1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define RAID_1_10_NAME "raid1" 50 #include "raid1-10.c" 51 52 #define START(node) ((node)->start) 53 #define LAST(node) ((node)->last) 54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 55 START, LAST, static inline, raid1_rb); 56 57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 58 struct serial_info *si, int idx) 59 { 60 unsigned long flags; 61 int ret = 0; 62 sector_t lo = r1_bio->sector; 63 sector_t hi = lo + r1_bio->sectors; 64 struct serial_in_rdev *serial = &rdev->serial[idx]; 65 66 spin_lock_irqsave(&serial->serial_lock, flags); 67 /* collision happened */ 68 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 69 ret = -EBUSY; 70 else { 71 si->start = lo; 72 si->last = hi; 73 raid1_rb_insert(si, &serial->serial_rb); 74 } 75 spin_unlock_irqrestore(&serial->serial_lock, flags); 76 77 return ret; 78 } 79 80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 81 { 82 struct mddev *mddev = rdev->mddev; 83 struct serial_info *si; 84 int idx = sector_to_idx(r1_bio->sector); 85 struct serial_in_rdev *serial = &rdev->serial[idx]; 86 87 if (WARN_ON(!mddev->serial_info_pool)) 88 return; 89 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 90 wait_event(serial->serial_io_wait, 91 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 92 } 93 94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 95 { 96 struct serial_info *si; 97 unsigned long flags; 98 int found = 0; 99 struct mddev *mddev = rdev->mddev; 100 int idx = sector_to_idx(lo); 101 struct serial_in_rdev *serial = &rdev->serial[idx]; 102 103 spin_lock_irqsave(&serial->serial_lock, flags); 104 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 105 si; si = raid1_rb_iter_next(si, lo, hi)) { 106 if (si->start == lo && si->last == hi) { 107 raid1_rb_remove(si, &serial->serial_rb); 108 mempool_free(si, mddev->serial_info_pool); 109 found = 1; 110 break; 111 } 112 } 113 if (!found) 114 WARN(1, "The write IO is not recorded for serialization\n"); 115 spin_unlock_irqrestore(&serial->serial_lock, flags); 116 wake_up(&serial->serial_io_wait); 117 } 118 119 /* 120 * for resync bio, r1bio pointer can be retrieved from the per-bio 121 * 'struct resync_pages'. 122 */ 123 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 124 { 125 return get_resync_pages(bio)->raid_bio; 126 } 127 128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 129 { 130 struct pool_info *pi = data; 131 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 132 133 /* allocate a r1bio with room for raid_disks entries in the bios array */ 134 return kzalloc(size, gfp_flags); 135 } 136 137 #define RESYNC_DEPTH 32 138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 143 144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 145 { 146 struct pool_info *pi = data; 147 struct r1bio *r1_bio; 148 struct bio *bio; 149 int need_pages; 150 int j; 151 struct resync_pages *rps; 152 153 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 154 if (!r1_bio) 155 return NULL; 156 157 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 158 gfp_flags); 159 if (!rps) 160 goto out_free_r1bio; 161 162 /* 163 * Allocate bios : 1 for reading, n-1 for writing 164 */ 165 for (j = pi->raid_disks ; j-- ; ) { 166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 167 if (!bio) 168 goto out_free_bio; 169 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 170 r1_bio->bios[j] = bio; 171 } 172 /* 173 * Allocate RESYNC_PAGES data pages and attach them to 174 * the first bio. 175 * If this is a user-requested check/repair, allocate 176 * RESYNC_PAGES for each bio. 177 */ 178 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 179 need_pages = pi->raid_disks; 180 else 181 need_pages = 1; 182 for (j = 0; j < pi->raid_disks; j++) { 183 struct resync_pages *rp = &rps[j]; 184 185 bio = r1_bio->bios[j]; 186 187 if (j < need_pages) { 188 if (resync_alloc_pages(rp, gfp_flags)) 189 goto out_free_pages; 190 } else { 191 memcpy(rp, &rps[0], sizeof(*rp)); 192 resync_get_all_pages(rp); 193 } 194 195 rp->raid_bio = r1_bio; 196 bio->bi_private = rp; 197 } 198 199 r1_bio->master_bio = NULL; 200 201 return r1_bio; 202 203 out_free_pages: 204 while (--j >= 0) 205 resync_free_pages(&rps[j]); 206 207 out_free_bio: 208 while (++j < pi->raid_disks) { 209 bio_uninit(r1_bio->bios[j]); 210 kfree(r1_bio->bios[j]); 211 } 212 kfree(rps); 213 214 out_free_r1bio: 215 rbio_pool_free(r1_bio, data); 216 return NULL; 217 } 218 219 static void r1buf_pool_free(void *__r1_bio, void *data) 220 { 221 struct pool_info *pi = data; 222 int i; 223 struct r1bio *r1bio = __r1_bio; 224 struct resync_pages *rp = NULL; 225 226 for (i = pi->raid_disks; i--; ) { 227 rp = get_resync_pages(r1bio->bios[i]); 228 resync_free_pages(rp); 229 bio_uninit(r1bio->bios[i]); 230 kfree(r1bio->bios[i]); 231 } 232 233 /* resync pages array stored in the 1st bio's .bi_private */ 234 kfree(rp); 235 236 rbio_pool_free(r1bio, data); 237 } 238 239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 240 { 241 int i; 242 243 for (i = 0; i < conf->raid_disks * 2; i++) { 244 struct bio **bio = r1_bio->bios + i; 245 if (!BIO_SPECIAL(*bio)) 246 bio_put(*bio); 247 *bio = NULL; 248 } 249 } 250 251 static void free_r1bio(struct r1bio *r1_bio) 252 { 253 struct r1conf *conf = r1_bio->mddev->private; 254 255 put_all_bios(conf, r1_bio); 256 mempool_free(r1_bio, &conf->r1bio_pool); 257 } 258 259 static void put_buf(struct r1bio *r1_bio) 260 { 261 struct r1conf *conf = r1_bio->mddev->private; 262 sector_t sect = r1_bio->sector; 263 int i; 264 265 for (i = 0; i < conf->raid_disks * 2; i++) { 266 struct bio *bio = r1_bio->bios[i]; 267 if (bio->bi_end_io) 268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 269 } 270 271 mempool_free(r1_bio, &conf->r1buf_pool); 272 273 lower_barrier(conf, sect); 274 } 275 276 static void reschedule_retry(struct r1bio *r1_bio) 277 { 278 unsigned long flags; 279 struct mddev *mddev = r1_bio->mddev; 280 struct r1conf *conf = mddev->private; 281 int idx; 282 283 idx = sector_to_idx(r1_bio->sector); 284 spin_lock_irqsave(&conf->device_lock, flags); 285 list_add(&r1_bio->retry_list, &conf->retry_list); 286 atomic_inc(&conf->nr_queued[idx]); 287 spin_unlock_irqrestore(&conf->device_lock, flags); 288 289 wake_up(&conf->wait_barrier); 290 md_wakeup_thread(mddev->thread); 291 } 292 293 /* 294 * raid_end_bio_io() is called when we have finished servicing a mirrored 295 * operation and are ready to return a success/failure code to the buffer 296 * cache layer. 297 */ 298 static void call_bio_endio(struct r1bio *r1_bio) 299 { 300 struct bio *bio = r1_bio->master_bio; 301 302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 303 bio->bi_status = BLK_STS_IOERR; 304 305 bio_endio(bio); 306 } 307 308 static void raid_end_bio_io(struct r1bio *r1_bio) 309 { 310 struct bio *bio = r1_bio->master_bio; 311 struct r1conf *conf = r1_bio->mddev->private; 312 sector_t sector = r1_bio->sector; 313 314 /* if nobody has done the final endio yet, do it now */ 315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 317 (bio_data_dir(bio) == WRITE) ? "write" : "read", 318 (unsigned long long) bio->bi_iter.bi_sector, 319 (unsigned long long) bio_end_sector(bio) - 1); 320 321 call_bio_endio(r1_bio); 322 } 323 324 free_r1bio(r1_bio); 325 /* 326 * Wake up any possible resync thread that waits for the device 327 * to go idle. All I/Os, even write-behind writes, are done. 328 */ 329 allow_barrier(conf, sector); 330 } 331 332 /* 333 * Update disk head position estimator based on IRQ completion info. 334 */ 335 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 336 { 337 struct r1conf *conf = r1_bio->mddev->private; 338 339 conf->mirrors[disk].head_position = 340 r1_bio->sector + (r1_bio->sectors); 341 } 342 343 /* 344 * Find the disk number which triggered given bio 345 */ 346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 347 { 348 int mirror; 349 struct r1conf *conf = r1_bio->mddev->private; 350 int raid_disks = conf->raid_disks; 351 352 for (mirror = 0; mirror < raid_disks * 2; mirror++) 353 if (r1_bio->bios[mirror] == bio) 354 break; 355 356 BUG_ON(mirror == raid_disks * 2); 357 update_head_pos(mirror, r1_bio); 358 359 return mirror; 360 } 361 362 static void raid1_end_read_request(struct bio *bio) 363 { 364 int uptodate = !bio->bi_status; 365 struct r1bio *r1_bio = bio->bi_private; 366 struct r1conf *conf = r1_bio->mddev->private; 367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 368 369 /* 370 * this branch is our 'one mirror IO has finished' event handler: 371 */ 372 update_head_pos(r1_bio->read_disk, r1_bio); 373 374 if (uptodate) 375 set_bit(R1BIO_Uptodate, &r1_bio->state); 376 else if (test_bit(FailFast, &rdev->flags) && 377 test_bit(R1BIO_FailFast, &r1_bio->state)) 378 /* This was a fail-fast read so we definitely 379 * want to retry */ 380 ; 381 else { 382 /* If all other devices have failed, we want to return 383 * the error upwards rather than fail the last device. 384 * Here we redefine "uptodate" to mean "Don't want to retry" 385 */ 386 unsigned long flags; 387 spin_lock_irqsave(&conf->device_lock, flags); 388 if (r1_bio->mddev->degraded == conf->raid_disks || 389 (r1_bio->mddev->degraded == conf->raid_disks-1 && 390 test_bit(In_sync, &rdev->flags))) 391 uptodate = 1; 392 spin_unlock_irqrestore(&conf->device_lock, flags); 393 } 394 395 if (uptodate) { 396 raid_end_bio_io(r1_bio); 397 rdev_dec_pending(rdev, conf->mddev); 398 } else { 399 /* 400 * oops, read error: 401 */ 402 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 403 mdname(conf->mddev), 404 rdev->bdev, 405 (unsigned long long)r1_bio->sector); 406 set_bit(R1BIO_ReadError, &r1_bio->state); 407 reschedule_retry(r1_bio); 408 /* don't drop the reference on read_disk yet */ 409 } 410 } 411 412 static void close_write(struct r1bio *r1_bio) 413 { 414 struct mddev *mddev = r1_bio->mddev; 415 416 /* it really is the end of this request */ 417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 418 bio_free_pages(r1_bio->behind_master_bio); 419 bio_put(r1_bio->behind_master_bio); 420 r1_bio->behind_master_bio = NULL; 421 } 422 423 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) 424 mddev->bitmap_ops->end_behind_write(mddev); 425 md_write_end(mddev); 426 } 427 428 static void r1_bio_write_done(struct r1bio *r1_bio) 429 { 430 if (!atomic_dec_and_test(&r1_bio->remaining)) 431 return; 432 433 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 434 reschedule_retry(r1_bio); 435 else { 436 close_write(r1_bio); 437 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 438 reschedule_retry(r1_bio); 439 else 440 raid_end_bio_io(r1_bio); 441 } 442 } 443 444 static void raid1_end_write_request(struct bio *bio) 445 { 446 struct r1bio *r1_bio = bio->bi_private; 447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 448 struct r1conf *conf = r1_bio->mddev->private; 449 struct bio *to_put = NULL; 450 int mirror = find_bio_disk(r1_bio, bio); 451 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 452 bool discard_error; 453 sector_t lo = r1_bio->sector; 454 sector_t hi = r1_bio->sector + r1_bio->sectors; 455 456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 457 458 /* 459 * 'one mirror IO has finished' event handler: 460 */ 461 if (bio->bi_status && !discard_error) { 462 set_bit(WriteErrorSeen, &rdev->flags); 463 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 464 set_bit(MD_RECOVERY_NEEDED, & 465 conf->mddev->recovery); 466 467 if (test_bit(FailFast, &rdev->flags) && 468 (bio->bi_opf & MD_FAILFAST) && 469 /* We never try FailFast to WriteMostly devices */ 470 !test_bit(WriteMostly, &rdev->flags)) { 471 md_error(r1_bio->mddev, rdev); 472 } 473 474 /* 475 * When the device is faulty, it is not necessary to 476 * handle write error. 477 */ 478 if (!test_bit(Faulty, &rdev->flags)) 479 set_bit(R1BIO_WriteError, &r1_bio->state); 480 else { 481 /* Finished with this branch */ 482 r1_bio->bios[mirror] = NULL; 483 to_put = bio; 484 } 485 } else { 486 /* 487 * Set R1BIO_Uptodate in our master bio, so that we 488 * will return a good error code for to the higher 489 * levels even if IO on some other mirrored buffer 490 * fails. 491 * 492 * The 'master' represents the composite IO operation 493 * to user-side. So if something waits for IO, then it 494 * will wait for the 'master' bio. 495 */ 496 r1_bio->bios[mirror] = NULL; 497 to_put = bio; 498 /* 499 * Do not set R1BIO_Uptodate if the current device is 500 * rebuilding or Faulty. This is because we cannot use 501 * such device for properly reading the data back (we could 502 * potentially use it, if the current write would have felt 503 * before rdev->recovery_offset, but for simplicity we don't 504 * check this here. 505 */ 506 if (test_bit(In_sync, &rdev->flags) && 507 !test_bit(Faulty, &rdev->flags)) 508 set_bit(R1BIO_Uptodate, &r1_bio->state); 509 510 /* Maybe we can clear some bad blocks. */ 511 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 512 !discard_error) { 513 r1_bio->bios[mirror] = IO_MADE_GOOD; 514 set_bit(R1BIO_MadeGood, &r1_bio->state); 515 } 516 } 517 518 if (behind) { 519 if (test_bit(CollisionCheck, &rdev->flags)) 520 remove_serial(rdev, lo, hi); 521 if (test_bit(WriteMostly, &rdev->flags)) 522 atomic_dec(&r1_bio->behind_remaining); 523 524 /* 525 * In behind mode, we ACK the master bio once the I/O 526 * has safely reached all non-writemostly 527 * disks. Setting the Returned bit ensures that this 528 * gets done only once -- we don't ever want to return 529 * -EIO here, instead we'll wait 530 */ 531 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 532 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 533 /* Maybe we can return now */ 534 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 535 struct bio *mbio = r1_bio->master_bio; 536 pr_debug("raid1: behind end write sectors" 537 " %llu-%llu\n", 538 (unsigned long long) mbio->bi_iter.bi_sector, 539 (unsigned long long) bio_end_sector(mbio) - 1); 540 call_bio_endio(r1_bio); 541 } 542 } 543 } else if (rdev->mddev->serialize_policy) 544 remove_serial(rdev, lo, hi); 545 if (r1_bio->bios[mirror] == NULL) 546 rdev_dec_pending(rdev, conf->mddev); 547 548 /* 549 * Let's see if all mirrored write operations have finished 550 * already. 551 */ 552 r1_bio_write_done(r1_bio); 553 554 if (to_put) 555 bio_put(to_put); 556 } 557 558 static sector_t align_to_barrier_unit_end(sector_t start_sector, 559 sector_t sectors) 560 { 561 sector_t len; 562 563 WARN_ON(sectors == 0); 564 /* 565 * len is the number of sectors from start_sector to end of the 566 * barrier unit which start_sector belongs to. 567 */ 568 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 569 start_sector; 570 571 if (len > sectors) 572 len = sectors; 573 574 return len; 575 } 576 577 static void update_read_sectors(struct r1conf *conf, int disk, 578 sector_t this_sector, int len) 579 { 580 struct raid1_info *info = &conf->mirrors[disk]; 581 582 atomic_inc(&info->rdev->nr_pending); 583 if (info->next_seq_sect != this_sector) 584 info->seq_start = this_sector; 585 info->next_seq_sect = this_sector + len; 586 } 587 588 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio, 589 int *max_sectors) 590 { 591 sector_t this_sector = r1_bio->sector; 592 int len = r1_bio->sectors; 593 int disk; 594 595 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 596 struct md_rdev *rdev; 597 int read_len; 598 599 if (r1_bio->bios[disk] == IO_BLOCKED) 600 continue; 601 602 rdev = conf->mirrors[disk].rdev; 603 if (!rdev || test_bit(Faulty, &rdev->flags)) 604 continue; 605 606 /* choose the first disk even if it has some bad blocks. */ 607 read_len = raid1_check_read_range(rdev, this_sector, &len); 608 if (read_len > 0) { 609 update_read_sectors(conf, disk, this_sector, read_len); 610 *max_sectors = read_len; 611 return disk; 612 } 613 } 614 615 return -1; 616 } 617 618 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio) 619 { 620 return !test_bit(In_sync, &rdev->flags) && 621 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors; 622 } 623 624 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio, 625 int *max_sectors) 626 { 627 sector_t this_sector = r1_bio->sector; 628 int best_disk = -1; 629 int best_len = 0; 630 int disk; 631 632 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 633 struct md_rdev *rdev; 634 int len; 635 int read_len; 636 637 if (r1_bio->bios[disk] == IO_BLOCKED) 638 continue; 639 640 rdev = conf->mirrors[disk].rdev; 641 if (!rdev || test_bit(Faulty, &rdev->flags) || 642 rdev_in_recovery(rdev, r1_bio) || 643 test_bit(WriteMostly, &rdev->flags)) 644 continue; 645 646 /* keep track of the disk with the most readable sectors. */ 647 len = r1_bio->sectors; 648 read_len = raid1_check_read_range(rdev, this_sector, &len); 649 if (read_len > best_len) { 650 best_disk = disk; 651 best_len = read_len; 652 } 653 } 654 655 if (best_disk != -1) { 656 *max_sectors = best_len; 657 update_read_sectors(conf, best_disk, this_sector, best_len); 658 } 659 660 return best_disk; 661 } 662 663 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio, 664 int *max_sectors) 665 { 666 sector_t this_sector = r1_bio->sector; 667 int bb_disk = -1; 668 int bb_read_len = 0; 669 int disk; 670 671 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 672 struct md_rdev *rdev; 673 int len; 674 int read_len; 675 676 if (r1_bio->bios[disk] == IO_BLOCKED) 677 continue; 678 679 rdev = conf->mirrors[disk].rdev; 680 if (!rdev || test_bit(Faulty, &rdev->flags) || 681 !test_bit(WriteMostly, &rdev->flags) || 682 rdev_in_recovery(rdev, r1_bio)) 683 continue; 684 685 /* there are no bad blocks, we can use this disk */ 686 len = r1_bio->sectors; 687 read_len = raid1_check_read_range(rdev, this_sector, &len); 688 if (read_len == r1_bio->sectors) { 689 *max_sectors = read_len; 690 update_read_sectors(conf, disk, this_sector, read_len); 691 return disk; 692 } 693 694 /* 695 * there are partial bad blocks, choose the rdev with largest 696 * read length. 697 */ 698 if (read_len > bb_read_len) { 699 bb_disk = disk; 700 bb_read_len = read_len; 701 } 702 } 703 704 if (bb_disk != -1) { 705 *max_sectors = bb_read_len; 706 update_read_sectors(conf, bb_disk, this_sector, bb_read_len); 707 } 708 709 return bb_disk; 710 } 711 712 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio) 713 { 714 /* TODO: address issues with this check and concurrency. */ 715 return conf->mirrors[disk].next_seq_sect == r1_bio->sector || 716 conf->mirrors[disk].head_position == r1_bio->sector; 717 } 718 719 /* 720 * If buffered sequential IO size exceeds optimal iosize, check if there is idle 721 * disk. If yes, choose the idle disk. 722 */ 723 static bool should_choose_next(struct r1conf *conf, int disk) 724 { 725 struct raid1_info *mirror = &conf->mirrors[disk]; 726 int opt_iosize; 727 728 if (!test_bit(Nonrot, &mirror->rdev->flags)) 729 return false; 730 731 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9; 732 return opt_iosize > 0 && mirror->seq_start != MaxSector && 733 mirror->next_seq_sect > opt_iosize && 734 mirror->next_seq_sect - opt_iosize >= mirror->seq_start; 735 } 736 737 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio) 738 { 739 if (!rdev || test_bit(Faulty, &rdev->flags)) 740 return false; 741 742 if (rdev_in_recovery(rdev, r1_bio)) 743 return false; 744 745 /* don't read from slow disk unless have to */ 746 if (test_bit(WriteMostly, &rdev->flags)) 747 return false; 748 749 /* don't split IO for bad blocks unless have to */ 750 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors)) 751 return false; 752 753 return true; 754 } 755 756 struct read_balance_ctl { 757 sector_t closest_dist; 758 int closest_dist_disk; 759 int min_pending; 760 int min_pending_disk; 761 int sequential_disk; 762 int readable_disks; 763 }; 764 765 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio) 766 { 767 int disk; 768 struct read_balance_ctl ctl = { 769 .closest_dist_disk = -1, 770 .closest_dist = MaxSector, 771 .min_pending_disk = -1, 772 .min_pending = UINT_MAX, 773 .sequential_disk = -1, 774 }; 775 776 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 777 struct md_rdev *rdev; 778 sector_t dist; 779 unsigned int pending; 780 781 if (r1_bio->bios[disk] == IO_BLOCKED) 782 continue; 783 784 rdev = conf->mirrors[disk].rdev; 785 if (!rdev_readable(rdev, r1_bio)) 786 continue; 787 788 /* At least two disks to choose from so failfast is OK */ 789 if (ctl.readable_disks++ == 1) 790 set_bit(R1BIO_FailFast, &r1_bio->state); 791 792 pending = atomic_read(&rdev->nr_pending); 793 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position); 794 795 /* Don't change to another disk for sequential reads */ 796 if (is_sequential(conf, disk, r1_bio)) { 797 if (!should_choose_next(conf, disk)) 798 return disk; 799 800 /* 801 * Add 'pending' to avoid choosing this disk if 802 * there is other idle disk. 803 */ 804 pending++; 805 /* 806 * If there is no other idle disk, this disk 807 * will be chosen. 808 */ 809 ctl.sequential_disk = disk; 810 } 811 812 if (ctl.min_pending > pending) { 813 ctl.min_pending = pending; 814 ctl.min_pending_disk = disk; 815 } 816 817 if (ctl.closest_dist > dist) { 818 ctl.closest_dist = dist; 819 ctl.closest_dist_disk = disk; 820 } 821 } 822 823 /* 824 * sequential IO size exceeds optimal iosize, however, there is no other 825 * idle disk, so choose the sequential disk. 826 */ 827 if (ctl.sequential_disk != -1 && ctl.min_pending != 0) 828 return ctl.sequential_disk; 829 830 /* 831 * If all disks are rotational, choose the closest disk. If any disk is 832 * non-rotational, choose the disk with less pending request even the 833 * disk is rotational, which might/might not be optimal for raids with 834 * mixed ratation/non-rotational disks depending on workload. 835 */ 836 if (ctl.min_pending_disk != -1 && 837 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0)) 838 return ctl.min_pending_disk; 839 else 840 return ctl.closest_dist_disk; 841 } 842 843 /* 844 * This routine returns the disk from which the requested read should be done. 845 * 846 * 1) If resync is in progress, find the first usable disk and use it even if it 847 * has some bad blocks. 848 * 849 * 2) Now that there is no resync, loop through all disks and skipping slow 850 * disks and disks with bad blocks for now. Only pay attention to key disk 851 * choice. 852 * 853 * 3) If we've made it this far, now look for disks with bad blocks and choose 854 * the one with most number of sectors. 855 * 856 * 4) If we are all the way at the end, we have no choice but to use a disk even 857 * if it is write mostly. 858 * 859 * The rdev for the device selected will have nr_pending incremented. 860 */ 861 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, 862 int *max_sectors) 863 { 864 int disk; 865 866 clear_bit(R1BIO_FailFast, &r1_bio->state); 867 868 if (raid1_should_read_first(conf->mddev, r1_bio->sector, 869 r1_bio->sectors)) 870 return choose_first_rdev(conf, r1_bio, max_sectors); 871 872 disk = choose_best_rdev(conf, r1_bio); 873 if (disk >= 0) { 874 *max_sectors = r1_bio->sectors; 875 update_read_sectors(conf, disk, r1_bio->sector, 876 r1_bio->sectors); 877 return disk; 878 } 879 880 /* 881 * If we are here it means we didn't find a perfectly good disk so 882 * now spend a bit more time trying to find one with the most good 883 * sectors. 884 */ 885 disk = choose_bb_rdev(conf, r1_bio, max_sectors); 886 if (disk >= 0) 887 return disk; 888 889 return choose_slow_rdev(conf, r1_bio, max_sectors); 890 } 891 892 static void wake_up_barrier(struct r1conf *conf) 893 { 894 if (wq_has_sleeper(&conf->wait_barrier)) 895 wake_up(&conf->wait_barrier); 896 } 897 898 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 899 { 900 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 901 raid1_prepare_flush_writes(conf->mddev); 902 wake_up_barrier(conf); 903 904 while (bio) { /* submit pending writes */ 905 struct bio *next = bio->bi_next; 906 907 raid1_submit_write(bio); 908 bio = next; 909 cond_resched(); 910 } 911 } 912 913 static void flush_pending_writes(struct r1conf *conf) 914 { 915 /* Any writes that have been queued but are awaiting 916 * bitmap updates get flushed here. 917 */ 918 spin_lock_irq(&conf->device_lock); 919 920 if (conf->pending_bio_list.head) { 921 struct blk_plug plug; 922 struct bio *bio; 923 924 bio = bio_list_get(&conf->pending_bio_list); 925 spin_unlock_irq(&conf->device_lock); 926 927 /* 928 * As this is called in a wait_event() loop (see freeze_array), 929 * current->state might be TASK_UNINTERRUPTIBLE which will 930 * cause a warning when we prepare to wait again. As it is 931 * rare that this path is taken, it is perfectly safe to force 932 * us to go around the wait_event() loop again, so the warning 933 * is a false-positive. Silence the warning by resetting 934 * thread state 935 */ 936 __set_current_state(TASK_RUNNING); 937 blk_start_plug(&plug); 938 flush_bio_list(conf, bio); 939 blk_finish_plug(&plug); 940 } else 941 spin_unlock_irq(&conf->device_lock); 942 } 943 944 /* Barriers.... 945 * Sometimes we need to suspend IO while we do something else, 946 * either some resync/recovery, or reconfigure the array. 947 * To do this we raise a 'barrier'. 948 * The 'barrier' is a counter that can be raised multiple times 949 * to count how many activities are happening which preclude 950 * normal IO. 951 * We can only raise the barrier if there is no pending IO. 952 * i.e. if nr_pending == 0. 953 * We choose only to raise the barrier if no-one is waiting for the 954 * barrier to go down. This means that as soon as an IO request 955 * is ready, no other operations which require a barrier will start 956 * until the IO request has had a chance. 957 * 958 * So: regular IO calls 'wait_barrier'. When that returns there 959 * is no backgroup IO happening, It must arrange to call 960 * allow_barrier when it has finished its IO. 961 * backgroup IO calls must call raise_barrier. Once that returns 962 * there is no normal IO happeing. It must arrange to call 963 * lower_barrier when the particular background IO completes. 964 * 965 * If resync/recovery is interrupted, returns -EINTR; 966 * Otherwise, returns 0. 967 */ 968 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 969 { 970 int idx = sector_to_idx(sector_nr); 971 972 spin_lock_irq(&conf->resync_lock); 973 974 /* Wait until no block IO is waiting */ 975 wait_event_lock_irq(conf->wait_barrier, 976 !atomic_read(&conf->nr_waiting[idx]), 977 conf->resync_lock); 978 979 /* block any new IO from starting */ 980 atomic_inc(&conf->barrier[idx]); 981 /* 982 * In raise_barrier() we firstly increase conf->barrier[idx] then 983 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 984 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 985 * A memory barrier here to make sure conf->nr_pending[idx] won't 986 * be fetched before conf->barrier[idx] is increased. Otherwise 987 * there will be a race between raise_barrier() and _wait_barrier(). 988 */ 989 smp_mb__after_atomic(); 990 991 /* For these conditions we must wait: 992 * A: while the array is in frozen state 993 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 994 * existing in corresponding I/O barrier bucket. 995 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 996 * max resync count which allowed on current I/O barrier bucket. 997 */ 998 wait_event_lock_irq(conf->wait_barrier, 999 (!conf->array_frozen && 1000 !atomic_read(&conf->nr_pending[idx]) && 1001 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 1002 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 1003 conf->resync_lock); 1004 1005 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 1006 atomic_dec(&conf->barrier[idx]); 1007 spin_unlock_irq(&conf->resync_lock); 1008 wake_up(&conf->wait_barrier); 1009 return -EINTR; 1010 } 1011 1012 atomic_inc(&conf->nr_sync_pending); 1013 spin_unlock_irq(&conf->resync_lock); 1014 1015 return 0; 1016 } 1017 1018 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 1019 { 1020 int idx = sector_to_idx(sector_nr); 1021 1022 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 1023 1024 atomic_dec(&conf->barrier[idx]); 1025 atomic_dec(&conf->nr_sync_pending); 1026 wake_up(&conf->wait_barrier); 1027 } 1028 1029 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 1030 { 1031 bool ret = true; 1032 1033 /* 1034 * We need to increase conf->nr_pending[idx] very early here, 1035 * then raise_barrier() can be blocked when it waits for 1036 * conf->nr_pending[idx] to be 0. Then we can avoid holding 1037 * conf->resync_lock when there is no barrier raised in same 1038 * barrier unit bucket. Also if the array is frozen, I/O 1039 * should be blocked until array is unfrozen. 1040 */ 1041 atomic_inc(&conf->nr_pending[idx]); 1042 /* 1043 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 1044 * check conf->barrier[idx]. In raise_barrier() we firstly increase 1045 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 1046 * barrier is necessary here to make sure conf->barrier[idx] won't be 1047 * fetched before conf->nr_pending[idx] is increased. Otherwise there 1048 * will be a race between _wait_barrier() and raise_barrier(). 1049 */ 1050 smp_mb__after_atomic(); 1051 1052 /* 1053 * Don't worry about checking two atomic_t variables at same time 1054 * here. If during we check conf->barrier[idx], the array is 1055 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 1056 * 0, it is safe to return and make the I/O continue. Because the 1057 * array is frozen, all I/O returned here will eventually complete 1058 * or be queued, no race will happen. See code comment in 1059 * frozen_array(). 1060 */ 1061 if (!READ_ONCE(conf->array_frozen) && 1062 !atomic_read(&conf->barrier[idx])) 1063 return ret; 1064 1065 /* 1066 * After holding conf->resync_lock, conf->nr_pending[idx] 1067 * should be decreased before waiting for barrier to drop. 1068 * Otherwise, we may encounter a race condition because 1069 * raise_barrer() might be waiting for conf->nr_pending[idx] 1070 * to be 0 at same time. 1071 */ 1072 spin_lock_irq(&conf->resync_lock); 1073 atomic_inc(&conf->nr_waiting[idx]); 1074 atomic_dec(&conf->nr_pending[idx]); 1075 /* 1076 * In case freeze_array() is waiting for 1077 * get_unqueued_pending() == extra 1078 */ 1079 wake_up_barrier(conf); 1080 /* Wait for the barrier in same barrier unit bucket to drop. */ 1081 1082 /* Return false when nowait flag is set */ 1083 if (nowait) { 1084 ret = false; 1085 } else { 1086 wait_event_lock_irq(conf->wait_barrier, 1087 !conf->array_frozen && 1088 !atomic_read(&conf->barrier[idx]), 1089 conf->resync_lock); 1090 atomic_inc(&conf->nr_pending[idx]); 1091 } 1092 1093 atomic_dec(&conf->nr_waiting[idx]); 1094 spin_unlock_irq(&conf->resync_lock); 1095 return ret; 1096 } 1097 1098 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1099 { 1100 int idx = sector_to_idx(sector_nr); 1101 bool ret = true; 1102 1103 /* 1104 * Very similar to _wait_barrier(). The difference is, for read 1105 * I/O we don't need wait for sync I/O, but if the whole array 1106 * is frozen, the read I/O still has to wait until the array is 1107 * unfrozen. Since there is no ordering requirement with 1108 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1109 */ 1110 atomic_inc(&conf->nr_pending[idx]); 1111 1112 if (!READ_ONCE(conf->array_frozen)) 1113 return ret; 1114 1115 spin_lock_irq(&conf->resync_lock); 1116 atomic_inc(&conf->nr_waiting[idx]); 1117 atomic_dec(&conf->nr_pending[idx]); 1118 /* 1119 * In case freeze_array() is waiting for 1120 * get_unqueued_pending() == extra 1121 */ 1122 wake_up_barrier(conf); 1123 /* Wait for array to be unfrozen */ 1124 1125 /* Return false when nowait flag is set */ 1126 if (nowait) { 1127 /* Return false when nowait flag is set */ 1128 ret = false; 1129 } else { 1130 wait_event_lock_irq(conf->wait_barrier, 1131 !conf->array_frozen, 1132 conf->resync_lock); 1133 atomic_inc(&conf->nr_pending[idx]); 1134 } 1135 1136 atomic_dec(&conf->nr_waiting[idx]); 1137 spin_unlock_irq(&conf->resync_lock); 1138 return ret; 1139 } 1140 1141 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1142 { 1143 int idx = sector_to_idx(sector_nr); 1144 1145 return _wait_barrier(conf, idx, nowait); 1146 } 1147 1148 static void _allow_barrier(struct r1conf *conf, int idx) 1149 { 1150 atomic_dec(&conf->nr_pending[idx]); 1151 wake_up_barrier(conf); 1152 } 1153 1154 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1155 { 1156 int idx = sector_to_idx(sector_nr); 1157 1158 _allow_barrier(conf, idx); 1159 } 1160 1161 /* conf->resync_lock should be held */ 1162 static int get_unqueued_pending(struct r1conf *conf) 1163 { 1164 int idx, ret; 1165 1166 ret = atomic_read(&conf->nr_sync_pending); 1167 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1168 ret += atomic_read(&conf->nr_pending[idx]) - 1169 atomic_read(&conf->nr_queued[idx]); 1170 1171 return ret; 1172 } 1173 1174 static void freeze_array(struct r1conf *conf, int extra) 1175 { 1176 /* Stop sync I/O and normal I/O and wait for everything to 1177 * go quiet. 1178 * This is called in two situations: 1179 * 1) management command handlers (reshape, remove disk, quiesce). 1180 * 2) one normal I/O request failed. 1181 1182 * After array_frozen is set to 1, new sync IO will be blocked at 1183 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1184 * or wait_read_barrier(). The flying I/Os will either complete or be 1185 * queued. When everything goes quite, there are only queued I/Os left. 1186 1187 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1188 * barrier bucket index which this I/O request hits. When all sync and 1189 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1190 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1191 * in handle_read_error(), we may call freeze_array() before trying to 1192 * fix the read error. In this case, the error read I/O is not queued, 1193 * so get_unqueued_pending() == 1. 1194 * 1195 * Therefore before this function returns, we need to wait until 1196 * get_unqueued_pendings(conf) gets equal to extra. For 1197 * normal I/O context, extra is 1, in rested situations extra is 0. 1198 */ 1199 spin_lock_irq(&conf->resync_lock); 1200 conf->array_frozen = 1; 1201 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze"); 1202 wait_event_lock_irq_cmd( 1203 conf->wait_barrier, 1204 get_unqueued_pending(conf) == extra, 1205 conf->resync_lock, 1206 flush_pending_writes(conf)); 1207 spin_unlock_irq(&conf->resync_lock); 1208 } 1209 static void unfreeze_array(struct r1conf *conf) 1210 { 1211 /* reverse the effect of the freeze */ 1212 spin_lock_irq(&conf->resync_lock); 1213 conf->array_frozen = 0; 1214 spin_unlock_irq(&conf->resync_lock); 1215 wake_up(&conf->wait_barrier); 1216 } 1217 1218 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1219 struct bio *bio) 1220 { 1221 int size = bio->bi_iter.bi_size; 1222 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1223 int i = 0; 1224 struct bio *behind_bio = NULL; 1225 1226 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1227 &r1_bio->mddev->bio_set); 1228 1229 /* discard op, we don't support writezero/writesame yet */ 1230 if (!bio_has_data(bio)) { 1231 behind_bio->bi_iter.bi_size = size; 1232 goto skip_copy; 1233 } 1234 1235 while (i < vcnt && size) { 1236 struct page *page; 1237 int len = min_t(int, PAGE_SIZE, size); 1238 1239 page = alloc_page(GFP_NOIO); 1240 if (unlikely(!page)) 1241 goto free_pages; 1242 1243 if (!bio_add_page(behind_bio, page, len, 0)) { 1244 put_page(page); 1245 goto free_pages; 1246 } 1247 1248 size -= len; 1249 i++; 1250 } 1251 1252 bio_copy_data(behind_bio, bio); 1253 skip_copy: 1254 r1_bio->behind_master_bio = behind_bio; 1255 set_bit(R1BIO_BehindIO, &r1_bio->state); 1256 1257 return; 1258 1259 free_pages: 1260 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1261 bio->bi_iter.bi_size); 1262 bio_free_pages(behind_bio); 1263 bio_put(behind_bio); 1264 } 1265 1266 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1267 { 1268 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1269 cb); 1270 struct mddev *mddev = plug->cb.data; 1271 struct r1conf *conf = mddev->private; 1272 struct bio *bio; 1273 1274 if (from_schedule) { 1275 spin_lock_irq(&conf->device_lock); 1276 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1277 spin_unlock_irq(&conf->device_lock); 1278 wake_up_barrier(conf); 1279 md_wakeup_thread(mddev->thread); 1280 kfree(plug); 1281 return; 1282 } 1283 1284 /* we aren't scheduling, so we can do the write-out directly. */ 1285 bio = bio_list_get(&plug->pending); 1286 flush_bio_list(conf, bio); 1287 kfree(plug); 1288 } 1289 1290 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1291 { 1292 r1_bio->master_bio = bio; 1293 r1_bio->sectors = bio_sectors(bio); 1294 r1_bio->state = 0; 1295 r1_bio->mddev = mddev; 1296 r1_bio->sector = bio->bi_iter.bi_sector; 1297 } 1298 1299 static inline struct r1bio * 1300 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1301 { 1302 struct r1conf *conf = mddev->private; 1303 struct r1bio *r1_bio; 1304 1305 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1306 /* Ensure no bio records IO_BLOCKED */ 1307 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1308 init_r1bio(r1_bio, mddev, bio); 1309 return r1_bio; 1310 } 1311 1312 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1313 int max_read_sectors, struct r1bio *r1_bio) 1314 { 1315 struct r1conf *conf = mddev->private; 1316 struct raid1_info *mirror; 1317 struct bio *read_bio; 1318 const enum req_op op = bio_op(bio); 1319 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1320 int max_sectors; 1321 int rdisk, error; 1322 bool r1bio_existed = !!r1_bio; 1323 1324 /* 1325 * If r1_bio is set, we are blocking the raid1d thread 1326 * so there is a tiny risk of deadlock. So ask for 1327 * emergency memory if needed. 1328 */ 1329 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1330 1331 /* 1332 * Still need barrier for READ in case that whole 1333 * array is frozen. 1334 */ 1335 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1336 bio->bi_opf & REQ_NOWAIT)) { 1337 bio_wouldblock_error(bio); 1338 return; 1339 } 1340 1341 if (!r1_bio) 1342 r1_bio = alloc_r1bio(mddev, bio); 1343 else 1344 init_r1bio(r1_bio, mddev, bio); 1345 r1_bio->sectors = max_read_sectors; 1346 1347 /* 1348 * make_request() can abort the operation when read-ahead is being 1349 * used and no empty request is available. 1350 */ 1351 rdisk = read_balance(conf, r1_bio, &max_sectors); 1352 if (rdisk < 0) { 1353 /* couldn't find anywhere to read from */ 1354 if (r1bio_existed) 1355 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 1356 mdname(mddev), 1357 conf->mirrors[r1_bio->read_disk].rdev->bdev, 1358 r1_bio->sector); 1359 raid_end_bio_io(r1_bio); 1360 return; 1361 } 1362 mirror = conf->mirrors + rdisk; 1363 1364 if (r1bio_existed) 1365 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1366 mdname(mddev), 1367 (unsigned long long)r1_bio->sector, 1368 mirror->rdev->bdev); 1369 1370 if (test_bit(WriteMostly, &mirror->rdev->flags)) { 1371 /* 1372 * Reading from a write-mostly device must take care not to 1373 * over-take any writes that are 'behind' 1374 */ 1375 mddev_add_trace_msg(mddev, "raid1 wait behind writes"); 1376 mddev->bitmap_ops->wait_behind_writes(mddev); 1377 } 1378 1379 if (max_sectors < bio_sectors(bio)) { 1380 struct bio *split = bio_split(bio, max_sectors, 1381 gfp, &conf->bio_split); 1382 1383 if (IS_ERR(split)) { 1384 error = PTR_ERR(split); 1385 goto err_handle; 1386 } 1387 bio_chain(split, bio); 1388 submit_bio_noacct(bio); 1389 bio = split; 1390 r1_bio->master_bio = bio; 1391 r1_bio->sectors = max_sectors; 1392 } 1393 1394 r1_bio->read_disk = rdisk; 1395 if (!r1bio_existed) { 1396 md_account_bio(mddev, &bio); 1397 r1_bio->master_bio = bio; 1398 } 1399 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1400 &mddev->bio_set); 1401 1402 r1_bio->bios[rdisk] = read_bio; 1403 1404 read_bio->bi_iter.bi_sector = r1_bio->sector + 1405 mirror->rdev->data_offset; 1406 read_bio->bi_end_io = raid1_end_read_request; 1407 read_bio->bi_opf = op | do_sync; 1408 if (test_bit(FailFast, &mirror->rdev->flags) && 1409 test_bit(R1BIO_FailFast, &r1_bio->state)) 1410 read_bio->bi_opf |= MD_FAILFAST; 1411 read_bio->bi_private = r1_bio; 1412 mddev_trace_remap(mddev, read_bio, r1_bio->sector); 1413 submit_bio_noacct(read_bio); 1414 return; 1415 1416 err_handle: 1417 atomic_dec(&mirror->rdev->nr_pending); 1418 bio->bi_status = errno_to_blk_status(error); 1419 set_bit(R1BIO_Uptodate, &r1_bio->state); 1420 raid_end_bio_io(r1_bio); 1421 } 1422 1423 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio) 1424 { 1425 struct r1conf *conf = mddev->private; 1426 int disks = conf->raid_disks * 2; 1427 int i; 1428 1429 retry: 1430 for (i = 0; i < disks; i++) { 1431 struct md_rdev *rdev = conf->mirrors[i].rdev; 1432 1433 if (!rdev) 1434 continue; 1435 1436 /* don't write here until the bad block is acknowledged */ 1437 if (test_bit(WriteErrorSeen, &rdev->flags) && 1438 rdev_has_badblock(rdev, bio->bi_iter.bi_sector, 1439 bio_sectors(bio)) < 0) 1440 set_bit(BlockedBadBlocks, &rdev->flags); 1441 1442 if (rdev_blocked(rdev)) { 1443 if (bio->bi_opf & REQ_NOWAIT) 1444 return false; 1445 1446 mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked", 1447 rdev->raid_disk); 1448 atomic_inc(&rdev->nr_pending); 1449 md_wait_for_blocked_rdev(rdev, rdev->mddev); 1450 goto retry; 1451 } 1452 } 1453 1454 return true; 1455 } 1456 1457 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1458 int max_write_sectors) 1459 { 1460 struct r1conf *conf = mddev->private; 1461 struct r1bio *r1_bio; 1462 int i, disks, k, error; 1463 unsigned long flags; 1464 int first_clone; 1465 int max_sectors; 1466 bool write_behind = false; 1467 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD); 1468 1469 if (mddev_is_clustered(mddev) && 1470 md_cluster_ops->area_resyncing(mddev, WRITE, 1471 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1472 1473 DEFINE_WAIT(w); 1474 if (bio->bi_opf & REQ_NOWAIT) { 1475 bio_wouldblock_error(bio); 1476 return; 1477 } 1478 for (;;) { 1479 prepare_to_wait(&conf->wait_barrier, 1480 &w, TASK_IDLE); 1481 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1482 bio->bi_iter.bi_sector, 1483 bio_end_sector(bio))) 1484 break; 1485 schedule(); 1486 } 1487 finish_wait(&conf->wait_barrier, &w); 1488 } 1489 1490 /* 1491 * Register the new request and wait if the reconstruction 1492 * thread has put up a bar for new requests. 1493 * Continue immediately if no resync is active currently. 1494 */ 1495 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1496 bio->bi_opf & REQ_NOWAIT)) { 1497 bio_wouldblock_error(bio); 1498 return; 1499 } 1500 1501 if (!wait_blocked_rdev(mddev, bio)) { 1502 bio_wouldblock_error(bio); 1503 return; 1504 } 1505 1506 r1_bio = alloc_r1bio(mddev, bio); 1507 r1_bio->sectors = max_write_sectors; 1508 1509 /* first select target devices under rcu_lock and 1510 * inc refcount on their rdev. Record them by setting 1511 * bios[x] to bio 1512 * If there are known/acknowledged bad blocks on any device on 1513 * which we have seen a write error, we want to avoid writing those 1514 * blocks. 1515 * This potentially requires several writes to write around 1516 * the bad blocks. Each set of writes gets it's own r1bio 1517 * with a set of bios attached. 1518 */ 1519 1520 disks = conf->raid_disks * 2; 1521 max_sectors = r1_bio->sectors; 1522 for (i = 0; i < disks; i++) { 1523 struct md_rdev *rdev = conf->mirrors[i].rdev; 1524 1525 /* 1526 * The write-behind io is only attempted on drives marked as 1527 * write-mostly, which means we could allocate write behind 1528 * bio later. 1529 */ 1530 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags)) 1531 write_behind = true; 1532 1533 r1_bio->bios[i] = NULL; 1534 if (!rdev || test_bit(Faulty, &rdev->flags)) 1535 continue; 1536 1537 atomic_inc(&rdev->nr_pending); 1538 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1539 sector_t first_bad; 1540 int bad_sectors; 1541 int is_bad; 1542 1543 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1544 &first_bad, &bad_sectors); 1545 if (is_bad && first_bad <= r1_bio->sector) { 1546 /* Cannot write here at all */ 1547 bad_sectors -= (r1_bio->sector - first_bad); 1548 if (bad_sectors < max_sectors) 1549 /* mustn't write more than bad_sectors 1550 * to other devices yet 1551 */ 1552 max_sectors = bad_sectors; 1553 rdev_dec_pending(rdev, mddev); 1554 continue; 1555 } 1556 if (is_bad) { 1557 int good_sectors; 1558 1559 /* 1560 * We cannot atomically write this, so just 1561 * error in that case. It could be possible to 1562 * atomically write other mirrors, but the 1563 * complexity of supporting that is not worth 1564 * the benefit. 1565 */ 1566 if (bio->bi_opf & REQ_ATOMIC) { 1567 error = -EIO; 1568 goto err_handle; 1569 } 1570 1571 good_sectors = first_bad - r1_bio->sector; 1572 if (good_sectors < max_sectors) 1573 max_sectors = good_sectors; 1574 } 1575 } 1576 r1_bio->bios[i] = bio; 1577 } 1578 1579 /* 1580 * When using a bitmap, we may call alloc_behind_master_bio below. 1581 * alloc_behind_master_bio allocates a copy of the data payload a page 1582 * at a time and thus needs a new bio that can fit the whole payload 1583 * this bio in page sized chunks. 1584 */ 1585 if (write_behind && mddev->bitmap) 1586 max_sectors = min_t(int, max_sectors, 1587 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1588 if (max_sectors < bio_sectors(bio)) { 1589 struct bio *split = bio_split(bio, max_sectors, 1590 GFP_NOIO, &conf->bio_split); 1591 1592 if (IS_ERR(split)) { 1593 error = PTR_ERR(split); 1594 goto err_handle; 1595 } 1596 bio_chain(split, bio); 1597 submit_bio_noacct(bio); 1598 bio = split; 1599 r1_bio->master_bio = bio; 1600 r1_bio->sectors = max_sectors; 1601 } 1602 1603 md_account_bio(mddev, &bio); 1604 r1_bio->master_bio = bio; 1605 atomic_set(&r1_bio->remaining, 1); 1606 atomic_set(&r1_bio->behind_remaining, 0); 1607 1608 first_clone = 1; 1609 1610 for (i = 0; i < disks; i++) { 1611 struct bio *mbio = NULL; 1612 struct md_rdev *rdev = conf->mirrors[i].rdev; 1613 if (!r1_bio->bios[i]) 1614 continue; 1615 1616 if (first_clone) { 1617 unsigned long max_write_behind = 1618 mddev->bitmap_info.max_write_behind; 1619 struct md_bitmap_stats stats; 1620 int err; 1621 1622 /* do behind I/O ? 1623 * Not if there are too many, or cannot 1624 * allocate memory, or a reader on WriteMostly 1625 * is waiting for behind writes to flush */ 1626 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats); 1627 if (!err && write_behind && !stats.behind_wait && 1628 stats.behind_writes < max_write_behind) 1629 alloc_behind_master_bio(r1_bio, bio); 1630 1631 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) 1632 mddev->bitmap_ops->start_behind_write(mddev); 1633 first_clone = 0; 1634 } 1635 1636 if (r1_bio->behind_master_bio) { 1637 mbio = bio_alloc_clone(rdev->bdev, 1638 r1_bio->behind_master_bio, 1639 GFP_NOIO, &mddev->bio_set); 1640 if (test_bit(CollisionCheck, &rdev->flags)) 1641 wait_for_serialization(rdev, r1_bio); 1642 if (test_bit(WriteMostly, &rdev->flags)) 1643 atomic_inc(&r1_bio->behind_remaining); 1644 } else { 1645 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1646 &mddev->bio_set); 1647 1648 if (mddev->serialize_policy) 1649 wait_for_serialization(rdev, r1_bio); 1650 } 1651 1652 r1_bio->bios[i] = mbio; 1653 1654 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1655 mbio->bi_end_io = raid1_end_write_request; 1656 mbio->bi_opf = bio_op(bio) | 1657 (bio->bi_opf & (REQ_SYNC | REQ_FUA | REQ_ATOMIC)); 1658 if (test_bit(FailFast, &rdev->flags) && 1659 !test_bit(WriteMostly, &rdev->flags) && 1660 conf->raid_disks - mddev->degraded > 1) 1661 mbio->bi_opf |= MD_FAILFAST; 1662 mbio->bi_private = r1_bio; 1663 1664 atomic_inc(&r1_bio->remaining); 1665 mddev_trace_remap(mddev, mbio, r1_bio->sector); 1666 /* flush_pending_writes() needs access to the rdev so...*/ 1667 mbio->bi_bdev = (void *)rdev; 1668 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1669 spin_lock_irqsave(&conf->device_lock, flags); 1670 bio_list_add(&conf->pending_bio_list, mbio); 1671 spin_unlock_irqrestore(&conf->device_lock, flags); 1672 md_wakeup_thread(mddev->thread); 1673 } 1674 } 1675 1676 r1_bio_write_done(r1_bio); 1677 1678 /* In case raid1d snuck in to freeze_array */ 1679 wake_up_barrier(conf); 1680 return; 1681 err_handle: 1682 for (k = 0; k < i; k++) { 1683 if (r1_bio->bios[k]) { 1684 rdev_dec_pending(conf->mirrors[k].rdev, mddev); 1685 r1_bio->bios[k] = NULL; 1686 } 1687 } 1688 1689 bio->bi_status = errno_to_blk_status(error); 1690 set_bit(R1BIO_Uptodate, &r1_bio->state); 1691 raid_end_bio_io(r1_bio); 1692 } 1693 1694 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1695 { 1696 sector_t sectors; 1697 1698 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1699 && md_flush_request(mddev, bio)) 1700 return true; 1701 1702 /* 1703 * There is a limit to the maximum size, but 1704 * the read/write handler might find a lower limit 1705 * due to bad blocks. To avoid multiple splits, 1706 * we pass the maximum number of sectors down 1707 * and let the lower level perform the split. 1708 */ 1709 sectors = align_to_barrier_unit_end( 1710 bio->bi_iter.bi_sector, bio_sectors(bio)); 1711 1712 if (bio_data_dir(bio) == READ) 1713 raid1_read_request(mddev, bio, sectors, NULL); 1714 else { 1715 md_write_start(mddev,bio); 1716 raid1_write_request(mddev, bio, sectors); 1717 } 1718 return true; 1719 } 1720 1721 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1722 { 1723 struct r1conf *conf = mddev->private; 1724 int i; 1725 1726 lockdep_assert_held(&mddev->lock); 1727 1728 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1729 conf->raid_disks - mddev->degraded); 1730 for (i = 0; i < conf->raid_disks; i++) { 1731 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1732 1733 seq_printf(seq, "%s", 1734 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1735 } 1736 seq_printf(seq, "]"); 1737 } 1738 1739 /** 1740 * raid1_error() - RAID1 error handler. 1741 * @mddev: affected md device. 1742 * @rdev: member device to fail. 1743 * 1744 * The routine acknowledges &rdev failure and determines new @mddev state. 1745 * If it failed, then: 1746 * - &MD_BROKEN flag is set in &mddev->flags. 1747 * - recovery is disabled. 1748 * Otherwise, it must be degraded: 1749 * - recovery is interrupted. 1750 * - &mddev->degraded is bumped. 1751 * 1752 * @rdev is marked as &Faulty excluding case when array is failed and 1753 * &mddev->fail_last_dev is off. 1754 */ 1755 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1756 { 1757 struct r1conf *conf = mddev->private; 1758 unsigned long flags; 1759 1760 spin_lock_irqsave(&conf->device_lock, flags); 1761 1762 if (test_bit(In_sync, &rdev->flags) && 1763 (conf->raid_disks - mddev->degraded) == 1) { 1764 set_bit(MD_BROKEN, &mddev->flags); 1765 1766 if (!mddev->fail_last_dev) { 1767 conf->recovery_disabled = mddev->recovery_disabled; 1768 spin_unlock_irqrestore(&conf->device_lock, flags); 1769 return; 1770 } 1771 } 1772 set_bit(Blocked, &rdev->flags); 1773 if (test_and_clear_bit(In_sync, &rdev->flags)) 1774 mddev->degraded++; 1775 set_bit(Faulty, &rdev->flags); 1776 spin_unlock_irqrestore(&conf->device_lock, flags); 1777 /* 1778 * if recovery is running, make sure it aborts. 1779 */ 1780 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1781 set_mask_bits(&mddev->sb_flags, 0, 1782 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1783 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1784 "md/raid1:%s: Operation continuing on %d devices.\n", 1785 mdname(mddev), rdev->bdev, 1786 mdname(mddev), conf->raid_disks - mddev->degraded); 1787 } 1788 1789 static void print_conf(struct r1conf *conf) 1790 { 1791 int i; 1792 1793 pr_debug("RAID1 conf printout:\n"); 1794 if (!conf) { 1795 pr_debug("(!conf)\n"); 1796 return; 1797 } 1798 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1799 conf->raid_disks); 1800 1801 lockdep_assert_held(&conf->mddev->reconfig_mutex); 1802 for (i = 0; i < conf->raid_disks; i++) { 1803 struct md_rdev *rdev = conf->mirrors[i].rdev; 1804 if (rdev) 1805 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1806 i, !test_bit(In_sync, &rdev->flags), 1807 !test_bit(Faulty, &rdev->flags), 1808 rdev->bdev); 1809 } 1810 } 1811 1812 static void close_sync(struct r1conf *conf) 1813 { 1814 int idx; 1815 1816 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1817 _wait_barrier(conf, idx, false); 1818 _allow_barrier(conf, idx); 1819 } 1820 1821 mempool_exit(&conf->r1buf_pool); 1822 } 1823 1824 static int raid1_spare_active(struct mddev *mddev) 1825 { 1826 int i; 1827 struct r1conf *conf = mddev->private; 1828 int count = 0; 1829 unsigned long flags; 1830 1831 /* 1832 * Find all failed disks within the RAID1 configuration 1833 * and mark them readable. 1834 * Called under mddev lock, so rcu protection not needed. 1835 * device_lock used to avoid races with raid1_end_read_request 1836 * which expects 'In_sync' flags and ->degraded to be consistent. 1837 */ 1838 spin_lock_irqsave(&conf->device_lock, flags); 1839 for (i = 0; i < conf->raid_disks; i++) { 1840 struct md_rdev *rdev = conf->mirrors[i].rdev; 1841 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1842 if (repl 1843 && !test_bit(Candidate, &repl->flags) 1844 && repl->recovery_offset == MaxSector 1845 && !test_bit(Faulty, &repl->flags) 1846 && !test_and_set_bit(In_sync, &repl->flags)) { 1847 /* replacement has just become active */ 1848 if (!rdev || 1849 !test_and_clear_bit(In_sync, &rdev->flags)) 1850 count++; 1851 if (rdev) { 1852 /* Replaced device not technically 1853 * faulty, but we need to be sure 1854 * it gets removed and never re-added 1855 */ 1856 set_bit(Faulty, &rdev->flags); 1857 sysfs_notify_dirent_safe( 1858 rdev->sysfs_state); 1859 } 1860 } 1861 if (rdev 1862 && rdev->recovery_offset == MaxSector 1863 && !test_bit(Faulty, &rdev->flags) 1864 && !test_and_set_bit(In_sync, &rdev->flags)) { 1865 count++; 1866 sysfs_notify_dirent_safe(rdev->sysfs_state); 1867 } 1868 } 1869 mddev->degraded -= count; 1870 spin_unlock_irqrestore(&conf->device_lock, flags); 1871 1872 print_conf(conf); 1873 return count; 1874 } 1875 1876 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk, 1877 bool replacement) 1878 { 1879 struct raid1_info *info = conf->mirrors + disk; 1880 1881 if (replacement) 1882 info += conf->raid_disks; 1883 1884 if (info->rdev) 1885 return false; 1886 1887 if (bdev_nonrot(rdev->bdev)) { 1888 set_bit(Nonrot, &rdev->flags); 1889 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1); 1890 } 1891 1892 rdev->raid_disk = disk; 1893 info->head_position = 0; 1894 info->seq_start = MaxSector; 1895 WRITE_ONCE(info->rdev, rdev); 1896 1897 return true; 1898 } 1899 1900 static bool raid1_remove_conf(struct r1conf *conf, int disk) 1901 { 1902 struct raid1_info *info = conf->mirrors + disk; 1903 struct md_rdev *rdev = info->rdev; 1904 1905 if (!rdev || test_bit(In_sync, &rdev->flags) || 1906 atomic_read(&rdev->nr_pending)) 1907 return false; 1908 1909 /* Only remove non-faulty devices if recovery is not possible. */ 1910 if (!test_bit(Faulty, &rdev->flags) && 1911 rdev->mddev->recovery_disabled != conf->recovery_disabled && 1912 rdev->mddev->degraded < conf->raid_disks) 1913 return false; 1914 1915 if (test_and_clear_bit(Nonrot, &rdev->flags)) 1916 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1); 1917 1918 WRITE_ONCE(info->rdev, NULL); 1919 return true; 1920 } 1921 1922 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1923 { 1924 struct r1conf *conf = mddev->private; 1925 int err = -EEXIST; 1926 int mirror = 0, repl_slot = -1; 1927 struct raid1_info *p; 1928 int first = 0; 1929 int last = conf->raid_disks - 1; 1930 1931 if (mddev->recovery_disabled == conf->recovery_disabled) 1932 return -EBUSY; 1933 1934 if (rdev->raid_disk >= 0) 1935 first = last = rdev->raid_disk; 1936 1937 /* 1938 * find the disk ... but prefer rdev->saved_raid_disk 1939 * if possible. 1940 */ 1941 if (rdev->saved_raid_disk >= 0 && 1942 rdev->saved_raid_disk >= first && 1943 rdev->saved_raid_disk < conf->raid_disks && 1944 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1945 first = last = rdev->saved_raid_disk; 1946 1947 for (mirror = first; mirror <= last; mirror++) { 1948 p = conf->mirrors + mirror; 1949 if (!p->rdev) { 1950 err = mddev_stack_new_rdev(mddev, rdev); 1951 if (err) 1952 return err; 1953 1954 raid1_add_conf(conf, rdev, mirror, false); 1955 /* As all devices are equivalent, we don't need a full recovery 1956 * if this was recently any drive of the array 1957 */ 1958 if (rdev->saved_raid_disk < 0) 1959 conf->fullsync = 1; 1960 break; 1961 } 1962 if (test_bit(WantReplacement, &p->rdev->flags) && 1963 p[conf->raid_disks].rdev == NULL && repl_slot < 0) 1964 repl_slot = mirror; 1965 } 1966 1967 if (err && repl_slot >= 0) { 1968 /* Add this device as a replacement */ 1969 clear_bit(In_sync, &rdev->flags); 1970 set_bit(Replacement, &rdev->flags); 1971 raid1_add_conf(conf, rdev, repl_slot, true); 1972 err = 0; 1973 conf->fullsync = 1; 1974 } 1975 1976 print_conf(conf); 1977 return err; 1978 } 1979 1980 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1981 { 1982 struct r1conf *conf = mddev->private; 1983 int err = 0; 1984 int number = rdev->raid_disk; 1985 struct raid1_info *p = conf->mirrors + number; 1986 1987 if (unlikely(number >= conf->raid_disks)) 1988 goto abort; 1989 1990 if (rdev != p->rdev) { 1991 number += conf->raid_disks; 1992 p = conf->mirrors + number; 1993 } 1994 1995 print_conf(conf); 1996 if (rdev == p->rdev) { 1997 if (!raid1_remove_conf(conf, number)) { 1998 err = -EBUSY; 1999 goto abort; 2000 } 2001 2002 if (number < conf->raid_disks && 2003 conf->mirrors[conf->raid_disks + number].rdev) { 2004 /* We just removed a device that is being replaced. 2005 * Move down the replacement. We drain all IO before 2006 * doing this to avoid confusion. 2007 */ 2008 struct md_rdev *repl = 2009 conf->mirrors[conf->raid_disks + number].rdev; 2010 freeze_array(conf, 0); 2011 if (atomic_read(&repl->nr_pending)) { 2012 /* It means that some queued IO of retry_list 2013 * hold repl. Thus, we cannot set replacement 2014 * as NULL, avoiding rdev NULL pointer 2015 * dereference in sync_request_write and 2016 * handle_write_finished. 2017 */ 2018 err = -EBUSY; 2019 unfreeze_array(conf); 2020 goto abort; 2021 } 2022 clear_bit(Replacement, &repl->flags); 2023 WRITE_ONCE(p->rdev, repl); 2024 conf->mirrors[conf->raid_disks + number].rdev = NULL; 2025 unfreeze_array(conf); 2026 } 2027 2028 clear_bit(WantReplacement, &rdev->flags); 2029 err = md_integrity_register(mddev); 2030 } 2031 abort: 2032 2033 print_conf(conf); 2034 return err; 2035 } 2036 2037 static void end_sync_read(struct bio *bio) 2038 { 2039 struct r1bio *r1_bio = get_resync_r1bio(bio); 2040 2041 update_head_pos(r1_bio->read_disk, r1_bio); 2042 2043 /* 2044 * we have read a block, now it needs to be re-written, 2045 * or re-read if the read failed. 2046 * We don't do much here, just schedule handling by raid1d 2047 */ 2048 if (!bio->bi_status) 2049 set_bit(R1BIO_Uptodate, &r1_bio->state); 2050 2051 if (atomic_dec_and_test(&r1_bio->remaining)) 2052 reschedule_retry(r1_bio); 2053 } 2054 2055 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 2056 { 2057 sector_t sync_blocks = 0; 2058 sector_t s = r1_bio->sector; 2059 long sectors_to_go = r1_bio->sectors; 2060 2061 /* make sure these bits don't get cleared. */ 2062 do { 2063 mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks); 2064 s += sync_blocks; 2065 sectors_to_go -= sync_blocks; 2066 } while (sectors_to_go > 0); 2067 } 2068 2069 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 2070 { 2071 if (atomic_dec_and_test(&r1_bio->remaining)) { 2072 struct mddev *mddev = r1_bio->mddev; 2073 int s = r1_bio->sectors; 2074 2075 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2076 test_bit(R1BIO_WriteError, &r1_bio->state)) 2077 reschedule_retry(r1_bio); 2078 else { 2079 put_buf(r1_bio); 2080 md_done_sync(mddev, s, uptodate); 2081 } 2082 } 2083 } 2084 2085 static void end_sync_write(struct bio *bio) 2086 { 2087 int uptodate = !bio->bi_status; 2088 struct r1bio *r1_bio = get_resync_r1bio(bio); 2089 struct mddev *mddev = r1_bio->mddev; 2090 struct r1conf *conf = mddev->private; 2091 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 2092 2093 if (!uptodate) { 2094 abort_sync_write(mddev, r1_bio); 2095 set_bit(WriteErrorSeen, &rdev->flags); 2096 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2097 set_bit(MD_RECOVERY_NEEDED, & 2098 mddev->recovery); 2099 set_bit(R1BIO_WriteError, &r1_bio->state); 2100 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 2101 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev, 2102 r1_bio->sector, r1_bio->sectors)) { 2103 set_bit(R1BIO_MadeGood, &r1_bio->state); 2104 } 2105 2106 put_sync_write_buf(r1_bio, uptodate); 2107 } 2108 2109 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 2110 int sectors, struct page *page, blk_opf_t rw) 2111 { 2112 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2113 /* success */ 2114 return 1; 2115 if (rw == REQ_OP_WRITE) { 2116 set_bit(WriteErrorSeen, &rdev->flags); 2117 if (!test_and_set_bit(WantReplacement, 2118 &rdev->flags)) 2119 set_bit(MD_RECOVERY_NEEDED, & 2120 rdev->mddev->recovery); 2121 } 2122 /* need to record an error - either for the block or the device */ 2123 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2124 md_error(rdev->mddev, rdev); 2125 return 0; 2126 } 2127 2128 static int fix_sync_read_error(struct r1bio *r1_bio) 2129 { 2130 /* Try some synchronous reads of other devices to get 2131 * good data, much like with normal read errors. Only 2132 * read into the pages we already have so we don't 2133 * need to re-issue the read request. 2134 * We don't need to freeze the array, because being in an 2135 * active sync request, there is no normal IO, and 2136 * no overlapping syncs. 2137 * We don't need to check is_badblock() again as we 2138 * made sure that anything with a bad block in range 2139 * will have bi_end_io clear. 2140 */ 2141 struct mddev *mddev = r1_bio->mddev; 2142 struct r1conf *conf = mddev->private; 2143 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2144 struct page **pages = get_resync_pages(bio)->pages; 2145 sector_t sect = r1_bio->sector; 2146 int sectors = r1_bio->sectors; 2147 int idx = 0; 2148 struct md_rdev *rdev; 2149 2150 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2151 if (test_bit(FailFast, &rdev->flags)) { 2152 /* Don't try recovering from here - just fail it 2153 * ... unless it is the last working device of course */ 2154 md_error(mddev, rdev); 2155 if (test_bit(Faulty, &rdev->flags)) 2156 /* Don't try to read from here, but make sure 2157 * put_buf does it's thing 2158 */ 2159 bio->bi_end_io = end_sync_write; 2160 } 2161 2162 while(sectors) { 2163 int s = sectors; 2164 int d = r1_bio->read_disk; 2165 int success = 0; 2166 int start; 2167 2168 if (s > (PAGE_SIZE>>9)) 2169 s = PAGE_SIZE >> 9; 2170 do { 2171 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2172 /* No rcu protection needed here devices 2173 * can only be removed when no resync is 2174 * active, and resync is currently active 2175 */ 2176 rdev = conf->mirrors[d].rdev; 2177 if (sync_page_io(rdev, sect, s<<9, 2178 pages[idx], 2179 REQ_OP_READ, false)) { 2180 success = 1; 2181 break; 2182 } 2183 } 2184 d++; 2185 if (d == conf->raid_disks * 2) 2186 d = 0; 2187 } while (!success && d != r1_bio->read_disk); 2188 2189 if (!success) { 2190 int abort = 0; 2191 /* Cannot read from anywhere, this block is lost. 2192 * Record a bad block on each device. If that doesn't 2193 * work just disable and interrupt the recovery. 2194 * Don't fail devices as that won't really help. 2195 */ 2196 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2197 mdname(mddev), bio->bi_bdev, 2198 (unsigned long long)r1_bio->sector); 2199 for (d = 0; d < conf->raid_disks * 2; d++) { 2200 rdev = conf->mirrors[d].rdev; 2201 if (!rdev || test_bit(Faulty, &rdev->flags)) 2202 continue; 2203 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2204 abort = 1; 2205 } 2206 if (abort) { 2207 conf->recovery_disabled = 2208 mddev->recovery_disabled; 2209 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2210 md_done_sync(mddev, r1_bio->sectors, 0); 2211 put_buf(r1_bio); 2212 return 0; 2213 } 2214 /* Try next page */ 2215 sectors -= s; 2216 sect += s; 2217 idx++; 2218 continue; 2219 } 2220 2221 start = d; 2222 /* write it back and re-read */ 2223 while (d != r1_bio->read_disk) { 2224 if (d == 0) 2225 d = conf->raid_disks * 2; 2226 d--; 2227 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2228 continue; 2229 rdev = conf->mirrors[d].rdev; 2230 if (r1_sync_page_io(rdev, sect, s, 2231 pages[idx], 2232 REQ_OP_WRITE) == 0) { 2233 r1_bio->bios[d]->bi_end_io = NULL; 2234 rdev_dec_pending(rdev, mddev); 2235 } 2236 } 2237 d = start; 2238 while (d != r1_bio->read_disk) { 2239 if (d == 0) 2240 d = conf->raid_disks * 2; 2241 d--; 2242 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2243 continue; 2244 rdev = conf->mirrors[d].rdev; 2245 if (r1_sync_page_io(rdev, sect, s, 2246 pages[idx], 2247 REQ_OP_READ) != 0) 2248 atomic_add(s, &rdev->corrected_errors); 2249 } 2250 sectors -= s; 2251 sect += s; 2252 idx ++; 2253 } 2254 set_bit(R1BIO_Uptodate, &r1_bio->state); 2255 bio->bi_status = 0; 2256 return 1; 2257 } 2258 2259 static void process_checks(struct r1bio *r1_bio) 2260 { 2261 /* We have read all readable devices. If we haven't 2262 * got the block, then there is no hope left. 2263 * If we have, then we want to do a comparison 2264 * and skip the write if everything is the same. 2265 * If any blocks failed to read, then we need to 2266 * attempt an over-write 2267 */ 2268 struct mddev *mddev = r1_bio->mddev; 2269 struct r1conf *conf = mddev->private; 2270 int primary; 2271 int i; 2272 int vcnt; 2273 2274 /* Fix variable parts of all bios */ 2275 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2276 for (i = 0; i < conf->raid_disks * 2; i++) { 2277 blk_status_t status; 2278 struct bio *b = r1_bio->bios[i]; 2279 struct resync_pages *rp = get_resync_pages(b); 2280 if (b->bi_end_io != end_sync_read) 2281 continue; 2282 /* fixup the bio for reuse, but preserve errno */ 2283 status = b->bi_status; 2284 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2285 b->bi_status = status; 2286 b->bi_iter.bi_sector = r1_bio->sector + 2287 conf->mirrors[i].rdev->data_offset; 2288 b->bi_end_io = end_sync_read; 2289 rp->raid_bio = r1_bio; 2290 b->bi_private = rp; 2291 2292 /* initialize bvec table again */ 2293 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2294 } 2295 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2296 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2297 !r1_bio->bios[primary]->bi_status) { 2298 r1_bio->bios[primary]->bi_end_io = NULL; 2299 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2300 break; 2301 } 2302 r1_bio->read_disk = primary; 2303 for (i = 0; i < conf->raid_disks * 2; i++) { 2304 int j = 0; 2305 struct bio *pbio = r1_bio->bios[primary]; 2306 struct bio *sbio = r1_bio->bios[i]; 2307 blk_status_t status = sbio->bi_status; 2308 struct page **ppages = get_resync_pages(pbio)->pages; 2309 struct page **spages = get_resync_pages(sbio)->pages; 2310 struct bio_vec *bi; 2311 int page_len[RESYNC_PAGES] = { 0 }; 2312 struct bvec_iter_all iter_all; 2313 2314 if (sbio->bi_end_io != end_sync_read) 2315 continue; 2316 /* Now we can 'fixup' the error value */ 2317 sbio->bi_status = 0; 2318 2319 bio_for_each_segment_all(bi, sbio, iter_all) 2320 page_len[j++] = bi->bv_len; 2321 2322 if (!status) { 2323 for (j = vcnt; j-- ; ) { 2324 if (memcmp(page_address(ppages[j]), 2325 page_address(spages[j]), 2326 page_len[j])) 2327 break; 2328 } 2329 } else 2330 j = 0; 2331 if (j >= 0) 2332 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2333 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2334 && !status)) { 2335 /* No need to write to this device. */ 2336 sbio->bi_end_io = NULL; 2337 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2338 continue; 2339 } 2340 2341 bio_copy_data(sbio, pbio); 2342 } 2343 } 2344 2345 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2346 { 2347 struct r1conf *conf = mddev->private; 2348 int i; 2349 int disks = conf->raid_disks * 2; 2350 struct bio *wbio; 2351 2352 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2353 /* ouch - failed to read all of that. */ 2354 if (!fix_sync_read_error(r1_bio)) 2355 return; 2356 2357 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2358 process_checks(r1_bio); 2359 2360 /* 2361 * schedule writes 2362 */ 2363 atomic_set(&r1_bio->remaining, 1); 2364 for (i = 0; i < disks ; i++) { 2365 wbio = r1_bio->bios[i]; 2366 if (wbio->bi_end_io == NULL || 2367 (wbio->bi_end_io == end_sync_read && 2368 (i == r1_bio->read_disk || 2369 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2370 continue; 2371 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2372 abort_sync_write(mddev, r1_bio); 2373 continue; 2374 } 2375 2376 wbio->bi_opf = REQ_OP_WRITE; 2377 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2378 wbio->bi_opf |= MD_FAILFAST; 2379 2380 wbio->bi_end_io = end_sync_write; 2381 atomic_inc(&r1_bio->remaining); 2382 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2383 2384 submit_bio_noacct(wbio); 2385 } 2386 2387 put_sync_write_buf(r1_bio, 1); 2388 } 2389 2390 /* 2391 * This is a kernel thread which: 2392 * 2393 * 1. Retries failed read operations on working mirrors. 2394 * 2. Updates the raid superblock when problems encounter. 2395 * 3. Performs writes following reads for array synchronising. 2396 */ 2397 2398 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2399 { 2400 sector_t sect = r1_bio->sector; 2401 int sectors = r1_bio->sectors; 2402 int read_disk = r1_bio->read_disk; 2403 struct mddev *mddev = conf->mddev; 2404 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2405 2406 if (exceed_read_errors(mddev, rdev)) { 2407 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2408 return; 2409 } 2410 2411 while(sectors) { 2412 int s = sectors; 2413 int d = read_disk; 2414 int success = 0; 2415 int start; 2416 2417 if (s > (PAGE_SIZE>>9)) 2418 s = PAGE_SIZE >> 9; 2419 2420 do { 2421 rdev = conf->mirrors[d].rdev; 2422 if (rdev && 2423 (test_bit(In_sync, &rdev->flags) || 2424 (!test_bit(Faulty, &rdev->flags) && 2425 rdev->recovery_offset >= sect + s)) && 2426 rdev_has_badblock(rdev, sect, s) == 0) { 2427 atomic_inc(&rdev->nr_pending); 2428 if (sync_page_io(rdev, sect, s<<9, 2429 conf->tmppage, REQ_OP_READ, false)) 2430 success = 1; 2431 rdev_dec_pending(rdev, mddev); 2432 if (success) 2433 break; 2434 } 2435 2436 d++; 2437 if (d == conf->raid_disks * 2) 2438 d = 0; 2439 } while (d != read_disk); 2440 2441 if (!success) { 2442 /* Cannot read from anywhere - mark it bad */ 2443 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2444 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2445 md_error(mddev, rdev); 2446 break; 2447 } 2448 /* write it back and re-read */ 2449 start = d; 2450 while (d != read_disk) { 2451 if (d==0) 2452 d = conf->raid_disks * 2; 2453 d--; 2454 rdev = conf->mirrors[d].rdev; 2455 if (rdev && 2456 !test_bit(Faulty, &rdev->flags)) { 2457 atomic_inc(&rdev->nr_pending); 2458 r1_sync_page_io(rdev, sect, s, 2459 conf->tmppage, REQ_OP_WRITE); 2460 rdev_dec_pending(rdev, mddev); 2461 } 2462 } 2463 d = start; 2464 while (d != read_disk) { 2465 if (d==0) 2466 d = conf->raid_disks * 2; 2467 d--; 2468 rdev = conf->mirrors[d].rdev; 2469 if (rdev && 2470 !test_bit(Faulty, &rdev->flags)) { 2471 atomic_inc(&rdev->nr_pending); 2472 if (r1_sync_page_io(rdev, sect, s, 2473 conf->tmppage, REQ_OP_READ)) { 2474 atomic_add(s, &rdev->corrected_errors); 2475 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2476 mdname(mddev), s, 2477 (unsigned long long)(sect + 2478 rdev->data_offset), 2479 rdev->bdev); 2480 } 2481 rdev_dec_pending(rdev, mddev); 2482 } 2483 } 2484 sectors -= s; 2485 sect += s; 2486 } 2487 } 2488 2489 static int narrow_write_error(struct r1bio *r1_bio, int i) 2490 { 2491 struct mddev *mddev = r1_bio->mddev; 2492 struct r1conf *conf = mddev->private; 2493 struct md_rdev *rdev = conf->mirrors[i].rdev; 2494 2495 /* bio has the data to be written to device 'i' where 2496 * we just recently had a write error. 2497 * We repeatedly clone the bio and trim down to one block, 2498 * then try the write. Where the write fails we record 2499 * a bad block. 2500 * It is conceivable that the bio doesn't exactly align with 2501 * blocks. We must handle this somehow. 2502 * 2503 * We currently own a reference on the rdev. 2504 */ 2505 2506 int block_sectors; 2507 sector_t sector; 2508 int sectors; 2509 int sect_to_write = r1_bio->sectors; 2510 int ok = 1; 2511 2512 if (rdev->badblocks.shift < 0) 2513 return 0; 2514 2515 block_sectors = roundup(1 << rdev->badblocks.shift, 2516 bdev_logical_block_size(rdev->bdev) >> 9); 2517 sector = r1_bio->sector; 2518 sectors = ((sector + block_sectors) 2519 & ~(sector_t)(block_sectors - 1)) 2520 - sector; 2521 2522 while (sect_to_write) { 2523 struct bio *wbio; 2524 if (sectors > sect_to_write) 2525 sectors = sect_to_write; 2526 /* Write at 'sector' for 'sectors'*/ 2527 2528 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2529 wbio = bio_alloc_clone(rdev->bdev, 2530 r1_bio->behind_master_bio, 2531 GFP_NOIO, &mddev->bio_set); 2532 } else { 2533 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2534 GFP_NOIO, &mddev->bio_set); 2535 } 2536 2537 wbio->bi_opf = REQ_OP_WRITE; 2538 wbio->bi_iter.bi_sector = r1_bio->sector; 2539 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2540 2541 bio_trim(wbio, sector - r1_bio->sector, sectors); 2542 wbio->bi_iter.bi_sector += rdev->data_offset; 2543 2544 if (submit_bio_wait(wbio) < 0) 2545 /* failure! */ 2546 ok = rdev_set_badblocks(rdev, sector, 2547 sectors, 0) 2548 && ok; 2549 2550 bio_put(wbio); 2551 sect_to_write -= sectors; 2552 sector += sectors; 2553 sectors = block_sectors; 2554 } 2555 return ok; 2556 } 2557 2558 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2559 { 2560 int m; 2561 int s = r1_bio->sectors; 2562 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2563 struct md_rdev *rdev = conf->mirrors[m].rdev; 2564 struct bio *bio = r1_bio->bios[m]; 2565 if (bio->bi_end_io == NULL) 2566 continue; 2567 if (!bio->bi_status && 2568 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2569 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2570 } 2571 if (bio->bi_status && 2572 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2573 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2574 md_error(conf->mddev, rdev); 2575 } 2576 } 2577 put_buf(r1_bio); 2578 md_done_sync(conf->mddev, s, 1); 2579 } 2580 2581 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2582 { 2583 int m, idx; 2584 bool fail = false; 2585 2586 for (m = 0; m < conf->raid_disks * 2 ; m++) 2587 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2588 struct md_rdev *rdev = conf->mirrors[m].rdev; 2589 rdev_clear_badblocks(rdev, 2590 r1_bio->sector, 2591 r1_bio->sectors, 0); 2592 rdev_dec_pending(rdev, conf->mddev); 2593 } else if (r1_bio->bios[m] != NULL) { 2594 /* This drive got a write error. We need to 2595 * narrow down and record precise write 2596 * errors. 2597 */ 2598 fail = true; 2599 if (!narrow_write_error(r1_bio, m)) 2600 md_error(conf->mddev, 2601 conf->mirrors[m].rdev); 2602 /* an I/O failed, we can't clear the bitmap */ 2603 rdev_dec_pending(conf->mirrors[m].rdev, 2604 conf->mddev); 2605 } 2606 if (fail) { 2607 spin_lock_irq(&conf->device_lock); 2608 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2609 idx = sector_to_idx(r1_bio->sector); 2610 atomic_inc(&conf->nr_queued[idx]); 2611 spin_unlock_irq(&conf->device_lock); 2612 /* 2613 * In case freeze_array() is waiting for condition 2614 * get_unqueued_pending() == extra to be true. 2615 */ 2616 wake_up(&conf->wait_barrier); 2617 md_wakeup_thread(conf->mddev->thread); 2618 } else { 2619 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2620 close_write(r1_bio); 2621 raid_end_bio_io(r1_bio); 2622 } 2623 } 2624 2625 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2626 { 2627 struct mddev *mddev = conf->mddev; 2628 struct bio *bio; 2629 struct md_rdev *rdev; 2630 sector_t sector; 2631 2632 clear_bit(R1BIO_ReadError, &r1_bio->state); 2633 /* we got a read error. Maybe the drive is bad. Maybe just 2634 * the block and we can fix it. 2635 * We freeze all other IO, and try reading the block from 2636 * other devices. When we find one, we re-write 2637 * and check it that fixes the read error. 2638 * This is all done synchronously while the array is 2639 * frozen 2640 */ 2641 2642 bio = r1_bio->bios[r1_bio->read_disk]; 2643 bio_put(bio); 2644 r1_bio->bios[r1_bio->read_disk] = NULL; 2645 2646 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2647 if (mddev->ro == 0 2648 && !test_bit(FailFast, &rdev->flags)) { 2649 freeze_array(conf, 1); 2650 fix_read_error(conf, r1_bio); 2651 unfreeze_array(conf); 2652 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2653 md_error(mddev, rdev); 2654 } else { 2655 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2656 } 2657 2658 rdev_dec_pending(rdev, conf->mddev); 2659 sector = r1_bio->sector; 2660 bio = r1_bio->master_bio; 2661 2662 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2663 r1_bio->state = 0; 2664 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2665 allow_barrier(conf, sector); 2666 } 2667 2668 static void raid1d(struct md_thread *thread) 2669 { 2670 struct mddev *mddev = thread->mddev; 2671 struct r1bio *r1_bio; 2672 unsigned long flags; 2673 struct r1conf *conf = mddev->private; 2674 struct list_head *head = &conf->retry_list; 2675 struct blk_plug plug; 2676 int idx; 2677 2678 md_check_recovery(mddev); 2679 2680 if (!list_empty_careful(&conf->bio_end_io_list) && 2681 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2682 LIST_HEAD(tmp); 2683 spin_lock_irqsave(&conf->device_lock, flags); 2684 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2685 list_splice_init(&conf->bio_end_io_list, &tmp); 2686 spin_unlock_irqrestore(&conf->device_lock, flags); 2687 while (!list_empty(&tmp)) { 2688 r1_bio = list_first_entry(&tmp, struct r1bio, 2689 retry_list); 2690 list_del(&r1_bio->retry_list); 2691 idx = sector_to_idx(r1_bio->sector); 2692 atomic_dec(&conf->nr_queued[idx]); 2693 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2694 close_write(r1_bio); 2695 raid_end_bio_io(r1_bio); 2696 } 2697 } 2698 2699 blk_start_plug(&plug); 2700 for (;;) { 2701 2702 flush_pending_writes(conf); 2703 2704 spin_lock_irqsave(&conf->device_lock, flags); 2705 if (list_empty(head)) { 2706 spin_unlock_irqrestore(&conf->device_lock, flags); 2707 break; 2708 } 2709 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2710 list_del(head->prev); 2711 idx = sector_to_idx(r1_bio->sector); 2712 atomic_dec(&conf->nr_queued[idx]); 2713 spin_unlock_irqrestore(&conf->device_lock, flags); 2714 2715 mddev = r1_bio->mddev; 2716 conf = mddev->private; 2717 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2718 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2719 test_bit(R1BIO_WriteError, &r1_bio->state)) 2720 handle_sync_write_finished(conf, r1_bio); 2721 else 2722 sync_request_write(mddev, r1_bio); 2723 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2724 test_bit(R1BIO_WriteError, &r1_bio->state)) 2725 handle_write_finished(conf, r1_bio); 2726 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2727 handle_read_error(conf, r1_bio); 2728 else 2729 WARN_ON_ONCE(1); 2730 2731 cond_resched(); 2732 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2733 md_check_recovery(mddev); 2734 } 2735 blk_finish_plug(&plug); 2736 } 2737 2738 static int init_resync(struct r1conf *conf) 2739 { 2740 int buffs; 2741 2742 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2743 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2744 2745 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2746 r1buf_pool_free, conf->poolinfo); 2747 } 2748 2749 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2750 { 2751 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2752 struct resync_pages *rps; 2753 struct bio *bio; 2754 int i; 2755 2756 for (i = conf->poolinfo->raid_disks; i--; ) { 2757 bio = r1bio->bios[i]; 2758 rps = bio->bi_private; 2759 bio_reset(bio, NULL, 0); 2760 bio->bi_private = rps; 2761 } 2762 r1bio->master_bio = NULL; 2763 return r1bio; 2764 } 2765 2766 /* 2767 * perform a "sync" on one "block" 2768 * 2769 * We need to make sure that no normal I/O request - particularly write 2770 * requests - conflict with active sync requests. 2771 * 2772 * This is achieved by tracking pending requests and a 'barrier' concept 2773 * that can be installed to exclude normal IO requests. 2774 */ 2775 2776 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2777 sector_t max_sector, int *skipped) 2778 { 2779 struct r1conf *conf = mddev->private; 2780 struct r1bio *r1_bio; 2781 struct bio *bio; 2782 sector_t nr_sectors; 2783 int disk = -1; 2784 int i; 2785 int wonly = -1; 2786 int write_targets = 0, read_targets = 0; 2787 sector_t sync_blocks; 2788 bool still_degraded = false; 2789 int good_sectors = RESYNC_SECTORS; 2790 int min_bad = 0; /* number of sectors that are bad in all devices */ 2791 int idx = sector_to_idx(sector_nr); 2792 int page_idx = 0; 2793 2794 if (!mempool_initialized(&conf->r1buf_pool)) 2795 if (init_resync(conf)) 2796 return 0; 2797 2798 if (sector_nr >= max_sector) { 2799 /* If we aborted, we need to abort the 2800 * sync on the 'current' bitmap chunk (there will 2801 * only be one in raid1 resync. 2802 * We can find the current addess in mddev->curr_resync 2803 */ 2804 if (mddev->curr_resync < max_sector) /* aborted */ 2805 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync, 2806 &sync_blocks); 2807 else /* completed sync */ 2808 conf->fullsync = 0; 2809 2810 mddev->bitmap_ops->close_sync(mddev); 2811 close_sync(conf); 2812 2813 if (mddev_is_clustered(mddev)) { 2814 conf->cluster_sync_low = 0; 2815 conf->cluster_sync_high = 0; 2816 } 2817 return 0; 2818 } 2819 2820 if (mddev->bitmap == NULL && 2821 mddev->recovery_cp == MaxSector && 2822 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2823 conf->fullsync == 0) { 2824 *skipped = 1; 2825 return max_sector - sector_nr; 2826 } 2827 /* before building a request, check if we can skip these blocks.. 2828 * This call the bitmap_start_sync doesn't actually record anything 2829 */ 2830 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) && 2831 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2832 /* We can skip this block, and probably several more */ 2833 *skipped = 1; 2834 return sync_blocks; 2835 } 2836 2837 /* 2838 * If there is non-resync activity waiting for a turn, then let it 2839 * though before starting on this new sync request. 2840 */ 2841 if (atomic_read(&conf->nr_waiting[idx])) 2842 schedule_timeout_uninterruptible(1); 2843 2844 /* we are incrementing sector_nr below. To be safe, we check against 2845 * sector_nr + two times RESYNC_SECTORS 2846 */ 2847 2848 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 2849 mddev_is_clustered(mddev) && 2850 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2851 2852 if (raise_barrier(conf, sector_nr)) 2853 return 0; 2854 2855 r1_bio = raid1_alloc_init_r1buf(conf); 2856 2857 /* 2858 * If we get a correctably read error during resync or recovery, 2859 * we might want to read from a different device. So we 2860 * flag all drives that could conceivably be read from for READ, 2861 * and any others (which will be non-In_sync devices) for WRITE. 2862 * If a read fails, we try reading from something else for which READ 2863 * is OK. 2864 */ 2865 2866 r1_bio->mddev = mddev; 2867 r1_bio->sector = sector_nr; 2868 r1_bio->state = 0; 2869 set_bit(R1BIO_IsSync, &r1_bio->state); 2870 /* make sure good_sectors won't go across barrier unit boundary */ 2871 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2872 2873 for (i = 0; i < conf->raid_disks * 2; i++) { 2874 struct md_rdev *rdev; 2875 bio = r1_bio->bios[i]; 2876 2877 rdev = conf->mirrors[i].rdev; 2878 if (rdev == NULL || 2879 test_bit(Faulty, &rdev->flags)) { 2880 if (i < conf->raid_disks) 2881 still_degraded = true; 2882 } else if (!test_bit(In_sync, &rdev->flags)) { 2883 bio->bi_opf = REQ_OP_WRITE; 2884 bio->bi_end_io = end_sync_write; 2885 write_targets ++; 2886 } else { 2887 /* may need to read from here */ 2888 sector_t first_bad = MaxSector; 2889 int bad_sectors; 2890 2891 if (is_badblock(rdev, sector_nr, good_sectors, 2892 &first_bad, &bad_sectors)) { 2893 if (first_bad > sector_nr) 2894 good_sectors = first_bad - sector_nr; 2895 else { 2896 bad_sectors -= (sector_nr - first_bad); 2897 if (min_bad == 0 || 2898 min_bad > bad_sectors) 2899 min_bad = bad_sectors; 2900 } 2901 } 2902 if (sector_nr < first_bad) { 2903 if (test_bit(WriteMostly, &rdev->flags)) { 2904 if (wonly < 0) 2905 wonly = i; 2906 } else { 2907 if (disk < 0) 2908 disk = i; 2909 } 2910 bio->bi_opf = REQ_OP_READ; 2911 bio->bi_end_io = end_sync_read; 2912 read_targets++; 2913 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2914 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2915 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2916 /* 2917 * The device is suitable for reading (InSync), 2918 * but has bad block(s) here. Let's try to correct them, 2919 * if we are doing resync or repair. Otherwise, leave 2920 * this device alone for this sync request. 2921 */ 2922 bio->bi_opf = REQ_OP_WRITE; 2923 bio->bi_end_io = end_sync_write; 2924 write_targets++; 2925 } 2926 } 2927 if (rdev && bio->bi_end_io) { 2928 atomic_inc(&rdev->nr_pending); 2929 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2930 bio_set_dev(bio, rdev->bdev); 2931 if (test_bit(FailFast, &rdev->flags)) 2932 bio->bi_opf |= MD_FAILFAST; 2933 } 2934 } 2935 if (disk < 0) 2936 disk = wonly; 2937 r1_bio->read_disk = disk; 2938 2939 if (read_targets == 0 && min_bad > 0) { 2940 /* These sectors are bad on all InSync devices, so we 2941 * need to mark them bad on all write targets 2942 */ 2943 int ok = 1; 2944 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2945 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2946 struct md_rdev *rdev = conf->mirrors[i].rdev; 2947 ok = rdev_set_badblocks(rdev, sector_nr, 2948 min_bad, 0 2949 ) && ok; 2950 } 2951 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2952 *skipped = 1; 2953 put_buf(r1_bio); 2954 2955 if (!ok) { 2956 /* Cannot record the badblocks, so need to 2957 * abort the resync. 2958 * If there are multiple read targets, could just 2959 * fail the really bad ones ??? 2960 */ 2961 conf->recovery_disabled = mddev->recovery_disabled; 2962 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2963 return 0; 2964 } else 2965 return min_bad; 2966 2967 } 2968 if (min_bad > 0 && min_bad < good_sectors) { 2969 /* only resync enough to reach the next bad->good 2970 * transition */ 2971 good_sectors = min_bad; 2972 } 2973 2974 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2975 /* extra read targets are also write targets */ 2976 write_targets += read_targets-1; 2977 2978 if (write_targets == 0 || read_targets == 0) { 2979 /* There is nowhere to write, so all non-sync 2980 * drives must be failed - so we are finished 2981 */ 2982 sector_t rv; 2983 if (min_bad > 0) 2984 max_sector = sector_nr + min_bad; 2985 rv = max_sector - sector_nr; 2986 *skipped = 1; 2987 put_buf(r1_bio); 2988 return rv; 2989 } 2990 2991 if (max_sector > mddev->resync_max) 2992 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2993 if (max_sector > sector_nr + good_sectors) 2994 max_sector = sector_nr + good_sectors; 2995 nr_sectors = 0; 2996 sync_blocks = 0; 2997 do { 2998 struct page *page; 2999 int len = PAGE_SIZE; 3000 if (sector_nr + (len>>9) > max_sector) 3001 len = (max_sector - sector_nr) << 9; 3002 if (len == 0) 3003 break; 3004 if (sync_blocks == 0) { 3005 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, 3006 &sync_blocks, still_degraded) && 3007 !conf->fullsync && 3008 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3009 break; 3010 if ((len >> 9) > sync_blocks) 3011 len = sync_blocks<<9; 3012 } 3013 3014 for (i = 0 ; i < conf->raid_disks * 2; i++) { 3015 struct resync_pages *rp; 3016 3017 bio = r1_bio->bios[i]; 3018 rp = get_resync_pages(bio); 3019 if (bio->bi_end_io) { 3020 page = resync_fetch_page(rp, page_idx); 3021 3022 /* 3023 * won't fail because the vec table is big 3024 * enough to hold all these pages 3025 */ 3026 __bio_add_page(bio, page, len, 0); 3027 } 3028 } 3029 nr_sectors += len>>9; 3030 sector_nr += len>>9; 3031 sync_blocks -= (len>>9); 3032 } while (++page_idx < RESYNC_PAGES); 3033 3034 r1_bio->sectors = nr_sectors; 3035 3036 if (mddev_is_clustered(mddev) && 3037 conf->cluster_sync_high < sector_nr + nr_sectors) { 3038 conf->cluster_sync_low = mddev->curr_resync_completed; 3039 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 3040 /* Send resync message */ 3041 md_cluster_ops->resync_info_update(mddev, 3042 conf->cluster_sync_low, 3043 conf->cluster_sync_high); 3044 } 3045 3046 /* For a user-requested sync, we read all readable devices and do a 3047 * compare 3048 */ 3049 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 3050 atomic_set(&r1_bio->remaining, read_targets); 3051 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 3052 bio = r1_bio->bios[i]; 3053 if (bio->bi_end_io == end_sync_read) { 3054 read_targets--; 3055 md_sync_acct_bio(bio, nr_sectors); 3056 if (read_targets == 1) 3057 bio->bi_opf &= ~MD_FAILFAST; 3058 submit_bio_noacct(bio); 3059 } 3060 } 3061 } else { 3062 atomic_set(&r1_bio->remaining, 1); 3063 bio = r1_bio->bios[r1_bio->read_disk]; 3064 md_sync_acct_bio(bio, nr_sectors); 3065 if (read_targets == 1) 3066 bio->bi_opf &= ~MD_FAILFAST; 3067 submit_bio_noacct(bio); 3068 } 3069 return nr_sectors; 3070 } 3071 3072 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3073 { 3074 if (sectors) 3075 return sectors; 3076 3077 return mddev->dev_sectors; 3078 } 3079 3080 static struct r1conf *setup_conf(struct mddev *mddev) 3081 { 3082 struct r1conf *conf; 3083 int i; 3084 struct raid1_info *disk; 3085 struct md_rdev *rdev; 3086 int err = -ENOMEM; 3087 3088 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 3089 if (!conf) 3090 goto abort; 3091 3092 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 3093 sizeof(atomic_t), GFP_KERNEL); 3094 if (!conf->nr_pending) 3095 goto abort; 3096 3097 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 3098 sizeof(atomic_t), GFP_KERNEL); 3099 if (!conf->nr_waiting) 3100 goto abort; 3101 3102 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 3103 sizeof(atomic_t), GFP_KERNEL); 3104 if (!conf->nr_queued) 3105 goto abort; 3106 3107 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 3108 sizeof(atomic_t), GFP_KERNEL); 3109 if (!conf->barrier) 3110 goto abort; 3111 3112 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3113 mddev->raid_disks, 2), 3114 GFP_KERNEL); 3115 if (!conf->mirrors) 3116 goto abort; 3117 3118 conf->tmppage = alloc_page(GFP_KERNEL); 3119 if (!conf->tmppage) 3120 goto abort; 3121 3122 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3123 if (!conf->poolinfo) 3124 goto abort; 3125 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3126 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3127 rbio_pool_free, conf->poolinfo); 3128 if (err) 3129 goto abort; 3130 3131 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3132 if (err) 3133 goto abort; 3134 3135 conf->poolinfo->mddev = mddev; 3136 3137 err = -EINVAL; 3138 spin_lock_init(&conf->device_lock); 3139 conf->raid_disks = mddev->raid_disks; 3140 rdev_for_each(rdev, mddev) { 3141 int disk_idx = rdev->raid_disk; 3142 3143 if (disk_idx >= conf->raid_disks || disk_idx < 0) 3144 continue; 3145 3146 if (!raid1_add_conf(conf, rdev, disk_idx, 3147 test_bit(Replacement, &rdev->flags))) 3148 goto abort; 3149 } 3150 conf->mddev = mddev; 3151 INIT_LIST_HEAD(&conf->retry_list); 3152 INIT_LIST_HEAD(&conf->bio_end_io_list); 3153 3154 spin_lock_init(&conf->resync_lock); 3155 init_waitqueue_head(&conf->wait_barrier); 3156 3157 bio_list_init(&conf->pending_bio_list); 3158 conf->recovery_disabled = mddev->recovery_disabled - 1; 3159 3160 err = -EIO; 3161 for (i = 0; i < conf->raid_disks * 2; i++) { 3162 3163 disk = conf->mirrors + i; 3164 3165 if (i < conf->raid_disks && 3166 disk[conf->raid_disks].rdev) { 3167 /* This slot has a replacement. */ 3168 if (!disk->rdev) { 3169 /* No original, just make the replacement 3170 * a recovering spare 3171 */ 3172 disk->rdev = 3173 disk[conf->raid_disks].rdev; 3174 disk[conf->raid_disks].rdev = NULL; 3175 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3176 /* Original is not in_sync - bad */ 3177 goto abort; 3178 } 3179 3180 if (!disk->rdev || 3181 !test_bit(In_sync, &disk->rdev->flags)) { 3182 disk->head_position = 0; 3183 if (disk->rdev && 3184 (disk->rdev->saved_raid_disk < 0)) 3185 conf->fullsync = 1; 3186 } 3187 } 3188 3189 err = -ENOMEM; 3190 rcu_assign_pointer(conf->thread, 3191 md_register_thread(raid1d, mddev, "raid1")); 3192 if (!conf->thread) 3193 goto abort; 3194 3195 return conf; 3196 3197 abort: 3198 if (conf) { 3199 mempool_exit(&conf->r1bio_pool); 3200 kfree(conf->mirrors); 3201 safe_put_page(conf->tmppage); 3202 kfree(conf->poolinfo); 3203 kfree(conf->nr_pending); 3204 kfree(conf->nr_waiting); 3205 kfree(conf->nr_queued); 3206 kfree(conf->barrier); 3207 bioset_exit(&conf->bio_split); 3208 kfree(conf); 3209 } 3210 return ERR_PTR(err); 3211 } 3212 3213 static int raid1_set_limits(struct mddev *mddev) 3214 { 3215 struct queue_limits lim; 3216 int err; 3217 3218 md_init_stacking_limits(&lim); 3219 lim.max_write_zeroes_sectors = 0; 3220 lim.features |= BLK_FEAT_ATOMIC_WRITES; 3221 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 3222 if (err) { 3223 queue_limits_cancel_update(mddev->gendisk->queue); 3224 return err; 3225 } 3226 return queue_limits_set(mddev->gendisk->queue, &lim); 3227 } 3228 3229 static int raid1_run(struct mddev *mddev) 3230 { 3231 struct r1conf *conf; 3232 int i; 3233 int ret; 3234 3235 if (mddev->level != 1) { 3236 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3237 mdname(mddev), mddev->level); 3238 return -EIO; 3239 } 3240 if (mddev->reshape_position != MaxSector) { 3241 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3242 mdname(mddev)); 3243 return -EIO; 3244 } 3245 3246 /* 3247 * copy the already verified devices into our private RAID1 3248 * bookkeeping area. [whatever we allocate in run(), 3249 * should be freed in raid1_free()] 3250 */ 3251 if (mddev->private == NULL) 3252 conf = setup_conf(mddev); 3253 else 3254 conf = mddev->private; 3255 3256 if (IS_ERR(conf)) 3257 return PTR_ERR(conf); 3258 3259 if (!mddev_is_dm(mddev)) { 3260 ret = raid1_set_limits(mddev); 3261 if (ret) 3262 return ret; 3263 } 3264 3265 mddev->degraded = 0; 3266 for (i = 0; i < conf->raid_disks; i++) 3267 if (conf->mirrors[i].rdev == NULL || 3268 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3269 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3270 mddev->degraded++; 3271 /* 3272 * RAID1 needs at least one disk in active 3273 */ 3274 if (conf->raid_disks - mddev->degraded < 1) { 3275 md_unregister_thread(mddev, &conf->thread); 3276 return -EINVAL; 3277 } 3278 3279 if (conf->raid_disks - mddev->degraded == 1) 3280 mddev->recovery_cp = MaxSector; 3281 3282 if (mddev->recovery_cp != MaxSector) 3283 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3284 mdname(mddev)); 3285 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3286 mdname(mddev), mddev->raid_disks - mddev->degraded, 3287 mddev->raid_disks); 3288 3289 /* 3290 * Ok, everything is just fine now 3291 */ 3292 rcu_assign_pointer(mddev->thread, conf->thread); 3293 rcu_assign_pointer(conf->thread, NULL); 3294 mddev->private = conf; 3295 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3296 3297 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3298 3299 ret = md_integrity_register(mddev); 3300 if (ret) 3301 md_unregister_thread(mddev, &mddev->thread); 3302 return ret; 3303 } 3304 3305 static void raid1_free(struct mddev *mddev, void *priv) 3306 { 3307 struct r1conf *conf = priv; 3308 3309 mempool_exit(&conf->r1bio_pool); 3310 kfree(conf->mirrors); 3311 safe_put_page(conf->tmppage); 3312 kfree(conf->poolinfo); 3313 kfree(conf->nr_pending); 3314 kfree(conf->nr_waiting); 3315 kfree(conf->nr_queued); 3316 kfree(conf->barrier); 3317 bioset_exit(&conf->bio_split); 3318 kfree(conf); 3319 } 3320 3321 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3322 { 3323 /* no resync is happening, and there is enough space 3324 * on all devices, so we can resize. 3325 * We need to make sure resync covers any new space. 3326 * If the array is shrinking we should possibly wait until 3327 * any io in the removed space completes, but it hardly seems 3328 * worth it. 3329 */ 3330 sector_t newsize = raid1_size(mddev, sectors, 0); 3331 int ret; 3332 3333 if (mddev->external_size && 3334 mddev->array_sectors > newsize) 3335 return -EINVAL; 3336 3337 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 3338 if (ret) 3339 return ret; 3340 3341 md_set_array_sectors(mddev, newsize); 3342 if (sectors > mddev->dev_sectors && 3343 mddev->recovery_cp > mddev->dev_sectors) { 3344 mddev->recovery_cp = mddev->dev_sectors; 3345 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3346 } 3347 mddev->dev_sectors = sectors; 3348 mddev->resync_max_sectors = sectors; 3349 return 0; 3350 } 3351 3352 static int raid1_reshape(struct mddev *mddev) 3353 { 3354 /* We need to: 3355 * 1/ resize the r1bio_pool 3356 * 2/ resize conf->mirrors 3357 * 3358 * We allocate a new r1bio_pool if we can. 3359 * Then raise a device barrier and wait until all IO stops. 3360 * Then resize conf->mirrors and swap in the new r1bio pool. 3361 * 3362 * At the same time, we "pack" the devices so that all the missing 3363 * devices have the higher raid_disk numbers. 3364 */ 3365 mempool_t newpool, oldpool; 3366 struct pool_info *newpoolinfo; 3367 struct raid1_info *newmirrors; 3368 struct r1conf *conf = mddev->private; 3369 int cnt, raid_disks; 3370 unsigned long flags; 3371 int d, d2; 3372 int ret; 3373 3374 memset(&newpool, 0, sizeof(newpool)); 3375 memset(&oldpool, 0, sizeof(oldpool)); 3376 3377 /* Cannot change chunk_size, layout, or level */ 3378 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3379 mddev->layout != mddev->new_layout || 3380 mddev->level != mddev->new_level) { 3381 mddev->new_chunk_sectors = mddev->chunk_sectors; 3382 mddev->new_layout = mddev->layout; 3383 mddev->new_level = mddev->level; 3384 return -EINVAL; 3385 } 3386 3387 if (!mddev_is_clustered(mddev)) 3388 md_allow_write(mddev); 3389 3390 raid_disks = mddev->raid_disks + mddev->delta_disks; 3391 3392 if (raid_disks < conf->raid_disks) { 3393 cnt=0; 3394 for (d= 0; d < conf->raid_disks; d++) 3395 if (conf->mirrors[d].rdev) 3396 cnt++; 3397 if (cnt > raid_disks) 3398 return -EBUSY; 3399 } 3400 3401 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3402 if (!newpoolinfo) 3403 return -ENOMEM; 3404 newpoolinfo->mddev = mddev; 3405 newpoolinfo->raid_disks = raid_disks * 2; 3406 3407 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3408 rbio_pool_free, newpoolinfo); 3409 if (ret) { 3410 kfree(newpoolinfo); 3411 return ret; 3412 } 3413 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3414 raid_disks, 2), 3415 GFP_KERNEL); 3416 if (!newmirrors) { 3417 kfree(newpoolinfo); 3418 mempool_exit(&newpool); 3419 return -ENOMEM; 3420 } 3421 3422 freeze_array(conf, 0); 3423 3424 /* ok, everything is stopped */ 3425 oldpool = conf->r1bio_pool; 3426 conf->r1bio_pool = newpool; 3427 3428 for (d = d2 = 0; d < conf->raid_disks; d++) { 3429 struct md_rdev *rdev = conf->mirrors[d].rdev; 3430 if (rdev && rdev->raid_disk != d2) { 3431 sysfs_unlink_rdev(mddev, rdev); 3432 rdev->raid_disk = d2; 3433 sysfs_unlink_rdev(mddev, rdev); 3434 if (sysfs_link_rdev(mddev, rdev)) 3435 pr_warn("md/raid1:%s: cannot register rd%d\n", 3436 mdname(mddev), rdev->raid_disk); 3437 } 3438 if (rdev) 3439 newmirrors[d2++].rdev = rdev; 3440 } 3441 kfree(conf->mirrors); 3442 conf->mirrors = newmirrors; 3443 kfree(conf->poolinfo); 3444 conf->poolinfo = newpoolinfo; 3445 3446 spin_lock_irqsave(&conf->device_lock, flags); 3447 mddev->degraded += (raid_disks - conf->raid_disks); 3448 spin_unlock_irqrestore(&conf->device_lock, flags); 3449 conf->raid_disks = mddev->raid_disks = raid_disks; 3450 mddev->delta_disks = 0; 3451 3452 unfreeze_array(conf); 3453 3454 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3455 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3456 md_wakeup_thread(mddev->thread); 3457 3458 mempool_exit(&oldpool); 3459 return 0; 3460 } 3461 3462 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3463 { 3464 struct r1conf *conf = mddev->private; 3465 3466 if (quiesce) 3467 freeze_array(conf, 0); 3468 else 3469 unfreeze_array(conf); 3470 } 3471 3472 static void *raid1_takeover(struct mddev *mddev) 3473 { 3474 /* raid1 can take over: 3475 * raid5 with 2 devices, any layout or chunk size 3476 */ 3477 if (mddev->level == 5 && mddev->raid_disks == 2) { 3478 struct r1conf *conf; 3479 mddev->new_level = 1; 3480 mddev->new_layout = 0; 3481 mddev->new_chunk_sectors = 0; 3482 conf = setup_conf(mddev); 3483 if (!IS_ERR(conf)) { 3484 /* Array must appear to be quiesced */ 3485 conf->array_frozen = 1; 3486 mddev_clear_unsupported_flags(mddev, 3487 UNSUPPORTED_MDDEV_FLAGS); 3488 } 3489 return conf; 3490 } 3491 return ERR_PTR(-EINVAL); 3492 } 3493 3494 static struct md_personality raid1_personality = 3495 { 3496 .name = "raid1", 3497 .level = 1, 3498 .owner = THIS_MODULE, 3499 .make_request = raid1_make_request, 3500 .run = raid1_run, 3501 .free = raid1_free, 3502 .status = raid1_status, 3503 .error_handler = raid1_error, 3504 .hot_add_disk = raid1_add_disk, 3505 .hot_remove_disk= raid1_remove_disk, 3506 .spare_active = raid1_spare_active, 3507 .sync_request = raid1_sync_request, 3508 .resize = raid1_resize, 3509 .size = raid1_size, 3510 .check_reshape = raid1_reshape, 3511 .quiesce = raid1_quiesce, 3512 .takeover = raid1_takeover, 3513 }; 3514 3515 static int __init raid_init(void) 3516 { 3517 return register_md_personality(&raid1_personality); 3518 } 3519 3520 static void raid_exit(void) 3521 { 3522 unregister_md_personality(&raid1_personality); 3523 } 3524 3525 module_init(raid_init); 3526 module_exit(raid_exit); 3527 MODULE_LICENSE("GPL"); 3528 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3529 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3530 MODULE_ALIAS("md-raid1"); 3531 MODULE_ALIAS("md-level-1"); 3532