1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 51 static void unplug_slaves(mddev_t *mddev); 52 53 static void allow_barrier(conf_t *conf); 54 static void lower_barrier(conf_t *conf); 55 56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 57 { 58 struct pool_info *pi = data; 59 r1bio_t *r1_bio; 60 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 61 62 /* allocate a r1bio with room for raid_disks entries in the bios array */ 63 r1_bio = kzalloc(size, gfp_flags); 64 if (!r1_bio) 65 unplug_slaves(pi->mddev); 66 67 return r1_bio; 68 } 69 70 static void r1bio_pool_free(void *r1_bio, void *data) 71 { 72 kfree(r1_bio); 73 } 74 75 #define RESYNC_BLOCK_SIZE (64*1024) 76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 79 #define RESYNC_WINDOW (2048*1024) 80 81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 82 { 83 struct pool_info *pi = data; 84 struct page *page; 85 r1bio_t *r1_bio; 86 struct bio *bio; 87 int i, j; 88 89 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 90 if (!r1_bio) { 91 unplug_slaves(pi->mddev); 92 return NULL; 93 } 94 95 /* 96 * Allocate bios : 1 for reading, n-1 for writing 97 */ 98 for (j = pi->raid_disks ; j-- ; ) { 99 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 100 if (!bio) 101 goto out_free_bio; 102 r1_bio->bios[j] = bio; 103 } 104 /* 105 * Allocate RESYNC_PAGES data pages and attach them to 106 * the first bio. 107 * If this is a user-requested check/repair, allocate 108 * RESYNC_PAGES for each bio. 109 */ 110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 111 j = pi->raid_disks; 112 else 113 j = 1; 114 while(j--) { 115 bio = r1_bio->bios[j]; 116 for (i = 0; i < RESYNC_PAGES; i++) { 117 page = alloc_page(gfp_flags); 118 if (unlikely(!page)) 119 goto out_free_pages; 120 121 bio->bi_io_vec[i].bv_page = page; 122 } 123 } 124 /* If not user-requests, copy the page pointers to all bios */ 125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 126 for (i=0; i<RESYNC_PAGES ; i++) 127 for (j=1; j<pi->raid_disks; j++) 128 r1_bio->bios[j]->bi_io_vec[i].bv_page = 129 r1_bio->bios[0]->bi_io_vec[i].bv_page; 130 } 131 132 r1_bio->master_bio = NULL; 133 134 return r1_bio; 135 136 out_free_pages: 137 for (i=0; i < RESYNC_PAGES ; i++) 138 for (j=0 ; j < pi->raid_disks; j++) 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 140 j = -1; 141 out_free_bio: 142 while ( ++j < pi->raid_disks ) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 r1bio_t *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(r1bio_t *r1_bio) 180 { 181 conf_t *conf = mddev_to_conf(r1_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r1_bio); 190 mempool_free(r1_bio, conf->r1bio_pool); 191 } 192 193 static void put_buf(r1bio_t *r1_bio) 194 { 195 conf_t *conf = mddev_to_conf(r1_bio->mddev); 196 int i; 197 198 for (i=0; i<conf->raid_disks; i++) { 199 struct bio *bio = r1_bio->bios[i]; 200 if (bio->bi_end_io) 201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 202 } 203 204 mempool_free(r1_bio, conf->r1buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r1bio_t *r1_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r1_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r1_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 wake_up(&conf->wait_barrier); 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r1bio_t *r1_bio) 230 { 231 struct bio *bio = r1_bio->master_bio; 232 233 /* if nobody has done the final endio yet, do it now */ 234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 236 (bio_data_dir(bio) == WRITE) ? "write" : "read", 237 (unsigned long long) bio->bi_sector, 238 (unsigned long long) bio->bi_sector + 239 (bio->bi_size >> 9) - 1); 240 241 bio_endio(bio, 242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 243 } 244 free_r1bio(r1_bio); 245 } 246 247 /* 248 * Update disk head position estimator based on IRQ completion info. 249 */ 250 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 251 { 252 conf_t *conf = mddev_to_conf(r1_bio->mddev); 253 254 conf->mirrors[disk].head_position = 255 r1_bio->sector + (r1_bio->sectors); 256 } 257 258 static void raid1_end_read_request(struct bio *bio, int error) 259 { 260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 262 int mirror; 263 conf_t *conf = mddev_to_conf(r1_bio->mddev); 264 265 mirror = r1_bio->read_disk; 266 /* 267 * this branch is our 'one mirror IO has finished' event handler: 268 */ 269 update_head_pos(mirror, r1_bio); 270 271 if (uptodate) 272 set_bit(R1BIO_Uptodate, &r1_bio->state); 273 else { 274 /* If all other devices have failed, we want to return 275 * the error upwards rather than fail the last device. 276 * Here we redefine "uptodate" to mean "Don't want to retry" 277 */ 278 unsigned long flags; 279 spin_lock_irqsave(&conf->device_lock, flags); 280 if (r1_bio->mddev->degraded == conf->raid_disks || 281 (r1_bio->mddev->degraded == conf->raid_disks-1 && 282 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 283 uptodate = 1; 284 spin_unlock_irqrestore(&conf->device_lock, flags); 285 } 286 287 if (uptodate) 288 raid_end_bio_io(r1_bio); 289 else { 290 /* 291 * oops, read error: 292 */ 293 char b[BDEVNAME_SIZE]; 294 if (printk_ratelimit()) 295 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 296 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 297 reschedule_retry(r1_bio); 298 } 299 300 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 301 } 302 303 static void raid1_end_write_request(struct bio *bio, int error) 304 { 305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 308 conf_t *conf = mddev_to_conf(r1_bio->mddev); 309 struct bio *to_put = NULL; 310 311 312 for (mirror = 0; mirror < conf->raid_disks; mirror++) 313 if (r1_bio->bios[mirror] == bio) 314 break; 315 316 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 317 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 318 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 319 r1_bio->mddev->barriers_work = 0; 320 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 321 } else { 322 /* 323 * this branch is our 'one mirror IO has finished' event handler: 324 */ 325 r1_bio->bios[mirror] = NULL; 326 to_put = bio; 327 if (!uptodate) { 328 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 329 /* an I/O failed, we can't clear the bitmap */ 330 set_bit(R1BIO_Degraded, &r1_bio->state); 331 } else 332 /* 333 * Set R1BIO_Uptodate in our master bio, so that 334 * we will return a good error code for to the higher 335 * levels even if IO on some other mirrored buffer fails. 336 * 337 * The 'master' represents the composite IO operation to 338 * user-side. So if something waits for IO, then it will 339 * wait for the 'master' bio. 340 */ 341 set_bit(R1BIO_Uptodate, &r1_bio->state); 342 343 update_head_pos(mirror, r1_bio); 344 345 if (behind) { 346 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 347 atomic_dec(&r1_bio->behind_remaining); 348 349 /* In behind mode, we ACK the master bio once the I/O has safely 350 * reached all non-writemostly disks. Setting the Returned bit 351 * ensures that this gets done only once -- we don't ever want to 352 * return -EIO here, instead we'll wait */ 353 354 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 355 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 356 /* Maybe we can return now */ 357 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 358 struct bio *mbio = r1_bio->master_bio; 359 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 360 (unsigned long long) mbio->bi_sector, 361 (unsigned long long) mbio->bi_sector + 362 (mbio->bi_size >> 9) - 1); 363 bio_endio(mbio, 0); 364 } 365 } 366 } 367 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 368 } 369 /* 370 * 371 * Let's see if all mirrored write operations have finished 372 * already. 373 */ 374 if (atomic_dec_and_test(&r1_bio->remaining)) { 375 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 376 reschedule_retry(r1_bio); 377 else { 378 /* it really is the end of this request */ 379 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 380 /* free extra copy of the data pages */ 381 int i = bio->bi_vcnt; 382 while (i--) 383 safe_put_page(bio->bi_io_vec[i].bv_page); 384 } 385 /* clear the bitmap if all writes complete successfully */ 386 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 387 r1_bio->sectors, 388 !test_bit(R1BIO_Degraded, &r1_bio->state), 389 behind); 390 md_write_end(r1_bio->mddev); 391 raid_end_bio_io(r1_bio); 392 } 393 } 394 395 if (to_put) 396 bio_put(to_put); 397 } 398 399 400 /* 401 * This routine returns the disk from which the requested read should 402 * be done. There is a per-array 'next expected sequential IO' sector 403 * number - if this matches on the next IO then we use the last disk. 404 * There is also a per-disk 'last know head position' sector that is 405 * maintained from IRQ contexts, both the normal and the resync IO 406 * completion handlers update this position correctly. If there is no 407 * perfect sequential match then we pick the disk whose head is closest. 408 * 409 * If there are 2 mirrors in the same 2 devices, performance degrades 410 * because position is mirror, not device based. 411 * 412 * The rdev for the device selected will have nr_pending incremented. 413 */ 414 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 415 { 416 const unsigned long this_sector = r1_bio->sector; 417 int new_disk = conf->last_used, disk = new_disk; 418 int wonly_disk = -1; 419 const int sectors = r1_bio->sectors; 420 sector_t new_distance, current_distance; 421 mdk_rdev_t *rdev; 422 423 rcu_read_lock(); 424 /* 425 * Check if we can balance. We can balance on the whole 426 * device if no resync is going on, or below the resync window. 427 * We take the first readable disk when above the resync window. 428 */ 429 retry: 430 if (conf->mddev->recovery_cp < MaxSector && 431 (this_sector + sectors >= conf->next_resync)) { 432 /* Choose the first operation device, for consistancy */ 433 new_disk = 0; 434 435 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 436 r1_bio->bios[new_disk] == IO_BLOCKED || 437 !rdev || !test_bit(In_sync, &rdev->flags) 438 || test_bit(WriteMostly, &rdev->flags); 439 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 440 441 if (rdev && test_bit(In_sync, &rdev->flags) && 442 r1_bio->bios[new_disk] != IO_BLOCKED) 443 wonly_disk = new_disk; 444 445 if (new_disk == conf->raid_disks - 1) { 446 new_disk = wonly_disk; 447 break; 448 } 449 } 450 goto rb_out; 451 } 452 453 454 /* make sure the disk is operational */ 455 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 456 r1_bio->bios[new_disk] == IO_BLOCKED || 457 !rdev || !test_bit(In_sync, &rdev->flags) || 458 test_bit(WriteMostly, &rdev->flags); 459 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 460 461 if (rdev && test_bit(In_sync, &rdev->flags) && 462 r1_bio->bios[new_disk] != IO_BLOCKED) 463 wonly_disk = new_disk; 464 465 if (new_disk <= 0) 466 new_disk = conf->raid_disks; 467 new_disk--; 468 if (new_disk == disk) { 469 new_disk = wonly_disk; 470 break; 471 } 472 } 473 474 if (new_disk < 0) 475 goto rb_out; 476 477 disk = new_disk; 478 /* now disk == new_disk == starting point for search */ 479 480 /* 481 * Don't change to another disk for sequential reads: 482 */ 483 if (conf->next_seq_sect == this_sector) 484 goto rb_out; 485 if (this_sector == conf->mirrors[new_disk].head_position) 486 goto rb_out; 487 488 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 489 490 /* Find the disk whose head is closest */ 491 492 do { 493 if (disk <= 0) 494 disk = conf->raid_disks; 495 disk--; 496 497 rdev = rcu_dereference(conf->mirrors[disk].rdev); 498 499 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 500 !test_bit(In_sync, &rdev->flags) || 501 test_bit(WriteMostly, &rdev->flags)) 502 continue; 503 504 if (!atomic_read(&rdev->nr_pending)) { 505 new_disk = disk; 506 break; 507 } 508 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 509 if (new_distance < current_distance) { 510 current_distance = new_distance; 511 new_disk = disk; 512 } 513 } while (disk != conf->last_used); 514 515 rb_out: 516 517 518 if (new_disk >= 0) { 519 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 520 if (!rdev) 521 goto retry; 522 atomic_inc(&rdev->nr_pending); 523 if (!test_bit(In_sync, &rdev->flags)) { 524 /* cannot risk returning a device that failed 525 * before we inc'ed nr_pending 526 */ 527 rdev_dec_pending(rdev, conf->mddev); 528 goto retry; 529 } 530 conf->next_seq_sect = this_sector + sectors; 531 conf->last_used = new_disk; 532 } 533 rcu_read_unlock(); 534 535 return new_disk; 536 } 537 538 static void unplug_slaves(mddev_t *mddev) 539 { 540 conf_t *conf = mddev_to_conf(mddev); 541 int i; 542 543 rcu_read_lock(); 544 for (i=0; i<mddev->raid_disks; i++) { 545 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 546 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 547 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 548 549 atomic_inc(&rdev->nr_pending); 550 rcu_read_unlock(); 551 552 blk_unplug(r_queue); 553 554 rdev_dec_pending(rdev, mddev); 555 rcu_read_lock(); 556 } 557 } 558 rcu_read_unlock(); 559 } 560 561 static void raid1_unplug(struct request_queue *q) 562 { 563 mddev_t *mddev = q->queuedata; 564 565 unplug_slaves(mddev); 566 md_wakeup_thread(mddev->thread); 567 } 568 569 static int raid1_congested(void *data, int bits) 570 { 571 mddev_t *mddev = data; 572 conf_t *conf = mddev_to_conf(mddev); 573 int i, ret = 0; 574 575 rcu_read_lock(); 576 for (i = 0; i < mddev->raid_disks; i++) { 577 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 578 if (rdev && !test_bit(Faulty, &rdev->flags)) { 579 struct request_queue *q = bdev_get_queue(rdev->bdev); 580 581 /* Note the '|| 1' - when read_balance prefers 582 * non-congested targets, it can be removed 583 */ 584 if ((bits & (1<<BDI_write_congested)) || 1) 585 ret |= bdi_congested(&q->backing_dev_info, bits); 586 else 587 ret &= bdi_congested(&q->backing_dev_info, bits); 588 } 589 } 590 rcu_read_unlock(); 591 return ret; 592 } 593 594 595 static int flush_pending_writes(conf_t *conf) 596 { 597 /* Any writes that have been queued but are awaiting 598 * bitmap updates get flushed here. 599 * We return 1 if any requests were actually submitted. 600 */ 601 int rv = 0; 602 603 spin_lock_irq(&conf->device_lock); 604 605 if (conf->pending_bio_list.head) { 606 struct bio *bio; 607 bio = bio_list_get(&conf->pending_bio_list); 608 blk_remove_plug(conf->mddev->queue); 609 spin_unlock_irq(&conf->device_lock); 610 /* flush any pending bitmap writes to 611 * disk before proceeding w/ I/O */ 612 bitmap_unplug(conf->mddev->bitmap); 613 614 while (bio) { /* submit pending writes */ 615 struct bio *next = bio->bi_next; 616 bio->bi_next = NULL; 617 generic_make_request(bio); 618 bio = next; 619 } 620 rv = 1; 621 } else 622 spin_unlock_irq(&conf->device_lock); 623 return rv; 624 } 625 626 /* Barriers.... 627 * Sometimes we need to suspend IO while we do something else, 628 * either some resync/recovery, or reconfigure the array. 629 * To do this we raise a 'barrier'. 630 * The 'barrier' is a counter that can be raised multiple times 631 * to count how many activities are happening which preclude 632 * normal IO. 633 * We can only raise the barrier if there is no pending IO. 634 * i.e. if nr_pending == 0. 635 * We choose only to raise the barrier if no-one is waiting for the 636 * barrier to go down. This means that as soon as an IO request 637 * is ready, no other operations which require a barrier will start 638 * until the IO request has had a chance. 639 * 640 * So: regular IO calls 'wait_barrier'. When that returns there 641 * is no backgroup IO happening, It must arrange to call 642 * allow_barrier when it has finished its IO. 643 * backgroup IO calls must call raise_barrier. Once that returns 644 * there is no normal IO happeing. It must arrange to call 645 * lower_barrier when the particular background IO completes. 646 */ 647 #define RESYNC_DEPTH 32 648 649 static void raise_barrier(conf_t *conf) 650 { 651 spin_lock_irq(&conf->resync_lock); 652 653 /* Wait until no block IO is waiting */ 654 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 655 conf->resync_lock, 656 raid1_unplug(conf->mddev->queue)); 657 658 /* block any new IO from starting */ 659 conf->barrier++; 660 661 /* No wait for all pending IO to complete */ 662 wait_event_lock_irq(conf->wait_barrier, 663 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 664 conf->resync_lock, 665 raid1_unplug(conf->mddev->queue)); 666 667 spin_unlock_irq(&conf->resync_lock); 668 } 669 670 static void lower_barrier(conf_t *conf) 671 { 672 unsigned long flags; 673 spin_lock_irqsave(&conf->resync_lock, flags); 674 conf->barrier--; 675 spin_unlock_irqrestore(&conf->resync_lock, flags); 676 wake_up(&conf->wait_barrier); 677 } 678 679 static void wait_barrier(conf_t *conf) 680 { 681 spin_lock_irq(&conf->resync_lock); 682 if (conf->barrier) { 683 conf->nr_waiting++; 684 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 685 conf->resync_lock, 686 raid1_unplug(conf->mddev->queue)); 687 conf->nr_waiting--; 688 } 689 conf->nr_pending++; 690 spin_unlock_irq(&conf->resync_lock); 691 } 692 693 static void allow_barrier(conf_t *conf) 694 { 695 unsigned long flags; 696 spin_lock_irqsave(&conf->resync_lock, flags); 697 conf->nr_pending--; 698 spin_unlock_irqrestore(&conf->resync_lock, flags); 699 wake_up(&conf->wait_barrier); 700 } 701 702 static void freeze_array(conf_t *conf) 703 { 704 /* stop syncio and normal IO and wait for everything to 705 * go quite. 706 * We increment barrier and nr_waiting, and then 707 * wait until nr_pending match nr_queued+1 708 * This is called in the context of one normal IO request 709 * that has failed. Thus any sync request that might be pending 710 * will be blocked by nr_pending, and we need to wait for 711 * pending IO requests to complete or be queued for re-try. 712 * Thus the number queued (nr_queued) plus this request (1) 713 * must match the number of pending IOs (nr_pending) before 714 * we continue. 715 */ 716 spin_lock_irq(&conf->resync_lock); 717 conf->barrier++; 718 conf->nr_waiting++; 719 wait_event_lock_irq(conf->wait_barrier, 720 conf->nr_pending == conf->nr_queued+1, 721 conf->resync_lock, 722 ({ flush_pending_writes(conf); 723 raid1_unplug(conf->mddev->queue); })); 724 spin_unlock_irq(&conf->resync_lock); 725 } 726 static void unfreeze_array(conf_t *conf) 727 { 728 /* reverse the effect of the freeze */ 729 spin_lock_irq(&conf->resync_lock); 730 conf->barrier--; 731 conf->nr_waiting--; 732 wake_up(&conf->wait_barrier); 733 spin_unlock_irq(&conf->resync_lock); 734 } 735 736 737 /* duplicate the data pages for behind I/O */ 738 static struct page **alloc_behind_pages(struct bio *bio) 739 { 740 int i; 741 struct bio_vec *bvec; 742 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 743 GFP_NOIO); 744 if (unlikely(!pages)) 745 goto do_sync_io; 746 747 bio_for_each_segment(bvec, bio, i) { 748 pages[i] = alloc_page(GFP_NOIO); 749 if (unlikely(!pages[i])) 750 goto do_sync_io; 751 memcpy(kmap(pages[i]) + bvec->bv_offset, 752 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 753 kunmap(pages[i]); 754 kunmap(bvec->bv_page); 755 } 756 757 return pages; 758 759 do_sync_io: 760 if (pages) 761 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 762 put_page(pages[i]); 763 kfree(pages); 764 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 765 return NULL; 766 } 767 768 static int make_request(struct request_queue *q, struct bio * bio) 769 { 770 mddev_t *mddev = q->queuedata; 771 conf_t *conf = mddev_to_conf(mddev); 772 mirror_info_t *mirror; 773 r1bio_t *r1_bio; 774 struct bio *read_bio; 775 int i, targets = 0, disks; 776 struct bitmap *bitmap = mddev->bitmap; 777 unsigned long flags; 778 struct bio_list bl; 779 struct page **behind_pages = NULL; 780 const int rw = bio_data_dir(bio); 781 const int do_sync = bio_sync(bio); 782 int do_barriers; 783 mdk_rdev_t *blocked_rdev; 784 785 /* 786 * Register the new request and wait if the reconstruction 787 * thread has put up a bar for new requests. 788 * Continue immediately if no resync is active currently. 789 * We test barriers_work *after* md_write_start as md_write_start 790 * may cause the first superblock write, and that will check out 791 * if barriers work. 792 */ 793 794 md_write_start(mddev, bio); /* wait on superblock update early */ 795 796 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 797 if (rw == WRITE) 798 md_write_end(mddev); 799 bio_endio(bio, -EOPNOTSUPP); 800 return 0; 801 } 802 803 wait_barrier(conf); 804 805 disk_stat_inc(mddev->gendisk, ios[rw]); 806 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 807 808 /* 809 * make_request() can abort the operation when READA is being 810 * used and no empty request is available. 811 * 812 */ 813 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 814 815 r1_bio->master_bio = bio; 816 r1_bio->sectors = bio->bi_size >> 9; 817 r1_bio->state = 0; 818 r1_bio->mddev = mddev; 819 r1_bio->sector = bio->bi_sector; 820 821 if (rw == READ) { 822 /* 823 * read balancing logic: 824 */ 825 int rdisk = read_balance(conf, r1_bio); 826 827 if (rdisk < 0) { 828 /* couldn't find anywhere to read from */ 829 raid_end_bio_io(r1_bio); 830 return 0; 831 } 832 mirror = conf->mirrors + rdisk; 833 834 r1_bio->read_disk = rdisk; 835 836 read_bio = bio_clone(bio, GFP_NOIO); 837 838 r1_bio->bios[rdisk] = read_bio; 839 840 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 841 read_bio->bi_bdev = mirror->rdev->bdev; 842 read_bio->bi_end_io = raid1_end_read_request; 843 read_bio->bi_rw = READ | do_sync; 844 read_bio->bi_private = r1_bio; 845 846 generic_make_request(read_bio); 847 return 0; 848 } 849 850 /* 851 * WRITE: 852 */ 853 /* first select target devices under spinlock and 854 * inc refcount on their rdev. Record them by setting 855 * bios[x] to bio 856 */ 857 disks = conf->raid_disks; 858 #if 0 859 { static int first=1; 860 if (first) printk("First Write sector %llu disks %d\n", 861 (unsigned long long)r1_bio->sector, disks); 862 first = 0; 863 } 864 #endif 865 retry_write: 866 blocked_rdev = NULL; 867 rcu_read_lock(); 868 for (i = 0; i < disks; i++) { 869 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 870 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 871 atomic_inc(&rdev->nr_pending); 872 blocked_rdev = rdev; 873 break; 874 } 875 if (rdev && !test_bit(Faulty, &rdev->flags)) { 876 atomic_inc(&rdev->nr_pending); 877 if (test_bit(Faulty, &rdev->flags)) { 878 rdev_dec_pending(rdev, mddev); 879 r1_bio->bios[i] = NULL; 880 } else 881 r1_bio->bios[i] = bio; 882 targets++; 883 } else 884 r1_bio->bios[i] = NULL; 885 } 886 rcu_read_unlock(); 887 888 if (unlikely(blocked_rdev)) { 889 /* Wait for this device to become unblocked */ 890 int j; 891 892 for (j = 0; j < i; j++) 893 if (r1_bio->bios[j]) 894 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 895 896 allow_barrier(conf); 897 md_wait_for_blocked_rdev(blocked_rdev, mddev); 898 wait_barrier(conf); 899 goto retry_write; 900 } 901 902 BUG_ON(targets == 0); /* we never fail the last device */ 903 904 if (targets < conf->raid_disks) { 905 /* array is degraded, we will not clear the bitmap 906 * on I/O completion (see raid1_end_write_request) */ 907 set_bit(R1BIO_Degraded, &r1_bio->state); 908 } 909 910 /* do behind I/O ? */ 911 if (bitmap && 912 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 913 (behind_pages = alloc_behind_pages(bio)) != NULL) 914 set_bit(R1BIO_BehindIO, &r1_bio->state); 915 916 atomic_set(&r1_bio->remaining, 0); 917 atomic_set(&r1_bio->behind_remaining, 0); 918 919 do_barriers = bio_barrier(bio); 920 if (do_barriers) 921 set_bit(R1BIO_Barrier, &r1_bio->state); 922 923 bio_list_init(&bl); 924 for (i = 0; i < disks; i++) { 925 struct bio *mbio; 926 if (!r1_bio->bios[i]) 927 continue; 928 929 mbio = bio_clone(bio, GFP_NOIO); 930 r1_bio->bios[i] = mbio; 931 932 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 933 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 934 mbio->bi_end_io = raid1_end_write_request; 935 mbio->bi_rw = WRITE | do_barriers | do_sync; 936 mbio->bi_private = r1_bio; 937 938 if (behind_pages) { 939 struct bio_vec *bvec; 940 int j; 941 942 /* Yes, I really want the '__' version so that 943 * we clear any unused pointer in the io_vec, rather 944 * than leave them unchanged. This is important 945 * because when we come to free the pages, we won't 946 * know the originial bi_idx, so we just free 947 * them all 948 */ 949 __bio_for_each_segment(bvec, mbio, j, 0) 950 bvec->bv_page = behind_pages[j]; 951 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 952 atomic_inc(&r1_bio->behind_remaining); 953 } 954 955 atomic_inc(&r1_bio->remaining); 956 957 bio_list_add(&bl, mbio); 958 } 959 kfree(behind_pages); /* the behind pages are attached to the bios now */ 960 961 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 962 test_bit(R1BIO_BehindIO, &r1_bio->state)); 963 spin_lock_irqsave(&conf->device_lock, flags); 964 bio_list_merge(&conf->pending_bio_list, &bl); 965 bio_list_init(&bl); 966 967 blk_plug_device(mddev->queue); 968 spin_unlock_irqrestore(&conf->device_lock, flags); 969 970 /* In case raid1d snuck into freeze_array */ 971 wake_up(&conf->wait_barrier); 972 973 if (do_sync) 974 md_wakeup_thread(mddev->thread); 975 #if 0 976 while ((bio = bio_list_pop(&bl)) != NULL) 977 generic_make_request(bio); 978 #endif 979 980 return 0; 981 } 982 983 static void status(struct seq_file *seq, mddev_t *mddev) 984 { 985 conf_t *conf = mddev_to_conf(mddev); 986 int i; 987 988 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 989 conf->raid_disks - mddev->degraded); 990 rcu_read_lock(); 991 for (i = 0; i < conf->raid_disks; i++) { 992 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 993 seq_printf(seq, "%s", 994 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 995 } 996 rcu_read_unlock(); 997 seq_printf(seq, "]"); 998 } 999 1000 1001 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1002 { 1003 char b[BDEVNAME_SIZE]; 1004 conf_t *conf = mddev_to_conf(mddev); 1005 1006 /* 1007 * If it is not operational, then we have already marked it as dead 1008 * else if it is the last working disks, ignore the error, let the 1009 * next level up know. 1010 * else mark the drive as failed 1011 */ 1012 if (test_bit(In_sync, &rdev->flags) 1013 && (conf->raid_disks - mddev->degraded) == 1) 1014 /* 1015 * Don't fail the drive, act as though we were just a 1016 * normal single drive 1017 */ 1018 return; 1019 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1020 unsigned long flags; 1021 spin_lock_irqsave(&conf->device_lock, flags); 1022 mddev->degraded++; 1023 set_bit(Faulty, &rdev->flags); 1024 spin_unlock_irqrestore(&conf->device_lock, flags); 1025 /* 1026 * if recovery is running, make sure it aborts. 1027 */ 1028 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 1029 } else 1030 set_bit(Faulty, &rdev->flags); 1031 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1032 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n" 1033 "raid1: Operation continuing on %d devices.\n", 1034 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1035 } 1036 1037 static void print_conf(conf_t *conf) 1038 { 1039 int i; 1040 1041 printk("RAID1 conf printout:\n"); 1042 if (!conf) { 1043 printk("(!conf)\n"); 1044 return; 1045 } 1046 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1047 conf->raid_disks); 1048 1049 rcu_read_lock(); 1050 for (i = 0; i < conf->raid_disks; i++) { 1051 char b[BDEVNAME_SIZE]; 1052 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1053 if (rdev) 1054 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1055 i, !test_bit(In_sync, &rdev->flags), 1056 !test_bit(Faulty, &rdev->flags), 1057 bdevname(rdev->bdev,b)); 1058 } 1059 rcu_read_unlock(); 1060 } 1061 1062 static void close_sync(conf_t *conf) 1063 { 1064 wait_barrier(conf); 1065 allow_barrier(conf); 1066 1067 mempool_destroy(conf->r1buf_pool); 1068 conf->r1buf_pool = NULL; 1069 } 1070 1071 static int raid1_spare_active(mddev_t *mddev) 1072 { 1073 int i; 1074 conf_t *conf = mddev->private; 1075 1076 /* 1077 * Find all failed disks within the RAID1 configuration 1078 * and mark them readable. 1079 * Called under mddev lock, so rcu protection not needed. 1080 */ 1081 for (i = 0; i < conf->raid_disks; i++) { 1082 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1083 if (rdev 1084 && !test_bit(Faulty, &rdev->flags) 1085 && !test_and_set_bit(In_sync, &rdev->flags)) { 1086 unsigned long flags; 1087 spin_lock_irqsave(&conf->device_lock, flags); 1088 mddev->degraded--; 1089 spin_unlock_irqrestore(&conf->device_lock, flags); 1090 } 1091 } 1092 1093 print_conf(conf); 1094 return 0; 1095 } 1096 1097 1098 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1099 { 1100 conf_t *conf = mddev->private; 1101 int found = 0; 1102 int mirror = 0; 1103 mirror_info_t *p; 1104 1105 for (mirror=0; mirror < mddev->raid_disks; mirror++) 1106 if ( !(p=conf->mirrors+mirror)->rdev) { 1107 1108 blk_queue_stack_limits(mddev->queue, 1109 rdev->bdev->bd_disk->queue); 1110 /* as we don't honour merge_bvec_fn, we must never risk 1111 * violating it, so limit ->max_sector to one PAGE, as 1112 * a one page request is never in violation. 1113 */ 1114 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1115 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1116 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1117 1118 p->head_position = 0; 1119 rdev->raid_disk = mirror; 1120 found = 1; 1121 /* As all devices are equivalent, we don't need a full recovery 1122 * if this was recently any drive of the array 1123 */ 1124 if (rdev->saved_raid_disk < 0) 1125 conf->fullsync = 1; 1126 rcu_assign_pointer(p->rdev, rdev); 1127 break; 1128 } 1129 1130 print_conf(conf); 1131 return found; 1132 } 1133 1134 static int raid1_remove_disk(mddev_t *mddev, int number) 1135 { 1136 conf_t *conf = mddev->private; 1137 int err = 0; 1138 mdk_rdev_t *rdev; 1139 mirror_info_t *p = conf->mirrors+ number; 1140 1141 print_conf(conf); 1142 rdev = p->rdev; 1143 if (rdev) { 1144 if (test_bit(In_sync, &rdev->flags) || 1145 atomic_read(&rdev->nr_pending)) { 1146 err = -EBUSY; 1147 goto abort; 1148 } 1149 p->rdev = NULL; 1150 synchronize_rcu(); 1151 if (atomic_read(&rdev->nr_pending)) { 1152 /* lost the race, try later */ 1153 err = -EBUSY; 1154 p->rdev = rdev; 1155 } 1156 } 1157 abort: 1158 1159 print_conf(conf); 1160 return err; 1161 } 1162 1163 1164 static void end_sync_read(struct bio *bio, int error) 1165 { 1166 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1167 int i; 1168 1169 for (i=r1_bio->mddev->raid_disks; i--; ) 1170 if (r1_bio->bios[i] == bio) 1171 break; 1172 BUG_ON(i < 0); 1173 update_head_pos(i, r1_bio); 1174 /* 1175 * we have read a block, now it needs to be re-written, 1176 * or re-read if the read failed. 1177 * We don't do much here, just schedule handling by raid1d 1178 */ 1179 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1180 set_bit(R1BIO_Uptodate, &r1_bio->state); 1181 1182 if (atomic_dec_and_test(&r1_bio->remaining)) 1183 reschedule_retry(r1_bio); 1184 } 1185 1186 static void end_sync_write(struct bio *bio, int error) 1187 { 1188 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1189 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1190 mddev_t *mddev = r1_bio->mddev; 1191 conf_t *conf = mddev_to_conf(mddev); 1192 int i; 1193 int mirror=0; 1194 1195 for (i = 0; i < conf->raid_disks; i++) 1196 if (r1_bio->bios[i] == bio) { 1197 mirror = i; 1198 break; 1199 } 1200 if (!uptodate) { 1201 int sync_blocks = 0; 1202 sector_t s = r1_bio->sector; 1203 long sectors_to_go = r1_bio->sectors; 1204 /* make sure these bits doesn't get cleared. */ 1205 do { 1206 bitmap_end_sync(mddev->bitmap, s, 1207 &sync_blocks, 1); 1208 s += sync_blocks; 1209 sectors_to_go -= sync_blocks; 1210 } while (sectors_to_go > 0); 1211 md_error(mddev, conf->mirrors[mirror].rdev); 1212 } 1213 1214 update_head_pos(mirror, r1_bio); 1215 1216 if (atomic_dec_and_test(&r1_bio->remaining)) { 1217 md_done_sync(mddev, r1_bio->sectors, uptodate); 1218 put_buf(r1_bio); 1219 } 1220 } 1221 1222 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1223 { 1224 conf_t *conf = mddev_to_conf(mddev); 1225 int i; 1226 int disks = conf->raid_disks; 1227 struct bio *bio, *wbio; 1228 1229 bio = r1_bio->bios[r1_bio->read_disk]; 1230 1231 1232 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1233 /* We have read all readable devices. If we haven't 1234 * got the block, then there is no hope left. 1235 * If we have, then we want to do a comparison 1236 * and skip the write if everything is the same. 1237 * If any blocks failed to read, then we need to 1238 * attempt an over-write 1239 */ 1240 int primary; 1241 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1242 for (i=0; i<mddev->raid_disks; i++) 1243 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1244 md_error(mddev, conf->mirrors[i].rdev); 1245 1246 md_done_sync(mddev, r1_bio->sectors, 1); 1247 put_buf(r1_bio); 1248 return; 1249 } 1250 for (primary=0; primary<mddev->raid_disks; primary++) 1251 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1252 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1253 r1_bio->bios[primary]->bi_end_io = NULL; 1254 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1255 break; 1256 } 1257 r1_bio->read_disk = primary; 1258 for (i=0; i<mddev->raid_disks; i++) 1259 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1260 int j; 1261 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1262 struct bio *pbio = r1_bio->bios[primary]; 1263 struct bio *sbio = r1_bio->bios[i]; 1264 1265 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1266 for (j = vcnt; j-- ; ) { 1267 struct page *p, *s; 1268 p = pbio->bi_io_vec[j].bv_page; 1269 s = sbio->bi_io_vec[j].bv_page; 1270 if (memcmp(page_address(p), 1271 page_address(s), 1272 PAGE_SIZE)) 1273 break; 1274 } 1275 } else 1276 j = 0; 1277 if (j >= 0) 1278 mddev->resync_mismatches += r1_bio->sectors; 1279 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1280 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1281 sbio->bi_end_io = NULL; 1282 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1283 } else { 1284 /* fixup the bio for reuse */ 1285 sbio->bi_vcnt = vcnt; 1286 sbio->bi_size = r1_bio->sectors << 9; 1287 sbio->bi_idx = 0; 1288 sbio->bi_phys_segments = 0; 1289 sbio->bi_hw_segments = 0; 1290 sbio->bi_hw_front_size = 0; 1291 sbio->bi_hw_back_size = 0; 1292 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1293 sbio->bi_flags |= 1 << BIO_UPTODATE; 1294 sbio->bi_next = NULL; 1295 sbio->bi_sector = r1_bio->sector + 1296 conf->mirrors[i].rdev->data_offset; 1297 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1298 for (j = 0; j < vcnt ; j++) 1299 memcpy(page_address(sbio->bi_io_vec[j].bv_page), 1300 page_address(pbio->bi_io_vec[j].bv_page), 1301 PAGE_SIZE); 1302 1303 } 1304 } 1305 } 1306 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1307 /* ouch - failed to read all of that. 1308 * Try some synchronous reads of other devices to get 1309 * good data, much like with normal read errors. Only 1310 * read into the pages we already have so we don't 1311 * need to re-issue the read request. 1312 * We don't need to freeze the array, because being in an 1313 * active sync request, there is no normal IO, and 1314 * no overlapping syncs. 1315 */ 1316 sector_t sect = r1_bio->sector; 1317 int sectors = r1_bio->sectors; 1318 int idx = 0; 1319 1320 while(sectors) { 1321 int s = sectors; 1322 int d = r1_bio->read_disk; 1323 int success = 0; 1324 mdk_rdev_t *rdev; 1325 1326 if (s > (PAGE_SIZE>>9)) 1327 s = PAGE_SIZE >> 9; 1328 do { 1329 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1330 /* No rcu protection needed here devices 1331 * can only be removed when no resync is 1332 * active, and resync is currently active 1333 */ 1334 rdev = conf->mirrors[d].rdev; 1335 if (sync_page_io(rdev->bdev, 1336 sect + rdev->data_offset, 1337 s<<9, 1338 bio->bi_io_vec[idx].bv_page, 1339 READ)) { 1340 success = 1; 1341 break; 1342 } 1343 } 1344 d++; 1345 if (d == conf->raid_disks) 1346 d = 0; 1347 } while (!success && d != r1_bio->read_disk); 1348 1349 if (success) { 1350 int start = d; 1351 /* write it back and re-read */ 1352 set_bit(R1BIO_Uptodate, &r1_bio->state); 1353 while (d != r1_bio->read_disk) { 1354 if (d == 0) 1355 d = conf->raid_disks; 1356 d--; 1357 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1358 continue; 1359 rdev = conf->mirrors[d].rdev; 1360 atomic_add(s, &rdev->corrected_errors); 1361 if (sync_page_io(rdev->bdev, 1362 sect + rdev->data_offset, 1363 s<<9, 1364 bio->bi_io_vec[idx].bv_page, 1365 WRITE) == 0) 1366 md_error(mddev, rdev); 1367 } 1368 d = start; 1369 while (d != r1_bio->read_disk) { 1370 if (d == 0) 1371 d = conf->raid_disks; 1372 d--; 1373 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1374 continue; 1375 rdev = conf->mirrors[d].rdev; 1376 if (sync_page_io(rdev->bdev, 1377 sect + rdev->data_offset, 1378 s<<9, 1379 bio->bi_io_vec[idx].bv_page, 1380 READ) == 0) 1381 md_error(mddev, rdev); 1382 } 1383 } else { 1384 char b[BDEVNAME_SIZE]; 1385 /* Cannot read from anywhere, array is toast */ 1386 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1387 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1388 " for block %llu\n", 1389 bdevname(bio->bi_bdev,b), 1390 (unsigned long long)r1_bio->sector); 1391 md_done_sync(mddev, r1_bio->sectors, 0); 1392 put_buf(r1_bio); 1393 return; 1394 } 1395 sectors -= s; 1396 sect += s; 1397 idx ++; 1398 } 1399 } 1400 1401 /* 1402 * schedule writes 1403 */ 1404 atomic_set(&r1_bio->remaining, 1); 1405 for (i = 0; i < disks ; i++) { 1406 wbio = r1_bio->bios[i]; 1407 if (wbio->bi_end_io == NULL || 1408 (wbio->bi_end_io == end_sync_read && 1409 (i == r1_bio->read_disk || 1410 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1411 continue; 1412 1413 wbio->bi_rw = WRITE; 1414 wbio->bi_end_io = end_sync_write; 1415 atomic_inc(&r1_bio->remaining); 1416 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1417 1418 generic_make_request(wbio); 1419 } 1420 1421 if (atomic_dec_and_test(&r1_bio->remaining)) { 1422 /* if we're here, all write(s) have completed, so clean up */ 1423 md_done_sync(mddev, r1_bio->sectors, 1); 1424 put_buf(r1_bio); 1425 } 1426 } 1427 1428 /* 1429 * This is a kernel thread which: 1430 * 1431 * 1. Retries failed read operations on working mirrors. 1432 * 2. Updates the raid superblock when problems encounter. 1433 * 3. Performs writes following reads for array syncronising. 1434 */ 1435 1436 static void fix_read_error(conf_t *conf, int read_disk, 1437 sector_t sect, int sectors) 1438 { 1439 mddev_t *mddev = conf->mddev; 1440 while(sectors) { 1441 int s = sectors; 1442 int d = read_disk; 1443 int success = 0; 1444 int start; 1445 mdk_rdev_t *rdev; 1446 1447 if (s > (PAGE_SIZE>>9)) 1448 s = PAGE_SIZE >> 9; 1449 1450 do { 1451 /* Note: no rcu protection needed here 1452 * as this is synchronous in the raid1d thread 1453 * which is the thread that might remove 1454 * a device. If raid1d ever becomes multi-threaded.... 1455 */ 1456 rdev = conf->mirrors[d].rdev; 1457 if (rdev && 1458 test_bit(In_sync, &rdev->flags) && 1459 sync_page_io(rdev->bdev, 1460 sect + rdev->data_offset, 1461 s<<9, 1462 conf->tmppage, READ)) 1463 success = 1; 1464 else { 1465 d++; 1466 if (d == conf->raid_disks) 1467 d = 0; 1468 } 1469 } while (!success && d != read_disk); 1470 1471 if (!success) { 1472 /* Cannot read from anywhere -- bye bye array */ 1473 md_error(mddev, conf->mirrors[read_disk].rdev); 1474 break; 1475 } 1476 /* write it back and re-read */ 1477 start = d; 1478 while (d != read_disk) { 1479 if (d==0) 1480 d = conf->raid_disks; 1481 d--; 1482 rdev = conf->mirrors[d].rdev; 1483 if (rdev && 1484 test_bit(In_sync, &rdev->flags)) { 1485 if (sync_page_io(rdev->bdev, 1486 sect + rdev->data_offset, 1487 s<<9, conf->tmppage, WRITE) 1488 == 0) 1489 /* Well, this device is dead */ 1490 md_error(mddev, rdev); 1491 } 1492 } 1493 d = start; 1494 while (d != read_disk) { 1495 char b[BDEVNAME_SIZE]; 1496 if (d==0) 1497 d = conf->raid_disks; 1498 d--; 1499 rdev = conf->mirrors[d].rdev; 1500 if (rdev && 1501 test_bit(In_sync, &rdev->flags)) { 1502 if (sync_page_io(rdev->bdev, 1503 sect + rdev->data_offset, 1504 s<<9, conf->tmppage, READ) 1505 == 0) 1506 /* Well, this device is dead */ 1507 md_error(mddev, rdev); 1508 else { 1509 atomic_add(s, &rdev->corrected_errors); 1510 printk(KERN_INFO 1511 "raid1:%s: read error corrected " 1512 "(%d sectors at %llu on %s)\n", 1513 mdname(mddev), s, 1514 (unsigned long long)(sect + 1515 rdev->data_offset), 1516 bdevname(rdev->bdev, b)); 1517 } 1518 } 1519 } 1520 sectors -= s; 1521 sect += s; 1522 } 1523 } 1524 1525 static void raid1d(mddev_t *mddev) 1526 { 1527 r1bio_t *r1_bio; 1528 struct bio *bio; 1529 unsigned long flags; 1530 conf_t *conf = mddev_to_conf(mddev); 1531 struct list_head *head = &conf->retry_list; 1532 int unplug=0; 1533 mdk_rdev_t *rdev; 1534 1535 md_check_recovery(mddev); 1536 1537 for (;;) { 1538 char b[BDEVNAME_SIZE]; 1539 1540 unplug += flush_pending_writes(conf); 1541 1542 spin_lock_irqsave(&conf->device_lock, flags); 1543 if (list_empty(head)) { 1544 spin_unlock_irqrestore(&conf->device_lock, flags); 1545 break; 1546 } 1547 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1548 list_del(head->prev); 1549 conf->nr_queued--; 1550 spin_unlock_irqrestore(&conf->device_lock, flags); 1551 1552 mddev = r1_bio->mddev; 1553 conf = mddev_to_conf(mddev); 1554 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1555 sync_request_write(mddev, r1_bio); 1556 unplug = 1; 1557 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1558 /* some requests in the r1bio were BIO_RW_BARRIER 1559 * requests which failed with -EOPNOTSUPP. Hohumm.. 1560 * Better resubmit without the barrier. 1561 * We know which devices to resubmit for, because 1562 * all others have had their bios[] entry cleared. 1563 * We already have a nr_pending reference on these rdevs. 1564 */ 1565 int i; 1566 const int do_sync = bio_sync(r1_bio->master_bio); 1567 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1568 clear_bit(R1BIO_Barrier, &r1_bio->state); 1569 for (i=0; i < conf->raid_disks; i++) 1570 if (r1_bio->bios[i]) 1571 atomic_inc(&r1_bio->remaining); 1572 for (i=0; i < conf->raid_disks; i++) 1573 if (r1_bio->bios[i]) { 1574 struct bio_vec *bvec; 1575 int j; 1576 1577 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1578 /* copy pages from the failed bio, as 1579 * this might be a write-behind device */ 1580 __bio_for_each_segment(bvec, bio, j, 0) 1581 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1582 bio_put(r1_bio->bios[i]); 1583 bio->bi_sector = r1_bio->sector + 1584 conf->mirrors[i].rdev->data_offset; 1585 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1586 bio->bi_end_io = raid1_end_write_request; 1587 bio->bi_rw = WRITE | do_sync; 1588 bio->bi_private = r1_bio; 1589 r1_bio->bios[i] = bio; 1590 generic_make_request(bio); 1591 } 1592 } else { 1593 int disk; 1594 1595 /* we got a read error. Maybe the drive is bad. Maybe just 1596 * the block and we can fix it. 1597 * We freeze all other IO, and try reading the block from 1598 * other devices. When we find one, we re-write 1599 * and check it that fixes the read error. 1600 * This is all done synchronously while the array is 1601 * frozen 1602 */ 1603 if (mddev->ro == 0) { 1604 freeze_array(conf); 1605 fix_read_error(conf, r1_bio->read_disk, 1606 r1_bio->sector, 1607 r1_bio->sectors); 1608 unfreeze_array(conf); 1609 } 1610 1611 bio = r1_bio->bios[r1_bio->read_disk]; 1612 if ((disk=read_balance(conf, r1_bio)) == -1) { 1613 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1614 " read error for block %llu\n", 1615 bdevname(bio->bi_bdev,b), 1616 (unsigned long long)r1_bio->sector); 1617 raid_end_bio_io(r1_bio); 1618 } else { 1619 const int do_sync = bio_sync(r1_bio->master_bio); 1620 r1_bio->bios[r1_bio->read_disk] = 1621 mddev->ro ? IO_BLOCKED : NULL; 1622 r1_bio->read_disk = disk; 1623 bio_put(bio); 1624 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1625 r1_bio->bios[r1_bio->read_disk] = bio; 1626 rdev = conf->mirrors[disk].rdev; 1627 if (printk_ratelimit()) 1628 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1629 " another mirror\n", 1630 bdevname(rdev->bdev,b), 1631 (unsigned long long)r1_bio->sector); 1632 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1633 bio->bi_bdev = rdev->bdev; 1634 bio->bi_end_io = raid1_end_read_request; 1635 bio->bi_rw = READ | do_sync; 1636 bio->bi_private = r1_bio; 1637 unplug = 1; 1638 generic_make_request(bio); 1639 } 1640 } 1641 } 1642 if (unplug) 1643 unplug_slaves(mddev); 1644 } 1645 1646 1647 static int init_resync(conf_t *conf) 1648 { 1649 int buffs; 1650 1651 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1652 BUG_ON(conf->r1buf_pool); 1653 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1654 conf->poolinfo); 1655 if (!conf->r1buf_pool) 1656 return -ENOMEM; 1657 conf->next_resync = 0; 1658 return 0; 1659 } 1660 1661 /* 1662 * perform a "sync" on one "block" 1663 * 1664 * We need to make sure that no normal I/O request - particularly write 1665 * requests - conflict with active sync requests. 1666 * 1667 * This is achieved by tracking pending requests and a 'barrier' concept 1668 * that can be installed to exclude normal IO requests. 1669 */ 1670 1671 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1672 { 1673 conf_t *conf = mddev_to_conf(mddev); 1674 r1bio_t *r1_bio; 1675 struct bio *bio; 1676 sector_t max_sector, nr_sectors; 1677 int disk = -1; 1678 int i; 1679 int wonly = -1; 1680 int write_targets = 0, read_targets = 0; 1681 int sync_blocks; 1682 int still_degraded = 0; 1683 1684 if (!conf->r1buf_pool) 1685 { 1686 /* 1687 printk("sync start - bitmap %p\n", mddev->bitmap); 1688 */ 1689 if (init_resync(conf)) 1690 return 0; 1691 } 1692 1693 max_sector = mddev->size << 1; 1694 if (sector_nr >= max_sector) { 1695 /* If we aborted, we need to abort the 1696 * sync on the 'current' bitmap chunk (there will 1697 * only be one in raid1 resync. 1698 * We can find the current addess in mddev->curr_resync 1699 */ 1700 if (mddev->curr_resync < max_sector) /* aborted */ 1701 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1702 &sync_blocks, 1); 1703 else /* completed sync */ 1704 conf->fullsync = 0; 1705 1706 bitmap_close_sync(mddev->bitmap); 1707 close_sync(conf); 1708 return 0; 1709 } 1710 1711 if (mddev->bitmap == NULL && 1712 mddev->recovery_cp == MaxSector && 1713 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1714 conf->fullsync == 0) { 1715 *skipped = 1; 1716 return max_sector - sector_nr; 1717 } 1718 /* before building a request, check if we can skip these blocks.. 1719 * This call the bitmap_start_sync doesn't actually record anything 1720 */ 1721 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1722 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1723 /* We can skip this block, and probably several more */ 1724 *skipped = 1; 1725 return sync_blocks; 1726 } 1727 /* 1728 * If there is non-resync activity waiting for a turn, 1729 * and resync is going fast enough, 1730 * then let it though before starting on this new sync request. 1731 */ 1732 if (!go_faster && conf->nr_waiting) 1733 msleep_interruptible(1000); 1734 1735 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1736 raise_barrier(conf); 1737 1738 conf->next_resync = sector_nr; 1739 1740 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1741 rcu_read_lock(); 1742 /* 1743 * If we get a correctably read error during resync or recovery, 1744 * we might want to read from a different device. So we 1745 * flag all drives that could conceivably be read from for READ, 1746 * and any others (which will be non-In_sync devices) for WRITE. 1747 * If a read fails, we try reading from something else for which READ 1748 * is OK. 1749 */ 1750 1751 r1_bio->mddev = mddev; 1752 r1_bio->sector = sector_nr; 1753 r1_bio->state = 0; 1754 set_bit(R1BIO_IsSync, &r1_bio->state); 1755 1756 for (i=0; i < conf->raid_disks; i++) { 1757 mdk_rdev_t *rdev; 1758 bio = r1_bio->bios[i]; 1759 1760 /* take from bio_init */ 1761 bio->bi_next = NULL; 1762 bio->bi_flags |= 1 << BIO_UPTODATE; 1763 bio->bi_rw = READ; 1764 bio->bi_vcnt = 0; 1765 bio->bi_idx = 0; 1766 bio->bi_phys_segments = 0; 1767 bio->bi_hw_segments = 0; 1768 bio->bi_size = 0; 1769 bio->bi_end_io = NULL; 1770 bio->bi_private = NULL; 1771 1772 rdev = rcu_dereference(conf->mirrors[i].rdev); 1773 if (rdev == NULL || 1774 test_bit(Faulty, &rdev->flags)) { 1775 still_degraded = 1; 1776 continue; 1777 } else if (!test_bit(In_sync, &rdev->flags)) { 1778 bio->bi_rw = WRITE; 1779 bio->bi_end_io = end_sync_write; 1780 write_targets ++; 1781 } else { 1782 /* may need to read from here */ 1783 bio->bi_rw = READ; 1784 bio->bi_end_io = end_sync_read; 1785 if (test_bit(WriteMostly, &rdev->flags)) { 1786 if (wonly < 0) 1787 wonly = i; 1788 } else { 1789 if (disk < 0) 1790 disk = i; 1791 } 1792 read_targets++; 1793 } 1794 atomic_inc(&rdev->nr_pending); 1795 bio->bi_sector = sector_nr + rdev->data_offset; 1796 bio->bi_bdev = rdev->bdev; 1797 bio->bi_private = r1_bio; 1798 } 1799 rcu_read_unlock(); 1800 if (disk < 0) 1801 disk = wonly; 1802 r1_bio->read_disk = disk; 1803 1804 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1805 /* extra read targets are also write targets */ 1806 write_targets += read_targets-1; 1807 1808 if (write_targets == 0 || read_targets == 0) { 1809 /* There is nowhere to write, so all non-sync 1810 * drives must be failed - so we are finished 1811 */ 1812 sector_t rv = max_sector - sector_nr; 1813 *skipped = 1; 1814 put_buf(r1_bio); 1815 return rv; 1816 } 1817 1818 if (max_sector > mddev->resync_max) 1819 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1820 nr_sectors = 0; 1821 sync_blocks = 0; 1822 do { 1823 struct page *page; 1824 int len = PAGE_SIZE; 1825 if (sector_nr + (len>>9) > max_sector) 1826 len = (max_sector - sector_nr) << 9; 1827 if (len == 0) 1828 break; 1829 if (sync_blocks == 0) { 1830 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1831 &sync_blocks, still_degraded) && 1832 !conf->fullsync && 1833 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1834 break; 1835 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1836 if (len > (sync_blocks<<9)) 1837 len = sync_blocks<<9; 1838 } 1839 1840 for (i=0 ; i < conf->raid_disks; i++) { 1841 bio = r1_bio->bios[i]; 1842 if (bio->bi_end_io) { 1843 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1844 if (bio_add_page(bio, page, len, 0) == 0) { 1845 /* stop here */ 1846 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1847 while (i > 0) { 1848 i--; 1849 bio = r1_bio->bios[i]; 1850 if (bio->bi_end_io==NULL) 1851 continue; 1852 /* remove last page from this bio */ 1853 bio->bi_vcnt--; 1854 bio->bi_size -= len; 1855 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1856 } 1857 goto bio_full; 1858 } 1859 } 1860 } 1861 nr_sectors += len>>9; 1862 sector_nr += len>>9; 1863 sync_blocks -= (len>>9); 1864 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1865 bio_full: 1866 r1_bio->sectors = nr_sectors; 1867 1868 /* For a user-requested sync, we read all readable devices and do a 1869 * compare 1870 */ 1871 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1872 atomic_set(&r1_bio->remaining, read_targets); 1873 for (i=0; i<conf->raid_disks; i++) { 1874 bio = r1_bio->bios[i]; 1875 if (bio->bi_end_io == end_sync_read) { 1876 md_sync_acct(bio->bi_bdev, nr_sectors); 1877 generic_make_request(bio); 1878 } 1879 } 1880 } else { 1881 atomic_set(&r1_bio->remaining, 1); 1882 bio = r1_bio->bios[r1_bio->read_disk]; 1883 md_sync_acct(bio->bi_bdev, nr_sectors); 1884 generic_make_request(bio); 1885 1886 } 1887 return nr_sectors; 1888 } 1889 1890 static int run(mddev_t *mddev) 1891 { 1892 conf_t *conf; 1893 int i, j, disk_idx; 1894 mirror_info_t *disk; 1895 mdk_rdev_t *rdev; 1896 struct list_head *tmp; 1897 1898 if (mddev->level != 1) { 1899 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1900 mdname(mddev), mddev->level); 1901 goto out; 1902 } 1903 if (mddev->reshape_position != MaxSector) { 1904 printk("raid1: %s: reshape_position set but not supported\n", 1905 mdname(mddev)); 1906 goto out; 1907 } 1908 /* 1909 * copy the already verified devices into our private RAID1 1910 * bookkeeping area. [whatever we allocate in run(), 1911 * should be freed in stop()] 1912 */ 1913 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1914 mddev->private = conf; 1915 if (!conf) 1916 goto out_no_mem; 1917 1918 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1919 GFP_KERNEL); 1920 if (!conf->mirrors) 1921 goto out_no_mem; 1922 1923 conf->tmppage = alloc_page(GFP_KERNEL); 1924 if (!conf->tmppage) 1925 goto out_no_mem; 1926 1927 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1928 if (!conf->poolinfo) 1929 goto out_no_mem; 1930 conf->poolinfo->mddev = mddev; 1931 conf->poolinfo->raid_disks = mddev->raid_disks; 1932 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1933 r1bio_pool_free, 1934 conf->poolinfo); 1935 if (!conf->r1bio_pool) 1936 goto out_no_mem; 1937 1938 rdev_for_each(rdev, tmp, mddev) { 1939 disk_idx = rdev->raid_disk; 1940 if (disk_idx >= mddev->raid_disks 1941 || disk_idx < 0) 1942 continue; 1943 disk = conf->mirrors + disk_idx; 1944 1945 disk->rdev = rdev; 1946 1947 blk_queue_stack_limits(mddev->queue, 1948 rdev->bdev->bd_disk->queue); 1949 /* as we don't honour merge_bvec_fn, we must never risk 1950 * violating it, so limit ->max_sector to one PAGE, as 1951 * a one page request is never in violation. 1952 */ 1953 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1954 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1955 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1956 1957 disk->head_position = 0; 1958 } 1959 conf->raid_disks = mddev->raid_disks; 1960 conf->mddev = mddev; 1961 spin_lock_init(&conf->device_lock); 1962 INIT_LIST_HEAD(&conf->retry_list); 1963 1964 spin_lock_init(&conf->resync_lock); 1965 init_waitqueue_head(&conf->wait_barrier); 1966 1967 bio_list_init(&conf->pending_bio_list); 1968 bio_list_init(&conf->flushing_bio_list); 1969 1970 1971 mddev->degraded = 0; 1972 for (i = 0; i < conf->raid_disks; i++) { 1973 1974 disk = conf->mirrors + i; 1975 1976 if (!disk->rdev || 1977 !test_bit(In_sync, &disk->rdev->flags)) { 1978 disk->head_position = 0; 1979 mddev->degraded++; 1980 if (disk->rdev) 1981 conf->fullsync = 1; 1982 } 1983 } 1984 if (mddev->degraded == conf->raid_disks) { 1985 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1986 mdname(mddev)); 1987 goto out_free_conf; 1988 } 1989 if (conf->raid_disks - mddev->degraded == 1) 1990 mddev->recovery_cp = MaxSector; 1991 1992 /* 1993 * find the first working one and use it as a starting point 1994 * to read balancing. 1995 */ 1996 for (j = 0; j < conf->raid_disks && 1997 (!conf->mirrors[j].rdev || 1998 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 1999 /* nothing */; 2000 conf->last_used = j; 2001 2002 2003 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 2004 if (!mddev->thread) { 2005 printk(KERN_ERR 2006 "raid1: couldn't allocate thread for %s\n", 2007 mdname(mddev)); 2008 goto out_free_conf; 2009 } 2010 2011 printk(KERN_INFO 2012 "raid1: raid set %s active with %d out of %d mirrors\n", 2013 mdname(mddev), mddev->raid_disks - mddev->degraded, 2014 mddev->raid_disks); 2015 /* 2016 * Ok, everything is just fine now 2017 */ 2018 mddev->array_size = mddev->size; 2019 2020 mddev->queue->unplug_fn = raid1_unplug; 2021 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2022 mddev->queue->backing_dev_info.congested_data = mddev; 2023 2024 return 0; 2025 2026 out_no_mem: 2027 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 2028 mdname(mddev)); 2029 2030 out_free_conf: 2031 if (conf) { 2032 if (conf->r1bio_pool) 2033 mempool_destroy(conf->r1bio_pool); 2034 kfree(conf->mirrors); 2035 safe_put_page(conf->tmppage); 2036 kfree(conf->poolinfo); 2037 kfree(conf); 2038 mddev->private = NULL; 2039 } 2040 out: 2041 return -EIO; 2042 } 2043 2044 static int stop(mddev_t *mddev) 2045 { 2046 conf_t *conf = mddev_to_conf(mddev); 2047 struct bitmap *bitmap = mddev->bitmap; 2048 int behind_wait = 0; 2049 2050 /* wait for behind writes to complete */ 2051 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2052 behind_wait++; 2053 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2054 set_current_state(TASK_UNINTERRUPTIBLE); 2055 schedule_timeout(HZ); /* wait a second */ 2056 /* need to kick something here to make sure I/O goes? */ 2057 } 2058 2059 md_unregister_thread(mddev->thread); 2060 mddev->thread = NULL; 2061 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2062 if (conf->r1bio_pool) 2063 mempool_destroy(conf->r1bio_pool); 2064 kfree(conf->mirrors); 2065 kfree(conf->poolinfo); 2066 kfree(conf); 2067 mddev->private = NULL; 2068 return 0; 2069 } 2070 2071 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2072 { 2073 /* no resync is happening, and there is enough space 2074 * on all devices, so we can resize. 2075 * We need to make sure resync covers any new space. 2076 * If the array is shrinking we should possibly wait until 2077 * any io in the removed space completes, but it hardly seems 2078 * worth it. 2079 */ 2080 mddev->array_size = sectors>>1; 2081 set_capacity(mddev->gendisk, mddev->array_size << 1); 2082 mddev->changed = 1; 2083 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 2084 mddev->recovery_cp = mddev->size << 1; 2085 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2086 } 2087 mddev->size = mddev->array_size; 2088 mddev->resync_max_sectors = sectors; 2089 return 0; 2090 } 2091 2092 static int raid1_reshape(mddev_t *mddev) 2093 { 2094 /* We need to: 2095 * 1/ resize the r1bio_pool 2096 * 2/ resize conf->mirrors 2097 * 2098 * We allocate a new r1bio_pool if we can. 2099 * Then raise a device barrier and wait until all IO stops. 2100 * Then resize conf->mirrors and swap in the new r1bio pool. 2101 * 2102 * At the same time, we "pack" the devices so that all the missing 2103 * devices have the higher raid_disk numbers. 2104 */ 2105 mempool_t *newpool, *oldpool; 2106 struct pool_info *newpoolinfo; 2107 mirror_info_t *newmirrors; 2108 conf_t *conf = mddev_to_conf(mddev); 2109 int cnt, raid_disks; 2110 unsigned long flags; 2111 int d, d2; 2112 2113 /* Cannot change chunk_size, layout, or level */ 2114 if (mddev->chunk_size != mddev->new_chunk || 2115 mddev->layout != mddev->new_layout || 2116 mddev->level != mddev->new_level) { 2117 mddev->new_chunk = mddev->chunk_size; 2118 mddev->new_layout = mddev->layout; 2119 mddev->new_level = mddev->level; 2120 return -EINVAL; 2121 } 2122 2123 md_allow_write(mddev); 2124 2125 raid_disks = mddev->raid_disks + mddev->delta_disks; 2126 2127 if (raid_disks < conf->raid_disks) { 2128 cnt=0; 2129 for (d= 0; d < conf->raid_disks; d++) 2130 if (conf->mirrors[d].rdev) 2131 cnt++; 2132 if (cnt > raid_disks) 2133 return -EBUSY; 2134 } 2135 2136 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2137 if (!newpoolinfo) 2138 return -ENOMEM; 2139 newpoolinfo->mddev = mddev; 2140 newpoolinfo->raid_disks = raid_disks; 2141 2142 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2143 r1bio_pool_free, newpoolinfo); 2144 if (!newpool) { 2145 kfree(newpoolinfo); 2146 return -ENOMEM; 2147 } 2148 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2149 if (!newmirrors) { 2150 kfree(newpoolinfo); 2151 mempool_destroy(newpool); 2152 return -ENOMEM; 2153 } 2154 2155 raise_barrier(conf); 2156 2157 /* ok, everything is stopped */ 2158 oldpool = conf->r1bio_pool; 2159 conf->r1bio_pool = newpool; 2160 2161 for (d = d2 = 0; d < conf->raid_disks; d++) { 2162 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2163 if (rdev && rdev->raid_disk != d2) { 2164 char nm[20]; 2165 sprintf(nm, "rd%d", rdev->raid_disk); 2166 sysfs_remove_link(&mddev->kobj, nm); 2167 rdev->raid_disk = d2; 2168 sprintf(nm, "rd%d", rdev->raid_disk); 2169 sysfs_remove_link(&mddev->kobj, nm); 2170 if (sysfs_create_link(&mddev->kobj, 2171 &rdev->kobj, nm)) 2172 printk(KERN_WARNING 2173 "md/raid1: cannot register " 2174 "%s for %s\n", 2175 nm, mdname(mddev)); 2176 } 2177 if (rdev) 2178 newmirrors[d2++].rdev = rdev; 2179 } 2180 kfree(conf->mirrors); 2181 conf->mirrors = newmirrors; 2182 kfree(conf->poolinfo); 2183 conf->poolinfo = newpoolinfo; 2184 2185 spin_lock_irqsave(&conf->device_lock, flags); 2186 mddev->degraded += (raid_disks - conf->raid_disks); 2187 spin_unlock_irqrestore(&conf->device_lock, flags); 2188 conf->raid_disks = mddev->raid_disks = raid_disks; 2189 mddev->delta_disks = 0; 2190 2191 conf->last_used = 0; /* just make sure it is in-range */ 2192 lower_barrier(conf); 2193 2194 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2195 md_wakeup_thread(mddev->thread); 2196 2197 mempool_destroy(oldpool); 2198 return 0; 2199 } 2200 2201 static void raid1_quiesce(mddev_t *mddev, int state) 2202 { 2203 conf_t *conf = mddev_to_conf(mddev); 2204 2205 switch(state) { 2206 case 1: 2207 raise_barrier(conf); 2208 break; 2209 case 0: 2210 lower_barrier(conf); 2211 break; 2212 } 2213 } 2214 2215 2216 static struct mdk_personality raid1_personality = 2217 { 2218 .name = "raid1", 2219 .level = 1, 2220 .owner = THIS_MODULE, 2221 .make_request = make_request, 2222 .run = run, 2223 .stop = stop, 2224 .status = status, 2225 .error_handler = error, 2226 .hot_add_disk = raid1_add_disk, 2227 .hot_remove_disk= raid1_remove_disk, 2228 .spare_active = raid1_spare_active, 2229 .sync_request = sync_request, 2230 .resize = raid1_resize, 2231 .check_reshape = raid1_reshape, 2232 .quiesce = raid1_quiesce, 2233 }; 2234 2235 static int __init raid_init(void) 2236 { 2237 return register_md_personality(&raid1_personality); 2238 } 2239 2240 static void raid_exit(void) 2241 { 2242 unregister_md_personality(&raid1_personality); 2243 } 2244 2245 module_init(raid_init); 2246 module_exit(raid_exit); 2247 MODULE_LICENSE("GPL"); 2248 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2249 MODULE_ALIAS("md-raid1"); 2250 MODULE_ALIAS("md-level-1"); 2251