bio); 3046 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3047 handle_read_error(mddev, r10_bio); 3048 else 3049 WARN_ON_ONCE(1); 3050 3051 cond_resched(); 3052 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3053 md_check_recovery(mddev); 3054 } 3055 blk_finish_plug(&plug); 3056 } 3057 3058 static int init_resync(struct r10conf *conf) 3059 { 3060 int ret, buffs, i; 3061 3062 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3063 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3064 conf->have_replacement = 0; 3065 for (i = 0; i < conf->geo.raid_disks; i++) 3066 if (conf->mirrors[i].replacement) 3067 conf->have_replacement = 1; 3068 ret = mempool_init(&conf->r10buf_pool, buffs, 3069 r10buf_pool_alloc, r10buf_pool_free, conf); 3070 if (ret) 3071 return ret; 3072 conf->next_resync = 0; 3073 return 0; 3074 } 3075 3076 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3077 { 3078 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3079 struct rsync_pages *rp; 3080 struct bio *bio; 3081 int nalloc; 3082 int i; 3083 3084 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3085 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3086 nalloc = conf->copies; /* resync */ 3087 else 3088 nalloc = 2; /* recovery */ 3089 3090 for (i = 0; i < nalloc; i++) { 3091 bio = r10bio->devs[i].bio; 3092 rp = bio->bi_private; 3093 bio_reset(bio, NULL, 0); 3094 bio->bi_private = rp; 3095 bio = r10bio->devs[i].repl_bio; 3096 if (bio) { 3097 rp = bio->bi_private; 3098 bio_reset(bio, NULL, 0); 3099 bio->bi_private = rp; 3100 } 3101 } 3102 return r10bio; 3103 } 3104 3105 /* 3106 * Set cluster_sync_high since we need other nodes to add the 3107 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3108 */ 3109 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3110 { 3111 sector_t window_size; 3112 int extra_chunk, chunks; 3113 3114 /* 3115 * First, here we define "stripe" as a unit which across 3116 * all member devices one time, so we get chunks by use 3117 * raid_disks / near_copies. Otherwise, if near_copies is 3118 * close to raid_disks, then resync window could increases 3119 * linearly with the increase of raid_disks, which means 3120 * we will suspend a really large IO window while it is not 3121 * necessary. If raid_disks is not divisible by near_copies, 3122 * an extra chunk is needed to ensure the whole "stripe" is 3123 * covered. 3124 */ 3125 3126 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3127 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3128 extra_chunk = 0; 3129 else 3130 extra_chunk = 1; 3131 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3132 3133 /* 3134 * At least use a 32M window to align with raid1's resync window 3135 */ 3136 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3137 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3138 3139 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3140 } 3141 3142 /* 3143 * perform a "sync" on one "block" 3144 * 3145 * We need to make sure that no normal I/O request - particularly write 3146 * requests - conflict with active sync requests. 3147 * 3148 * This is achieved by tracking pending requests and a 'barrier' concept 3149 * that can be installed to exclude normal IO requests. 3150 * 3151 * Resync and recovery are handled very differently. 3152 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3153 * 3154 * For resync, we iterate over virtual addresses, read all copies, 3155 * and update if there are differences. If only one copy is live, 3156 * skip it. 3157 * For recovery, we iterate over physical addresses, read a good 3158 * value for each non-in_sync drive, and over-write. 3159 * 3160 * So, for recovery we may have several outstanding complex requests for a 3161 * given address, one for each out-of-sync device. We model this by allocating 3162 * a number of r10_bio structures, one for each out-of-sync device. 3163 * As we setup these structures, we collect all bio's together into a list 3164 * which we then process collectively to add pages, and then process again 3165 * to pass to submit_bio_noacct. 3166 * 3167 * The r10_bio structures are linked using a borrowed master_bio pointer. 3168 * This link is counted in ->remaining. When the r10_bio that points to NULL 3169 * has its remaining count decremented to 0, the whole complex operation 3170 * is complete. 3171 * 3172 */ 3173 3174 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3175 sector_t max_sector, int *skipped) 3176 { 3177 struct r10conf *conf = mddev->private; 3178 struct r10bio *r10_bio; 3179 struct bio *biolist = NULL, *bio; 3180 sector_t nr_sectors; 3181 int i; 3182 int max_sync; 3183 sector_t sync_blocks; 3184 sector_t sectors_skipped = 0; 3185 int chunks_skipped = 0; 3186 sector_t chunk_mask = conf->geo.chunk_mask; 3187 int page_idx = 0; 3188 int error_disk = -1; 3189 3190 /* 3191 * Allow skipping a full rebuild for incremental assembly 3192 * of a clean array, like RAID1 does. 3193 */ 3194 if (mddev->bitmap == NULL && 3195 mddev->recovery_cp == MaxSector && 3196 mddev->reshape_position == MaxSector && 3197 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3198 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3199 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3200 conf->fullsync == 0) { 3201 *skipped = 1; 3202 return mddev->dev_sectors - sector_nr; 3203 } 3204 3205 if (!mempool_initialized(&conf->r10buf_pool)) 3206 if (init_resync(conf)) 3207 return 0; 3208 3209 skipped: 3210 if (sector_nr >= max_sector) { 3211 conf->cluster_sync_low = 0; 3212 conf->cluster_sync_high = 0; 3213 3214 /* If we aborted, we need to abort the 3215 * sync on the 'current' bitmap chucks (there can 3216 * be several when recovering multiple devices). 3217 * as we may have started syncing it but not finished. 3218 * We can find the current address in 3219 * mddev->curr_resync, but for recovery, 3220 * we need to convert that to several 3221 * virtual addresses. 3222 */ 3223 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3224 end_reshape(conf); 3225 close_sync(conf); 3226 return 0; 3227 } 3228 3229 if (mddev->curr_resync < max_sector) { /* aborted */ 3230 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3231 mddev->bitmap_ops->end_sync(mddev, 3232 mddev->curr_resync, 3233 &sync_blocks); 3234 else for (i = 0; i < conf->geo.raid_disks; i++) { 3235 sector_t sect = 3236 raid10_find_virt(conf, mddev->curr_resync, i); 3237 3238 mddev->bitmap_ops->end_sync(mddev, sect, 3239 &sync_blocks); 3240 } 3241 } else { 3242 /* completed sync */ 3243 if ((!mddev->bitmap || conf->fullsync) 3244 && conf->have_replacement 3245 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3246 /* Completed a full sync so the replacements 3247 * are now fully recovered. 3248 */ 3249 for (i = 0; i < conf->geo.raid_disks; i++) { 3250 struct md_rdev *rdev = 3251 conf->mirrors[i].replacement; 3252 3253 if (rdev) 3254 rdev->recovery_offset = MaxSector; 3255 } 3256 } 3257 conf->fullsync = 0; 3258 } 3259 mddev->bitmap_ops->close_sync(mddev); 3260 close_sync(conf); 3261 *skipped = 1; 3262 return sectors_skipped; 3263 } 3264 3265 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3266 return reshape_request(mddev, sector_nr, skipped); 3267 3268 if (chunks_skipped >= conf->geo.raid_disks) { 3269 pr_err("md/raid10:%s: %s fails\n", mdname(mddev), 3270 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"); 3271 if (error_disk >= 0 && 3272 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3273 /* 3274 * recovery fails, set mirrors.recovery_disabled, 3275 * device shouldn't be added to there. 3276 */ 3277 conf->mirrors[error_disk].recovery_disabled = 3278 mddev->recovery_disabled; 3279 return 0; 3280 } 3281 /* 3282 * if there has been nothing to do on any drive, 3283 * then there is nothing to do at all. 3284 */ 3285 *skipped = 1; 3286 return (max_sector - sector_nr) + sectors_skipped; 3287 } 3288 3289 if (max_sector > mddev->resync_max) 3290 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3291 3292 /* make sure whole request will fit in a chunk - if chunks 3293 * are meaningful 3294 */ 3295 if (conf->geo.near_copies < conf->geo.raid_disks && 3296 max_sector > (sector_nr | chunk_mask)) 3297 max_sector = (sector_nr | chunk_mask) + 1; 3298 3299 /* 3300 * If there is non-resync activity waiting for a turn, then let it 3301 * though before starting on this new sync request. 3302 */ 3303 if (conf->nr_waiting) 3304 schedule_timeout_uninterruptible(1); 3305 3306 /* Again, very different code for resync and recovery. 3307 * Both must result in an r10bio with a list of bios that 3308 * have bi_end_io, bi_sector, bi_bdev set, 3309 * and bi_private set to the r10bio. 3310 * For recovery, we may actually create several r10bios 3311 * with 2 bios in each, that correspond to the bios in the main one. 3312 * In this case, the subordinate r10bios link back through a 3313 * borrowed master_bio pointer, and the counter in the master 3314 * includes a ref from each subordinate. 3315 */ 3316 /* First, we decide what to do and set ->bi_end_io 3317 * To end_sync_read if we want to read, and 3318 * end_sync_write if we will want to write. 3319 */ 3320 3321 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3322 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3323 /* recovery... the complicated one */ 3324 int j; 3325 r10_bio = NULL; 3326 3327 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3328 bool still_degraded; 3329 struct r10bio *rb2; 3330 sector_t sect; 3331 bool must_sync; 3332 int any_working; 3333 struct raid10_info *mirror = &conf->mirrors[i]; 3334 struct md_rdev *mrdev, *mreplace; 3335 3336 mrdev = mirror->rdev; 3337 mreplace = mirror->replacement; 3338 3339 if (mrdev && (test_bit(Faulty, &mrdev->flags) || 3340 test_bit(In_sync, &mrdev->flags))) 3341 mrdev = NULL; 3342 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3343 mreplace = NULL; 3344 3345 if (!mrdev && !mreplace) 3346 continue; 3347 3348 still_degraded = false; 3349 /* want to reconstruct this device */ 3350 rb2 = r10_bio; 3351 sect = raid10_find_virt(conf, sector_nr, i); 3352 if (sect >= mddev->resync_max_sectors) 3353 /* last stripe is not complete - don't 3354 * try to recover this sector. 3355 */ 3356 continue; 3357 /* Unless we are doing a full sync, or a replacement 3358 * we only need to recover the block if it is set in 3359 * the bitmap 3360 */ 3361 must_sync = mddev->bitmap_ops->start_sync(mddev, sect, 3362 &sync_blocks, 3363 true); 3364 if (sync_blocks < max_sync) 3365 max_sync = sync_blocks; 3366 if (!must_sync && 3367 mreplace == NULL && 3368 !conf->fullsync) { 3369 /* yep, skip the sync_blocks here, but don't assume 3370 * that there will never be anything to do here 3371 */ 3372 chunks_skipped = -1; 3373 continue; 3374 } 3375 if (mrdev) 3376 atomic_inc(&mrdev->nr_pending); 3377 if (mreplace) 3378 atomic_inc(&mreplace->nr_pending); 3379 3380 r10_bio = raid10_alloc_init_r10buf(conf); 3381 r10_bio->state = 0; 3382 raise_barrier(conf, rb2 != NULL); 3383 atomic_set(&r10_bio->remaining, 0); 3384 3385 r10_bio->master_bio = (struct bio*)rb2; 3386 if (rb2) 3387 atomic_inc(&rb2->remaining); 3388 r10_bio->mddev = mddev; 3389 set_bit(R10BIO_IsRecover, &r10_bio->state); 3390 r10_bio->sector = sect; 3391 3392 raid10_find_phys(conf, r10_bio); 3393 3394 /* Need to check if the array will still be 3395 * degraded 3396 */ 3397 for (j = 0; j < conf->geo.raid_disks; j++) { 3398 struct md_rdev *rdev = conf->mirrors[j].rdev; 3399 3400 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3401 still_degraded = false; 3402 break; 3403 } 3404 } 3405 3406 must_sync = mddev->bitmap_ops->start_sync(mddev, sect, 3407 &sync_blocks, still_degraded); 3408 3409 any_working = 0; 3410 for (j=0; j<conf->copies;j++) { 3411 int k; 3412 int d = r10_bio->devs[j].devnum; 3413 sector_t from_addr, to_addr; 3414 struct md_rdev *rdev = conf->mirrors[d].rdev; 3415 sector_t sector, first_bad; 3416 int bad_sectors; 3417 if (!rdev || 3418 !test_bit(In_sync, &rdev->flags)) 3419 continue; 3420 /* This is where we read from */ 3421 any_working = 1; 3422 sector = r10_bio->devs[j].addr; 3423 3424 if (is_badblock(rdev, sector, max_sync, 3425 &first_bad, &bad_sectors)) { 3426 if (first_bad > sector) 3427 max_sync = first_bad - sector; 3428 else { 3429 bad_sectors -= (sector 3430 - first_bad); 3431 if (max_sync > bad_sectors) 3432 max_sync = bad_sectors; 3433 continue; 3434 } 3435 } 3436 bio = r10_bio->devs[0].bio; 3437 bio->bi_next = biolist; 3438 biolist = bio; 3439 bio->bi_end_io = end_sync_read; 3440 bio->bi_opf = REQ_OP_READ; 3441 if (test_bit(FailFast, &rdev->flags)) 3442 bio->bi_opf |= MD_FAILFAST; 3443 from_addr = r10_bio->devs[j].addr; 3444 bio->bi_iter.bi_sector = from_addr + 3445 rdev->data_offset; 3446 bio_set_dev(bio, rdev->bdev); 3447 atomic_inc(&rdev->nr_pending); 3448 /* and we write to 'i' (if not in_sync) */ 3449 3450 for (k=0; k<conf->copies; k++) 3451 if (r10_bio->devs[k].devnum == i) 3452 break; 3453 BUG_ON(k == conf->copies); 3454 to_addr = r10_bio->devs[k].addr; 3455 r10_bio->devs[0].devnum = d; 3456 r10_bio->devs[0].addr = from_addr; 3457 r10_bio->devs[1].devnum = i; 3458 r10_bio->devs[1].addr = to_addr; 3459 3460 if (mrdev) { 3461 bio = r10_bio->devs[1].bio; 3462 bio->bi_next = biolist; 3463 biolist = bio; 3464 bio->bi_end_io = end_sync_write; 3465 bio->bi_opf = REQ_OP_WRITE; 3466 bio->bi_iter.bi_sector = to_addr 3467 + mrdev->data_offset; 3468 bio_set_dev(bio, mrdev->bdev); 3469 atomic_inc(&r10_bio->remaining); 3470 } else 3471 r10_bio->devs[1].bio->bi_end_io = NULL; 3472 3473 /* and maybe write to replacement */ 3474 bio = r10_bio->devs[1].repl_bio; 3475 if (bio) 3476 bio->bi_end_io = NULL; 3477 /* Note: if replace is not NULL, then bio 3478 * cannot be NULL as r10buf_pool_alloc will 3479 * have allocated it. 3480 */ 3481 if (!mreplace) 3482 break; 3483 bio->bi_next = biolist; 3484 biolist = bio; 3485 bio->bi_end_io = end_sync_write; 3486 bio->bi_opf = REQ_OP_WRITE; 3487 bio->bi_iter.bi_sector = to_addr + 3488 mreplace->data_offset; 3489 bio_set_dev(bio, mreplace->bdev); 3490 atomic_inc(&r10_bio->remaining); 3491 break; 3492 } 3493 if (j == conf->copies) { 3494 /* Cannot recover, so abort the recovery or 3495 * record a bad block */ 3496 if (any_working) { 3497 /* problem is that there are bad blocks 3498 * on other device(s) 3499 */ 3500 int k; 3501 for (k = 0; k < conf->copies; k++) 3502 if (r10_bio->devs[k].devnum == i) 3503 break; 3504 if (mrdev && !test_bit(In_sync, 3505 &mrdev->flags) 3506 && !rdev_set_badblocks( 3507 mrdev, 3508 r10_bio->devs[k].addr, 3509 max_sync, 0)) 3510 any_working = 0; 3511 if (mreplace && 3512 !rdev_set_badblocks( 3513 mreplace, 3514 r10_bio->devs[k].addr, 3515 max_sync, 0)) 3516 any_working = 0; 3517 } 3518 if (!any_working) { 3519 if (!test_and_set_bit(MD_RECOVERY_INTR, 3520 &mddev->recovery)) 3521 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3522 mdname(mddev)); 3523 mirror->recovery_disabled 3524 = mddev->recovery_disabled; 3525 } else { 3526 error_disk = i; 3527 } 3528 put_buf(r10_bio); 3529 if (rb2) 3530 atomic_dec(&rb2->remaining); 3531 r10_bio = rb2; 3532 if (mrdev) 3533 rdev_dec_pending(mrdev, mddev); 3534 if (mreplace) 3535 rdev_dec_pending(mreplace, mddev); 3536 break; 3537 } 3538 if (mrdev) 3539 rdev_dec_pending(mrdev, mddev); 3540 if (mreplace) 3541 rdev_dec_pending(mreplace, mddev); 3542 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3543 /* Only want this if there is elsewhere to 3544 * read from. 'j' is currently the first 3545 * readable copy. 3546 */ 3547 int targets = 1; 3548 for (; j < conf->copies; j++) { 3549 int d = r10_bio->devs[j].devnum; 3550 if (conf->mirrors[d].rdev && 3551 test_bit(In_sync, 3552 &conf->mirrors[d].rdev->flags)) 3553 targets++; 3554 } 3555 if (targets == 1) 3556 r10_bio->devs[0].bio->bi_opf 3557 &= ~MD_FAILFAST; 3558 } 3559 } 3560 if (biolist == NULL) { 3561 while (r10_bio) { 3562 struct r10bio *rb2 = r10_bio; 3563 r10_bio = (struct r10bio*) rb2->master_bio; 3564 rb2->master_bio = NULL; 3565 put_buf(rb2); 3566 } 3567 goto giveup; 3568 } 3569 } else { 3570 /* resync. Schedule a read for every block at this virt offset */ 3571 int count = 0; 3572 3573 /* 3574 * Since curr_resync_completed could probably not update in 3575 * time, and we will set cluster_sync_low based on it. 3576 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3577 * safety reason, which ensures curr_resync_completed is 3578 * updated in bitmap_cond_end_sync. 3579 */ 3580 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 3581 mddev_is_clustered(mddev) && 3582 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3583 3584 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, 3585 &sync_blocks, 3586 mddev->degraded) && 3587 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3588 &mddev->recovery)) { 3589 /* We can skip this block */ 3590 *skipped = 1; 3591 return sync_blocks + sectors_skipped; 3592 } 3593 if (sync_blocks < max_sync) 3594 max_sync = sync_blocks; 3595 r10_bio = raid10_alloc_init_r10buf(conf); 3596 r10_bio->state = 0; 3597 3598 r10_bio->mddev = mddev; 3599 atomic_set(&r10_bio->remaining, 0); 3600 raise_barrier(conf, 0); 3601 conf->next_resync = sector_nr; 3602 3603 r10_bio->master_bio = NULL; 3604 r10_bio->sector = sector_nr; 3605 set_bit(R10BIO_IsSync, &r10_bio->state); 3606 raid10_find_phys(conf, r10_bio); 3607 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3608 3609 for (i = 0; i < conf->copies; i++) { 3610 int d = r10_bio->devs[i].devnum; 3611 sector_t first_bad, sector; 3612 int bad_sectors; 3613 struct md_rdev *rdev; 3614 3615 if (r10_bio->devs[i].repl_bio) 3616 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3617 3618 bio = r10_bio->devs[i].bio; 3619 bio->bi_status = BLK_STS_IOERR; 3620 rdev = conf->mirrors[d].rdev; 3621 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3622 continue; 3623 3624 sector = r10_bio->devs[i].addr; 3625 if (is_badblock(rdev, sector, max_sync, 3626 &first_bad, &bad_sectors)) { 3627 if (first_bad > sector) 3628 max_sync = first_bad - sector; 3629 else { 3630 bad_sectors -= (sector - first_bad); 3631 if (max_sync > bad_sectors) 3632 max_sync = bad_sectors; 3633 continue; 3634 } 3635 } 3636 atomic_inc(&rdev->nr_pending); 3637 atomic_inc(&r10_bio->remaining); 3638 bio->bi_next = biolist; 3639 biolist = bio; 3640 bio->bi_end_io = end_sync_read; 3641 bio->bi_opf = REQ_OP_READ; 3642 if (test_bit(FailFast, &rdev->flags)) 3643 bio->bi_opf |= MD_FAILFAST; 3644 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3645 bio_set_dev(bio, rdev->bdev); 3646 count++; 3647 3648 rdev = conf->mirrors[d].replacement; 3649 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 3650 continue; 3651 3652 atomic_inc(&rdev->nr_pending); 3653 3654 /* Need to set up for writing to the replacement */ 3655 bio = r10_bio->devs[i].repl_bio; 3656 bio->bi_status = BLK_STS_IOERR; 3657 3658 sector = r10_bio->devs[i].addr; 3659 bio->bi_next = biolist; 3660 biolist = bio; 3661 bio->bi_end_io = end_sync_write; 3662 bio->bi_opf = REQ_OP_WRITE; 3663 if (test_bit(FailFast, &rdev->flags)) 3664 bio->bi_opf |= MD_FAILFAST; 3665 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3666 bio_set_dev(bio, rdev->bdev); 3667 count++; 3668 } 3669 3670 if (count < 2) { 3671 for (i=0; i<conf->copies; i++) { 3672 int d = r10_bio->devs[i].devnum; 3673 if (r10_bio->devs[i].bio->bi_end_io) 3674 rdev_dec_pending(conf->mirrors[d].rdev, 3675 mddev); 3676 if (r10_bio->devs[i].repl_bio && 3677 r10_bio->devs[i].repl_bio->bi_end_io) 3678 rdev_dec_pending( 3679 conf->mirrors[d].replacement, 3680 mddev); 3681 } 3682 put_buf(r10_bio); 3683 biolist = NULL; 3684 goto giveup; 3685 } 3686 } 3687 3688 nr_sectors = 0; 3689 if (sector_nr + max_sync < max_sector) 3690 max_sector = sector_nr + max_sync; 3691 do { 3692 struct page *page; 3693 int len = PAGE_SIZE; 3694 if (sector_nr + (len>>9) > max_sector) 3695 len = (max_sector - sector_nr) << 9; 3696 if (len == 0) 3697 break; 3698 for (bio= biolist ; bio ; bio=bio->bi_next) { 3699 struct resync_pages *rp = get_resync_pages(bio); 3700 page = resync_fetch_page(rp, page_idx); 3701 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 3702 bio->bi_status = BLK_STS_RESOURCE; 3703 bio_endio(bio); 3704 goto giveup; 3705 } 3706 } 3707 nr_sectors += len>>9; 3708 sector_nr += len>>9; 3709 } while (++page_idx < RESYNC_PAGES); 3710 r10_bio->sectors = nr_sectors; 3711 3712 if (mddev_is_clustered(mddev) && 3713 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3714 /* It is resync not recovery */ 3715 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3716 conf->cluster_sync_low = mddev->curr_resync_completed; 3717 raid10_set_cluster_sync_high(conf); 3718 /* Send resync message */ 3719 md_cluster_ops->resync_info_update(mddev, 3720 conf->cluster_sync_low, 3721 conf->cluster_sync_high); 3722 } 3723 } else if (mddev_is_clustered(mddev)) { 3724 /* This is recovery not resync */ 3725 sector_t sect_va1, sect_va2; 3726 bool broadcast_msg = false; 3727 3728 for (i = 0; i < conf->geo.raid_disks; i++) { 3729 /* 3730 * sector_nr is a device address for recovery, so we 3731 * need translate it to array address before compare 3732 * with cluster_sync_high. 3733 */ 3734 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3735 3736 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3737 broadcast_msg = true; 3738 /* 3739 * curr_resync_completed is similar as 3740 * sector_nr, so make the translation too. 3741 */ 3742 sect_va2 = raid10_find_virt(conf, 3743 mddev->curr_resync_completed, i); 3744 3745 if (conf->cluster_sync_low == 0 || 3746 conf->cluster_sync_low > sect_va2) 3747 conf->cluster_sync_low = sect_va2; 3748 } 3749 } 3750 if (broadcast_msg) { 3751 raid10_set_cluster_sync_high(conf); 3752 md_cluster_ops->resync_info_update(mddev, 3753 conf->cluster_sync_low, 3754 conf->cluster_sync_high); 3755 } 3756 } 3757 3758 while (biolist) { 3759 bio = biolist; 3760 biolist = biolist->bi_next; 3761 3762 bio->bi_next = NULL; 3763 r10_bio = get_resync_r10bio(bio); 3764 r10_bio->sectors = nr_sectors; 3765 3766 if (bio->bi_end_io == end_sync_read) { 3767 md_sync_acct_bio(bio, nr_sectors); 3768 bio->bi_status = 0; 3769 submit_bio_noacct(bio); 3770 } 3771 } 3772 3773 if (sectors_skipped) 3774 /* pretend they weren't skipped, it makes 3775 * no important difference in this case 3776 */ 3777 md_done_sync(mddev, sectors_skipped, 1); 3778 3779 return sectors_skipped + nr_sectors; 3780 giveup: 3781 /* There is nowhere to write, so all non-sync 3782 * drives must be failed or in resync, all drives 3783 * have a bad block, so try the next chunk... 3784 */ 3785 if (sector_nr + max_sync < max_sector) 3786 max_sector = sector_nr + max_sync; 3787 3788 sectors_skipped += (max_sector - sector_nr); 3789 chunks_skipped ++; 3790 sector_nr = max_sector; 3791 goto skipped; 3792 } 3793 3794 static sector_t 3795 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3796 { 3797 sector_t size; 3798 struct r10conf *conf = mddev->private; 3799 3800 if (!raid_disks) 3801 raid_disks = min(conf->geo.raid_disks, 3802 conf->prev.raid_disks); 3803 if (!sectors) 3804 sectors = conf->dev_sectors; 3805 3806 size = sectors >> conf->geo.chunk_shift; 3807 sector_div(size, conf->geo.far_copies); 3808 size = size * raid_disks; 3809 sector_div(size, conf->geo.near_copies); 3810 3811 return size << conf->geo.chunk_shift; 3812 } 3813 3814 static void calc_sectors(struct r10conf *conf, sector_t size) 3815 { 3816 /* Calculate the number of sectors-per-device that will 3817 * actually be used, and set conf->dev_sectors and 3818 * conf->stride 3819 */ 3820 3821 size = size >> conf->geo.chunk_shift; 3822 sector_div(size, conf->geo.far_copies); 3823 size = size * conf->geo.raid_disks; 3824 sector_div(size, conf->geo.near_copies); 3825 /* 'size' is now the number of chunks in the array */ 3826 /* calculate "used chunks per device" */ 3827 size = size * conf->copies; 3828 3829 /* We need to round up when dividing by raid_disks to 3830 * get the stride size. 3831 */ 3832 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3833 3834 conf->dev_sectors = size << conf->geo.chunk_shift; 3835 3836 if (conf->geo.far_offset) 3837 conf->geo.stride = 1 << conf->geo.chunk_shift; 3838 else { 3839 sector_div(size, conf->geo.far_copies); 3840 conf->geo.stride = size << conf->geo.chunk_shift; 3841 } 3842 } 3843 3844 enum geo_type {geo_new, geo_old, geo_start}; 3845 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3846 { 3847 int nc, fc, fo; 3848 int layout, chunk, disks; 3849 switch (new) { 3850 case geo_old: 3851 layout = mddev->layout; 3852 chunk = mddev->chunk_sectors; 3853 disks = mddev->raid_disks - mddev->delta_disks; 3854 break; 3855 case geo_new: 3856 layout = mddev->new_layout; 3857 chunk = mddev->new_chunk_sectors; 3858 disks = mddev->raid_disks; 3859 break; 3860 default: /* avoid 'may be unused' warnings */ 3861 case geo_start: /* new when starting reshape - raid_disks not 3862 * updated yet. */ 3863 layout = mddev->new_layout; 3864 chunk = mddev->new_chunk_sectors; 3865 disks = mddev->raid_disks + mddev->delta_disks; 3866 break; 3867 } 3868 if (layout >> 19) 3869 return -1; 3870 if (chunk < (PAGE_SIZE >> 9) || 3871 !is_power_of_2(chunk)) 3872 return -2; 3873 nc = layout & 255; 3874 fc = (layout >> 8) & 255; 3875 fo = layout & (1<<16); 3876 geo->raid_disks = disks; 3877 geo->near_copies = nc; 3878 geo->far_copies = fc; 3879 geo->far_offset = fo; 3880 switch (layout >> 17) { 3881 case 0: /* original layout. simple but not always optimal */ 3882 geo->far_set_size = disks; 3883 break; 3884 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3885 * actually using this, but leave code here just in case.*/ 3886 geo->far_set_size = disks/fc; 3887 WARN(geo->far_set_size < fc, 3888 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3889 break; 3890 case 2: /* "improved" layout fixed to match documentation */ 3891 geo->far_set_size = fc * nc; 3892 break; 3893 default: /* Not a valid layout */ 3894 return -1; 3895 } 3896 geo->chunk_mask = chunk - 1; 3897 geo->chunk_shift = ffz(~chunk); 3898 return nc*fc; 3899 } 3900 3901 static void raid10_free_conf(struct r10conf *conf) 3902 { 3903 if (!conf) 3904 return; 3905 3906 mempool_exit(&conf->r10bio_pool); 3907 kfree(conf->mirrors); 3908 kfree(conf->mirrors_old); 3909 kfree(conf->mirrors_new); 3910 safe_put_page(conf->tmppage); 3911 bioset_exit(&conf->bio_split); 3912 kfree(conf); 3913 } 3914 3915 static struct r10conf *setup_conf(struct mddev *mddev) 3916 { 3917 struct r10conf *conf = NULL; 3918 int err = -EINVAL; 3919 struct geom geo; 3920 int copies; 3921 3922 copies = setup_geo(&geo, mddev, geo_new); 3923 3924 if (copies == -2) { 3925 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3926 mdname(mddev), PAGE_SIZE); 3927 goto out; 3928 } 3929 3930 if (copies < 2 || copies > mddev->raid_disks) { 3931 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3932 mdname(mddev), mddev->new_layout); 3933 goto out; 3934 } 3935 3936 err = -ENOMEM; 3937 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3938 if (!conf) 3939 goto out; 3940 3941 /* FIXME calc properly */ 3942 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3943 sizeof(struct raid10_info), 3944 GFP_KERNEL); 3945 if (!conf->mirrors) 3946 goto out; 3947 3948 conf->tmppage = alloc_page(GFP_KERNEL); 3949 if (!conf->tmppage) 3950 goto out; 3951 3952 conf->geo = geo; 3953 conf->copies = copies; 3954 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3955 rbio_pool_free, conf); 3956 if (err) 3957 goto out; 3958 3959 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3960 if (err) 3961 goto out; 3962 3963 calc_sectors(conf, mddev->dev_sectors); 3964 if (mddev->reshape_position == MaxSector) { 3965 conf->prev = conf->geo; 3966 conf->reshape_progress = MaxSector; 3967 } else { 3968 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3969 err = -EINVAL; 3970 goto out; 3971 } 3972 conf->reshape_progress = mddev->reshape_position; 3973 if (conf->prev.far_offset) 3974 conf->prev.stride = 1 << conf->prev.chunk_shift; 3975 else 3976 /* far_copies must be 1 */ 3977 conf->prev.stride = conf->dev_sectors; 3978 } 3979 conf->reshape_safe = conf->reshape_progress; 3980 spin_lock_init(&conf->device_lock); 3981 INIT_LIST_HEAD(&conf->retry_list); 3982 INIT_LIST_HEAD(&conf->bio_end_io_list); 3983 3984 seqlock_init(&conf->resync_lock); 3985 init_waitqueue_head(&conf->wait_barrier); 3986 atomic_set(&conf->nr_pending, 0); 3987 3988 err = -ENOMEM; 3989 rcu_assign_pointer(conf->thread, 3990 md_register_thread(raid10d, mddev, "raid10")); 3991 if (!conf->thread) 3992 goto out; 3993 3994 conf->mddev = mddev; 3995 return conf; 3996 3997 out: 3998 raid10_free_conf(conf); 3999 return ERR_PTR(err); 4000 } 4001 4002 static unsigned int raid10_nr_stripes(struct r10conf *conf) 4003 { 4004 unsigned int raid_disks = conf->geo.raid_disks; 4005 4006 if (conf->geo.raid_disks % conf->geo.near_copies) 4007 return raid_disks; 4008 return raid_disks / conf->geo.near_copies; 4009 } 4010 4011 static int raid10_set_queue_limits(struct mddev *mddev) 4012 { 4013 struct r10conf *conf = mddev->private; 4014 struct queue_limits lim; 4015 int err; 4016 4017 md_init_stacking_limits(&lim); 4018 lim.max_write_zeroes_sectors = 0; 4019 lim.io_min = mddev->chunk_sectors << 9; 4020 lim.io_opt = lim.io_min * raid10_nr_stripes(conf); 4021 lim.features |= BLK_FEAT_ATOMIC_WRITES; 4022 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 4023 if (err) 4024 return err; 4025 return queue_limits_set(mddev->gendisk->queue, &lim); 4026 } 4027 4028 static int raid10_run(struct mddev *mddev) 4029 { 4030 struct r10conf *conf; 4031 int i, disk_idx; 4032 struct raid10_info *disk; 4033 struct md_rdev *rdev; 4034 sector_t size; 4035 sector_t min_offset_diff = 0; 4036 int first = 1; 4037 int ret = -EIO; 4038 4039 if (mddev->private == NULL) { 4040 conf = setup_conf(mddev); 4041 if (IS_ERR(conf)) 4042 return PTR_ERR(conf); 4043 mddev->private = conf; 4044 } 4045 conf = mddev->private; 4046 if (!conf) 4047 goto out; 4048 4049 rcu_assign_pointer(mddev->thread, conf->thread); 4050 rcu_assign_pointer(conf->thread, NULL); 4051 4052 if (mddev_is_clustered(conf->mddev)) { 4053 int fc, fo; 4054 4055 fc = (mddev->layout >> 8) & 255; 4056 fo = mddev->layout & (1<<16); 4057 if (fc > 1 || fo > 0) { 4058 pr_err("only near layout is supported by clustered" 4059 " raid10\n"); 4060 goto out_free_conf; 4061 } 4062 } 4063 4064 rdev_for_each(rdev, mddev) { 4065 long long diff; 4066 4067 disk_idx = rdev->raid_disk; 4068 if (disk_idx < 0) 4069 continue; 4070 if (disk_idx >= conf->geo.raid_disks && 4071 disk_idx >= conf->prev.raid_disks) 4072 continue; 4073 disk = conf->mirrors + disk_idx; 4074 4075 if (test_bit(Replacement, &rdev->flags)) { 4076 if (disk->replacement) 4077 goto out_free_conf; 4078 disk->replacement = rdev; 4079 } else { 4080 if (disk->rdev) 4081 goto out_free_conf; 4082 disk->rdev = rdev; 4083 } 4084 diff = (rdev->new_data_offset - rdev->data_offset); 4085 if (!mddev->reshape_backwards) 4086 diff = -diff; 4087 if (diff < 0) 4088 diff = 0; 4089 if (first || diff < min_offset_diff) 4090 min_offset_diff = diff; 4091 4092 disk->head_position = 0; 4093 first = 0; 4094 } 4095 4096 if (!mddev_is_dm(conf->mddev)) { 4097 int err = raid10_set_queue_limits(mddev); 4098 4099 if (err) { 4100 ret = err; 4101 goto out_free_conf; 4102 } 4103 } 4104 4105 /* need to check that every block has at least one working mirror */ 4106 if (!enough(conf, -1)) { 4107 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4108 mdname(mddev)); 4109 goto out_free_conf; 4110 } 4111 4112 if (conf->reshape_progress != MaxSector) { 4113 /* must ensure that shape change is supported */ 4114 if (conf->geo.far_copies != 1 && 4115 conf->geo.far_offset == 0) 4116 goto out_free_conf; 4117 if (conf->prev.far_copies != 1 && 4118 conf->prev.far_offset == 0) 4119 goto out_free_conf; 4120 } 4121 4122 mddev->degraded = 0; 4123 for (i = 0; 4124 i < conf->geo.raid_disks 4125 || i < conf->prev.raid_disks; 4126 i++) { 4127 4128 disk = conf->mirrors + i; 4129 4130 if (!disk->rdev && disk->replacement) { 4131 /* The replacement is all we have - use it */ 4132 disk->rdev = disk->replacement; 4133 disk->replacement = NULL; 4134 clear_bit(Replacement, &disk->rdev->flags); 4135 } 4136 4137 if (!disk->rdev || 4138 !test_bit(In_sync, &disk->rdev->flags)) { 4139 disk->head_position = 0; 4140 mddev->degraded++; 4141 if (disk->rdev && 4142 disk->rdev->saved_raid_disk < 0) 4143 conf->fullsync = 1; 4144 } 4145 4146 if (disk->replacement && 4147 !test_bit(In_sync, &disk->replacement->flags) && 4148 disk->replacement->saved_raid_disk < 0) { 4149 conf->fullsync = 1; 4150 } 4151 4152 disk->recovery_disabled = mddev->recovery_disabled - 1; 4153 } 4154 4155 if (mddev->recovery_cp != MaxSector) 4156 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4157 mdname(mddev)); 4158 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4159 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4160 conf->geo.raid_disks); 4161 /* 4162 * Ok, everything is just fine now 4163 */ 4164 mddev->dev_sectors = conf->dev_sectors; 4165 size = raid10_size(mddev, 0, 0); 4166 md_set_array_sectors(mddev, size); 4167 mddev->resync_max_sectors = size; 4168 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4169 4170 if (md_integrity_register(mddev)) 4171 goto out_free_conf; 4172 4173 if (conf->reshape_progress != MaxSector) { 4174 unsigned long before_length, after_length; 4175 4176 before_length = ((1 << conf->prev.chunk_shift) * 4177 conf->prev.far_copies); 4178 after_length = ((1 << conf->geo.chunk_shift) * 4179 conf->geo.far_copies); 4180 4181 if (max(before_length, after_length) > min_offset_diff) { 4182 /* This cannot work */ 4183 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4184 goto out_free_conf; 4185 } 4186 conf->offset_diff = min_offset_diff; 4187 4188 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4189 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4190 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4191 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4192 } 4193 4194 return 0; 4195 4196 out_free_conf: 4197 md_unregister_thread(mddev, &mddev->thread); 4198 raid10_free_conf(conf); 4199 mddev->private = NULL; 4200 out: 4201 return ret; 4202 } 4203 4204 static void raid10_free(struct mddev *mddev, void *priv) 4205 { 4206 raid10_free_conf(priv); 4207 } 4208 4209 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4210 { 4211 struct r10conf *conf = mddev->private; 4212 4213 if (quiesce) 4214 raise_barrier(conf, 0); 4215 else 4216 lower_barrier(conf); 4217 } 4218 4219 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4220 { 4221 /* Resize of 'far' arrays is not supported. 4222 * For 'near' and 'offset' arrays we can set the 4223 * number of sectors used to be an appropriate multiple 4224 * of the chunk size. 4225 * For 'offset', this is far_copies*chunksize. 4226 * For 'near' the multiplier is the LCM of 4227 * near_copies and raid_disks. 4228 * So if far_copies > 1 && !far_offset, fail. 4229 * Else find LCM(raid_disks, near_copy)*far_copies and 4230 * multiply by chunk_size. Then round to this number. 4231 * This is mostly done by raid10_size() 4232 */ 4233 struct r10conf *conf = mddev->private; 4234 sector_t oldsize, size; 4235 int ret; 4236 4237 if (mddev->reshape_position != MaxSector) 4238 return -EBUSY; 4239 4240 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4241 return -EINVAL; 4242 4243 oldsize = raid10_size(mddev, 0, 0); 4244 size = raid10_size(mddev, sectors, 0); 4245 if (mddev->external_size && 4246 mddev->array_sectors > size) 4247 return -EINVAL; 4248 4249 ret = mddev->bitmap_ops->resize(mddev, size, 0, false); 4250 if (ret) 4251 return ret; 4252 4253 md_set_array_sectors(mddev, size); 4254 if (sectors > mddev->dev_sectors && 4255 mddev->recovery_cp > oldsize) { 4256 mddev->recovery_cp = oldsize; 4257 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4258 } 4259 calc_sectors(conf, sectors); 4260 mddev->dev_sectors = conf->dev_sectors; 4261 mddev->resync_max_sectors = size; 4262 return 0; 4263 } 4264 4265 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4266 { 4267 struct md_rdev *rdev; 4268 struct r10conf *conf; 4269 4270 if (mddev->degraded > 0) { 4271 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4272 mdname(mddev)); 4273 return ERR_PTR(-EINVAL); 4274 } 4275 sector_div(size, devs); 4276 4277 /* Set new parameters */ 4278 mddev->new_level = 10; 4279 /* new layout: far_copies = 1, near_copies = 2 */ 4280 mddev->new_layout = (1<<8) + 2; 4281 mddev->new_chunk_sectors = mddev->chunk_sectors; 4282 mddev->delta_disks = mddev->raid_disks; 4283 mddev->raid_disks *= 2; 4284 /* make sure it will be not marked as dirty */ 4285 mddev->recovery_cp = MaxSector; 4286 mddev->dev_sectors = size; 4287 4288 conf = setup_conf(mddev); 4289 if (!IS_ERR(conf)) { 4290 rdev_for_each(rdev, mddev) 4291 if (rdev->raid_disk >= 0) { 4292 rdev->new_raid_disk = rdev->raid_disk * 2; 4293 rdev->sectors = size; 4294 } 4295 } 4296 4297 return conf; 4298 } 4299 4300 static void *raid10_takeover(struct mddev *mddev) 4301 { 4302 struct r0conf *raid0_conf; 4303 4304 /* raid10 can take over: 4305 * raid0 - providing it has only two drives 4306 */ 4307 if (mddev->level == 0) { 4308 /* for raid0 takeover only one zone is supported */ 4309 raid0_conf = mddev->private; 4310 if (raid0_conf->nr_strip_zones > 1) { 4311 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4312 mdname(mddev)); 4313 return ERR_PTR(-EINVAL); 4314 } 4315 return raid10_takeover_raid0(mddev, 4316 raid0_conf->strip_zone->zone_end, 4317 raid0_conf->strip_zone->nb_dev); 4318 } 4319 return ERR_PTR(-EINVAL); 4320 } 4321 4322 static int raid10_check_reshape(struct mddev *mddev) 4323 { 4324 /* Called when there is a request to change 4325 * - layout (to ->new_layout) 4326 * - chunk size (to ->new_chunk_sectors) 4327 * - raid_disks (by delta_disks) 4328 * or when trying to restart a reshape that was ongoing. 4329 * 4330 * We need to validate the request and possibly allocate 4331 * space if that might be an issue later. 4332 * 4333 * Currently we reject any reshape of a 'far' mode array, 4334 * allow chunk size to change if new is generally acceptable, 4335 * allow raid_disks to increase, and allow 4336 * a switch between 'near' mode and 'offset' mode. 4337 */ 4338 struct r10conf *conf = mddev->private; 4339 struct geom geo; 4340 4341 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4342 return -EINVAL; 4343 4344 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4345 /* mustn't change number of copies */ 4346 return -EINVAL; 4347 if (geo.far_copies > 1 && !geo.far_offset) 4348 /* Cannot switch to 'far' mode */ 4349 return -EINVAL; 4350 4351 if (mddev->array_sectors & geo.chunk_mask) 4352 /* not factor of array size */ 4353 return -EINVAL; 4354 4355 if (!enough(conf, -1)) 4356 return -EINVAL; 4357 4358 kfree(conf->mirrors_new); 4359 conf->mirrors_new = NULL; 4360 if (mddev->delta_disks > 0) { 4361 /* allocate new 'mirrors' list */ 4362 conf->mirrors_new = 4363 kcalloc(mddev->raid_disks + mddev->delta_disks, 4364 sizeof(struct raid10_info), 4365 GFP_KERNEL); 4366 if (!conf->mirrors_new) 4367 return -ENOMEM; 4368 } 4369 return 0; 4370 } 4371 4372 /* 4373 * Need to check if array has failed when deciding whether to: 4374 * - start an array 4375 * - remove non-faulty devices 4376 * - add a spare 4377 * - allow a reshape 4378 * This determination is simple when no reshape is happening. 4379 * However if there is a reshape, we need to carefully check 4380 * both the before and after sections. 4381 * This is because some failed devices may only affect one 4382 * of the two sections, and some non-in_sync devices may 4383 * be insync in the section most affected by failed devices. 4384 */ 4385 static int calc_degraded(struct r10conf *conf) 4386 { 4387 int degraded, degraded2; 4388 int i; 4389 4390 degraded = 0; 4391 /* 'prev' section first */ 4392 for (i = 0; i < conf->prev.raid_disks; i++) { 4393 struct md_rdev *rdev = conf->mirrors[i].rdev; 4394 4395 if (!rdev || test_bit(Faulty, &rdev->flags)) 4396 degraded++; 4397 else if (!test_bit(In_sync, &rdev->flags)) 4398 /* When we can reduce the number of devices in 4399 * an array, this might not contribute to 4400 * 'degraded'. It does now. 4401 */ 4402 degraded++; 4403 } 4404 if (conf->geo.raid_disks == conf->prev.raid_disks) 4405 return degraded; 4406 degraded2 = 0; 4407 for (i = 0; i < conf->geo.raid_disks; i++) { 4408 struct md_rdev *rdev = conf->mirrors[i].rdev; 4409 4410 if (!rdev || test_bit(Faulty, &rdev->flags)) 4411 degraded2++; 4412 else if (!test_bit(In_sync, &rdev->flags)) { 4413 /* If reshape is increasing the number of devices, 4414 * this section has already been recovered, so 4415 * it doesn't contribute to degraded. 4416 * else it does. 4417 */ 4418 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4419 degraded2++; 4420 } 4421 } 4422 if (degraded2 > degraded) 4423 return degraded2; 4424 return degraded; 4425 } 4426 4427 static int raid10_start_reshape(struct mddev *mddev) 4428 { 4429 /* A 'reshape' has been requested. This commits 4430 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4431 * This also checks if there are enough spares and adds them 4432 * to the array. 4433 * We currently require enough spares to make the final 4434 * array non-degraded. We also require that the difference 4435 * between old and new data_offset - on each device - is 4436 * enough that we never risk over-writing. 4437 */ 4438 4439 unsigned long before_length, after_length; 4440 sector_t min_offset_diff = 0; 4441 int first = 1; 4442 struct geom new; 4443 struct r10conf *conf = mddev->private; 4444 struct md_rdev *rdev; 4445 int spares = 0; 4446 int ret; 4447 4448 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4449 return -EBUSY; 4450 4451 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4452 return -EINVAL; 4453 4454 before_length = ((1 << conf->prev.chunk_shift) * 4455 conf->prev.far_copies); 4456 after_length = ((1 << conf->geo.chunk_shift) * 4457 conf->geo.far_copies); 4458 4459 rdev_for_each(rdev, mddev) { 4460 if (!test_bit(In_sync, &rdev->flags) 4461 && !test_bit(Faulty, &rdev->flags)) 4462 spares++; 4463 if (rdev->raid_disk >= 0) { 4464 long long diff = (rdev->new_data_offset 4465 - rdev->data_offset); 4466 if (!mddev->reshape_backwards) 4467 diff = -diff; 4468 if (diff < 0) 4469 diff = 0; 4470 if (first || diff < min_offset_diff) 4471 min_offset_diff = diff; 4472 first = 0; 4473 } 4474 } 4475 4476 if (max(before_length, after_length) > min_offset_diff) 4477 return -EINVAL; 4478 4479 if (spares < mddev->delta_disks) 4480 return -EINVAL; 4481 4482 conf->offset_diff = min_offset_diff; 4483 spin_lock_irq(&conf->device_lock); 4484 if (conf->mirrors_new) { 4485 memcpy(conf->mirrors_new, conf->mirrors, 4486 sizeof(struct raid10_info)*conf->prev.raid_disks); 4487 smp_mb(); 4488 kfree(conf->mirrors_old); 4489 conf->mirrors_old = conf->mirrors; 4490 conf->mirrors = conf->mirrors_new; 4491 conf->mirrors_new = NULL; 4492 } 4493 setup_geo(&conf->geo, mddev, geo_start); 4494 smp_mb(); 4495 if (mddev->reshape_backwards) { 4496 sector_t size = raid10_size(mddev, 0, 0); 4497 if (size < mddev->array_sectors) { 4498 spin_unlock_irq(&conf->device_lock); 4499 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4500 mdname(mddev)); 4501 return -EINVAL; 4502 } 4503 mddev->resync_max_sectors = size; 4504 conf->reshape_progress = size; 4505 } else 4506 conf->reshape_progress = 0; 4507 conf->reshape_safe = conf->reshape_progress; 4508 spin_unlock_irq(&conf->device_lock); 4509 4510 if (mddev->delta_disks && mddev->bitmap) { 4511 struct mdp_superblock_1 *sb = NULL; 4512 sector_t oldsize, newsize; 4513 4514 oldsize = raid10_size(mddev, 0, 0); 4515 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4516 4517 if (!mddev_is_clustered(mddev)) { 4518 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 4519 if (ret) 4520 goto abort; 4521 else 4522 goto out; 4523 } 4524 4525 rdev_for_each(rdev, mddev) { 4526 if (rdev->raid_disk > -1 && 4527 !test_bit(Faulty, &rdev->flags)) 4528 sb = page_address(rdev->sb_page); 4529 } 4530 4531 /* 4532 * some node is already performing reshape, and no need to 4533 * call bitmap_ops->resize again since it should be called when 4534 * receiving BITMAP_RESIZE msg 4535 */ 4536 if ((sb && (le32_to_cpu(sb->feature_map) & 4537 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4538 goto out; 4539 4540 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 4541 if (ret) 4542 goto abort; 4543 4544 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4545 if (ret) { 4546 mddev->bitmap_ops->resize(mddev, oldsize, 0, false); 4547 goto abort; 4548 } 4549 } 4550 out: 4551 if (mddev->delta_disks > 0) { 4552 rdev_for_each(rdev, mddev) 4553 if (rdev->raid_disk < 0 && 4554 !test_bit(Faulty, &rdev->flags)) { 4555 if (raid10_add_disk(mddev, rdev) == 0) { 4556 if (rdev->raid_disk >= 4557 conf->prev.raid_disks) 4558 set_bit(In_sync, &rdev->flags); 4559 else 4560 rdev->recovery_offset = 0; 4561 4562 /* Failure here is OK */ 4563 sysfs_link_rdev(mddev, rdev); 4564 } 4565 } else if (rdev->raid_disk >= conf->prev.raid_disks 4566 && !test_bit(Faulty, &rdev->flags)) { 4567 /* This is a spare that was manually added */ 4568 set_bit(In_sync, &rdev->flags); 4569 } 4570 } 4571 /* When a reshape changes the number of devices, 4572 * ->degraded is measured against the larger of the 4573 * pre and post numbers. 4574 */ 4575 spin_lock_irq(&conf->device_lock); 4576 mddev->degraded = calc_degraded(conf); 4577 spin_unlock_irq(&conf->device_lock); 4578 mddev->raid_disks = conf->geo.raid_disks; 4579 mddev->reshape_position = conf->reshape_progress; 4580 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4581 4582 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4583 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4584 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4585 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4586 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4587 conf->reshape_checkpoint = jiffies; 4588 md_new_event(); 4589 return 0; 4590 4591 abort: 4592 mddev->recovery = 0; 4593 spin_lock_irq(&conf->device_lock); 4594 conf->geo = conf->prev; 4595 mddev->raid_disks = conf->geo.raid_disks; 4596 rdev_for_each(rdev, mddev) 4597 rdev->new_data_offset = rdev->data_offset; 4598 smp_wmb(); 4599 conf->reshape_progress = MaxSector; 4600 conf->reshape_safe = MaxSector; 4601 mddev->reshape_position = MaxSector; 4602 spin_unlock_irq(&conf->device_lock); 4603 return ret; 4604 } 4605 4606 /* Calculate the last device-address that could contain 4607 * any block from the chunk that includes the array-address 's' 4608 * and report the next address. 4609 * i.e. the address returned will be chunk-aligned and after 4610 * any data that is in the chunk containing 's'. 4611 */ 4612 static sector_t last_dev_address(sector_t s, struct geom *geo) 4613 { 4614 s = (s | geo->chunk_mask) + 1; 4615 s >>= geo->chunk_shift; 4616 s *= geo->near_copies; 4617 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4618 s *= geo->far_copies; 4619 s <<= geo->chunk_shift; 4620 return s; 4621 } 4622 4623 /* Calculate the first device-address that could contain 4624 * any block from the chunk that includes the array-address 's'. 4625 * This too will be the start of a chunk 4626 */ 4627 static sector_t first_dev_address(sector_t s, struct geom *geo) 4628 { 4629 s >>= geo->chunk_shift; 4630 s *= geo->near_copies; 4631 sector_div(s, geo->raid_disks); 4632 s *= geo->far_copies; 4633 s <<= geo->chunk_shift; 4634 return s; 4635 } 4636 4637 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4638 int *skipped) 4639 { 4640 /* We simply copy at most one chunk (smallest of old and new) 4641 * at a time, possibly less if that exceeds RESYNC_PAGES, 4642 * or we hit a bad block or something. 4643 * This might mean we pause for normal IO in the middle of 4644 * a chunk, but that is not a problem as mddev->reshape_position 4645 * can record any location. 4646 * 4647 * If we will want to write to a location that isn't 4648 * yet recorded as 'safe' (i.e. in metadata on disk) then 4649 * we need to flush all reshape requests and update the metadata. 4650 * 4651 * When reshaping forwards (e.g. to more devices), we interpret 4652 * 'safe' as the earliest block which might not have been copied 4653 * down yet. We divide this by previous stripe size and multiply 4654 * by previous stripe length to get lowest device offset that we 4655 * cannot write to yet. 4656 * We interpret 'sector_nr' as an address that we want to write to. 4657 * From this we use last_device_address() to find where we might 4658 * write to, and first_device_address on the 'safe' position. 4659 * If this 'next' write position is after the 'safe' position, 4660 * we must update the metadata to increase the 'safe' position. 4661 * 4662 * When reshaping backwards, we round in the opposite direction 4663 * and perform the reverse test: next write position must not be 4664 * less than current safe position. 4665 * 4666 * In all this the minimum difference in data offsets 4667 * (conf->offset_diff - always positive) allows a bit of slack, 4668 * so next can be after 'safe', but not by more than offset_diff 4669 * 4670 * We need to prepare all the bios here before we start any IO 4671 * to ensure the size we choose is acceptable to all devices. 4672 * The means one for each copy for write-out and an extra one for 4673 * read-in. 4674 * We store the read-in bio in ->master_bio and the others in 4675 * ->devs[x].bio and ->devs[x].repl_bio. 4676 */ 4677 struct r10conf *conf = mddev->private; 4678 struct r10bio *r10_bio; 4679 sector_t next, safe, last; 4680 int max_sectors; 4681 int nr_sectors; 4682 int s; 4683 struct md_rdev *rdev; 4684 int need_flush = 0; 4685 struct bio *blist; 4686 struct bio *bio, *read_bio; 4687 int sectors_done = 0; 4688 struct page **pages; 4689 4690 if (sector_nr == 0) { 4691 /* If restarting in the middle, skip the initial sectors */ 4692 if (mddev->reshape_backwards && 4693 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4694 sector_nr = (raid10_size(mddev, 0, 0) 4695 - conf->reshape_progress); 4696 } else if (!mddev->reshape_backwards && 4697 conf->reshape_progress > 0) 4698 sector_nr = conf->reshape_progress; 4699 if (sector_nr) { 4700 mddev->curr_resync_completed = sector_nr; 4701 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4702 *skipped = 1; 4703 return sector_nr; 4704 } 4705 } 4706 4707 /* We don't use sector_nr to track where we are up to 4708 * as that doesn't work well for ->reshape_backwards. 4709 * So just use ->reshape_progress. 4710 */ 4711 if (mddev->reshape_backwards) { 4712 /* 'next' is the earliest device address that we might 4713 * write to for this chunk in the new layout 4714 */ 4715 next = first_dev_address(conf->reshape_progress - 1, 4716 &conf->geo); 4717 4718 /* 'safe' is the last device address that we might read from 4719 * in the old layout after a restart 4720 */ 4721 safe = last_dev_address(conf->reshape_safe - 1, 4722 &conf->prev); 4723 4724 if (next + conf->offset_diff < safe) 4725 need_flush = 1; 4726 4727 last = conf->reshape_progress - 1; 4728 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4729 & conf->prev.chunk_mask); 4730 if (sector_nr + RESYNC_SECTORS < last) 4731 sector_nr = last + 1 - RESYNC_SECTORS; 4732 } else { 4733 /* 'next' is after the last device address that we 4734 * might write to for this chunk in the new layout 4735 */ 4736 next = last_dev_address(conf->reshape_progress, &conf->geo); 4737 4738 /* 'safe' is the earliest device address that we might 4739 * read from in the old layout after a restart 4740 */ 4741 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4742 4743 /* Need to update metadata if 'next' might be beyond 'safe' 4744 * as that would possibly corrupt data 4745 */ 4746 if (next > safe + conf->offset_diff) 4747 need_flush = 1; 4748 4749 sector_nr = conf->reshape_progress; 4750 last = sector_nr | (conf->geo.chunk_mask 4751 & conf->prev.chunk_mask); 4752 4753 if (sector_nr + RESYNC_SECTORS <= last) 4754 last = sector_nr + RESYNC_SECTORS - 1; 4755 } 4756 4757 if (need_flush || 4758 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4759 /* Need to update reshape_position in metadata */ 4760 wait_barrier(conf, false); 4761 mddev->reshape_position = conf->reshape_progress; 4762 if (mddev->reshape_backwards) 4763 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4764 - conf->reshape_progress; 4765 else 4766 mddev->curr_resync_completed = conf->reshape_progress; 4767 conf->reshape_checkpoint = jiffies; 4768 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4769 md_wakeup_thread(mddev->thread); 4770 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4771 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4772 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4773 allow_barrier(conf); 4774 return sectors_done; 4775 } 4776 conf->reshape_safe = mddev->reshape_position; 4777 allow_barrier(conf); 4778 } 4779 4780 raise_barrier(conf, 0); 4781 read_more: 4782 /* Now schedule reads for blocks from sector_nr to last */ 4783 r10_bio = raid10_alloc_init_r10buf(conf); 4784 r10_bio->state = 0; 4785 raise_barrier(conf, 1); 4786 atomic_set(&r10_bio->remaining, 0); 4787 r10_bio->mddev = mddev; 4788 r10_bio->sector = sector_nr; 4789 set_bit(R10BIO_IsReshape, &r10_bio->state); 4790 r10_bio->sectors = last - sector_nr + 1; 4791 rdev = read_balance(conf, r10_bio, &max_sectors); 4792 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4793 4794 if (!rdev) { 4795 /* Cannot read from here, so need to record bad blocks 4796 * on all the target devices. 4797 */ 4798 // FIXME 4799 mempool_free(r10_bio, &conf->r10buf_pool); 4800 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4801 return sectors_done; 4802 } 4803 4804 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ, 4805 GFP_KERNEL, &mddev->bio_set); 4806 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4807 + rdev->data_offset); 4808 read_bio->bi_private = r10_bio; 4809 read_bio->bi_end_io = end_reshape_read; 4810 r10_bio->master_bio = read_bio; 4811 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4812 4813 /* 4814 * Broadcast RESYNC message to other nodes, so all nodes would not 4815 * write to the region to avoid conflict. 4816 */ 4817 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4818 struct mdp_superblock_1 *sb = NULL; 4819 int sb_reshape_pos = 0; 4820 4821 conf->cluster_sync_low = sector_nr; 4822 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4823 sb = page_address(rdev->sb_page); 4824 if (sb) { 4825 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4826 /* 4827 * Set cluster_sync_low again if next address for array 4828 * reshape is less than cluster_sync_low. Since we can't 4829 * update cluster_sync_low until it has finished reshape. 4830 */ 4831 if (sb_reshape_pos < conf->cluster_sync_low) 4832 conf->cluster_sync_low = sb_reshape_pos; 4833 } 4834 4835 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4836 conf->cluster_sync_high); 4837 } 4838 4839 /* Now find the locations in the new layout */ 4840 __raid10_find_phys(&conf->geo, r10_bio); 4841 4842 blist = read_bio; 4843 read_bio->bi_next = NULL; 4844 4845 for (s = 0; s < conf->copies*2; s++) { 4846 struct bio *b; 4847 int d = r10_bio->devs[s/2].devnum; 4848 struct md_rdev *rdev2; 4849 if (s&1) { 4850 rdev2 = conf->mirrors[d].replacement; 4851 b = r10_bio->devs[s/2].repl_bio; 4852 } else { 4853 rdev2 = conf->mirrors[d].rdev; 4854 b = r10_bio->devs[s/2].bio; 4855 } 4856 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4857 continue; 4858 4859 bio_set_dev(b, rdev2->bdev); 4860 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4861 rdev2->new_data_offset; 4862 b->bi_end_io = end_reshape_write; 4863 b->bi_opf = REQ_OP_WRITE; 4864 b->bi_next = blist; 4865 blist = b; 4866 } 4867 4868 /* Now add as many pages as possible to all of these bios. */ 4869 4870 nr_sectors = 0; 4871 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4872 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4873 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4874 int len = (max_sectors - s) << 9; 4875 if (len > PAGE_SIZE) 4876 len = PAGE_SIZE; 4877 for (bio = blist; bio ; bio = bio->bi_next) { 4878 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 4879 bio->bi_status = BLK_STS_RESOURCE; 4880 bio_endio(bio); 4881 return sectors_done; 4882 } 4883 } 4884 sector_nr += len >> 9; 4885 nr_sectors += len >> 9; 4886 } 4887 r10_bio->sectors = nr_sectors; 4888 4889 /* Now submit the read */ 4890 md_sync_acct_bio(read_bio, r10_bio->sectors); 4891 atomic_inc(&r10_bio->remaining); 4892 read_bio->bi_next = NULL; 4893 submit_bio_noacct(read_bio); 4894 sectors_done += nr_sectors; 4895 if (sector_nr <= last) 4896 goto read_more; 4897 4898 lower_barrier(conf); 4899 4900 /* Now that we have done the whole section we can 4901 * update reshape_progress 4902 */ 4903 if (mddev->reshape_backwards) 4904 conf->reshape_progress -= sectors_done; 4905 else 4906 conf->reshape_progress += sectors_done; 4907 4908 return sectors_done; 4909 } 4910 4911 static void end_reshape_request(struct r10bio *r10_bio); 4912 static int handle_reshape_read_error(struct mddev *mddev, 4913 struct r10bio *r10_bio); 4914 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4915 { 4916 /* Reshape read completed. Hopefully we have a block 4917 * to write out. 4918 * If we got a read error then we do sync 1-page reads from 4919 * elsewhere until we find the data - or give up. 4920 */ 4921 struct r10conf *conf = mddev->private; 4922 int s; 4923 4924 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4925 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4926 /* Reshape has been aborted */ 4927 md_done_sync(mddev, r10_bio->sectors, 0); 4928 return; 4929 } 4930 4931 /* We definitely have the data in the pages, schedule the 4932 * writes. 4933 */ 4934 atomic_set(&r10_bio->remaining, 1); 4935 for (s = 0; s < conf->copies*2; s++) { 4936 struct bio *b; 4937 int d = r10_bio->devs[s/2].devnum; 4938 struct md_rdev *rdev; 4939 if (s&1) { 4940 rdev = conf->mirrors[d].replacement; 4941 b = r10_bio->devs[s/2].repl_bio; 4942 } else { 4943 rdev = conf->mirrors[d].rdev; 4944 b = r10_bio->devs[s/2].bio; 4945 } 4946 if (!rdev || test_bit(Faulty, &rdev->flags)) 4947 continue; 4948 4949 atomic_inc(&rdev->nr_pending); 4950 md_sync_acct_bio(b, r10_bio->sectors); 4951 atomic_inc(&r10_bio->remaining); 4952 b->bi_next = NULL; 4953 submit_bio_noacct(b); 4954 } 4955 end_reshape_request(r10_bio); 4956 } 4957 4958 static void end_reshape(struct r10conf *conf) 4959 { 4960 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4961 return; 4962 4963 spin_lock_irq(&conf->device_lock); 4964 conf->prev = conf->geo; 4965 md_finish_reshape(conf->mddev); 4966 smp_wmb(); 4967 conf->reshape_progress = MaxSector; 4968 conf->reshape_safe = MaxSector; 4969 spin_unlock_irq(&conf->device_lock); 4970 4971 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf)); 4972 conf->fullsync = 0; 4973 } 4974 4975 static void raid10_update_reshape_pos(struct mddev *mddev) 4976 { 4977 struct r10conf *conf = mddev->private; 4978 sector_t lo, hi; 4979 4980 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4981 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4982 || mddev->reshape_position == MaxSector) 4983 conf->reshape_progress = mddev->reshape_position; 4984 else 4985 WARN_ON_ONCE(1); 4986 } 4987 4988 static int handle_reshape_read_error(struct mddev *mddev, 4989 struct r10bio *r10_bio) 4990 { 4991 /* Use sync reads to get the blocks from somewhere else */ 4992 int sectors = r10_bio->sectors; 4993 struct r10conf *conf = mddev->private; 4994 struct r10bio *r10b; 4995 int slot = 0; 4996 int idx = 0; 4997 struct page **pages; 4998 4999 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 5000 if (!r10b) { 5001 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5002 return -ENOMEM; 5003 } 5004 5005 /* reshape IOs share pages from .devs[0].bio */ 5006 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5007 5008 r10b->sector = r10_bio->sector; 5009 __raid10_find_phys(&conf->prev, r10b); 5010 5011 while (sectors) { 5012 int s = sectors; 5013 int success = 0; 5014 int first_slot = slot; 5015 5016 if (s > (PAGE_SIZE >> 9)) 5017 s = PAGE_SIZE >> 9; 5018 5019 while (!success) { 5020 int d = r10b->devs[slot].devnum; 5021 struct md_rdev *rdev = conf->mirrors[d].rdev; 5022 sector_t addr; 5023 if (rdev == NULL || 5024 test_bit(Faulty, &rdev->flags) || 5025 !test_bit(In_sync, &rdev->flags)) 5026 goto failed; 5027 5028 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5029 atomic_inc(&rdev->nr_pending); 5030 success = sync_page_io(rdev, 5031 addr, 5032 s << 9, 5033 pages[idx], 5034 REQ_OP_READ, false); 5035 rdev_dec_pending(rdev, mddev); 5036 if (success) 5037 break; 5038 failed: 5039 slot++; 5040 if (slot >= conf->copies) 5041 slot = 0; 5042 if (slot == first_slot) 5043 break; 5044 } 5045 if (!success) { 5046 /* couldn't read this block, must give up */ 5047 set_bit(MD_RECOVERY_INTR, 5048 &mddev->recovery); 5049 kfree(r10b); 5050 return -EIO; 5051 } 5052 sectors -= s; 5053 idx++; 5054 } 5055 kfree(r10b); 5056 return 0; 5057 } 5058 5059 static void end_reshape_write(struct bio *bio) 5060 { 5061 struct r10bio *r10_bio = get_resync_r10bio(bio); 5062 struct mddev *mddev = r10_bio->mddev; 5063 struct r10conf *conf = mddev->private; 5064 int d; 5065 int slot; 5066 int repl; 5067 struct md_rdev *rdev = NULL; 5068 5069 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5070 rdev = repl ? conf->mirrors[d].replacement : 5071 conf->mirrors[d].rdev; 5072 5073 if (bio->bi_status) { 5074 /* FIXME should record badblock */ 5075 md_error(mddev, rdev); 5076 } 5077 5078 rdev_dec_pending(rdev, mddev); 5079 end_reshape_request(r10_bio); 5080 } 5081 5082 static void end_reshape_request(struct r10bio *r10_bio) 5083 { 5084 if (!atomic_dec_and_test(&r10_bio->remaining)) 5085 return; 5086 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5087 bio_put(r10_bio->master_bio); 5088 put_buf(r10_bio); 5089 } 5090 5091 static void raid10_finish_reshape(struct mddev *mddev) 5092 { 5093 struct r10conf *conf = mddev->private; 5094 5095 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5096 return; 5097 5098 if (mddev->delta_disks > 0) { 5099 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5100 mddev->recovery_cp = mddev->resync_max_sectors; 5101 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5102 } 5103 mddev->resync_max_sectors = mddev->array_sectors; 5104 } else { 5105 int d; 5106 for (d = conf->geo.raid_disks ; 5107 d < conf->geo.raid_disks - mddev->delta_disks; 5108 d++) { 5109 struct md_rdev *rdev = conf->mirrors[d].rdev; 5110 if (rdev) 5111 clear_bit(In_sync, &rdev->flags); 5112 rdev = conf->mirrors[d].replacement; 5113 if (rdev) 5114 clear_bit(In_sync, &rdev->flags); 5115 } 5116 } 5117 mddev->layout = mddev->new_layout; 5118 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5119 mddev->reshape_position = MaxSector; 5120 mddev->delta_disks = 0; 5121 mddev->reshape_backwards = 0; 5122 } 5123 5124 static struct md_personality raid10_personality = 5125 { 5126 .name = "raid10", 5127 .level = 10, 5128 .owner = THIS_MODULE, 5129 .make_request = raid10_make_request, 5130 .run = raid10_run, 5131 .free = raid10_free, 5132 .status = raid10_status, 5133 .error_handler = raid10_error, 5134 .hot_add_disk = raid10_add_disk, 5135 .hot_remove_disk= raid10_remove_disk, 5136 .spare_active = raid10_spare_active, 5137 .sync_request = raid10_sync_request, 5138 .quiesce = raid10_quiesce, 5139 .size = raid10_size, 5140 .resize = raid10_resize, 5141 .takeover = raid10_takeover, 5142 .check_reshape = raid10_check_reshape, 5143 .start_reshape = raid10_start_reshape, 5144 .finish_reshape = raid10_finish_reshape, 5145 .update_reshape_pos = raid10_update_reshape_pos, 5146 }; 5147 5148 static int __init raid_init(void) 5149 { 5150 return register_md_personality(&raid10_personality); 5151 } 5152 5153 static void raid_exit(void) 5154 { 5155 unregister_md_personality(&raid10_personality); 5156 } 5157 5158 module_init(raid_init); 5159 module_exit(raid_exit); 5160 MODULE_LICENSE("GPL"); 5161 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5162 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5163 MODULE_ALIAS("md-raid10"); 5164 MODULE_ALIAS("md-level-10"); 5165