xref: /linux/drivers/md/raid1.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* When there are this many requests queue to be written by
50  * the raid1 thread, we become 'congested' to provide back-pressure
51  * for writeback.
52  */
53 static int max_queued_requests = 1024;
54 
55 static void allow_barrier(struct r1conf *conf);
56 static void lower_barrier(struct r1conf *conf);
57 
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 {
60 	struct pool_info *pi = data;
61 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
62 
63 	/* allocate a r1bio with room for raid_disks entries in the bios array */
64 	return kzalloc(size, gfp_flags);
65 }
66 
67 static void r1bio_pool_free(void *r1_bio, void *data)
68 {
69 	kfree(r1_bio);
70 }
71 
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
77 
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 	struct pool_info *pi = data;
81 	struct page *page;
82 	struct r1bio *r1_bio;
83 	struct bio *bio;
84 	int i, j;
85 
86 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 	if (!r1_bio)
88 		return NULL;
89 
90 	/*
91 	 * Allocate bios : 1 for reading, n-1 for writing
92 	 */
93 	for (j = pi->raid_disks ; j-- ; ) {
94 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 		if (!bio)
96 			goto out_free_bio;
97 		r1_bio->bios[j] = bio;
98 	}
99 	/*
100 	 * Allocate RESYNC_PAGES data pages and attach them to
101 	 * the first bio.
102 	 * If this is a user-requested check/repair, allocate
103 	 * RESYNC_PAGES for each bio.
104 	 */
105 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 		j = pi->raid_disks;
107 	else
108 		j = 1;
109 	while(j--) {
110 		bio = r1_bio->bios[j];
111 		for (i = 0; i < RESYNC_PAGES; i++) {
112 			page = alloc_page(gfp_flags);
113 			if (unlikely(!page))
114 				goto out_free_pages;
115 
116 			bio->bi_io_vec[i].bv_page = page;
117 			bio->bi_vcnt = i+1;
118 		}
119 	}
120 	/* If not user-requests, copy the page pointers to all bios */
121 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 		for (i=0; i<RESYNC_PAGES ; i++)
123 			for (j=1; j<pi->raid_disks; j++)
124 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
126 	}
127 
128 	r1_bio->master_bio = NULL;
129 
130 	return r1_bio;
131 
132 out_free_pages:
133 	for (j=0 ; j < pi->raid_disks; j++)
134 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 	j = -1;
137 out_free_bio:
138 	while ( ++j < pi->raid_disks )
139 		bio_put(r1_bio->bios[j]);
140 	r1bio_pool_free(r1_bio, data);
141 	return NULL;
142 }
143 
144 static void r1buf_pool_free(void *__r1_bio, void *data)
145 {
146 	struct pool_info *pi = data;
147 	int i,j;
148 	struct r1bio *r1bio = __r1_bio;
149 
150 	for (i = 0; i < RESYNC_PAGES; i++)
151 		for (j = pi->raid_disks; j-- ;) {
152 			if (j == 0 ||
153 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
155 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156 		}
157 	for (i=0 ; i < pi->raid_disks; i++)
158 		bio_put(r1bio->bios[i]);
159 
160 	r1bio_pool_free(r1bio, data);
161 }
162 
163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
164 {
165 	int i;
166 
167 	for (i = 0; i < conf->raid_disks; i++) {
168 		struct bio **bio = r1_bio->bios + i;
169 		if (!BIO_SPECIAL(*bio))
170 			bio_put(*bio);
171 		*bio = NULL;
172 	}
173 }
174 
175 static void free_r1bio(struct r1bio *r1_bio)
176 {
177 	struct r1conf *conf = r1_bio->mddev->private;
178 
179 	put_all_bios(conf, r1_bio);
180 	mempool_free(r1_bio, conf->r1bio_pool);
181 }
182 
183 static void put_buf(struct r1bio *r1_bio)
184 {
185 	struct r1conf *conf = r1_bio->mddev->private;
186 	int i;
187 
188 	for (i=0; i<conf->raid_disks; i++) {
189 		struct bio *bio = r1_bio->bios[i];
190 		if (bio->bi_end_io)
191 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192 	}
193 
194 	mempool_free(r1_bio, conf->r1buf_pool);
195 
196 	lower_barrier(conf);
197 }
198 
199 static void reschedule_retry(struct r1bio *r1_bio)
200 {
201 	unsigned long flags;
202 	struct mddev *mddev = r1_bio->mddev;
203 	struct r1conf *conf = mddev->private;
204 
205 	spin_lock_irqsave(&conf->device_lock, flags);
206 	list_add(&r1_bio->retry_list, &conf->retry_list);
207 	conf->nr_queued ++;
208 	spin_unlock_irqrestore(&conf->device_lock, flags);
209 
210 	wake_up(&conf->wait_barrier);
211 	md_wakeup_thread(mddev->thread);
212 }
213 
214 /*
215  * raid_end_bio_io() is called when we have finished servicing a mirrored
216  * operation and are ready to return a success/failure code to the buffer
217  * cache layer.
218  */
219 static void call_bio_endio(struct r1bio *r1_bio)
220 {
221 	struct bio *bio = r1_bio->master_bio;
222 	int done;
223 	struct r1conf *conf = r1_bio->mddev->private;
224 
225 	if (bio->bi_phys_segments) {
226 		unsigned long flags;
227 		spin_lock_irqsave(&conf->device_lock, flags);
228 		bio->bi_phys_segments--;
229 		done = (bio->bi_phys_segments == 0);
230 		spin_unlock_irqrestore(&conf->device_lock, flags);
231 	} else
232 		done = 1;
233 
234 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 	if (done) {
237 		bio_endio(bio, 0);
238 		/*
239 		 * Wake up any possible resync thread that waits for the device
240 		 * to go idle.
241 		 */
242 		allow_barrier(conf);
243 	}
244 }
245 
246 static void raid_end_bio_io(struct r1bio *r1_bio)
247 {
248 	struct bio *bio = r1_bio->master_bio;
249 
250 	/* if nobody has done the final endio yet, do it now */
251 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 			 (unsigned long long) bio->bi_sector,
255 			 (unsigned long long) bio->bi_sector +
256 			 (bio->bi_size >> 9) - 1);
257 
258 		call_bio_endio(r1_bio);
259 	}
260 	free_r1bio(r1_bio);
261 }
262 
263 /*
264  * Update disk head position estimator based on IRQ completion info.
265  */
266 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
267 {
268 	struct r1conf *conf = r1_bio->mddev->private;
269 
270 	conf->mirrors[disk].head_position =
271 		r1_bio->sector + (r1_bio->sectors);
272 }
273 
274 /*
275  * Find the disk number which triggered given bio
276  */
277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
278 {
279 	int mirror;
280 	int raid_disks = r1_bio->mddev->raid_disks;
281 
282 	for (mirror = 0; mirror < raid_disks; mirror++)
283 		if (r1_bio->bios[mirror] == bio)
284 			break;
285 
286 	BUG_ON(mirror == raid_disks);
287 	update_head_pos(mirror, r1_bio);
288 
289 	return mirror;
290 }
291 
292 static void raid1_end_read_request(struct bio *bio, int error)
293 {
294 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
295 	struct r1bio *r1_bio = bio->bi_private;
296 	int mirror;
297 	struct r1conf *conf = r1_bio->mddev->private;
298 
299 	mirror = r1_bio->read_disk;
300 	/*
301 	 * this branch is our 'one mirror IO has finished' event handler:
302 	 */
303 	update_head_pos(mirror, r1_bio);
304 
305 	if (uptodate)
306 		set_bit(R1BIO_Uptodate, &r1_bio->state);
307 	else {
308 		/* If all other devices have failed, we want to return
309 		 * the error upwards rather than fail the last device.
310 		 * Here we redefine "uptodate" to mean "Don't want to retry"
311 		 */
312 		unsigned long flags;
313 		spin_lock_irqsave(&conf->device_lock, flags);
314 		if (r1_bio->mddev->degraded == conf->raid_disks ||
315 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
316 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
317 			uptodate = 1;
318 		spin_unlock_irqrestore(&conf->device_lock, flags);
319 	}
320 
321 	if (uptodate)
322 		raid_end_bio_io(r1_bio);
323 	else {
324 		/*
325 		 * oops, read error:
326 		 */
327 		char b[BDEVNAME_SIZE];
328 		printk_ratelimited(
329 			KERN_ERR "md/raid1:%s: %s: "
330 			"rescheduling sector %llu\n",
331 			mdname(conf->mddev),
332 			bdevname(conf->mirrors[mirror].rdev->bdev,
333 				 b),
334 			(unsigned long long)r1_bio->sector);
335 		set_bit(R1BIO_ReadError, &r1_bio->state);
336 		reschedule_retry(r1_bio);
337 	}
338 
339 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
340 }
341 
342 static void close_write(struct r1bio *r1_bio)
343 {
344 	/* it really is the end of this request */
345 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
346 		/* free extra copy of the data pages */
347 		int i = r1_bio->behind_page_count;
348 		while (i--)
349 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
350 		kfree(r1_bio->behind_bvecs);
351 		r1_bio->behind_bvecs = NULL;
352 	}
353 	/* clear the bitmap if all writes complete successfully */
354 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
355 			r1_bio->sectors,
356 			!test_bit(R1BIO_Degraded, &r1_bio->state),
357 			test_bit(R1BIO_BehindIO, &r1_bio->state));
358 	md_write_end(r1_bio->mddev);
359 }
360 
361 static void r1_bio_write_done(struct r1bio *r1_bio)
362 {
363 	if (!atomic_dec_and_test(&r1_bio->remaining))
364 		return;
365 
366 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
367 		reschedule_retry(r1_bio);
368 	else {
369 		close_write(r1_bio);
370 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
371 			reschedule_retry(r1_bio);
372 		else
373 			raid_end_bio_io(r1_bio);
374 	}
375 }
376 
377 static void raid1_end_write_request(struct bio *bio, int error)
378 {
379 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
380 	struct r1bio *r1_bio = bio->bi_private;
381 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
382 	struct r1conf *conf = r1_bio->mddev->private;
383 	struct bio *to_put = NULL;
384 
385 	mirror = find_bio_disk(r1_bio, bio);
386 
387 	/*
388 	 * 'one mirror IO has finished' event handler:
389 	 */
390 	if (!uptodate) {
391 		set_bit(WriteErrorSeen,
392 			&conf->mirrors[mirror].rdev->flags);
393 		set_bit(R1BIO_WriteError, &r1_bio->state);
394 	} else {
395 		/*
396 		 * Set R1BIO_Uptodate in our master bio, so that we
397 		 * will return a good error code for to the higher
398 		 * levels even if IO on some other mirrored buffer
399 		 * fails.
400 		 *
401 		 * The 'master' represents the composite IO operation
402 		 * to user-side. So if something waits for IO, then it
403 		 * will wait for the 'master' bio.
404 		 */
405 		sector_t first_bad;
406 		int bad_sectors;
407 
408 		r1_bio->bios[mirror] = NULL;
409 		to_put = bio;
410 		set_bit(R1BIO_Uptodate, &r1_bio->state);
411 
412 		/* Maybe we can clear some bad blocks. */
413 		if (is_badblock(conf->mirrors[mirror].rdev,
414 				r1_bio->sector, r1_bio->sectors,
415 				&first_bad, &bad_sectors)) {
416 			r1_bio->bios[mirror] = IO_MADE_GOOD;
417 			set_bit(R1BIO_MadeGood, &r1_bio->state);
418 		}
419 	}
420 
421 	if (behind) {
422 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
423 			atomic_dec(&r1_bio->behind_remaining);
424 
425 		/*
426 		 * In behind mode, we ACK the master bio once the I/O
427 		 * has safely reached all non-writemostly
428 		 * disks. Setting the Returned bit ensures that this
429 		 * gets done only once -- we don't ever want to return
430 		 * -EIO here, instead we'll wait
431 		 */
432 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
433 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
434 			/* Maybe we can return now */
435 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
436 				struct bio *mbio = r1_bio->master_bio;
437 				pr_debug("raid1: behind end write sectors"
438 					 " %llu-%llu\n",
439 					 (unsigned long long) mbio->bi_sector,
440 					 (unsigned long long) mbio->bi_sector +
441 					 (mbio->bi_size >> 9) - 1);
442 				call_bio_endio(r1_bio);
443 			}
444 		}
445 	}
446 	if (r1_bio->bios[mirror] == NULL)
447 		rdev_dec_pending(conf->mirrors[mirror].rdev,
448 				 conf->mddev);
449 
450 	/*
451 	 * Let's see if all mirrored write operations have finished
452 	 * already.
453 	 */
454 	r1_bio_write_done(r1_bio);
455 
456 	if (to_put)
457 		bio_put(to_put);
458 }
459 
460 
461 /*
462  * This routine returns the disk from which the requested read should
463  * be done. There is a per-array 'next expected sequential IO' sector
464  * number - if this matches on the next IO then we use the last disk.
465  * There is also a per-disk 'last know head position' sector that is
466  * maintained from IRQ contexts, both the normal and the resync IO
467  * completion handlers update this position correctly. If there is no
468  * perfect sequential match then we pick the disk whose head is closest.
469  *
470  * If there are 2 mirrors in the same 2 devices, performance degrades
471  * because position is mirror, not device based.
472  *
473  * The rdev for the device selected will have nr_pending incremented.
474  */
475 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
476 {
477 	const sector_t this_sector = r1_bio->sector;
478 	int sectors;
479 	int best_good_sectors;
480 	int start_disk;
481 	int best_disk;
482 	int i;
483 	sector_t best_dist;
484 	struct md_rdev *rdev;
485 	int choose_first;
486 
487 	rcu_read_lock();
488 	/*
489 	 * Check if we can balance. We can balance on the whole
490 	 * device if no resync is going on, or below the resync window.
491 	 * We take the first readable disk when above the resync window.
492 	 */
493  retry:
494 	sectors = r1_bio->sectors;
495 	best_disk = -1;
496 	best_dist = MaxSector;
497 	best_good_sectors = 0;
498 
499 	if (conf->mddev->recovery_cp < MaxSector &&
500 	    (this_sector + sectors >= conf->next_resync)) {
501 		choose_first = 1;
502 		start_disk = 0;
503 	} else {
504 		choose_first = 0;
505 		start_disk = conf->last_used;
506 	}
507 
508 	for (i = 0 ; i < conf->raid_disks ; i++) {
509 		sector_t dist;
510 		sector_t first_bad;
511 		int bad_sectors;
512 
513 		int disk = start_disk + i;
514 		if (disk >= conf->raid_disks)
515 			disk -= conf->raid_disks;
516 
517 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
518 		if (r1_bio->bios[disk] == IO_BLOCKED
519 		    || rdev == NULL
520 		    || test_bit(Faulty, &rdev->flags))
521 			continue;
522 		if (!test_bit(In_sync, &rdev->flags) &&
523 		    rdev->recovery_offset < this_sector + sectors)
524 			continue;
525 		if (test_bit(WriteMostly, &rdev->flags)) {
526 			/* Don't balance among write-mostly, just
527 			 * use the first as a last resort */
528 			if (best_disk < 0)
529 				best_disk = disk;
530 			continue;
531 		}
532 		/* This is a reasonable device to use.  It might
533 		 * even be best.
534 		 */
535 		if (is_badblock(rdev, this_sector, sectors,
536 				&first_bad, &bad_sectors)) {
537 			if (best_dist < MaxSector)
538 				/* already have a better device */
539 				continue;
540 			if (first_bad <= this_sector) {
541 				/* cannot read here. If this is the 'primary'
542 				 * device, then we must not read beyond
543 				 * bad_sectors from another device..
544 				 */
545 				bad_sectors -= (this_sector - first_bad);
546 				if (choose_first && sectors > bad_sectors)
547 					sectors = bad_sectors;
548 				if (best_good_sectors > sectors)
549 					best_good_sectors = sectors;
550 
551 			} else {
552 				sector_t good_sectors = first_bad - this_sector;
553 				if (good_sectors > best_good_sectors) {
554 					best_good_sectors = good_sectors;
555 					best_disk = disk;
556 				}
557 				if (choose_first)
558 					break;
559 			}
560 			continue;
561 		} else
562 			best_good_sectors = sectors;
563 
564 		dist = abs(this_sector - conf->mirrors[disk].head_position);
565 		if (choose_first
566 		    /* Don't change to another disk for sequential reads */
567 		    || conf->next_seq_sect == this_sector
568 		    || dist == 0
569 		    /* If device is idle, use it */
570 		    || atomic_read(&rdev->nr_pending) == 0) {
571 			best_disk = disk;
572 			break;
573 		}
574 		if (dist < best_dist) {
575 			best_dist = dist;
576 			best_disk = disk;
577 		}
578 	}
579 
580 	if (best_disk >= 0) {
581 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
582 		if (!rdev)
583 			goto retry;
584 		atomic_inc(&rdev->nr_pending);
585 		if (test_bit(Faulty, &rdev->flags)) {
586 			/* cannot risk returning a device that failed
587 			 * before we inc'ed nr_pending
588 			 */
589 			rdev_dec_pending(rdev, conf->mddev);
590 			goto retry;
591 		}
592 		sectors = best_good_sectors;
593 		conf->next_seq_sect = this_sector + sectors;
594 		conf->last_used = best_disk;
595 	}
596 	rcu_read_unlock();
597 	*max_sectors = sectors;
598 
599 	return best_disk;
600 }
601 
602 int md_raid1_congested(struct mddev *mddev, int bits)
603 {
604 	struct r1conf *conf = mddev->private;
605 	int i, ret = 0;
606 
607 	if ((bits & (1 << BDI_async_congested)) &&
608 	    conf->pending_count >= max_queued_requests)
609 		return 1;
610 
611 	rcu_read_lock();
612 	for (i = 0; i < mddev->raid_disks; i++) {
613 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
614 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
615 			struct request_queue *q = bdev_get_queue(rdev->bdev);
616 
617 			BUG_ON(!q);
618 
619 			/* Note the '|| 1' - when read_balance prefers
620 			 * non-congested targets, it can be removed
621 			 */
622 			if ((bits & (1<<BDI_async_congested)) || 1)
623 				ret |= bdi_congested(&q->backing_dev_info, bits);
624 			else
625 				ret &= bdi_congested(&q->backing_dev_info, bits);
626 		}
627 	}
628 	rcu_read_unlock();
629 	return ret;
630 }
631 EXPORT_SYMBOL_GPL(md_raid1_congested);
632 
633 static int raid1_congested(void *data, int bits)
634 {
635 	struct mddev *mddev = data;
636 
637 	return mddev_congested(mddev, bits) ||
638 		md_raid1_congested(mddev, bits);
639 }
640 
641 static void flush_pending_writes(struct r1conf *conf)
642 {
643 	/* Any writes that have been queued but are awaiting
644 	 * bitmap updates get flushed here.
645 	 */
646 	spin_lock_irq(&conf->device_lock);
647 
648 	if (conf->pending_bio_list.head) {
649 		struct bio *bio;
650 		bio = bio_list_get(&conf->pending_bio_list);
651 		conf->pending_count = 0;
652 		spin_unlock_irq(&conf->device_lock);
653 		/* flush any pending bitmap writes to
654 		 * disk before proceeding w/ I/O */
655 		bitmap_unplug(conf->mddev->bitmap);
656 		wake_up(&conf->wait_barrier);
657 
658 		while (bio) { /* submit pending writes */
659 			struct bio *next = bio->bi_next;
660 			bio->bi_next = NULL;
661 			generic_make_request(bio);
662 			bio = next;
663 		}
664 	} else
665 		spin_unlock_irq(&conf->device_lock);
666 }
667 
668 /* Barriers....
669  * Sometimes we need to suspend IO while we do something else,
670  * either some resync/recovery, or reconfigure the array.
671  * To do this we raise a 'barrier'.
672  * The 'barrier' is a counter that can be raised multiple times
673  * to count how many activities are happening which preclude
674  * normal IO.
675  * We can only raise the barrier if there is no pending IO.
676  * i.e. if nr_pending == 0.
677  * We choose only to raise the barrier if no-one is waiting for the
678  * barrier to go down.  This means that as soon as an IO request
679  * is ready, no other operations which require a barrier will start
680  * until the IO request has had a chance.
681  *
682  * So: regular IO calls 'wait_barrier'.  When that returns there
683  *    is no backgroup IO happening,  It must arrange to call
684  *    allow_barrier when it has finished its IO.
685  * backgroup IO calls must call raise_barrier.  Once that returns
686  *    there is no normal IO happeing.  It must arrange to call
687  *    lower_barrier when the particular background IO completes.
688  */
689 #define RESYNC_DEPTH 32
690 
691 static void raise_barrier(struct r1conf *conf)
692 {
693 	spin_lock_irq(&conf->resync_lock);
694 
695 	/* Wait until no block IO is waiting */
696 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
697 			    conf->resync_lock, );
698 
699 	/* block any new IO from starting */
700 	conf->barrier++;
701 
702 	/* Now wait for all pending IO to complete */
703 	wait_event_lock_irq(conf->wait_barrier,
704 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
705 			    conf->resync_lock, );
706 
707 	spin_unlock_irq(&conf->resync_lock);
708 }
709 
710 static void lower_barrier(struct r1conf *conf)
711 {
712 	unsigned long flags;
713 	BUG_ON(conf->barrier <= 0);
714 	spin_lock_irqsave(&conf->resync_lock, flags);
715 	conf->barrier--;
716 	spin_unlock_irqrestore(&conf->resync_lock, flags);
717 	wake_up(&conf->wait_barrier);
718 }
719 
720 static void wait_barrier(struct r1conf *conf)
721 {
722 	spin_lock_irq(&conf->resync_lock);
723 	if (conf->barrier) {
724 		conf->nr_waiting++;
725 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
726 				    conf->resync_lock,
727 				    );
728 		conf->nr_waiting--;
729 	}
730 	conf->nr_pending++;
731 	spin_unlock_irq(&conf->resync_lock);
732 }
733 
734 static void allow_barrier(struct r1conf *conf)
735 {
736 	unsigned long flags;
737 	spin_lock_irqsave(&conf->resync_lock, flags);
738 	conf->nr_pending--;
739 	spin_unlock_irqrestore(&conf->resync_lock, flags);
740 	wake_up(&conf->wait_barrier);
741 }
742 
743 static void freeze_array(struct r1conf *conf)
744 {
745 	/* stop syncio and normal IO and wait for everything to
746 	 * go quite.
747 	 * We increment barrier and nr_waiting, and then
748 	 * wait until nr_pending match nr_queued+1
749 	 * This is called in the context of one normal IO request
750 	 * that has failed. Thus any sync request that might be pending
751 	 * will be blocked by nr_pending, and we need to wait for
752 	 * pending IO requests to complete or be queued for re-try.
753 	 * Thus the number queued (nr_queued) plus this request (1)
754 	 * must match the number of pending IOs (nr_pending) before
755 	 * we continue.
756 	 */
757 	spin_lock_irq(&conf->resync_lock);
758 	conf->barrier++;
759 	conf->nr_waiting++;
760 	wait_event_lock_irq(conf->wait_barrier,
761 			    conf->nr_pending == conf->nr_queued+1,
762 			    conf->resync_lock,
763 			    flush_pending_writes(conf));
764 	spin_unlock_irq(&conf->resync_lock);
765 }
766 static void unfreeze_array(struct r1conf *conf)
767 {
768 	/* reverse the effect of the freeze */
769 	spin_lock_irq(&conf->resync_lock);
770 	conf->barrier--;
771 	conf->nr_waiting--;
772 	wake_up(&conf->wait_barrier);
773 	spin_unlock_irq(&conf->resync_lock);
774 }
775 
776 
777 /* duplicate the data pages for behind I/O
778  */
779 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
780 {
781 	int i;
782 	struct bio_vec *bvec;
783 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
784 					GFP_NOIO);
785 	if (unlikely(!bvecs))
786 		return;
787 
788 	bio_for_each_segment(bvec, bio, i) {
789 		bvecs[i] = *bvec;
790 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
791 		if (unlikely(!bvecs[i].bv_page))
792 			goto do_sync_io;
793 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
794 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
795 		kunmap(bvecs[i].bv_page);
796 		kunmap(bvec->bv_page);
797 	}
798 	r1_bio->behind_bvecs = bvecs;
799 	r1_bio->behind_page_count = bio->bi_vcnt;
800 	set_bit(R1BIO_BehindIO, &r1_bio->state);
801 	return;
802 
803 do_sync_io:
804 	for (i = 0; i < bio->bi_vcnt; i++)
805 		if (bvecs[i].bv_page)
806 			put_page(bvecs[i].bv_page);
807 	kfree(bvecs);
808 	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
809 }
810 
811 static void make_request(struct mddev *mddev, struct bio * bio)
812 {
813 	struct r1conf *conf = mddev->private;
814 	struct mirror_info *mirror;
815 	struct r1bio *r1_bio;
816 	struct bio *read_bio;
817 	int i, disks;
818 	struct bitmap *bitmap;
819 	unsigned long flags;
820 	const int rw = bio_data_dir(bio);
821 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
822 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
823 	struct md_rdev *blocked_rdev;
824 	int plugged;
825 	int first_clone;
826 	int sectors_handled;
827 	int max_sectors;
828 
829 	/*
830 	 * Register the new request and wait if the reconstruction
831 	 * thread has put up a bar for new requests.
832 	 * Continue immediately if no resync is active currently.
833 	 */
834 
835 	md_write_start(mddev, bio); /* wait on superblock update early */
836 
837 	if (bio_data_dir(bio) == WRITE &&
838 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
839 	    bio->bi_sector < mddev->suspend_hi) {
840 		/* As the suspend_* range is controlled by
841 		 * userspace, we want an interruptible
842 		 * wait.
843 		 */
844 		DEFINE_WAIT(w);
845 		for (;;) {
846 			flush_signals(current);
847 			prepare_to_wait(&conf->wait_barrier,
848 					&w, TASK_INTERRUPTIBLE);
849 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
850 			    bio->bi_sector >= mddev->suspend_hi)
851 				break;
852 			schedule();
853 		}
854 		finish_wait(&conf->wait_barrier, &w);
855 	}
856 
857 	wait_barrier(conf);
858 
859 	bitmap = mddev->bitmap;
860 
861 	/*
862 	 * make_request() can abort the operation when READA is being
863 	 * used and no empty request is available.
864 	 *
865 	 */
866 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
867 
868 	r1_bio->master_bio = bio;
869 	r1_bio->sectors = bio->bi_size >> 9;
870 	r1_bio->state = 0;
871 	r1_bio->mddev = mddev;
872 	r1_bio->sector = bio->bi_sector;
873 
874 	/* We might need to issue multiple reads to different
875 	 * devices if there are bad blocks around, so we keep
876 	 * track of the number of reads in bio->bi_phys_segments.
877 	 * If this is 0, there is only one r1_bio and no locking
878 	 * will be needed when requests complete.  If it is
879 	 * non-zero, then it is the number of not-completed requests.
880 	 */
881 	bio->bi_phys_segments = 0;
882 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
883 
884 	if (rw == READ) {
885 		/*
886 		 * read balancing logic:
887 		 */
888 		int rdisk;
889 
890 read_again:
891 		rdisk = read_balance(conf, r1_bio, &max_sectors);
892 
893 		if (rdisk < 0) {
894 			/* couldn't find anywhere to read from */
895 			raid_end_bio_io(r1_bio);
896 			return;
897 		}
898 		mirror = conf->mirrors + rdisk;
899 
900 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
901 		    bitmap) {
902 			/* Reading from a write-mostly device must
903 			 * take care not to over-take any writes
904 			 * that are 'behind'
905 			 */
906 			wait_event(bitmap->behind_wait,
907 				   atomic_read(&bitmap->behind_writes) == 0);
908 		}
909 		r1_bio->read_disk = rdisk;
910 
911 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
912 		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
913 			    max_sectors);
914 
915 		r1_bio->bios[rdisk] = read_bio;
916 
917 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
918 		read_bio->bi_bdev = mirror->rdev->bdev;
919 		read_bio->bi_end_io = raid1_end_read_request;
920 		read_bio->bi_rw = READ | do_sync;
921 		read_bio->bi_private = r1_bio;
922 
923 		if (max_sectors < r1_bio->sectors) {
924 			/* could not read all from this device, so we will
925 			 * need another r1_bio.
926 			 */
927 
928 			sectors_handled = (r1_bio->sector + max_sectors
929 					   - bio->bi_sector);
930 			r1_bio->sectors = max_sectors;
931 			spin_lock_irq(&conf->device_lock);
932 			if (bio->bi_phys_segments == 0)
933 				bio->bi_phys_segments = 2;
934 			else
935 				bio->bi_phys_segments++;
936 			spin_unlock_irq(&conf->device_lock);
937 			/* Cannot call generic_make_request directly
938 			 * as that will be queued in __make_request
939 			 * and subsequent mempool_alloc might block waiting
940 			 * for it.  So hand bio over to raid1d.
941 			 */
942 			reschedule_retry(r1_bio);
943 
944 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
945 
946 			r1_bio->master_bio = bio;
947 			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
948 			r1_bio->state = 0;
949 			r1_bio->mddev = mddev;
950 			r1_bio->sector = bio->bi_sector + sectors_handled;
951 			goto read_again;
952 		} else
953 			generic_make_request(read_bio);
954 		return;
955 	}
956 
957 	/*
958 	 * WRITE:
959 	 */
960 	if (conf->pending_count >= max_queued_requests) {
961 		md_wakeup_thread(mddev->thread);
962 		wait_event(conf->wait_barrier,
963 			   conf->pending_count < max_queued_requests);
964 	}
965 	/* first select target devices under rcu_lock and
966 	 * inc refcount on their rdev.  Record them by setting
967 	 * bios[x] to bio
968 	 * If there are known/acknowledged bad blocks on any device on
969 	 * which we have seen a write error, we want to avoid writing those
970 	 * blocks.
971 	 * This potentially requires several writes to write around
972 	 * the bad blocks.  Each set of writes gets it's own r1bio
973 	 * with a set of bios attached.
974 	 */
975 	plugged = mddev_check_plugged(mddev);
976 
977 	disks = conf->raid_disks;
978  retry_write:
979 	blocked_rdev = NULL;
980 	rcu_read_lock();
981 	max_sectors = r1_bio->sectors;
982 	for (i = 0;  i < disks; i++) {
983 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
984 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
985 			atomic_inc(&rdev->nr_pending);
986 			blocked_rdev = rdev;
987 			break;
988 		}
989 		r1_bio->bios[i] = NULL;
990 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
991 			set_bit(R1BIO_Degraded, &r1_bio->state);
992 			continue;
993 		}
994 
995 		atomic_inc(&rdev->nr_pending);
996 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
997 			sector_t first_bad;
998 			int bad_sectors;
999 			int is_bad;
1000 
1001 			is_bad = is_badblock(rdev, r1_bio->sector,
1002 					     max_sectors,
1003 					     &first_bad, &bad_sectors);
1004 			if (is_bad < 0) {
1005 				/* mustn't write here until the bad block is
1006 				 * acknowledged*/
1007 				set_bit(BlockedBadBlocks, &rdev->flags);
1008 				blocked_rdev = rdev;
1009 				break;
1010 			}
1011 			if (is_bad && first_bad <= r1_bio->sector) {
1012 				/* Cannot write here at all */
1013 				bad_sectors -= (r1_bio->sector - first_bad);
1014 				if (bad_sectors < max_sectors)
1015 					/* mustn't write more than bad_sectors
1016 					 * to other devices yet
1017 					 */
1018 					max_sectors = bad_sectors;
1019 				rdev_dec_pending(rdev, mddev);
1020 				/* We don't set R1BIO_Degraded as that
1021 				 * only applies if the disk is
1022 				 * missing, so it might be re-added,
1023 				 * and we want to know to recover this
1024 				 * chunk.
1025 				 * In this case the device is here,
1026 				 * and the fact that this chunk is not
1027 				 * in-sync is recorded in the bad
1028 				 * block log
1029 				 */
1030 				continue;
1031 			}
1032 			if (is_bad) {
1033 				int good_sectors = first_bad - r1_bio->sector;
1034 				if (good_sectors < max_sectors)
1035 					max_sectors = good_sectors;
1036 			}
1037 		}
1038 		r1_bio->bios[i] = bio;
1039 	}
1040 	rcu_read_unlock();
1041 
1042 	if (unlikely(blocked_rdev)) {
1043 		/* Wait for this device to become unblocked */
1044 		int j;
1045 
1046 		for (j = 0; j < i; j++)
1047 			if (r1_bio->bios[j])
1048 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1049 		r1_bio->state = 0;
1050 		allow_barrier(conf);
1051 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1052 		wait_barrier(conf);
1053 		goto retry_write;
1054 	}
1055 
1056 	if (max_sectors < r1_bio->sectors) {
1057 		/* We are splitting this write into multiple parts, so
1058 		 * we need to prepare for allocating another r1_bio.
1059 		 */
1060 		r1_bio->sectors = max_sectors;
1061 		spin_lock_irq(&conf->device_lock);
1062 		if (bio->bi_phys_segments == 0)
1063 			bio->bi_phys_segments = 2;
1064 		else
1065 			bio->bi_phys_segments++;
1066 		spin_unlock_irq(&conf->device_lock);
1067 	}
1068 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1069 
1070 	atomic_set(&r1_bio->remaining, 1);
1071 	atomic_set(&r1_bio->behind_remaining, 0);
1072 
1073 	first_clone = 1;
1074 	for (i = 0; i < disks; i++) {
1075 		struct bio *mbio;
1076 		if (!r1_bio->bios[i])
1077 			continue;
1078 
1079 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1080 		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1081 
1082 		if (first_clone) {
1083 			/* do behind I/O ?
1084 			 * Not if there are too many, or cannot
1085 			 * allocate memory, or a reader on WriteMostly
1086 			 * is waiting for behind writes to flush */
1087 			if (bitmap &&
1088 			    (atomic_read(&bitmap->behind_writes)
1089 			     < mddev->bitmap_info.max_write_behind) &&
1090 			    !waitqueue_active(&bitmap->behind_wait))
1091 				alloc_behind_pages(mbio, r1_bio);
1092 
1093 			bitmap_startwrite(bitmap, r1_bio->sector,
1094 					  r1_bio->sectors,
1095 					  test_bit(R1BIO_BehindIO,
1096 						   &r1_bio->state));
1097 			first_clone = 0;
1098 		}
1099 		if (r1_bio->behind_bvecs) {
1100 			struct bio_vec *bvec;
1101 			int j;
1102 
1103 			/* Yes, I really want the '__' version so that
1104 			 * we clear any unused pointer in the io_vec, rather
1105 			 * than leave them unchanged.  This is important
1106 			 * because when we come to free the pages, we won't
1107 			 * know the original bi_idx, so we just free
1108 			 * them all
1109 			 */
1110 			__bio_for_each_segment(bvec, mbio, j, 0)
1111 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1112 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1113 				atomic_inc(&r1_bio->behind_remaining);
1114 		}
1115 
1116 		r1_bio->bios[i] = mbio;
1117 
1118 		mbio->bi_sector	= (r1_bio->sector +
1119 				   conf->mirrors[i].rdev->data_offset);
1120 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1121 		mbio->bi_end_io	= raid1_end_write_request;
1122 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1123 		mbio->bi_private = r1_bio;
1124 
1125 		atomic_inc(&r1_bio->remaining);
1126 		spin_lock_irqsave(&conf->device_lock, flags);
1127 		bio_list_add(&conf->pending_bio_list, mbio);
1128 		conf->pending_count++;
1129 		spin_unlock_irqrestore(&conf->device_lock, flags);
1130 	}
1131 	/* Mustn't call r1_bio_write_done before this next test,
1132 	 * as it could result in the bio being freed.
1133 	 */
1134 	if (sectors_handled < (bio->bi_size >> 9)) {
1135 		r1_bio_write_done(r1_bio);
1136 		/* We need another r1_bio.  It has already been counted
1137 		 * in bio->bi_phys_segments
1138 		 */
1139 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1140 		r1_bio->master_bio = bio;
1141 		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1142 		r1_bio->state = 0;
1143 		r1_bio->mddev = mddev;
1144 		r1_bio->sector = bio->bi_sector + sectors_handled;
1145 		goto retry_write;
1146 	}
1147 
1148 	r1_bio_write_done(r1_bio);
1149 
1150 	/* In case raid1d snuck in to freeze_array */
1151 	wake_up(&conf->wait_barrier);
1152 
1153 	if (do_sync || !bitmap || !plugged)
1154 		md_wakeup_thread(mddev->thread);
1155 }
1156 
1157 static void status(struct seq_file *seq, struct mddev *mddev)
1158 {
1159 	struct r1conf *conf = mddev->private;
1160 	int i;
1161 
1162 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1163 		   conf->raid_disks - mddev->degraded);
1164 	rcu_read_lock();
1165 	for (i = 0; i < conf->raid_disks; i++) {
1166 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1167 		seq_printf(seq, "%s",
1168 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1169 	}
1170 	rcu_read_unlock();
1171 	seq_printf(seq, "]");
1172 }
1173 
1174 
1175 static void error(struct mddev *mddev, struct md_rdev *rdev)
1176 {
1177 	char b[BDEVNAME_SIZE];
1178 	struct r1conf *conf = mddev->private;
1179 
1180 	/*
1181 	 * If it is not operational, then we have already marked it as dead
1182 	 * else if it is the last working disks, ignore the error, let the
1183 	 * next level up know.
1184 	 * else mark the drive as failed
1185 	 */
1186 	if (test_bit(In_sync, &rdev->flags)
1187 	    && (conf->raid_disks - mddev->degraded) == 1) {
1188 		/*
1189 		 * Don't fail the drive, act as though we were just a
1190 		 * normal single drive.
1191 		 * However don't try a recovery from this drive as
1192 		 * it is very likely to fail.
1193 		 */
1194 		conf->recovery_disabled = mddev->recovery_disabled;
1195 		return;
1196 	}
1197 	set_bit(Blocked, &rdev->flags);
1198 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1199 		unsigned long flags;
1200 		spin_lock_irqsave(&conf->device_lock, flags);
1201 		mddev->degraded++;
1202 		set_bit(Faulty, &rdev->flags);
1203 		spin_unlock_irqrestore(&conf->device_lock, flags);
1204 		/*
1205 		 * if recovery is running, make sure it aborts.
1206 		 */
1207 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1208 	} else
1209 		set_bit(Faulty, &rdev->flags);
1210 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1211 	printk(KERN_ALERT
1212 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1213 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1214 	       mdname(mddev), bdevname(rdev->bdev, b),
1215 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1216 }
1217 
1218 static void print_conf(struct r1conf *conf)
1219 {
1220 	int i;
1221 
1222 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1223 	if (!conf) {
1224 		printk(KERN_DEBUG "(!conf)\n");
1225 		return;
1226 	}
1227 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1228 		conf->raid_disks);
1229 
1230 	rcu_read_lock();
1231 	for (i = 0; i < conf->raid_disks; i++) {
1232 		char b[BDEVNAME_SIZE];
1233 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1234 		if (rdev)
1235 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1236 			       i, !test_bit(In_sync, &rdev->flags),
1237 			       !test_bit(Faulty, &rdev->flags),
1238 			       bdevname(rdev->bdev,b));
1239 	}
1240 	rcu_read_unlock();
1241 }
1242 
1243 static void close_sync(struct r1conf *conf)
1244 {
1245 	wait_barrier(conf);
1246 	allow_barrier(conf);
1247 
1248 	mempool_destroy(conf->r1buf_pool);
1249 	conf->r1buf_pool = NULL;
1250 }
1251 
1252 static int raid1_spare_active(struct mddev *mddev)
1253 {
1254 	int i;
1255 	struct r1conf *conf = mddev->private;
1256 	int count = 0;
1257 	unsigned long flags;
1258 
1259 	/*
1260 	 * Find all failed disks within the RAID1 configuration
1261 	 * and mark them readable.
1262 	 * Called under mddev lock, so rcu protection not needed.
1263 	 */
1264 	for (i = 0; i < conf->raid_disks; i++) {
1265 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1266 		if (rdev
1267 		    && !test_bit(Faulty, &rdev->flags)
1268 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1269 			count++;
1270 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1271 		}
1272 	}
1273 	spin_lock_irqsave(&conf->device_lock, flags);
1274 	mddev->degraded -= count;
1275 	spin_unlock_irqrestore(&conf->device_lock, flags);
1276 
1277 	print_conf(conf);
1278 	return count;
1279 }
1280 
1281 
1282 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1283 {
1284 	struct r1conf *conf = mddev->private;
1285 	int err = -EEXIST;
1286 	int mirror = 0;
1287 	struct mirror_info *p;
1288 	int first = 0;
1289 	int last = mddev->raid_disks - 1;
1290 
1291 	if (mddev->recovery_disabled == conf->recovery_disabled)
1292 		return -EBUSY;
1293 
1294 	if (rdev->raid_disk >= 0)
1295 		first = last = rdev->raid_disk;
1296 
1297 	for (mirror = first; mirror <= last; mirror++)
1298 		if ( !(p=conf->mirrors+mirror)->rdev) {
1299 
1300 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1301 					  rdev->data_offset << 9);
1302 			/* as we don't honour merge_bvec_fn, we must
1303 			 * never risk violating it, so limit
1304 			 * ->max_segments to one lying with a single
1305 			 * page, as a one page request is never in
1306 			 * violation.
1307 			 */
1308 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1309 				blk_queue_max_segments(mddev->queue, 1);
1310 				blk_queue_segment_boundary(mddev->queue,
1311 							   PAGE_CACHE_SIZE - 1);
1312 			}
1313 
1314 			p->head_position = 0;
1315 			rdev->raid_disk = mirror;
1316 			err = 0;
1317 			/* As all devices are equivalent, we don't need a full recovery
1318 			 * if this was recently any drive of the array
1319 			 */
1320 			if (rdev->saved_raid_disk < 0)
1321 				conf->fullsync = 1;
1322 			rcu_assign_pointer(p->rdev, rdev);
1323 			break;
1324 		}
1325 	md_integrity_add_rdev(rdev, mddev);
1326 	print_conf(conf);
1327 	return err;
1328 }
1329 
1330 static int raid1_remove_disk(struct mddev *mddev, int number)
1331 {
1332 	struct r1conf *conf = mddev->private;
1333 	int err = 0;
1334 	struct md_rdev *rdev;
1335 	struct mirror_info *p = conf->mirrors+ number;
1336 
1337 	print_conf(conf);
1338 	rdev = p->rdev;
1339 	if (rdev) {
1340 		if (test_bit(In_sync, &rdev->flags) ||
1341 		    atomic_read(&rdev->nr_pending)) {
1342 			err = -EBUSY;
1343 			goto abort;
1344 		}
1345 		/* Only remove non-faulty devices if recovery
1346 		 * is not possible.
1347 		 */
1348 		if (!test_bit(Faulty, &rdev->flags) &&
1349 		    mddev->recovery_disabled != conf->recovery_disabled &&
1350 		    mddev->degraded < conf->raid_disks) {
1351 			err = -EBUSY;
1352 			goto abort;
1353 		}
1354 		p->rdev = NULL;
1355 		synchronize_rcu();
1356 		if (atomic_read(&rdev->nr_pending)) {
1357 			/* lost the race, try later */
1358 			err = -EBUSY;
1359 			p->rdev = rdev;
1360 			goto abort;
1361 		}
1362 		err = md_integrity_register(mddev);
1363 	}
1364 abort:
1365 
1366 	print_conf(conf);
1367 	return err;
1368 }
1369 
1370 
1371 static void end_sync_read(struct bio *bio, int error)
1372 {
1373 	struct r1bio *r1_bio = bio->bi_private;
1374 
1375 	update_head_pos(r1_bio->read_disk, r1_bio);
1376 
1377 	/*
1378 	 * we have read a block, now it needs to be re-written,
1379 	 * or re-read if the read failed.
1380 	 * We don't do much here, just schedule handling by raid1d
1381 	 */
1382 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1383 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1384 
1385 	if (atomic_dec_and_test(&r1_bio->remaining))
1386 		reschedule_retry(r1_bio);
1387 }
1388 
1389 static void end_sync_write(struct bio *bio, int error)
1390 {
1391 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1392 	struct r1bio *r1_bio = bio->bi_private;
1393 	struct mddev *mddev = r1_bio->mddev;
1394 	struct r1conf *conf = mddev->private;
1395 	int mirror=0;
1396 	sector_t first_bad;
1397 	int bad_sectors;
1398 
1399 	mirror = find_bio_disk(r1_bio, bio);
1400 
1401 	if (!uptodate) {
1402 		sector_t sync_blocks = 0;
1403 		sector_t s = r1_bio->sector;
1404 		long sectors_to_go = r1_bio->sectors;
1405 		/* make sure these bits doesn't get cleared. */
1406 		do {
1407 			bitmap_end_sync(mddev->bitmap, s,
1408 					&sync_blocks, 1);
1409 			s += sync_blocks;
1410 			sectors_to_go -= sync_blocks;
1411 		} while (sectors_to_go > 0);
1412 		set_bit(WriteErrorSeen,
1413 			&conf->mirrors[mirror].rdev->flags);
1414 		set_bit(R1BIO_WriteError, &r1_bio->state);
1415 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1416 			       r1_bio->sector,
1417 			       r1_bio->sectors,
1418 			       &first_bad, &bad_sectors) &&
1419 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1420 				r1_bio->sector,
1421 				r1_bio->sectors,
1422 				&first_bad, &bad_sectors)
1423 		)
1424 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1425 
1426 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1427 		int s = r1_bio->sectors;
1428 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1429 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1430 			reschedule_retry(r1_bio);
1431 		else {
1432 			put_buf(r1_bio);
1433 			md_done_sync(mddev, s, uptodate);
1434 		}
1435 	}
1436 }
1437 
1438 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1439 			    int sectors, struct page *page, int rw)
1440 {
1441 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1442 		/* success */
1443 		return 1;
1444 	if (rw == WRITE)
1445 		set_bit(WriteErrorSeen, &rdev->flags);
1446 	/* need to record an error - either for the block or the device */
1447 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1448 		md_error(rdev->mddev, rdev);
1449 	return 0;
1450 }
1451 
1452 static int fix_sync_read_error(struct r1bio *r1_bio)
1453 {
1454 	/* Try some synchronous reads of other devices to get
1455 	 * good data, much like with normal read errors.  Only
1456 	 * read into the pages we already have so we don't
1457 	 * need to re-issue the read request.
1458 	 * We don't need to freeze the array, because being in an
1459 	 * active sync request, there is no normal IO, and
1460 	 * no overlapping syncs.
1461 	 * We don't need to check is_badblock() again as we
1462 	 * made sure that anything with a bad block in range
1463 	 * will have bi_end_io clear.
1464 	 */
1465 	struct mddev *mddev = r1_bio->mddev;
1466 	struct r1conf *conf = mddev->private;
1467 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1468 	sector_t sect = r1_bio->sector;
1469 	int sectors = r1_bio->sectors;
1470 	int idx = 0;
1471 
1472 	while(sectors) {
1473 		int s = sectors;
1474 		int d = r1_bio->read_disk;
1475 		int success = 0;
1476 		struct md_rdev *rdev;
1477 		int start;
1478 
1479 		if (s > (PAGE_SIZE>>9))
1480 			s = PAGE_SIZE >> 9;
1481 		do {
1482 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1483 				/* No rcu protection needed here devices
1484 				 * can only be removed when no resync is
1485 				 * active, and resync is currently active
1486 				 */
1487 				rdev = conf->mirrors[d].rdev;
1488 				if (sync_page_io(rdev, sect, s<<9,
1489 						 bio->bi_io_vec[idx].bv_page,
1490 						 READ, false)) {
1491 					success = 1;
1492 					break;
1493 				}
1494 			}
1495 			d++;
1496 			if (d == conf->raid_disks)
1497 				d = 0;
1498 		} while (!success && d != r1_bio->read_disk);
1499 
1500 		if (!success) {
1501 			char b[BDEVNAME_SIZE];
1502 			int abort = 0;
1503 			/* Cannot read from anywhere, this block is lost.
1504 			 * Record a bad block on each device.  If that doesn't
1505 			 * work just disable and interrupt the recovery.
1506 			 * Don't fail devices as that won't really help.
1507 			 */
1508 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1509 			       " for block %llu\n",
1510 			       mdname(mddev),
1511 			       bdevname(bio->bi_bdev, b),
1512 			       (unsigned long long)r1_bio->sector);
1513 			for (d = 0; d < conf->raid_disks; d++) {
1514 				rdev = conf->mirrors[d].rdev;
1515 				if (!rdev || test_bit(Faulty, &rdev->flags))
1516 					continue;
1517 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1518 					abort = 1;
1519 			}
1520 			if (abort) {
1521 				conf->recovery_disabled =
1522 					mddev->recovery_disabled;
1523 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1524 				md_done_sync(mddev, r1_bio->sectors, 0);
1525 				put_buf(r1_bio);
1526 				return 0;
1527 			}
1528 			/* Try next page */
1529 			sectors -= s;
1530 			sect += s;
1531 			idx++;
1532 			continue;
1533 		}
1534 
1535 		start = d;
1536 		/* write it back and re-read */
1537 		while (d != r1_bio->read_disk) {
1538 			if (d == 0)
1539 				d = conf->raid_disks;
1540 			d--;
1541 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1542 				continue;
1543 			rdev = conf->mirrors[d].rdev;
1544 			if (r1_sync_page_io(rdev, sect, s,
1545 					    bio->bi_io_vec[idx].bv_page,
1546 					    WRITE) == 0) {
1547 				r1_bio->bios[d]->bi_end_io = NULL;
1548 				rdev_dec_pending(rdev, mddev);
1549 			}
1550 		}
1551 		d = start;
1552 		while (d != r1_bio->read_disk) {
1553 			if (d == 0)
1554 				d = conf->raid_disks;
1555 			d--;
1556 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1557 				continue;
1558 			rdev = conf->mirrors[d].rdev;
1559 			if (r1_sync_page_io(rdev, sect, s,
1560 					    bio->bi_io_vec[idx].bv_page,
1561 					    READ) != 0)
1562 				atomic_add(s, &rdev->corrected_errors);
1563 		}
1564 		sectors -= s;
1565 		sect += s;
1566 		idx ++;
1567 	}
1568 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1569 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1570 	return 1;
1571 }
1572 
1573 static int process_checks(struct r1bio *r1_bio)
1574 {
1575 	/* We have read all readable devices.  If we haven't
1576 	 * got the block, then there is no hope left.
1577 	 * If we have, then we want to do a comparison
1578 	 * and skip the write if everything is the same.
1579 	 * If any blocks failed to read, then we need to
1580 	 * attempt an over-write
1581 	 */
1582 	struct mddev *mddev = r1_bio->mddev;
1583 	struct r1conf *conf = mddev->private;
1584 	int primary;
1585 	int i;
1586 
1587 	for (primary = 0; primary < conf->raid_disks; primary++)
1588 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1589 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1590 			r1_bio->bios[primary]->bi_end_io = NULL;
1591 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1592 			break;
1593 		}
1594 	r1_bio->read_disk = primary;
1595 	for (i = 0; i < conf->raid_disks; i++) {
1596 		int j;
1597 		int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1598 		struct bio *pbio = r1_bio->bios[primary];
1599 		struct bio *sbio = r1_bio->bios[i];
1600 		int size;
1601 
1602 		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1603 			continue;
1604 
1605 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1606 			for (j = vcnt; j-- ; ) {
1607 				struct page *p, *s;
1608 				p = pbio->bi_io_vec[j].bv_page;
1609 				s = sbio->bi_io_vec[j].bv_page;
1610 				if (memcmp(page_address(p),
1611 					   page_address(s),
1612 					   PAGE_SIZE))
1613 					break;
1614 			}
1615 		} else
1616 			j = 0;
1617 		if (j >= 0)
1618 			mddev->resync_mismatches += r1_bio->sectors;
1619 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1620 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1621 			/* No need to write to this device. */
1622 			sbio->bi_end_io = NULL;
1623 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1624 			continue;
1625 		}
1626 		/* fixup the bio for reuse */
1627 		sbio->bi_vcnt = vcnt;
1628 		sbio->bi_size = r1_bio->sectors << 9;
1629 		sbio->bi_idx = 0;
1630 		sbio->bi_phys_segments = 0;
1631 		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1632 		sbio->bi_flags |= 1 << BIO_UPTODATE;
1633 		sbio->bi_next = NULL;
1634 		sbio->bi_sector = r1_bio->sector +
1635 			conf->mirrors[i].rdev->data_offset;
1636 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1637 		size = sbio->bi_size;
1638 		for (j = 0; j < vcnt ; j++) {
1639 			struct bio_vec *bi;
1640 			bi = &sbio->bi_io_vec[j];
1641 			bi->bv_offset = 0;
1642 			if (size > PAGE_SIZE)
1643 				bi->bv_len = PAGE_SIZE;
1644 			else
1645 				bi->bv_len = size;
1646 			size -= PAGE_SIZE;
1647 			memcpy(page_address(bi->bv_page),
1648 			       page_address(pbio->bi_io_vec[j].bv_page),
1649 			       PAGE_SIZE);
1650 		}
1651 	}
1652 	return 0;
1653 }
1654 
1655 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1656 {
1657 	struct r1conf *conf = mddev->private;
1658 	int i;
1659 	int disks = conf->raid_disks;
1660 	struct bio *bio, *wbio;
1661 
1662 	bio = r1_bio->bios[r1_bio->read_disk];
1663 
1664 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1665 		/* ouch - failed to read all of that. */
1666 		if (!fix_sync_read_error(r1_bio))
1667 			return;
1668 
1669 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1670 		if (process_checks(r1_bio) < 0)
1671 			return;
1672 	/*
1673 	 * schedule writes
1674 	 */
1675 	atomic_set(&r1_bio->remaining, 1);
1676 	for (i = 0; i < disks ; i++) {
1677 		wbio = r1_bio->bios[i];
1678 		if (wbio->bi_end_io == NULL ||
1679 		    (wbio->bi_end_io == end_sync_read &&
1680 		     (i == r1_bio->read_disk ||
1681 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1682 			continue;
1683 
1684 		wbio->bi_rw = WRITE;
1685 		wbio->bi_end_io = end_sync_write;
1686 		atomic_inc(&r1_bio->remaining);
1687 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1688 
1689 		generic_make_request(wbio);
1690 	}
1691 
1692 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1693 		/* if we're here, all write(s) have completed, so clean up */
1694 		md_done_sync(mddev, r1_bio->sectors, 1);
1695 		put_buf(r1_bio);
1696 	}
1697 }
1698 
1699 /*
1700  * This is a kernel thread which:
1701  *
1702  *	1.	Retries failed read operations on working mirrors.
1703  *	2.	Updates the raid superblock when problems encounter.
1704  *	3.	Performs writes following reads for array synchronising.
1705  */
1706 
1707 static void fix_read_error(struct r1conf *conf, int read_disk,
1708 			   sector_t sect, int sectors)
1709 {
1710 	struct mddev *mddev = conf->mddev;
1711 	while(sectors) {
1712 		int s = sectors;
1713 		int d = read_disk;
1714 		int success = 0;
1715 		int start;
1716 		struct md_rdev *rdev;
1717 
1718 		if (s > (PAGE_SIZE>>9))
1719 			s = PAGE_SIZE >> 9;
1720 
1721 		do {
1722 			/* Note: no rcu protection needed here
1723 			 * as this is synchronous in the raid1d thread
1724 			 * which is the thread that might remove
1725 			 * a device.  If raid1d ever becomes multi-threaded....
1726 			 */
1727 			sector_t first_bad;
1728 			int bad_sectors;
1729 
1730 			rdev = conf->mirrors[d].rdev;
1731 			if (rdev &&
1732 			    test_bit(In_sync, &rdev->flags) &&
1733 			    is_badblock(rdev, sect, s,
1734 					&first_bad, &bad_sectors) == 0 &&
1735 			    sync_page_io(rdev, sect, s<<9,
1736 					 conf->tmppage, READ, false))
1737 				success = 1;
1738 			else {
1739 				d++;
1740 				if (d == conf->raid_disks)
1741 					d = 0;
1742 			}
1743 		} while (!success && d != read_disk);
1744 
1745 		if (!success) {
1746 			/* Cannot read from anywhere - mark it bad */
1747 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1748 			if (!rdev_set_badblocks(rdev, sect, s, 0))
1749 				md_error(mddev, rdev);
1750 			break;
1751 		}
1752 		/* write it back and re-read */
1753 		start = d;
1754 		while (d != read_disk) {
1755 			if (d==0)
1756 				d = conf->raid_disks;
1757 			d--;
1758 			rdev = conf->mirrors[d].rdev;
1759 			if (rdev &&
1760 			    test_bit(In_sync, &rdev->flags))
1761 				r1_sync_page_io(rdev, sect, s,
1762 						conf->tmppage, WRITE);
1763 		}
1764 		d = start;
1765 		while (d != read_disk) {
1766 			char b[BDEVNAME_SIZE];
1767 			if (d==0)
1768 				d = conf->raid_disks;
1769 			d--;
1770 			rdev = conf->mirrors[d].rdev;
1771 			if (rdev &&
1772 			    test_bit(In_sync, &rdev->flags)) {
1773 				if (r1_sync_page_io(rdev, sect, s,
1774 						    conf->tmppage, READ)) {
1775 					atomic_add(s, &rdev->corrected_errors);
1776 					printk(KERN_INFO
1777 					       "md/raid1:%s: read error corrected "
1778 					       "(%d sectors at %llu on %s)\n",
1779 					       mdname(mddev), s,
1780 					       (unsigned long long)(sect +
1781 					           rdev->data_offset),
1782 					       bdevname(rdev->bdev, b));
1783 				}
1784 			}
1785 		}
1786 		sectors -= s;
1787 		sect += s;
1788 	}
1789 }
1790 
1791 static void bi_complete(struct bio *bio, int error)
1792 {
1793 	complete((struct completion *)bio->bi_private);
1794 }
1795 
1796 static int submit_bio_wait(int rw, struct bio *bio)
1797 {
1798 	struct completion event;
1799 	rw |= REQ_SYNC;
1800 
1801 	init_completion(&event);
1802 	bio->bi_private = &event;
1803 	bio->bi_end_io = bi_complete;
1804 	submit_bio(rw, bio);
1805 	wait_for_completion(&event);
1806 
1807 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1808 }
1809 
1810 static int narrow_write_error(struct r1bio *r1_bio, int i)
1811 {
1812 	struct mddev *mddev = r1_bio->mddev;
1813 	struct r1conf *conf = mddev->private;
1814 	struct md_rdev *rdev = conf->mirrors[i].rdev;
1815 	int vcnt, idx;
1816 	struct bio_vec *vec;
1817 
1818 	/* bio has the data to be written to device 'i' where
1819 	 * we just recently had a write error.
1820 	 * We repeatedly clone the bio and trim down to one block,
1821 	 * then try the write.  Where the write fails we record
1822 	 * a bad block.
1823 	 * It is conceivable that the bio doesn't exactly align with
1824 	 * blocks.  We must handle this somehow.
1825 	 *
1826 	 * We currently own a reference on the rdev.
1827 	 */
1828 
1829 	int block_sectors;
1830 	sector_t sector;
1831 	int sectors;
1832 	int sect_to_write = r1_bio->sectors;
1833 	int ok = 1;
1834 
1835 	if (rdev->badblocks.shift < 0)
1836 		return 0;
1837 
1838 	block_sectors = 1 << rdev->badblocks.shift;
1839 	sector = r1_bio->sector;
1840 	sectors = ((sector + block_sectors)
1841 		   & ~(sector_t)(block_sectors - 1))
1842 		- sector;
1843 
1844 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1845 		vcnt = r1_bio->behind_page_count;
1846 		vec = r1_bio->behind_bvecs;
1847 		idx = 0;
1848 		while (vec[idx].bv_page == NULL)
1849 			idx++;
1850 	} else {
1851 		vcnt = r1_bio->master_bio->bi_vcnt;
1852 		vec = r1_bio->master_bio->bi_io_vec;
1853 		idx = r1_bio->master_bio->bi_idx;
1854 	}
1855 	while (sect_to_write) {
1856 		struct bio *wbio;
1857 		if (sectors > sect_to_write)
1858 			sectors = sect_to_write;
1859 		/* Write at 'sector' for 'sectors'*/
1860 
1861 		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1862 		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1863 		wbio->bi_sector = r1_bio->sector;
1864 		wbio->bi_rw = WRITE;
1865 		wbio->bi_vcnt = vcnt;
1866 		wbio->bi_size = r1_bio->sectors << 9;
1867 		wbio->bi_idx = idx;
1868 
1869 		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1870 		wbio->bi_sector += rdev->data_offset;
1871 		wbio->bi_bdev = rdev->bdev;
1872 		if (submit_bio_wait(WRITE, wbio) == 0)
1873 			/* failure! */
1874 			ok = rdev_set_badblocks(rdev, sector,
1875 						sectors, 0)
1876 				&& ok;
1877 
1878 		bio_put(wbio);
1879 		sect_to_write -= sectors;
1880 		sector += sectors;
1881 		sectors = block_sectors;
1882 	}
1883 	return ok;
1884 }
1885 
1886 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1887 {
1888 	int m;
1889 	int s = r1_bio->sectors;
1890 	for (m = 0; m < conf->raid_disks ; m++) {
1891 		struct md_rdev *rdev = conf->mirrors[m].rdev;
1892 		struct bio *bio = r1_bio->bios[m];
1893 		if (bio->bi_end_io == NULL)
1894 			continue;
1895 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1896 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1897 			rdev_clear_badblocks(rdev, r1_bio->sector, s);
1898 		}
1899 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1900 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
1901 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1902 				md_error(conf->mddev, rdev);
1903 		}
1904 	}
1905 	put_buf(r1_bio);
1906 	md_done_sync(conf->mddev, s, 1);
1907 }
1908 
1909 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1910 {
1911 	int m;
1912 	for (m = 0; m < conf->raid_disks ; m++)
1913 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
1914 			struct md_rdev *rdev = conf->mirrors[m].rdev;
1915 			rdev_clear_badblocks(rdev,
1916 					     r1_bio->sector,
1917 					     r1_bio->sectors);
1918 			rdev_dec_pending(rdev, conf->mddev);
1919 		} else if (r1_bio->bios[m] != NULL) {
1920 			/* This drive got a write error.  We need to
1921 			 * narrow down and record precise write
1922 			 * errors.
1923 			 */
1924 			if (!narrow_write_error(r1_bio, m)) {
1925 				md_error(conf->mddev,
1926 					 conf->mirrors[m].rdev);
1927 				/* an I/O failed, we can't clear the bitmap */
1928 				set_bit(R1BIO_Degraded, &r1_bio->state);
1929 			}
1930 			rdev_dec_pending(conf->mirrors[m].rdev,
1931 					 conf->mddev);
1932 		}
1933 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
1934 		close_write(r1_bio);
1935 	raid_end_bio_io(r1_bio);
1936 }
1937 
1938 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
1939 {
1940 	int disk;
1941 	int max_sectors;
1942 	struct mddev *mddev = conf->mddev;
1943 	struct bio *bio;
1944 	char b[BDEVNAME_SIZE];
1945 	struct md_rdev *rdev;
1946 
1947 	clear_bit(R1BIO_ReadError, &r1_bio->state);
1948 	/* we got a read error. Maybe the drive is bad.  Maybe just
1949 	 * the block and we can fix it.
1950 	 * We freeze all other IO, and try reading the block from
1951 	 * other devices.  When we find one, we re-write
1952 	 * and check it that fixes the read error.
1953 	 * This is all done synchronously while the array is
1954 	 * frozen
1955 	 */
1956 	if (mddev->ro == 0) {
1957 		freeze_array(conf);
1958 		fix_read_error(conf, r1_bio->read_disk,
1959 			       r1_bio->sector, r1_bio->sectors);
1960 		unfreeze_array(conf);
1961 	} else
1962 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1963 
1964 	bio = r1_bio->bios[r1_bio->read_disk];
1965 	bdevname(bio->bi_bdev, b);
1966 read_more:
1967 	disk = read_balance(conf, r1_bio, &max_sectors);
1968 	if (disk == -1) {
1969 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1970 		       " read error for block %llu\n",
1971 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
1972 		raid_end_bio_io(r1_bio);
1973 	} else {
1974 		const unsigned long do_sync
1975 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
1976 		if (bio) {
1977 			r1_bio->bios[r1_bio->read_disk] =
1978 				mddev->ro ? IO_BLOCKED : NULL;
1979 			bio_put(bio);
1980 		}
1981 		r1_bio->read_disk = disk;
1982 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1983 		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1984 		r1_bio->bios[r1_bio->read_disk] = bio;
1985 		rdev = conf->mirrors[disk].rdev;
1986 		printk_ratelimited(KERN_ERR
1987 				   "md/raid1:%s: redirecting sector %llu"
1988 				   " to other mirror: %s\n",
1989 				   mdname(mddev),
1990 				   (unsigned long long)r1_bio->sector,
1991 				   bdevname(rdev->bdev, b));
1992 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
1993 		bio->bi_bdev = rdev->bdev;
1994 		bio->bi_end_io = raid1_end_read_request;
1995 		bio->bi_rw = READ | do_sync;
1996 		bio->bi_private = r1_bio;
1997 		if (max_sectors < r1_bio->sectors) {
1998 			/* Drat - have to split this up more */
1999 			struct bio *mbio = r1_bio->master_bio;
2000 			int sectors_handled = (r1_bio->sector + max_sectors
2001 					       - mbio->bi_sector);
2002 			r1_bio->sectors = max_sectors;
2003 			spin_lock_irq(&conf->device_lock);
2004 			if (mbio->bi_phys_segments == 0)
2005 				mbio->bi_phys_segments = 2;
2006 			else
2007 				mbio->bi_phys_segments++;
2008 			spin_unlock_irq(&conf->device_lock);
2009 			generic_make_request(bio);
2010 			bio = NULL;
2011 
2012 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2013 
2014 			r1_bio->master_bio = mbio;
2015 			r1_bio->sectors = (mbio->bi_size >> 9)
2016 					  - sectors_handled;
2017 			r1_bio->state = 0;
2018 			set_bit(R1BIO_ReadError, &r1_bio->state);
2019 			r1_bio->mddev = mddev;
2020 			r1_bio->sector = mbio->bi_sector + sectors_handled;
2021 
2022 			goto read_more;
2023 		} else
2024 			generic_make_request(bio);
2025 	}
2026 }
2027 
2028 static void raid1d(struct mddev *mddev)
2029 {
2030 	struct r1bio *r1_bio;
2031 	unsigned long flags;
2032 	struct r1conf *conf = mddev->private;
2033 	struct list_head *head = &conf->retry_list;
2034 	struct blk_plug plug;
2035 
2036 	md_check_recovery(mddev);
2037 
2038 	blk_start_plug(&plug);
2039 	for (;;) {
2040 
2041 		if (atomic_read(&mddev->plug_cnt) == 0)
2042 			flush_pending_writes(conf);
2043 
2044 		spin_lock_irqsave(&conf->device_lock, flags);
2045 		if (list_empty(head)) {
2046 			spin_unlock_irqrestore(&conf->device_lock, flags);
2047 			break;
2048 		}
2049 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2050 		list_del(head->prev);
2051 		conf->nr_queued--;
2052 		spin_unlock_irqrestore(&conf->device_lock, flags);
2053 
2054 		mddev = r1_bio->mddev;
2055 		conf = mddev->private;
2056 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2057 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2058 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2059 				handle_sync_write_finished(conf, r1_bio);
2060 			else
2061 				sync_request_write(mddev, r1_bio);
2062 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2063 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2064 			handle_write_finished(conf, r1_bio);
2065 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2066 			handle_read_error(conf, r1_bio);
2067 		else
2068 			/* just a partial read to be scheduled from separate
2069 			 * context
2070 			 */
2071 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2072 
2073 		cond_resched();
2074 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2075 			md_check_recovery(mddev);
2076 	}
2077 	blk_finish_plug(&plug);
2078 }
2079 
2080 
2081 static int init_resync(struct r1conf *conf)
2082 {
2083 	int buffs;
2084 
2085 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2086 	BUG_ON(conf->r1buf_pool);
2087 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2088 					  conf->poolinfo);
2089 	if (!conf->r1buf_pool)
2090 		return -ENOMEM;
2091 	conf->next_resync = 0;
2092 	return 0;
2093 }
2094 
2095 /*
2096  * perform a "sync" on one "block"
2097  *
2098  * We need to make sure that no normal I/O request - particularly write
2099  * requests - conflict with active sync requests.
2100  *
2101  * This is achieved by tracking pending requests and a 'barrier' concept
2102  * that can be installed to exclude normal IO requests.
2103  */
2104 
2105 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2106 {
2107 	struct r1conf *conf = mddev->private;
2108 	struct r1bio *r1_bio;
2109 	struct bio *bio;
2110 	sector_t max_sector, nr_sectors;
2111 	int disk = -1;
2112 	int i;
2113 	int wonly = -1;
2114 	int write_targets = 0, read_targets = 0;
2115 	sector_t sync_blocks;
2116 	int still_degraded = 0;
2117 	int good_sectors = RESYNC_SECTORS;
2118 	int min_bad = 0; /* number of sectors that are bad in all devices */
2119 
2120 	if (!conf->r1buf_pool)
2121 		if (init_resync(conf))
2122 			return 0;
2123 
2124 	max_sector = mddev->dev_sectors;
2125 	if (sector_nr >= max_sector) {
2126 		/* If we aborted, we need to abort the
2127 		 * sync on the 'current' bitmap chunk (there will
2128 		 * only be one in raid1 resync.
2129 		 * We can find the current addess in mddev->curr_resync
2130 		 */
2131 		if (mddev->curr_resync < max_sector) /* aborted */
2132 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2133 						&sync_blocks, 1);
2134 		else /* completed sync */
2135 			conf->fullsync = 0;
2136 
2137 		bitmap_close_sync(mddev->bitmap);
2138 		close_sync(conf);
2139 		return 0;
2140 	}
2141 
2142 	if (mddev->bitmap == NULL &&
2143 	    mddev->recovery_cp == MaxSector &&
2144 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2145 	    conf->fullsync == 0) {
2146 		*skipped = 1;
2147 		return max_sector - sector_nr;
2148 	}
2149 	/* before building a request, check if we can skip these blocks..
2150 	 * This call the bitmap_start_sync doesn't actually record anything
2151 	 */
2152 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2153 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2154 		/* We can skip this block, and probably several more */
2155 		*skipped = 1;
2156 		return sync_blocks;
2157 	}
2158 	/*
2159 	 * If there is non-resync activity waiting for a turn,
2160 	 * and resync is going fast enough,
2161 	 * then let it though before starting on this new sync request.
2162 	 */
2163 	if (!go_faster && conf->nr_waiting)
2164 		msleep_interruptible(1000);
2165 
2166 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2167 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2168 	raise_barrier(conf);
2169 
2170 	conf->next_resync = sector_nr;
2171 
2172 	rcu_read_lock();
2173 	/*
2174 	 * If we get a correctably read error during resync or recovery,
2175 	 * we might want to read from a different device.  So we
2176 	 * flag all drives that could conceivably be read from for READ,
2177 	 * and any others (which will be non-In_sync devices) for WRITE.
2178 	 * If a read fails, we try reading from something else for which READ
2179 	 * is OK.
2180 	 */
2181 
2182 	r1_bio->mddev = mddev;
2183 	r1_bio->sector = sector_nr;
2184 	r1_bio->state = 0;
2185 	set_bit(R1BIO_IsSync, &r1_bio->state);
2186 
2187 	for (i=0; i < conf->raid_disks; i++) {
2188 		struct md_rdev *rdev;
2189 		bio = r1_bio->bios[i];
2190 
2191 		/* take from bio_init */
2192 		bio->bi_next = NULL;
2193 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2194 		bio->bi_flags |= 1 << BIO_UPTODATE;
2195 		bio->bi_rw = READ;
2196 		bio->bi_vcnt = 0;
2197 		bio->bi_idx = 0;
2198 		bio->bi_phys_segments = 0;
2199 		bio->bi_size = 0;
2200 		bio->bi_end_io = NULL;
2201 		bio->bi_private = NULL;
2202 
2203 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2204 		if (rdev == NULL ||
2205 		    test_bit(Faulty, &rdev->flags)) {
2206 			still_degraded = 1;
2207 		} else if (!test_bit(In_sync, &rdev->flags)) {
2208 			bio->bi_rw = WRITE;
2209 			bio->bi_end_io = end_sync_write;
2210 			write_targets ++;
2211 		} else {
2212 			/* may need to read from here */
2213 			sector_t first_bad = MaxSector;
2214 			int bad_sectors;
2215 
2216 			if (is_badblock(rdev, sector_nr, good_sectors,
2217 					&first_bad, &bad_sectors)) {
2218 				if (first_bad > sector_nr)
2219 					good_sectors = first_bad - sector_nr;
2220 				else {
2221 					bad_sectors -= (sector_nr - first_bad);
2222 					if (min_bad == 0 ||
2223 					    min_bad > bad_sectors)
2224 						min_bad = bad_sectors;
2225 				}
2226 			}
2227 			if (sector_nr < first_bad) {
2228 				if (test_bit(WriteMostly, &rdev->flags)) {
2229 					if (wonly < 0)
2230 						wonly = i;
2231 				} else {
2232 					if (disk < 0)
2233 						disk = i;
2234 				}
2235 				bio->bi_rw = READ;
2236 				bio->bi_end_io = end_sync_read;
2237 				read_targets++;
2238 			}
2239 		}
2240 		if (bio->bi_end_io) {
2241 			atomic_inc(&rdev->nr_pending);
2242 			bio->bi_sector = sector_nr + rdev->data_offset;
2243 			bio->bi_bdev = rdev->bdev;
2244 			bio->bi_private = r1_bio;
2245 		}
2246 	}
2247 	rcu_read_unlock();
2248 	if (disk < 0)
2249 		disk = wonly;
2250 	r1_bio->read_disk = disk;
2251 
2252 	if (read_targets == 0 && min_bad > 0) {
2253 		/* These sectors are bad on all InSync devices, so we
2254 		 * need to mark them bad on all write targets
2255 		 */
2256 		int ok = 1;
2257 		for (i = 0 ; i < conf->raid_disks ; i++)
2258 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2259 				struct md_rdev *rdev =
2260 					rcu_dereference(conf->mirrors[i].rdev);
2261 				ok = rdev_set_badblocks(rdev, sector_nr,
2262 							min_bad, 0
2263 					) && ok;
2264 			}
2265 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2266 		*skipped = 1;
2267 		put_buf(r1_bio);
2268 
2269 		if (!ok) {
2270 			/* Cannot record the badblocks, so need to
2271 			 * abort the resync.
2272 			 * If there are multiple read targets, could just
2273 			 * fail the really bad ones ???
2274 			 */
2275 			conf->recovery_disabled = mddev->recovery_disabled;
2276 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2277 			return 0;
2278 		} else
2279 			return min_bad;
2280 
2281 	}
2282 	if (min_bad > 0 && min_bad < good_sectors) {
2283 		/* only resync enough to reach the next bad->good
2284 		 * transition */
2285 		good_sectors = min_bad;
2286 	}
2287 
2288 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2289 		/* extra read targets are also write targets */
2290 		write_targets += read_targets-1;
2291 
2292 	if (write_targets == 0 || read_targets == 0) {
2293 		/* There is nowhere to write, so all non-sync
2294 		 * drives must be failed - so we are finished
2295 		 */
2296 		sector_t rv = max_sector - sector_nr;
2297 		*skipped = 1;
2298 		put_buf(r1_bio);
2299 		return rv;
2300 	}
2301 
2302 	if (max_sector > mddev->resync_max)
2303 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2304 	if (max_sector > sector_nr + good_sectors)
2305 		max_sector = sector_nr + good_sectors;
2306 	nr_sectors = 0;
2307 	sync_blocks = 0;
2308 	do {
2309 		struct page *page;
2310 		int len = PAGE_SIZE;
2311 		if (sector_nr + (len>>9) > max_sector)
2312 			len = (max_sector - sector_nr) << 9;
2313 		if (len == 0)
2314 			break;
2315 		if (sync_blocks == 0) {
2316 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2317 					       &sync_blocks, still_degraded) &&
2318 			    !conf->fullsync &&
2319 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2320 				break;
2321 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2322 			if ((len >> 9) > sync_blocks)
2323 				len = sync_blocks<<9;
2324 		}
2325 
2326 		for (i=0 ; i < conf->raid_disks; i++) {
2327 			bio = r1_bio->bios[i];
2328 			if (bio->bi_end_io) {
2329 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2330 				if (bio_add_page(bio, page, len, 0) == 0) {
2331 					/* stop here */
2332 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2333 					while (i > 0) {
2334 						i--;
2335 						bio = r1_bio->bios[i];
2336 						if (bio->bi_end_io==NULL)
2337 							continue;
2338 						/* remove last page from this bio */
2339 						bio->bi_vcnt--;
2340 						bio->bi_size -= len;
2341 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2342 					}
2343 					goto bio_full;
2344 				}
2345 			}
2346 		}
2347 		nr_sectors += len>>9;
2348 		sector_nr += len>>9;
2349 		sync_blocks -= (len>>9);
2350 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2351  bio_full:
2352 	r1_bio->sectors = nr_sectors;
2353 
2354 	/* For a user-requested sync, we read all readable devices and do a
2355 	 * compare
2356 	 */
2357 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2358 		atomic_set(&r1_bio->remaining, read_targets);
2359 		for (i=0; i<conf->raid_disks; i++) {
2360 			bio = r1_bio->bios[i];
2361 			if (bio->bi_end_io == end_sync_read) {
2362 				md_sync_acct(bio->bi_bdev, nr_sectors);
2363 				generic_make_request(bio);
2364 			}
2365 		}
2366 	} else {
2367 		atomic_set(&r1_bio->remaining, 1);
2368 		bio = r1_bio->bios[r1_bio->read_disk];
2369 		md_sync_acct(bio->bi_bdev, nr_sectors);
2370 		generic_make_request(bio);
2371 
2372 	}
2373 	return nr_sectors;
2374 }
2375 
2376 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2377 {
2378 	if (sectors)
2379 		return sectors;
2380 
2381 	return mddev->dev_sectors;
2382 }
2383 
2384 static struct r1conf *setup_conf(struct mddev *mddev)
2385 {
2386 	struct r1conf *conf;
2387 	int i;
2388 	struct mirror_info *disk;
2389 	struct md_rdev *rdev;
2390 	int err = -ENOMEM;
2391 
2392 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2393 	if (!conf)
2394 		goto abort;
2395 
2396 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2397 				 GFP_KERNEL);
2398 	if (!conf->mirrors)
2399 		goto abort;
2400 
2401 	conf->tmppage = alloc_page(GFP_KERNEL);
2402 	if (!conf->tmppage)
2403 		goto abort;
2404 
2405 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2406 	if (!conf->poolinfo)
2407 		goto abort;
2408 	conf->poolinfo->raid_disks = mddev->raid_disks;
2409 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2410 					  r1bio_pool_free,
2411 					  conf->poolinfo);
2412 	if (!conf->r1bio_pool)
2413 		goto abort;
2414 
2415 	conf->poolinfo->mddev = mddev;
2416 
2417 	spin_lock_init(&conf->device_lock);
2418 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2419 		int disk_idx = rdev->raid_disk;
2420 		if (disk_idx >= mddev->raid_disks
2421 		    || disk_idx < 0)
2422 			continue;
2423 		disk = conf->mirrors + disk_idx;
2424 
2425 		disk->rdev = rdev;
2426 
2427 		disk->head_position = 0;
2428 	}
2429 	conf->raid_disks = mddev->raid_disks;
2430 	conf->mddev = mddev;
2431 	INIT_LIST_HEAD(&conf->retry_list);
2432 
2433 	spin_lock_init(&conf->resync_lock);
2434 	init_waitqueue_head(&conf->wait_barrier);
2435 
2436 	bio_list_init(&conf->pending_bio_list);
2437 	conf->pending_count = 0;
2438 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2439 
2440 	conf->last_used = -1;
2441 	for (i = 0; i < conf->raid_disks; i++) {
2442 
2443 		disk = conf->mirrors + i;
2444 
2445 		if (!disk->rdev ||
2446 		    !test_bit(In_sync, &disk->rdev->flags)) {
2447 			disk->head_position = 0;
2448 			if (disk->rdev)
2449 				conf->fullsync = 1;
2450 		} else if (conf->last_used < 0)
2451 			/*
2452 			 * The first working device is used as a
2453 			 * starting point to read balancing.
2454 			 */
2455 			conf->last_used = i;
2456 	}
2457 
2458 	err = -EIO;
2459 	if (conf->last_used < 0) {
2460 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2461 		       mdname(mddev));
2462 		goto abort;
2463 	}
2464 	err = -ENOMEM;
2465 	conf->thread = md_register_thread(raid1d, mddev, NULL);
2466 	if (!conf->thread) {
2467 		printk(KERN_ERR
2468 		       "md/raid1:%s: couldn't allocate thread\n",
2469 		       mdname(mddev));
2470 		goto abort;
2471 	}
2472 
2473 	return conf;
2474 
2475  abort:
2476 	if (conf) {
2477 		if (conf->r1bio_pool)
2478 			mempool_destroy(conf->r1bio_pool);
2479 		kfree(conf->mirrors);
2480 		safe_put_page(conf->tmppage);
2481 		kfree(conf->poolinfo);
2482 		kfree(conf);
2483 	}
2484 	return ERR_PTR(err);
2485 }
2486 
2487 static int run(struct mddev *mddev)
2488 {
2489 	struct r1conf *conf;
2490 	int i;
2491 	struct md_rdev *rdev;
2492 
2493 	if (mddev->level != 1) {
2494 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2495 		       mdname(mddev), mddev->level);
2496 		return -EIO;
2497 	}
2498 	if (mddev->reshape_position != MaxSector) {
2499 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2500 		       mdname(mddev));
2501 		return -EIO;
2502 	}
2503 	/*
2504 	 * copy the already verified devices into our private RAID1
2505 	 * bookkeeping area. [whatever we allocate in run(),
2506 	 * should be freed in stop()]
2507 	 */
2508 	if (mddev->private == NULL)
2509 		conf = setup_conf(mddev);
2510 	else
2511 		conf = mddev->private;
2512 
2513 	if (IS_ERR(conf))
2514 		return PTR_ERR(conf);
2515 
2516 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2517 		if (!mddev->gendisk)
2518 			continue;
2519 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2520 				  rdev->data_offset << 9);
2521 		/* as we don't honour merge_bvec_fn, we must never risk
2522 		 * violating it, so limit ->max_segments to 1 lying within
2523 		 * a single page, as a one page request is never in violation.
2524 		 */
2525 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2526 			blk_queue_max_segments(mddev->queue, 1);
2527 			blk_queue_segment_boundary(mddev->queue,
2528 						   PAGE_CACHE_SIZE - 1);
2529 		}
2530 	}
2531 
2532 	mddev->degraded = 0;
2533 	for (i=0; i < conf->raid_disks; i++)
2534 		if (conf->mirrors[i].rdev == NULL ||
2535 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2536 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2537 			mddev->degraded++;
2538 
2539 	if (conf->raid_disks - mddev->degraded == 1)
2540 		mddev->recovery_cp = MaxSector;
2541 
2542 	if (mddev->recovery_cp != MaxSector)
2543 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2544 		       " -- starting background reconstruction\n",
2545 		       mdname(mddev));
2546 	printk(KERN_INFO
2547 		"md/raid1:%s: active with %d out of %d mirrors\n",
2548 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2549 		mddev->raid_disks);
2550 
2551 	/*
2552 	 * Ok, everything is just fine now
2553 	 */
2554 	mddev->thread = conf->thread;
2555 	conf->thread = NULL;
2556 	mddev->private = conf;
2557 
2558 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2559 
2560 	if (mddev->queue) {
2561 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2562 		mddev->queue->backing_dev_info.congested_data = mddev;
2563 	}
2564 	return md_integrity_register(mddev);
2565 }
2566 
2567 static int stop(struct mddev *mddev)
2568 {
2569 	struct r1conf *conf = mddev->private;
2570 	struct bitmap *bitmap = mddev->bitmap;
2571 
2572 	/* wait for behind writes to complete */
2573 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2574 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2575 		       mdname(mddev));
2576 		/* need to kick something here to make sure I/O goes? */
2577 		wait_event(bitmap->behind_wait,
2578 			   atomic_read(&bitmap->behind_writes) == 0);
2579 	}
2580 
2581 	raise_barrier(conf);
2582 	lower_barrier(conf);
2583 
2584 	md_unregister_thread(&mddev->thread);
2585 	if (conf->r1bio_pool)
2586 		mempool_destroy(conf->r1bio_pool);
2587 	kfree(conf->mirrors);
2588 	kfree(conf->poolinfo);
2589 	kfree(conf);
2590 	mddev->private = NULL;
2591 	return 0;
2592 }
2593 
2594 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2595 {
2596 	/* no resync is happening, and there is enough space
2597 	 * on all devices, so we can resize.
2598 	 * We need to make sure resync covers any new space.
2599 	 * If the array is shrinking we should possibly wait until
2600 	 * any io in the removed space completes, but it hardly seems
2601 	 * worth it.
2602 	 */
2603 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2604 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2605 		return -EINVAL;
2606 	set_capacity(mddev->gendisk, mddev->array_sectors);
2607 	revalidate_disk(mddev->gendisk);
2608 	if (sectors > mddev->dev_sectors &&
2609 	    mddev->recovery_cp > mddev->dev_sectors) {
2610 		mddev->recovery_cp = mddev->dev_sectors;
2611 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2612 	}
2613 	mddev->dev_sectors = sectors;
2614 	mddev->resync_max_sectors = sectors;
2615 	return 0;
2616 }
2617 
2618 static int raid1_reshape(struct mddev *mddev)
2619 {
2620 	/* We need to:
2621 	 * 1/ resize the r1bio_pool
2622 	 * 2/ resize conf->mirrors
2623 	 *
2624 	 * We allocate a new r1bio_pool if we can.
2625 	 * Then raise a device barrier and wait until all IO stops.
2626 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2627 	 *
2628 	 * At the same time, we "pack" the devices so that all the missing
2629 	 * devices have the higher raid_disk numbers.
2630 	 */
2631 	mempool_t *newpool, *oldpool;
2632 	struct pool_info *newpoolinfo;
2633 	struct mirror_info *newmirrors;
2634 	struct r1conf *conf = mddev->private;
2635 	int cnt, raid_disks;
2636 	unsigned long flags;
2637 	int d, d2, err;
2638 
2639 	/* Cannot change chunk_size, layout, or level */
2640 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2641 	    mddev->layout != mddev->new_layout ||
2642 	    mddev->level != mddev->new_level) {
2643 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2644 		mddev->new_layout = mddev->layout;
2645 		mddev->new_level = mddev->level;
2646 		return -EINVAL;
2647 	}
2648 
2649 	err = md_allow_write(mddev);
2650 	if (err)
2651 		return err;
2652 
2653 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2654 
2655 	if (raid_disks < conf->raid_disks) {
2656 		cnt=0;
2657 		for (d= 0; d < conf->raid_disks; d++)
2658 			if (conf->mirrors[d].rdev)
2659 				cnt++;
2660 		if (cnt > raid_disks)
2661 			return -EBUSY;
2662 	}
2663 
2664 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2665 	if (!newpoolinfo)
2666 		return -ENOMEM;
2667 	newpoolinfo->mddev = mddev;
2668 	newpoolinfo->raid_disks = raid_disks;
2669 
2670 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2671 				 r1bio_pool_free, newpoolinfo);
2672 	if (!newpool) {
2673 		kfree(newpoolinfo);
2674 		return -ENOMEM;
2675 	}
2676 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2677 	if (!newmirrors) {
2678 		kfree(newpoolinfo);
2679 		mempool_destroy(newpool);
2680 		return -ENOMEM;
2681 	}
2682 
2683 	raise_barrier(conf);
2684 
2685 	/* ok, everything is stopped */
2686 	oldpool = conf->r1bio_pool;
2687 	conf->r1bio_pool = newpool;
2688 
2689 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2690 		struct md_rdev *rdev = conf->mirrors[d].rdev;
2691 		if (rdev && rdev->raid_disk != d2) {
2692 			sysfs_unlink_rdev(mddev, rdev);
2693 			rdev->raid_disk = d2;
2694 			sysfs_unlink_rdev(mddev, rdev);
2695 			if (sysfs_link_rdev(mddev, rdev))
2696 				printk(KERN_WARNING
2697 				       "md/raid1:%s: cannot register rd%d\n",
2698 				       mdname(mddev), rdev->raid_disk);
2699 		}
2700 		if (rdev)
2701 			newmirrors[d2++].rdev = rdev;
2702 	}
2703 	kfree(conf->mirrors);
2704 	conf->mirrors = newmirrors;
2705 	kfree(conf->poolinfo);
2706 	conf->poolinfo = newpoolinfo;
2707 
2708 	spin_lock_irqsave(&conf->device_lock, flags);
2709 	mddev->degraded += (raid_disks - conf->raid_disks);
2710 	spin_unlock_irqrestore(&conf->device_lock, flags);
2711 	conf->raid_disks = mddev->raid_disks = raid_disks;
2712 	mddev->delta_disks = 0;
2713 
2714 	conf->last_used = 0; /* just make sure it is in-range */
2715 	lower_barrier(conf);
2716 
2717 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2718 	md_wakeup_thread(mddev->thread);
2719 
2720 	mempool_destroy(oldpool);
2721 	return 0;
2722 }
2723 
2724 static void raid1_quiesce(struct mddev *mddev, int state)
2725 {
2726 	struct r1conf *conf = mddev->private;
2727 
2728 	switch(state) {
2729 	case 2: /* wake for suspend */
2730 		wake_up(&conf->wait_barrier);
2731 		break;
2732 	case 1:
2733 		raise_barrier(conf);
2734 		break;
2735 	case 0:
2736 		lower_barrier(conf);
2737 		break;
2738 	}
2739 }
2740 
2741 static void *raid1_takeover(struct mddev *mddev)
2742 {
2743 	/* raid1 can take over:
2744 	 *  raid5 with 2 devices, any layout or chunk size
2745 	 */
2746 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2747 		struct r1conf *conf;
2748 		mddev->new_level = 1;
2749 		mddev->new_layout = 0;
2750 		mddev->new_chunk_sectors = 0;
2751 		conf = setup_conf(mddev);
2752 		if (!IS_ERR(conf))
2753 			conf->barrier = 1;
2754 		return conf;
2755 	}
2756 	return ERR_PTR(-EINVAL);
2757 }
2758 
2759 static struct md_personality raid1_personality =
2760 {
2761 	.name		= "raid1",
2762 	.level		= 1,
2763 	.owner		= THIS_MODULE,
2764 	.make_request	= make_request,
2765 	.run		= run,
2766 	.stop		= stop,
2767 	.status		= status,
2768 	.error_handler	= error,
2769 	.hot_add_disk	= raid1_add_disk,
2770 	.hot_remove_disk= raid1_remove_disk,
2771 	.spare_active	= raid1_spare_active,
2772 	.sync_request	= sync_request,
2773 	.resize		= raid1_resize,
2774 	.size		= raid1_size,
2775 	.check_reshape	= raid1_reshape,
2776 	.quiesce	= raid1_quiesce,
2777 	.takeover	= raid1_takeover,
2778 };
2779 
2780 static int __init raid_init(void)
2781 {
2782 	return register_md_personality(&raid1_personality);
2783 }
2784 
2785 static void raid_exit(void)
2786 {
2787 	unregister_md_personality(&raid1_personality);
2788 }
2789 
2790 module_init(raid_init);
2791 module_exit(raid_exit);
2792 MODULE_LICENSE("GPL");
2793 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2794 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2795 MODULE_ALIAS("md-raid1");
2796 MODULE_ALIAS("md-level-1");
2797 
2798 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
2799