xref: /linux/drivers/md/raid1.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 
33 #include <trace/events/block.h>
34 
35 #include "md.h"
36 #include "raid1.h"
37 #include "md-bitmap.h"
38 
39 #define UNSUPPORTED_MDDEV_FLAGS		\
40 	((1L << MD_HAS_JOURNAL) |	\
41 	 (1L << MD_JOURNAL_CLEAN) |	\
42 	 (1L << MD_HAS_PPL) |		\
43 	 (1L << MD_HAS_MULTIPLE_PPLS))
44 
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define	NR_RAID1_BIOS 256
49 
50 /* when we get a read error on a read-only array, we redirect to another
51  * device without failing the first device, or trying to over-write to
52  * correct the read error.  To keep track of bad blocks on a per-bio
53  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54  */
55 #define IO_BLOCKED ((struct bio *)1)
56 /* When we successfully write to a known bad-block, we need to remove the
57  * bad-block marking which must be done from process context.  So we record
58  * the success by setting devs[n].bio to IO_MADE_GOOD
59  */
60 #define IO_MADE_GOOD ((struct bio *)2)
61 
62 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 
64 /* When there are this many requests queue to be written by
65  * the raid1 thread, we become 'congested' to provide back-pressure
66  * for writeback.
67  */
68 static int max_queued_requests = 1024;
69 
70 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
71 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
72 
73 #define raid1_log(md, fmt, args...)				\
74 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
75 
76 #include "raid1-10.c"
77 
78 /*
79  * for resync bio, r1bio pointer can be retrieved from the per-bio
80  * 'struct resync_pages'.
81  */
82 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
83 {
84 	return get_resync_pages(bio)->raid_bio;
85 }
86 
87 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
88 {
89 	struct pool_info *pi = data;
90 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
91 
92 	/* allocate a r1bio with room for raid_disks entries in the bios array */
93 	return kzalloc(size, gfp_flags);
94 }
95 
96 static void r1bio_pool_free(void *r1_bio, void *data)
97 {
98 	kfree(r1_bio);
99 }
100 
101 #define RESYNC_DEPTH 32
102 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
103 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
104 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
105 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
106 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
107 
108 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 	struct pool_info *pi = data;
111 	struct r1bio *r1_bio;
112 	struct bio *bio;
113 	int need_pages;
114 	int j;
115 	struct resync_pages *rps;
116 
117 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
118 	if (!r1_bio)
119 		return NULL;
120 
121 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
122 			    gfp_flags);
123 	if (!rps)
124 		goto out_free_r1bio;
125 
126 	/*
127 	 * Allocate bios : 1 for reading, n-1 for writing
128 	 */
129 	for (j = pi->raid_disks ; j-- ; ) {
130 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
131 		if (!bio)
132 			goto out_free_bio;
133 		r1_bio->bios[j] = bio;
134 	}
135 	/*
136 	 * Allocate RESYNC_PAGES data pages and attach them to
137 	 * the first bio.
138 	 * If this is a user-requested check/repair, allocate
139 	 * RESYNC_PAGES for each bio.
140 	 */
141 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
142 		need_pages = pi->raid_disks;
143 	else
144 		need_pages = 1;
145 	for (j = 0; j < pi->raid_disks; j++) {
146 		struct resync_pages *rp = &rps[j];
147 
148 		bio = r1_bio->bios[j];
149 
150 		if (j < need_pages) {
151 			if (resync_alloc_pages(rp, gfp_flags))
152 				goto out_free_pages;
153 		} else {
154 			memcpy(rp, &rps[0], sizeof(*rp));
155 			resync_get_all_pages(rp);
156 		}
157 
158 		rp->raid_bio = r1_bio;
159 		bio->bi_private = rp;
160 	}
161 
162 	r1_bio->master_bio = NULL;
163 
164 	return r1_bio;
165 
166 out_free_pages:
167 	while (--j >= 0)
168 		resync_free_pages(&rps[j]);
169 
170 out_free_bio:
171 	while (++j < pi->raid_disks)
172 		bio_put(r1_bio->bios[j]);
173 	kfree(rps);
174 
175 out_free_r1bio:
176 	r1bio_pool_free(r1_bio, data);
177 	return NULL;
178 }
179 
180 static void r1buf_pool_free(void *__r1_bio, void *data)
181 {
182 	struct pool_info *pi = data;
183 	int i;
184 	struct r1bio *r1bio = __r1_bio;
185 	struct resync_pages *rp = NULL;
186 
187 	for (i = pi->raid_disks; i--; ) {
188 		rp = get_resync_pages(r1bio->bios[i]);
189 		resync_free_pages(rp);
190 		bio_put(r1bio->bios[i]);
191 	}
192 
193 	/* resync pages array stored in the 1st bio's .bi_private */
194 	kfree(rp);
195 
196 	r1bio_pool_free(r1bio, data);
197 }
198 
199 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
200 {
201 	int i;
202 
203 	for (i = 0; i < conf->raid_disks * 2; i++) {
204 		struct bio **bio = r1_bio->bios + i;
205 		if (!BIO_SPECIAL(*bio))
206 			bio_put(*bio);
207 		*bio = NULL;
208 	}
209 }
210 
211 static void free_r1bio(struct r1bio *r1_bio)
212 {
213 	struct r1conf *conf = r1_bio->mddev->private;
214 
215 	put_all_bios(conf, r1_bio);
216 	mempool_free(r1_bio, &conf->r1bio_pool);
217 }
218 
219 static void put_buf(struct r1bio *r1_bio)
220 {
221 	struct r1conf *conf = r1_bio->mddev->private;
222 	sector_t sect = r1_bio->sector;
223 	int i;
224 
225 	for (i = 0; i < conf->raid_disks * 2; i++) {
226 		struct bio *bio = r1_bio->bios[i];
227 		if (bio->bi_end_io)
228 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
229 	}
230 
231 	mempool_free(r1_bio, &conf->r1buf_pool);
232 
233 	lower_barrier(conf, sect);
234 }
235 
236 static void reschedule_retry(struct r1bio *r1_bio)
237 {
238 	unsigned long flags;
239 	struct mddev *mddev = r1_bio->mddev;
240 	struct r1conf *conf = mddev->private;
241 	int idx;
242 
243 	idx = sector_to_idx(r1_bio->sector);
244 	spin_lock_irqsave(&conf->device_lock, flags);
245 	list_add(&r1_bio->retry_list, &conf->retry_list);
246 	atomic_inc(&conf->nr_queued[idx]);
247 	spin_unlock_irqrestore(&conf->device_lock, flags);
248 
249 	wake_up(&conf->wait_barrier);
250 	md_wakeup_thread(mddev->thread);
251 }
252 
253 /*
254  * raid_end_bio_io() is called when we have finished servicing a mirrored
255  * operation and are ready to return a success/failure code to the buffer
256  * cache layer.
257  */
258 static void call_bio_endio(struct r1bio *r1_bio)
259 {
260 	struct bio *bio = r1_bio->master_bio;
261 	struct r1conf *conf = r1_bio->mddev->private;
262 
263 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
264 		bio->bi_status = BLK_STS_IOERR;
265 
266 	bio_endio(bio);
267 	/*
268 	 * Wake up any possible resync thread that waits for the device
269 	 * to go idle.
270 	 */
271 	allow_barrier(conf, r1_bio->sector);
272 }
273 
274 static void raid_end_bio_io(struct r1bio *r1_bio)
275 {
276 	struct bio *bio = r1_bio->master_bio;
277 
278 	/* if nobody has done the final endio yet, do it now */
279 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
280 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
281 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
282 			 (unsigned long long) bio->bi_iter.bi_sector,
283 			 (unsigned long long) bio_end_sector(bio) - 1);
284 
285 		call_bio_endio(r1_bio);
286 	}
287 	free_r1bio(r1_bio);
288 }
289 
290 /*
291  * Update disk head position estimator based on IRQ completion info.
292  */
293 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
294 {
295 	struct r1conf *conf = r1_bio->mddev->private;
296 
297 	conf->mirrors[disk].head_position =
298 		r1_bio->sector + (r1_bio->sectors);
299 }
300 
301 /*
302  * Find the disk number which triggered given bio
303  */
304 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
305 {
306 	int mirror;
307 	struct r1conf *conf = r1_bio->mddev->private;
308 	int raid_disks = conf->raid_disks;
309 
310 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
311 		if (r1_bio->bios[mirror] == bio)
312 			break;
313 
314 	BUG_ON(mirror == raid_disks * 2);
315 	update_head_pos(mirror, r1_bio);
316 
317 	return mirror;
318 }
319 
320 static void raid1_end_read_request(struct bio *bio)
321 {
322 	int uptodate = !bio->bi_status;
323 	struct r1bio *r1_bio = bio->bi_private;
324 	struct r1conf *conf = r1_bio->mddev->private;
325 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
326 
327 	/*
328 	 * this branch is our 'one mirror IO has finished' event handler:
329 	 */
330 	update_head_pos(r1_bio->read_disk, r1_bio);
331 
332 	if (uptodate)
333 		set_bit(R1BIO_Uptodate, &r1_bio->state);
334 	else if (test_bit(FailFast, &rdev->flags) &&
335 		 test_bit(R1BIO_FailFast, &r1_bio->state))
336 		/* This was a fail-fast read so we definitely
337 		 * want to retry */
338 		;
339 	else {
340 		/* If all other devices have failed, we want to return
341 		 * the error upwards rather than fail the last device.
342 		 * Here we redefine "uptodate" to mean "Don't want to retry"
343 		 */
344 		unsigned long flags;
345 		spin_lock_irqsave(&conf->device_lock, flags);
346 		if (r1_bio->mddev->degraded == conf->raid_disks ||
347 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
348 		     test_bit(In_sync, &rdev->flags)))
349 			uptodate = 1;
350 		spin_unlock_irqrestore(&conf->device_lock, flags);
351 	}
352 
353 	if (uptodate) {
354 		raid_end_bio_io(r1_bio);
355 		rdev_dec_pending(rdev, conf->mddev);
356 	} else {
357 		/*
358 		 * oops, read error:
359 		 */
360 		char b[BDEVNAME_SIZE];
361 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
362 				   mdname(conf->mddev),
363 				   bdevname(rdev->bdev, b),
364 				   (unsigned long long)r1_bio->sector);
365 		set_bit(R1BIO_ReadError, &r1_bio->state);
366 		reschedule_retry(r1_bio);
367 		/* don't drop the reference on read_disk yet */
368 	}
369 }
370 
371 static void close_write(struct r1bio *r1_bio)
372 {
373 	/* it really is the end of this request */
374 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
375 		bio_free_pages(r1_bio->behind_master_bio);
376 		bio_put(r1_bio->behind_master_bio);
377 		r1_bio->behind_master_bio = NULL;
378 	}
379 	/* clear the bitmap if all writes complete successfully */
380 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381 			   r1_bio->sectors,
382 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
383 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
384 	md_write_end(r1_bio->mddev);
385 }
386 
387 static void r1_bio_write_done(struct r1bio *r1_bio)
388 {
389 	if (!atomic_dec_and_test(&r1_bio->remaining))
390 		return;
391 
392 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
393 		reschedule_retry(r1_bio);
394 	else {
395 		close_write(r1_bio);
396 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397 			reschedule_retry(r1_bio);
398 		else
399 			raid_end_bio_io(r1_bio);
400 	}
401 }
402 
403 static void raid1_end_write_request(struct bio *bio)
404 {
405 	struct r1bio *r1_bio = bio->bi_private;
406 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
407 	struct r1conf *conf = r1_bio->mddev->private;
408 	struct bio *to_put = NULL;
409 	int mirror = find_bio_disk(r1_bio, bio);
410 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
411 	bool discard_error;
412 
413 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
414 
415 	/*
416 	 * 'one mirror IO has finished' event handler:
417 	 */
418 	if (bio->bi_status && !discard_error) {
419 		set_bit(WriteErrorSeen,	&rdev->flags);
420 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
421 			set_bit(MD_RECOVERY_NEEDED, &
422 				conf->mddev->recovery);
423 
424 		if (test_bit(FailFast, &rdev->flags) &&
425 		    (bio->bi_opf & MD_FAILFAST) &&
426 		    /* We never try FailFast to WriteMostly devices */
427 		    !test_bit(WriteMostly, &rdev->flags)) {
428 			md_error(r1_bio->mddev, rdev);
429 			if (!test_bit(Faulty, &rdev->flags))
430 				/* This is the only remaining device,
431 				 * We need to retry the write without
432 				 * FailFast
433 				 */
434 				set_bit(R1BIO_WriteError, &r1_bio->state);
435 			else {
436 				/* Finished with this branch */
437 				r1_bio->bios[mirror] = NULL;
438 				to_put = bio;
439 			}
440 		} else
441 			set_bit(R1BIO_WriteError, &r1_bio->state);
442 	} else {
443 		/*
444 		 * Set R1BIO_Uptodate in our master bio, so that we
445 		 * will return a good error code for to the higher
446 		 * levels even if IO on some other mirrored buffer
447 		 * fails.
448 		 *
449 		 * The 'master' represents the composite IO operation
450 		 * to user-side. So if something waits for IO, then it
451 		 * will wait for the 'master' bio.
452 		 */
453 		sector_t first_bad;
454 		int bad_sectors;
455 
456 		r1_bio->bios[mirror] = NULL;
457 		to_put = bio;
458 		/*
459 		 * Do not set R1BIO_Uptodate if the current device is
460 		 * rebuilding or Faulty. This is because we cannot use
461 		 * such device for properly reading the data back (we could
462 		 * potentially use it, if the current write would have felt
463 		 * before rdev->recovery_offset, but for simplicity we don't
464 		 * check this here.
465 		 */
466 		if (test_bit(In_sync, &rdev->flags) &&
467 		    !test_bit(Faulty, &rdev->flags))
468 			set_bit(R1BIO_Uptodate, &r1_bio->state);
469 
470 		/* Maybe we can clear some bad blocks. */
471 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
472 				&first_bad, &bad_sectors) && !discard_error) {
473 			r1_bio->bios[mirror] = IO_MADE_GOOD;
474 			set_bit(R1BIO_MadeGood, &r1_bio->state);
475 		}
476 	}
477 
478 	if (behind) {
479 		if (test_bit(WriteMostly, &rdev->flags))
480 			atomic_dec(&r1_bio->behind_remaining);
481 
482 		/*
483 		 * In behind mode, we ACK the master bio once the I/O
484 		 * has safely reached all non-writemostly
485 		 * disks. Setting the Returned bit ensures that this
486 		 * gets done only once -- we don't ever want to return
487 		 * -EIO here, instead we'll wait
488 		 */
489 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
490 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
491 			/* Maybe we can return now */
492 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
493 				struct bio *mbio = r1_bio->master_bio;
494 				pr_debug("raid1: behind end write sectors"
495 					 " %llu-%llu\n",
496 					 (unsigned long long) mbio->bi_iter.bi_sector,
497 					 (unsigned long long) bio_end_sector(mbio) - 1);
498 				call_bio_endio(r1_bio);
499 			}
500 		}
501 	}
502 	if (r1_bio->bios[mirror] == NULL)
503 		rdev_dec_pending(rdev, conf->mddev);
504 
505 	/*
506 	 * Let's see if all mirrored write operations have finished
507 	 * already.
508 	 */
509 	r1_bio_write_done(r1_bio);
510 
511 	if (to_put)
512 		bio_put(to_put);
513 }
514 
515 static sector_t align_to_barrier_unit_end(sector_t start_sector,
516 					  sector_t sectors)
517 {
518 	sector_t len;
519 
520 	WARN_ON(sectors == 0);
521 	/*
522 	 * len is the number of sectors from start_sector to end of the
523 	 * barrier unit which start_sector belongs to.
524 	 */
525 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
526 	      start_sector;
527 
528 	if (len > sectors)
529 		len = sectors;
530 
531 	return len;
532 }
533 
534 /*
535  * This routine returns the disk from which the requested read should
536  * be done. There is a per-array 'next expected sequential IO' sector
537  * number - if this matches on the next IO then we use the last disk.
538  * There is also a per-disk 'last know head position' sector that is
539  * maintained from IRQ contexts, both the normal and the resync IO
540  * completion handlers update this position correctly. If there is no
541  * perfect sequential match then we pick the disk whose head is closest.
542  *
543  * If there are 2 mirrors in the same 2 devices, performance degrades
544  * because position is mirror, not device based.
545  *
546  * The rdev for the device selected will have nr_pending incremented.
547  */
548 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
549 {
550 	const sector_t this_sector = r1_bio->sector;
551 	int sectors;
552 	int best_good_sectors;
553 	int best_disk, best_dist_disk, best_pending_disk;
554 	int has_nonrot_disk;
555 	int disk;
556 	sector_t best_dist;
557 	unsigned int min_pending;
558 	struct md_rdev *rdev;
559 	int choose_first;
560 	int choose_next_idle;
561 
562 	rcu_read_lock();
563 	/*
564 	 * Check if we can balance. We can balance on the whole
565 	 * device if no resync is going on, or below the resync window.
566 	 * We take the first readable disk when above the resync window.
567 	 */
568  retry:
569 	sectors = r1_bio->sectors;
570 	best_disk = -1;
571 	best_dist_disk = -1;
572 	best_dist = MaxSector;
573 	best_pending_disk = -1;
574 	min_pending = UINT_MAX;
575 	best_good_sectors = 0;
576 	has_nonrot_disk = 0;
577 	choose_next_idle = 0;
578 	clear_bit(R1BIO_FailFast, &r1_bio->state);
579 
580 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
581 	    (mddev_is_clustered(conf->mddev) &&
582 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
583 		    this_sector + sectors)))
584 		choose_first = 1;
585 	else
586 		choose_first = 0;
587 
588 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
589 		sector_t dist;
590 		sector_t first_bad;
591 		int bad_sectors;
592 		unsigned int pending;
593 		bool nonrot;
594 
595 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
596 		if (r1_bio->bios[disk] == IO_BLOCKED
597 		    || rdev == NULL
598 		    || test_bit(Faulty, &rdev->flags))
599 			continue;
600 		if (!test_bit(In_sync, &rdev->flags) &&
601 		    rdev->recovery_offset < this_sector + sectors)
602 			continue;
603 		if (test_bit(WriteMostly, &rdev->flags)) {
604 			/* Don't balance among write-mostly, just
605 			 * use the first as a last resort */
606 			if (best_dist_disk < 0) {
607 				if (is_badblock(rdev, this_sector, sectors,
608 						&first_bad, &bad_sectors)) {
609 					if (first_bad <= this_sector)
610 						/* Cannot use this */
611 						continue;
612 					best_good_sectors = first_bad - this_sector;
613 				} else
614 					best_good_sectors = sectors;
615 				best_dist_disk = disk;
616 				best_pending_disk = disk;
617 			}
618 			continue;
619 		}
620 		/* This is a reasonable device to use.  It might
621 		 * even be best.
622 		 */
623 		if (is_badblock(rdev, this_sector, sectors,
624 				&first_bad, &bad_sectors)) {
625 			if (best_dist < MaxSector)
626 				/* already have a better device */
627 				continue;
628 			if (first_bad <= this_sector) {
629 				/* cannot read here. If this is the 'primary'
630 				 * device, then we must not read beyond
631 				 * bad_sectors from another device..
632 				 */
633 				bad_sectors -= (this_sector - first_bad);
634 				if (choose_first && sectors > bad_sectors)
635 					sectors = bad_sectors;
636 				if (best_good_sectors > sectors)
637 					best_good_sectors = sectors;
638 
639 			} else {
640 				sector_t good_sectors = first_bad - this_sector;
641 				if (good_sectors > best_good_sectors) {
642 					best_good_sectors = good_sectors;
643 					best_disk = disk;
644 				}
645 				if (choose_first)
646 					break;
647 			}
648 			continue;
649 		} else {
650 			if ((sectors > best_good_sectors) && (best_disk >= 0))
651 				best_disk = -1;
652 			best_good_sectors = sectors;
653 		}
654 
655 		if (best_disk >= 0)
656 			/* At least two disks to choose from so failfast is OK */
657 			set_bit(R1BIO_FailFast, &r1_bio->state);
658 
659 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
660 		has_nonrot_disk |= nonrot;
661 		pending = atomic_read(&rdev->nr_pending);
662 		dist = abs(this_sector - conf->mirrors[disk].head_position);
663 		if (choose_first) {
664 			best_disk = disk;
665 			break;
666 		}
667 		/* Don't change to another disk for sequential reads */
668 		if (conf->mirrors[disk].next_seq_sect == this_sector
669 		    || dist == 0) {
670 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
671 			struct raid1_info *mirror = &conf->mirrors[disk];
672 
673 			best_disk = disk;
674 			/*
675 			 * If buffered sequential IO size exceeds optimal
676 			 * iosize, check if there is idle disk. If yes, choose
677 			 * the idle disk. read_balance could already choose an
678 			 * idle disk before noticing it's a sequential IO in
679 			 * this disk. This doesn't matter because this disk
680 			 * will idle, next time it will be utilized after the
681 			 * first disk has IO size exceeds optimal iosize. In
682 			 * this way, iosize of the first disk will be optimal
683 			 * iosize at least. iosize of the second disk might be
684 			 * small, but not a big deal since when the second disk
685 			 * starts IO, the first disk is likely still busy.
686 			 */
687 			if (nonrot && opt_iosize > 0 &&
688 			    mirror->seq_start != MaxSector &&
689 			    mirror->next_seq_sect > opt_iosize &&
690 			    mirror->next_seq_sect - opt_iosize >=
691 			    mirror->seq_start) {
692 				choose_next_idle = 1;
693 				continue;
694 			}
695 			break;
696 		}
697 
698 		if (choose_next_idle)
699 			continue;
700 
701 		if (min_pending > pending) {
702 			min_pending = pending;
703 			best_pending_disk = disk;
704 		}
705 
706 		if (dist < best_dist) {
707 			best_dist = dist;
708 			best_dist_disk = disk;
709 		}
710 	}
711 
712 	/*
713 	 * If all disks are rotational, choose the closest disk. If any disk is
714 	 * non-rotational, choose the disk with less pending request even the
715 	 * disk is rotational, which might/might not be optimal for raids with
716 	 * mixed ratation/non-rotational disks depending on workload.
717 	 */
718 	if (best_disk == -1) {
719 		if (has_nonrot_disk || min_pending == 0)
720 			best_disk = best_pending_disk;
721 		else
722 			best_disk = best_dist_disk;
723 	}
724 
725 	if (best_disk >= 0) {
726 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
727 		if (!rdev)
728 			goto retry;
729 		atomic_inc(&rdev->nr_pending);
730 		sectors = best_good_sectors;
731 
732 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
733 			conf->mirrors[best_disk].seq_start = this_sector;
734 
735 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
736 	}
737 	rcu_read_unlock();
738 	*max_sectors = sectors;
739 
740 	return best_disk;
741 }
742 
743 static int raid1_congested(struct mddev *mddev, int bits)
744 {
745 	struct r1conf *conf = mddev->private;
746 	int i, ret = 0;
747 
748 	if ((bits & (1 << WB_async_congested)) &&
749 	    conf->pending_count >= max_queued_requests)
750 		return 1;
751 
752 	rcu_read_lock();
753 	for (i = 0; i < conf->raid_disks * 2; i++) {
754 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
755 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
756 			struct request_queue *q = bdev_get_queue(rdev->bdev);
757 
758 			BUG_ON(!q);
759 
760 			/* Note the '|| 1' - when read_balance prefers
761 			 * non-congested targets, it can be removed
762 			 */
763 			if ((bits & (1 << WB_async_congested)) || 1)
764 				ret |= bdi_congested(q->backing_dev_info, bits);
765 			else
766 				ret &= bdi_congested(q->backing_dev_info, bits);
767 		}
768 	}
769 	rcu_read_unlock();
770 	return ret;
771 }
772 
773 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
774 {
775 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
776 	md_bitmap_unplug(conf->mddev->bitmap);
777 	wake_up(&conf->wait_barrier);
778 
779 	while (bio) { /* submit pending writes */
780 		struct bio *next = bio->bi_next;
781 		struct md_rdev *rdev = (void *)bio->bi_disk;
782 		bio->bi_next = NULL;
783 		bio_set_dev(bio, rdev->bdev);
784 		if (test_bit(Faulty, &rdev->flags)) {
785 			bio_io_error(bio);
786 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
787 				    !blk_queue_discard(bio->bi_disk->queue)))
788 			/* Just ignore it */
789 			bio_endio(bio);
790 		else
791 			generic_make_request(bio);
792 		bio = next;
793 	}
794 }
795 
796 static void flush_pending_writes(struct r1conf *conf)
797 {
798 	/* Any writes that have been queued but are awaiting
799 	 * bitmap updates get flushed here.
800 	 */
801 	spin_lock_irq(&conf->device_lock);
802 
803 	if (conf->pending_bio_list.head) {
804 		struct blk_plug plug;
805 		struct bio *bio;
806 
807 		bio = bio_list_get(&conf->pending_bio_list);
808 		conf->pending_count = 0;
809 		spin_unlock_irq(&conf->device_lock);
810 
811 		/*
812 		 * As this is called in a wait_event() loop (see freeze_array),
813 		 * current->state might be TASK_UNINTERRUPTIBLE which will
814 		 * cause a warning when we prepare to wait again.  As it is
815 		 * rare that this path is taken, it is perfectly safe to force
816 		 * us to go around the wait_event() loop again, so the warning
817 		 * is a false-positive.  Silence the warning by resetting
818 		 * thread state
819 		 */
820 		__set_current_state(TASK_RUNNING);
821 		blk_start_plug(&plug);
822 		flush_bio_list(conf, bio);
823 		blk_finish_plug(&plug);
824 	} else
825 		spin_unlock_irq(&conf->device_lock);
826 }
827 
828 /* Barriers....
829  * Sometimes we need to suspend IO while we do something else,
830  * either some resync/recovery, or reconfigure the array.
831  * To do this we raise a 'barrier'.
832  * The 'barrier' is a counter that can be raised multiple times
833  * to count how many activities are happening which preclude
834  * normal IO.
835  * We can only raise the barrier if there is no pending IO.
836  * i.e. if nr_pending == 0.
837  * We choose only to raise the barrier if no-one is waiting for the
838  * barrier to go down.  This means that as soon as an IO request
839  * is ready, no other operations which require a barrier will start
840  * until the IO request has had a chance.
841  *
842  * So: regular IO calls 'wait_barrier'.  When that returns there
843  *    is no backgroup IO happening,  It must arrange to call
844  *    allow_barrier when it has finished its IO.
845  * backgroup IO calls must call raise_barrier.  Once that returns
846  *    there is no normal IO happeing.  It must arrange to call
847  *    lower_barrier when the particular background IO completes.
848  */
849 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
850 {
851 	int idx = sector_to_idx(sector_nr);
852 
853 	spin_lock_irq(&conf->resync_lock);
854 
855 	/* Wait until no block IO is waiting */
856 	wait_event_lock_irq(conf->wait_barrier,
857 			    !atomic_read(&conf->nr_waiting[idx]),
858 			    conf->resync_lock);
859 
860 	/* block any new IO from starting */
861 	atomic_inc(&conf->barrier[idx]);
862 	/*
863 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
864 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
865 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
866 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
867 	 * be fetched before conf->barrier[idx] is increased. Otherwise
868 	 * there will be a race between raise_barrier() and _wait_barrier().
869 	 */
870 	smp_mb__after_atomic();
871 
872 	/* For these conditions we must wait:
873 	 * A: while the array is in frozen state
874 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
875 	 *    existing in corresponding I/O barrier bucket.
876 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
877 	 *    max resync count which allowed on current I/O barrier bucket.
878 	 */
879 	wait_event_lock_irq(conf->wait_barrier,
880 			    (!conf->array_frozen &&
881 			     !atomic_read(&conf->nr_pending[idx]) &&
882 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
883 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
884 			    conf->resync_lock);
885 
886 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
887 		atomic_dec(&conf->barrier[idx]);
888 		spin_unlock_irq(&conf->resync_lock);
889 		wake_up(&conf->wait_barrier);
890 		return -EINTR;
891 	}
892 
893 	atomic_inc(&conf->nr_sync_pending);
894 	spin_unlock_irq(&conf->resync_lock);
895 
896 	return 0;
897 }
898 
899 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
900 {
901 	int idx = sector_to_idx(sector_nr);
902 
903 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
904 
905 	atomic_dec(&conf->barrier[idx]);
906 	atomic_dec(&conf->nr_sync_pending);
907 	wake_up(&conf->wait_barrier);
908 }
909 
910 static void _wait_barrier(struct r1conf *conf, int idx)
911 {
912 	/*
913 	 * We need to increase conf->nr_pending[idx] very early here,
914 	 * then raise_barrier() can be blocked when it waits for
915 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
916 	 * conf->resync_lock when there is no barrier raised in same
917 	 * barrier unit bucket. Also if the array is frozen, I/O
918 	 * should be blocked until array is unfrozen.
919 	 */
920 	atomic_inc(&conf->nr_pending[idx]);
921 	/*
922 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
923 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
924 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
925 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
926 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
927 	 * will be a race between _wait_barrier() and raise_barrier().
928 	 */
929 	smp_mb__after_atomic();
930 
931 	/*
932 	 * Don't worry about checking two atomic_t variables at same time
933 	 * here. If during we check conf->barrier[idx], the array is
934 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
935 	 * 0, it is safe to return and make the I/O continue. Because the
936 	 * array is frozen, all I/O returned here will eventually complete
937 	 * or be queued, no race will happen. See code comment in
938 	 * frozen_array().
939 	 */
940 	if (!READ_ONCE(conf->array_frozen) &&
941 	    !atomic_read(&conf->barrier[idx]))
942 		return;
943 
944 	/*
945 	 * After holding conf->resync_lock, conf->nr_pending[idx]
946 	 * should be decreased before waiting for barrier to drop.
947 	 * Otherwise, we may encounter a race condition because
948 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
949 	 * to be 0 at same time.
950 	 */
951 	spin_lock_irq(&conf->resync_lock);
952 	atomic_inc(&conf->nr_waiting[idx]);
953 	atomic_dec(&conf->nr_pending[idx]);
954 	/*
955 	 * In case freeze_array() is waiting for
956 	 * get_unqueued_pending() == extra
957 	 */
958 	wake_up(&conf->wait_barrier);
959 	/* Wait for the barrier in same barrier unit bucket to drop. */
960 	wait_event_lock_irq(conf->wait_barrier,
961 			    !conf->array_frozen &&
962 			     !atomic_read(&conf->barrier[idx]),
963 			    conf->resync_lock);
964 	atomic_inc(&conf->nr_pending[idx]);
965 	atomic_dec(&conf->nr_waiting[idx]);
966 	spin_unlock_irq(&conf->resync_lock);
967 }
968 
969 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
970 {
971 	int idx = sector_to_idx(sector_nr);
972 
973 	/*
974 	 * Very similar to _wait_barrier(). The difference is, for read
975 	 * I/O we don't need wait for sync I/O, but if the whole array
976 	 * is frozen, the read I/O still has to wait until the array is
977 	 * unfrozen. Since there is no ordering requirement with
978 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
979 	 */
980 	atomic_inc(&conf->nr_pending[idx]);
981 
982 	if (!READ_ONCE(conf->array_frozen))
983 		return;
984 
985 	spin_lock_irq(&conf->resync_lock);
986 	atomic_inc(&conf->nr_waiting[idx]);
987 	atomic_dec(&conf->nr_pending[idx]);
988 	/*
989 	 * In case freeze_array() is waiting for
990 	 * get_unqueued_pending() == extra
991 	 */
992 	wake_up(&conf->wait_barrier);
993 	/* Wait for array to be unfrozen */
994 	wait_event_lock_irq(conf->wait_barrier,
995 			    !conf->array_frozen,
996 			    conf->resync_lock);
997 	atomic_inc(&conf->nr_pending[idx]);
998 	atomic_dec(&conf->nr_waiting[idx]);
999 	spin_unlock_irq(&conf->resync_lock);
1000 }
1001 
1002 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1003 {
1004 	int idx = sector_to_idx(sector_nr);
1005 
1006 	_wait_barrier(conf, idx);
1007 }
1008 
1009 static void _allow_barrier(struct r1conf *conf, int idx)
1010 {
1011 	atomic_dec(&conf->nr_pending[idx]);
1012 	wake_up(&conf->wait_barrier);
1013 }
1014 
1015 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1016 {
1017 	int idx = sector_to_idx(sector_nr);
1018 
1019 	_allow_barrier(conf, idx);
1020 }
1021 
1022 /* conf->resync_lock should be held */
1023 static int get_unqueued_pending(struct r1conf *conf)
1024 {
1025 	int idx, ret;
1026 
1027 	ret = atomic_read(&conf->nr_sync_pending);
1028 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1029 		ret += atomic_read(&conf->nr_pending[idx]) -
1030 			atomic_read(&conf->nr_queued[idx]);
1031 
1032 	return ret;
1033 }
1034 
1035 static void freeze_array(struct r1conf *conf, int extra)
1036 {
1037 	/* Stop sync I/O and normal I/O and wait for everything to
1038 	 * go quiet.
1039 	 * This is called in two situations:
1040 	 * 1) management command handlers (reshape, remove disk, quiesce).
1041 	 * 2) one normal I/O request failed.
1042 
1043 	 * After array_frozen is set to 1, new sync IO will be blocked at
1044 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1045 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1046 	 * queued. When everything goes quite, there are only queued I/Os left.
1047 
1048 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1049 	 * barrier bucket index which this I/O request hits. When all sync and
1050 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1051 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1052 	 * in handle_read_error(), we may call freeze_array() before trying to
1053 	 * fix the read error. In this case, the error read I/O is not queued,
1054 	 * so get_unqueued_pending() == 1.
1055 	 *
1056 	 * Therefore before this function returns, we need to wait until
1057 	 * get_unqueued_pendings(conf) gets equal to extra. For
1058 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1059 	 */
1060 	spin_lock_irq(&conf->resync_lock);
1061 	conf->array_frozen = 1;
1062 	raid1_log(conf->mddev, "wait freeze");
1063 	wait_event_lock_irq_cmd(
1064 		conf->wait_barrier,
1065 		get_unqueued_pending(conf) == extra,
1066 		conf->resync_lock,
1067 		flush_pending_writes(conf));
1068 	spin_unlock_irq(&conf->resync_lock);
1069 }
1070 static void unfreeze_array(struct r1conf *conf)
1071 {
1072 	/* reverse the effect of the freeze */
1073 	spin_lock_irq(&conf->resync_lock);
1074 	conf->array_frozen = 0;
1075 	spin_unlock_irq(&conf->resync_lock);
1076 	wake_up(&conf->wait_barrier);
1077 }
1078 
1079 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1080 					   struct bio *bio)
1081 {
1082 	int size = bio->bi_iter.bi_size;
1083 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1084 	int i = 0;
1085 	struct bio *behind_bio = NULL;
1086 
1087 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1088 	if (!behind_bio)
1089 		return;
1090 
1091 	/* discard op, we don't support writezero/writesame yet */
1092 	if (!bio_has_data(bio)) {
1093 		behind_bio->bi_iter.bi_size = size;
1094 		goto skip_copy;
1095 	}
1096 
1097 	behind_bio->bi_write_hint = bio->bi_write_hint;
1098 
1099 	while (i < vcnt && size) {
1100 		struct page *page;
1101 		int len = min_t(int, PAGE_SIZE, size);
1102 
1103 		page = alloc_page(GFP_NOIO);
1104 		if (unlikely(!page))
1105 			goto free_pages;
1106 
1107 		bio_add_page(behind_bio, page, len, 0);
1108 
1109 		size -= len;
1110 		i++;
1111 	}
1112 
1113 	bio_copy_data(behind_bio, bio);
1114 skip_copy:
1115 	r1_bio->behind_master_bio = behind_bio;
1116 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1117 
1118 	return;
1119 
1120 free_pages:
1121 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1122 		 bio->bi_iter.bi_size);
1123 	bio_free_pages(behind_bio);
1124 	bio_put(behind_bio);
1125 }
1126 
1127 struct raid1_plug_cb {
1128 	struct blk_plug_cb	cb;
1129 	struct bio_list		pending;
1130 	int			pending_cnt;
1131 };
1132 
1133 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1134 {
1135 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1136 						  cb);
1137 	struct mddev *mddev = plug->cb.data;
1138 	struct r1conf *conf = mddev->private;
1139 	struct bio *bio;
1140 
1141 	if (from_schedule || current->bio_list) {
1142 		spin_lock_irq(&conf->device_lock);
1143 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1144 		conf->pending_count += plug->pending_cnt;
1145 		spin_unlock_irq(&conf->device_lock);
1146 		wake_up(&conf->wait_barrier);
1147 		md_wakeup_thread(mddev->thread);
1148 		kfree(plug);
1149 		return;
1150 	}
1151 
1152 	/* we aren't scheduling, so we can do the write-out directly. */
1153 	bio = bio_list_get(&plug->pending);
1154 	flush_bio_list(conf, bio);
1155 	kfree(plug);
1156 }
1157 
1158 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1159 {
1160 	r1_bio->master_bio = bio;
1161 	r1_bio->sectors = bio_sectors(bio);
1162 	r1_bio->state = 0;
1163 	r1_bio->mddev = mddev;
1164 	r1_bio->sector = bio->bi_iter.bi_sector;
1165 }
1166 
1167 static inline struct r1bio *
1168 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1169 {
1170 	struct r1conf *conf = mddev->private;
1171 	struct r1bio *r1_bio;
1172 
1173 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1174 	/* Ensure no bio records IO_BLOCKED */
1175 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1176 	init_r1bio(r1_bio, mddev, bio);
1177 	return r1_bio;
1178 }
1179 
1180 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1181 			       int max_read_sectors, struct r1bio *r1_bio)
1182 {
1183 	struct r1conf *conf = mddev->private;
1184 	struct raid1_info *mirror;
1185 	struct bio *read_bio;
1186 	struct bitmap *bitmap = mddev->bitmap;
1187 	const int op = bio_op(bio);
1188 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1189 	int max_sectors;
1190 	int rdisk;
1191 	bool print_msg = !!r1_bio;
1192 	char b[BDEVNAME_SIZE];
1193 
1194 	/*
1195 	 * If r1_bio is set, we are blocking the raid1d thread
1196 	 * so there is a tiny risk of deadlock.  So ask for
1197 	 * emergency memory if needed.
1198 	 */
1199 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1200 
1201 	if (print_msg) {
1202 		/* Need to get the block device name carefully */
1203 		struct md_rdev *rdev;
1204 		rcu_read_lock();
1205 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1206 		if (rdev)
1207 			bdevname(rdev->bdev, b);
1208 		else
1209 			strcpy(b, "???");
1210 		rcu_read_unlock();
1211 	}
1212 
1213 	/*
1214 	 * Still need barrier for READ in case that whole
1215 	 * array is frozen.
1216 	 */
1217 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1218 
1219 	if (!r1_bio)
1220 		r1_bio = alloc_r1bio(mddev, bio);
1221 	else
1222 		init_r1bio(r1_bio, mddev, bio);
1223 	r1_bio->sectors = max_read_sectors;
1224 
1225 	/*
1226 	 * make_request() can abort the operation when read-ahead is being
1227 	 * used and no empty request is available.
1228 	 */
1229 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1230 
1231 	if (rdisk < 0) {
1232 		/* couldn't find anywhere to read from */
1233 		if (print_msg) {
1234 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1235 					    mdname(mddev),
1236 					    b,
1237 					    (unsigned long long)r1_bio->sector);
1238 		}
1239 		raid_end_bio_io(r1_bio);
1240 		return;
1241 	}
1242 	mirror = conf->mirrors + rdisk;
1243 
1244 	if (print_msg)
1245 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1246 				    mdname(mddev),
1247 				    (unsigned long long)r1_bio->sector,
1248 				    bdevname(mirror->rdev->bdev, b));
1249 
1250 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1251 	    bitmap) {
1252 		/*
1253 		 * Reading from a write-mostly device must take care not to
1254 		 * over-take any writes that are 'behind'
1255 		 */
1256 		raid1_log(mddev, "wait behind writes");
1257 		wait_event(bitmap->behind_wait,
1258 			   atomic_read(&bitmap->behind_writes) == 0);
1259 	}
1260 
1261 	if (max_sectors < bio_sectors(bio)) {
1262 		struct bio *split = bio_split(bio, max_sectors,
1263 					      gfp, &conf->bio_split);
1264 		bio_chain(split, bio);
1265 		generic_make_request(bio);
1266 		bio = split;
1267 		r1_bio->master_bio = bio;
1268 		r1_bio->sectors = max_sectors;
1269 	}
1270 
1271 	r1_bio->read_disk = rdisk;
1272 
1273 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1274 
1275 	r1_bio->bios[rdisk] = read_bio;
1276 
1277 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1278 		mirror->rdev->data_offset;
1279 	bio_set_dev(read_bio, mirror->rdev->bdev);
1280 	read_bio->bi_end_io = raid1_end_read_request;
1281 	bio_set_op_attrs(read_bio, op, do_sync);
1282 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1283 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1284 	        read_bio->bi_opf |= MD_FAILFAST;
1285 	read_bio->bi_private = r1_bio;
1286 
1287 	if (mddev->gendisk)
1288 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1289 				disk_devt(mddev->gendisk), r1_bio->sector);
1290 
1291 	generic_make_request(read_bio);
1292 }
1293 
1294 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1295 				int max_write_sectors)
1296 {
1297 	struct r1conf *conf = mddev->private;
1298 	struct r1bio *r1_bio;
1299 	int i, disks;
1300 	struct bitmap *bitmap = mddev->bitmap;
1301 	unsigned long flags;
1302 	struct md_rdev *blocked_rdev;
1303 	struct blk_plug_cb *cb;
1304 	struct raid1_plug_cb *plug = NULL;
1305 	int first_clone;
1306 	int max_sectors;
1307 
1308 	if (mddev_is_clustered(mddev) &&
1309 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1310 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1311 
1312 		DEFINE_WAIT(w);
1313 		for (;;) {
1314 			prepare_to_wait(&conf->wait_barrier,
1315 					&w, TASK_IDLE);
1316 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1317 							bio->bi_iter.bi_sector,
1318 							bio_end_sector(bio)))
1319 				break;
1320 			schedule();
1321 		}
1322 		finish_wait(&conf->wait_barrier, &w);
1323 	}
1324 
1325 	/*
1326 	 * Register the new request and wait if the reconstruction
1327 	 * thread has put up a bar for new requests.
1328 	 * Continue immediately if no resync is active currently.
1329 	 */
1330 	wait_barrier(conf, bio->bi_iter.bi_sector);
1331 
1332 	r1_bio = alloc_r1bio(mddev, bio);
1333 	r1_bio->sectors = max_write_sectors;
1334 
1335 	if (conf->pending_count >= max_queued_requests) {
1336 		md_wakeup_thread(mddev->thread);
1337 		raid1_log(mddev, "wait queued");
1338 		wait_event(conf->wait_barrier,
1339 			   conf->pending_count < max_queued_requests);
1340 	}
1341 	/* first select target devices under rcu_lock and
1342 	 * inc refcount on their rdev.  Record them by setting
1343 	 * bios[x] to bio
1344 	 * If there are known/acknowledged bad blocks on any device on
1345 	 * which we have seen a write error, we want to avoid writing those
1346 	 * blocks.
1347 	 * This potentially requires several writes to write around
1348 	 * the bad blocks.  Each set of writes gets it's own r1bio
1349 	 * with a set of bios attached.
1350 	 */
1351 
1352 	disks = conf->raid_disks * 2;
1353  retry_write:
1354 	blocked_rdev = NULL;
1355 	rcu_read_lock();
1356 	max_sectors = r1_bio->sectors;
1357 	for (i = 0;  i < disks; i++) {
1358 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1359 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1360 			atomic_inc(&rdev->nr_pending);
1361 			blocked_rdev = rdev;
1362 			break;
1363 		}
1364 		r1_bio->bios[i] = NULL;
1365 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1366 			if (i < conf->raid_disks)
1367 				set_bit(R1BIO_Degraded, &r1_bio->state);
1368 			continue;
1369 		}
1370 
1371 		atomic_inc(&rdev->nr_pending);
1372 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1373 			sector_t first_bad;
1374 			int bad_sectors;
1375 			int is_bad;
1376 
1377 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1378 					     &first_bad, &bad_sectors);
1379 			if (is_bad < 0) {
1380 				/* mustn't write here until the bad block is
1381 				 * acknowledged*/
1382 				set_bit(BlockedBadBlocks, &rdev->flags);
1383 				blocked_rdev = rdev;
1384 				break;
1385 			}
1386 			if (is_bad && first_bad <= r1_bio->sector) {
1387 				/* Cannot write here at all */
1388 				bad_sectors -= (r1_bio->sector - first_bad);
1389 				if (bad_sectors < max_sectors)
1390 					/* mustn't write more than bad_sectors
1391 					 * to other devices yet
1392 					 */
1393 					max_sectors = bad_sectors;
1394 				rdev_dec_pending(rdev, mddev);
1395 				/* We don't set R1BIO_Degraded as that
1396 				 * only applies if the disk is
1397 				 * missing, so it might be re-added,
1398 				 * and we want to know to recover this
1399 				 * chunk.
1400 				 * In this case the device is here,
1401 				 * and the fact that this chunk is not
1402 				 * in-sync is recorded in the bad
1403 				 * block log
1404 				 */
1405 				continue;
1406 			}
1407 			if (is_bad) {
1408 				int good_sectors = first_bad - r1_bio->sector;
1409 				if (good_sectors < max_sectors)
1410 					max_sectors = good_sectors;
1411 			}
1412 		}
1413 		r1_bio->bios[i] = bio;
1414 	}
1415 	rcu_read_unlock();
1416 
1417 	if (unlikely(blocked_rdev)) {
1418 		/* Wait for this device to become unblocked */
1419 		int j;
1420 
1421 		for (j = 0; j < i; j++)
1422 			if (r1_bio->bios[j])
1423 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1424 		r1_bio->state = 0;
1425 		allow_barrier(conf, bio->bi_iter.bi_sector);
1426 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1427 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1428 		wait_barrier(conf, bio->bi_iter.bi_sector);
1429 		goto retry_write;
1430 	}
1431 
1432 	if (max_sectors < bio_sectors(bio)) {
1433 		struct bio *split = bio_split(bio, max_sectors,
1434 					      GFP_NOIO, &conf->bio_split);
1435 		bio_chain(split, bio);
1436 		generic_make_request(bio);
1437 		bio = split;
1438 		r1_bio->master_bio = bio;
1439 		r1_bio->sectors = max_sectors;
1440 	}
1441 
1442 	atomic_set(&r1_bio->remaining, 1);
1443 	atomic_set(&r1_bio->behind_remaining, 0);
1444 
1445 	first_clone = 1;
1446 
1447 	for (i = 0; i < disks; i++) {
1448 		struct bio *mbio = NULL;
1449 		if (!r1_bio->bios[i])
1450 			continue;
1451 
1452 
1453 		if (first_clone) {
1454 			/* do behind I/O ?
1455 			 * Not if there are too many, or cannot
1456 			 * allocate memory, or a reader on WriteMostly
1457 			 * is waiting for behind writes to flush */
1458 			if (bitmap &&
1459 			    (atomic_read(&bitmap->behind_writes)
1460 			     < mddev->bitmap_info.max_write_behind) &&
1461 			    !waitqueue_active(&bitmap->behind_wait)) {
1462 				alloc_behind_master_bio(r1_bio, bio);
1463 			}
1464 
1465 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1466 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1467 			first_clone = 0;
1468 		}
1469 
1470 		if (r1_bio->behind_master_bio)
1471 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1472 					      GFP_NOIO, &mddev->bio_set);
1473 		else
1474 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1475 
1476 		if (r1_bio->behind_master_bio) {
1477 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1478 				atomic_inc(&r1_bio->behind_remaining);
1479 		}
1480 
1481 		r1_bio->bios[i] = mbio;
1482 
1483 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1484 				   conf->mirrors[i].rdev->data_offset);
1485 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1486 		mbio->bi_end_io	= raid1_end_write_request;
1487 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1488 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1489 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1490 		    conf->raid_disks - mddev->degraded > 1)
1491 			mbio->bi_opf |= MD_FAILFAST;
1492 		mbio->bi_private = r1_bio;
1493 
1494 		atomic_inc(&r1_bio->remaining);
1495 
1496 		if (mddev->gendisk)
1497 			trace_block_bio_remap(mbio->bi_disk->queue,
1498 					      mbio, disk_devt(mddev->gendisk),
1499 					      r1_bio->sector);
1500 		/* flush_pending_writes() needs access to the rdev so...*/
1501 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1502 
1503 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1504 		if (cb)
1505 			plug = container_of(cb, struct raid1_plug_cb, cb);
1506 		else
1507 			plug = NULL;
1508 		if (plug) {
1509 			bio_list_add(&plug->pending, mbio);
1510 			plug->pending_cnt++;
1511 		} else {
1512 			spin_lock_irqsave(&conf->device_lock, flags);
1513 			bio_list_add(&conf->pending_bio_list, mbio);
1514 			conf->pending_count++;
1515 			spin_unlock_irqrestore(&conf->device_lock, flags);
1516 			md_wakeup_thread(mddev->thread);
1517 		}
1518 	}
1519 
1520 	r1_bio_write_done(r1_bio);
1521 
1522 	/* In case raid1d snuck in to freeze_array */
1523 	wake_up(&conf->wait_barrier);
1524 }
1525 
1526 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1527 {
1528 	sector_t sectors;
1529 
1530 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1531 		md_flush_request(mddev, bio);
1532 		return true;
1533 	}
1534 
1535 	/*
1536 	 * There is a limit to the maximum size, but
1537 	 * the read/write handler might find a lower limit
1538 	 * due to bad blocks.  To avoid multiple splits,
1539 	 * we pass the maximum number of sectors down
1540 	 * and let the lower level perform the split.
1541 	 */
1542 	sectors = align_to_barrier_unit_end(
1543 		bio->bi_iter.bi_sector, bio_sectors(bio));
1544 
1545 	if (bio_data_dir(bio) == READ)
1546 		raid1_read_request(mddev, bio, sectors, NULL);
1547 	else {
1548 		if (!md_write_start(mddev,bio))
1549 			return false;
1550 		raid1_write_request(mddev, bio, sectors);
1551 	}
1552 	return true;
1553 }
1554 
1555 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1556 {
1557 	struct r1conf *conf = mddev->private;
1558 	int i;
1559 
1560 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1561 		   conf->raid_disks - mddev->degraded);
1562 	rcu_read_lock();
1563 	for (i = 0; i < conf->raid_disks; i++) {
1564 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1565 		seq_printf(seq, "%s",
1566 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1567 	}
1568 	rcu_read_unlock();
1569 	seq_printf(seq, "]");
1570 }
1571 
1572 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1573 {
1574 	char b[BDEVNAME_SIZE];
1575 	struct r1conf *conf = mddev->private;
1576 	unsigned long flags;
1577 
1578 	/*
1579 	 * If it is not operational, then we have already marked it as dead
1580 	 * else if it is the last working disks, ignore the error, let the
1581 	 * next level up know.
1582 	 * else mark the drive as failed
1583 	 */
1584 	spin_lock_irqsave(&conf->device_lock, flags);
1585 	if (test_bit(In_sync, &rdev->flags)
1586 	    && (conf->raid_disks - mddev->degraded) == 1) {
1587 		/*
1588 		 * Don't fail the drive, act as though we were just a
1589 		 * normal single drive.
1590 		 * However don't try a recovery from this drive as
1591 		 * it is very likely to fail.
1592 		 */
1593 		conf->recovery_disabled = mddev->recovery_disabled;
1594 		spin_unlock_irqrestore(&conf->device_lock, flags);
1595 		return;
1596 	}
1597 	set_bit(Blocked, &rdev->flags);
1598 	if (test_and_clear_bit(In_sync, &rdev->flags))
1599 		mddev->degraded++;
1600 	set_bit(Faulty, &rdev->flags);
1601 	spin_unlock_irqrestore(&conf->device_lock, flags);
1602 	/*
1603 	 * if recovery is running, make sure it aborts.
1604 	 */
1605 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1606 	set_mask_bits(&mddev->sb_flags, 0,
1607 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1608 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1609 		"md/raid1:%s: Operation continuing on %d devices.\n",
1610 		mdname(mddev), bdevname(rdev->bdev, b),
1611 		mdname(mddev), conf->raid_disks - mddev->degraded);
1612 }
1613 
1614 static void print_conf(struct r1conf *conf)
1615 {
1616 	int i;
1617 
1618 	pr_debug("RAID1 conf printout:\n");
1619 	if (!conf) {
1620 		pr_debug("(!conf)\n");
1621 		return;
1622 	}
1623 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1624 		 conf->raid_disks);
1625 
1626 	rcu_read_lock();
1627 	for (i = 0; i < conf->raid_disks; i++) {
1628 		char b[BDEVNAME_SIZE];
1629 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1630 		if (rdev)
1631 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1632 				 i, !test_bit(In_sync, &rdev->flags),
1633 				 !test_bit(Faulty, &rdev->flags),
1634 				 bdevname(rdev->bdev,b));
1635 	}
1636 	rcu_read_unlock();
1637 }
1638 
1639 static void close_sync(struct r1conf *conf)
1640 {
1641 	int idx;
1642 
1643 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1644 		_wait_barrier(conf, idx);
1645 		_allow_barrier(conf, idx);
1646 	}
1647 
1648 	mempool_exit(&conf->r1buf_pool);
1649 }
1650 
1651 static int raid1_spare_active(struct mddev *mddev)
1652 {
1653 	int i;
1654 	struct r1conf *conf = mddev->private;
1655 	int count = 0;
1656 	unsigned long flags;
1657 
1658 	/*
1659 	 * Find all failed disks within the RAID1 configuration
1660 	 * and mark them readable.
1661 	 * Called under mddev lock, so rcu protection not needed.
1662 	 * device_lock used to avoid races with raid1_end_read_request
1663 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1664 	 */
1665 	spin_lock_irqsave(&conf->device_lock, flags);
1666 	for (i = 0; i < conf->raid_disks; i++) {
1667 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1668 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1669 		if (repl
1670 		    && !test_bit(Candidate, &repl->flags)
1671 		    && repl->recovery_offset == MaxSector
1672 		    && !test_bit(Faulty, &repl->flags)
1673 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1674 			/* replacement has just become active */
1675 			if (!rdev ||
1676 			    !test_and_clear_bit(In_sync, &rdev->flags))
1677 				count++;
1678 			if (rdev) {
1679 				/* Replaced device not technically
1680 				 * faulty, but we need to be sure
1681 				 * it gets removed and never re-added
1682 				 */
1683 				set_bit(Faulty, &rdev->flags);
1684 				sysfs_notify_dirent_safe(
1685 					rdev->sysfs_state);
1686 			}
1687 		}
1688 		if (rdev
1689 		    && rdev->recovery_offset == MaxSector
1690 		    && !test_bit(Faulty, &rdev->flags)
1691 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1692 			count++;
1693 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1694 		}
1695 	}
1696 	mddev->degraded -= count;
1697 	spin_unlock_irqrestore(&conf->device_lock, flags);
1698 
1699 	print_conf(conf);
1700 	return count;
1701 }
1702 
1703 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1704 {
1705 	struct r1conf *conf = mddev->private;
1706 	int err = -EEXIST;
1707 	int mirror = 0;
1708 	struct raid1_info *p;
1709 	int first = 0;
1710 	int last = conf->raid_disks - 1;
1711 
1712 	if (mddev->recovery_disabled == conf->recovery_disabled)
1713 		return -EBUSY;
1714 
1715 	if (md_integrity_add_rdev(rdev, mddev))
1716 		return -ENXIO;
1717 
1718 	if (rdev->raid_disk >= 0)
1719 		first = last = rdev->raid_disk;
1720 
1721 	/*
1722 	 * find the disk ... but prefer rdev->saved_raid_disk
1723 	 * if possible.
1724 	 */
1725 	if (rdev->saved_raid_disk >= 0 &&
1726 	    rdev->saved_raid_disk >= first &&
1727 	    rdev->saved_raid_disk < conf->raid_disks &&
1728 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1729 		first = last = rdev->saved_raid_disk;
1730 
1731 	for (mirror = first; mirror <= last; mirror++) {
1732 		p = conf->mirrors+mirror;
1733 		if (!p->rdev) {
1734 
1735 			if (mddev->gendisk)
1736 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1737 						  rdev->data_offset << 9);
1738 
1739 			p->head_position = 0;
1740 			rdev->raid_disk = mirror;
1741 			err = 0;
1742 			/* As all devices are equivalent, we don't need a full recovery
1743 			 * if this was recently any drive of the array
1744 			 */
1745 			if (rdev->saved_raid_disk < 0)
1746 				conf->fullsync = 1;
1747 			rcu_assign_pointer(p->rdev, rdev);
1748 			break;
1749 		}
1750 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1751 		    p[conf->raid_disks].rdev == NULL) {
1752 			/* Add this device as a replacement */
1753 			clear_bit(In_sync, &rdev->flags);
1754 			set_bit(Replacement, &rdev->flags);
1755 			rdev->raid_disk = mirror;
1756 			err = 0;
1757 			conf->fullsync = 1;
1758 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1759 			break;
1760 		}
1761 	}
1762 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1763 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1764 	print_conf(conf);
1765 	return err;
1766 }
1767 
1768 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1769 {
1770 	struct r1conf *conf = mddev->private;
1771 	int err = 0;
1772 	int number = rdev->raid_disk;
1773 	struct raid1_info *p = conf->mirrors + number;
1774 
1775 	if (rdev != p->rdev)
1776 		p = conf->mirrors + conf->raid_disks + number;
1777 
1778 	print_conf(conf);
1779 	if (rdev == p->rdev) {
1780 		if (test_bit(In_sync, &rdev->flags) ||
1781 		    atomic_read(&rdev->nr_pending)) {
1782 			err = -EBUSY;
1783 			goto abort;
1784 		}
1785 		/* Only remove non-faulty devices if recovery
1786 		 * is not possible.
1787 		 */
1788 		if (!test_bit(Faulty, &rdev->flags) &&
1789 		    mddev->recovery_disabled != conf->recovery_disabled &&
1790 		    mddev->degraded < conf->raid_disks) {
1791 			err = -EBUSY;
1792 			goto abort;
1793 		}
1794 		p->rdev = NULL;
1795 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1796 			synchronize_rcu();
1797 			if (atomic_read(&rdev->nr_pending)) {
1798 				/* lost the race, try later */
1799 				err = -EBUSY;
1800 				p->rdev = rdev;
1801 				goto abort;
1802 			}
1803 		}
1804 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1805 			/* We just removed a device that is being replaced.
1806 			 * Move down the replacement.  We drain all IO before
1807 			 * doing this to avoid confusion.
1808 			 */
1809 			struct md_rdev *repl =
1810 				conf->mirrors[conf->raid_disks + number].rdev;
1811 			freeze_array(conf, 0);
1812 			if (atomic_read(&repl->nr_pending)) {
1813 				/* It means that some queued IO of retry_list
1814 				 * hold repl. Thus, we cannot set replacement
1815 				 * as NULL, avoiding rdev NULL pointer
1816 				 * dereference in sync_request_write and
1817 				 * handle_write_finished.
1818 				 */
1819 				err = -EBUSY;
1820 				unfreeze_array(conf);
1821 				goto abort;
1822 			}
1823 			clear_bit(Replacement, &repl->flags);
1824 			p->rdev = repl;
1825 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1826 			unfreeze_array(conf);
1827 		}
1828 
1829 		clear_bit(WantReplacement, &rdev->flags);
1830 		err = md_integrity_register(mddev);
1831 	}
1832 abort:
1833 
1834 	print_conf(conf);
1835 	return err;
1836 }
1837 
1838 static void end_sync_read(struct bio *bio)
1839 {
1840 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1841 
1842 	update_head_pos(r1_bio->read_disk, r1_bio);
1843 
1844 	/*
1845 	 * we have read a block, now it needs to be re-written,
1846 	 * or re-read if the read failed.
1847 	 * We don't do much here, just schedule handling by raid1d
1848 	 */
1849 	if (!bio->bi_status)
1850 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1851 
1852 	if (atomic_dec_and_test(&r1_bio->remaining))
1853 		reschedule_retry(r1_bio);
1854 }
1855 
1856 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1857 {
1858 	sector_t sync_blocks = 0;
1859 	sector_t s = r1_bio->sector;
1860 	long sectors_to_go = r1_bio->sectors;
1861 
1862 	/* make sure these bits don't get cleared. */
1863 	do {
1864 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1865 		s += sync_blocks;
1866 		sectors_to_go -= sync_blocks;
1867 	} while (sectors_to_go > 0);
1868 }
1869 
1870 static void end_sync_write(struct bio *bio)
1871 {
1872 	int uptodate = !bio->bi_status;
1873 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1874 	struct mddev *mddev = r1_bio->mddev;
1875 	struct r1conf *conf = mddev->private;
1876 	sector_t first_bad;
1877 	int bad_sectors;
1878 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1879 
1880 	if (!uptodate) {
1881 		abort_sync_write(mddev, r1_bio);
1882 		set_bit(WriteErrorSeen, &rdev->flags);
1883 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1884 			set_bit(MD_RECOVERY_NEEDED, &
1885 				mddev->recovery);
1886 		set_bit(R1BIO_WriteError, &r1_bio->state);
1887 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1888 			       &first_bad, &bad_sectors) &&
1889 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1890 				r1_bio->sector,
1891 				r1_bio->sectors,
1892 				&first_bad, &bad_sectors)
1893 		)
1894 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1895 
1896 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1897 		int s = r1_bio->sectors;
1898 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1899 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1900 			reschedule_retry(r1_bio);
1901 		else {
1902 			put_buf(r1_bio);
1903 			md_done_sync(mddev, s, uptodate);
1904 		}
1905 	}
1906 }
1907 
1908 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1909 			    int sectors, struct page *page, int rw)
1910 {
1911 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1912 		/* success */
1913 		return 1;
1914 	if (rw == WRITE) {
1915 		set_bit(WriteErrorSeen, &rdev->flags);
1916 		if (!test_and_set_bit(WantReplacement,
1917 				      &rdev->flags))
1918 			set_bit(MD_RECOVERY_NEEDED, &
1919 				rdev->mddev->recovery);
1920 	}
1921 	/* need to record an error - either for the block or the device */
1922 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1923 		md_error(rdev->mddev, rdev);
1924 	return 0;
1925 }
1926 
1927 static int fix_sync_read_error(struct r1bio *r1_bio)
1928 {
1929 	/* Try some synchronous reads of other devices to get
1930 	 * good data, much like with normal read errors.  Only
1931 	 * read into the pages we already have so we don't
1932 	 * need to re-issue the read request.
1933 	 * We don't need to freeze the array, because being in an
1934 	 * active sync request, there is no normal IO, and
1935 	 * no overlapping syncs.
1936 	 * We don't need to check is_badblock() again as we
1937 	 * made sure that anything with a bad block in range
1938 	 * will have bi_end_io clear.
1939 	 */
1940 	struct mddev *mddev = r1_bio->mddev;
1941 	struct r1conf *conf = mddev->private;
1942 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1943 	struct page **pages = get_resync_pages(bio)->pages;
1944 	sector_t sect = r1_bio->sector;
1945 	int sectors = r1_bio->sectors;
1946 	int idx = 0;
1947 	struct md_rdev *rdev;
1948 
1949 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1950 	if (test_bit(FailFast, &rdev->flags)) {
1951 		/* Don't try recovering from here - just fail it
1952 		 * ... unless it is the last working device of course */
1953 		md_error(mddev, rdev);
1954 		if (test_bit(Faulty, &rdev->flags))
1955 			/* Don't try to read from here, but make sure
1956 			 * put_buf does it's thing
1957 			 */
1958 			bio->bi_end_io = end_sync_write;
1959 	}
1960 
1961 	while(sectors) {
1962 		int s = sectors;
1963 		int d = r1_bio->read_disk;
1964 		int success = 0;
1965 		int start;
1966 
1967 		if (s > (PAGE_SIZE>>9))
1968 			s = PAGE_SIZE >> 9;
1969 		do {
1970 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1971 				/* No rcu protection needed here devices
1972 				 * can only be removed when no resync is
1973 				 * active, and resync is currently active
1974 				 */
1975 				rdev = conf->mirrors[d].rdev;
1976 				if (sync_page_io(rdev, sect, s<<9,
1977 						 pages[idx],
1978 						 REQ_OP_READ, 0, false)) {
1979 					success = 1;
1980 					break;
1981 				}
1982 			}
1983 			d++;
1984 			if (d == conf->raid_disks * 2)
1985 				d = 0;
1986 		} while (!success && d != r1_bio->read_disk);
1987 
1988 		if (!success) {
1989 			char b[BDEVNAME_SIZE];
1990 			int abort = 0;
1991 			/* Cannot read from anywhere, this block is lost.
1992 			 * Record a bad block on each device.  If that doesn't
1993 			 * work just disable and interrupt the recovery.
1994 			 * Don't fail devices as that won't really help.
1995 			 */
1996 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1997 					    mdname(mddev), bio_devname(bio, b),
1998 					    (unsigned long long)r1_bio->sector);
1999 			for (d = 0; d < conf->raid_disks * 2; d++) {
2000 				rdev = conf->mirrors[d].rdev;
2001 				if (!rdev || test_bit(Faulty, &rdev->flags))
2002 					continue;
2003 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2004 					abort = 1;
2005 			}
2006 			if (abort) {
2007 				conf->recovery_disabled =
2008 					mddev->recovery_disabled;
2009 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2010 				md_done_sync(mddev, r1_bio->sectors, 0);
2011 				put_buf(r1_bio);
2012 				return 0;
2013 			}
2014 			/* Try next page */
2015 			sectors -= s;
2016 			sect += s;
2017 			idx++;
2018 			continue;
2019 		}
2020 
2021 		start = d;
2022 		/* write it back and re-read */
2023 		while (d != r1_bio->read_disk) {
2024 			if (d == 0)
2025 				d = conf->raid_disks * 2;
2026 			d--;
2027 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2028 				continue;
2029 			rdev = conf->mirrors[d].rdev;
2030 			if (r1_sync_page_io(rdev, sect, s,
2031 					    pages[idx],
2032 					    WRITE) == 0) {
2033 				r1_bio->bios[d]->bi_end_io = NULL;
2034 				rdev_dec_pending(rdev, mddev);
2035 			}
2036 		}
2037 		d = start;
2038 		while (d != r1_bio->read_disk) {
2039 			if (d == 0)
2040 				d = conf->raid_disks * 2;
2041 			d--;
2042 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2043 				continue;
2044 			rdev = conf->mirrors[d].rdev;
2045 			if (r1_sync_page_io(rdev, sect, s,
2046 					    pages[idx],
2047 					    READ) != 0)
2048 				atomic_add(s, &rdev->corrected_errors);
2049 		}
2050 		sectors -= s;
2051 		sect += s;
2052 		idx ++;
2053 	}
2054 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2055 	bio->bi_status = 0;
2056 	return 1;
2057 }
2058 
2059 static void process_checks(struct r1bio *r1_bio)
2060 {
2061 	/* We have read all readable devices.  If we haven't
2062 	 * got the block, then there is no hope left.
2063 	 * If we have, then we want to do a comparison
2064 	 * and skip the write if everything is the same.
2065 	 * If any blocks failed to read, then we need to
2066 	 * attempt an over-write
2067 	 */
2068 	struct mddev *mddev = r1_bio->mddev;
2069 	struct r1conf *conf = mddev->private;
2070 	int primary;
2071 	int i;
2072 	int vcnt;
2073 
2074 	/* Fix variable parts of all bios */
2075 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2076 	for (i = 0; i < conf->raid_disks * 2; i++) {
2077 		blk_status_t status;
2078 		struct bio *b = r1_bio->bios[i];
2079 		struct resync_pages *rp = get_resync_pages(b);
2080 		if (b->bi_end_io != end_sync_read)
2081 			continue;
2082 		/* fixup the bio for reuse, but preserve errno */
2083 		status = b->bi_status;
2084 		bio_reset(b);
2085 		b->bi_status = status;
2086 		b->bi_iter.bi_sector = r1_bio->sector +
2087 			conf->mirrors[i].rdev->data_offset;
2088 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2089 		b->bi_end_io = end_sync_read;
2090 		rp->raid_bio = r1_bio;
2091 		b->bi_private = rp;
2092 
2093 		/* initialize bvec table again */
2094 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2095 	}
2096 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2097 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2098 		    !r1_bio->bios[primary]->bi_status) {
2099 			r1_bio->bios[primary]->bi_end_io = NULL;
2100 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2101 			break;
2102 		}
2103 	r1_bio->read_disk = primary;
2104 	for (i = 0; i < conf->raid_disks * 2; i++) {
2105 		int j = 0;
2106 		struct bio *pbio = r1_bio->bios[primary];
2107 		struct bio *sbio = r1_bio->bios[i];
2108 		blk_status_t status = sbio->bi_status;
2109 		struct page **ppages = get_resync_pages(pbio)->pages;
2110 		struct page **spages = get_resync_pages(sbio)->pages;
2111 		struct bio_vec *bi;
2112 		int page_len[RESYNC_PAGES] = { 0 };
2113 		struct bvec_iter_all iter_all;
2114 
2115 		if (sbio->bi_end_io != end_sync_read)
2116 			continue;
2117 		/* Now we can 'fixup' the error value */
2118 		sbio->bi_status = 0;
2119 
2120 		bio_for_each_segment_all(bi, sbio, iter_all)
2121 			page_len[j++] = bi->bv_len;
2122 
2123 		if (!status) {
2124 			for (j = vcnt; j-- ; ) {
2125 				if (memcmp(page_address(ppages[j]),
2126 					   page_address(spages[j]),
2127 					   page_len[j]))
2128 					break;
2129 			}
2130 		} else
2131 			j = 0;
2132 		if (j >= 0)
2133 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2134 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2135 			      && !status)) {
2136 			/* No need to write to this device. */
2137 			sbio->bi_end_io = NULL;
2138 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2139 			continue;
2140 		}
2141 
2142 		bio_copy_data(sbio, pbio);
2143 	}
2144 }
2145 
2146 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2147 {
2148 	struct r1conf *conf = mddev->private;
2149 	int i;
2150 	int disks = conf->raid_disks * 2;
2151 	struct bio *wbio;
2152 
2153 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2154 		/* ouch - failed to read all of that. */
2155 		if (!fix_sync_read_error(r1_bio))
2156 			return;
2157 
2158 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2159 		process_checks(r1_bio);
2160 
2161 	/*
2162 	 * schedule writes
2163 	 */
2164 	atomic_set(&r1_bio->remaining, 1);
2165 	for (i = 0; i < disks ; i++) {
2166 		wbio = r1_bio->bios[i];
2167 		if (wbio->bi_end_io == NULL ||
2168 		    (wbio->bi_end_io == end_sync_read &&
2169 		     (i == r1_bio->read_disk ||
2170 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2171 			continue;
2172 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2173 			abort_sync_write(mddev, r1_bio);
2174 			continue;
2175 		}
2176 
2177 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2178 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2179 			wbio->bi_opf |= MD_FAILFAST;
2180 
2181 		wbio->bi_end_io = end_sync_write;
2182 		atomic_inc(&r1_bio->remaining);
2183 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2184 
2185 		generic_make_request(wbio);
2186 	}
2187 
2188 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2189 		/* if we're here, all write(s) have completed, so clean up */
2190 		int s = r1_bio->sectors;
2191 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2192 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2193 			reschedule_retry(r1_bio);
2194 		else {
2195 			put_buf(r1_bio);
2196 			md_done_sync(mddev, s, 1);
2197 		}
2198 	}
2199 }
2200 
2201 /*
2202  * This is a kernel thread which:
2203  *
2204  *	1.	Retries failed read operations on working mirrors.
2205  *	2.	Updates the raid superblock when problems encounter.
2206  *	3.	Performs writes following reads for array synchronising.
2207  */
2208 
2209 static void fix_read_error(struct r1conf *conf, int read_disk,
2210 			   sector_t sect, int sectors)
2211 {
2212 	struct mddev *mddev = conf->mddev;
2213 	while(sectors) {
2214 		int s = sectors;
2215 		int d = read_disk;
2216 		int success = 0;
2217 		int start;
2218 		struct md_rdev *rdev;
2219 
2220 		if (s > (PAGE_SIZE>>9))
2221 			s = PAGE_SIZE >> 9;
2222 
2223 		do {
2224 			sector_t first_bad;
2225 			int bad_sectors;
2226 
2227 			rcu_read_lock();
2228 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2229 			if (rdev &&
2230 			    (test_bit(In_sync, &rdev->flags) ||
2231 			     (!test_bit(Faulty, &rdev->flags) &&
2232 			      rdev->recovery_offset >= sect + s)) &&
2233 			    is_badblock(rdev, sect, s,
2234 					&first_bad, &bad_sectors) == 0) {
2235 				atomic_inc(&rdev->nr_pending);
2236 				rcu_read_unlock();
2237 				if (sync_page_io(rdev, sect, s<<9,
2238 					 conf->tmppage, REQ_OP_READ, 0, false))
2239 					success = 1;
2240 				rdev_dec_pending(rdev, mddev);
2241 				if (success)
2242 					break;
2243 			} else
2244 				rcu_read_unlock();
2245 			d++;
2246 			if (d == conf->raid_disks * 2)
2247 				d = 0;
2248 		} while (!success && d != read_disk);
2249 
2250 		if (!success) {
2251 			/* Cannot read from anywhere - mark it bad */
2252 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2253 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2254 				md_error(mddev, rdev);
2255 			break;
2256 		}
2257 		/* write it back and re-read */
2258 		start = d;
2259 		while (d != read_disk) {
2260 			if (d==0)
2261 				d = conf->raid_disks * 2;
2262 			d--;
2263 			rcu_read_lock();
2264 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2265 			if (rdev &&
2266 			    !test_bit(Faulty, &rdev->flags)) {
2267 				atomic_inc(&rdev->nr_pending);
2268 				rcu_read_unlock();
2269 				r1_sync_page_io(rdev, sect, s,
2270 						conf->tmppage, WRITE);
2271 				rdev_dec_pending(rdev, mddev);
2272 			} else
2273 				rcu_read_unlock();
2274 		}
2275 		d = start;
2276 		while (d != read_disk) {
2277 			char b[BDEVNAME_SIZE];
2278 			if (d==0)
2279 				d = conf->raid_disks * 2;
2280 			d--;
2281 			rcu_read_lock();
2282 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2283 			if (rdev &&
2284 			    !test_bit(Faulty, &rdev->flags)) {
2285 				atomic_inc(&rdev->nr_pending);
2286 				rcu_read_unlock();
2287 				if (r1_sync_page_io(rdev, sect, s,
2288 						    conf->tmppage, READ)) {
2289 					atomic_add(s, &rdev->corrected_errors);
2290 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2291 						mdname(mddev), s,
2292 						(unsigned long long)(sect +
2293 								     rdev->data_offset),
2294 						bdevname(rdev->bdev, b));
2295 				}
2296 				rdev_dec_pending(rdev, mddev);
2297 			} else
2298 				rcu_read_unlock();
2299 		}
2300 		sectors -= s;
2301 		sect += s;
2302 	}
2303 }
2304 
2305 static int narrow_write_error(struct r1bio *r1_bio, int i)
2306 {
2307 	struct mddev *mddev = r1_bio->mddev;
2308 	struct r1conf *conf = mddev->private;
2309 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2310 
2311 	/* bio has the data to be written to device 'i' where
2312 	 * we just recently had a write error.
2313 	 * We repeatedly clone the bio and trim down to one block,
2314 	 * then try the write.  Where the write fails we record
2315 	 * a bad block.
2316 	 * It is conceivable that the bio doesn't exactly align with
2317 	 * blocks.  We must handle this somehow.
2318 	 *
2319 	 * We currently own a reference on the rdev.
2320 	 */
2321 
2322 	int block_sectors;
2323 	sector_t sector;
2324 	int sectors;
2325 	int sect_to_write = r1_bio->sectors;
2326 	int ok = 1;
2327 
2328 	if (rdev->badblocks.shift < 0)
2329 		return 0;
2330 
2331 	block_sectors = roundup(1 << rdev->badblocks.shift,
2332 				bdev_logical_block_size(rdev->bdev) >> 9);
2333 	sector = r1_bio->sector;
2334 	sectors = ((sector + block_sectors)
2335 		   & ~(sector_t)(block_sectors - 1))
2336 		- sector;
2337 
2338 	while (sect_to_write) {
2339 		struct bio *wbio;
2340 		if (sectors > sect_to_write)
2341 			sectors = sect_to_write;
2342 		/* Write at 'sector' for 'sectors'*/
2343 
2344 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2345 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2346 					      GFP_NOIO,
2347 					      &mddev->bio_set);
2348 		} else {
2349 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2350 					      &mddev->bio_set);
2351 		}
2352 
2353 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2354 		wbio->bi_iter.bi_sector = r1_bio->sector;
2355 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2356 
2357 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2358 		wbio->bi_iter.bi_sector += rdev->data_offset;
2359 		bio_set_dev(wbio, rdev->bdev);
2360 
2361 		if (submit_bio_wait(wbio) < 0)
2362 			/* failure! */
2363 			ok = rdev_set_badblocks(rdev, sector,
2364 						sectors, 0)
2365 				&& ok;
2366 
2367 		bio_put(wbio);
2368 		sect_to_write -= sectors;
2369 		sector += sectors;
2370 		sectors = block_sectors;
2371 	}
2372 	return ok;
2373 }
2374 
2375 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2376 {
2377 	int m;
2378 	int s = r1_bio->sectors;
2379 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2380 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2381 		struct bio *bio = r1_bio->bios[m];
2382 		if (bio->bi_end_io == NULL)
2383 			continue;
2384 		if (!bio->bi_status &&
2385 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2386 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2387 		}
2388 		if (bio->bi_status &&
2389 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2390 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2391 				md_error(conf->mddev, rdev);
2392 		}
2393 	}
2394 	put_buf(r1_bio);
2395 	md_done_sync(conf->mddev, s, 1);
2396 }
2397 
2398 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2399 {
2400 	int m, idx;
2401 	bool fail = false;
2402 
2403 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2404 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2405 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2406 			rdev_clear_badblocks(rdev,
2407 					     r1_bio->sector,
2408 					     r1_bio->sectors, 0);
2409 			rdev_dec_pending(rdev, conf->mddev);
2410 		} else if (r1_bio->bios[m] != NULL) {
2411 			/* This drive got a write error.  We need to
2412 			 * narrow down and record precise write
2413 			 * errors.
2414 			 */
2415 			fail = true;
2416 			if (!narrow_write_error(r1_bio, m)) {
2417 				md_error(conf->mddev,
2418 					 conf->mirrors[m].rdev);
2419 				/* an I/O failed, we can't clear the bitmap */
2420 				set_bit(R1BIO_Degraded, &r1_bio->state);
2421 			}
2422 			rdev_dec_pending(conf->mirrors[m].rdev,
2423 					 conf->mddev);
2424 		}
2425 	if (fail) {
2426 		spin_lock_irq(&conf->device_lock);
2427 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2428 		idx = sector_to_idx(r1_bio->sector);
2429 		atomic_inc(&conf->nr_queued[idx]);
2430 		spin_unlock_irq(&conf->device_lock);
2431 		/*
2432 		 * In case freeze_array() is waiting for condition
2433 		 * get_unqueued_pending() == extra to be true.
2434 		 */
2435 		wake_up(&conf->wait_barrier);
2436 		md_wakeup_thread(conf->mddev->thread);
2437 	} else {
2438 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2439 			close_write(r1_bio);
2440 		raid_end_bio_io(r1_bio);
2441 	}
2442 }
2443 
2444 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2445 {
2446 	struct mddev *mddev = conf->mddev;
2447 	struct bio *bio;
2448 	struct md_rdev *rdev;
2449 
2450 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2451 	/* we got a read error. Maybe the drive is bad.  Maybe just
2452 	 * the block and we can fix it.
2453 	 * We freeze all other IO, and try reading the block from
2454 	 * other devices.  When we find one, we re-write
2455 	 * and check it that fixes the read error.
2456 	 * This is all done synchronously while the array is
2457 	 * frozen
2458 	 */
2459 
2460 	bio = r1_bio->bios[r1_bio->read_disk];
2461 	bio_put(bio);
2462 	r1_bio->bios[r1_bio->read_disk] = NULL;
2463 
2464 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2465 	if (mddev->ro == 0
2466 	    && !test_bit(FailFast, &rdev->flags)) {
2467 		freeze_array(conf, 1);
2468 		fix_read_error(conf, r1_bio->read_disk,
2469 			       r1_bio->sector, r1_bio->sectors);
2470 		unfreeze_array(conf);
2471 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2472 		md_error(mddev, rdev);
2473 	} else {
2474 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2475 	}
2476 
2477 	rdev_dec_pending(rdev, conf->mddev);
2478 	allow_barrier(conf, r1_bio->sector);
2479 	bio = r1_bio->master_bio;
2480 
2481 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2482 	r1_bio->state = 0;
2483 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2484 }
2485 
2486 static void raid1d(struct md_thread *thread)
2487 {
2488 	struct mddev *mddev = thread->mddev;
2489 	struct r1bio *r1_bio;
2490 	unsigned long flags;
2491 	struct r1conf *conf = mddev->private;
2492 	struct list_head *head = &conf->retry_list;
2493 	struct blk_plug plug;
2494 	int idx;
2495 
2496 	md_check_recovery(mddev);
2497 
2498 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2499 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2500 		LIST_HEAD(tmp);
2501 		spin_lock_irqsave(&conf->device_lock, flags);
2502 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2503 			list_splice_init(&conf->bio_end_io_list, &tmp);
2504 		spin_unlock_irqrestore(&conf->device_lock, flags);
2505 		while (!list_empty(&tmp)) {
2506 			r1_bio = list_first_entry(&tmp, struct r1bio,
2507 						  retry_list);
2508 			list_del(&r1_bio->retry_list);
2509 			idx = sector_to_idx(r1_bio->sector);
2510 			atomic_dec(&conf->nr_queued[idx]);
2511 			if (mddev->degraded)
2512 				set_bit(R1BIO_Degraded, &r1_bio->state);
2513 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2514 				close_write(r1_bio);
2515 			raid_end_bio_io(r1_bio);
2516 		}
2517 	}
2518 
2519 	blk_start_plug(&plug);
2520 	for (;;) {
2521 
2522 		flush_pending_writes(conf);
2523 
2524 		spin_lock_irqsave(&conf->device_lock, flags);
2525 		if (list_empty(head)) {
2526 			spin_unlock_irqrestore(&conf->device_lock, flags);
2527 			break;
2528 		}
2529 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2530 		list_del(head->prev);
2531 		idx = sector_to_idx(r1_bio->sector);
2532 		atomic_dec(&conf->nr_queued[idx]);
2533 		spin_unlock_irqrestore(&conf->device_lock, flags);
2534 
2535 		mddev = r1_bio->mddev;
2536 		conf = mddev->private;
2537 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2538 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2539 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2540 				handle_sync_write_finished(conf, r1_bio);
2541 			else
2542 				sync_request_write(mddev, r1_bio);
2543 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2544 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2545 			handle_write_finished(conf, r1_bio);
2546 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2547 			handle_read_error(conf, r1_bio);
2548 		else
2549 			WARN_ON_ONCE(1);
2550 
2551 		cond_resched();
2552 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2553 			md_check_recovery(mddev);
2554 	}
2555 	blk_finish_plug(&plug);
2556 }
2557 
2558 static int init_resync(struct r1conf *conf)
2559 {
2560 	int buffs;
2561 
2562 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2563 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2564 
2565 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2566 			    r1buf_pool_free, conf->poolinfo);
2567 }
2568 
2569 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2570 {
2571 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2572 	struct resync_pages *rps;
2573 	struct bio *bio;
2574 	int i;
2575 
2576 	for (i = conf->poolinfo->raid_disks; i--; ) {
2577 		bio = r1bio->bios[i];
2578 		rps = bio->bi_private;
2579 		bio_reset(bio);
2580 		bio->bi_private = rps;
2581 	}
2582 	r1bio->master_bio = NULL;
2583 	return r1bio;
2584 }
2585 
2586 /*
2587  * perform a "sync" on one "block"
2588  *
2589  * We need to make sure that no normal I/O request - particularly write
2590  * requests - conflict with active sync requests.
2591  *
2592  * This is achieved by tracking pending requests and a 'barrier' concept
2593  * that can be installed to exclude normal IO requests.
2594  */
2595 
2596 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2597 				   int *skipped)
2598 {
2599 	struct r1conf *conf = mddev->private;
2600 	struct r1bio *r1_bio;
2601 	struct bio *bio;
2602 	sector_t max_sector, nr_sectors;
2603 	int disk = -1;
2604 	int i;
2605 	int wonly = -1;
2606 	int write_targets = 0, read_targets = 0;
2607 	sector_t sync_blocks;
2608 	int still_degraded = 0;
2609 	int good_sectors = RESYNC_SECTORS;
2610 	int min_bad = 0; /* number of sectors that are bad in all devices */
2611 	int idx = sector_to_idx(sector_nr);
2612 	int page_idx = 0;
2613 
2614 	if (!mempool_initialized(&conf->r1buf_pool))
2615 		if (init_resync(conf))
2616 			return 0;
2617 
2618 	max_sector = mddev->dev_sectors;
2619 	if (sector_nr >= max_sector) {
2620 		/* If we aborted, we need to abort the
2621 		 * sync on the 'current' bitmap chunk (there will
2622 		 * only be one in raid1 resync.
2623 		 * We can find the current addess in mddev->curr_resync
2624 		 */
2625 		if (mddev->curr_resync < max_sector) /* aborted */
2626 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2627 					   &sync_blocks, 1);
2628 		else /* completed sync */
2629 			conf->fullsync = 0;
2630 
2631 		md_bitmap_close_sync(mddev->bitmap);
2632 		close_sync(conf);
2633 
2634 		if (mddev_is_clustered(mddev)) {
2635 			conf->cluster_sync_low = 0;
2636 			conf->cluster_sync_high = 0;
2637 		}
2638 		return 0;
2639 	}
2640 
2641 	if (mddev->bitmap == NULL &&
2642 	    mddev->recovery_cp == MaxSector &&
2643 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2644 	    conf->fullsync == 0) {
2645 		*skipped = 1;
2646 		return max_sector - sector_nr;
2647 	}
2648 	/* before building a request, check if we can skip these blocks..
2649 	 * This call the bitmap_start_sync doesn't actually record anything
2650 	 */
2651 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2652 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2653 		/* We can skip this block, and probably several more */
2654 		*skipped = 1;
2655 		return sync_blocks;
2656 	}
2657 
2658 	/*
2659 	 * If there is non-resync activity waiting for a turn, then let it
2660 	 * though before starting on this new sync request.
2661 	 */
2662 	if (atomic_read(&conf->nr_waiting[idx]))
2663 		schedule_timeout_uninterruptible(1);
2664 
2665 	/* we are incrementing sector_nr below. To be safe, we check against
2666 	 * sector_nr + two times RESYNC_SECTORS
2667 	 */
2668 
2669 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2670 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2671 
2672 
2673 	if (raise_barrier(conf, sector_nr))
2674 		return 0;
2675 
2676 	r1_bio = raid1_alloc_init_r1buf(conf);
2677 
2678 	rcu_read_lock();
2679 	/*
2680 	 * If we get a correctably read error during resync or recovery,
2681 	 * we might want to read from a different device.  So we
2682 	 * flag all drives that could conceivably be read from for READ,
2683 	 * and any others (which will be non-In_sync devices) for WRITE.
2684 	 * If a read fails, we try reading from something else for which READ
2685 	 * is OK.
2686 	 */
2687 
2688 	r1_bio->mddev = mddev;
2689 	r1_bio->sector = sector_nr;
2690 	r1_bio->state = 0;
2691 	set_bit(R1BIO_IsSync, &r1_bio->state);
2692 	/* make sure good_sectors won't go across barrier unit boundary */
2693 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2694 
2695 	for (i = 0; i < conf->raid_disks * 2; i++) {
2696 		struct md_rdev *rdev;
2697 		bio = r1_bio->bios[i];
2698 
2699 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2700 		if (rdev == NULL ||
2701 		    test_bit(Faulty, &rdev->flags)) {
2702 			if (i < conf->raid_disks)
2703 				still_degraded = 1;
2704 		} else if (!test_bit(In_sync, &rdev->flags)) {
2705 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2706 			bio->bi_end_io = end_sync_write;
2707 			write_targets ++;
2708 		} else {
2709 			/* may need to read from here */
2710 			sector_t first_bad = MaxSector;
2711 			int bad_sectors;
2712 
2713 			if (is_badblock(rdev, sector_nr, good_sectors,
2714 					&first_bad, &bad_sectors)) {
2715 				if (first_bad > sector_nr)
2716 					good_sectors = first_bad - sector_nr;
2717 				else {
2718 					bad_sectors -= (sector_nr - first_bad);
2719 					if (min_bad == 0 ||
2720 					    min_bad > bad_sectors)
2721 						min_bad = bad_sectors;
2722 				}
2723 			}
2724 			if (sector_nr < first_bad) {
2725 				if (test_bit(WriteMostly, &rdev->flags)) {
2726 					if (wonly < 0)
2727 						wonly = i;
2728 				} else {
2729 					if (disk < 0)
2730 						disk = i;
2731 				}
2732 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2733 				bio->bi_end_io = end_sync_read;
2734 				read_targets++;
2735 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2736 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2737 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2738 				/*
2739 				 * The device is suitable for reading (InSync),
2740 				 * but has bad block(s) here. Let's try to correct them,
2741 				 * if we are doing resync or repair. Otherwise, leave
2742 				 * this device alone for this sync request.
2743 				 */
2744 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2745 				bio->bi_end_io = end_sync_write;
2746 				write_targets++;
2747 			}
2748 		}
2749 		if (bio->bi_end_io) {
2750 			atomic_inc(&rdev->nr_pending);
2751 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2752 			bio_set_dev(bio, rdev->bdev);
2753 			if (test_bit(FailFast, &rdev->flags))
2754 				bio->bi_opf |= MD_FAILFAST;
2755 		}
2756 	}
2757 	rcu_read_unlock();
2758 	if (disk < 0)
2759 		disk = wonly;
2760 	r1_bio->read_disk = disk;
2761 
2762 	if (read_targets == 0 && min_bad > 0) {
2763 		/* These sectors are bad on all InSync devices, so we
2764 		 * need to mark them bad on all write targets
2765 		 */
2766 		int ok = 1;
2767 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2768 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2769 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2770 				ok = rdev_set_badblocks(rdev, sector_nr,
2771 							min_bad, 0
2772 					) && ok;
2773 			}
2774 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2775 		*skipped = 1;
2776 		put_buf(r1_bio);
2777 
2778 		if (!ok) {
2779 			/* Cannot record the badblocks, so need to
2780 			 * abort the resync.
2781 			 * If there are multiple read targets, could just
2782 			 * fail the really bad ones ???
2783 			 */
2784 			conf->recovery_disabled = mddev->recovery_disabled;
2785 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2786 			return 0;
2787 		} else
2788 			return min_bad;
2789 
2790 	}
2791 	if (min_bad > 0 && min_bad < good_sectors) {
2792 		/* only resync enough to reach the next bad->good
2793 		 * transition */
2794 		good_sectors = min_bad;
2795 	}
2796 
2797 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2798 		/* extra read targets are also write targets */
2799 		write_targets += read_targets-1;
2800 
2801 	if (write_targets == 0 || read_targets == 0) {
2802 		/* There is nowhere to write, so all non-sync
2803 		 * drives must be failed - so we are finished
2804 		 */
2805 		sector_t rv;
2806 		if (min_bad > 0)
2807 			max_sector = sector_nr + min_bad;
2808 		rv = max_sector - sector_nr;
2809 		*skipped = 1;
2810 		put_buf(r1_bio);
2811 		return rv;
2812 	}
2813 
2814 	if (max_sector > mddev->resync_max)
2815 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2816 	if (max_sector > sector_nr + good_sectors)
2817 		max_sector = sector_nr + good_sectors;
2818 	nr_sectors = 0;
2819 	sync_blocks = 0;
2820 	do {
2821 		struct page *page;
2822 		int len = PAGE_SIZE;
2823 		if (sector_nr + (len>>9) > max_sector)
2824 			len = (max_sector - sector_nr) << 9;
2825 		if (len == 0)
2826 			break;
2827 		if (sync_blocks == 0) {
2828 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2829 						  &sync_blocks, still_degraded) &&
2830 			    !conf->fullsync &&
2831 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2832 				break;
2833 			if ((len >> 9) > sync_blocks)
2834 				len = sync_blocks<<9;
2835 		}
2836 
2837 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2838 			struct resync_pages *rp;
2839 
2840 			bio = r1_bio->bios[i];
2841 			rp = get_resync_pages(bio);
2842 			if (bio->bi_end_io) {
2843 				page = resync_fetch_page(rp, page_idx);
2844 
2845 				/*
2846 				 * won't fail because the vec table is big
2847 				 * enough to hold all these pages
2848 				 */
2849 				bio_add_page(bio, page, len, 0);
2850 			}
2851 		}
2852 		nr_sectors += len>>9;
2853 		sector_nr += len>>9;
2854 		sync_blocks -= (len>>9);
2855 	} while (++page_idx < RESYNC_PAGES);
2856 
2857 	r1_bio->sectors = nr_sectors;
2858 
2859 	if (mddev_is_clustered(mddev) &&
2860 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2861 		conf->cluster_sync_low = mddev->curr_resync_completed;
2862 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2863 		/* Send resync message */
2864 		md_cluster_ops->resync_info_update(mddev,
2865 				conf->cluster_sync_low,
2866 				conf->cluster_sync_high);
2867 	}
2868 
2869 	/* For a user-requested sync, we read all readable devices and do a
2870 	 * compare
2871 	 */
2872 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2873 		atomic_set(&r1_bio->remaining, read_targets);
2874 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2875 			bio = r1_bio->bios[i];
2876 			if (bio->bi_end_io == end_sync_read) {
2877 				read_targets--;
2878 				md_sync_acct_bio(bio, nr_sectors);
2879 				if (read_targets == 1)
2880 					bio->bi_opf &= ~MD_FAILFAST;
2881 				generic_make_request(bio);
2882 			}
2883 		}
2884 	} else {
2885 		atomic_set(&r1_bio->remaining, 1);
2886 		bio = r1_bio->bios[r1_bio->read_disk];
2887 		md_sync_acct_bio(bio, nr_sectors);
2888 		if (read_targets == 1)
2889 			bio->bi_opf &= ~MD_FAILFAST;
2890 		generic_make_request(bio);
2891 
2892 	}
2893 	return nr_sectors;
2894 }
2895 
2896 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2897 {
2898 	if (sectors)
2899 		return sectors;
2900 
2901 	return mddev->dev_sectors;
2902 }
2903 
2904 static struct r1conf *setup_conf(struct mddev *mddev)
2905 {
2906 	struct r1conf *conf;
2907 	int i;
2908 	struct raid1_info *disk;
2909 	struct md_rdev *rdev;
2910 	int err = -ENOMEM;
2911 
2912 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2913 	if (!conf)
2914 		goto abort;
2915 
2916 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2917 				   sizeof(atomic_t), GFP_KERNEL);
2918 	if (!conf->nr_pending)
2919 		goto abort;
2920 
2921 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2922 				   sizeof(atomic_t), GFP_KERNEL);
2923 	if (!conf->nr_waiting)
2924 		goto abort;
2925 
2926 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2927 				  sizeof(atomic_t), GFP_KERNEL);
2928 	if (!conf->nr_queued)
2929 		goto abort;
2930 
2931 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2932 				sizeof(atomic_t), GFP_KERNEL);
2933 	if (!conf->barrier)
2934 		goto abort;
2935 
2936 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2937 					    mddev->raid_disks, 2),
2938 				GFP_KERNEL);
2939 	if (!conf->mirrors)
2940 		goto abort;
2941 
2942 	conf->tmppage = alloc_page(GFP_KERNEL);
2943 	if (!conf->tmppage)
2944 		goto abort;
2945 
2946 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2947 	if (!conf->poolinfo)
2948 		goto abort;
2949 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2950 	err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
2951 			   r1bio_pool_free, conf->poolinfo);
2952 	if (err)
2953 		goto abort;
2954 
2955 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2956 	if (err)
2957 		goto abort;
2958 
2959 	conf->poolinfo->mddev = mddev;
2960 
2961 	err = -EINVAL;
2962 	spin_lock_init(&conf->device_lock);
2963 	rdev_for_each(rdev, mddev) {
2964 		int disk_idx = rdev->raid_disk;
2965 		if (disk_idx >= mddev->raid_disks
2966 		    || disk_idx < 0)
2967 			continue;
2968 		if (test_bit(Replacement, &rdev->flags))
2969 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2970 		else
2971 			disk = conf->mirrors + disk_idx;
2972 
2973 		if (disk->rdev)
2974 			goto abort;
2975 		disk->rdev = rdev;
2976 		disk->head_position = 0;
2977 		disk->seq_start = MaxSector;
2978 	}
2979 	conf->raid_disks = mddev->raid_disks;
2980 	conf->mddev = mddev;
2981 	INIT_LIST_HEAD(&conf->retry_list);
2982 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2983 
2984 	spin_lock_init(&conf->resync_lock);
2985 	init_waitqueue_head(&conf->wait_barrier);
2986 
2987 	bio_list_init(&conf->pending_bio_list);
2988 	conf->pending_count = 0;
2989 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2990 
2991 	err = -EIO;
2992 	for (i = 0; i < conf->raid_disks * 2; i++) {
2993 
2994 		disk = conf->mirrors + i;
2995 
2996 		if (i < conf->raid_disks &&
2997 		    disk[conf->raid_disks].rdev) {
2998 			/* This slot has a replacement. */
2999 			if (!disk->rdev) {
3000 				/* No original, just make the replacement
3001 				 * a recovering spare
3002 				 */
3003 				disk->rdev =
3004 					disk[conf->raid_disks].rdev;
3005 				disk[conf->raid_disks].rdev = NULL;
3006 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3007 				/* Original is not in_sync - bad */
3008 				goto abort;
3009 		}
3010 
3011 		if (!disk->rdev ||
3012 		    !test_bit(In_sync, &disk->rdev->flags)) {
3013 			disk->head_position = 0;
3014 			if (disk->rdev &&
3015 			    (disk->rdev->saved_raid_disk < 0))
3016 				conf->fullsync = 1;
3017 		}
3018 	}
3019 
3020 	err = -ENOMEM;
3021 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3022 	if (!conf->thread)
3023 		goto abort;
3024 
3025 	return conf;
3026 
3027  abort:
3028 	if (conf) {
3029 		mempool_exit(&conf->r1bio_pool);
3030 		kfree(conf->mirrors);
3031 		safe_put_page(conf->tmppage);
3032 		kfree(conf->poolinfo);
3033 		kfree(conf->nr_pending);
3034 		kfree(conf->nr_waiting);
3035 		kfree(conf->nr_queued);
3036 		kfree(conf->barrier);
3037 		bioset_exit(&conf->bio_split);
3038 		kfree(conf);
3039 	}
3040 	return ERR_PTR(err);
3041 }
3042 
3043 static void raid1_free(struct mddev *mddev, void *priv);
3044 static int raid1_run(struct mddev *mddev)
3045 {
3046 	struct r1conf *conf;
3047 	int i;
3048 	struct md_rdev *rdev;
3049 	int ret;
3050 	bool discard_supported = false;
3051 
3052 	if (mddev->level != 1) {
3053 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3054 			mdname(mddev), mddev->level);
3055 		return -EIO;
3056 	}
3057 	if (mddev->reshape_position != MaxSector) {
3058 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3059 			mdname(mddev));
3060 		return -EIO;
3061 	}
3062 	if (mddev_init_writes_pending(mddev) < 0)
3063 		return -ENOMEM;
3064 	/*
3065 	 * copy the already verified devices into our private RAID1
3066 	 * bookkeeping area. [whatever we allocate in run(),
3067 	 * should be freed in raid1_free()]
3068 	 */
3069 	if (mddev->private == NULL)
3070 		conf = setup_conf(mddev);
3071 	else
3072 		conf = mddev->private;
3073 
3074 	if (IS_ERR(conf))
3075 		return PTR_ERR(conf);
3076 
3077 	if (mddev->queue) {
3078 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3079 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3080 	}
3081 
3082 	rdev_for_each(rdev, mddev) {
3083 		if (!mddev->gendisk)
3084 			continue;
3085 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3086 				  rdev->data_offset << 9);
3087 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3088 			discard_supported = true;
3089 	}
3090 
3091 	mddev->degraded = 0;
3092 	for (i=0; i < conf->raid_disks; i++)
3093 		if (conf->mirrors[i].rdev == NULL ||
3094 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3095 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3096 			mddev->degraded++;
3097 
3098 	if (conf->raid_disks - mddev->degraded == 1)
3099 		mddev->recovery_cp = MaxSector;
3100 
3101 	if (mddev->recovery_cp != MaxSector)
3102 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3103 			mdname(mddev));
3104 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3105 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3106 		mddev->raid_disks);
3107 
3108 	/*
3109 	 * Ok, everything is just fine now
3110 	 */
3111 	mddev->thread = conf->thread;
3112 	conf->thread = NULL;
3113 	mddev->private = conf;
3114 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3115 
3116 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3117 
3118 	if (mddev->queue) {
3119 		if (discard_supported)
3120 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3121 						mddev->queue);
3122 		else
3123 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3124 						  mddev->queue);
3125 	}
3126 
3127 	ret =  md_integrity_register(mddev);
3128 	if (ret) {
3129 		md_unregister_thread(&mddev->thread);
3130 		raid1_free(mddev, conf);
3131 	}
3132 	return ret;
3133 }
3134 
3135 static void raid1_free(struct mddev *mddev, void *priv)
3136 {
3137 	struct r1conf *conf = priv;
3138 
3139 	mempool_exit(&conf->r1bio_pool);
3140 	kfree(conf->mirrors);
3141 	safe_put_page(conf->tmppage);
3142 	kfree(conf->poolinfo);
3143 	kfree(conf->nr_pending);
3144 	kfree(conf->nr_waiting);
3145 	kfree(conf->nr_queued);
3146 	kfree(conf->barrier);
3147 	bioset_exit(&conf->bio_split);
3148 	kfree(conf);
3149 }
3150 
3151 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3152 {
3153 	/* no resync is happening, and there is enough space
3154 	 * on all devices, so we can resize.
3155 	 * We need to make sure resync covers any new space.
3156 	 * If the array is shrinking we should possibly wait until
3157 	 * any io in the removed space completes, but it hardly seems
3158 	 * worth it.
3159 	 */
3160 	sector_t newsize = raid1_size(mddev, sectors, 0);
3161 	if (mddev->external_size &&
3162 	    mddev->array_sectors > newsize)
3163 		return -EINVAL;
3164 	if (mddev->bitmap) {
3165 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3166 		if (ret)
3167 			return ret;
3168 	}
3169 	md_set_array_sectors(mddev, newsize);
3170 	if (sectors > mddev->dev_sectors &&
3171 	    mddev->recovery_cp > mddev->dev_sectors) {
3172 		mddev->recovery_cp = mddev->dev_sectors;
3173 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3174 	}
3175 	mddev->dev_sectors = sectors;
3176 	mddev->resync_max_sectors = sectors;
3177 	return 0;
3178 }
3179 
3180 static int raid1_reshape(struct mddev *mddev)
3181 {
3182 	/* We need to:
3183 	 * 1/ resize the r1bio_pool
3184 	 * 2/ resize conf->mirrors
3185 	 *
3186 	 * We allocate a new r1bio_pool if we can.
3187 	 * Then raise a device barrier and wait until all IO stops.
3188 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3189 	 *
3190 	 * At the same time, we "pack" the devices so that all the missing
3191 	 * devices have the higher raid_disk numbers.
3192 	 */
3193 	mempool_t newpool, oldpool;
3194 	struct pool_info *newpoolinfo;
3195 	struct raid1_info *newmirrors;
3196 	struct r1conf *conf = mddev->private;
3197 	int cnt, raid_disks;
3198 	unsigned long flags;
3199 	int d, d2;
3200 	int ret;
3201 
3202 	memset(&newpool, 0, sizeof(newpool));
3203 	memset(&oldpool, 0, sizeof(oldpool));
3204 
3205 	/* Cannot change chunk_size, layout, or level */
3206 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3207 	    mddev->layout != mddev->new_layout ||
3208 	    mddev->level != mddev->new_level) {
3209 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3210 		mddev->new_layout = mddev->layout;
3211 		mddev->new_level = mddev->level;
3212 		return -EINVAL;
3213 	}
3214 
3215 	if (!mddev_is_clustered(mddev))
3216 		md_allow_write(mddev);
3217 
3218 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3219 
3220 	if (raid_disks < conf->raid_disks) {
3221 		cnt=0;
3222 		for (d= 0; d < conf->raid_disks; d++)
3223 			if (conf->mirrors[d].rdev)
3224 				cnt++;
3225 		if (cnt > raid_disks)
3226 			return -EBUSY;
3227 	}
3228 
3229 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3230 	if (!newpoolinfo)
3231 		return -ENOMEM;
3232 	newpoolinfo->mddev = mddev;
3233 	newpoolinfo->raid_disks = raid_disks * 2;
3234 
3235 	ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
3236 			   r1bio_pool_free, newpoolinfo);
3237 	if (ret) {
3238 		kfree(newpoolinfo);
3239 		return ret;
3240 	}
3241 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3242 					 raid_disks, 2),
3243 			     GFP_KERNEL);
3244 	if (!newmirrors) {
3245 		kfree(newpoolinfo);
3246 		mempool_exit(&newpool);
3247 		return -ENOMEM;
3248 	}
3249 
3250 	freeze_array(conf, 0);
3251 
3252 	/* ok, everything is stopped */
3253 	oldpool = conf->r1bio_pool;
3254 	conf->r1bio_pool = newpool;
3255 
3256 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3257 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3258 		if (rdev && rdev->raid_disk != d2) {
3259 			sysfs_unlink_rdev(mddev, rdev);
3260 			rdev->raid_disk = d2;
3261 			sysfs_unlink_rdev(mddev, rdev);
3262 			if (sysfs_link_rdev(mddev, rdev))
3263 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3264 					mdname(mddev), rdev->raid_disk);
3265 		}
3266 		if (rdev)
3267 			newmirrors[d2++].rdev = rdev;
3268 	}
3269 	kfree(conf->mirrors);
3270 	conf->mirrors = newmirrors;
3271 	kfree(conf->poolinfo);
3272 	conf->poolinfo = newpoolinfo;
3273 
3274 	spin_lock_irqsave(&conf->device_lock, flags);
3275 	mddev->degraded += (raid_disks - conf->raid_disks);
3276 	spin_unlock_irqrestore(&conf->device_lock, flags);
3277 	conf->raid_disks = mddev->raid_disks = raid_disks;
3278 	mddev->delta_disks = 0;
3279 
3280 	unfreeze_array(conf);
3281 
3282 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3283 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3284 	md_wakeup_thread(mddev->thread);
3285 
3286 	mempool_exit(&oldpool);
3287 	return 0;
3288 }
3289 
3290 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3291 {
3292 	struct r1conf *conf = mddev->private;
3293 
3294 	if (quiesce)
3295 		freeze_array(conf, 0);
3296 	else
3297 		unfreeze_array(conf);
3298 }
3299 
3300 static void *raid1_takeover(struct mddev *mddev)
3301 {
3302 	/* raid1 can take over:
3303 	 *  raid5 with 2 devices, any layout or chunk size
3304 	 */
3305 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3306 		struct r1conf *conf;
3307 		mddev->new_level = 1;
3308 		mddev->new_layout = 0;
3309 		mddev->new_chunk_sectors = 0;
3310 		conf = setup_conf(mddev);
3311 		if (!IS_ERR(conf)) {
3312 			/* Array must appear to be quiesced */
3313 			conf->array_frozen = 1;
3314 			mddev_clear_unsupported_flags(mddev,
3315 				UNSUPPORTED_MDDEV_FLAGS);
3316 		}
3317 		return conf;
3318 	}
3319 	return ERR_PTR(-EINVAL);
3320 }
3321 
3322 static struct md_personality raid1_personality =
3323 {
3324 	.name		= "raid1",
3325 	.level		= 1,
3326 	.owner		= THIS_MODULE,
3327 	.make_request	= raid1_make_request,
3328 	.run		= raid1_run,
3329 	.free		= raid1_free,
3330 	.status		= raid1_status,
3331 	.error_handler	= raid1_error,
3332 	.hot_add_disk	= raid1_add_disk,
3333 	.hot_remove_disk= raid1_remove_disk,
3334 	.spare_active	= raid1_spare_active,
3335 	.sync_request	= raid1_sync_request,
3336 	.resize		= raid1_resize,
3337 	.size		= raid1_size,
3338 	.check_reshape	= raid1_reshape,
3339 	.quiesce	= raid1_quiesce,
3340 	.takeover	= raid1_takeover,
3341 	.congested	= raid1_congested,
3342 };
3343 
3344 static int __init raid_init(void)
3345 {
3346 	return register_md_personality(&raid1_personality);
3347 }
3348 
3349 static void raid_exit(void)
3350 {
3351 	unregister_md_personality(&raid1_personality);
3352 }
3353 
3354 module_init(raid_init);
3355 module_exit(raid_exit);
3356 MODULE_LICENSE("GPL");
3357 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3358 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3359 MODULE_ALIAS("md-raid1");
3360 MODULE_ALIAS("md-level-1");
3361 
3362 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3363