1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 51 static void unplug_slaves(mddev_t *mddev); 52 53 static void allow_barrier(conf_t *conf); 54 static void lower_barrier(conf_t *conf); 55 56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 57 { 58 struct pool_info *pi = data; 59 r1bio_t *r1_bio; 60 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 61 62 /* allocate a r1bio with room for raid_disks entries in the bios array */ 63 r1_bio = kzalloc(size, gfp_flags); 64 if (!r1_bio) 65 unplug_slaves(pi->mddev); 66 67 return r1_bio; 68 } 69 70 static void r1bio_pool_free(void *r1_bio, void *data) 71 { 72 kfree(r1_bio); 73 } 74 75 #define RESYNC_BLOCK_SIZE (64*1024) 76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 79 #define RESYNC_WINDOW (2048*1024) 80 81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 82 { 83 struct pool_info *pi = data; 84 struct page *page; 85 r1bio_t *r1_bio; 86 struct bio *bio; 87 int i, j; 88 89 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 90 if (!r1_bio) { 91 unplug_slaves(pi->mddev); 92 return NULL; 93 } 94 95 /* 96 * Allocate bios : 1 for reading, n-1 for writing 97 */ 98 for (j = pi->raid_disks ; j-- ; ) { 99 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 100 if (!bio) 101 goto out_free_bio; 102 r1_bio->bios[j] = bio; 103 } 104 /* 105 * Allocate RESYNC_PAGES data pages and attach them to 106 * the first bio. 107 * If this is a user-requested check/repair, allocate 108 * RESYNC_PAGES for each bio. 109 */ 110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 111 j = pi->raid_disks; 112 else 113 j = 1; 114 while(j--) { 115 bio = r1_bio->bios[j]; 116 for (i = 0; i < RESYNC_PAGES; i++) { 117 page = alloc_page(gfp_flags); 118 if (unlikely(!page)) 119 goto out_free_pages; 120 121 bio->bi_io_vec[i].bv_page = page; 122 } 123 } 124 /* If not user-requests, copy the page pointers to all bios */ 125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 126 for (i=0; i<RESYNC_PAGES ; i++) 127 for (j=1; j<pi->raid_disks; j++) 128 r1_bio->bios[j]->bi_io_vec[i].bv_page = 129 r1_bio->bios[0]->bi_io_vec[i].bv_page; 130 } 131 132 r1_bio->master_bio = NULL; 133 134 return r1_bio; 135 136 out_free_pages: 137 for (i=0; i < RESYNC_PAGES ; i++) 138 for (j=0 ; j < pi->raid_disks; j++) 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 140 j = -1; 141 out_free_bio: 142 while ( ++j < pi->raid_disks ) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 r1bio_t *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(r1bio_t *r1_bio) 180 { 181 conf_t *conf = mddev_to_conf(r1_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r1_bio); 190 mempool_free(r1_bio, conf->r1bio_pool); 191 } 192 193 static void put_buf(r1bio_t *r1_bio) 194 { 195 conf_t *conf = mddev_to_conf(r1_bio->mddev); 196 int i; 197 198 for (i=0; i<conf->raid_disks; i++) { 199 struct bio *bio = r1_bio->bios[i]; 200 if (bio->bi_end_io) 201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 202 } 203 204 mempool_free(r1_bio, conf->r1buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r1bio_t *r1_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r1_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r1_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 wake_up(&conf->wait_barrier); 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r1bio_t *r1_bio) 230 { 231 struct bio *bio = r1_bio->master_bio; 232 233 /* if nobody has done the final endio yet, do it now */ 234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 236 (bio_data_dir(bio) == WRITE) ? "write" : "read", 237 (unsigned long long) bio->bi_sector, 238 (unsigned long long) bio->bi_sector + 239 (bio->bi_size >> 9) - 1); 240 241 bio_endio(bio, bio->bi_size, 242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 243 } 244 free_r1bio(r1_bio); 245 } 246 247 /* 248 * Update disk head position estimator based on IRQ completion info. 249 */ 250 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 251 { 252 conf_t *conf = mddev_to_conf(r1_bio->mddev); 253 254 conf->mirrors[disk].head_position = 255 r1_bio->sector + (r1_bio->sectors); 256 } 257 258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 259 { 260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 262 int mirror; 263 conf_t *conf = mddev_to_conf(r1_bio->mddev); 264 265 if (bio->bi_size) 266 return 1; 267 268 mirror = r1_bio->read_disk; 269 /* 270 * this branch is our 'one mirror IO has finished' event handler: 271 */ 272 update_head_pos(mirror, r1_bio); 273 274 if (uptodate || conf->working_disks <= 1) { 275 /* 276 * Set R1BIO_Uptodate in our master bio, so that 277 * we will return a good error code for to the higher 278 * levels even if IO on some other mirrored buffer fails. 279 * 280 * The 'master' represents the composite IO operation to 281 * user-side. So if something waits for IO, then it will 282 * wait for the 'master' bio. 283 */ 284 if (uptodate) 285 set_bit(R1BIO_Uptodate, &r1_bio->state); 286 287 raid_end_bio_io(r1_bio); 288 } else { 289 /* 290 * oops, read error: 291 */ 292 char b[BDEVNAME_SIZE]; 293 if (printk_ratelimit()) 294 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 295 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 296 reschedule_retry(r1_bio); 297 } 298 299 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 300 return 0; 301 } 302 303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 304 { 305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 308 conf_t *conf = mddev_to_conf(r1_bio->mddev); 309 struct bio *to_put = NULL; 310 311 if (bio->bi_size) 312 return 1; 313 314 for (mirror = 0; mirror < conf->raid_disks; mirror++) 315 if (r1_bio->bios[mirror] == bio) 316 break; 317 318 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 319 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 320 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 321 r1_bio->mddev->barriers_work = 0; 322 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 323 } else { 324 /* 325 * this branch is our 'one mirror IO has finished' event handler: 326 */ 327 r1_bio->bios[mirror] = NULL; 328 to_put = bio; 329 if (!uptodate) { 330 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 331 /* an I/O failed, we can't clear the bitmap */ 332 set_bit(R1BIO_Degraded, &r1_bio->state); 333 } else 334 /* 335 * Set R1BIO_Uptodate in our master bio, so that 336 * we will return a good error code for to the higher 337 * levels even if IO on some other mirrored buffer fails. 338 * 339 * The 'master' represents the composite IO operation to 340 * user-side. So if something waits for IO, then it will 341 * wait for the 'master' bio. 342 */ 343 set_bit(R1BIO_Uptodate, &r1_bio->state); 344 345 update_head_pos(mirror, r1_bio); 346 347 if (behind) { 348 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 349 atomic_dec(&r1_bio->behind_remaining); 350 351 /* In behind mode, we ACK the master bio once the I/O has safely 352 * reached all non-writemostly disks. Setting the Returned bit 353 * ensures that this gets done only once -- we don't ever want to 354 * return -EIO here, instead we'll wait */ 355 356 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 357 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 358 /* Maybe we can return now */ 359 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 360 struct bio *mbio = r1_bio->master_bio; 361 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 362 (unsigned long long) mbio->bi_sector, 363 (unsigned long long) mbio->bi_sector + 364 (mbio->bi_size >> 9) - 1); 365 bio_endio(mbio, mbio->bi_size, 0); 366 } 367 } 368 } 369 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 370 } 371 /* 372 * 373 * Let's see if all mirrored write operations have finished 374 * already. 375 */ 376 if (atomic_dec_and_test(&r1_bio->remaining)) { 377 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 378 reschedule_retry(r1_bio); 379 else { 380 /* it really is the end of this request */ 381 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 382 /* free extra copy of the data pages */ 383 int i = bio->bi_vcnt; 384 while (i--) 385 safe_put_page(bio->bi_io_vec[i].bv_page); 386 } 387 /* clear the bitmap if all writes complete successfully */ 388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 389 r1_bio->sectors, 390 !test_bit(R1BIO_Degraded, &r1_bio->state), 391 behind); 392 md_write_end(r1_bio->mddev); 393 raid_end_bio_io(r1_bio); 394 } 395 } 396 397 if (to_put) 398 bio_put(to_put); 399 400 return 0; 401 } 402 403 404 /* 405 * This routine returns the disk from which the requested read should 406 * be done. There is a per-array 'next expected sequential IO' sector 407 * number - if this matches on the next IO then we use the last disk. 408 * There is also a per-disk 'last know head position' sector that is 409 * maintained from IRQ contexts, both the normal and the resync IO 410 * completion handlers update this position correctly. If there is no 411 * perfect sequential match then we pick the disk whose head is closest. 412 * 413 * If there are 2 mirrors in the same 2 devices, performance degrades 414 * because position is mirror, not device based. 415 * 416 * The rdev for the device selected will have nr_pending incremented. 417 */ 418 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 419 { 420 const unsigned long this_sector = r1_bio->sector; 421 int new_disk = conf->last_used, disk = new_disk; 422 int wonly_disk = -1; 423 const int sectors = r1_bio->sectors; 424 sector_t new_distance, current_distance; 425 mdk_rdev_t *rdev; 426 427 rcu_read_lock(); 428 /* 429 * Check if we can balance. We can balance on the whole 430 * device if no resync is going on, or below the resync window. 431 * We take the first readable disk when above the resync window. 432 */ 433 retry: 434 if (conf->mddev->recovery_cp < MaxSector && 435 (this_sector + sectors >= conf->next_resync)) { 436 /* Choose the first operation device, for consistancy */ 437 new_disk = 0; 438 439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 440 r1_bio->bios[new_disk] == IO_BLOCKED || 441 !rdev || !test_bit(In_sync, &rdev->flags) 442 || test_bit(WriteMostly, &rdev->flags); 443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 444 445 if (rdev && test_bit(In_sync, &rdev->flags) && 446 r1_bio->bios[new_disk] != IO_BLOCKED) 447 wonly_disk = new_disk; 448 449 if (new_disk == conf->raid_disks - 1) { 450 new_disk = wonly_disk; 451 break; 452 } 453 } 454 goto rb_out; 455 } 456 457 458 /* make sure the disk is operational */ 459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 460 r1_bio->bios[new_disk] == IO_BLOCKED || 461 !rdev || !test_bit(In_sync, &rdev->flags) || 462 test_bit(WriteMostly, &rdev->flags); 463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 464 465 if (rdev && test_bit(In_sync, &rdev->flags) && 466 r1_bio->bios[new_disk] != IO_BLOCKED) 467 wonly_disk = new_disk; 468 469 if (new_disk <= 0) 470 new_disk = conf->raid_disks; 471 new_disk--; 472 if (new_disk == disk) { 473 new_disk = wonly_disk; 474 break; 475 } 476 } 477 478 if (new_disk < 0) 479 goto rb_out; 480 481 disk = new_disk; 482 /* now disk == new_disk == starting point for search */ 483 484 /* 485 * Don't change to another disk for sequential reads: 486 */ 487 if (conf->next_seq_sect == this_sector) 488 goto rb_out; 489 if (this_sector == conf->mirrors[new_disk].head_position) 490 goto rb_out; 491 492 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 493 494 /* Find the disk whose head is closest */ 495 496 do { 497 if (disk <= 0) 498 disk = conf->raid_disks; 499 disk--; 500 501 rdev = rcu_dereference(conf->mirrors[disk].rdev); 502 503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 504 !test_bit(In_sync, &rdev->flags) || 505 test_bit(WriteMostly, &rdev->flags)) 506 continue; 507 508 if (!atomic_read(&rdev->nr_pending)) { 509 new_disk = disk; 510 break; 511 } 512 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 513 if (new_distance < current_distance) { 514 current_distance = new_distance; 515 new_disk = disk; 516 } 517 } while (disk != conf->last_used); 518 519 rb_out: 520 521 522 if (new_disk >= 0) { 523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 524 if (!rdev) 525 goto retry; 526 atomic_inc(&rdev->nr_pending); 527 if (!test_bit(In_sync, &rdev->flags)) { 528 /* cannot risk returning a device that failed 529 * before we inc'ed nr_pending 530 */ 531 rdev_dec_pending(rdev, conf->mddev); 532 goto retry; 533 } 534 conf->next_seq_sect = this_sector + sectors; 535 conf->last_used = new_disk; 536 } 537 rcu_read_unlock(); 538 539 return new_disk; 540 } 541 542 static void unplug_slaves(mddev_t *mddev) 543 { 544 conf_t *conf = mddev_to_conf(mddev); 545 int i; 546 547 rcu_read_lock(); 548 for (i=0; i<mddev->raid_disks; i++) { 549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 551 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 552 553 atomic_inc(&rdev->nr_pending); 554 rcu_read_unlock(); 555 556 if (r_queue->unplug_fn) 557 r_queue->unplug_fn(r_queue); 558 559 rdev_dec_pending(rdev, mddev); 560 rcu_read_lock(); 561 } 562 } 563 rcu_read_unlock(); 564 } 565 566 static void raid1_unplug(request_queue_t *q) 567 { 568 mddev_t *mddev = q->queuedata; 569 570 unplug_slaves(mddev); 571 md_wakeup_thread(mddev->thread); 572 } 573 574 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk, 575 sector_t *error_sector) 576 { 577 mddev_t *mddev = q->queuedata; 578 conf_t *conf = mddev_to_conf(mddev); 579 int i, ret = 0; 580 581 rcu_read_lock(); 582 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 583 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 584 if (rdev && !test_bit(Faulty, &rdev->flags)) { 585 struct block_device *bdev = rdev->bdev; 586 request_queue_t *r_queue = bdev_get_queue(bdev); 587 588 if (!r_queue->issue_flush_fn) 589 ret = -EOPNOTSUPP; 590 else { 591 atomic_inc(&rdev->nr_pending); 592 rcu_read_unlock(); 593 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 594 error_sector); 595 rdev_dec_pending(rdev, mddev); 596 rcu_read_lock(); 597 } 598 } 599 } 600 rcu_read_unlock(); 601 return ret; 602 } 603 604 /* Barriers.... 605 * Sometimes we need to suspend IO while we do something else, 606 * either some resync/recovery, or reconfigure the array. 607 * To do this we raise a 'barrier'. 608 * The 'barrier' is a counter that can be raised multiple times 609 * to count how many activities are happening which preclude 610 * normal IO. 611 * We can only raise the barrier if there is no pending IO. 612 * i.e. if nr_pending == 0. 613 * We choose only to raise the barrier if no-one is waiting for the 614 * barrier to go down. This means that as soon as an IO request 615 * is ready, no other operations which require a barrier will start 616 * until the IO request has had a chance. 617 * 618 * So: regular IO calls 'wait_barrier'. When that returns there 619 * is no backgroup IO happening, It must arrange to call 620 * allow_barrier when it has finished its IO. 621 * backgroup IO calls must call raise_barrier. Once that returns 622 * there is no normal IO happeing. It must arrange to call 623 * lower_barrier when the particular background IO completes. 624 */ 625 #define RESYNC_DEPTH 32 626 627 static void raise_barrier(conf_t *conf) 628 { 629 spin_lock_irq(&conf->resync_lock); 630 631 /* Wait until no block IO is waiting */ 632 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 633 conf->resync_lock, 634 raid1_unplug(conf->mddev->queue)); 635 636 /* block any new IO from starting */ 637 conf->barrier++; 638 639 /* No wait for all pending IO to complete */ 640 wait_event_lock_irq(conf->wait_barrier, 641 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 642 conf->resync_lock, 643 raid1_unplug(conf->mddev->queue)); 644 645 spin_unlock_irq(&conf->resync_lock); 646 } 647 648 static void lower_barrier(conf_t *conf) 649 { 650 unsigned long flags; 651 spin_lock_irqsave(&conf->resync_lock, flags); 652 conf->barrier--; 653 spin_unlock_irqrestore(&conf->resync_lock, flags); 654 wake_up(&conf->wait_barrier); 655 } 656 657 static void wait_barrier(conf_t *conf) 658 { 659 spin_lock_irq(&conf->resync_lock); 660 if (conf->barrier) { 661 conf->nr_waiting++; 662 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 663 conf->resync_lock, 664 raid1_unplug(conf->mddev->queue)); 665 conf->nr_waiting--; 666 } 667 conf->nr_pending++; 668 spin_unlock_irq(&conf->resync_lock); 669 } 670 671 static void allow_barrier(conf_t *conf) 672 { 673 unsigned long flags; 674 spin_lock_irqsave(&conf->resync_lock, flags); 675 conf->nr_pending--; 676 spin_unlock_irqrestore(&conf->resync_lock, flags); 677 wake_up(&conf->wait_barrier); 678 } 679 680 static void freeze_array(conf_t *conf) 681 { 682 /* stop syncio and normal IO and wait for everything to 683 * go quite. 684 * We increment barrier and nr_waiting, and then 685 * wait until barrier+nr_pending match nr_queued+2 686 */ 687 spin_lock_irq(&conf->resync_lock); 688 conf->barrier++; 689 conf->nr_waiting++; 690 wait_event_lock_irq(conf->wait_barrier, 691 conf->barrier+conf->nr_pending == conf->nr_queued+2, 692 conf->resync_lock, 693 raid1_unplug(conf->mddev->queue)); 694 spin_unlock_irq(&conf->resync_lock); 695 } 696 static void unfreeze_array(conf_t *conf) 697 { 698 /* reverse the effect of the freeze */ 699 spin_lock_irq(&conf->resync_lock); 700 conf->barrier--; 701 conf->nr_waiting--; 702 wake_up(&conf->wait_barrier); 703 spin_unlock_irq(&conf->resync_lock); 704 } 705 706 707 /* duplicate the data pages for behind I/O */ 708 static struct page **alloc_behind_pages(struct bio *bio) 709 { 710 int i; 711 struct bio_vec *bvec; 712 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 713 GFP_NOIO); 714 if (unlikely(!pages)) 715 goto do_sync_io; 716 717 bio_for_each_segment(bvec, bio, i) { 718 pages[i] = alloc_page(GFP_NOIO); 719 if (unlikely(!pages[i])) 720 goto do_sync_io; 721 memcpy(kmap(pages[i]) + bvec->bv_offset, 722 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 723 kunmap(pages[i]); 724 kunmap(bvec->bv_page); 725 } 726 727 return pages; 728 729 do_sync_io: 730 if (pages) 731 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 732 put_page(pages[i]); 733 kfree(pages); 734 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 735 return NULL; 736 } 737 738 static int make_request(request_queue_t *q, struct bio * bio) 739 { 740 mddev_t *mddev = q->queuedata; 741 conf_t *conf = mddev_to_conf(mddev); 742 mirror_info_t *mirror; 743 r1bio_t *r1_bio; 744 struct bio *read_bio; 745 int i, targets = 0, disks; 746 mdk_rdev_t *rdev; 747 struct bitmap *bitmap = mddev->bitmap; 748 unsigned long flags; 749 struct bio_list bl; 750 struct page **behind_pages = NULL; 751 const int rw = bio_data_dir(bio); 752 int do_barriers; 753 754 /* 755 * Register the new request and wait if the reconstruction 756 * thread has put up a bar for new requests. 757 * Continue immediately if no resync is active currently. 758 * We test barriers_work *after* md_write_start as md_write_start 759 * may cause the first superblock write, and that will check out 760 * if barriers work. 761 */ 762 763 md_write_start(mddev, bio); /* wait on superblock update early */ 764 765 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 766 if (rw == WRITE) 767 md_write_end(mddev); 768 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 769 return 0; 770 } 771 772 wait_barrier(conf); 773 774 disk_stat_inc(mddev->gendisk, ios[rw]); 775 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 776 777 /* 778 * make_request() can abort the operation when READA is being 779 * used and no empty request is available. 780 * 781 */ 782 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 783 784 r1_bio->master_bio = bio; 785 r1_bio->sectors = bio->bi_size >> 9; 786 r1_bio->state = 0; 787 r1_bio->mddev = mddev; 788 r1_bio->sector = bio->bi_sector; 789 790 if (rw == READ) { 791 /* 792 * read balancing logic: 793 */ 794 int rdisk = read_balance(conf, r1_bio); 795 796 if (rdisk < 0) { 797 /* couldn't find anywhere to read from */ 798 raid_end_bio_io(r1_bio); 799 return 0; 800 } 801 mirror = conf->mirrors + rdisk; 802 803 r1_bio->read_disk = rdisk; 804 805 read_bio = bio_clone(bio, GFP_NOIO); 806 807 r1_bio->bios[rdisk] = read_bio; 808 809 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 810 read_bio->bi_bdev = mirror->rdev->bdev; 811 read_bio->bi_end_io = raid1_end_read_request; 812 read_bio->bi_rw = READ; 813 read_bio->bi_private = r1_bio; 814 815 generic_make_request(read_bio); 816 return 0; 817 } 818 819 /* 820 * WRITE: 821 */ 822 /* first select target devices under spinlock and 823 * inc refcount on their rdev. Record them by setting 824 * bios[x] to bio 825 */ 826 disks = conf->raid_disks; 827 #if 0 828 { static int first=1; 829 if (first) printk("First Write sector %llu disks %d\n", 830 (unsigned long long)r1_bio->sector, disks); 831 first = 0; 832 } 833 #endif 834 rcu_read_lock(); 835 for (i = 0; i < disks; i++) { 836 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL && 837 !test_bit(Faulty, &rdev->flags)) { 838 atomic_inc(&rdev->nr_pending); 839 if (test_bit(Faulty, &rdev->flags)) { 840 rdev_dec_pending(rdev, mddev); 841 r1_bio->bios[i] = NULL; 842 } else 843 r1_bio->bios[i] = bio; 844 targets++; 845 } else 846 r1_bio->bios[i] = NULL; 847 } 848 rcu_read_unlock(); 849 850 BUG_ON(targets == 0); /* we never fail the last device */ 851 852 if (targets < conf->raid_disks) { 853 /* array is degraded, we will not clear the bitmap 854 * on I/O completion (see raid1_end_write_request) */ 855 set_bit(R1BIO_Degraded, &r1_bio->state); 856 } 857 858 /* do behind I/O ? */ 859 if (bitmap && 860 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 861 (behind_pages = alloc_behind_pages(bio)) != NULL) 862 set_bit(R1BIO_BehindIO, &r1_bio->state); 863 864 atomic_set(&r1_bio->remaining, 0); 865 atomic_set(&r1_bio->behind_remaining, 0); 866 867 do_barriers = bio_barrier(bio); 868 if (do_barriers) 869 set_bit(R1BIO_Barrier, &r1_bio->state); 870 871 bio_list_init(&bl); 872 for (i = 0; i < disks; i++) { 873 struct bio *mbio; 874 if (!r1_bio->bios[i]) 875 continue; 876 877 mbio = bio_clone(bio, GFP_NOIO); 878 r1_bio->bios[i] = mbio; 879 880 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 881 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 882 mbio->bi_end_io = raid1_end_write_request; 883 mbio->bi_rw = WRITE | do_barriers; 884 mbio->bi_private = r1_bio; 885 886 if (behind_pages) { 887 struct bio_vec *bvec; 888 int j; 889 890 /* Yes, I really want the '__' version so that 891 * we clear any unused pointer in the io_vec, rather 892 * than leave them unchanged. This is important 893 * because when we come to free the pages, we won't 894 * know the originial bi_idx, so we just free 895 * them all 896 */ 897 __bio_for_each_segment(bvec, mbio, j, 0) 898 bvec->bv_page = behind_pages[j]; 899 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 900 atomic_inc(&r1_bio->behind_remaining); 901 } 902 903 atomic_inc(&r1_bio->remaining); 904 905 bio_list_add(&bl, mbio); 906 } 907 kfree(behind_pages); /* the behind pages are attached to the bios now */ 908 909 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 910 test_bit(R1BIO_BehindIO, &r1_bio->state)); 911 spin_lock_irqsave(&conf->device_lock, flags); 912 bio_list_merge(&conf->pending_bio_list, &bl); 913 bio_list_init(&bl); 914 915 blk_plug_device(mddev->queue); 916 spin_unlock_irqrestore(&conf->device_lock, flags); 917 918 #if 0 919 while ((bio = bio_list_pop(&bl)) != NULL) 920 generic_make_request(bio); 921 #endif 922 923 return 0; 924 } 925 926 static void status(struct seq_file *seq, mddev_t *mddev) 927 { 928 conf_t *conf = mddev_to_conf(mddev); 929 int i; 930 931 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 932 conf->working_disks); 933 rcu_read_lock(); 934 for (i = 0; i < conf->raid_disks; i++) { 935 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 936 seq_printf(seq, "%s", 937 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 938 } 939 rcu_read_unlock(); 940 seq_printf(seq, "]"); 941 } 942 943 944 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 945 { 946 char b[BDEVNAME_SIZE]; 947 conf_t *conf = mddev_to_conf(mddev); 948 949 /* 950 * If it is not operational, then we have already marked it as dead 951 * else if it is the last working disks, ignore the error, let the 952 * next level up know. 953 * else mark the drive as failed 954 */ 955 if (test_bit(In_sync, &rdev->flags) 956 && conf->working_disks == 1) 957 /* 958 * Don't fail the drive, act as though we were just a 959 * normal single drive 960 */ 961 return; 962 if (test_bit(In_sync, &rdev->flags)) { 963 mddev->degraded++; 964 conf->working_disks--; 965 /* 966 * if recovery is running, make sure it aborts. 967 */ 968 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 969 } 970 clear_bit(In_sync, &rdev->flags); 971 set_bit(Faulty, &rdev->flags); 972 mddev->sb_dirty = 1; 973 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 974 " Operation continuing on %d devices\n", 975 bdevname(rdev->bdev,b), conf->working_disks); 976 } 977 978 static void print_conf(conf_t *conf) 979 { 980 int i; 981 982 printk("RAID1 conf printout:\n"); 983 if (!conf) { 984 printk("(!conf)\n"); 985 return; 986 } 987 printk(" --- wd:%d rd:%d\n", conf->working_disks, 988 conf->raid_disks); 989 990 rcu_read_lock(); 991 for (i = 0; i < conf->raid_disks; i++) { 992 char b[BDEVNAME_SIZE]; 993 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 994 if (rdev) 995 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 996 i, !test_bit(In_sync, &rdev->flags), 997 !test_bit(Faulty, &rdev->flags), 998 bdevname(rdev->bdev,b)); 999 } 1000 rcu_read_unlock(); 1001 } 1002 1003 static void close_sync(conf_t *conf) 1004 { 1005 wait_barrier(conf); 1006 allow_barrier(conf); 1007 1008 mempool_destroy(conf->r1buf_pool); 1009 conf->r1buf_pool = NULL; 1010 } 1011 1012 static int raid1_spare_active(mddev_t *mddev) 1013 { 1014 int i; 1015 conf_t *conf = mddev->private; 1016 1017 /* 1018 * Find all failed disks within the RAID1 configuration 1019 * and mark them readable. 1020 * Called under mddev lock, so rcu protection not needed. 1021 */ 1022 for (i = 0; i < conf->raid_disks; i++) { 1023 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1024 if (rdev 1025 && !test_bit(Faulty, &rdev->flags) 1026 && !test_bit(In_sync, &rdev->flags)) { 1027 conf->working_disks++; 1028 mddev->degraded--; 1029 set_bit(In_sync, &rdev->flags); 1030 } 1031 } 1032 1033 print_conf(conf); 1034 return 0; 1035 } 1036 1037 1038 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1039 { 1040 conf_t *conf = mddev->private; 1041 int found = 0; 1042 int mirror = 0; 1043 mirror_info_t *p; 1044 1045 for (mirror=0; mirror < mddev->raid_disks; mirror++) 1046 if ( !(p=conf->mirrors+mirror)->rdev) { 1047 1048 blk_queue_stack_limits(mddev->queue, 1049 rdev->bdev->bd_disk->queue); 1050 /* as we don't honour merge_bvec_fn, we must never risk 1051 * violating it, so limit ->max_sector to one PAGE, as 1052 * a one page request is never in violation. 1053 */ 1054 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1055 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1056 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1057 1058 p->head_position = 0; 1059 rdev->raid_disk = mirror; 1060 found = 1; 1061 /* As all devices are equivalent, we don't need a full recovery 1062 * if this was recently any drive of the array 1063 */ 1064 if (rdev->saved_raid_disk < 0) 1065 conf->fullsync = 1; 1066 rcu_assign_pointer(p->rdev, rdev); 1067 break; 1068 } 1069 1070 print_conf(conf); 1071 return found; 1072 } 1073 1074 static int raid1_remove_disk(mddev_t *mddev, int number) 1075 { 1076 conf_t *conf = mddev->private; 1077 int err = 0; 1078 mdk_rdev_t *rdev; 1079 mirror_info_t *p = conf->mirrors+ number; 1080 1081 print_conf(conf); 1082 rdev = p->rdev; 1083 if (rdev) { 1084 if (test_bit(In_sync, &rdev->flags) || 1085 atomic_read(&rdev->nr_pending)) { 1086 err = -EBUSY; 1087 goto abort; 1088 } 1089 p->rdev = NULL; 1090 synchronize_rcu(); 1091 if (atomic_read(&rdev->nr_pending)) { 1092 /* lost the race, try later */ 1093 err = -EBUSY; 1094 p->rdev = rdev; 1095 } 1096 } 1097 abort: 1098 1099 print_conf(conf); 1100 return err; 1101 } 1102 1103 1104 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1105 { 1106 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1107 int i; 1108 1109 if (bio->bi_size) 1110 return 1; 1111 1112 for (i=r1_bio->mddev->raid_disks; i--; ) 1113 if (r1_bio->bios[i] == bio) 1114 break; 1115 BUG_ON(i < 0); 1116 update_head_pos(i, r1_bio); 1117 /* 1118 * we have read a block, now it needs to be re-written, 1119 * or re-read if the read failed. 1120 * We don't do much here, just schedule handling by raid1d 1121 */ 1122 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1123 set_bit(R1BIO_Uptodate, &r1_bio->state); 1124 1125 if (atomic_dec_and_test(&r1_bio->remaining)) 1126 reschedule_retry(r1_bio); 1127 return 0; 1128 } 1129 1130 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1131 { 1132 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1133 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1134 mddev_t *mddev = r1_bio->mddev; 1135 conf_t *conf = mddev_to_conf(mddev); 1136 int i; 1137 int mirror=0; 1138 1139 if (bio->bi_size) 1140 return 1; 1141 1142 for (i = 0; i < conf->raid_disks; i++) 1143 if (r1_bio->bios[i] == bio) { 1144 mirror = i; 1145 break; 1146 } 1147 if (!uptodate) { 1148 int sync_blocks = 0; 1149 sector_t s = r1_bio->sector; 1150 long sectors_to_go = r1_bio->sectors; 1151 /* make sure these bits doesn't get cleared. */ 1152 do { 1153 bitmap_end_sync(mddev->bitmap, s, 1154 &sync_blocks, 1); 1155 s += sync_blocks; 1156 sectors_to_go -= sync_blocks; 1157 } while (sectors_to_go > 0); 1158 md_error(mddev, conf->mirrors[mirror].rdev); 1159 } 1160 1161 update_head_pos(mirror, r1_bio); 1162 1163 if (atomic_dec_and_test(&r1_bio->remaining)) { 1164 md_done_sync(mddev, r1_bio->sectors, uptodate); 1165 put_buf(r1_bio); 1166 } 1167 return 0; 1168 } 1169 1170 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1171 { 1172 conf_t *conf = mddev_to_conf(mddev); 1173 int i; 1174 int disks = conf->raid_disks; 1175 struct bio *bio, *wbio; 1176 1177 bio = r1_bio->bios[r1_bio->read_disk]; 1178 1179 1180 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1181 /* We have read all readable devices. If we haven't 1182 * got the block, then there is no hope left. 1183 * If we have, then we want to do a comparison 1184 * and skip the write if everything is the same. 1185 * If any blocks failed to read, then we need to 1186 * attempt an over-write 1187 */ 1188 int primary; 1189 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1190 for (i=0; i<mddev->raid_disks; i++) 1191 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1192 md_error(mddev, conf->mirrors[i].rdev); 1193 1194 md_done_sync(mddev, r1_bio->sectors, 1); 1195 put_buf(r1_bio); 1196 return; 1197 } 1198 for (primary=0; primary<mddev->raid_disks; primary++) 1199 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1200 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1201 r1_bio->bios[primary]->bi_end_io = NULL; 1202 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1203 break; 1204 } 1205 r1_bio->read_disk = primary; 1206 for (i=0; i<mddev->raid_disks; i++) 1207 if (r1_bio->bios[i]->bi_end_io == end_sync_read && 1208 test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) { 1209 int j; 1210 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1211 struct bio *pbio = r1_bio->bios[primary]; 1212 struct bio *sbio = r1_bio->bios[i]; 1213 for (j = vcnt; j-- ; ) 1214 if (memcmp(page_address(pbio->bi_io_vec[j].bv_page), 1215 page_address(sbio->bi_io_vec[j].bv_page), 1216 PAGE_SIZE)) 1217 break; 1218 if (j >= 0) 1219 mddev->resync_mismatches += r1_bio->sectors; 1220 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 1221 sbio->bi_end_io = NULL; 1222 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1223 } else { 1224 /* fixup the bio for reuse */ 1225 sbio->bi_vcnt = vcnt; 1226 sbio->bi_size = r1_bio->sectors << 9; 1227 sbio->bi_idx = 0; 1228 sbio->bi_phys_segments = 0; 1229 sbio->bi_hw_segments = 0; 1230 sbio->bi_hw_front_size = 0; 1231 sbio->bi_hw_back_size = 0; 1232 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1233 sbio->bi_flags |= 1 << BIO_UPTODATE; 1234 sbio->bi_next = NULL; 1235 sbio->bi_sector = r1_bio->sector + 1236 conf->mirrors[i].rdev->data_offset; 1237 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1238 } 1239 } 1240 } 1241 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1242 /* ouch - failed to read all of that. 1243 * Try some synchronous reads of other devices to get 1244 * good data, much like with normal read errors. Only 1245 * read into the pages we already have so we don't 1246 * need to re-issue the read request. 1247 * We don't need to freeze the array, because being in an 1248 * active sync request, there is no normal IO, and 1249 * no overlapping syncs. 1250 */ 1251 sector_t sect = r1_bio->sector; 1252 int sectors = r1_bio->sectors; 1253 int idx = 0; 1254 1255 while(sectors) { 1256 int s = sectors; 1257 int d = r1_bio->read_disk; 1258 int success = 0; 1259 mdk_rdev_t *rdev; 1260 1261 if (s > (PAGE_SIZE>>9)) 1262 s = PAGE_SIZE >> 9; 1263 do { 1264 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1265 /* No rcu protection needed here devices 1266 * can only be removed when no resync is 1267 * active, and resync is currently active 1268 */ 1269 rdev = conf->mirrors[d].rdev; 1270 if (sync_page_io(rdev->bdev, 1271 sect + rdev->data_offset, 1272 s<<9, 1273 bio->bi_io_vec[idx].bv_page, 1274 READ)) { 1275 success = 1; 1276 break; 1277 } 1278 } 1279 d++; 1280 if (d == conf->raid_disks) 1281 d = 0; 1282 } while (!success && d != r1_bio->read_disk); 1283 1284 if (success) { 1285 int start = d; 1286 /* write it back and re-read */ 1287 set_bit(R1BIO_Uptodate, &r1_bio->state); 1288 while (d != r1_bio->read_disk) { 1289 if (d == 0) 1290 d = conf->raid_disks; 1291 d--; 1292 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1293 continue; 1294 rdev = conf->mirrors[d].rdev; 1295 atomic_add(s, &rdev->corrected_errors); 1296 if (sync_page_io(rdev->bdev, 1297 sect + rdev->data_offset, 1298 s<<9, 1299 bio->bi_io_vec[idx].bv_page, 1300 WRITE) == 0) 1301 md_error(mddev, rdev); 1302 } 1303 d = start; 1304 while (d != r1_bio->read_disk) { 1305 if (d == 0) 1306 d = conf->raid_disks; 1307 d--; 1308 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1309 continue; 1310 rdev = conf->mirrors[d].rdev; 1311 if (sync_page_io(rdev->bdev, 1312 sect + rdev->data_offset, 1313 s<<9, 1314 bio->bi_io_vec[idx].bv_page, 1315 READ) == 0) 1316 md_error(mddev, rdev); 1317 } 1318 } else { 1319 char b[BDEVNAME_SIZE]; 1320 /* Cannot read from anywhere, array is toast */ 1321 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1322 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1323 " for block %llu\n", 1324 bdevname(bio->bi_bdev,b), 1325 (unsigned long long)r1_bio->sector); 1326 md_done_sync(mddev, r1_bio->sectors, 0); 1327 put_buf(r1_bio); 1328 return; 1329 } 1330 sectors -= s; 1331 sect += s; 1332 idx ++; 1333 } 1334 } 1335 1336 /* 1337 * schedule writes 1338 */ 1339 atomic_set(&r1_bio->remaining, 1); 1340 for (i = 0; i < disks ; i++) { 1341 wbio = r1_bio->bios[i]; 1342 if (wbio->bi_end_io == NULL || 1343 (wbio->bi_end_io == end_sync_read && 1344 (i == r1_bio->read_disk || 1345 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1346 continue; 1347 1348 wbio->bi_rw = WRITE; 1349 wbio->bi_end_io = end_sync_write; 1350 atomic_inc(&r1_bio->remaining); 1351 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1352 1353 generic_make_request(wbio); 1354 } 1355 1356 if (atomic_dec_and_test(&r1_bio->remaining)) { 1357 /* if we're here, all write(s) have completed, so clean up */ 1358 md_done_sync(mddev, r1_bio->sectors, 1); 1359 put_buf(r1_bio); 1360 } 1361 } 1362 1363 /* 1364 * This is a kernel thread which: 1365 * 1366 * 1. Retries failed read operations on working mirrors. 1367 * 2. Updates the raid superblock when problems encounter. 1368 * 3. Performs writes following reads for array syncronising. 1369 */ 1370 1371 static void raid1d(mddev_t *mddev) 1372 { 1373 r1bio_t *r1_bio; 1374 struct bio *bio; 1375 unsigned long flags; 1376 conf_t *conf = mddev_to_conf(mddev); 1377 struct list_head *head = &conf->retry_list; 1378 int unplug=0; 1379 mdk_rdev_t *rdev; 1380 1381 md_check_recovery(mddev); 1382 1383 for (;;) { 1384 char b[BDEVNAME_SIZE]; 1385 spin_lock_irqsave(&conf->device_lock, flags); 1386 1387 if (conf->pending_bio_list.head) { 1388 bio = bio_list_get(&conf->pending_bio_list); 1389 blk_remove_plug(mddev->queue); 1390 spin_unlock_irqrestore(&conf->device_lock, flags); 1391 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1392 if (bitmap_unplug(mddev->bitmap) != 0) 1393 printk("%s: bitmap file write failed!\n", mdname(mddev)); 1394 1395 while (bio) { /* submit pending writes */ 1396 struct bio *next = bio->bi_next; 1397 bio->bi_next = NULL; 1398 generic_make_request(bio); 1399 bio = next; 1400 } 1401 unplug = 1; 1402 1403 continue; 1404 } 1405 1406 if (list_empty(head)) 1407 break; 1408 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1409 list_del(head->prev); 1410 conf->nr_queued--; 1411 spin_unlock_irqrestore(&conf->device_lock, flags); 1412 1413 mddev = r1_bio->mddev; 1414 conf = mddev_to_conf(mddev); 1415 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1416 sync_request_write(mddev, r1_bio); 1417 unplug = 1; 1418 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1419 /* some requests in the r1bio were BIO_RW_BARRIER 1420 * requests which failed with -EOPNOTSUPP. Hohumm.. 1421 * Better resubmit without the barrier. 1422 * We know which devices to resubmit for, because 1423 * all others have had their bios[] entry cleared. 1424 * We already have a nr_pending reference on these rdevs. 1425 */ 1426 int i; 1427 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1428 clear_bit(R1BIO_Barrier, &r1_bio->state); 1429 for (i=0; i < conf->raid_disks; i++) 1430 if (r1_bio->bios[i]) 1431 atomic_inc(&r1_bio->remaining); 1432 for (i=0; i < conf->raid_disks; i++) 1433 if (r1_bio->bios[i]) { 1434 struct bio_vec *bvec; 1435 int j; 1436 1437 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1438 /* copy pages from the failed bio, as 1439 * this might be a write-behind device */ 1440 __bio_for_each_segment(bvec, bio, j, 0) 1441 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1442 bio_put(r1_bio->bios[i]); 1443 bio->bi_sector = r1_bio->sector + 1444 conf->mirrors[i].rdev->data_offset; 1445 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1446 bio->bi_end_io = raid1_end_write_request; 1447 bio->bi_rw = WRITE; 1448 bio->bi_private = r1_bio; 1449 r1_bio->bios[i] = bio; 1450 generic_make_request(bio); 1451 } 1452 } else { 1453 int disk; 1454 1455 /* we got a read error. Maybe the drive is bad. Maybe just 1456 * the block and we can fix it. 1457 * We freeze all other IO, and try reading the block from 1458 * other devices. When we find one, we re-write 1459 * and check it that fixes the read error. 1460 * This is all done synchronously while the array is 1461 * frozen 1462 */ 1463 sector_t sect = r1_bio->sector; 1464 int sectors = r1_bio->sectors; 1465 freeze_array(conf); 1466 if (mddev->ro == 0) while(sectors) { 1467 int s = sectors; 1468 int d = r1_bio->read_disk; 1469 int success = 0; 1470 1471 if (s > (PAGE_SIZE>>9)) 1472 s = PAGE_SIZE >> 9; 1473 1474 do { 1475 /* Note: no rcu protection needed here 1476 * as this is synchronous in the raid1d thread 1477 * which is the thread that might remove 1478 * a device. If raid1d ever becomes multi-threaded.... 1479 */ 1480 rdev = conf->mirrors[d].rdev; 1481 if (rdev && 1482 test_bit(In_sync, &rdev->flags) && 1483 sync_page_io(rdev->bdev, 1484 sect + rdev->data_offset, 1485 s<<9, 1486 conf->tmppage, READ)) 1487 success = 1; 1488 else { 1489 d++; 1490 if (d == conf->raid_disks) 1491 d = 0; 1492 } 1493 } while (!success && d != r1_bio->read_disk); 1494 1495 if (success) { 1496 /* write it back and re-read */ 1497 int start = d; 1498 while (d != r1_bio->read_disk) { 1499 if (d==0) 1500 d = conf->raid_disks; 1501 d--; 1502 rdev = conf->mirrors[d].rdev; 1503 if (rdev && 1504 test_bit(In_sync, &rdev->flags)) { 1505 if (sync_page_io(rdev->bdev, 1506 sect + rdev->data_offset, 1507 s<<9, conf->tmppage, WRITE) == 0) 1508 /* Well, this device is dead */ 1509 md_error(mddev, rdev); 1510 } 1511 } 1512 d = start; 1513 while (d != r1_bio->read_disk) { 1514 if (d==0) 1515 d = conf->raid_disks; 1516 d--; 1517 rdev = conf->mirrors[d].rdev; 1518 if (rdev && 1519 test_bit(In_sync, &rdev->flags)) { 1520 if (sync_page_io(rdev->bdev, 1521 sect + rdev->data_offset, 1522 s<<9, conf->tmppage, READ) == 0) 1523 /* Well, this device is dead */ 1524 md_error(mddev, rdev); 1525 else { 1526 atomic_add(s, &rdev->corrected_errors); 1527 printk(KERN_INFO "raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 1528 mdname(mddev), s, (unsigned long long)(sect + rdev->data_offset), bdevname(rdev->bdev, b)); 1529 } 1530 } 1531 } 1532 } else { 1533 /* Cannot read from anywhere -- bye bye array */ 1534 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1535 break; 1536 } 1537 sectors -= s; 1538 sect += s; 1539 } 1540 1541 unfreeze_array(conf); 1542 1543 bio = r1_bio->bios[r1_bio->read_disk]; 1544 if ((disk=read_balance(conf, r1_bio)) == -1) { 1545 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1546 " read error for block %llu\n", 1547 bdevname(bio->bi_bdev,b), 1548 (unsigned long long)r1_bio->sector); 1549 raid_end_bio_io(r1_bio); 1550 } else { 1551 r1_bio->bios[r1_bio->read_disk] = 1552 mddev->ro ? IO_BLOCKED : NULL; 1553 r1_bio->read_disk = disk; 1554 bio_put(bio); 1555 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1556 r1_bio->bios[r1_bio->read_disk] = bio; 1557 rdev = conf->mirrors[disk].rdev; 1558 if (printk_ratelimit()) 1559 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1560 " another mirror\n", 1561 bdevname(rdev->bdev,b), 1562 (unsigned long long)r1_bio->sector); 1563 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1564 bio->bi_bdev = rdev->bdev; 1565 bio->bi_end_io = raid1_end_read_request; 1566 bio->bi_rw = READ; 1567 bio->bi_private = r1_bio; 1568 unplug = 1; 1569 generic_make_request(bio); 1570 } 1571 } 1572 } 1573 spin_unlock_irqrestore(&conf->device_lock, flags); 1574 if (unplug) 1575 unplug_slaves(mddev); 1576 } 1577 1578 1579 static int init_resync(conf_t *conf) 1580 { 1581 int buffs; 1582 1583 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1584 BUG_ON(conf->r1buf_pool); 1585 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1586 conf->poolinfo); 1587 if (!conf->r1buf_pool) 1588 return -ENOMEM; 1589 conf->next_resync = 0; 1590 return 0; 1591 } 1592 1593 /* 1594 * perform a "sync" on one "block" 1595 * 1596 * We need to make sure that no normal I/O request - particularly write 1597 * requests - conflict with active sync requests. 1598 * 1599 * This is achieved by tracking pending requests and a 'barrier' concept 1600 * that can be installed to exclude normal IO requests. 1601 */ 1602 1603 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1604 { 1605 conf_t *conf = mddev_to_conf(mddev); 1606 r1bio_t *r1_bio; 1607 struct bio *bio; 1608 sector_t max_sector, nr_sectors; 1609 int disk = -1; 1610 int i; 1611 int wonly = -1; 1612 int write_targets = 0, read_targets = 0; 1613 int sync_blocks; 1614 int still_degraded = 0; 1615 1616 if (!conf->r1buf_pool) 1617 { 1618 /* 1619 printk("sync start - bitmap %p\n", mddev->bitmap); 1620 */ 1621 if (init_resync(conf)) 1622 return 0; 1623 } 1624 1625 max_sector = mddev->size << 1; 1626 if (sector_nr >= max_sector) { 1627 /* If we aborted, we need to abort the 1628 * sync on the 'current' bitmap chunk (there will 1629 * only be one in raid1 resync. 1630 * We can find the current addess in mddev->curr_resync 1631 */ 1632 if (mddev->curr_resync < max_sector) /* aborted */ 1633 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1634 &sync_blocks, 1); 1635 else /* completed sync */ 1636 conf->fullsync = 0; 1637 1638 bitmap_close_sync(mddev->bitmap); 1639 close_sync(conf); 1640 return 0; 1641 } 1642 1643 if (mddev->bitmap == NULL && 1644 mddev->recovery_cp == MaxSector && 1645 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1646 conf->fullsync == 0) { 1647 *skipped = 1; 1648 return max_sector - sector_nr; 1649 } 1650 /* before building a request, check if we can skip these blocks.. 1651 * This call the bitmap_start_sync doesn't actually record anything 1652 */ 1653 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1654 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1655 /* We can skip this block, and probably several more */ 1656 *skipped = 1; 1657 return sync_blocks; 1658 } 1659 /* 1660 * If there is non-resync activity waiting for a turn, 1661 * and resync is going fast enough, 1662 * then let it though before starting on this new sync request. 1663 */ 1664 if (!go_faster && conf->nr_waiting) 1665 msleep_interruptible(1000); 1666 1667 raise_barrier(conf); 1668 1669 conf->next_resync = sector_nr; 1670 1671 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1672 rcu_read_lock(); 1673 /* 1674 * If we get a correctably read error during resync or recovery, 1675 * we might want to read from a different device. So we 1676 * flag all drives that could conceivably be read from for READ, 1677 * and any others (which will be non-In_sync devices) for WRITE. 1678 * If a read fails, we try reading from something else for which READ 1679 * is OK. 1680 */ 1681 1682 r1_bio->mddev = mddev; 1683 r1_bio->sector = sector_nr; 1684 r1_bio->state = 0; 1685 set_bit(R1BIO_IsSync, &r1_bio->state); 1686 1687 for (i=0; i < conf->raid_disks; i++) { 1688 mdk_rdev_t *rdev; 1689 bio = r1_bio->bios[i]; 1690 1691 /* take from bio_init */ 1692 bio->bi_next = NULL; 1693 bio->bi_flags |= 1 << BIO_UPTODATE; 1694 bio->bi_rw = 0; 1695 bio->bi_vcnt = 0; 1696 bio->bi_idx = 0; 1697 bio->bi_phys_segments = 0; 1698 bio->bi_hw_segments = 0; 1699 bio->bi_size = 0; 1700 bio->bi_end_io = NULL; 1701 bio->bi_private = NULL; 1702 1703 rdev = rcu_dereference(conf->mirrors[i].rdev); 1704 if (rdev == NULL || 1705 test_bit(Faulty, &rdev->flags)) { 1706 still_degraded = 1; 1707 continue; 1708 } else if (!test_bit(In_sync, &rdev->flags)) { 1709 bio->bi_rw = WRITE; 1710 bio->bi_end_io = end_sync_write; 1711 write_targets ++; 1712 } else { 1713 /* may need to read from here */ 1714 bio->bi_rw = READ; 1715 bio->bi_end_io = end_sync_read; 1716 if (test_bit(WriteMostly, &rdev->flags)) { 1717 if (wonly < 0) 1718 wonly = i; 1719 } else { 1720 if (disk < 0) 1721 disk = i; 1722 } 1723 read_targets++; 1724 } 1725 atomic_inc(&rdev->nr_pending); 1726 bio->bi_sector = sector_nr + rdev->data_offset; 1727 bio->bi_bdev = rdev->bdev; 1728 bio->bi_private = r1_bio; 1729 } 1730 rcu_read_unlock(); 1731 if (disk < 0) 1732 disk = wonly; 1733 r1_bio->read_disk = disk; 1734 1735 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1736 /* extra read targets are also write targets */ 1737 write_targets += read_targets-1; 1738 1739 if (write_targets == 0 || read_targets == 0) { 1740 /* There is nowhere to write, so all non-sync 1741 * drives must be failed - so we are finished 1742 */ 1743 sector_t rv = max_sector - sector_nr; 1744 *skipped = 1; 1745 put_buf(r1_bio); 1746 return rv; 1747 } 1748 1749 nr_sectors = 0; 1750 sync_blocks = 0; 1751 do { 1752 struct page *page; 1753 int len = PAGE_SIZE; 1754 if (sector_nr + (len>>9) > max_sector) 1755 len = (max_sector - sector_nr) << 9; 1756 if (len == 0) 1757 break; 1758 if (sync_blocks == 0) { 1759 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1760 &sync_blocks, still_degraded) && 1761 !conf->fullsync && 1762 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1763 break; 1764 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1765 if (len > (sync_blocks<<9)) 1766 len = sync_blocks<<9; 1767 } 1768 1769 for (i=0 ; i < conf->raid_disks; i++) { 1770 bio = r1_bio->bios[i]; 1771 if (bio->bi_end_io) { 1772 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1773 if (bio_add_page(bio, page, len, 0) == 0) { 1774 /* stop here */ 1775 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1776 while (i > 0) { 1777 i--; 1778 bio = r1_bio->bios[i]; 1779 if (bio->bi_end_io==NULL) 1780 continue; 1781 /* remove last page from this bio */ 1782 bio->bi_vcnt--; 1783 bio->bi_size -= len; 1784 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1785 } 1786 goto bio_full; 1787 } 1788 } 1789 } 1790 nr_sectors += len>>9; 1791 sector_nr += len>>9; 1792 sync_blocks -= (len>>9); 1793 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1794 bio_full: 1795 r1_bio->sectors = nr_sectors; 1796 1797 /* For a user-requested sync, we read all readable devices and do a 1798 * compare 1799 */ 1800 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1801 atomic_set(&r1_bio->remaining, read_targets); 1802 for (i=0; i<conf->raid_disks; i++) { 1803 bio = r1_bio->bios[i]; 1804 if (bio->bi_end_io == end_sync_read) { 1805 md_sync_acct(bio->bi_bdev, nr_sectors); 1806 generic_make_request(bio); 1807 } 1808 } 1809 } else { 1810 atomic_set(&r1_bio->remaining, 1); 1811 bio = r1_bio->bios[r1_bio->read_disk]; 1812 md_sync_acct(bio->bi_bdev, nr_sectors); 1813 generic_make_request(bio); 1814 1815 } 1816 return nr_sectors; 1817 } 1818 1819 static int run(mddev_t *mddev) 1820 { 1821 conf_t *conf; 1822 int i, j, disk_idx; 1823 mirror_info_t *disk; 1824 mdk_rdev_t *rdev; 1825 struct list_head *tmp; 1826 1827 if (mddev->level != 1) { 1828 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1829 mdname(mddev), mddev->level); 1830 goto out; 1831 } 1832 if (mddev->reshape_position != MaxSector) { 1833 printk("raid1: %s: reshape_position set but not supported\n", 1834 mdname(mddev)); 1835 goto out; 1836 } 1837 /* 1838 * copy the already verified devices into our private RAID1 1839 * bookkeeping area. [whatever we allocate in run(), 1840 * should be freed in stop()] 1841 */ 1842 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1843 mddev->private = conf; 1844 if (!conf) 1845 goto out_no_mem; 1846 1847 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1848 GFP_KERNEL); 1849 if (!conf->mirrors) 1850 goto out_no_mem; 1851 1852 conf->tmppage = alloc_page(GFP_KERNEL); 1853 if (!conf->tmppage) 1854 goto out_no_mem; 1855 1856 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1857 if (!conf->poolinfo) 1858 goto out_no_mem; 1859 conf->poolinfo->mddev = mddev; 1860 conf->poolinfo->raid_disks = mddev->raid_disks; 1861 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1862 r1bio_pool_free, 1863 conf->poolinfo); 1864 if (!conf->r1bio_pool) 1865 goto out_no_mem; 1866 1867 ITERATE_RDEV(mddev, rdev, tmp) { 1868 disk_idx = rdev->raid_disk; 1869 if (disk_idx >= mddev->raid_disks 1870 || disk_idx < 0) 1871 continue; 1872 disk = conf->mirrors + disk_idx; 1873 1874 disk->rdev = rdev; 1875 1876 blk_queue_stack_limits(mddev->queue, 1877 rdev->bdev->bd_disk->queue); 1878 /* as we don't honour merge_bvec_fn, we must never risk 1879 * violating it, so limit ->max_sector to one PAGE, as 1880 * a one page request is never in violation. 1881 */ 1882 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1883 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1884 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1885 1886 disk->head_position = 0; 1887 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags)) 1888 conf->working_disks++; 1889 } 1890 conf->raid_disks = mddev->raid_disks; 1891 conf->mddev = mddev; 1892 spin_lock_init(&conf->device_lock); 1893 INIT_LIST_HEAD(&conf->retry_list); 1894 if (conf->working_disks == 1) 1895 mddev->recovery_cp = MaxSector; 1896 1897 spin_lock_init(&conf->resync_lock); 1898 init_waitqueue_head(&conf->wait_barrier); 1899 1900 bio_list_init(&conf->pending_bio_list); 1901 bio_list_init(&conf->flushing_bio_list); 1902 1903 if (!conf->working_disks) { 1904 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1905 mdname(mddev)); 1906 goto out_free_conf; 1907 } 1908 1909 mddev->degraded = 0; 1910 for (i = 0; i < conf->raid_disks; i++) { 1911 1912 disk = conf->mirrors + i; 1913 1914 if (!disk->rdev || 1915 !test_bit(In_sync, &disk->rdev->flags)) { 1916 disk->head_position = 0; 1917 mddev->degraded++; 1918 } 1919 } 1920 1921 /* 1922 * find the first working one and use it as a starting point 1923 * to read balancing. 1924 */ 1925 for (j = 0; j < conf->raid_disks && 1926 (!conf->mirrors[j].rdev || 1927 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 1928 /* nothing */; 1929 conf->last_used = j; 1930 1931 1932 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1933 if (!mddev->thread) { 1934 printk(KERN_ERR 1935 "raid1: couldn't allocate thread for %s\n", 1936 mdname(mddev)); 1937 goto out_free_conf; 1938 } 1939 1940 printk(KERN_INFO 1941 "raid1: raid set %s active with %d out of %d mirrors\n", 1942 mdname(mddev), mddev->raid_disks - mddev->degraded, 1943 mddev->raid_disks); 1944 /* 1945 * Ok, everything is just fine now 1946 */ 1947 mddev->array_size = mddev->size; 1948 1949 mddev->queue->unplug_fn = raid1_unplug; 1950 mddev->queue->issue_flush_fn = raid1_issue_flush; 1951 1952 return 0; 1953 1954 out_no_mem: 1955 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 1956 mdname(mddev)); 1957 1958 out_free_conf: 1959 if (conf) { 1960 if (conf->r1bio_pool) 1961 mempool_destroy(conf->r1bio_pool); 1962 kfree(conf->mirrors); 1963 safe_put_page(conf->tmppage); 1964 kfree(conf->poolinfo); 1965 kfree(conf); 1966 mddev->private = NULL; 1967 } 1968 out: 1969 return -EIO; 1970 } 1971 1972 static int stop(mddev_t *mddev) 1973 { 1974 conf_t *conf = mddev_to_conf(mddev); 1975 struct bitmap *bitmap = mddev->bitmap; 1976 int behind_wait = 0; 1977 1978 /* wait for behind writes to complete */ 1979 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 1980 behind_wait++; 1981 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 1982 set_current_state(TASK_UNINTERRUPTIBLE); 1983 schedule_timeout(HZ); /* wait a second */ 1984 /* need to kick something here to make sure I/O goes? */ 1985 } 1986 1987 md_unregister_thread(mddev->thread); 1988 mddev->thread = NULL; 1989 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 1990 if (conf->r1bio_pool) 1991 mempool_destroy(conf->r1bio_pool); 1992 kfree(conf->mirrors); 1993 kfree(conf->poolinfo); 1994 kfree(conf); 1995 mddev->private = NULL; 1996 return 0; 1997 } 1998 1999 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2000 { 2001 /* no resync is happening, and there is enough space 2002 * on all devices, so we can resize. 2003 * We need to make sure resync covers any new space. 2004 * If the array is shrinking we should possibly wait until 2005 * any io in the removed space completes, but it hardly seems 2006 * worth it. 2007 */ 2008 mddev->array_size = sectors>>1; 2009 set_capacity(mddev->gendisk, mddev->array_size << 1); 2010 mddev->changed = 1; 2011 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 2012 mddev->recovery_cp = mddev->size << 1; 2013 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2014 } 2015 mddev->size = mddev->array_size; 2016 mddev->resync_max_sectors = sectors; 2017 return 0; 2018 } 2019 2020 static int raid1_reshape(mddev_t *mddev) 2021 { 2022 /* We need to: 2023 * 1/ resize the r1bio_pool 2024 * 2/ resize conf->mirrors 2025 * 2026 * We allocate a new r1bio_pool if we can. 2027 * Then raise a device barrier and wait until all IO stops. 2028 * Then resize conf->mirrors and swap in the new r1bio pool. 2029 * 2030 * At the same time, we "pack" the devices so that all the missing 2031 * devices have the higher raid_disk numbers. 2032 */ 2033 mempool_t *newpool, *oldpool; 2034 struct pool_info *newpoolinfo; 2035 mirror_info_t *newmirrors; 2036 conf_t *conf = mddev_to_conf(mddev); 2037 int cnt, raid_disks; 2038 2039 int d, d2; 2040 2041 /* Cannot change chunk_size, layout, or level */ 2042 if (mddev->chunk_size != mddev->new_chunk || 2043 mddev->layout != mddev->new_layout || 2044 mddev->level != mddev->new_level) { 2045 mddev->new_chunk = mddev->chunk_size; 2046 mddev->new_layout = mddev->layout; 2047 mddev->new_level = mddev->level; 2048 return -EINVAL; 2049 } 2050 2051 raid_disks = mddev->raid_disks + mddev->delta_disks; 2052 2053 if (raid_disks < conf->raid_disks) { 2054 cnt=0; 2055 for (d= 0; d < conf->raid_disks; d++) 2056 if (conf->mirrors[d].rdev) 2057 cnt++; 2058 if (cnt > raid_disks) 2059 return -EBUSY; 2060 } 2061 2062 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2063 if (!newpoolinfo) 2064 return -ENOMEM; 2065 newpoolinfo->mddev = mddev; 2066 newpoolinfo->raid_disks = raid_disks; 2067 2068 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2069 r1bio_pool_free, newpoolinfo); 2070 if (!newpool) { 2071 kfree(newpoolinfo); 2072 return -ENOMEM; 2073 } 2074 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2075 if (!newmirrors) { 2076 kfree(newpoolinfo); 2077 mempool_destroy(newpool); 2078 return -ENOMEM; 2079 } 2080 2081 raise_barrier(conf); 2082 2083 /* ok, everything is stopped */ 2084 oldpool = conf->r1bio_pool; 2085 conf->r1bio_pool = newpool; 2086 2087 for (d=d2=0; d < conf->raid_disks; d++) 2088 if (conf->mirrors[d].rdev) { 2089 conf->mirrors[d].rdev->raid_disk = d2; 2090 newmirrors[d2++].rdev = conf->mirrors[d].rdev; 2091 } 2092 kfree(conf->mirrors); 2093 conf->mirrors = newmirrors; 2094 kfree(conf->poolinfo); 2095 conf->poolinfo = newpoolinfo; 2096 2097 mddev->degraded += (raid_disks - conf->raid_disks); 2098 conf->raid_disks = mddev->raid_disks = raid_disks; 2099 mddev->delta_disks = 0; 2100 2101 conf->last_used = 0; /* just make sure it is in-range */ 2102 lower_barrier(conf); 2103 2104 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2105 md_wakeup_thread(mddev->thread); 2106 2107 mempool_destroy(oldpool); 2108 return 0; 2109 } 2110 2111 static void raid1_quiesce(mddev_t *mddev, int state) 2112 { 2113 conf_t *conf = mddev_to_conf(mddev); 2114 2115 switch(state) { 2116 case 1: 2117 raise_barrier(conf); 2118 break; 2119 case 0: 2120 lower_barrier(conf); 2121 break; 2122 } 2123 } 2124 2125 2126 static struct mdk_personality raid1_personality = 2127 { 2128 .name = "raid1", 2129 .level = 1, 2130 .owner = THIS_MODULE, 2131 .make_request = make_request, 2132 .run = run, 2133 .stop = stop, 2134 .status = status, 2135 .error_handler = error, 2136 .hot_add_disk = raid1_add_disk, 2137 .hot_remove_disk= raid1_remove_disk, 2138 .spare_active = raid1_spare_active, 2139 .sync_request = sync_request, 2140 .resize = raid1_resize, 2141 .check_reshape = raid1_reshape, 2142 .quiesce = raid1_quiesce, 2143 }; 2144 2145 static int __init raid_init(void) 2146 { 2147 return register_md_personality(&raid1_personality); 2148 } 2149 2150 static void raid_exit(void) 2151 { 2152 unregister_md_personality(&raid1_personality); 2153 } 2154 2155 module_init(raid_init); 2156 module_exit(raid_exit); 2157 MODULE_LICENSE("GPL"); 2158 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2159 MODULE_ALIAS("md-raid1"); 2160 MODULE_ALIAS("md-level-1"); 2161