1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* When there are this many requests queue to be written by 50 * the raid1 thread, we become 'congested' to provide back-pressure 51 * for writeback. 52 */ 53 static int max_queued_requests = 1024; 54 55 static void allow_barrier(struct r1conf *conf); 56 static void lower_barrier(struct r1conf *conf); 57 58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 59 { 60 struct pool_info *pi = data; 61 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 62 63 /* allocate a r1bio with room for raid_disks entries in the bios array */ 64 return kzalloc(size, gfp_flags); 65 } 66 67 static void r1bio_pool_free(void *r1_bio, void *data) 68 { 69 kfree(r1_bio); 70 } 71 72 #define RESYNC_BLOCK_SIZE (64*1024) 73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 76 #define RESYNC_WINDOW (2048*1024) 77 78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 79 { 80 struct pool_info *pi = data; 81 struct page *page; 82 struct r1bio *r1_bio; 83 struct bio *bio; 84 int i, j; 85 86 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 87 if (!r1_bio) 88 return NULL; 89 90 /* 91 * Allocate bios : 1 for reading, n-1 for writing 92 */ 93 for (j = pi->raid_disks ; j-- ; ) { 94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 95 if (!bio) 96 goto out_free_bio; 97 r1_bio->bios[j] = bio; 98 } 99 /* 100 * Allocate RESYNC_PAGES data pages and attach them to 101 * the first bio. 102 * If this is a user-requested check/repair, allocate 103 * RESYNC_PAGES for each bio. 104 */ 105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 106 j = pi->raid_disks; 107 else 108 j = 1; 109 while(j--) { 110 bio = r1_bio->bios[j]; 111 for (i = 0; i < RESYNC_PAGES; i++) { 112 page = alloc_page(gfp_flags); 113 if (unlikely(!page)) 114 goto out_free_pages; 115 116 bio->bi_io_vec[i].bv_page = page; 117 bio->bi_vcnt = i+1; 118 } 119 } 120 /* If not user-requests, copy the page pointers to all bios */ 121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 122 for (i=0; i<RESYNC_PAGES ; i++) 123 for (j=1; j<pi->raid_disks; j++) 124 r1_bio->bios[j]->bi_io_vec[i].bv_page = 125 r1_bio->bios[0]->bi_io_vec[i].bv_page; 126 } 127 128 r1_bio->master_bio = NULL; 129 130 return r1_bio; 131 132 out_free_pages: 133 for (j=0 ; j < pi->raid_disks; j++) 134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 136 j = -1; 137 out_free_bio: 138 while ( ++j < pi->raid_disks ) 139 bio_put(r1_bio->bios[j]); 140 r1bio_pool_free(r1_bio, data); 141 return NULL; 142 } 143 144 static void r1buf_pool_free(void *__r1_bio, void *data) 145 { 146 struct pool_info *pi = data; 147 int i,j; 148 struct r1bio *r1bio = __r1_bio; 149 150 for (i = 0; i < RESYNC_PAGES; i++) 151 for (j = pi->raid_disks; j-- ;) { 152 if (j == 0 || 153 r1bio->bios[j]->bi_io_vec[i].bv_page != 154 r1bio->bios[0]->bi_io_vec[i].bv_page) 155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 156 } 157 for (i=0 ; i < pi->raid_disks; i++) 158 bio_put(r1bio->bios[i]); 159 160 r1bio_pool_free(r1bio, data); 161 } 162 163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 164 { 165 int i; 166 167 for (i = 0; i < conf->raid_disks; i++) { 168 struct bio **bio = r1_bio->bios + i; 169 if (!BIO_SPECIAL(*bio)) 170 bio_put(*bio); 171 *bio = NULL; 172 } 173 } 174 175 static void free_r1bio(struct r1bio *r1_bio) 176 { 177 struct r1conf *conf = r1_bio->mddev->private; 178 179 put_all_bios(conf, r1_bio); 180 mempool_free(r1_bio, conf->r1bio_pool); 181 } 182 183 static void put_buf(struct r1bio *r1_bio) 184 { 185 struct r1conf *conf = r1_bio->mddev->private; 186 int i; 187 188 for (i=0; i<conf->raid_disks; i++) { 189 struct bio *bio = r1_bio->bios[i]; 190 if (bio->bi_end_io) 191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 192 } 193 194 mempool_free(r1_bio, conf->r1buf_pool); 195 196 lower_barrier(conf); 197 } 198 199 static void reschedule_retry(struct r1bio *r1_bio) 200 { 201 unsigned long flags; 202 struct mddev *mddev = r1_bio->mddev; 203 struct r1conf *conf = mddev->private; 204 205 spin_lock_irqsave(&conf->device_lock, flags); 206 list_add(&r1_bio->retry_list, &conf->retry_list); 207 conf->nr_queued ++; 208 spin_unlock_irqrestore(&conf->device_lock, flags); 209 210 wake_up(&conf->wait_barrier); 211 md_wakeup_thread(mddev->thread); 212 } 213 214 /* 215 * raid_end_bio_io() is called when we have finished servicing a mirrored 216 * operation and are ready to return a success/failure code to the buffer 217 * cache layer. 218 */ 219 static void call_bio_endio(struct r1bio *r1_bio) 220 { 221 struct bio *bio = r1_bio->master_bio; 222 int done; 223 struct r1conf *conf = r1_bio->mddev->private; 224 225 if (bio->bi_phys_segments) { 226 unsigned long flags; 227 spin_lock_irqsave(&conf->device_lock, flags); 228 bio->bi_phys_segments--; 229 done = (bio->bi_phys_segments == 0); 230 spin_unlock_irqrestore(&conf->device_lock, flags); 231 } else 232 done = 1; 233 234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 235 clear_bit(BIO_UPTODATE, &bio->bi_flags); 236 if (done) { 237 bio_endio(bio, 0); 238 /* 239 * Wake up any possible resync thread that waits for the device 240 * to go idle. 241 */ 242 allow_barrier(conf); 243 } 244 } 245 246 static void raid_end_bio_io(struct r1bio *r1_bio) 247 { 248 struct bio *bio = r1_bio->master_bio; 249 250 /* if nobody has done the final endio yet, do it now */ 251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 253 (bio_data_dir(bio) == WRITE) ? "write" : "read", 254 (unsigned long long) bio->bi_sector, 255 (unsigned long long) bio->bi_sector + 256 (bio->bi_size >> 9) - 1); 257 258 call_bio_endio(r1_bio); 259 } 260 free_r1bio(r1_bio); 261 } 262 263 /* 264 * Update disk head position estimator based on IRQ completion info. 265 */ 266 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 267 { 268 struct r1conf *conf = r1_bio->mddev->private; 269 270 conf->mirrors[disk].head_position = 271 r1_bio->sector + (r1_bio->sectors); 272 } 273 274 /* 275 * Find the disk number which triggered given bio 276 */ 277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 278 { 279 int mirror; 280 int raid_disks = r1_bio->mddev->raid_disks; 281 282 for (mirror = 0; mirror < raid_disks; mirror++) 283 if (r1_bio->bios[mirror] == bio) 284 break; 285 286 BUG_ON(mirror == raid_disks); 287 update_head_pos(mirror, r1_bio); 288 289 return mirror; 290 } 291 292 static void raid1_end_read_request(struct bio *bio, int error) 293 { 294 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 295 struct r1bio *r1_bio = bio->bi_private; 296 int mirror; 297 struct r1conf *conf = r1_bio->mddev->private; 298 299 mirror = r1_bio->read_disk; 300 /* 301 * this branch is our 'one mirror IO has finished' event handler: 302 */ 303 update_head_pos(mirror, r1_bio); 304 305 if (uptodate) 306 set_bit(R1BIO_Uptodate, &r1_bio->state); 307 else { 308 /* If all other devices have failed, we want to return 309 * the error upwards rather than fail the last device. 310 * Here we redefine "uptodate" to mean "Don't want to retry" 311 */ 312 unsigned long flags; 313 spin_lock_irqsave(&conf->device_lock, flags); 314 if (r1_bio->mddev->degraded == conf->raid_disks || 315 (r1_bio->mddev->degraded == conf->raid_disks-1 && 316 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 317 uptodate = 1; 318 spin_unlock_irqrestore(&conf->device_lock, flags); 319 } 320 321 if (uptodate) 322 raid_end_bio_io(r1_bio); 323 else { 324 /* 325 * oops, read error: 326 */ 327 char b[BDEVNAME_SIZE]; 328 printk_ratelimited( 329 KERN_ERR "md/raid1:%s: %s: " 330 "rescheduling sector %llu\n", 331 mdname(conf->mddev), 332 bdevname(conf->mirrors[mirror].rdev->bdev, 333 b), 334 (unsigned long long)r1_bio->sector); 335 set_bit(R1BIO_ReadError, &r1_bio->state); 336 reschedule_retry(r1_bio); 337 } 338 339 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 340 } 341 342 static void close_write(struct r1bio *r1_bio) 343 { 344 /* it really is the end of this request */ 345 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 346 /* free extra copy of the data pages */ 347 int i = r1_bio->behind_page_count; 348 while (i--) 349 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 350 kfree(r1_bio->behind_bvecs); 351 r1_bio->behind_bvecs = NULL; 352 } 353 /* clear the bitmap if all writes complete successfully */ 354 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 355 r1_bio->sectors, 356 !test_bit(R1BIO_Degraded, &r1_bio->state), 357 test_bit(R1BIO_BehindIO, &r1_bio->state)); 358 md_write_end(r1_bio->mddev); 359 } 360 361 static void r1_bio_write_done(struct r1bio *r1_bio) 362 { 363 if (!atomic_dec_and_test(&r1_bio->remaining)) 364 return; 365 366 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 367 reschedule_retry(r1_bio); 368 else { 369 close_write(r1_bio); 370 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 371 reschedule_retry(r1_bio); 372 else 373 raid_end_bio_io(r1_bio); 374 } 375 } 376 377 static void raid1_end_write_request(struct bio *bio, int error) 378 { 379 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 380 struct r1bio *r1_bio = bio->bi_private; 381 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 382 struct r1conf *conf = r1_bio->mddev->private; 383 struct bio *to_put = NULL; 384 385 mirror = find_bio_disk(r1_bio, bio); 386 387 /* 388 * 'one mirror IO has finished' event handler: 389 */ 390 if (!uptodate) { 391 set_bit(WriteErrorSeen, 392 &conf->mirrors[mirror].rdev->flags); 393 set_bit(R1BIO_WriteError, &r1_bio->state); 394 } else { 395 /* 396 * Set R1BIO_Uptodate in our master bio, so that we 397 * will return a good error code for to the higher 398 * levels even if IO on some other mirrored buffer 399 * fails. 400 * 401 * The 'master' represents the composite IO operation 402 * to user-side. So if something waits for IO, then it 403 * will wait for the 'master' bio. 404 */ 405 sector_t first_bad; 406 int bad_sectors; 407 408 r1_bio->bios[mirror] = NULL; 409 to_put = bio; 410 set_bit(R1BIO_Uptodate, &r1_bio->state); 411 412 /* Maybe we can clear some bad blocks. */ 413 if (is_badblock(conf->mirrors[mirror].rdev, 414 r1_bio->sector, r1_bio->sectors, 415 &first_bad, &bad_sectors)) { 416 r1_bio->bios[mirror] = IO_MADE_GOOD; 417 set_bit(R1BIO_MadeGood, &r1_bio->state); 418 } 419 } 420 421 if (behind) { 422 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 423 atomic_dec(&r1_bio->behind_remaining); 424 425 /* 426 * In behind mode, we ACK the master bio once the I/O 427 * has safely reached all non-writemostly 428 * disks. Setting the Returned bit ensures that this 429 * gets done only once -- we don't ever want to return 430 * -EIO here, instead we'll wait 431 */ 432 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 433 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 434 /* Maybe we can return now */ 435 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 436 struct bio *mbio = r1_bio->master_bio; 437 pr_debug("raid1: behind end write sectors" 438 " %llu-%llu\n", 439 (unsigned long long) mbio->bi_sector, 440 (unsigned long long) mbio->bi_sector + 441 (mbio->bi_size >> 9) - 1); 442 call_bio_endio(r1_bio); 443 } 444 } 445 } 446 if (r1_bio->bios[mirror] == NULL) 447 rdev_dec_pending(conf->mirrors[mirror].rdev, 448 conf->mddev); 449 450 /* 451 * Let's see if all mirrored write operations have finished 452 * already. 453 */ 454 r1_bio_write_done(r1_bio); 455 456 if (to_put) 457 bio_put(to_put); 458 } 459 460 461 /* 462 * This routine returns the disk from which the requested read should 463 * be done. There is a per-array 'next expected sequential IO' sector 464 * number - if this matches on the next IO then we use the last disk. 465 * There is also a per-disk 'last know head position' sector that is 466 * maintained from IRQ contexts, both the normal and the resync IO 467 * completion handlers update this position correctly. If there is no 468 * perfect sequential match then we pick the disk whose head is closest. 469 * 470 * If there are 2 mirrors in the same 2 devices, performance degrades 471 * because position is mirror, not device based. 472 * 473 * The rdev for the device selected will have nr_pending incremented. 474 */ 475 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 476 { 477 const sector_t this_sector = r1_bio->sector; 478 int sectors; 479 int best_good_sectors; 480 int start_disk; 481 int best_disk; 482 int i; 483 sector_t best_dist; 484 struct md_rdev *rdev; 485 int choose_first; 486 487 rcu_read_lock(); 488 /* 489 * Check if we can balance. We can balance on the whole 490 * device if no resync is going on, or below the resync window. 491 * We take the first readable disk when above the resync window. 492 */ 493 retry: 494 sectors = r1_bio->sectors; 495 best_disk = -1; 496 best_dist = MaxSector; 497 best_good_sectors = 0; 498 499 if (conf->mddev->recovery_cp < MaxSector && 500 (this_sector + sectors >= conf->next_resync)) { 501 choose_first = 1; 502 start_disk = 0; 503 } else { 504 choose_first = 0; 505 start_disk = conf->last_used; 506 } 507 508 for (i = 0 ; i < conf->raid_disks ; i++) { 509 sector_t dist; 510 sector_t first_bad; 511 int bad_sectors; 512 513 int disk = start_disk + i; 514 if (disk >= conf->raid_disks) 515 disk -= conf->raid_disks; 516 517 rdev = rcu_dereference(conf->mirrors[disk].rdev); 518 if (r1_bio->bios[disk] == IO_BLOCKED 519 || rdev == NULL 520 || test_bit(Faulty, &rdev->flags)) 521 continue; 522 if (!test_bit(In_sync, &rdev->flags) && 523 rdev->recovery_offset < this_sector + sectors) 524 continue; 525 if (test_bit(WriteMostly, &rdev->flags)) { 526 /* Don't balance among write-mostly, just 527 * use the first as a last resort */ 528 if (best_disk < 0) 529 best_disk = disk; 530 continue; 531 } 532 /* This is a reasonable device to use. It might 533 * even be best. 534 */ 535 if (is_badblock(rdev, this_sector, sectors, 536 &first_bad, &bad_sectors)) { 537 if (best_dist < MaxSector) 538 /* already have a better device */ 539 continue; 540 if (first_bad <= this_sector) { 541 /* cannot read here. If this is the 'primary' 542 * device, then we must not read beyond 543 * bad_sectors from another device.. 544 */ 545 bad_sectors -= (this_sector - first_bad); 546 if (choose_first && sectors > bad_sectors) 547 sectors = bad_sectors; 548 if (best_good_sectors > sectors) 549 best_good_sectors = sectors; 550 551 } else { 552 sector_t good_sectors = first_bad - this_sector; 553 if (good_sectors > best_good_sectors) { 554 best_good_sectors = good_sectors; 555 best_disk = disk; 556 } 557 if (choose_first) 558 break; 559 } 560 continue; 561 } else 562 best_good_sectors = sectors; 563 564 dist = abs(this_sector - conf->mirrors[disk].head_position); 565 if (choose_first 566 /* Don't change to another disk for sequential reads */ 567 || conf->next_seq_sect == this_sector 568 || dist == 0 569 /* If device is idle, use it */ 570 || atomic_read(&rdev->nr_pending) == 0) { 571 best_disk = disk; 572 break; 573 } 574 if (dist < best_dist) { 575 best_dist = dist; 576 best_disk = disk; 577 } 578 } 579 580 if (best_disk >= 0) { 581 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 582 if (!rdev) 583 goto retry; 584 atomic_inc(&rdev->nr_pending); 585 if (test_bit(Faulty, &rdev->flags)) { 586 /* cannot risk returning a device that failed 587 * before we inc'ed nr_pending 588 */ 589 rdev_dec_pending(rdev, conf->mddev); 590 goto retry; 591 } 592 sectors = best_good_sectors; 593 conf->next_seq_sect = this_sector + sectors; 594 conf->last_used = best_disk; 595 } 596 rcu_read_unlock(); 597 *max_sectors = sectors; 598 599 return best_disk; 600 } 601 602 int md_raid1_congested(struct mddev *mddev, int bits) 603 { 604 struct r1conf *conf = mddev->private; 605 int i, ret = 0; 606 607 if ((bits & (1 << BDI_async_congested)) && 608 conf->pending_count >= max_queued_requests) 609 return 1; 610 611 rcu_read_lock(); 612 for (i = 0; i < mddev->raid_disks; i++) { 613 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 614 if (rdev && !test_bit(Faulty, &rdev->flags)) { 615 struct request_queue *q = bdev_get_queue(rdev->bdev); 616 617 BUG_ON(!q); 618 619 /* Note the '|| 1' - when read_balance prefers 620 * non-congested targets, it can be removed 621 */ 622 if ((bits & (1<<BDI_async_congested)) || 1) 623 ret |= bdi_congested(&q->backing_dev_info, bits); 624 else 625 ret &= bdi_congested(&q->backing_dev_info, bits); 626 } 627 } 628 rcu_read_unlock(); 629 return ret; 630 } 631 EXPORT_SYMBOL_GPL(md_raid1_congested); 632 633 static int raid1_congested(void *data, int bits) 634 { 635 struct mddev *mddev = data; 636 637 return mddev_congested(mddev, bits) || 638 md_raid1_congested(mddev, bits); 639 } 640 641 static void flush_pending_writes(struct r1conf *conf) 642 { 643 /* Any writes that have been queued but are awaiting 644 * bitmap updates get flushed here. 645 */ 646 spin_lock_irq(&conf->device_lock); 647 648 if (conf->pending_bio_list.head) { 649 struct bio *bio; 650 bio = bio_list_get(&conf->pending_bio_list); 651 conf->pending_count = 0; 652 spin_unlock_irq(&conf->device_lock); 653 /* flush any pending bitmap writes to 654 * disk before proceeding w/ I/O */ 655 bitmap_unplug(conf->mddev->bitmap); 656 wake_up(&conf->wait_barrier); 657 658 while (bio) { /* submit pending writes */ 659 struct bio *next = bio->bi_next; 660 bio->bi_next = NULL; 661 generic_make_request(bio); 662 bio = next; 663 } 664 } else 665 spin_unlock_irq(&conf->device_lock); 666 } 667 668 /* Barriers.... 669 * Sometimes we need to suspend IO while we do something else, 670 * either some resync/recovery, or reconfigure the array. 671 * To do this we raise a 'barrier'. 672 * The 'barrier' is a counter that can be raised multiple times 673 * to count how many activities are happening which preclude 674 * normal IO. 675 * We can only raise the barrier if there is no pending IO. 676 * i.e. if nr_pending == 0. 677 * We choose only to raise the barrier if no-one is waiting for the 678 * barrier to go down. This means that as soon as an IO request 679 * is ready, no other operations which require a barrier will start 680 * until the IO request has had a chance. 681 * 682 * So: regular IO calls 'wait_barrier'. When that returns there 683 * is no backgroup IO happening, It must arrange to call 684 * allow_barrier when it has finished its IO. 685 * backgroup IO calls must call raise_barrier. Once that returns 686 * there is no normal IO happeing. It must arrange to call 687 * lower_barrier when the particular background IO completes. 688 */ 689 #define RESYNC_DEPTH 32 690 691 static void raise_barrier(struct r1conf *conf) 692 { 693 spin_lock_irq(&conf->resync_lock); 694 695 /* Wait until no block IO is waiting */ 696 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 697 conf->resync_lock, ); 698 699 /* block any new IO from starting */ 700 conf->barrier++; 701 702 /* Now wait for all pending IO to complete */ 703 wait_event_lock_irq(conf->wait_barrier, 704 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 705 conf->resync_lock, ); 706 707 spin_unlock_irq(&conf->resync_lock); 708 } 709 710 static void lower_barrier(struct r1conf *conf) 711 { 712 unsigned long flags; 713 BUG_ON(conf->barrier <= 0); 714 spin_lock_irqsave(&conf->resync_lock, flags); 715 conf->barrier--; 716 spin_unlock_irqrestore(&conf->resync_lock, flags); 717 wake_up(&conf->wait_barrier); 718 } 719 720 static void wait_barrier(struct r1conf *conf) 721 { 722 spin_lock_irq(&conf->resync_lock); 723 if (conf->barrier) { 724 conf->nr_waiting++; 725 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 726 conf->resync_lock, 727 ); 728 conf->nr_waiting--; 729 } 730 conf->nr_pending++; 731 spin_unlock_irq(&conf->resync_lock); 732 } 733 734 static void allow_barrier(struct r1conf *conf) 735 { 736 unsigned long flags; 737 spin_lock_irqsave(&conf->resync_lock, flags); 738 conf->nr_pending--; 739 spin_unlock_irqrestore(&conf->resync_lock, flags); 740 wake_up(&conf->wait_barrier); 741 } 742 743 static void freeze_array(struct r1conf *conf) 744 { 745 /* stop syncio and normal IO and wait for everything to 746 * go quite. 747 * We increment barrier and nr_waiting, and then 748 * wait until nr_pending match nr_queued+1 749 * This is called in the context of one normal IO request 750 * that has failed. Thus any sync request that might be pending 751 * will be blocked by nr_pending, and we need to wait for 752 * pending IO requests to complete or be queued for re-try. 753 * Thus the number queued (nr_queued) plus this request (1) 754 * must match the number of pending IOs (nr_pending) before 755 * we continue. 756 */ 757 spin_lock_irq(&conf->resync_lock); 758 conf->barrier++; 759 conf->nr_waiting++; 760 wait_event_lock_irq(conf->wait_barrier, 761 conf->nr_pending == conf->nr_queued+1, 762 conf->resync_lock, 763 flush_pending_writes(conf)); 764 spin_unlock_irq(&conf->resync_lock); 765 } 766 static void unfreeze_array(struct r1conf *conf) 767 { 768 /* reverse the effect of the freeze */ 769 spin_lock_irq(&conf->resync_lock); 770 conf->barrier--; 771 conf->nr_waiting--; 772 wake_up(&conf->wait_barrier); 773 spin_unlock_irq(&conf->resync_lock); 774 } 775 776 777 /* duplicate the data pages for behind I/O 778 */ 779 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 780 { 781 int i; 782 struct bio_vec *bvec; 783 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 784 GFP_NOIO); 785 if (unlikely(!bvecs)) 786 return; 787 788 bio_for_each_segment(bvec, bio, i) { 789 bvecs[i] = *bvec; 790 bvecs[i].bv_page = alloc_page(GFP_NOIO); 791 if (unlikely(!bvecs[i].bv_page)) 792 goto do_sync_io; 793 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 794 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 795 kunmap(bvecs[i].bv_page); 796 kunmap(bvec->bv_page); 797 } 798 r1_bio->behind_bvecs = bvecs; 799 r1_bio->behind_page_count = bio->bi_vcnt; 800 set_bit(R1BIO_BehindIO, &r1_bio->state); 801 return; 802 803 do_sync_io: 804 for (i = 0; i < bio->bi_vcnt; i++) 805 if (bvecs[i].bv_page) 806 put_page(bvecs[i].bv_page); 807 kfree(bvecs); 808 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 809 } 810 811 static void make_request(struct mddev *mddev, struct bio * bio) 812 { 813 struct r1conf *conf = mddev->private; 814 struct mirror_info *mirror; 815 struct r1bio *r1_bio; 816 struct bio *read_bio; 817 int i, disks; 818 struct bitmap *bitmap; 819 unsigned long flags; 820 const int rw = bio_data_dir(bio); 821 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 822 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 823 struct md_rdev *blocked_rdev; 824 int plugged; 825 int first_clone; 826 int sectors_handled; 827 int max_sectors; 828 829 /* 830 * Register the new request and wait if the reconstruction 831 * thread has put up a bar for new requests. 832 * Continue immediately if no resync is active currently. 833 */ 834 835 md_write_start(mddev, bio); /* wait on superblock update early */ 836 837 if (bio_data_dir(bio) == WRITE && 838 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 839 bio->bi_sector < mddev->suspend_hi) { 840 /* As the suspend_* range is controlled by 841 * userspace, we want an interruptible 842 * wait. 843 */ 844 DEFINE_WAIT(w); 845 for (;;) { 846 flush_signals(current); 847 prepare_to_wait(&conf->wait_barrier, 848 &w, TASK_INTERRUPTIBLE); 849 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 850 bio->bi_sector >= mddev->suspend_hi) 851 break; 852 schedule(); 853 } 854 finish_wait(&conf->wait_barrier, &w); 855 } 856 857 wait_barrier(conf); 858 859 bitmap = mddev->bitmap; 860 861 /* 862 * make_request() can abort the operation when READA is being 863 * used and no empty request is available. 864 * 865 */ 866 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 867 868 r1_bio->master_bio = bio; 869 r1_bio->sectors = bio->bi_size >> 9; 870 r1_bio->state = 0; 871 r1_bio->mddev = mddev; 872 r1_bio->sector = bio->bi_sector; 873 874 /* We might need to issue multiple reads to different 875 * devices if there are bad blocks around, so we keep 876 * track of the number of reads in bio->bi_phys_segments. 877 * If this is 0, there is only one r1_bio and no locking 878 * will be needed when requests complete. If it is 879 * non-zero, then it is the number of not-completed requests. 880 */ 881 bio->bi_phys_segments = 0; 882 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 883 884 if (rw == READ) { 885 /* 886 * read balancing logic: 887 */ 888 int rdisk; 889 890 read_again: 891 rdisk = read_balance(conf, r1_bio, &max_sectors); 892 893 if (rdisk < 0) { 894 /* couldn't find anywhere to read from */ 895 raid_end_bio_io(r1_bio); 896 return; 897 } 898 mirror = conf->mirrors + rdisk; 899 900 if (test_bit(WriteMostly, &mirror->rdev->flags) && 901 bitmap) { 902 /* Reading from a write-mostly device must 903 * take care not to over-take any writes 904 * that are 'behind' 905 */ 906 wait_event(bitmap->behind_wait, 907 atomic_read(&bitmap->behind_writes) == 0); 908 } 909 r1_bio->read_disk = rdisk; 910 911 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 912 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 913 max_sectors); 914 915 r1_bio->bios[rdisk] = read_bio; 916 917 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 918 read_bio->bi_bdev = mirror->rdev->bdev; 919 read_bio->bi_end_io = raid1_end_read_request; 920 read_bio->bi_rw = READ | do_sync; 921 read_bio->bi_private = r1_bio; 922 923 if (max_sectors < r1_bio->sectors) { 924 /* could not read all from this device, so we will 925 * need another r1_bio. 926 */ 927 928 sectors_handled = (r1_bio->sector + max_sectors 929 - bio->bi_sector); 930 r1_bio->sectors = max_sectors; 931 spin_lock_irq(&conf->device_lock); 932 if (bio->bi_phys_segments == 0) 933 bio->bi_phys_segments = 2; 934 else 935 bio->bi_phys_segments++; 936 spin_unlock_irq(&conf->device_lock); 937 /* Cannot call generic_make_request directly 938 * as that will be queued in __make_request 939 * and subsequent mempool_alloc might block waiting 940 * for it. So hand bio over to raid1d. 941 */ 942 reschedule_retry(r1_bio); 943 944 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 945 946 r1_bio->master_bio = bio; 947 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 948 r1_bio->state = 0; 949 r1_bio->mddev = mddev; 950 r1_bio->sector = bio->bi_sector + sectors_handled; 951 goto read_again; 952 } else 953 generic_make_request(read_bio); 954 return; 955 } 956 957 /* 958 * WRITE: 959 */ 960 if (conf->pending_count >= max_queued_requests) { 961 md_wakeup_thread(mddev->thread); 962 wait_event(conf->wait_barrier, 963 conf->pending_count < max_queued_requests); 964 } 965 /* first select target devices under rcu_lock and 966 * inc refcount on their rdev. Record them by setting 967 * bios[x] to bio 968 * If there are known/acknowledged bad blocks on any device on 969 * which we have seen a write error, we want to avoid writing those 970 * blocks. 971 * This potentially requires several writes to write around 972 * the bad blocks. Each set of writes gets it's own r1bio 973 * with a set of bios attached. 974 */ 975 plugged = mddev_check_plugged(mddev); 976 977 disks = conf->raid_disks; 978 retry_write: 979 blocked_rdev = NULL; 980 rcu_read_lock(); 981 max_sectors = r1_bio->sectors; 982 for (i = 0; i < disks; i++) { 983 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 984 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 985 atomic_inc(&rdev->nr_pending); 986 blocked_rdev = rdev; 987 break; 988 } 989 r1_bio->bios[i] = NULL; 990 if (!rdev || test_bit(Faulty, &rdev->flags)) { 991 set_bit(R1BIO_Degraded, &r1_bio->state); 992 continue; 993 } 994 995 atomic_inc(&rdev->nr_pending); 996 if (test_bit(WriteErrorSeen, &rdev->flags)) { 997 sector_t first_bad; 998 int bad_sectors; 999 int is_bad; 1000 1001 is_bad = is_badblock(rdev, r1_bio->sector, 1002 max_sectors, 1003 &first_bad, &bad_sectors); 1004 if (is_bad < 0) { 1005 /* mustn't write here until the bad block is 1006 * acknowledged*/ 1007 set_bit(BlockedBadBlocks, &rdev->flags); 1008 blocked_rdev = rdev; 1009 break; 1010 } 1011 if (is_bad && first_bad <= r1_bio->sector) { 1012 /* Cannot write here at all */ 1013 bad_sectors -= (r1_bio->sector - first_bad); 1014 if (bad_sectors < max_sectors) 1015 /* mustn't write more than bad_sectors 1016 * to other devices yet 1017 */ 1018 max_sectors = bad_sectors; 1019 rdev_dec_pending(rdev, mddev); 1020 /* We don't set R1BIO_Degraded as that 1021 * only applies if the disk is 1022 * missing, so it might be re-added, 1023 * and we want to know to recover this 1024 * chunk. 1025 * In this case the device is here, 1026 * and the fact that this chunk is not 1027 * in-sync is recorded in the bad 1028 * block log 1029 */ 1030 continue; 1031 } 1032 if (is_bad) { 1033 int good_sectors = first_bad - r1_bio->sector; 1034 if (good_sectors < max_sectors) 1035 max_sectors = good_sectors; 1036 } 1037 } 1038 r1_bio->bios[i] = bio; 1039 } 1040 rcu_read_unlock(); 1041 1042 if (unlikely(blocked_rdev)) { 1043 /* Wait for this device to become unblocked */ 1044 int j; 1045 1046 for (j = 0; j < i; j++) 1047 if (r1_bio->bios[j]) 1048 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1049 r1_bio->state = 0; 1050 allow_barrier(conf); 1051 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1052 wait_barrier(conf); 1053 goto retry_write; 1054 } 1055 1056 if (max_sectors < r1_bio->sectors) { 1057 /* We are splitting this write into multiple parts, so 1058 * we need to prepare for allocating another r1_bio. 1059 */ 1060 r1_bio->sectors = max_sectors; 1061 spin_lock_irq(&conf->device_lock); 1062 if (bio->bi_phys_segments == 0) 1063 bio->bi_phys_segments = 2; 1064 else 1065 bio->bi_phys_segments++; 1066 spin_unlock_irq(&conf->device_lock); 1067 } 1068 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1069 1070 atomic_set(&r1_bio->remaining, 1); 1071 atomic_set(&r1_bio->behind_remaining, 0); 1072 1073 first_clone = 1; 1074 for (i = 0; i < disks; i++) { 1075 struct bio *mbio; 1076 if (!r1_bio->bios[i]) 1077 continue; 1078 1079 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1080 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1081 1082 if (first_clone) { 1083 /* do behind I/O ? 1084 * Not if there are too many, or cannot 1085 * allocate memory, or a reader on WriteMostly 1086 * is waiting for behind writes to flush */ 1087 if (bitmap && 1088 (atomic_read(&bitmap->behind_writes) 1089 < mddev->bitmap_info.max_write_behind) && 1090 !waitqueue_active(&bitmap->behind_wait)) 1091 alloc_behind_pages(mbio, r1_bio); 1092 1093 bitmap_startwrite(bitmap, r1_bio->sector, 1094 r1_bio->sectors, 1095 test_bit(R1BIO_BehindIO, 1096 &r1_bio->state)); 1097 first_clone = 0; 1098 } 1099 if (r1_bio->behind_bvecs) { 1100 struct bio_vec *bvec; 1101 int j; 1102 1103 /* Yes, I really want the '__' version so that 1104 * we clear any unused pointer in the io_vec, rather 1105 * than leave them unchanged. This is important 1106 * because when we come to free the pages, we won't 1107 * know the original bi_idx, so we just free 1108 * them all 1109 */ 1110 __bio_for_each_segment(bvec, mbio, j, 0) 1111 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1112 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1113 atomic_inc(&r1_bio->behind_remaining); 1114 } 1115 1116 r1_bio->bios[i] = mbio; 1117 1118 mbio->bi_sector = (r1_bio->sector + 1119 conf->mirrors[i].rdev->data_offset); 1120 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1121 mbio->bi_end_io = raid1_end_write_request; 1122 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 1123 mbio->bi_private = r1_bio; 1124 1125 atomic_inc(&r1_bio->remaining); 1126 spin_lock_irqsave(&conf->device_lock, flags); 1127 bio_list_add(&conf->pending_bio_list, mbio); 1128 conf->pending_count++; 1129 spin_unlock_irqrestore(&conf->device_lock, flags); 1130 } 1131 /* Mustn't call r1_bio_write_done before this next test, 1132 * as it could result in the bio being freed. 1133 */ 1134 if (sectors_handled < (bio->bi_size >> 9)) { 1135 r1_bio_write_done(r1_bio); 1136 /* We need another r1_bio. It has already been counted 1137 * in bio->bi_phys_segments 1138 */ 1139 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1140 r1_bio->master_bio = bio; 1141 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1142 r1_bio->state = 0; 1143 r1_bio->mddev = mddev; 1144 r1_bio->sector = bio->bi_sector + sectors_handled; 1145 goto retry_write; 1146 } 1147 1148 r1_bio_write_done(r1_bio); 1149 1150 /* In case raid1d snuck in to freeze_array */ 1151 wake_up(&conf->wait_barrier); 1152 1153 if (do_sync || !bitmap || !plugged) 1154 md_wakeup_thread(mddev->thread); 1155 } 1156 1157 static void status(struct seq_file *seq, struct mddev *mddev) 1158 { 1159 struct r1conf *conf = mddev->private; 1160 int i; 1161 1162 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1163 conf->raid_disks - mddev->degraded); 1164 rcu_read_lock(); 1165 for (i = 0; i < conf->raid_disks; i++) { 1166 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1167 seq_printf(seq, "%s", 1168 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1169 } 1170 rcu_read_unlock(); 1171 seq_printf(seq, "]"); 1172 } 1173 1174 1175 static void error(struct mddev *mddev, struct md_rdev *rdev) 1176 { 1177 char b[BDEVNAME_SIZE]; 1178 struct r1conf *conf = mddev->private; 1179 1180 /* 1181 * If it is not operational, then we have already marked it as dead 1182 * else if it is the last working disks, ignore the error, let the 1183 * next level up know. 1184 * else mark the drive as failed 1185 */ 1186 if (test_bit(In_sync, &rdev->flags) 1187 && (conf->raid_disks - mddev->degraded) == 1) { 1188 /* 1189 * Don't fail the drive, act as though we were just a 1190 * normal single drive. 1191 * However don't try a recovery from this drive as 1192 * it is very likely to fail. 1193 */ 1194 conf->recovery_disabled = mddev->recovery_disabled; 1195 return; 1196 } 1197 set_bit(Blocked, &rdev->flags); 1198 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1199 unsigned long flags; 1200 spin_lock_irqsave(&conf->device_lock, flags); 1201 mddev->degraded++; 1202 set_bit(Faulty, &rdev->flags); 1203 spin_unlock_irqrestore(&conf->device_lock, flags); 1204 /* 1205 * if recovery is running, make sure it aborts. 1206 */ 1207 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1208 } else 1209 set_bit(Faulty, &rdev->flags); 1210 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1211 printk(KERN_ALERT 1212 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1213 "md/raid1:%s: Operation continuing on %d devices.\n", 1214 mdname(mddev), bdevname(rdev->bdev, b), 1215 mdname(mddev), conf->raid_disks - mddev->degraded); 1216 } 1217 1218 static void print_conf(struct r1conf *conf) 1219 { 1220 int i; 1221 1222 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1223 if (!conf) { 1224 printk(KERN_DEBUG "(!conf)\n"); 1225 return; 1226 } 1227 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1228 conf->raid_disks); 1229 1230 rcu_read_lock(); 1231 for (i = 0; i < conf->raid_disks; i++) { 1232 char b[BDEVNAME_SIZE]; 1233 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1234 if (rdev) 1235 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1236 i, !test_bit(In_sync, &rdev->flags), 1237 !test_bit(Faulty, &rdev->flags), 1238 bdevname(rdev->bdev,b)); 1239 } 1240 rcu_read_unlock(); 1241 } 1242 1243 static void close_sync(struct r1conf *conf) 1244 { 1245 wait_barrier(conf); 1246 allow_barrier(conf); 1247 1248 mempool_destroy(conf->r1buf_pool); 1249 conf->r1buf_pool = NULL; 1250 } 1251 1252 static int raid1_spare_active(struct mddev *mddev) 1253 { 1254 int i; 1255 struct r1conf *conf = mddev->private; 1256 int count = 0; 1257 unsigned long flags; 1258 1259 /* 1260 * Find all failed disks within the RAID1 configuration 1261 * and mark them readable. 1262 * Called under mddev lock, so rcu protection not needed. 1263 */ 1264 for (i = 0; i < conf->raid_disks; i++) { 1265 struct md_rdev *rdev = conf->mirrors[i].rdev; 1266 if (rdev 1267 && !test_bit(Faulty, &rdev->flags) 1268 && !test_and_set_bit(In_sync, &rdev->flags)) { 1269 count++; 1270 sysfs_notify_dirent_safe(rdev->sysfs_state); 1271 } 1272 } 1273 spin_lock_irqsave(&conf->device_lock, flags); 1274 mddev->degraded -= count; 1275 spin_unlock_irqrestore(&conf->device_lock, flags); 1276 1277 print_conf(conf); 1278 return count; 1279 } 1280 1281 1282 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1283 { 1284 struct r1conf *conf = mddev->private; 1285 int err = -EEXIST; 1286 int mirror = 0; 1287 struct mirror_info *p; 1288 int first = 0; 1289 int last = mddev->raid_disks - 1; 1290 1291 if (mddev->recovery_disabled == conf->recovery_disabled) 1292 return -EBUSY; 1293 1294 if (rdev->raid_disk >= 0) 1295 first = last = rdev->raid_disk; 1296 1297 for (mirror = first; mirror <= last; mirror++) 1298 if ( !(p=conf->mirrors+mirror)->rdev) { 1299 1300 disk_stack_limits(mddev->gendisk, rdev->bdev, 1301 rdev->data_offset << 9); 1302 /* as we don't honour merge_bvec_fn, we must 1303 * never risk violating it, so limit 1304 * ->max_segments to one lying with a single 1305 * page, as a one page request is never in 1306 * violation. 1307 */ 1308 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1309 blk_queue_max_segments(mddev->queue, 1); 1310 blk_queue_segment_boundary(mddev->queue, 1311 PAGE_CACHE_SIZE - 1); 1312 } 1313 1314 p->head_position = 0; 1315 rdev->raid_disk = mirror; 1316 err = 0; 1317 /* As all devices are equivalent, we don't need a full recovery 1318 * if this was recently any drive of the array 1319 */ 1320 if (rdev->saved_raid_disk < 0) 1321 conf->fullsync = 1; 1322 rcu_assign_pointer(p->rdev, rdev); 1323 break; 1324 } 1325 md_integrity_add_rdev(rdev, mddev); 1326 print_conf(conf); 1327 return err; 1328 } 1329 1330 static int raid1_remove_disk(struct mddev *mddev, int number) 1331 { 1332 struct r1conf *conf = mddev->private; 1333 int err = 0; 1334 struct md_rdev *rdev; 1335 struct mirror_info *p = conf->mirrors+ number; 1336 1337 print_conf(conf); 1338 rdev = p->rdev; 1339 if (rdev) { 1340 if (test_bit(In_sync, &rdev->flags) || 1341 atomic_read(&rdev->nr_pending)) { 1342 err = -EBUSY; 1343 goto abort; 1344 } 1345 /* Only remove non-faulty devices if recovery 1346 * is not possible. 1347 */ 1348 if (!test_bit(Faulty, &rdev->flags) && 1349 mddev->recovery_disabled != conf->recovery_disabled && 1350 mddev->degraded < conf->raid_disks) { 1351 err = -EBUSY; 1352 goto abort; 1353 } 1354 p->rdev = NULL; 1355 synchronize_rcu(); 1356 if (atomic_read(&rdev->nr_pending)) { 1357 /* lost the race, try later */ 1358 err = -EBUSY; 1359 p->rdev = rdev; 1360 goto abort; 1361 } 1362 err = md_integrity_register(mddev); 1363 } 1364 abort: 1365 1366 print_conf(conf); 1367 return err; 1368 } 1369 1370 1371 static void end_sync_read(struct bio *bio, int error) 1372 { 1373 struct r1bio *r1_bio = bio->bi_private; 1374 1375 update_head_pos(r1_bio->read_disk, r1_bio); 1376 1377 /* 1378 * we have read a block, now it needs to be re-written, 1379 * or re-read if the read failed. 1380 * We don't do much here, just schedule handling by raid1d 1381 */ 1382 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1383 set_bit(R1BIO_Uptodate, &r1_bio->state); 1384 1385 if (atomic_dec_and_test(&r1_bio->remaining)) 1386 reschedule_retry(r1_bio); 1387 } 1388 1389 static void end_sync_write(struct bio *bio, int error) 1390 { 1391 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1392 struct r1bio *r1_bio = bio->bi_private; 1393 struct mddev *mddev = r1_bio->mddev; 1394 struct r1conf *conf = mddev->private; 1395 int mirror=0; 1396 sector_t first_bad; 1397 int bad_sectors; 1398 1399 mirror = find_bio_disk(r1_bio, bio); 1400 1401 if (!uptodate) { 1402 sector_t sync_blocks = 0; 1403 sector_t s = r1_bio->sector; 1404 long sectors_to_go = r1_bio->sectors; 1405 /* make sure these bits doesn't get cleared. */ 1406 do { 1407 bitmap_end_sync(mddev->bitmap, s, 1408 &sync_blocks, 1); 1409 s += sync_blocks; 1410 sectors_to_go -= sync_blocks; 1411 } while (sectors_to_go > 0); 1412 set_bit(WriteErrorSeen, 1413 &conf->mirrors[mirror].rdev->flags); 1414 set_bit(R1BIO_WriteError, &r1_bio->state); 1415 } else if (is_badblock(conf->mirrors[mirror].rdev, 1416 r1_bio->sector, 1417 r1_bio->sectors, 1418 &first_bad, &bad_sectors) && 1419 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1420 r1_bio->sector, 1421 r1_bio->sectors, 1422 &first_bad, &bad_sectors) 1423 ) 1424 set_bit(R1BIO_MadeGood, &r1_bio->state); 1425 1426 if (atomic_dec_and_test(&r1_bio->remaining)) { 1427 int s = r1_bio->sectors; 1428 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1429 test_bit(R1BIO_WriteError, &r1_bio->state)) 1430 reschedule_retry(r1_bio); 1431 else { 1432 put_buf(r1_bio); 1433 md_done_sync(mddev, s, uptodate); 1434 } 1435 } 1436 } 1437 1438 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1439 int sectors, struct page *page, int rw) 1440 { 1441 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1442 /* success */ 1443 return 1; 1444 if (rw == WRITE) 1445 set_bit(WriteErrorSeen, &rdev->flags); 1446 /* need to record an error - either for the block or the device */ 1447 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1448 md_error(rdev->mddev, rdev); 1449 return 0; 1450 } 1451 1452 static int fix_sync_read_error(struct r1bio *r1_bio) 1453 { 1454 /* Try some synchronous reads of other devices to get 1455 * good data, much like with normal read errors. Only 1456 * read into the pages we already have so we don't 1457 * need to re-issue the read request. 1458 * We don't need to freeze the array, because being in an 1459 * active sync request, there is no normal IO, and 1460 * no overlapping syncs. 1461 * We don't need to check is_badblock() again as we 1462 * made sure that anything with a bad block in range 1463 * will have bi_end_io clear. 1464 */ 1465 struct mddev *mddev = r1_bio->mddev; 1466 struct r1conf *conf = mddev->private; 1467 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1468 sector_t sect = r1_bio->sector; 1469 int sectors = r1_bio->sectors; 1470 int idx = 0; 1471 1472 while(sectors) { 1473 int s = sectors; 1474 int d = r1_bio->read_disk; 1475 int success = 0; 1476 struct md_rdev *rdev; 1477 int start; 1478 1479 if (s > (PAGE_SIZE>>9)) 1480 s = PAGE_SIZE >> 9; 1481 do { 1482 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1483 /* No rcu protection needed here devices 1484 * can only be removed when no resync is 1485 * active, and resync is currently active 1486 */ 1487 rdev = conf->mirrors[d].rdev; 1488 if (sync_page_io(rdev, sect, s<<9, 1489 bio->bi_io_vec[idx].bv_page, 1490 READ, false)) { 1491 success = 1; 1492 break; 1493 } 1494 } 1495 d++; 1496 if (d == conf->raid_disks) 1497 d = 0; 1498 } while (!success && d != r1_bio->read_disk); 1499 1500 if (!success) { 1501 char b[BDEVNAME_SIZE]; 1502 int abort = 0; 1503 /* Cannot read from anywhere, this block is lost. 1504 * Record a bad block on each device. If that doesn't 1505 * work just disable and interrupt the recovery. 1506 * Don't fail devices as that won't really help. 1507 */ 1508 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1509 " for block %llu\n", 1510 mdname(mddev), 1511 bdevname(bio->bi_bdev, b), 1512 (unsigned long long)r1_bio->sector); 1513 for (d = 0; d < conf->raid_disks; d++) { 1514 rdev = conf->mirrors[d].rdev; 1515 if (!rdev || test_bit(Faulty, &rdev->flags)) 1516 continue; 1517 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1518 abort = 1; 1519 } 1520 if (abort) { 1521 conf->recovery_disabled = 1522 mddev->recovery_disabled; 1523 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1524 md_done_sync(mddev, r1_bio->sectors, 0); 1525 put_buf(r1_bio); 1526 return 0; 1527 } 1528 /* Try next page */ 1529 sectors -= s; 1530 sect += s; 1531 idx++; 1532 continue; 1533 } 1534 1535 start = d; 1536 /* write it back and re-read */ 1537 while (d != r1_bio->read_disk) { 1538 if (d == 0) 1539 d = conf->raid_disks; 1540 d--; 1541 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1542 continue; 1543 rdev = conf->mirrors[d].rdev; 1544 if (r1_sync_page_io(rdev, sect, s, 1545 bio->bi_io_vec[idx].bv_page, 1546 WRITE) == 0) { 1547 r1_bio->bios[d]->bi_end_io = NULL; 1548 rdev_dec_pending(rdev, mddev); 1549 } 1550 } 1551 d = start; 1552 while (d != r1_bio->read_disk) { 1553 if (d == 0) 1554 d = conf->raid_disks; 1555 d--; 1556 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1557 continue; 1558 rdev = conf->mirrors[d].rdev; 1559 if (r1_sync_page_io(rdev, sect, s, 1560 bio->bi_io_vec[idx].bv_page, 1561 READ) != 0) 1562 atomic_add(s, &rdev->corrected_errors); 1563 } 1564 sectors -= s; 1565 sect += s; 1566 idx ++; 1567 } 1568 set_bit(R1BIO_Uptodate, &r1_bio->state); 1569 set_bit(BIO_UPTODATE, &bio->bi_flags); 1570 return 1; 1571 } 1572 1573 static int process_checks(struct r1bio *r1_bio) 1574 { 1575 /* We have read all readable devices. If we haven't 1576 * got the block, then there is no hope left. 1577 * If we have, then we want to do a comparison 1578 * and skip the write if everything is the same. 1579 * If any blocks failed to read, then we need to 1580 * attempt an over-write 1581 */ 1582 struct mddev *mddev = r1_bio->mddev; 1583 struct r1conf *conf = mddev->private; 1584 int primary; 1585 int i; 1586 1587 for (primary = 0; primary < conf->raid_disks; primary++) 1588 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1589 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1590 r1_bio->bios[primary]->bi_end_io = NULL; 1591 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1592 break; 1593 } 1594 r1_bio->read_disk = primary; 1595 for (i = 0; i < conf->raid_disks; i++) { 1596 int j; 1597 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1598 struct bio *pbio = r1_bio->bios[primary]; 1599 struct bio *sbio = r1_bio->bios[i]; 1600 int size; 1601 1602 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1603 continue; 1604 1605 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1606 for (j = vcnt; j-- ; ) { 1607 struct page *p, *s; 1608 p = pbio->bi_io_vec[j].bv_page; 1609 s = sbio->bi_io_vec[j].bv_page; 1610 if (memcmp(page_address(p), 1611 page_address(s), 1612 PAGE_SIZE)) 1613 break; 1614 } 1615 } else 1616 j = 0; 1617 if (j >= 0) 1618 mddev->resync_mismatches += r1_bio->sectors; 1619 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1620 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1621 /* No need to write to this device. */ 1622 sbio->bi_end_io = NULL; 1623 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1624 continue; 1625 } 1626 /* fixup the bio for reuse */ 1627 sbio->bi_vcnt = vcnt; 1628 sbio->bi_size = r1_bio->sectors << 9; 1629 sbio->bi_idx = 0; 1630 sbio->bi_phys_segments = 0; 1631 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1632 sbio->bi_flags |= 1 << BIO_UPTODATE; 1633 sbio->bi_next = NULL; 1634 sbio->bi_sector = r1_bio->sector + 1635 conf->mirrors[i].rdev->data_offset; 1636 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1637 size = sbio->bi_size; 1638 for (j = 0; j < vcnt ; j++) { 1639 struct bio_vec *bi; 1640 bi = &sbio->bi_io_vec[j]; 1641 bi->bv_offset = 0; 1642 if (size > PAGE_SIZE) 1643 bi->bv_len = PAGE_SIZE; 1644 else 1645 bi->bv_len = size; 1646 size -= PAGE_SIZE; 1647 memcpy(page_address(bi->bv_page), 1648 page_address(pbio->bi_io_vec[j].bv_page), 1649 PAGE_SIZE); 1650 } 1651 } 1652 return 0; 1653 } 1654 1655 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1656 { 1657 struct r1conf *conf = mddev->private; 1658 int i; 1659 int disks = conf->raid_disks; 1660 struct bio *bio, *wbio; 1661 1662 bio = r1_bio->bios[r1_bio->read_disk]; 1663 1664 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1665 /* ouch - failed to read all of that. */ 1666 if (!fix_sync_read_error(r1_bio)) 1667 return; 1668 1669 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1670 if (process_checks(r1_bio) < 0) 1671 return; 1672 /* 1673 * schedule writes 1674 */ 1675 atomic_set(&r1_bio->remaining, 1); 1676 for (i = 0; i < disks ; i++) { 1677 wbio = r1_bio->bios[i]; 1678 if (wbio->bi_end_io == NULL || 1679 (wbio->bi_end_io == end_sync_read && 1680 (i == r1_bio->read_disk || 1681 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1682 continue; 1683 1684 wbio->bi_rw = WRITE; 1685 wbio->bi_end_io = end_sync_write; 1686 atomic_inc(&r1_bio->remaining); 1687 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1688 1689 generic_make_request(wbio); 1690 } 1691 1692 if (atomic_dec_and_test(&r1_bio->remaining)) { 1693 /* if we're here, all write(s) have completed, so clean up */ 1694 md_done_sync(mddev, r1_bio->sectors, 1); 1695 put_buf(r1_bio); 1696 } 1697 } 1698 1699 /* 1700 * This is a kernel thread which: 1701 * 1702 * 1. Retries failed read operations on working mirrors. 1703 * 2. Updates the raid superblock when problems encounter. 1704 * 3. Performs writes following reads for array synchronising. 1705 */ 1706 1707 static void fix_read_error(struct r1conf *conf, int read_disk, 1708 sector_t sect, int sectors) 1709 { 1710 struct mddev *mddev = conf->mddev; 1711 while(sectors) { 1712 int s = sectors; 1713 int d = read_disk; 1714 int success = 0; 1715 int start; 1716 struct md_rdev *rdev; 1717 1718 if (s > (PAGE_SIZE>>9)) 1719 s = PAGE_SIZE >> 9; 1720 1721 do { 1722 /* Note: no rcu protection needed here 1723 * as this is synchronous in the raid1d thread 1724 * which is the thread that might remove 1725 * a device. If raid1d ever becomes multi-threaded.... 1726 */ 1727 sector_t first_bad; 1728 int bad_sectors; 1729 1730 rdev = conf->mirrors[d].rdev; 1731 if (rdev && 1732 test_bit(In_sync, &rdev->flags) && 1733 is_badblock(rdev, sect, s, 1734 &first_bad, &bad_sectors) == 0 && 1735 sync_page_io(rdev, sect, s<<9, 1736 conf->tmppage, READ, false)) 1737 success = 1; 1738 else { 1739 d++; 1740 if (d == conf->raid_disks) 1741 d = 0; 1742 } 1743 } while (!success && d != read_disk); 1744 1745 if (!success) { 1746 /* Cannot read from anywhere - mark it bad */ 1747 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 1748 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1749 md_error(mddev, rdev); 1750 break; 1751 } 1752 /* write it back and re-read */ 1753 start = d; 1754 while (d != read_disk) { 1755 if (d==0) 1756 d = conf->raid_disks; 1757 d--; 1758 rdev = conf->mirrors[d].rdev; 1759 if (rdev && 1760 test_bit(In_sync, &rdev->flags)) 1761 r1_sync_page_io(rdev, sect, s, 1762 conf->tmppage, WRITE); 1763 } 1764 d = start; 1765 while (d != read_disk) { 1766 char b[BDEVNAME_SIZE]; 1767 if (d==0) 1768 d = conf->raid_disks; 1769 d--; 1770 rdev = conf->mirrors[d].rdev; 1771 if (rdev && 1772 test_bit(In_sync, &rdev->flags)) { 1773 if (r1_sync_page_io(rdev, sect, s, 1774 conf->tmppage, READ)) { 1775 atomic_add(s, &rdev->corrected_errors); 1776 printk(KERN_INFO 1777 "md/raid1:%s: read error corrected " 1778 "(%d sectors at %llu on %s)\n", 1779 mdname(mddev), s, 1780 (unsigned long long)(sect + 1781 rdev->data_offset), 1782 bdevname(rdev->bdev, b)); 1783 } 1784 } 1785 } 1786 sectors -= s; 1787 sect += s; 1788 } 1789 } 1790 1791 static void bi_complete(struct bio *bio, int error) 1792 { 1793 complete((struct completion *)bio->bi_private); 1794 } 1795 1796 static int submit_bio_wait(int rw, struct bio *bio) 1797 { 1798 struct completion event; 1799 rw |= REQ_SYNC; 1800 1801 init_completion(&event); 1802 bio->bi_private = &event; 1803 bio->bi_end_io = bi_complete; 1804 submit_bio(rw, bio); 1805 wait_for_completion(&event); 1806 1807 return test_bit(BIO_UPTODATE, &bio->bi_flags); 1808 } 1809 1810 static int narrow_write_error(struct r1bio *r1_bio, int i) 1811 { 1812 struct mddev *mddev = r1_bio->mddev; 1813 struct r1conf *conf = mddev->private; 1814 struct md_rdev *rdev = conf->mirrors[i].rdev; 1815 int vcnt, idx; 1816 struct bio_vec *vec; 1817 1818 /* bio has the data to be written to device 'i' where 1819 * we just recently had a write error. 1820 * We repeatedly clone the bio and trim down to one block, 1821 * then try the write. Where the write fails we record 1822 * a bad block. 1823 * It is conceivable that the bio doesn't exactly align with 1824 * blocks. We must handle this somehow. 1825 * 1826 * We currently own a reference on the rdev. 1827 */ 1828 1829 int block_sectors; 1830 sector_t sector; 1831 int sectors; 1832 int sect_to_write = r1_bio->sectors; 1833 int ok = 1; 1834 1835 if (rdev->badblocks.shift < 0) 1836 return 0; 1837 1838 block_sectors = 1 << rdev->badblocks.shift; 1839 sector = r1_bio->sector; 1840 sectors = ((sector + block_sectors) 1841 & ~(sector_t)(block_sectors - 1)) 1842 - sector; 1843 1844 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 1845 vcnt = r1_bio->behind_page_count; 1846 vec = r1_bio->behind_bvecs; 1847 idx = 0; 1848 while (vec[idx].bv_page == NULL) 1849 idx++; 1850 } else { 1851 vcnt = r1_bio->master_bio->bi_vcnt; 1852 vec = r1_bio->master_bio->bi_io_vec; 1853 idx = r1_bio->master_bio->bi_idx; 1854 } 1855 while (sect_to_write) { 1856 struct bio *wbio; 1857 if (sectors > sect_to_write) 1858 sectors = sect_to_write; 1859 /* Write at 'sector' for 'sectors'*/ 1860 1861 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 1862 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 1863 wbio->bi_sector = r1_bio->sector; 1864 wbio->bi_rw = WRITE; 1865 wbio->bi_vcnt = vcnt; 1866 wbio->bi_size = r1_bio->sectors << 9; 1867 wbio->bi_idx = idx; 1868 1869 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 1870 wbio->bi_sector += rdev->data_offset; 1871 wbio->bi_bdev = rdev->bdev; 1872 if (submit_bio_wait(WRITE, wbio) == 0) 1873 /* failure! */ 1874 ok = rdev_set_badblocks(rdev, sector, 1875 sectors, 0) 1876 && ok; 1877 1878 bio_put(wbio); 1879 sect_to_write -= sectors; 1880 sector += sectors; 1881 sectors = block_sectors; 1882 } 1883 return ok; 1884 } 1885 1886 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 1887 { 1888 int m; 1889 int s = r1_bio->sectors; 1890 for (m = 0; m < conf->raid_disks ; m++) { 1891 struct md_rdev *rdev = conf->mirrors[m].rdev; 1892 struct bio *bio = r1_bio->bios[m]; 1893 if (bio->bi_end_io == NULL) 1894 continue; 1895 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 1896 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 1897 rdev_clear_badblocks(rdev, r1_bio->sector, s); 1898 } 1899 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 1900 test_bit(R1BIO_WriteError, &r1_bio->state)) { 1901 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 1902 md_error(conf->mddev, rdev); 1903 } 1904 } 1905 put_buf(r1_bio); 1906 md_done_sync(conf->mddev, s, 1); 1907 } 1908 1909 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 1910 { 1911 int m; 1912 for (m = 0; m < conf->raid_disks ; m++) 1913 if (r1_bio->bios[m] == IO_MADE_GOOD) { 1914 struct md_rdev *rdev = conf->mirrors[m].rdev; 1915 rdev_clear_badblocks(rdev, 1916 r1_bio->sector, 1917 r1_bio->sectors); 1918 rdev_dec_pending(rdev, conf->mddev); 1919 } else if (r1_bio->bios[m] != NULL) { 1920 /* This drive got a write error. We need to 1921 * narrow down and record precise write 1922 * errors. 1923 */ 1924 if (!narrow_write_error(r1_bio, m)) { 1925 md_error(conf->mddev, 1926 conf->mirrors[m].rdev); 1927 /* an I/O failed, we can't clear the bitmap */ 1928 set_bit(R1BIO_Degraded, &r1_bio->state); 1929 } 1930 rdev_dec_pending(conf->mirrors[m].rdev, 1931 conf->mddev); 1932 } 1933 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 1934 close_write(r1_bio); 1935 raid_end_bio_io(r1_bio); 1936 } 1937 1938 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 1939 { 1940 int disk; 1941 int max_sectors; 1942 struct mddev *mddev = conf->mddev; 1943 struct bio *bio; 1944 char b[BDEVNAME_SIZE]; 1945 struct md_rdev *rdev; 1946 1947 clear_bit(R1BIO_ReadError, &r1_bio->state); 1948 /* we got a read error. Maybe the drive is bad. Maybe just 1949 * the block and we can fix it. 1950 * We freeze all other IO, and try reading the block from 1951 * other devices. When we find one, we re-write 1952 * and check it that fixes the read error. 1953 * This is all done synchronously while the array is 1954 * frozen 1955 */ 1956 if (mddev->ro == 0) { 1957 freeze_array(conf); 1958 fix_read_error(conf, r1_bio->read_disk, 1959 r1_bio->sector, r1_bio->sectors); 1960 unfreeze_array(conf); 1961 } else 1962 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1963 1964 bio = r1_bio->bios[r1_bio->read_disk]; 1965 bdevname(bio->bi_bdev, b); 1966 read_more: 1967 disk = read_balance(conf, r1_bio, &max_sectors); 1968 if (disk == -1) { 1969 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 1970 " read error for block %llu\n", 1971 mdname(mddev), b, (unsigned long long)r1_bio->sector); 1972 raid_end_bio_io(r1_bio); 1973 } else { 1974 const unsigned long do_sync 1975 = r1_bio->master_bio->bi_rw & REQ_SYNC; 1976 if (bio) { 1977 r1_bio->bios[r1_bio->read_disk] = 1978 mddev->ro ? IO_BLOCKED : NULL; 1979 bio_put(bio); 1980 } 1981 r1_bio->read_disk = disk; 1982 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 1983 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 1984 r1_bio->bios[r1_bio->read_disk] = bio; 1985 rdev = conf->mirrors[disk].rdev; 1986 printk_ratelimited(KERN_ERR 1987 "md/raid1:%s: redirecting sector %llu" 1988 " to other mirror: %s\n", 1989 mdname(mddev), 1990 (unsigned long long)r1_bio->sector, 1991 bdevname(rdev->bdev, b)); 1992 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1993 bio->bi_bdev = rdev->bdev; 1994 bio->bi_end_io = raid1_end_read_request; 1995 bio->bi_rw = READ | do_sync; 1996 bio->bi_private = r1_bio; 1997 if (max_sectors < r1_bio->sectors) { 1998 /* Drat - have to split this up more */ 1999 struct bio *mbio = r1_bio->master_bio; 2000 int sectors_handled = (r1_bio->sector + max_sectors 2001 - mbio->bi_sector); 2002 r1_bio->sectors = max_sectors; 2003 spin_lock_irq(&conf->device_lock); 2004 if (mbio->bi_phys_segments == 0) 2005 mbio->bi_phys_segments = 2; 2006 else 2007 mbio->bi_phys_segments++; 2008 spin_unlock_irq(&conf->device_lock); 2009 generic_make_request(bio); 2010 bio = NULL; 2011 2012 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2013 2014 r1_bio->master_bio = mbio; 2015 r1_bio->sectors = (mbio->bi_size >> 9) 2016 - sectors_handled; 2017 r1_bio->state = 0; 2018 set_bit(R1BIO_ReadError, &r1_bio->state); 2019 r1_bio->mddev = mddev; 2020 r1_bio->sector = mbio->bi_sector + sectors_handled; 2021 2022 goto read_more; 2023 } else 2024 generic_make_request(bio); 2025 } 2026 } 2027 2028 static void raid1d(struct mddev *mddev) 2029 { 2030 struct r1bio *r1_bio; 2031 unsigned long flags; 2032 struct r1conf *conf = mddev->private; 2033 struct list_head *head = &conf->retry_list; 2034 struct blk_plug plug; 2035 2036 md_check_recovery(mddev); 2037 2038 blk_start_plug(&plug); 2039 for (;;) { 2040 2041 if (atomic_read(&mddev->plug_cnt) == 0) 2042 flush_pending_writes(conf); 2043 2044 spin_lock_irqsave(&conf->device_lock, flags); 2045 if (list_empty(head)) { 2046 spin_unlock_irqrestore(&conf->device_lock, flags); 2047 break; 2048 } 2049 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2050 list_del(head->prev); 2051 conf->nr_queued--; 2052 spin_unlock_irqrestore(&conf->device_lock, flags); 2053 2054 mddev = r1_bio->mddev; 2055 conf = mddev->private; 2056 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2057 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2058 test_bit(R1BIO_WriteError, &r1_bio->state)) 2059 handle_sync_write_finished(conf, r1_bio); 2060 else 2061 sync_request_write(mddev, r1_bio); 2062 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2063 test_bit(R1BIO_WriteError, &r1_bio->state)) 2064 handle_write_finished(conf, r1_bio); 2065 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2066 handle_read_error(conf, r1_bio); 2067 else 2068 /* just a partial read to be scheduled from separate 2069 * context 2070 */ 2071 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2072 2073 cond_resched(); 2074 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2075 md_check_recovery(mddev); 2076 } 2077 blk_finish_plug(&plug); 2078 } 2079 2080 2081 static int init_resync(struct r1conf *conf) 2082 { 2083 int buffs; 2084 2085 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2086 BUG_ON(conf->r1buf_pool); 2087 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2088 conf->poolinfo); 2089 if (!conf->r1buf_pool) 2090 return -ENOMEM; 2091 conf->next_resync = 0; 2092 return 0; 2093 } 2094 2095 /* 2096 * perform a "sync" on one "block" 2097 * 2098 * We need to make sure that no normal I/O request - particularly write 2099 * requests - conflict with active sync requests. 2100 * 2101 * This is achieved by tracking pending requests and a 'barrier' concept 2102 * that can be installed to exclude normal IO requests. 2103 */ 2104 2105 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2106 { 2107 struct r1conf *conf = mddev->private; 2108 struct r1bio *r1_bio; 2109 struct bio *bio; 2110 sector_t max_sector, nr_sectors; 2111 int disk = -1; 2112 int i; 2113 int wonly = -1; 2114 int write_targets = 0, read_targets = 0; 2115 sector_t sync_blocks; 2116 int still_degraded = 0; 2117 int good_sectors = RESYNC_SECTORS; 2118 int min_bad = 0; /* number of sectors that are bad in all devices */ 2119 2120 if (!conf->r1buf_pool) 2121 if (init_resync(conf)) 2122 return 0; 2123 2124 max_sector = mddev->dev_sectors; 2125 if (sector_nr >= max_sector) { 2126 /* If we aborted, we need to abort the 2127 * sync on the 'current' bitmap chunk (there will 2128 * only be one in raid1 resync. 2129 * We can find the current addess in mddev->curr_resync 2130 */ 2131 if (mddev->curr_resync < max_sector) /* aborted */ 2132 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2133 &sync_blocks, 1); 2134 else /* completed sync */ 2135 conf->fullsync = 0; 2136 2137 bitmap_close_sync(mddev->bitmap); 2138 close_sync(conf); 2139 return 0; 2140 } 2141 2142 if (mddev->bitmap == NULL && 2143 mddev->recovery_cp == MaxSector && 2144 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2145 conf->fullsync == 0) { 2146 *skipped = 1; 2147 return max_sector - sector_nr; 2148 } 2149 /* before building a request, check if we can skip these blocks.. 2150 * This call the bitmap_start_sync doesn't actually record anything 2151 */ 2152 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2153 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2154 /* We can skip this block, and probably several more */ 2155 *skipped = 1; 2156 return sync_blocks; 2157 } 2158 /* 2159 * If there is non-resync activity waiting for a turn, 2160 * and resync is going fast enough, 2161 * then let it though before starting on this new sync request. 2162 */ 2163 if (!go_faster && conf->nr_waiting) 2164 msleep_interruptible(1000); 2165 2166 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2167 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2168 raise_barrier(conf); 2169 2170 conf->next_resync = sector_nr; 2171 2172 rcu_read_lock(); 2173 /* 2174 * If we get a correctably read error during resync or recovery, 2175 * we might want to read from a different device. So we 2176 * flag all drives that could conceivably be read from for READ, 2177 * and any others (which will be non-In_sync devices) for WRITE. 2178 * If a read fails, we try reading from something else for which READ 2179 * is OK. 2180 */ 2181 2182 r1_bio->mddev = mddev; 2183 r1_bio->sector = sector_nr; 2184 r1_bio->state = 0; 2185 set_bit(R1BIO_IsSync, &r1_bio->state); 2186 2187 for (i=0; i < conf->raid_disks; i++) { 2188 struct md_rdev *rdev; 2189 bio = r1_bio->bios[i]; 2190 2191 /* take from bio_init */ 2192 bio->bi_next = NULL; 2193 bio->bi_flags &= ~(BIO_POOL_MASK-1); 2194 bio->bi_flags |= 1 << BIO_UPTODATE; 2195 bio->bi_rw = READ; 2196 bio->bi_vcnt = 0; 2197 bio->bi_idx = 0; 2198 bio->bi_phys_segments = 0; 2199 bio->bi_size = 0; 2200 bio->bi_end_io = NULL; 2201 bio->bi_private = NULL; 2202 2203 rdev = rcu_dereference(conf->mirrors[i].rdev); 2204 if (rdev == NULL || 2205 test_bit(Faulty, &rdev->flags)) { 2206 still_degraded = 1; 2207 } else if (!test_bit(In_sync, &rdev->flags)) { 2208 bio->bi_rw = WRITE; 2209 bio->bi_end_io = end_sync_write; 2210 write_targets ++; 2211 } else { 2212 /* may need to read from here */ 2213 sector_t first_bad = MaxSector; 2214 int bad_sectors; 2215 2216 if (is_badblock(rdev, sector_nr, good_sectors, 2217 &first_bad, &bad_sectors)) { 2218 if (first_bad > sector_nr) 2219 good_sectors = first_bad - sector_nr; 2220 else { 2221 bad_sectors -= (sector_nr - first_bad); 2222 if (min_bad == 0 || 2223 min_bad > bad_sectors) 2224 min_bad = bad_sectors; 2225 } 2226 } 2227 if (sector_nr < first_bad) { 2228 if (test_bit(WriteMostly, &rdev->flags)) { 2229 if (wonly < 0) 2230 wonly = i; 2231 } else { 2232 if (disk < 0) 2233 disk = i; 2234 } 2235 bio->bi_rw = READ; 2236 bio->bi_end_io = end_sync_read; 2237 read_targets++; 2238 } 2239 } 2240 if (bio->bi_end_io) { 2241 atomic_inc(&rdev->nr_pending); 2242 bio->bi_sector = sector_nr + rdev->data_offset; 2243 bio->bi_bdev = rdev->bdev; 2244 bio->bi_private = r1_bio; 2245 } 2246 } 2247 rcu_read_unlock(); 2248 if (disk < 0) 2249 disk = wonly; 2250 r1_bio->read_disk = disk; 2251 2252 if (read_targets == 0 && min_bad > 0) { 2253 /* These sectors are bad on all InSync devices, so we 2254 * need to mark them bad on all write targets 2255 */ 2256 int ok = 1; 2257 for (i = 0 ; i < conf->raid_disks ; i++) 2258 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2259 struct md_rdev *rdev = 2260 rcu_dereference(conf->mirrors[i].rdev); 2261 ok = rdev_set_badblocks(rdev, sector_nr, 2262 min_bad, 0 2263 ) && ok; 2264 } 2265 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2266 *skipped = 1; 2267 put_buf(r1_bio); 2268 2269 if (!ok) { 2270 /* Cannot record the badblocks, so need to 2271 * abort the resync. 2272 * If there are multiple read targets, could just 2273 * fail the really bad ones ??? 2274 */ 2275 conf->recovery_disabled = mddev->recovery_disabled; 2276 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2277 return 0; 2278 } else 2279 return min_bad; 2280 2281 } 2282 if (min_bad > 0 && min_bad < good_sectors) { 2283 /* only resync enough to reach the next bad->good 2284 * transition */ 2285 good_sectors = min_bad; 2286 } 2287 2288 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2289 /* extra read targets are also write targets */ 2290 write_targets += read_targets-1; 2291 2292 if (write_targets == 0 || read_targets == 0) { 2293 /* There is nowhere to write, so all non-sync 2294 * drives must be failed - so we are finished 2295 */ 2296 sector_t rv = max_sector - sector_nr; 2297 *skipped = 1; 2298 put_buf(r1_bio); 2299 return rv; 2300 } 2301 2302 if (max_sector > mddev->resync_max) 2303 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2304 if (max_sector > sector_nr + good_sectors) 2305 max_sector = sector_nr + good_sectors; 2306 nr_sectors = 0; 2307 sync_blocks = 0; 2308 do { 2309 struct page *page; 2310 int len = PAGE_SIZE; 2311 if (sector_nr + (len>>9) > max_sector) 2312 len = (max_sector - sector_nr) << 9; 2313 if (len == 0) 2314 break; 2315 if (sync_blocks == 0) { 2316 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2317 &sync_blocks, still_degraded) && 2318 !conf->fullsync && 2319 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2320 break; 2321 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2322 if ((len >> 9) > sync_blocks) 2323 len = sync_blocks<<9; 2324 } 2325 2326 for (i=0 ; i < conf->raid_disks; i++) { 2327 bio = r1_bio->bios[i]; 2328 if (bio->bi_end_io) { 2329 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2330 if (bio_add_page(bio, page, len, 0) == 0) { 2331 /* stop here */ 2332 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2333 while (i > 0) { 2334 i--; 2335 bio = r1_bio->bios[i]; 2336 if (bio->bi_end_io==NULL) 2337 continue; 2338 /* remove last page from this bio */ 2339 bio->bi_vcnt--; 2340 bio->bi_size -= len; 2341 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2342 } 2343 goto bio_full; 2344 } 2345 } 2346 } 2347 nr_sectors += len>>9; 2348 sector_nr += len>>9; 2349 sync_blocks -= (len>>9); 2350 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2351 bio_full: 2352 r1_bio->sectors = nr_sectors; 2353 2354 /* For a user-requested sync, we read all readable devices and do a 2355 * compare 2356 */ 2357 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2358 atomic_set(&r1_bio->remaining, read_targets); 2359 for (i=0; i<conf->raid_disks; i++) { 2360 bio = r1_bio->bios[i]; 2361 if (bio->bi_end_io == end_sync_read) { 2362 md_sync_acct(bio->bi_bdev, nr_sectors); 2363 generic_make_request(bio); 2364 } 2365 } 2366 } else { 2367 atomic_set(&r1_bio->remaining, 1); 2368 bio = r1_bio->bios[r1_bio->read_disk]; 2369 md_sync_acct(bio->bi_bdev, nr_sectors); 2370 generic_make_request(bio); 2371 2372 } 2373 return nr_sectors; 2374 } 2375 2376 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2377 { 2378 if (sectors) 2379 return sectors; 2380 2381 return mddev->dev_sectors; 2382 } 2383 2384 static struct r1conf *setup_conf(struct mddev *mddev) 2385 { 2386 struct r1conf *conf; 2387 int i; 2388 struct mirror_info *disk; 2389 struct md_rdev *rdev; 2390 int err = -ENOMEM; 2391 2392 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2393 if (!conf) 2394 goto abort; 2395 2396 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2397 GFP_KERNEL); 2398 if (!conf->mirrors) 2399 goto abort; 2400 2401 conf->tmppage = alloc_page(GFP_KERNEL); 2402 if (!conf->tmppage) 2403 goto abort; 2404 2405 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2406 if (!conf->poolinfo) 2407 goto abort; 2408 conf->poolinfo->raid_disks = mddev->raid_disks; 2409 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2410 r1bio_pool_free, 2411 conf->poolinfo); 2412 if (!conf->r1bio_pool) 2413 goto abort; 2414 2415 conf->poolinfo->mddev = mddev; 2416 2417 spin_lock_init(&conf->device_lock); 2418 list_for_each_entry(rdev, &mddev->disks, same_set) { 2419 int disk_idx = rdev->raid_disk; 2420 if (disk_idx >= mddev->raid_disks 2421 || disk_idx < 0) 2422 continue; 2423 disk = conf->mirrors + disk_idx; 2424 2425 disk->rdev = rdev; 2426 2427 disk->head_position = 0; 2428 } 2429 conf->raid_disks = mddev->raid_disks; 2430 conf->mddev = mddev; 2431 INIT_LIST_HEAD(&conf->retry_list); 2432 2433 spin_lock_init(&conf->resync_lock); 2434 init_waitqueue_head(&conf->wait_barrier); 2435 2436 bio_list_init(&conf->pending_bio_list); 2437 conf->pending_count = 0; 2438 conf->recovery_disabled = mddev->recovery_disabled - 1; 2439 2440 conf->last_used = -1; 2441 for (i = 0; i < conf->raid_disks; i++) { 2442 2443 disk = conf->mirrors + i; 2444 2445 if (!disk->rdev || 2446 !test_bit(In_sync, &disk->rdev->flags)) { 2447 disk->head_position = 0; 2448 if (disk->rdev) 2449 conf->fullsync = 1; 2450 } else if (conf->last_used < 0) 2451 /* 2452 * The first working device is used as a 2453 * starting point to read balancing. 2454 */ 2455 conf->last_used = i; 2456 } 2457 2458 err = -EIO; 2459 if (conf->last_used < 0) { 2460 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 2461 mdname(mddev)); 2462 goto abort; 2463 } 2464 err = -ENOMEM; 2465 conf->thread = md_register_thread(raid1d, mddev, NULL); 2466 if (!conf->thread) { 2467 printk(KERN_ERR 2468 "md/raid1:%s: couldn't allocate thread\n", 2469 mdname(mddev)); 2470 goto abort; 2471 } 2472 2473 return conf; 2474 2475 abort: 2476 if (conf) { 2477 if (conf->r1bio_pool) 2478 mempool_destroy(conf->r1bio_pool); 2479 kfree(conf->mirrors); 2480 safe_put_page(conf->tmppage); 2481 kfree(conf->poolinfo); 2482 kfree(conf); 2483 } 2484 return ERR_PTR(err); 2485 } 2486 2487 static int run(struct mddev *mddev) 2488 { 2489 struct r1conf *conf; 2490 int i; 2491 struct md_rdev *rdev; 2492 2493 if (mddev->level != 1) { 2494 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2495 mdname(mddev), mddev->level); 2496 return -EIO; 2497 } 2498 if (mddev->reshape_position != MaxSector) { 2499 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2500 mdname(mddev)); 2501 return -EIO; 2502 } 2503 /* 2504 * copy the already verified devices into our private RAID1 2505 * bookkeeping area. [whatever we allocate in run(), 2506 * should be freed in stop()] 2507 */ 2508 if (mddev->private == NULL) 2509 conf = setup_conf(mddev); 2510 else 2511 conf = mddev->private; 2512 2513 if (IS_ERR(conf)) 2514 return PTR_ERR(conf); 2515 2516 list_for_each_entry(rdev, &mddev->disks, same_set) { 2517 if (!mddev->gendisk) 2518 continue; 2519 disk_stack_limits(mddev->gendisk, rdev->bdev, 2520 rdev->data_offset << 9); 2521 /* as we don't honour merge_bvec_fn, we must never risk 2522 * violating it, so limit ->max_segments to 1 lying within 2523 * a single page, as a one page request is never in violation. 2524 */ 2525 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2526 blk_queue_max_segments(mddev->queue, 1); 2527 blk_queue_segment_boundary(mddev->queue, 2528 PAGE_CACHE_SIZE - 1); 2529 } 2530 } 2531 2532 mddev->degraded = 0; 2533 for (i=0; i < conf->raid_disks; i++) 2534 if (conf->mirrors[i].rdev == NULL || 2535 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2536 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2537 mddev->degraded++; 2538 2539 if (conf->raid_disks - mddev->degraded == 1) 2540 mddev->recovery_cp = MaxSector; 2541 2542 if (mddev->recovery_cp != MaxSector) 2543 printk(KERN_NOTICE "md/raid1:%s: not clean" 2544 " -- starting background reconstruction\n", 2545 mdname(mddev)); 2546 printk(KERN_INFO 2547 "md/raid1:%s: active with %d out of %d mirrors\n", 2548 mdname(mddev), mddev->raid_disks - mddev->degraded, 2549 mddev->raid_disks); 2550 2551 /* 2552 * Ok, everything is just fine now 2553 */ 2554 mddev->thread = conf->thread; 2555 conf->thread = NULL; 2556 mddev->private = conf; 2557 2558 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2559 2560 if (mddev->queue) { 2561 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2562 mddev->queue->backing_dev_info.congested_data = mddev; 2563 } 2564 return md_integrity_register(mddev); 2565 } 2566 2567 static int stop(struct mddev *mddev) 2568 { 2569 struct r1conf *conf = mddev->private; 2570 struct bitmap *bitmap = mddev->bitmap; 2571 2572 /* wait for behind writes to complete */ 2573 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2574 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2575 mdname(mddev)); 2576 /* need to kick something here to make sure I/O goes? */ 2577 wait_event(bitmap->behind_wait, 2578 atomic_read(&bitmap->behind_writes) == 0); 2579 } 2580 2581 raise_barrier(conf); 2582 lower_barrier(conf); 2583 2584 md_unregister_thread(&mddev->thread); 2585 if (conf->r1bio_pool) 2586 mempool_destroy(conf->r1bio_pool); 2587 kfree(conf->mirrors); 2588 kfree(conf->poolinfo); 2589 kfree(conf); 2590 mddev->private = NULL; 2591 return 0; 2592 } 2593 2594 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2595 { 2596 /* no resync is happening, and there is enough space 2597 * on all devices, so we can resize. 2598 * We need to make sure resync covers any new space. 2599 * If the array is shrinking we should possibly wait until 2600 * any io in the removed space completes, but it hardly seems 2601 * worth it. 2602 */ 2603 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2604 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2605 return -EINVAL; 2606 set_capacity(mddev->gendisk, mddev->array_sectors); 2607 revalidate_disk(mddev->gendisk); 2608 if (sectors > mddev->dev_sectors && 2609 mddev->recovery_cp > mddev->dev_sectors) { 2610 mddev->recovery_cp = mddev->dev_sectors; 2611 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2612 } 2613 mddev->dev_sectors = sectors; 2614 mddev->resync_max_sectors = sectors; 2615 return 0; 2616 } 2617 2618 static int raid1_reshape(struct mddev *mddev) 2619 { 2620 /* We need to: 2621 * 1/ resize the r1bio_pool 2622 * 2/ resize conf->mirrors 2623 * 2624 * We allocate a new r1bio_pool if we can. 2625 * Then raise a device barrier and wait until all IO stops. 2626 * Then resize conf->mirrors and swap in the new r1bio pool. 2627 * 2628 * At the same time, we "pack" the devices so that all the missing 2629 * devices have the higher raid_disk numbers. 2630 */ 2631 mempool_t *newpool, *oldpool; 2632 struct pool_info *newpoolinfo; 2633 struct mirror_info *newmirrors; 2634 struct r1conf *conf = mddev->private; 2635 int cnt, raid_disks; 2636 unsigned long flags; 2637 int d, d2, err; 2638 2639 /* Cannot change chunk_size, layout, or level */ 2640 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2641 mddev->layout != mddev->new_layout || 2642 mddev->level != mddev->new_level) { 2643 mddev->new_chunk_sectors = mddev->chunk_sectors; 2644 mddev->new_layout = mddev->layout; 2645 mddev->new_level = mddev->level; 2646 return -EINVAL; 2647 } 2648 2649 err = md_allow_write(mddev); 2650 if (err) 2651 return err; 2652 2653 raid_disks = mddev->raid_disks + mddev->delta_disks; 2654 2655 if (raid_disks < conf->raid_disks) { 2656 cnt=0; 2657 for (d= 0; d < conf->raid_disks; d++) 2658 if (conf->mirrors[d].rdev) 2659 cnt++; 2660 if (cnt > raid_disks) 2661 return -EBUSY; 2662 } 2663 2664 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2665 if (!newpoolinfo) 2666 return -ENOMEM; 2667 newpoolinfo->mddev = mddev; 2668 newpoolinfo->raid_disks = raid_disks; 2669 2670 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2671 r1bio_pool_free, newpoolinfo); 2672 if (!newpool) { 2673 kfree(newpoolinfo); 2674 return -ENOMEM; 2675 } 2676 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2677 if (!newmirrors) { 2678 kfree(newpoolinfo); 2679 mempool_destroy(newpool); 2680 return -ENOMEM; 2681 } 2682 2683 raise_barrier(conf); 2684 2685 /* ok, everything is stopped */ 2686 oldpool = conf->r1bio_pool; 2687 conf->r1bio_pool = newpool; 2688 2689 for (d = d2 = 0; d < conf->raid_disks; d++) { 2690 struct md_rdev *rdev = conf->mirrors[d].rdev; 2691 if (rdev && rdev->raid_disk != d2) { 2692 sysfs_unlink_rdev(mddev, rdev); 2693 rdev->raid_disk = d2; 2694 sysfs_unlink_rdev(mddev, rdev); 2695 if (sysfs_link_rdev(mddev, rdev)) 2696 printk(KERN_WARNING 2697 "md/raid1:%s: cannot register rd%d\n", 2698 mdname(mddev), rdev->raid_disk); 2699 } 2700 if (rdev) 2701 newmirrors[d2++].rdev = rdev; 2702 } 2703 kfree(conf->mirrors); 2704 conf->mirrors = newmirrors; 2705 kfree(conf->poolinfo); 2706 conf->poolinfo = newpoolinfo; 2707 2708 spin_lock_irqsave(&conf->device_lock, flags); 2709 mddev->degraded += (raid_disks - conf->raid_disks); 2710 spin_unlock_irqrestore(&conf->device_lock, flags); 2711 conf->raid_disks = mddev->raid_disks = raid_disks; 2712 mddev->delta_disks = 0; 2713 2714 conf->last_used = 0; /* just make sure it is in-range */ 2715 lower_barrier(conf); 2716 2717 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2718 md_wakeup_thread(mddev->thread); 2719 2720 mempool_destroy(oldpool); 2721 return 0; 2722 } 2723 2724 static void raid1_quiesce(struct mddev *mddev, int state) 2725 { 2726 struct r1conf *conf = mddev->private; 2727 2728 switch(state) { 2729 case 2: /* wake for suspend */ 2730 wake_up(&conf->wait_barrier); 2731 break; 2732 case 1: 2733 raise_barrier(conf); 2734 break; 2735 case 0: 2736 lower_barrier(conf); 2737 break; 2738 } 2739 } 2740 2741 static void *raid1_takeover(struct mddev *mddev) 2742 { 2743 /* raid1 can take over: 2744 * raid5 with 2 devices, any layout or chunk size 2745 */ 2746 if (mddev->level == 5 && mddev->raid_disks == 2) { 2747 struct r1conf *conf; 2748 mddev->new_level = 1; 2749 mddev->new_layout = 0; 2750 mddev->new_chunk_sectors = 0; 2751 conf = setup_conf(mddev); 2752 if (!IS_ERR(conf)) 2753 conf->barrier = 1; 2754 return conf; 2755 } 2756 return ERR_PTR(-EINVAL); 2757 } 2758 2759 static struct md_personality raid1_personality = 2760 { 2761 .name = "raid1", 2762 .level = 1, 2763 .owner = THIS_MODULE, 2764 .make_request = make_request, 2765 .run = run, 2766 .stop = stop, 2767 .status = status, 2768 .error_handler = error, 2769 .hot_add_disk = raid1_add_disk, 2770 .hot_remove_disk= raid1_remove_disk, 2771 .spare_active = raid1_spare_active, 2772 .sync_request = sync_request, 2773 .resize = raid1_resize, 2774 .size = raid1_size, 2775 .check_reshape = raid1_reshape, 2776 .quiesce = raid1_quiesce, 2777 .takeover = raid1_takeover, 2778 }; 2779 2780 static int __init raid_init(void) 2781 { 2782 return register_md_personality(&raid1_personality); 2783 } 2784 2785 static void raid_exit(void) 2786 { 2787 unregister_md_personality(&raid1_personality); 2788 } 2789 2790 module_init(raid_init); 2791 module_exit(raid_exit); 2792 MODULE_LICENSE("GPL"); 2793 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2794 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2795 MODULE_ALIAS("md-raid1"); 2796 MODULE_ALIAS("md-level-1"); 2797 2798 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 2799