xref: /linux/drivers/md/raid1.h (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _RAID1_H
3 #define _RAID1_H
4 
5 /*
6  * each barrier unit size is 64MB fow now
7  * note: it must be larger than RESYNC_DEPTH
8  */
9 #define BARRIER_UNIT_SECTOR_BITS	17
10 #define BARRIER_UNIT_SECTOR_SIZE	(1<<17)
11 /*
12  * In struct r1conf, the following members are related to I/O barrier
13  * buckets,
14  *	atomic_t	*nr_pending;
15  *	atomic_t	*nr_waiting;
16  *	atomic_t	*nr_queued;
17  *	atomic_t	*barrier;
18  * Each of them points to array of atomic_t variables, each array is
19  * designed to have BARRIER_BUCKETS_NR elements and occupy a single
20  * memory page. The data width of atomic_t variables is 4 bytes, equal
21  * to 1<<(ilog2(sizeof(atomic_t))), BARRIER_BUCKETS_NR_BITS is defined
22  * as (PAGE_SHIFT - ilog2(sizeof(int))) to make sure an array of
23  * atomic_t variables with BARRIER_BUCKETS_NR elements just exactly
24  * occupies a single memory page.
25  */
26 #define BARRIER_BUCKETS_NR_BITS		(PAGE_SHIFT - ilog2(sizeof(atomic_t)))
27 #define BARRIER_BUCKETS_NR		(1<<BARRIER_BUCKETS_NR_BITS)
28 
29 /* Note: raid1_info.rdev can be set to NULL asynchronously by raid1_remove_disk.
30  * There are three safe ways to access raid1_info.rdev.
31  * 1/ when holding mddev->reconfig_mutex
32  * 2/ when resync/recovery is known to be happening - i.e. in code that is
33  *    called as part of performing resync/recovery.
34  * 3/ while holding rcu_read_lock(), use rcu_dereference to get the pointer
35  *    and if it is non-NULL, increment rdev->nr_pending before dropping the
36  *    RCU lock.
37  * When .rdev is set to NULL, the nr_pending count checked again and if it has
38  * been incremented, the pointer is put back in .rdev.
39  */
40 
41 struct raid1_info {
42 	struct md_rdev	*rdev;
43 	sector_t	head_position;
44 
45 	/* When choose the best device for a read (read_balance())
46 	 * we try to keep sequential reads one the same device
47 	 */
48 	sector_t	next_seq_sect;
49 	sector_t	seq_start;
50 };
51 
52 struct r1conf {
53 	struct mddev		*mddev;
54 	struct raid1_info	*mirrors;	/* twice 'raid_disks' to
55 						 * allow for replacements.
56 						 */
57 	int			raid_disks;
58 	int			nonrot_disks;
59 
60 	spinlock_t		device_lock;
61 
62 	/* list of 'struct r1bio' that need to be processed by raid1d,
63 	 * whether to retry a read, writeout a resync or recovery
64 	 * block, or anything else.
65 	 */
66 	struct list_head	retry_list;
67 	/* A separate list of r1bio which just need raid_end_bio_io called.
68 	 * This mustn't happen for writes which had any errors if the superblock
69 	 * needs to be written.
70 	 */
71 	struct list_head	bio_end_io_list;
72 
73 	/* queue pending writes to be submitted on unplug */
74 	struct bio_list		pending_bio_list;
75 
76 	/* for use when syncing mirrors:
77 	 * We don't allow both normal IO and resync/recovery IO at
78 	 * the same time - resync/recovery can only happen when there
79 	 * is no other IO.  So when either is active, the other has to wait.
80 	 * See more details description in raid1.c near raise_barrier().
81 	 */
82 	wait_queue_head_t	wait_barrier;
83 	spinlock_t		resync_lock;
84 	atomic_t		nr_sync_pending;
85 	atomic_t		*nr_pending;
86 	atomic_t		*nr_waiting;
87 	atomic_t		*nr_queued;
88 	atomic_t		*barrier;
89 	int			array_frozen;
90 
91 	/* Set to 1 if a full sync is needed, (fresh device added).
92 	 * Cleared when a sync completes.
93 	 */
94 	int			fullsync;
95 
96 	mempool_t		*r1bio_pool;
97 	mempool_t		r1buf_pool;
98 
99 	struct bio_set		bio_split;
100 
101 	/* temporary buffer to synchronous IO when attempting to repair
102 	 * a read error.
103 	 */
104 	struct page		*tmppage;
105 
106 	/* When taking over an array from a different personality, we store
107 	 * the new thread here until we fully activate the array.
108 	 */
109 	struct md_thread __rcu	*thread;
110 
111 	/* Keep track of cluster resync window to send to other
112 	 * nodes.
113 	 */
114 	sector_t		cluster_sync_low;
115 	sector_t		cluster_sync_high;
116 
117 };
118 
119 /*
120  * this is our 'private' RAID1 bio.
121  *
122  * it contains information about what kind of IO operations were started
123  * for this RAID1 operation, and about their status:
124  */
125 
126 struct r1bio {
127 	atomic_t		remaining; /* 'have we finished' count,
128 					    * used from IRQ handlers
129 					    */
130 	atomic_t		behind_remaining; /* number of write-behind ios remaining
131 						 * in this BehindIO request
132 						 */
133 	sector_t		sector;
134 	int			sectors;
135 	unsigned long		state;
136 	struct mddev		*mddev;
137 	/*
138 	 * original bio going to /dev/mdx
139 	 */
140 	struct bio		*master_bio;
141 	/*
142 	 * if the IO is in READ direction, then this is where we read
143 	 */
144 	int			read_disk;
145 
146 	struct list_head	retry_list;
147 
148 	/*
149 	 * When R1BIO_BehindIO is set, we store pages for write behind
150 	 * in behind_master_bio.
151 	 */
152 	struct bio		*behind_master_bio;
153 
154 	/*
155 	 * if the IO is in WRITE direction, then multiple bios are used.
156 	 * We choose the number when they are allocated.
157 	 */
158 	struct bio		*bios[];
159 	/* DO NOT PUT ANY NEW FIELDS HERE - bios array is contiguously alloced*/
160 };
161 
162 /* bits for r1bio.state */
163 enum r1bio_state {
164 	R1BIO_Uptodate,
165 	R1BIO_IsSync,
166 	R1BIO_BehindIO,
167 /* Set ReadError on bios that experience a readerror so that
168  * raid1d knows what to do with them.
169  */
170 	R1BIO_ReadError,
171 /* For write-behind requests, we call bi_end_io when
172  * the last non-write-behind device completes, providing
173  * any write was successful.  Otherwise we call when
174  * any write-behind write succeeds, otherwise we call
175  * with failure when last write completes (and all failed).
176  *
177  * And for bio_split errors, record that bi_end_io was called
178  * with this flag...
179  */
180 	R1BIO_Returned,
181 /* If a write for this request means we can clear some
182  * known-bad-block records, we set this flag
183  */
184 	R1BIO_MadeGood,
185 	R1BIO_WriteError,
186 	R1BIO_FailFast,
187 };
188 
189 static inline int sector_to_idx(sector_t sector)
190 {
191 	return hash_long(sector >> BARRIER_UNIT_SECTOR_BITS,
192 			 BARRIER_BUCKETS_NR_BITS);
193 }
194 #endif
195