xref: /linux/drivers/md/raid1.c (revision db6d8d5fdf9537641c76ba7f32e02b4bcc600972)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96 
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 	struct pool_info *pi = data;
100 	struct r1bio *r1_bio;
101 	struct bio *bio;
102 	int need_pages;
103 	int i, j;
104 
105 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 	if (!r1_bio)
107 		return NULL;
108 
109 	/*
110 	 * Allocate bios : 1 for reading, n-1 for writing
111 	 */
112 	for (j = pi->raid_disks ; j-- ; ) {
113 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 		if (!bio)
115 			goto out_free_bio;
116 		r1_bio->bios[j] = bio;
117 	}
118 	/*
119 	 * Allocate RESYNC_PAGES data pages and attach them to
120 	 * the first bio.
121 	 * If this is a user-requested check/repair, allocate
122 	 * RESYNC_PAGES for each bio.
123 	 */
124 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 		need_pages = pi->raid_disks;
126 	else
127 		need_pages = 1;
128 	for (j = 0; j < need_pages; j++) {
129 		bio = r1_bio->bios[j];
130 		bio->bi_vcnt = RESYNC_PAGES;
131 
132 		if (bio_alloc_pages(bio, gfp_flags))
133 			goto out_free_pages;
134 	}
135 	/* If not user-requests, copy the page pointers to all bios */
136 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 		for (i=0; i<RESYNC_PAGES ; i++)
138 			for (j=1; j<pi->raid_disks; j++)
139 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 	}
142 
143 	r1_bio->master_bio = NULL;
144 
145 	return r1_bio;
146 
147 out_free_pages:
148 	while (--j >= 0)
149 		bio_free_pages(r1_bio->bios[j]);
150 
151 out_free_bio:
152 	while (++j < pi->raid_disks)
153 		bio_put(r1_bio->bios[j]);
154 	r1bio_pool_free(r1_bio, data);
155 	return NULL;
156 }
157 
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160 	struct pool_info *pi = data;
161 	int i,j;
162 	struct r1bio *r1bio = __r1_bio;
163 
164 	for (i = 0; i < RESYNC_PAGES; i++)
165 		for (j = pi->raid_disks; j-- ;) {
166 			if (j == 0 ||
167 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
169 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 		}
171 	for (i=0 ; i < pi->raid_disks; i++)
172 		bio_put(r1bio->bios[i]);
173 
174 	r1bio_pool_free(r1bio, data);
175 }
176 
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179 	int i;
180 
181 	for (i = 0; i < conf->raid_disks * 2; i++) {
182 		struct bio **bio = r1_bio->bios + i;
183 		if (!BIO_SPECIAL(*bio))
184 			bio_put(*bio);
185 		*bio = NULL;
186 	}
187 }
188 
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191 	struct r1conf *conf = r1_bio->mddev->private;
192 
193 	put_all_bios(conf, r1_bio);
194 	mempool_free(r1_bio, conf->r1bio_pool);
195 }
196 
197 static void put_buf(struct r1bio *r1_bio)
198 {
199 	struct r1conf *conf = r1_bio->mddev->private;
200 	int i;
201 
202 	for (i = 0; i < conf->raid_disks * 2; i++) {
203 		struct bio *bio = r1_bio->bios[i];
204 		if (bio->bi_end_io)
205 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 	}
207 
208 	mempool_free(r1_bio, conf->r1buf_pool);
209 
210 	lower_barrier(conf);
211 }
212 
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215 	unsigned long flags;
216 	struct mddev *mddev = r1_bio->mddev;
217 	struct r1conf *conf = mddev->private;
218 
219 	spin_lock_irqsave(&conf->device_lock, flags);
220 	list_add(&r1_bio->retry_list, &conf->retry_list);
221 	conf->nr_queued ++;
222 	spin_unlock_irqrestore(&conf->device_lock, flags);
223 
224 	wake_up(&conf->wait_barrier);
225 	md_wakeup_thread(mddev->thread);
226 }
227 
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235 	struct bio *bio = r1_bio->master_bio;
236 	int done;
237 	struct r1conf *conf = r1_bio->mddev->private;
238 	sector_t start_next_window = r1_bio->start_next_window;
239 	sector_t bi_sector = bio->bi_iter.bi_sector;
240 
241 	if (bio->bi_phys_segments) {
242 		unsigned long flags;
243 		spin_lock_irqsave(&conf->device_lock, flags);
244 		bio->bi_phys_segments--;
245 		done = (bio->bi_phys_segments == 0);
246 		spin_unlock_irqrestore(&conf->device_lock, flags);
247 		/*
248 		 * make_request() might be waiting for
249 		 * bi_phys_segments to decrease
250 		 */
251 		wake_up(&conf->wait_barrier);
252 	} else
253 		done = 1;
254 
255 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
256 		bio->bi_error = -EIO;
257 
258 	if (done) {
259 		bio_endio(bio);
260 		/*
261 		 * Wake up any possible resync thread that waits for the device
262 		 * to go idle.
263 		 */
264 		allow_barrier(conf, start_next_window, bi_sector);
265 	}
266 }
267 
268 static void raid_end_bio_io(struct r1bio *r1_bio)
269 {
270 	struct bio *bio = r1_bio->master_bio;
271 
272 	/* if nobody has done the final endio yet, do it now */
273 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
274 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
275 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
276 			 (unsigned long long) bio->bi_iter.bi_sector,
277 			 (unsigned long long) bio_end_sector(bio) - 1);
278 
279 		call_bio_endio(r1_bio);
280 	}
281 	free_r1bio(r1_bio);
282 }
283 
284 /*
285  * Update disk head position estimator based on IRQ completion info.
286  */
287 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
288 {
289 	struct r1conf *conf = r1_bio->mddev->private;
290 
291 	conf->mirrors[disk].head_position =
292 		r1_bio->sector + (r1_bio->sectors);
293 }
294 
295 /*
296  * Find the disk number which triggered given bio
297  */
298 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
299 {
300 	int mirror;
301 	struct r1conf *conf = r1_bio->mddev->private;
302 	int raid_disks = conf->raid_disks;
303 
304 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
305 		if (r1_bio->bios[mirror] == bio)
306 			break;
307 
308 	BUG_ON(mirror == raid_disks * 2);
309 	update_head_pos(mirror, r1_bio);
310 
311 	return mirror;
312 }
313 
314 static void raid1_end_read_request(struct bio *bio)
315 {
316 	int uptodate = !bio->bi_error;
317 	struct r1bio *r1_bio = bio->bi_private;
318 	struct r1conf *conf = r1_bio->mddev->private;
319 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
320 
321 	/*
322 	 * this branch is our 'one mirror IO has finished' event handler:
323 	 */
324 	update_head_pos(r1_bio->read_disk, r1_bio);
325 
326 	if (uptodate)
327 		set_bit(R1BIO_Uptodate, &r1_bio->state);
328 	else {
329 		/* If all other devices have failed, we want to return
330 		 * the error upwards rather than fail the last device.
331 		 * Here we redefine "uptodate" to mean "Don't want to retry"
332 		 */
333 		unsigned long flags;
334 		spin_lock_irqsave(&conf->device_lock, flags);
335 		if (r1_bio->mddev->degraded == conf->raid_disks ||
336 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
337 		     test_bit(In_sync, &rdev->flags)))
338 			uptodate = 1;
339 		spin_unlock_irqrestore(&conf->device_lock, flags);
340 	}
341 
342 	if (uptodate) {
343 		raid_end_bio_io(r1_bio);
344 		rdev_dec_pending(rdev, conf->mddev);
345 	} else {
346 		/*
347 		 * oops, read error:
348 		 */
349 		char b[BDEVNAME_SIZE];
350 		printk_ratelimited(
351 			KERN_ERR "md/raid1:%s: %s: "
352 			"rescheduling sector %llu\n",
353 			mdname(conf->mddev),
354 			bdevname(rdev->bdev,
355 				 b),
356 			(unsigned long long)r1_bio->sector);
357 		set_bit(R1BIO_ReadError, &r1_bio->state);
358 		reschedule_retry(r1_bio);
359 		/* don't drop the reference on read_disk yet */
360 	}
361 }
362 
363 static void close_write(struct r1bio *r1_bio)
364 {
365 	/* it really is the end of this request */
366 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
367 		/* free extra copy of the data pages */
368 		int i = r1_bio->behind_page_count;
369 		while (i--)
370 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
371 		kfree(r1_bio->behind_bvecs);
372 		r1_bio->behind_bvecs = NULL;
373 	}
374 	/* clear the bitmap if all writes complete successfully */
375 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
376 			r1_bio->sectors,
377 			!test_bit(R1BIO_Degraded, &r1_bio->state),
378 			test_bit(R1BIO_BehindIO, &r1_bio->state));
379 	md_write_end(r1_bio->mddev);
380 }
381 
382 static void r1_bio_write_done(struct r1bio *r1_bio)
383 {
384 	if (!atomic_dec_and_test(&r1_bio->remaining))
385 		return;
386 
387 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
388 		reschedule_retry(r1_bio);
389 	else {
390 		close_write(r1_bio);
391 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
392 			reschedule_retry(r1_bio);
393 		else
394 			raid_end_bio_io(r1_bio);
395 	}
396 }
397 
398 static void raid1_end_write_request(struct bio *bio)
399 {
400 	struct r1bio *r1_bio = bio->bi_private;
401 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
402 	struct r1conf *conf = r1_bio->mddev->private;
403 	struct bio *to_put = NULL;
404 	int mirror = find_bio_disk(r1_bio, bio);
405 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
406 
407 	/*
408 	 * 'one mirror IO has finished' event handler:
409 	 */
410 	if (bio->bi_error) {
411 		set_bit(WriteErrorSeen,	&rdev->flags);
412 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
413 			set_bit(MD_RECOVERY_NEEDED, &
414 				conf->mddev->recovery);
415 
416 		set_bit(R1BIO_WriteError, &r1_bio->state);
417 	} else {
418 		/*
419 		 * Set R1BIO_Uptodate in our master bio, so that we
420 		 * will return a good error code for to the higher
421 		 * levels even if IO on some other mirrored buffer
422 		 * fails.
423 		 *
424 		 * The 'master' represents the composite IO operation
425 		 * to user-side. So if something waits for IO, then it
426 		 * will wait for the 'master' bio.
427 		 */
428 		sector_t first_bad;
429 		int bad_sectors;
430 
431 		r1_bio->bios[mirror] = NULL;
432 		to_put = bio;
433 		/*
434 		 * Do not set R1BIO_Uptodate if the current device is
435 		 * rebuilding or Faulty. This is because we cannot use
436 		 * such device for properly reading the data back (we could
437 		 * potentially use it, if the current write would have felt
438 		 * before rdev->recovery_offset, but for simplicity we don't
439 		 * check this here.
440 		 */
441 		if (test_bit(In_sync, &rdev->flags) &&
442 		    !test_bit(Faulty, &rdev->flags))
443 			set_bit(R1BIO_Uptodate, &r1_bio->state);
444 
445 		/* Maybe we can clear some bad blocks. */
446 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
447 				&first_bad, &bad_sectors)) {
448 			r1_bio->bios[mirror] = IO_MADE_GOOD;
449 			set_bit(R1BIO_MadeGood, &r1_bio->state);
450 		}
451 	}
452 
453 	if (behind) {
454 		if (test_bit(WriteMostly, &rdev->flags))
455 			atomic_dec(&r1_bio->behind_remaining);
456 
457 		/*
458 		 * In behind mode, we ACK the master bio once the I/O
459 		 * has safely reached all non-writemostly
460 		 * disks. Setting the Returned bit ensures that this
461 		 * gets done only once -- we don't ever want to return
462 		 * -EIO here, instead we'll wait
463 		 */
464 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
465 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
466 			/* Maybe we can return now */
467 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
468 				struct bio *mbio = r1_bio->master_bio;
469 				pr_debug("raid1: behind end write sectors"
470 					 " %llu-%llu\n",
471 					 (unsigned long long) mbio->bi_iter.bi_sector,
472 					 (unsigned long long) bio_end_sector(mbio) - 1);
473 				call_bio_endio(r1_bio);
474 			}
475 		}
476 	}
477 	if (r1_bio->bios[mirror] == NULL)
478 		rdev_dec_pending(rdev, conf->mddev);
479 
480 	/*
481 	 * Let's see if all mirrored write operations have finished
482 	 * already.
483 	 */
484 	r1_bio_write_done(r1_bio);
485 
486 	if (to_put)
487 		bio_put(to_put);
488 }
489 
490 /*
491  * This routine returns the disk from which the requested read should
492  * be done. There is a per-array 'next expected sequential IO' sector
493  * number - if this matches on the next IO then we use the last disk.
494  * There is also a per-disk 'last know head position' sector that is
495  * maintained from IRQ contexts, both the normal and the resync IO
496  * completion handlers update this position correctly. If there is no
497  * perfect sequential match then we pick the disk whose head is closest.
498  *
499  * If there are 2 mirrors in the same 2 devices, performance degrades
500  * because position is mirror, not device based.
501  *
502  * The rdev for the device selected will have nr_pending incremented.
503  */
504 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
505 {
506 	const sector_t this_sector = r1_bio->sector;
507 	int sectors;
508 	int best_good_sectors;
509 	int best_disk, best_dist_disk, best_pending_disk;
510 	int has_nonrot_disk;
511 	int disk;
512 	sector_t best_dist;
513 	unsigned int min_pending;
514 	struct md_rdev *rdev;
515 	int choose_first;
516 	int choose_next_idle;
517 
518 	rcu_read_lock();
519 	/*
520 	 * Check if we can balance. We can balance on the whole
521 	 * device if no resync is going on, or below the resync window.
522 	 * We take the first readable disk when above the resync window.
523 	 */
524  retry:
525 	sectors = r1_bio->sectors;
526 	best_disk = -1;
527 	best_dist_disk = -1;
528 	best_dist = MaxSector;
529 	best_pending_disk = -1;
530 	min_pending = UINT_MAX;
531 	best_good_sectors = 0;
532 	has_nonrot_disk = 0;
533 	choose_next_idle = 0;
534 
535 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
536 	    (mddev_is_clustered(conf->mddev) &&
537 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
538 		    this_sector + sectors)))
539 		choose_first = 1;
540 	else
541 		choose_first = 0;
542 
543 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
544 		sector_t dist;
545 		sector_t first_bad;
546 		int bad_sectors;
547 		unsigned int pending;
548 		bool nonrot;
549 
550 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
551 		if (r1_bio->bios[disk] == IO_BLOCKED
552 		    || rdev == NULL
553 		    || test_bit(Faulty, &rdev->flags))
554 			continue;
555 		if (!test_bit(In_sync, &rdev->flags) &&
556 		    rdev->recovery_offset < this_sector + sectors)
557 			continue;
558 		if (test_bit(WriteMostly, &rdev->flags)) {
559 			/* Don't balance among write-mostly, just
560 			 * use the first as a last resort */
561 			if (best_dist_disk < 0) {
562 				if (is_badblock(rdev, this_sector, sectors,
563 						&first_bad, &bad_sectors)) {
564 					if (first_bad <= this_sector)
565 						/* Cannot use this */
566 						continue;
567 					best_good_sectors = first_bad - this_sector;
568 				} else
569 					best_good_sectors = sectors;
570 				best_dist_disk = disk;
571 				best_pending_disk = disk;
572 			}
573 			continue;
574 		}
575 		/* This is a reasonable device to use.  It might
576 		 * even be best.
577 		 */
578 		if (is_badblock(rdev, this_sector, sectors,
579 				&first_bad, &bad_sectors)) {
580 			if (best_dist < MaxSector)
581 				/* already have a better device */
582 				continue;
583 			if (first_bad <= this_sector) {
584 				/* cannot read here. If this is the 'primary'
585 				 * device, then we must not read beyond
586 				 * bad_sectors from another device..
587 				 */
588 				bad_sectors -= (this_sector - first_bad);
589 				if (choose_first && sectors > bad_sectors)
590 					sectors = bad_sectors;
591 				if (best_good_sectors > sectors)
592 					best_good_sectors = sectors;
593 
594 			} else {
595 				sector_t good_sectors = first_bad - this_sector;
596 				if (good_sectors > best_good_sectors) {
597 					best_good_sectors = good_sectors;
598 					best_disk = disk;
599 				}
600 				if (choose_first)
601 					break;
602 			}
603 			continue;
604 		} else
605 			best_good_sectors = sectors;
606 
607 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
608 		has_nonrot_disk |= nonrot;
609 		pending = atomic_read(&rdev->nr_pending);
610 		dist = abs(this_sector - conf->mirrors[disk].head_position);
611 		if (choose_first) {
612 			best_disk = disk;
613 			break;
614 		}
615 		/* Don't change to another disk for sequential reads */
616 		if (conf->mirrors[disk].next_seq_sect == this_sector
617 		    || dist == 0) {
618 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
619 			struct raid1_info *mirror = &conf->mirrors[disk];
620 
621 			best_disk = disk;
622 			/*
623 			 * If buffered sequential IO size exceeds optimal
624 			 * iosize, check if there is idle disk. If yes, choose
625 			 * the idle disk. read_balance could already choose an
626 			 * idle disk before noticing it's a sequential IO in
627 			 * this disk. This doesn't matter because this disk
628 			 * will idle, next time it will be utilized after the
629 			 * first disk has IO size exceeds optimal iosize. In
630 			 * this way, iosize of the first disk will be optimal
631 			 * iosize at least. iosize of the second disk might be
632 			 * small, but not a big deal since when the second disk
633 			 * starts IO, the first disk is likely still busy.
634 			 */
635 			if (nonrot && opt_iosize > 0 &&
636 			    mirror->seq_start != MaxSector &&
637 			    mirror->next_seq_sect > opt_iosize &&
638 			    mirror->next_seq_sect - opt_iosize >=
639 			    mirror->seq_start) {
640 				choose_next_idle = 1;
641 				continue;
642 			}
643 			break;
644 		}
645 		/* If device is idle, use it */
646 		if (pending == 0) {
647 			best_disk = disk;
648 			break;
649 		}
650 
651 		if (choose_next_idle)
652 			continue;
653 
654 		if (min_pending > pending) {
655 			min_pending = pending;
656 			best_pending_disk = disk;
657 		}
658 
659 		if (dist < best_dist) {
660 			best_dist = dist;
661 			best_dist_disk = disk;
662 		}
663 	}
664 
665 	/*
666 	 * If all disks are rotational, choose the closest disk. If any disk is
667 	 * non-rotational, choose the disk with less pending request even the
668 	 * disk is rotational, which might/might not be optimal for raids with
669 	 * mixed ratation/non-rotational disks depending on workload.
670 	 */
671 	if (best_disk == -1) {
672 		if (has_nonrot_disk)
673 			best_disk = best_pending_disk;
674 		else
675 			best_disk = best_dist_disk;
676 	}
677 
678 	if (best_disk >= 0) {
679 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
680 		if (!rdev)
681 			goto retry;
682 		atomic_inc(&rdev->nr_pending);
683 		sectors = best_good_sectors;
684 
685 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
686 			conf->mirrors[best_disk].seq_start = this_sector;
687 
688 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
689 	}
690 	rcu_read_unlock();
691 	*max_sectors = sectors;
692 
693 	return best_disk;
694 }
695 
696 static int raid1_congested(struct mddev *mddev, int bits)
697 {
698 	struct r1conf *conf = mddev->private;
699 	int i, ret = 0;
700 
701 	if ((bits & (1 << WB_async_congested)) &&
702 	    conf->pending_count >= max_queued_requests)
703 		return 1;
704 
705 	rcu_read_lock();
706 	for (i = 0; i < conf->raid_disks * 2; i++) {
707 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
708 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
709 			struct request_queue *q = bdev_get_queue(rdev->bdev);
710 
711 			BUG_ON(!q);
712 
713 			/* Note the '|| 1' - when read_balance prefers
714 			 * non-congested targets, it can be removed
715 			 */
716 			if ((bits & (1 << WB_async_congested)) || 1)
717 				ret |= bdi_congested(&q->backing_dev_info, bits);
718 			else
719 				ret &= bdi_congested(&q->backing_dev_info, bits);
720 		}
721 	}
722 	rcu_read_unlock();
723 	return ret;
724 }
725 
726 static void flush_pending_writes(struct r1conf *conf)
727 {
728 	/* Any writes that have been queued but are awaiting
729 	 * bitmap updates get flushed here.
730 	 */
731 	spin_lock_irq(&conf->device_lock);
732 
733 	if (conf->pending_bio_list.head) {
734 		struct bio *bio;
735 		bio = bio_list_get(&conf->pending_bio_list);
736 		conf->pending_count = 0;
737 		spin_unlock_irq(&conf->device_lock);
738 		/* flush any pending bitmap writes to
739 		 * disk before proceeding w/ I/O */
740 		bitmap_unplug(conf->mddev->bitmap);
741 		wake_up(&conf->wait_barrier);
742 
743 		while (bio) { /* submit pending writes */
744 			struct bio *next = bio->bi_next;
745 			bio->bi_next = NULL;
746 			if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
747 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
748 				/* Just ignore it */
749 				bio_endio(bio);
750 			else
751 				generic_make_request(bio);
752 			bio = next;
753 		}
754 	} else
755 		spin_unlock_irq(&conf->device_lock);
756 }
757 
758 /* Barriers....
759  * Sometimes we need to suspend IO while we do something else,
760  * either some resync/recovery, or reconfigure the array.
761  * To do this we raise a 'barrier'.
762  * The 'barrier' is a counter that can be raised multiple times
763  * to count how many activities are happening which preclude
764  * normal IO.
765  * We can only raise the barrier if there is no pending IO.
766  * i.e. if nr_pending == 0.
767  * We choose only to raise the barrier if no-one is waiting for the
768  * barrier to go down.  This means that as soon as an IO request
769  * is ready, no other operations which require a barrier will start
770  * until the IO request has had a chance.
771  *
772  * So: regular IO calls 'wait_barrier'.  When that returns there
773  *    is no backgroup IO happening,  It must arrange to call
774  *    allow_barrier when it has finished its IO.
775  * backgroup IO calls must call raise_barrier.  Once that returns
776  *    there is no normal IO happeing.  It must arrange to call
777  *    lower_barrier when the particular background IO completes.
778  */
779 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
780 {
781 	spin_lock_irq(&conf->resync_lock);
782 
783 	/* Wait until no block IO is waiting */
784 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
785 			    conf->resync_lock);
786 
787 	/* block any new IO from starting */
788 	conf->barrier++;
789 	conf->next_resync = sector_nr;
790 
791 	/* For these conditions we must wait:
792 	 * A: while the array is in frozen state
793 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
794 	 *    the max count which allowed.
795 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
796 	 *    next resync will reach to the window which normal bios are
797 	 *    handling.
798 	 * D: while there are any active requests in the current window.
799 	 */
800 	wait_event_lock_irq(conf->wait_barrier,
801 			    !conf->array_frozen &&
802 			    conf->barrier < RESYNC_DEPTH &&
803 			    conf->current_window_requests == 0 &&
804 			    (conf->start_next_window >=
805 			     conf->next_resync + RESYNC_SECTORS),
806 			    conf->resync_lock);
807 
808 	conf->nr_pending++;
809 	spin_unlock_irq(&conf->resync_lock);
810 }
811 
812 static void lower_barrier(struct r1conf *conf)
813 {
814 	unsigned long flags;
815 	BUG_ON(conf->barrier <= 0);
816 	spin_lock_irqsave(&conf->resync_lock, flags);
817 	conf->barrier--;
818 	conf->nr_pending--;
819 	spin_unlock_irqrestore(&conf->resync_lock, flags);
820 	wake_up(&conf->wait_barrier);
821 }
822 
823 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
824 {
825 	bool wait = false;
826 
827 	if (conf->array_frozen || !bio)
828 		wait = true;
829 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
830 		if ((conf->mddev->curr_resync_completed
831 		     >= bio_end_sector(bio)) ||
832 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
833 		     <= bio->bi_iter.bi_sector))
834 			wait = false;
835 		else
836 			wait = true;
837 	}
838 
839 	return wait;
840 }
841 
842 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
843 {
844 	sector_t sector = 0;
845 
846 	spin_lock_irq(&conf->resync_lock);
847 	if (need_to_wait_for_sync(conf, bio)) {
848 		conf->nr_waiting++;
849 		/* Wait for the barrier to drop.
850 		 * However if there are already pending
851 		 * requests (preventing the barrier from
852 		 * rising completely), and the
853 		 * per-process bio queue isn't empty,
854 		 * then don't wait, as we need to empty
855 		 * that queue to allow conf->start_next_window
856 		 * to increase.
857 		 */
858 		wait_event_lock_irq(conf->wait_barrier,
859 				    !conf->array_frozen &&
860 				    (!conf->barrier ||
861 				     ((conf->start_next_window <
862 				       conf->next_resync + RESYNC_SECTORS) &&
863 				      current->bio_list &&
864 				      !bio_list_empty(current->bio_list))),
865 				    conf->resync_lock);
866 		conf->nr_waiting--;
867 	}
868 
869 	if (bio && bio_data_dir(bio) == WRITE) {
870 		if (bio->bi_iter.bi_sector >= conf->next_resync) {
871 			if (conf->start_next_window == MaxSector)
872 				conf->start_next_window =
873 					conf->next_resync +
874 					NEXT_NORMALIO_DISTANCE;
875 
876 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
877 			    <= bio->bi_iter.bi_sector)
878 				conf->next_window_requests++;
879 			else
880 				conf->current_window_requests++;
881 			sector = conf->start_next_window;
882 		}
883 	}
884 
885 	conf->nr_pending++;
886 	spin_unlock_irq(&conf->resync_lock);
887 	return sector;
888 }
889 
890 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
891 			  sector_t bi_sector)
892 {
893 	unsigned long flags;
894 
895 	spin_lock_irqsave(&conf->resync_lock, flags);
896 	conf->nr_pending--;
897 	if (start_next_window) {
898 		if (start_next_window == conf->start_next_window) {
899 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
900 			    <= bi_sector)
901 				conf->next_window_requests--;
902 			else
903 				conf->current_window_requests--;
904 		} else
905 			conf->current_window_requests--;
906 
907 		if (!conf->current_window_requests) {
908 			if (conf->next_window_requests) {
909 				conf->current_window_requests =
910 					conf->next_window_requests;
911 				conf->next_window_requests = 0;
912 				conf->start_next_window +=
913 					NEXT_NORMALIO_DISTANCE;
914 			} else
915 				conf->start_next_window = MaxSector;
916 		}
917 	}
918 	spin_unlock_irqrestore(&conf->resync_lock, flags);
919 	wake_up(&conf->wait_barrier);
920 }
921 
922 static void freeze_array(struct r1conf *conf, int extra)
923 {
924 	/* stop syncio and normal IO and wait for everything to
925 	 * go quite.
926 	 * We wait until nr_pending match nr_queued+extra
927 	 * This is called in the context of one normal IO request
928 	 * that has failed. Thus any sync request that might be pending
929 	 * will be blocked by nr_pending, and we need to wait for
930 	 * pending IO requests to complete or be queued for re-try.
931 	 * Thus the number queued (nr_queued) plus this request (extra)
932 	 * must match the number of pending IOs (nr_pending) before
933 	 * we continue.
934 	 */
935 	spin_lock_irq(&conf->resync_lock);
936 	conf->array_frozen = 1;
937 	wait_event_lock_irq_cmd(conf->wait_barrier,
938 				conf->nr_pending == conf->nr_queued+extra,
939 				conf->resync_lock,
940 				flush_pending_writes(conf));
941 	spin_unlock_irq(&conf->resync_lock);
942 }
943 static void unfreeze_array(struct r1conf *conf)
944 {
945 	/* reverse the effect of the freeze */
946 	spin_lock_irq(&conf->resync_lock);
947 	conf->array_frozen = 0;
948 	wake_up(&conf->wait_barrier);
949 	spin_unlock_irq(&conf->resync_lock);
950 }
951 
952 /* duplicate the data pages for behind I/O
953  */
954 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
955 {
956 	int i;
957 	struct bio_vec *bvec;
958 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
959 					GFP_NOIO);
960 	if (unlikely(!bvecs))
961 		return;
962 
963 	bio_for_each_segment_all(bvec, bio, i) {
964 		bvecs[i] = *bvec;
965 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
966 		if (unlikely(!bvecs[i].bv_page))
967 			goto do_sync_io;
968 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
969 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
970 		kunmap(bvecs[i].bv_page);
971 		kunmap(bvec->bv_page);
972 	}
973 	r1_bio->behind_bvecs = bvecs;
974 	r1_bio->behind_page_count = bio->bi_vcnt;
975 	set_bit(R1BIO_BehindIO, &r1_bio->state);
976 	return;
977 
978 do_sync_io:
979 	for (i = 0; i < bio->bi_vcnt; i++)
980 		if (bvecs[i].bv_page)
981 			put_page(bvecs[i].bv_page);
982 	kfree(bvecs);
983 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
984 		 bio->bi_iter.bi_size);
985 }
986 
987 struct raid1_plug_cb {
988 	struct blk_plug_cb	cb;
989 	struct bio_list		pending;
990 	int			pending_cnt;
991 };
992 
993 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
994 {
995 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
996 						  cb);
997 	struct mddev *mddev = plug->cb.data;
998 	struct r1conf *conf = mddev->private;
999 	struct bio *bio;
1000 
1001 	if (from_schedule || current->bio_list) {
1002 		spin_lock_irq(&conf->device_lock);
1003 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1004 		conf->pending_count += plug->pending_cnt;
1005 		spin_unlock_irq(&conf->device_lock);
1006 		wake_up(&conf->wait_barrier);
1007 		md_wakeup_thread(mddev->thread);
1008 		kfree(plug);
1009 		return;
1010 	}
1011 
1012 	/* we aren't scheduling, so we can do the write-out directly. */
1013 	bio = bio_list_get(&plug->pending);
1014 	bitmap_unplug(mddev->bitmap);
1015 	wake_up(&conf->wait_barrier);
1016 
1017 	while (bio) { /* submit pending writes */
1018 		struct bio *next = bio->bi_next;
1019 		bio->bi_next = NULL;
1020 		if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1021 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1022 			/* Just ignore it */
1023 			bio_endio(bio);
1024 		else
1025 			generic_make_request(bio);
1026 		bio = next;
1027 	}
1028 	kfree(plug);
1029 }
1030 
1031 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1032 {
1033 	struct r1conf *conf = mddev->private;
1034 	struct raid1_info *mirror;
1035 	struct r1bio *r1_bio;
1036 	struct bio *read_bio;
1037 	int i, disks;
1038 	struct bitmap *bitmap;
1039 	unsigned long flags;
1040 	const int op = bio_op(bio);
1041 	const int rw = bio_data_dir(bio);
1042 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1043 	const unsigned long do_flush_fua = (bio->bi_opf &
1044 						(REQ_PREFLUSH | REQ_FUA));
1045 	struct md_rdev *blocked_rdev;
1046 	struct blk_plug_cb *cb;
1047 	struct raid1_plug_cb *plug = NULL;
1048 	int first_clone;
1049 	int sectors_handled;
1050 	int max_sectors;
1051 	sector_t start_next_window;
1052 
1053 	/*
1054 	 * Register the new request and wait if the reconstruction
1055 	 * thread has put up a bar for new requests.
1056 	 * Continue immediately if no resync is active currently.
1057 	 */
1058 
1059 	md_write_start(mddev, bio); /* wait on superblock update early */
1060 
1061 	if (bio_data_dir(bio) == WRITE &&
1062 	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1063 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1064 	    (mddev_is_clustered(mddev) &&
1065 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1066 		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1067 		/* As the suspend_* range is controlled by
1068 		 * userspace, we want an interruptible
1069 		 * wait.
1070 		 */
1071 		DEFINE_WAIT(w);
1072 		for (;;) {
1073 			flush_signals(current);
1074 			prepare_to_wait(&conf->wait_barrier,
1075 					&w, TASK_INTERRUPTIBLE);
1076 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1077 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1078 			    (mddev_is_clustered(mddev) &&
1079 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1080 				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1081 				break;
1082 			schedule();
1083 		}
1084 		finish_wait(&conf->wait_barrier, &w);
1085 	}
1086 
1087 	start_next_window = wait_barrier(conf, bio);
1088 
1089 	bitmap = mddev->bitmap;
1090 
1091 	/*
1092 	 * make_request() can abort the operation when read-ahead is being
1093 	 * used and no empty request is available.
1094 	 *
1095 	 */
1096 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1097 
1098 	r1_bio->master_bio = bio;
1099 	r1_bio->sectors = bio_sectors(bio);
1100 	r1_bio->state = 0;
1101 	r1_bio->mddev = mddev;
1102 	r1_bio->sector = bio->bi_iter.bi_sector;
1103 
1104 	/* We might need to issue multiple reads to different
1105 	 * devices if there are bad blocks around, so we keep
1106 	 * track of the number of reads in bio->bi_phys_segments.
1107 	 * If this is 0, there is only one r1_bio and no locking
1108 	 * will be needed when requests complete.  If it is
1109 	 * non-zero, then it is the number of not-completed requests.
1110 	 */
1111 	bio->bi_phys_segments = 0;
1112 	bio_clear_flag(bio, BIO_SEG_VALID);
1113 
1114 	if (rw == READ) {
1115 		/*
1116 		 * read balancing logic:
1117 		 */
1118 		int rdisk;
1119 
1120 read_again:
1121 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1122 
1123 		if (rdisk < 0) {
1124 			/* couldn't find anywhere to read from */
1125 			raid_end_bio_io(r1_bio);
1126 			return;
1127 		}
1128 		mirror = conf->mirrors + rdisk;
1129 
1130 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1131 		    bitmap) {
1132 			/* Reading from a write-mostly device must
1133 			 * take care not to over-take any writes
1134 			 * that are 'behind'
1135 			 */
1136 			wait_event(bitmap->behind_wait,
1137 				   atomic_read(&bitmap->behind_writes) == 0);
1138 		}
1139 		r1_bio->read_disk = rdisk;
1140 		r1_bio->start_next_window = 0;
1141 
1142 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1143 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1144 			 max_sectors);
1145 
1146 		r1_bio->bios[rdisk] = read_bio;
1147 
1148 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1149 			mirror->rdev->data_offset;
1150 		read_bio->bi_bdev = mirror->rdev->bdev;
1151 		read_bio->bi_end_io = raid1_end_read_request;
1152 		bio_set_op_attrs(read_bio, op, do_sync);
1153 		read_bio->bi_private = r1_bio;
1154 
1155 		if (max_sectors < r1_bio->sectors) {
1156 			/* could not read all from this device, so we will
1157 			 * need another r1_bio.
1158 			 */
1159 
1160 			sectors_handled = (r1_bio->sector + max_sectors
1161 					   - bio->bi_iter.bi_sector);
1162 			r1_bio->sectors = max_sectors;
1163 			spin_lock_irq(&conf->device_lock);
1164 			if (bio->bi_phys_segments == 0)
1165 				bio->bi_phys_segments = 2;
1166 			else
1167 				bio->bi_phys_segments++;
1168 			spin_unlock_irq(&conf->device_lock);
1169 			/* Cannot call generic_make_request directly
1170 			 * as that will be queued in __make_request
1171 			 * and subsequent mempool_alloc might block waiting
1172 			 * for it.  So hand bio over to raid1d.
1173 			 */
1174 			reschedule_retry(r1_bio);
1175 
1176 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1177 
1178 			r1_bio->master_bio = bio;
1179 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1180 			r1_bio->state = 0;
1181 			r1_bio->mddev = mddev;
1182 			r1_bio->sector = bio->bi_iter.bi_sector +
1183 				sectors_handled;
1184 			goto read_again;
1185 		} else
1186 			generic_make_request(read_bio);
1187 		return;
1188 	}
1189 
1190 	/*
1191 	 * WRITE:
1192 	 */
1193 	if (conf->pending_count >= max_queued_requests) {
1194 		md_wakeup_thread(mddev->thread);
1195 		wait_event(conf->wait_barrier,
1196 			   conf->pending_count < max_queued_requests);
1197 	}
1198 	/* first select target devices under rcu_lock and
1199 	 * inc refcount on their rdev.  Record them by setting
1200 	 * bios[x] to bio
1201 	 * If there are known/acknowledged bad blocks on any device on
1202 	 * which we have seen a write error, we want to avoid writing those
1203 	 * blocks.
1204 	 * This potentially requires several writes to write around
1205 	 * the bad blocks.  Each set of writes gets it's own r1bio
1206 	 * with a set of bios attached.
1207 	 */
1208 
1209 	disks = conf->raid_disks * 2;
1210  retry_write:
1211 	r1_bio->start_next_window = start_next_window;
1212 	blocked_rdev = NULL;
1213 	rcu_read_lock();
1214 	max_sectors = r1_bio->sectors;
1215 	for (i = 0;  i < disks; i++) {
1216 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1217 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1218 			atomic_inc(&rdev->nr_pending);
1219 			blocked_rdev = rdev;
1220 			break;
1221 		}
1222 		r1_bio->bios[i] = NULL;
1223 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1224 			if (i < conf->raid_disks)
1225 				set_bit(R1BIO_Degraded, &r1_bio->state);
1226 			continue;
1227 		}
1228 
1229 		atomic_inc(&rdev->nr_pending);
1230 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1231 			sector_t first_bad;
1232 			int bad_sectors;
1233 			int is_bad;
1234 
1235 			is_bad = is_badblock(rdev, r1_bio->sector,
1236 					     max_sectors,
1237 					     &first_bad, &bad_sectors);
1238 			if (is_bad < 0) {
1239 				/* mustn't write here until the bad block is
1240 				 * acknowledged*/
1241 				set_bit(BlockedBadBlocks, &rdev->flags);
1242 				blocked_rdev = rdev;
1243 				break;
1244 			}
1245 			if (is_bad && first_bad <= r1_bio->sector) {
1246 				/* Cannot write here at all */
1247 				bad_sectors -= (r1_bio->sector - first_bad);
1248 				if (bad_sectors < max_sectors)
1249 					/* mustn't write more than bad_sectors
1250 					 * to other devices yet
1251 					 */
1252 					max_sectors = bad_sectors;
1253 				rdev_dec_pending(rdev, mddev);
1254 				/* We don't set R1BIO_Degraded as that
1255 				 * only applies if the disk is
1256 				 * missing, so it might be re-added,
1257 				 * and we want to know to recover this
1258 				 * chunk.
1259 				 * In this case the device is here,
1260 				 * and the fact that this chunk is not
1261 				 * in-sync is recorded in the bad
1262 				 * block log
1263 				 */
1264 				continue;
1265 			}
1266 			if (is_bad) {
1267 				int good_sectors = first_bad - r1_bio->sector;
1268 				if (good_sectors < max_sectors)
1269 					max_sectors = good_sectors;
1270 			}
1271 		}
1272 		r1_bio->bios[i] = bio;
1273 	}
1274 	rcu_read_unlock();
1275 
1276 	if (unlikely(blocked_rdev)) {
1277 		/* Wait for this device to become unblocked */
1278 		int j;
1279 		sector_t old = start_next_window;
1280 
1281 		for (j = 0; j < i; j++)
1282 			if (r1_bio->bios[j])
1283 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1284 		r1_bio->state = 0;
1285 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1286 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1287 		start_next_window = wait_barrier(conf, bio);
1288 		/*
1289 		 * We must make sure the multi r1bios of bio have
1290 		 * the same value of bi_phys_segments
1291 		 */
1292 		if (bio->bi_phys_segments && old &&
1293 		    old != start_next_window)
1294 			/* Wait for the former r1bio(s) to complete */
1295 			wait_event(conf->wait_barrier,
1296 				   bio->bi_phys_segments == 1);
1297 		goto retry_write;
1298 	}
1299 
1300 	if (max_sectors < r1_bio->sectors) {
1301 		/* We are splitting this write into multiple parts, so
1302 		 * we need to prepare for allocating another r1_bio.
1303 		 */
1304 		r1_bio->sectors = max_sectors;
1305 		spin_lock_irq(&conf->device_lock);
1306 		if (bio->bi_phys_segments == 0)
1307 			bio->bi_phys_segments = 2;
1308 		else
1309 			bio->bi_phys_segments++;
1310 		spin_unlock_irq(&conf->device_lock);
1311 	}
1312 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1313 
1314 	atomic_set(&r1_bio->remaining, 1);
1315 	atomic_set(&r1_bio->behind_remaining, 0);
1316 
1317 	first_clone = 1;
1318 	for (i = 0; i < disks; i++) {
1319 		struct bio *mbio;
1320 		if (!r1_bio->bios[i])
1321 			continue;
1322 
1323 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1324 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1325 
1326 		if (first_clone) {
1327 			/* do behind I/O ?
1328 			 * Not if there are too many, or cannot
1329 			 * allocate memory, or a reader on WriteMostly
1330 			 * is waiting for behind writes to flush */
1331 			if (bitmap &&
1332 			    (atomic_read(&bitmap->behind_writes)
1333 			     < mddev->bitmap_info.max_write_behind) &&
1334 			    !waitqueue_active(&bitmap->behind_wait))
1335 				alloc_behind_pages(mbio, r1_bio);
1336 
1337 			bitmap_startwrite(bitmap, r1_bio->sector,
1338 					  r1_bio->sectors,
1339 					  test_bit(R1BIO_BehindIO,
1340 						   &r1_bio->state));
1341 			first_clone = 0;
1342 		}
1343 		if (r1_bio->behind_bvecs) {
1344 			struct bio_vec *bvec;
1345 			int j;
1346 
1347 			/*
1348 			 * We trimmed the bio, so _all is legit
1349 			 */
1350 			bio_for_each_segment_all(bvec, mbio, j)
1351 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1352 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1353 				atomic_inc(&r1_bio->behind_remaining);
1354 		}
1355 
1356 		r1_bio->bios[i] = mbio;
1357 
1358 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1359 				   conf->mirrors[i].rdev->data_offset);
1360 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1361 		mbio->bi_end_io	= raid1_end_write_request;
1362 		bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1363 		mbio->bi_private = r1_bio;
1364 
1365 		atomic_inc(&r1_bio->remaining);
1366 
1367 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1368 		if (cb)
1369 			plug = container_of(cb, struct raid1_plug_cb, cb);
1370 		else
1371 			plug = NULL;
1372 		spin_lock_irqsave(&conf->device_lock, flags);
1373 		if (plug) {
1374 			bio_list_add(&plug->pending, mbio);
1375 			plug->pending_cnt++;
1376 		} else {
1377 			bio_list_add(&conf->pending_bio_list, mbio);
1378 			conf->pending_count++;
1379 		}
1380 		spin_unlock_irqrestore(&conf->device_lock, flags);
1381 		if (!plug)
1382 			md_wakeup_thread(mddev->thread);
1383 	}
1384 	/* Mustn't call r1_bio_write_done before this next test,
1385 	 * as it could result in the bio being freed.
1386 	 */
1387 	if (sectors_handled < bio_sectors(bio)) {
1388 		r1_bio_write_done(r1_bio);
1389 		/* We need another r1_bio.  It has already been counted
1390 		 * in bio->bi_phys_segments
1391 		 */
1392 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1393 		r1_bio->master_bio = bio;
1394 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1395 		r1_bio->state = 0;
1396 		r1_bio->mddev = mddev;
1397 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1398 		goto retry_write;
1399 	}
1400 
1401 	r1_bio_write_done(r1_bio);
1402 
1403 	/* In case raid1d snuck in to freeze_array */
1404 	wake_up(&conf->wait_barrier);
1405 }
1406 
1407 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1408 {
1409 	struct r1conf *conf = mddev->private;
1410 	int i;
1411 
1412 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1413 		   conf->raid_disks - mddev->degraded);
1414 	rcu_read_lock();
1415 	for (i = 0; i < conf->raid_disks; i++) {
1416 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1417 		seq_printf(seq, "%s",
1418 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1419 	}
1420 	rcu_read_unlock();
1421 	seq_printf(seq, "]");
1422 }
1423 
1424 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1425 {
1426 	char b[BDEVNAME_SIZE];
1427 	struct r1conf *conf = mddev->private;
1428 	unsigned long flags;
1429 
1430 	/*
1431 	 * If it is not operational, then we have already marked it as dead
1432 	 * else if it is the last working disks, ignore the error, let the
1433 	 * next level up know.
1434 	 * else mark the drive as failed
1435 	 */
1436 	if (test_bit(In_sync, &rdev->flags)
1437 	    && (conf->raid_disks - mddev->degraded) == 1) {
1438 		/*
1439 		 * Don't fail the drive, act as though we were just a
1440 		 * normal single drive.
1441 		 * However don't try a recovery from this drive as
1442 		 * it is very likely to fail.
1443 		 */
1444 		conf->recovery_disabled = mddev->recovery_disabled;
1445 		return;
1446 	}
1447 	set_bit(Blocked, &rdev->flags);
1448 	spin_lock_irqsave(&conf->device_lock, flags);
1449 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1450 		mddev->degraded++;
1451 		set_bit(Faulty, &rdev->flags);
1452 	} else
1453 		set_bit(Faulty, &rdev->flags);
1454 	spin_unlock_irqrestore(&conf->device_lock, flags);
1455 	/*
1456 	 * if recovery is running, make sure it aborts.
1457 	 */
1458 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1459 	set_mask_bits(&mddev->flags, 0,
1460 		      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1461 	printk(KERN_ALERT
1462 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1463 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1464 	       mdname(mddev), bdevname(rdev->bdev, b),
1465 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1466 }
1467 
1468 static void print_conf(struct r1conf *conf)
1469 {
1470 	int i;
1471 
1472 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1473 	if (!conf) {
1474 		printk(KERN_DEBUG "(!conf)\n");
1475 		return;
1476 	}
1477 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1478 		conf->raid_disks);
1479 
1480 	rcu_read_lock();
1481 	for (i = 0; i < conf->raid_disks; i++) {
1482 		char b[BDEVNAME_SIZE];
1483 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1484 		if (rdev)
1485 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1486 			       i, !test_bit(In_sync, &rdev->flags),
1487 			       !test_bit(Faulty, &rdev->flags),
1488 			       bdevname(rdev->bdev,b));
1489 	}
1490 	rcu_read_unlock();
1491 }
1492 
1493 static void close_sync(struct r1conf *conf)
1494 {
1495 	wait_barrier(conf, NULL);
1496 	allow_barrier(conf, 0, 0);
1497 
1498 	mempool_destroy(conf->r1buf_pool);
1499 	conf->r1buf_pool = NULL;
1500 
1501 	spin_lock_irq(&conf->resync_lock);
1502 	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1503 	conf->start_next_window = MaxSector;
1504 	conf->current_window_requests +=
1505 		conf->next_window_requests;
1506 	conf->next_window_requests = 0;
1507 	spin_unlock_irq(&conf->resync_lock);
1508 }
1509 
1510 static int raid1_spare_active(struct mddev *mddev)
1511 {
1512 	int i;
1513 	struct r1conf *conf = mddev->private;
1514 	int count = 0;
1515 	unsigned long flags;
1516 
1517 	/*
1518 	 * Find all failed disks within the RAID1 configuration
1519 	 * and mark them readable.
1520 	 * Called under mddev lock, so rcu protection not needed.
1521 	 * device_lock used to avoid races with raid1_end_read_request
1522 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1523 	 */
1524 	spin_lock_irqsave(&conf->device_lock, flags);
1525 	for (i = 0; i < conf->raid_disks; i++) {
1526 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1527 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1528 		if (repl
1529 		    && !test_bit(Candidate, &repl->flags)
1530 		    && repl->recovery_offset == MaxSector
1531 		    && !test_bit(Faulty, &repl->flags)
1532 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1533 			/* replacement has just become active */
1534 			if (!rdev ||
1535 			    !test_and_clear_bit(In_sync, &rdev->flags))
1536 				count++;
1537 			if (rdev) {
1538 				/* Replaced device not technically
1539 				 * faulty, but we need to be sure
1540 				 * it gets removed and never re-added
1541 				 */
1542 				set_bit(Faulty, &rdev->flags);
1543 				sysfs_notify_dirent_safe(
1544 					rdev->sysfs_state);
1545 			}
1546 		}
1547 		if (rdev
1548 		    && rdev->recovery_offset == MaxSector
1549 		    && !test_bit(Faulty, &rdev->flags)
1550 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1551 			count++;
1552 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1553 		}
1554 	}
1555 	mddev->degraded -= count;
1556 	spin_unlock_irqrestore(&conf->device_lock, flags);
1557 
1558 	print_conf(conf);
1559 	return count;
1560 }
1561 
1562 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1563 {
1564 	struct r1conf *conf = mddev->private;
1565 	int err = -EEXIST;
1566 	int mirror = 0;
1567 	struct raid1_info *p;
1568 	int first = 0;
1569 	int last = conf->raid_disks - 1;
1570 
1571 	if (mddev->recovery_disabled == conf->recovery_disabled)
1572 		return -EBUSY;
1573 
1574 	if (md_integrity_add_rdev(rdev, mddev))
1575 		return -ENXIO;
1576 
1577 	if (rdev->raid_disk >= 0)
1578 		first = last = rdev->raid_disk;
1579 
1580 	/*
1581 	 * find the disk ... but prefer rdev->saved_raid_disk
1582 	 * if possible.
1583 	 */
1584 	if (rdev->saved_raid_disk >= 0 &&
1585 	    rdev->saved_raid_disk >= first &&
1586 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1587 		first = last = rdev->saved_raid_disk;
1588 
1589 	for (mirror = first; mirror <= last; mirror++) {
1590 		p = conf->mirrors+mirror;
1591 		if (!p->rdev) {
1592 
1593 			if (mddev->gendisk)
1594 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1595 						  rdev->data_offset << 9);
1596 
1597 			p->head_position = 0;
1598 			rdev->raid_disk = mirror;
1599 			err = 0;
1600 			/* As all devices are equivalent, we don't need a full recovery
1601 			 * if this was recently any drive of the array
1602 			 */
1603 			if (rdev->saved_raid_disk < 0)
1604 				conf->fullsync = 1;
1605 			rcu_assign_pointer(p->rdev, rdev);
1606 			break;
1607 		}
1608 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1609 		    p[conf->raid_disks].rdev == NULL) {
1610 			/* Add this device as a replacement */
1611 			clear_bit(In_sync, &rdev->flags);
1612 			set_bit(Replacement, &rdev->flags);
1613 			rdev->raid_disk = mirror;
1614 			err = 0;
1615 			conf->fullsync = 1;
1616 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1617 			break;
1618 		}
1619 	}
1620 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1621 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1622 	print_conf(conf);
1623 	return err;
1624 }
1625 
1626 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1627 {
1628 	struct r1conf *conf = mddev->private;
1629 	int err = 0;
1630 	int number = rdev->raid_disk;
1631 	struct raid1_info *p = conf->mirrors + number;
1632 
1633 	if (rdev != p->rdev)
1634 		p = conf->mirrors + conf->raid_disks + number;
1635 
1636 	print_conf(conf);
1637 	if (rdev == p->rdev) {
1638 		if (test_bit(In_sync, &rdev->flags) ||
1639 		    atomic_read(&rdev->nr_pending)) {
1640 			err = -EBUSY;
1641 			goto abort;
1642 		}
1643 		/* Only remove non-faulty devices if recovery
1644 		 * is not possible.
1645 		 */
1646 		if (!test_bit(Faulty, &rdev->flags) &&
1647 		    mddev->recovery_disabled != conf->recovery_disabled &&
1648 		    mddev->degraded < conf->raid_disks) {
1649 			err = -EBUSY;
1650 			goto abort;
1651 		}
1652 		p->rdev = NULL;
1653 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1654 			synchronize_rcu();
1655 			if (atomic_read(&rdev->nr_pending)) {
1656 				/* lost the race, try later */
1657 				err = -EBUSY;
1658 				p->rdev = rdev;
1659 				goto abort;
1660 			}
1661 		}
1662 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1663 			/* We just removed a device that is being replaced.
1664 			 * Move down the replacement.  We drain all IO before
1665 			 * doing this to avoid confusion.
1666 			 */
1667 			struct md_rdev *repl =
1668 				conf->mirrors[conf->raid_disks + number].rdev;
1669 			freeze_array(conf, 0);
1670 			clear_bit(Replacement, &repl->flags);
1671 			p->rdev = repl;
1672 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1673 			unfreeze_array(conf);
1674 			clear_bit(WantReplacement, &rdev->flags);
1675 		} else
1676 			clear_bit(WantReplacement, &rdev->flags);
1677 		err = md_integrity_register(mddev);
1678 	}
1679 abort:
1680 
1681 	print_conf(conf);
1682 	return err;
1683 }
1684 
1685 static void end_sync_read(struct bio *bio)
1686 {
1687 	struct r1bio *r1_bio = bio->bi_private;
1688 
1689 	update_head_pos(r1_bio->read_disk, r1_bio);
1690 
1691 	/*
1692 	 * we have read a block, now it needs to be re-written,
1693 	 * or re-read if the read failed.
1694 	 * We don't do much here, just schedule handling by raid1d
1695 	 */
1696 	if (!bio->bi_error)
1697 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1698 
1699 	if (atomic_dec_and_test(&r1_bio->remaining))
1700 		reschedule_retry(r1_bio);
1701 }
1702 
1703 static void end_sync_write(struct bio *bio)
1704 {
1705 	int uptodate = !bio->bi_error;
1706 	struct r1bio *r1_bio = bio->bi_private;
1707 	struct mddev *mddev = r1_bio->mddev;
1708 	struct r1conf *conf = mddev->private;
1709 	sector_t first_bad;
1710 	int bad_sectors;
1711 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1712 
1713 	if (!uptodate) {
1714 		sector_t sync_blocks = 0;
1715 		sector_t s = r1_bio->sector;
1716 		long sectors_to_go = r1_bio->sectors;
1717 		/* make sure these bits doesn't get cleared. */
1718 		do {
1719 			bitmap_end_sync(mddev->bitmap, s,
1720 					&sync_blocks, 1);
1721 			s += sync_blocks;
1722 			sectors_to_go -= sync_blocks;
1723 		} while (sectors_to_go > 0);
1724 		set_bit(WriteErrorSeen, &rdev->flags);
1725 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1726 			set_bit(MD_RECOVERY_NEEDED, &
1727 				mddev->recovery);
1728 		set_bit(R1BIO_WriteError, &r1_bio->state);
1729 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1730 			       &first_bad, &bad_sectors) &&
1731 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1732 				r1_bio->sector,
1733 				r1_bio->sectors,
1734 				&first_bad, &bad_sectors)
1735 		)
1736 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1737 
1738 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1739 		int s = r1_bio->sectors;
1740 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1741 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1742 			reschedule_retry(r1_bio);
1743 		else {
1744 			put_buf(r1_bio);
1745 			md_done_sync(mddev, s, uptodate);
1746 		}
1747 	}
1748 }
1749 
1750 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1751 			    int sectors, struct page *page, int rw)
1752 {
1753 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1754 		/* success */
1755 		return 1;
1756 	if (rw == WRITE) {
1757 		set_bit(WriteErrorSeen, &rdev->flags);
1758 		if (!test_and_set_bit(WantReplacement,
1759 				      &rdev->flags))
1760 			set_bit(MD_RECOVERY_NEEDED, &
1761 				rdev->mddev->recovery);
1762 	}
1763 	/* need to record an error - either for the block or the device */
1764 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1765 		md_error(rdev->mddev, rdev);
1766 	return 0;
1767 }
1768 
1769 static int fix_sync_read_error(struct r1bio *r1_bio)
1770 {
1771 	/* Try some synchronous reads of other devices to get
1772 	 * good data, much like with normal read errors.  Only
1773 	 * read into the pages we already have so we don't
1774 	 * need to re-issue the read request.
1775 	 * We don't need to freeze the array, because being in an
1776 	 * active sync request, there is no normal IO, and
1777 	 * no overlapping syncs.
1778 	 * We don't need to check is_badblock() again as we
1779 	 * made sure that anything with a bad block in range
1780 	 * will have bi_end_io clear.
1781 	 */
1782 	struct mddev *mddev = r1_bio->mddev;
1783 	struct r1conf *conf = mddev->private;
1784 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1785 	sector_t sect = r1_bio->sector;
1786 	int sectors = r1_bio->sectors;
1787 	int idx = 0;
1788 
1789 	while(sectors) {
1790 		int s = sectors;
1791 		int d = r1_bio->read_disk;
1792 		int success = 0;
1793 		struct md_rdev *rdev;
1794 		int start;
1795 
1796 		if (s > (PAGE_SIZE>>9))
1797 			s = PAGE_SIZE >> 9;
1798 		do {
1799 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1800 				/* No rcu protection needed here devices
1801 				 * can only be removed when no resync is
1802 				 * active, and resync is currently active
1803 				 */
1804 				rdev = conf->mirrors[d].rdev;
1805 				if (sync_page_io(rdev, sect, s<<9,
1806 						 bio->bi_io_vec[idx].bv_page,
1807 						 REQ_OP_READ, 0, false)) {
1808 					success = 1;
1809 					break;
1810 				}
1811 			}
1812 			d++;
1813 			if (d == conf->raid_disks * 2)
1814 				d = 0;
1815 		} while (!success && d != r1_bio->read_disk);
1816 
1817 		if (!success) {
1818 			char b[BDEVNAME_SIZE];
1819 			int abort = 0;
1820 			/* Cannot read from anywhere, this block is lost.
1821 			 * Record a bad block on each device.  If that doesn't
1822 			 * work just disable and interrupt the recovery.
1823 			 * Don't fail devices as that won't really help.
1824 			 */
1825 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1826 			       " for block %llu\n",
1827 			       mdname(mddev),
1828 			       bdevname(bio->bi_bdev, b),
1829 			       (unsigned long long)r1_bio->sector);
1830 			for (d = 0; d < conf->raid_disks * 2; d++) {
1831 				rdev = conf->mirrors[d].rdev;
1832 				if (!rdev || test_bit(Faulty, &rdev->flags))
1833 					continue;
1834 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1835 					abort = 1;
1836 			}
1837 			if (abort) {
1838 				conf->recovery_disabled =
1839 					mddev->recovery_disabled;
1840 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1841 				md_done_sync(mddev, r1_bio->sectors, 0);
1842 				put_buf(r1_bio);
1843 				return 0;
1844 			}
1845 			/* Try next page */
1846 			sectors -= s;
1847 			sect += s;
1848 			idx++;
1849 			continue;
1850 		}
1851 
1852 		start = d;
1853 		/* write it back and re-read */
1854 		while (d != r1_bio->read_disk) {
1855 			if (d == 0)
1856 				d = conf->raid_disks * 2;
1857 			d--;
1858 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1859 				continue;
1860 			rdev = conf->mirrors[d].rdev;
1861 			if (r1_sync_page_io(rdev, sect, s,
1862 					    bio->bi_io_vec[idx].bv_page,
1863 					    WRITE) == 0) {
1864 				r1_bio->bios[d]->bi_end_io = NULL;
1865 				rdev_dec_pending(rdev, mddev);
1866 			}
1867 		}
1868 		d = start;
1869 		while (d != r1_bio->read_disk) {
1870 			if (d == 0)
1871 				d = conf->raid_disks * 2;
1872 			d--;
1873 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1874 				continue;
1875 			rdev = conf->mirrors[d].rdev;
1876 			if (r1_sync_page_io(rdev, sect, s,
1877 					    bio->bi_io_vec[idx].bv_page,
1878 					    READ) != 0)
1879 				atomic_add(s, &rdev->corrected_errors);
1880 		}
1881 		sectors -= s;
1882 		sect += s;
1883 		idx ++;
1884 	}
1885 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1886 	bio->bi_error = 0;
1887 	return 1;
1888 }
1889 
1890 static void process_checks(struct r1bio *r1_bio)
1891 {
1892 	/* We have read all readable devices.  If we haven't
1893 	 * got the block, then there is no hope left.
1894 	 * If we have, then we want to do a comparison
1895 	 * and skip the write if everything is the same.
1896 	 * If any blocks failed to read, then we need to
1897 	 * attempt an over-write
1898 	 */
1899 	struct mddev *mddev = r1_bio->mddev;
1900 	struct r1conf *conf = mddev->private;
1901 	int primary;
1902 	int i;
1903 	int vcnt;
1904 
1905 	/* Fix variable parts of all bios */
1906 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1907 	for (i = 0; i < conf->raid_disks * 2; i++) {
1908 		int j;
1909 		int size;
1910 		int error;
1911 		struct bio *b = r1_bio->bios[i];
1912 		if (b->bi_end_io != end_sync_read)
1913 			continue;
1914 		/* fixup the bio for reuse, but preserve errno */
1915 		error = b->bi_error;
1916 		bio_reset(b);
1917 		b->bi_error = error;
1918 		b->bi_vcnt = vcnt;
1919 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1920 		b->bi_iter.bi_sector = r1_bio->sector +
1921 			conf->mirrors[i].rdev->data_offset;
1922 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1923 		b->bi_end_io = end_sync_read;
1924 		b->bi_private = r1_bio;
1925 
1926 		size = b->bi_iter.bi_size;
1927 		for (j = 0; j < vcnt ; j++) {
1928 			struct bio_vec *bi;
1929 			bi = &b->bi_io_vec[j];
1930 			bi->bv_offset = 0;
1931 			if (size > PAGE_SIZE)
1932 				bi->bv_len = PAGE_SIZE;
1933 			else
1934 				bi->bv_len = size;
1935 			size -= PAGE_SIZE;
1936 		}
1937 	}
1938 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1939 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1940 		    !r1_bio->bios[primary]->bi_error) {
1941 			r1_bio->bios[primary]->bi_end_io = NULL;
1942 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1943 			break;
1944 		}
1945 	r1_bio->read_disk = primary;
1946 	for (i = 0; i < conf->raid_disks * 2; i++) {
1947 		int j;
1948 		struct bio *pbio = r1_bio->bios[primary];
1949 		struct bio *sbio = r1_bio->bios[i];
1950 		int error = sbio->bi_error;
1951 
1952 		if (sbio->bi_end_io != end_sync_read)
1953 			continue;
1954 		/* Now we can 'fixup' the error value */
1955 		sbio->bi_error = 0;
1956 
1957 		if (!error) {
1958 			for (j = vcnt; j-- ; ) {
1959 				struct page *p, *s;
1960 				p = pbio->bi_io_vec[j].bv_page;
1961 				s = sbio->bi_io_vec[j].bv_page;
1962 				if (memcmp(page_address(p),
1963 					   page_address(s),
1964 					   sbio->bi_io_vec[j].bv_len))
1965 					break;
1966 			}
1967 		} else
1968 			j = 0;
1969 		if (j >= 0)
1970 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1971 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1972 			      && !error)) {
1973 			/* No need to write to this device. */
1974 			sbio->bi_end_io = NULL;
1975 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1976 			continue;
1977 		}
1978 
1979 		bio_copy_data(sbio, pbio);
1980 	}
1981 }
1982 
1983 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1984 {
1985 	struct r1conf *conf = mddev->private;
1986 	int i;
1987 	int disks = conf->raid_disks * 2;
1988 	struct bio *bio, *wbio;
1989 
1990 	bio = r1_bio->bios[r1_bio->read_disk];
1991 
1992 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1993 		/* ouch - failed to read all of that. */
1994 		if (!fix_sync_read_error(r1_bio))
1995 			return;
1996 
1997 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1998 		process_checks(r1_bio);
1999 
2000 	/*
2001 	 * schedule writes
2002 	 */
2003 	atomic_set(&r1_bio->remaining, 1);
2004 	for (i = 0; i < disks ; i++) {
2005 		wbio = r1_bio->bios[i];
2006 		if (wbio->bi_end_io == NULL ||
2007 		    (wbio->bi_end_io == end_sync_read &&
2008 		     (i == r1_bio->read_disk ||
2009 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2010 			continue;
2011 
2012 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2013 		wbio->bi_end_io = end_sync_write;
2014 		atomic_inc(&r1_bio->remaining);
2015 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2016 
2017 		generic_make_request(wbio);
2018 	}
2019 
2020 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2021 		/* if we're here, all write(s) have completed, so clean up */
2022 		int s = r1_bio->sectors;
2023 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2024 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2025 			reschedule_retry(r1_bio);
2026 		else {
2027 			put_buf(r1_bio);
2028 			md_done_sync(mddev, s, 1);
2029 		}
2030 	}
2031 }
2032 
2033 /*
2034  * This is a kernel thread which:
2035  *
2036  *	1.	Retries failed read operations on working mirrors.
2037  *	2.	Updates the raid superblock when problems encounter.
2038  *	3.	Performs writes following reads for array synchronising.
2039  */
2040 
2041 static void fix_read_error(struct r1conf *conf, int read_disk,
2042 			   sector_t sect, int sectors)
2043 {
2044 	struct mddev *mddev = conf->mddev;
2045 	while(sectors) {
2046 		int s = sectors;
2047 		int d = read_disk;
2048 		int success = 0;
2049 		int start;
2050 		struct md_rdev *rdev;
2051 
2052 		if (s > (PAGE_SIZE>>9))
2053 			s = PAGE_SIZE >> 9;
2054 
2055 		do {
2056 			sector_t first_bad;
2057 			int bad_sectors;
2058 
2059 			rcu_read_lock();
2060 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2061 			if (rdev &&
2062 			    (test_bit(In_sync, &rdev->flags) ||
2063 			     (!test_bit(Faulty, &rdev->flags) &&
2064 			      rdev->recovery_offset >= sect + s)) &&
2065 			    is_badblock(rdev, sect, s,
2066 					&first_bad, &bad_sectors) == 0) {
2067 				atomic_inc(&rdev->nr_pending);
2068 				rcu_read_unlock();
2069 				if (sync_page_io(rdev, sect, s<<9,
2070 					 conf->tmppage, REQ_OP_READ, 0, false))
2071 					success = 1;
2072 				rdev_dec_pending(rdev, mddev);
2073 				if (success)
2074 					break;
2075 			} else
2076 				rcu_read_unlock();
2077 			d++;
2078 			if (d == conf->raid_disks * 2)
2079 				d = 0;
2080 		} while (!success && d != read_disk);
2081 
2082 		if (!success) {
2083 			/* Cannot read from anywhere - mark it bad */
2084 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2085 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2086 				md_error(mddev, rdev);
2087 			break;
2088 		}
2089 		/* write it back and re-read */
2090 		start = d;
2091 		while (d != read_disk) {
2092 			if (d==0)
2093 				d = conf->raid_disks * 2;
2094 			d--;
2095 			rcu_read_lock();
2096 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2097 			if (rdev &&
2098 			    !test_bit(Faulty, &rdev->flags)) {
2099 				atomic_inc(&rdev->nr_pending);
2100 				rcu_read_unlock();
2101 				r1_sync_page_io(rdev, sect, s,
2102 						conf->tmppage, WRITE);
2103 				rdev_dec_pending(rdev, mddev);
2104 			} else
2105 				rcu_read_unlock();
2106 		}
2107 		d = start;
2108 		while (d != read_disk) {
2109 			char b[BDEVNAME_SIZE];
2110 			if (d==0)
2111 				d = conf->raid_disks * 2;
2112 			d--;
2113 			rcu_read_lock();
2114 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2115 			if (rdev &&
2116 			    !test_bit(Faulty, &rdev->flags)) {
2117 				atomic_inc(&rdev->nr_pending);
2118 				rcu_read_unlock();
2119 				if (r1_sync_page_io(rdev, sect, s,
2120 						    conf->tmppage, READ)) {
2121 					atomic_add(s, &rdev->corrected_errors);
2122 					printk(KERN_INFO
2123 					       "md/raid1:%s: read error corrected "
2124 					       "(%d sectors at %llu on %s)\n",
2125 					       mdname(mddev), s,
2126 					       (unsigned long long)(sect +
2127 								    rdev->data_offset),
2128 					       bdevname(rdev->bdev, b));
2129 				}
2130 				rdev_dec_pending(rdev, mddev);
2131 			} else
2132 				rcu_read_unlock();
2133 		}
2134 		sectors -= s;
2135 		sect += s;
2136 	}
2137 }
2138 
2139 static int narrow_write_error(struct r1bio *r1_bio, int i)
2140 {
2141 	struct mddev *mddev = r1_bio->mddev;
2142 	struct r1conf *conf = mddev->private;
2143 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2144 
2145 	/* bio has the data to be written to device 'i' where
2146 	 * we just recently had a write error.
2147 	 * We repeatedly clone the bio and trim down to one block,
2148 	 * then try the write.  Where the write fails we record
2149 	 * a bad block.
2150 	 * It is conceivable that the bio doesn't exactly align with
2151 	 * blocks.  We must handle this somehow.
2152 	 *
2153 	 * We currently own a reference on the rdev.
2154 	 */
2155 
2156 	int block_sectors;
2157 	sector_t sector;
2158 	int sectors;
2159 	int sect_to_write = r1_bio->sectors;
2160 	int ok = 1;
2161 
2162 	if (rdev->badblocks.shift < 0)
2163 		return 0;
2164 
2165 	block_sectors = roundup(1 << rdev->badblocks.shift,
2166 				bdev_logical_block_size(rdev->bdev) >> 9);
2167 	sector = r1_bio->sector;
2168 	sectors = ((sector + block_sectors)
2169 		   & ~(sector_t)(block_sectors - 1))
2170 		- sector;
2171 
2172 	while (sect_to_write) {
2173 		struct bio *wbio;
2174 		if (sectors > sect_to_write)
2175 			sectors = sect_to_write;
2176 		/* Write at 'sector' for 'sectors'*/
2177 
2178 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2179 			unsigned vcnt = r1_bio->behind_page_count;
2180 			struct bio_vec *vec = r1_bio->behind_bvecs;
2181 
2182 			while (!vec->bv_page) {
2183 				vec++;
2184 				vcnt--;
2185 			}
2186 
2187 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2188 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2189 
2190 			wbio->bi_vcnt = vcnt;
2191 		} else {
2192 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2193 		}
2194 
2195 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2196 		wbio->bi_iter.bi_sector = r1_bio->sector;
2197 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2198 
2199 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2200 		wbio->bi_iter.bi_sector += rdev->data_offset;
2201 		wbio->bi_bdev = rdev->bdev;
2202 
2203 		if (submit_bio_wait(wbio) < 0)
2204 			/* failure! */
2205 			ok = rdev_set_badblocks(rdev, sector,
2206 						sectors, 0)
2207 				&& ok;
2208 
2209 		bio_put(wbio);
2210 		sect_to_write -= sectors;
2211 		sector += sectors;
2212 		sectors = block_sectors;
2213 	}
2214 	return ok;
2215 }
2216 
2217 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2218 {
2219 	int m;
2220 	int s = r1_bio->sectors;
2221 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2222 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2223 		struct bio *bio = r1_bio->bios[m];
2224 		if (bio->bi_end_io == NULL)
2225 			continue;
2226 		if (!bio->bi_error &&
2227 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2228 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2229 		}
2230 		if (bio->bi_error &&
2231 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2232 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2233 				md_error(conf->mddev, rdev);
2234 		}
2235 	}
2236 	put_buf(r1_bio);
2237 	md_done_sync(conf->mddev, s, 1);
2238 }
2239 
2240 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2241 {
2242 	int m;
2243 	bool fail = false;
2244 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2245 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2246 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2247 			rdev_clear_badblocks(rdev,
2248 					     r1_bio->sector,
2249 					     r1_bio->sectors, 0);
2250 			rdev_dec_pending(rdev, conf->mddev);
2251 		} else if (r1_bio->bios[m] != NULL) {
2252 			/* This drive got a write error.  We need to
2253 			 * narrow down and record precise write
2254 			 * errors.
2255 			 */
2256 			fail = true;
2257 			if (!narrow_write_error(r1_bio, m)) {
2258 				md_error(conf->mddev,
2259 					 conf->mirrors[m].rdev);
2260 				/* an I/O failed, we can't clear the bitmap */
2261 				set_bit(R1BIO_Degraded, &r1_bio->state);
2262 			}
2263 			rdev_dec_pending(conf->mirrors[m].rdev,
2264 					 conf->mddev);
2265 		}
2266 	if (fail) {
2267 		spin_lock_irq(&conf->device_lock);
2268 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2269 		conf->nr_queued++;
2270 		spin_unlock_irq(&conf->device_lock);
2271 		md_wakeup_thread(conf->mddev->thread);
2272 	} else {
2273 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2274 			close_write(r1_bio);
2275 		raid_end_bio_io(r1_bio);
2276 	}
2277 }
2278 
2279 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2280 {
2281 	int disk;
2282 	int max_sectors;
2283 	struct mddev *mddev = conf->mddev;
2284 	struct bio *bio;
2285 	char b[BDEVNAME_SIZE];
2286 	struct md_rdev *rdev;
2287 
2288 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2289 	/* we got a read error. Maybe the drive is bad.  Maybe just
2290 	 * the block and we can fix it.
2291 	 * We freeze all other IO, and try reading the block from
2292 	 * other devices.  When we find one, we re-write
2293 	 * and check it that fixes the read error.
2294 	 * This is all done synchronously while the array is
2295 	 * frozen
2296 	 */
2297 	if (mddev->ro == 0) {
2298 		freeze_array(conf, 1);
2299 		fix_read_error(conf, r1_bio->read_disk,
2300 			       r1_bio->sector, r1_bio->sectors);
2301 		unfreeze_array(conf);
2302 	} else
2303 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2304 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2305 
2306 	bio = r1_bio->bios[r1_bio->read_disk];
2307 	bdevname(bio->bi_bdev, b);
2308 read_more:
2309 	disk = read_balance(conf, r1_bio, &max_sectors);
2310 	if (disk == -1) {
2311 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2312 		       " read error for block %llu\n",
2313 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2314 		raid_end_bio_io(r1_bio);
2315 	} else {
2316 		const unsigned long do_sync
2317 			= r1_bio->master_bio->bi_opf & REQ_SYNC;
2318 		if (bio) {
2319 			r1_bio->bios[r1_bio->read_disk] =
2320 				mddev->ro ? IO_BLOCKED : NULL;
2321 			bio_put(bio);
2322 		}
2323 		r1_bio->read_disk = disk;
2324 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2325 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2326 			 max_sectors);
2327 		r1_bio->bios[r1_bio->read_disk] = bio;
2328 		rdev = conf->mirrors[disk].rdev;
2329 		printk_ratelimited(KERN_ERR
2330 				   "md/raid1:%s: redirecting sector %llu"
2331 				   " to other mirror: %s\n",
2332 				   mdname(mddev),
2333 				   (unsigned long long)r1_bio->sector,
2334 				   bdevname(rdev->bdev, b));
2335 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2336 		bio->bi_bdev = rdev->bdev;
2337 		bio->bi_end_io = raid1_end_read_request;
2338 		bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2339 		bio->bi_private = r1_bio;
2340 		if (max_sectors < r1_bio->sectors) {
2341 			/* Drat - have to split this up more */
2342 			struct bio *mbio = r1_bio->master_bio;
2343 			int sectors_handled = (r1_bio->sector + max_sectors
2344 					       - mbio->bi_iter.bi_sector);
2345 			r1_bio->sectors = max_sectors;
2346 			spin_lock_irq(&conf->device_lock);
2347 			if (mbio->bi_phys_segments == 0)
2348 				mbio->bi_phys_segments = 2;
2349 			else
2350 				mbio->bi_phys_segments++;
2351 			spin_unlock_irq(&conf->device_lock);
2352 			generic_make_request(bio);
2353 			bio = NULL;
2354 
2355 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2356 
2357 			r1_bio->master_bio = mbio;
2358 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2359 			r1_bio->state = 0;
2360 			set_bit(R1BIO_ReadError, &r1_bio->state);
2361 			r1_bio->mddev = mddev;
2362 			r1_bio->sector = mbio->bi_iter.bi_sector +
2363 				sectors_handled;
2364 
2365 			goto read_more;
2366 		} else
2367 			generic_make_request(bio);
2368 	}
2369 }
2370 
2371 static void raid1d(struct md_thread *thread)
2372 {
2373 	struct mddev *mddev = thread->mddev;
2374 	struct r1bio *r1_bio;
2375 	unsigned long flags;
2376 	struct r1conf *conf = mddev->private;
2377 	struct list_head *head = &conf->retry_list;
2378 	struct blk_plug plug;
2379 
2380 	md_check_recovery(mddev);
2381 
2382 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2383 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2384 		LIST_HEAD(tmp);
2385 		spin_lock_irqsave(&conf->device_lock, flags);
2386 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2387 			while (!list_empty(&conf->bio_end_io_list)) {
2388 				list_move(conf->bio_end_io_list.prev, &tmp);
2389 				conf->nr_queued--;
2390 			}
2391 		}
2392 		spin_unlock_irqrestore(&conf->device_lock, flags);
2393 		while (!list_empty(&tmp)) {
2394 			r1_bio = list_first_entry(&tmp, struct r1bio,
2395 						  retry_list);
2396 			list_del(&r1_bio->retry_list);
2397 			if (mddev->degraded)
2398 				set_bit(R1BIO_Degraded, &r1_bio->state);
2399 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2400 				close_write(r1_bio);
2401 			raid_end_bio_io(r1_bio);
2402 		}
2403 	}
2404 
2405 	blk_start_plug(&plug);
2406 	for (;;) {
2407 
2408 		flush_pending_writes(conf);
2409 
2410 		spin_lock_irqsave(&conf->device_lock, flags);
2411 		if (list_empty(head)) {
2412 			spin_unlock_irqrestore(&conf->device_lock, flags);
2413 			break;
2414 		}
2415 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2416 		list_del(head->prev);
2417 		conf->nr_queued--;
2418 		spin_unlock_irqrestore(&conf->device_lock, flags);
2419 
2420 		mddev = r1_bio->mddev;
2421 		conf = mddev->private;
2422 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2423 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2424 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2425 				handle_sync_write_finished(conf, r1_bio);
2426 			else
2427 				sync_request_write(mddev, r1_bio);
2428 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2429 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2430 			handle_write_finished(conf, r1_bio);
2431 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2432 			handle_read_error(conf, r1_bio);
2433 		else
2434 			/* just a partial read to be scheduled from separate
2435 			 * context
2436 			 */
2437 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2438 
2439 		cond_resched();
2440 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2441 			md_check_recovery(mddev);
2442 	}
2443 	blk_finish_plug(&plug);
2444 }
2445 
2446 static int init_resync(struct r1conf *conf)
2447 {
2448 	int buffs;
2449 
2450 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2451 	BUG_ON(conf->r1buf_pool);
2452 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2453 					  conf->poolinfo);
2454 	if (!conf->r1buf_pool)
2455 		return -ENOMEM;
2456 	conf->next_resync = 0;
2457 	return 0;
2458 }
2459 
2460 /*
2461  * perform a "sync" on one "block"
2462  *
2463  * We need to make sure that no normal I/O request - particularly write
2464  * requests - conflict with active sync requests.
2465  *
2466  * This is achieved by tracking pending requests and a 'barrier' concept
2467  * that can be installed to exclude normal IO requests.
2468  */
2469 
2470 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2471 				   int *skipped)
2472 {
2473 	struct r1conf *conf = mddev->private;
2474 	struct r1bio *r1_bio;
2475 	struct bio *bio;
2476 	sector_t max_sector, nr_sectors;
2477 	int disk = -1;
2478 	int i;
2479 	int wonly = -1;
2480 	int write_targets = 0, read_targets = 0;
2481 	sector_t sync_blocks;
2482 	int still_degraded = 0;
2483 	int good_sectors = RESYNC_SECTORS;
2484 	int min_bad = 0; /* number of sectors that are bad in all devices */
2485 
2486 	if (!conf->r1buf_pool)
2487 		if (init_resync(conf))
2488 			return 0;
2489 
2490 	max_sector = mddev->dev_sectors;
2491 	if (sector_nr >= max_sector) {
2492 		/* If we aborted, we need to abort the
2493 		 * sync on the 'current' bitmap chunk (there will
2494 		 * only be one in raid1 resync.
2495 		 * We can find the current addess in mddev->curr_resync
2496 		 */
2497 		if (mddev->curr_resync < max_sector) /* aborted */
2498 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2499 						&sync_blocks, 1);
2500 		else /* completed sync */
2501 			conf->fullsync = 0;
2502 
2503 		bitmap_close_sync(mddev->bitmap);
2504 		close_sync(conf);
2505 
2506 		if (mddev_is_clustered(mddev)) {
2507 			conf->cluster_sync_low = 0;
2508 			conf->cluster_sync_high = 0;
2509 		}
2510 		return 0;
2511 	}
2512 
2513 	if (mddev->bitmap == NULL &&
2514 	    mddev->recovery_cp == MaxSector &&
2515 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2516 	    conf->fullsync == 0) {
2517 		*skipped = 1;
2518 		return max_sector - sector_nr;
2519 	}
2520 	/* before building a request, check if we can skip these blocks..
2521 	 * This call the bitmap_start_sync doesn't actually record anything
2522 	 */
2523 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2524 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2525 		/* We can skip this block, and probably several more */
2526 		*skipped = 1;
2527 		return sync_blocks;
2528 	}
2529 
2530 	/*
2531 	 * If there is non-resync activity waiting for a turn, then let it
2532 	 * though before starting on this new sync request.
2533 	 */
2534 	if (conf->nr_waiting)
2535 		schedule_timeout_uninterruptible(1);
2536 
2537 	/* we are incrementing sector_nr below. To be safe, we check against
2538 	 * sector_nr + two times RESYNC_SECTORS
2539 	 */
2540 
2541 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2542 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2543 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544 
2545 	raise_barrier(conf, sector_nr);
2546 
2547 	rcu_read_lock();
2548 	/*
2549 	 * If we get a correctably read error during resync or recovery,
2550 	 * we might want to read from a different device.  So we
2551 	 * flag all drives that could conceivably be read from for READ,
2552 	 * and any others (which will be non-In_sync devices) for WRITE.
2553 	 * If a read fails, we try reading from something else for which READ
2554 	 * is OK.
2555 	 */
2556 
2557 	r1_bio->mddev = mddev;
2558 	r1_bio->sector = sector_nr;
2559 	r1_bio->state = 0;
2560 	set_bit(R1BIO_IsSync, &r1_bio->state);
2561 
2562 	for (i = 0; i < conf->raid_disks * 2; i++) {
2563 		struct md_rdev *rdev;
2564 		bio = r1_bio->bios[i];
2565 		bio_reset(bio);
2566 
2567 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2568 		if (rdev == NULL ||
2569 		    test_bit(Faulty, &rdev->flags)) {
2570 			if (i < conf->raid_disks)
2571 				still_degraded = 1;
2572 		} else if (!test_bit(In_sync, &rdev->flags)) {
2573 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2574 			bio->bi_end_io = end_sync_write;
2575 			write_targets ++;
2576 		} else {
2577 			/* may need to read from here */
2578 			sector_t first_bad = MaxSector;
2579 			int bad_sectors;
2580 
2581 			if (is_badblock(rdev, sector_nr, good_sectors,
2582 					&first_bad, &bad_sectors)) {
2583 				if (first_bad > sector_nr)
2584 					good_sectors = first_bad - sector_nr;
2585 				else {
2586 					bad_sectors -= (sector_nr - first_bad);
2587 					if (min_bad == 0 ||
2588 					    min_bad > bad_sectors)
2589 						min_bad = bad_sectors;
2590 				}
2591 			}
2592 			if (sector_nr < first_bad) {
2593 				if (test_bit(WriteMostly, &rdev->flags)) {
2594 					if (wonly < 0)
2595 						wonly = i;
2596 				} else {
2597 					if (disk < 0)
2598 						disk = i;
2599 				}
2600 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2601 				bio->bi_end_io = end_sync_read;
2602 				read_targets++;
2603 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2604 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2605 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2606 				/*
2607 				 * The device is suitable for reading (InSync),
2608 				 * but has bad block(s) here. Let's try to correct them,
2609 				 * if we are doing resync or repair. Otherwise, leave
2610 				 * this device alone for this sync request.
2611 				 */
2612 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2613 				bio->bi_end_io = end_sync_write;
2614 				write_targets++;
2615 			}
2616 		}
2617 		if (bio->bi_end_io) {
2618 			atomic_inc(&rdev->nr_pending);
2619 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2620 			bio->bi_bdev = rdev->bdev;
2621 			bio->bi_private = r1_bio;
2622 		}
2623 	}
2624 	rcu_read_unlock();
2625 	if (disk < 0)
2626 		disk = wonly;
2627 	r1_bio->read_disk = disk;
2628 
2629 	if (read_targets == 0 && min_bad > 0) {
2630 		/* These sectors are bad on all InSync devices, so we
2631 		 * need to mark them bad on all write targets
2632 		 */
2633 		int ok = 1;
2634 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2635 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2636 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2637 				ok = rdev_set_badblocks(rdev, sector_nr,
2638 							min_bad, 0
2639 					) && ok;
2640 			}
2641 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2642 		*skipped = 1;
2643 		put_buf(r1_bio);
2644 
2645 		if (!ok) {
2646 			/* Cannot record the badblocks, so need to
2647 			 * abort the resync.
2648 			 * If there are multiple read targets, could just
2649 			 * fail the really bad ones ???
2650 			 */
2651 			conf->recovery_disabled = mddev->recovery_disabled;
2652 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2653 			return 0;
2654 		} else
2655 			return min_bad;
2656 
2657 	}
2658 	if (min_bad > 0 && min_bad < good_sectors) {
2659 		/* only resync enough to reach the next bad->good
2660 		 * transition */
2661 		good_sectors = min_bad;
2662 	}
2663 
2664 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2665 		/* extra read targets are also write targets */
2666 		write_targets += read_targets-1;
2667 
2668 	if (write_targets == 0 || read_targets == 0) {
2669 		/* There is nowhere to write, so all non-sync
2670 		 * drives must be failed - so we are finished
2671 		 */
2672 		sector_t rv;
2673 		if (min_bad > 0)
2674 			max_sector = sector_nr + min_bad;
2675 		rv = max_sector - sector_nr;
2676 		*skipped = 1;
2677 		put_buf(r1_bio);
2678 		return rv;
2679 	}
2680 
2681 	if (max_sector > mddev->resync_max)
2682 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2683 	if (max_sector > sector_nr + good_sectors)
2684 		max_sector = sector_nr + good_sectors;
2685 	nr_sectors = 0;
2686 	sync_blocks = 0;
2687 	do {
2688 		struct page *page;
2689 		int len = PAGE_SIZE;
2690 		if (sector_nr + (len>>9) > max_sector)
2691 			len = (max_sector - sector_nr) << 9;
2692 		if (len == 0)
2693 			break;
2694 		if (sync_blocks == 0) {
2695 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2696 					       &sync_blocks, still_degraded) &&
2697 			    !conf->fullsync &&
2698 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2699 				break;
2700 			if ((len >> 9) > sync_blocks)
2701 				len = sync_blocks<<9;
2702 		}
2703 
2704 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2705 			bio = r1_bio->bios[i];
2706 			if (bio->bi_end_io) {
2707 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2708 				if (bio_add_page(bio, page, len, 0) == 0) {
2709 					/* stop here */
2710 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2711 					while (i > 0) {
2712 						i--;
2713 						bio = r1_bio->bios[i];
2714 						if (bio->bi_end_io==NULL)
2715 							continue;
2716 						/* remove last page from this bio */
2717 						bio->bi_vcnt--;
2718 						bio->bi_iter.bi_size -= len;
2719 						bio_clear_flag(bio, BIO_SEG_VALID);
2720 					}
2721 					goto bio_full;
2722 				}
2723 			}
2724 		}
2725 		nr_sectors += len>>9;
2726 		sector_nr += len>>9;
2727 		sync_blocks -= (len>>9);
2728 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2729  bio_full:
2730 	r1_bio->sectors = nr_sectors;
2731 
2732 	if (mddev_is_clustered(mddev) &&
2733 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2734 		conf->cluster_sync_low = mddev->curr_resync_completed;
2735 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2736 		/* Send resync message */
2737 		md_cluster_ops->resync_info_update(mddev,
2738 				conf->cluster_sync_low,
2739 				conf->cluster_sync_high);
2740 	}
2741 
2742 	/* For a user-requested sync, we read all readable devices and do a
2743 	 * compare
2744 	 */
2745 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2746 		atomic_set(&r1_bio->remaining, read_targets);
2747 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2748 			bio = r1_bio->bios[i];
2749 			if (bio->bi_end_io == end_sync_read) {
2750 				read_targets--;
2751 				md_sync_acct(bio->bi_bdev, nr_sectors);
2752 				generic_make_request(bio);
2753 			}
2754 		}
2755 	} else {
2756 		atomic_set(&r1_bio->remaining, 1);
2757 		bio = r1_bio->bios[r1_bio->read_disk];
2758 		md_sync_acct(bio->bi_bdev, nr_sectors);
2759 		generic_make_request(bio);
2760 
2761 	}
2762 	return nr_sectors;
2763 }
2764 
2765 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2766 {
2767 	if (sectors)
2768 		return sectors;
2769 
2770 	return mddev->dev_sectors;
2771 }
2772 
2773 static struct r1conf *setup_conf(struct mddev *mddev)
2774 {
2775 	struct r1conf *conf;
2776 	int i;
2777 	struct raid1_info *disk;
2778 	struct md_rdev *rdev;
2779 	int err = -ENOMEM;
2780 
2781 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2782 	if (!conf)
2783 		goto abort;
2784 
2785 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2786 				* mddev->raid_disks * 2,
2787 				 GFP_KERNEL);
2788 	if (!conf->mirrors)
2789 		goto abort;
2790 
2791 	conf->tmppage = alloc_page(GFP_KERNEL);
2792 	if (!conf->tmppage)
2793 		goto abort;
2794 
2795 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2796 	if (!conf->poolinfo)
2797 		goto abort;
2798 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2799 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2800 					  r1bio_pool_free,
2801 					  conf->poolinfo);
2802 	if (!conf->r1bio_pool)
2803 		goto abort;
2804 
2805 	conf->poolinfo->mddev = mddev;
2806 
2807 	err = -EINVAL;
2808 	spin_lock_init(&conf->device_lock);
2809 	rdev_for_each(rdev, mddev) {
2810 		struct request_queue *q;
2811 		int disk_idx = rdev->raid_disk;
2812 		if (disk_idx >= mddev->raid_disks
2813 		    || disk_idx < 0)
2814 			continue;
2815 		if (test_bit(Replacement, &rdev->flags))
2816 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2817 		else
2818 			disk = conf->mirrors + disk_idx;
2819 
2820 		if (disk->rdev)
2821 			goto abort;
2822 		disk->rdev = rdev;
2823 		q = bdev_get_queue(rdev->bdev);
2824 
2825 		disk->head_position = 0;
2826 		disk->seq_start = MaxSector;
2827 	}
2828 	conf->raid_disks = mddev->raid_disks;
2829 	conf->mddev = mddev;
2830 	INIT_LIST_HEAD(&conf->retry_list);
2831 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2832 
2833 	spin_lock_init(&conf->resync_lock);
2834 	init_waitqueue_head(&conf->wait_barrier);
2835 
2836 	bio_list_init(&conf->pending_bio_list);
2837 	conf->pending_count = 0;
2838 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2839 
2840 	conf->start_next_window = MaxSector;
2841 	conf->current_window_requests = conf->next_window_requests = 0;
2842 
2843 	err = -EIO;
2844 	for (i = 0; i < conf->raid_disks * 2; i++) {
2845 
2846 		disk = conf->mirrors + i;
2847 
2848 		if (i < conf->raid_disks &&
2849 		    disk[conf->raid_disks].rdev) {
2850 			/* This slot has a replacement. */
2851 			if (!disk->rdev) {
2852 				/* No original, just make the replacement
2853 				 * a recovering spare
2854 				 */
2855 				disk->rdev =
2856 					disk[conf->raid_disks].rdev;
2857 				disk[conf->raid_disks].rdev = NULL;
2858 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2859 				/* Original is not in_sync - bad */
2860 				goto abort;
2861 		}
2862 
2863 		if (!disk->rdev ||
2864 		    !test_bit(In_sync, &disk->rdev->flags)) {
2865 			disk->head_position = 0;
2866 			if (disk->rdev &&
2867 			    (disk->rdev->saved_raid_disk < 0))
2868 				conf->fullsync = 1;
2869 		}
2870 	}
2871 
2872 	err = -ENOMEM;
2873 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2874 	if (!conf->thread) {
2875 		printk(KERN_ERR
2876 		       "md/raid1:%s: couldn't allocate thread\n",
2877 		       mdname(mddev));
2878 		goto abort;
2879 	}
2880 
2881 	return conf;
2882 
2883  abort:
2884 	if (conf) {
2885 		mempool_destroy(conf->r1bio_pool);
2886 		kfree(conf->mirrors);
2887 		safe_put_page(conf->tmppage);
2888 		kfree(conf->poolinfo);
2889 		kfree(conf);
2890 	}
2891 	return ERR_PTR(err);
2892 }
2893 
2894 static void raid1_free(struct mddev *mddev, void *priv);
2895 static int raid1_run(struct mddev *mddev)
2896 {
2897 	struct r1conf *conf;
2898 	int i;
2899 	struct md_rdev *rdev;
2900 	int ret;
2901 	bool discard_supported = false;
2902 
2903 	if (mddev->level != 1) {
2904 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2905 		       mdname(mddev), mddev->level);
2906 		return -EIO;
2907 	}
2908 	if (mddev->reshape_position != MaxSector) {
2909 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2910 		       mdname(mddev));
2911 		return -EIO;
2912 	}
2913 	/*
2914 	 * copy the already verified devices into our private RAID1
2915 	 * bookkeeping area. [whatever we allocate in run(),
2916 	 * should be freed in raid1_free()]
2917 	 */
2918 	if (mddev->private == NULL)
2919 		conf = setup_conf(mddev);
2920 	else
2921 		conf = mddev->private;
2922 
2923 	if (IS_ERR(conf))
2924 		return PTR_ERR(conf);
2925 
2926 	if (mddev->queue)
2927 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2928 
2929 	rdev_for_each(rdev, mddev) {
2930 		if (!mddev->gendisk)
2931 			continue;
2932 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2933 				  rdev->data_offset << 9);
2934 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2935 			discard_supported = true;
2936 	}
2937 
2938 	mddev->degraded = 0;
2939 	for (i=0; i < conf->raid_disks; i++)
2940 		if (conf->mirrors[i].rdev == NULL ||
2941 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2942 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2943 			mddev->degraded++;
2944 
2945 	if (conf->raid_disks - mddev->degraded == 1)
2946 		mddev->recovery_cp = MaxSector;
2947 
2948 	if (mddev->recovery_cp != MaxSector)
2949 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2950 		       " -- starting background reconstruction\n",
2951 		       mdname(mddev));
2952 	printk(KERN_INFO
2953 		"md/raid1:%s: active with %d out of %d mirrors\n",
2954 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2955 		mddev->raid_disks);
2956 
2957 	/*
2958 	 * Ok, everything is just fine now
2959 	 */
2960 	mddev->thread = conf->thread;
2961 	conf->thread = NULL;
2962 	mddev->private = conf;
2963 
2964 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2965 
2966 	if (mddev->queue) {
2967 		if (discard_supported)
2968 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2969 						mddev->queue);
2970 		else
2971 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2972 						  mddev->queue);
2973 	}
2974 
2975 	ret =  md_integrity_register(mddev);
2976 	if (ret) {
2977 		md_unregister_thread(&mddev->thread);
2978 		raid1_free(mddev, conf);
2979 	}
2980 	return ret;
2981 }
2982 
2983 static void raid1_free(struct mddev *mddev, void *priv)
2984 {
2985 	struct r1conf *conf = priv;
2986 
2987 	mempool_destroy(conf->r1bio_pool);
2988 	kfree(conf->mirrors);
2989 	safe_put_page(conf->tmppage);
2990 	kfree(conf->poolinfo);
2991 	kfree(conf);
2992 }
2993 
2994 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2995 {
2996 	/* no resync is happening, and there is enough space
2997 	 * on all devices, so we can resize.
2998 	 * We need to make sure resync covers any new space.
2999 	 * If the array is shrinking we should possibly wait until
3000 	 * any io in the removed space completes, but it hardly seems
3001 	 * worth it.
3002 	 */
3003 	sector_t newsize = raid1_size(mddev, sectors, 0);
3004 	if (mddev->external_size &&
3005 	    mddev->array_sectors > newsize)
3006 		return -EINVAL;
3007 	if (mddev->bitmap) {
3008 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3009 		if (ret)
3010 			return ret;
3011 	}
3012 	md_set_array_sectors(mddev, newsize);
3013 	set_capacity(mddev->gendisk, mddev->array_sectors);
3014 	revalidate_disk(mddev->gendisk);
3015 	if (sectors > mddev->dev_sectors &&
3016 	    mddev->recovery_cp > mddev->dev_sectors) {
3017 		mddev->recovery_cp = mddev->dev_sectors;
3018 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3019 	}
3020 	mddev->dev_sectors = sectors;
3021 	mddev->resync_max_sectors = sectors;
3022 	return 0;
3023 }
3024 
3025 static int raid1_reshape(struct mddev *mddev)
3026 {
3027 	/* We need to:
3028 	 * 1/ resize the r1bio_pool
3029 	 * 2/ resize conf->mirrors
3030 	 *
3031 	 * We allocate a new r1bio_pool if we can.
3032 	 * Then raise a device barrier and wait until all IO stops.
3033 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3034 	 *
3035 	 * At the same time, we "pack" the devices so that all the missing
3036 	 * devices have the higher raid_disk numbers.
3037 	 */
3038 	mempool_t *newpool, *oldpool;
3039 	struct pool_info *newpoolinfo;
3040 	struct raid1_info *newmirrors;
3041 	struct r1conf *conf = mddev->private;
3042 	int cnt, raid_disks;
3043 	unsigned long flags;
3044 	int d, d2, err;
3045 
3046 	/* Cannot change chunk_size, layout, or level */
3047 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3048 	    mddev->layout != mddev->new_layout ||
3049 	    mddev->level != mddev->new_level) {
3050 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3051 		mddev->new_layout = mddev->layout;
3052 		mddev->new_level = mddev->level;
3053 		return -EINVAL;
3054 	}
3055 
3056 	if (!mddev_is_clustered(mddev)) {
3057 		err = md_allow_write(mddev);
3058 		if (err)
3059 			return err;
3060 	}
3061 
3062 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3063 
3064 	if (raid_disks < conf->raid_disks) {
3065 		cnt=0;
3066 		for (d= 0; d < conf->raid_disks; d++)
3067 			if (conf->mirrors[d].rdev)
3068 				cnt++;
3069 		if (cnt > raid_disks)
3070 			return -EBUSY;
3071 	}
3072 
3073 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3074 	if (!newpoolinfo)
3075 		return -ENOMEM;
3076 	newpoolinfo->mddev = mddev;
3077 	newpoolinfo->raid_disks = raid_disks * 2;
3078 
3079 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3080 				 r1bio_pool_free, newpoolinfo);
3081 	if (!newpool) {
3082 		kfree(newpoolinfo);
3083 		return -ENOMEM;
3084 	}
3085 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3086 			     GFP_KERNEL);
3087 	if (!newmirrors) {
3088 		kfree(newpoolinfo);
3089 		mempool_destroy(newpool);
3090 		return -ENOMEM;
3091 	}
3092 
3093 	freeze_array(conf, 0);
3094 
3095 	/* ok, everything is stopped */
3096 	oldpool = conf->r1bio_pool;
3097 	conf->r1bio_pool = newpool;
3098 
3099 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3100 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3101 		if (rdev && rdev->raid_disk != d2) {
3102 			sysfs_unlink_rdev(mddev, rdev);
3103 			rdev->raid_disk = d2;
3104 			sysfs_unlink_rdev(mddev, rdev);
3105 			if (sysfs_link_rdev(mddev, rdev))
3106 				printk(KERN_WARNING
3107 				       "md/raid1:%s: cannot register rd%d\n",
3108 				       mdname(mddev), rdev->raid_disk);
3109 		}
3110 		if (rdev)
3111 			newmirrors[d2++].rdev = rdev;
3112 	}
3113 	kfree(conf->mirrors);
3114 	conf->mirrors = newmirrors;
3115 	kfree(conf->poolinfo);
3116 	conf->poolinfo = newpoolinfo;
3117 
3118 	spin_lock_irqsave(&conf->device_lock, flags);
3119 	mddev->degraded += (raid_disks - conf->raid_disks);
3120 	spin_unlock_irqrestore(&conf->device_lock, flags);
3121 	conf->raid_disks = mddev->raid_disks = raid_disks;
3122 	mddev->delta_disks = 0;
3123 
3124 	unfreeze_array(conf);
3125 
3126 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3127 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3128 	md_wakeup_thread(mddev->thread);
3129 
3130 	mempool_destroy(oldpool);
3131 	return 0;
3132 }
3133 
3134 static void raid1_quiesce(struct mddev *mddev, int state)
3135 {
3136 	struct r1conf *conf = mddev->private;
3137 
3138 	switch(state) {
3139 	case 2: /* wake for suspend */
3140 		wake_up(&conf->wait_barrier);
3141 		break;
3142 	case 1:
3143 		freeze_array(conf, 0);
3144 		break;
3145 	case 0:
3146 		unfreeze_array(conf);
3147 		break;
3148 	}
3149 }
3150 
3151 static void *raid1_takeover(struct mddev *mddev)
3152 {
3153 	/* raid1 can take over:
3154 	 *  raid5 with 2 devices, any layout or chunk size
3155 	 */
3156 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3157 		struct r1conf *conf;
3158 		mddev->new_level = 1;
3159 		mddev->new_layout = 0;
3160 		mddev->new_chunk_sectors = 0;
3161 		conf = setup_conf(mddev);
3162 		if (!IS_ERR(conf))
3163 			/* Array must appear to be quiesced */
3164 			conf->array_frozen = 1;
3165 		return conf;
3166 	}
3167 	return ERR_PTR(-EINVAL);
3168 }
3169 
3170 static struct md_personality raid1_personality =
3171 {
3172 	.name		= "raid1",
3173 	.level		= 1,
3174 	.owner		= THIS_MODULE,
3175 	.make_request	= raid1_make_request,
3176 	.run		= raid1_run,
3177 	.free		= raid1_free,
3178 	.status		= raid1_status,
3179 	.error_handler	= raid1_error,
3180 	.hot_add_disk	= raid1_add_disk,
3181 	.hot_remove_disk= raid1_remove_disk,
3182 	.spare_active	= raid1_spare_active,
3183 	.sync_request	= raid1_sync_request,
3184 	.resize		= raid1_resize,
3185 	.size		= raid1_size,
3186 	.check_reshape	= raid1_reshape,
3187 	.quiesce	= raid1_quiesce,
3188 	.takeover	= raid1_takeover,
3189 	.congested	= raid1_congested,
3190 };
3191 
3192 static int __init raid_init(void)
3193 {
3194 	return register_md_personality(&raid1_personality);
3195 }
3196 
3197 static void raid_exit(void)
3198 {
3199 	unregister_md_personality(&raid1_personality);
3200 }
3201 
3202 module_init(raid_init);
3203 module_exit(raid_exit);
3204 MODULE_LICENSE("GPL");
3205 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3206 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3207 MODULE_ALIAS("md-raid1");
3208 MODULE_ALIAS("md-level-1");
3209 
3210 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3211