xref: /linux/drivers/md/raid1.c (revision db4e83957f961f9053282409c5062c6baef857a4)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include <linux/ratelimit.h>
39 #include "md.h"
40 #include "raid1.h"
41 #include "bitmap.h"
42 
43 /*
44  * Number of guaranteed r1bios in case of extreme VM load:
45  */
46 #define	NR_RAID1_BIOS 256
47 
48 /* When there are this many requests queue to be written by
49  * the raid1 thread, we become 'congested' to provide back-pressure
50  * for writeback.
51  */
52 static int max_queued_requests = 1024;
53 
54 static void allow_barrier(struct r1conf *conf);
55 static void lower_barrier(struct r1conf *conf);
56 
57 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
58 {
59 	struct pool_info *pi = data;
60 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
61 
62 	/* allocate a r1bio with room for raid_disks entries in the bios array */
63 	return kzalloc(size, gfp_flags);
64 }
65 
66 static void r1bio_pool_free(void *r1_bio, void *data)
67 {
68 	kfree(r1_bio);
69 }
70 
71 #define RESYNC_BLOCK_SIZE (64*1024)
72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75 #define RESYNC_WINDOW (2048*1024)
76 
77 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
78 {
79 	struct pool_info *pi = data;
80 	struct page *page;
81 	struct r1bio *r1_bio;
82 	struct bio *bio;
83 	int i, j;
84 
85 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
86 	if (!r1_bio)
87 		return NULL;
88 
89 	/*
90 	 * Allocate bios : 1 for reading, n-1 for writing
91 	 */
92 	for (j = pi->raid_disks ; j-- ; ) {
93 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
94 		if (!bio)
95 			goto out_free_bio;
96 		r1_bio->bios[j] = bio;
97 	}
98 	/*
99 	 * Allocate RESYNC_PAGES data pages and attach them to
100 	 * the first bio.
101 	 * If this is a user-requested check/repair, allocate
102 	 * RESYNC_PAGES for each bio.
103 	 */
104 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
105 		j = pi->raid_disks;
106 	else
107 		j = 1;
108 	while(j--) {
109 		bio = r1_bio->bios[j];
110 		for (i = 0; i < RESYNC_PAGES; i++) {
111 			page = alloc_page(gfp_flags);
112 			if (unlikely(!page))
113 				goto out_free_pages;
114 
115 			bio->bi_io_vec[i].bv_page = page;
116 			bio->bi_vcnt = i+1;
117 		}
118 	}
119 	/* If not user-requests, copy the page pointers to all bios */
120 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
121 		for (i=0; i<RESYNC_PAGES ; i++)
122 			for (j=1; j<pi->raid_disks; j++)
123 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
124 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
125 	}
126 
127 	r1_bio->master_bio = NULL;
128 
129 	return r1_bio;
130 
131 out_free_pages:
132 	for (j=0 ; j < pi->raid_disks; j++)
133 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
134 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
135 	j = -1;
136 out_free_bio:
137 	while ( ++j < pi->raid_disks )
138 		bio_put(r1_bio->bios[j]);
139 	r1bio_pool_free(r1_bio, data);
140 	return NULL;
141 }
142 
143 static void r1buf_pool_free(void *__r1_bio, void *data)
144 {
145 	struct pool_info *pi = data;
146 	int i,j;
147 	struct r1bio *r1bio = __r1_bio;
148 
149 	for (i = 0; i < RESYNC_PAGES; i++)
150 		for (j = pi->raid_disks; j-- ;) {
151 			if (j == 0 ||
152 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
153 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
154 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
155 		}
156 	for (i=0 ; i < pi->raid_disks; i++)
157 		bio_put(r1bio->bios[i]);
158 
159 	r1bio_pool_free(r1bio, data);
160 }
161 
162 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
163 {
164 	int i;
165 
166 	for (i = 0; i < conf->raid_disks; i++) {
167 		struct bio **bio = r1_bio->bios + i;
168 		if (!BIO_SPECIAL(*bio))
169 			bio_put(*bio);
170 		*bio = NULL;
171 	}
172 }
173 
174 static void free_r1bio(struct r1bio *r1_bio)
175 {
176 	struct r1conf *conf = r1_bio->mddev->private;
177 
178 	put_all_bios(conf, r1_bio);
179 	mempool_free(r1_bio, conf->r1bio_pool);
180 }
181 
182 static void put_buf(struct r1bio *r1_bio)
183 {
184 	struct r1conf *conf = r1_bio->mddev->private;
185 	int i;
186 
187 	for (i=0; i<conf->raid_disks; i++) {
188 		struct bio *bio = r1_bio->bios[i];
189 		if (bio->bi_end_io)
190 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
191 	}
192 
193 	mempool_free(r1_bio, conf->r1buf_pool);
194 
195 	lower_barrier(conf);
196 }
197 
198 static void reschedule_retry(struct r1bio *r1_bio)
199 {
200 	unsigned long flags;
201 	struct mddev *mddev = r1_bio->mddev;
202 	struct r1conf *conf = mddev->private;
203 
204 	spin_lock_irqsave(&conf->device_lock, flags);
205 	list_add(&r1_bio->retry_list, &conf->retry_list);
206 	conf->nr_queued ++;
207 	spin_unlock_irqrestore(&conf->device_lock, flags);
208 
209 	wake_up(&conf->wait_barrier);
210 	md_wakeup_thread(mddev->thread);
211 }
212 
213 /*
214  * raid_end_bio_io() is called when we have finished servicing a mirrored
215  * operation and are ready to return a success/failure code to the buffer
216  * cache layer.
217  */
218 static void call_bio_endio(struct r1bio *r1_bio)
219 {
220 	struct bio *bio = r1_bio->master_bio;
221 	int done;
222 	struct r1conf *conf = r1_bio->mddev->private;
223 
224 	if (bio->bi_phys_segments) {
225 		unsigned long flags;
226 		spin_lock_irqsave(&conf->device_lock, flags);
227 		bio->bi_phys_segments--;
228 		done = (bio->bi_phys_segments == 0);
229 		spin_unlock_irqrestore(&conf->device_lock, flags);
230 	} else
231 		done = 1;
232 
233 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
234 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
235 	if (done) {
236 		bio_endio(bio, 0);
237 		/*
238 		 * Wake up any possible resync thread that waits for the device
239 		 * to go idle.
240 		 */
241 		allow_barrier(conf);
242 	}
243 }
244 
245 static void raid_end_bio_io(struct r1bio *r1_bio)
246 {
247 	struct bio *bio = r1_bio->master_bio;
248 
249 	/* if nobody has done the final endio yet, do it now */
250 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
251 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
252 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
253 			 (unsigned long long) bio->bi_sector,
254 			 (unsigned long long) bio->bi_sector +
255 			 (bio->bi_size >> 9) - 1);
256 
257 		call_bio_endio(r1_bio);
258 	}
259 	free_r1bio(r1_bio);
260 }
261 
262 /*
263  * Update disk head position estimator based on IRQ completion info.
264  */
265 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
266 {
267 	struct r1conf *conf = r1_bio->mddev->private;
268 
269 	conf->mirrors[disk].head_position =
270 		r1_bio->sector + (r1_bio->sectors);
271 }
272 
273 /*
274  * Find the disk number which triggered given bio
275  */
276 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
277 {
278 	int mirror;
279 	int raid_disks = r1_bio->mddev->raid_disks;
280 
281 	for (mirror = 0; mirror < raid_disks; mirror++)
282 		if (r1_bio->bios[mirror] == bio)
283 			break;
284 
285 	BUG_ON(mirror == raid_disks);
286 	update_head_pos(mirror, r1_bio);
287 
288 	return mirror;
289 }
290 
291 static void raid1_end_read_request(struct bio *bio, int error)
292 {
293 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
294 	struct r1bio *r1_bio = bio->bi_private;
295 	int mirror;
296 	struct r1conf *conf = r1_bio->mddev->private;
297 
298 	mirror = r1_bio->read_disk;
299 	/*
300 	 * this branch is our 'one mirror IO has finished' event handler:
301 	 */
302 	update_head_pos(mirror, r1_bio);
303 
304 	if (uptodate)
305 		set_bit(R1BIO_Uptodate, &r1_bio->state);
306 	else {
307 		/* If all other devices have failed, we want to return
308 		 * the error upwards rather than fail the last device.
309 		 * Here we redefine "uptodate" to mean "Don't want to retry"
310 		 */
311 		unsigned long flags;
312 		spin_lock_irqsave(&conf->device_lock, flags);
313 		if (r1_bio->mddev->degraded == conf->raid_disks ||
314 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
315 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
316 			uptodate = 1;
317 		spin_unlock_irqrestore(&conf->device_lock, flags);
318 	}
319 
320 	if (uptodate)
321 		raid_end_bio_io(r1_bio);
322 	else {
323 		/*
324 		 * oops, read error:
325 		 */
326 		char b[BDEVNAME_SIZE];
327 		printk_ratelimited(
328 			KERN_ERR "md/raid1:%s: %s: "
329 			"rescheduling sector %llu\n",
330 			mdname(conf->mddev),
331 			bdevname(conf->mirrors[mirror].rdev->bdev,
332 				 b),
333 			(unsigned long long)r1_bio->sector);
334 		set_bit(R1BIO_ReadError, &r1_bio->state);
335 		reschedule_retry(r1_bio);
336 	}
337 
338 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
339 }
340 
341 static void close_write(struct r1bio *r1_bio)
342 {
343 	/* it really is the end of this request */
344 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
345 		/* free extra copy of the data pages */
346 		int i = r1_bio->behind_page_count;
347 		while (i--)
348 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
349 		kfree(r1_bio->behind_bvecs);
350 		r1_bio->behind_bvecs = NULL;
351 	}
352 	/* clear the bitmap if all writes complete successfully */
353 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
354 			r1_bio->sectors,
355 			!test_bit(R1BIO_Degraded, &r1_bio->state),
356 			test_bit(R1BIO_BehindIO, &r1_bio->state));
357 	md_write_end(r1_bio->mddev);
358 }
359 
360 static void r1_bio_write_done(struct r1bio *r1_bio)
361 {
362 	if (!atomic_dec_and_test(&r1_bio->remaining))
363 		return;
364 
365 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
366 		reschedule_retry(r1_bio);
367 	else {
368 		close_write(r1_bio);
369 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
370 			reschedule_retry(r1_bio);
371 		else
372 			raid_end_bio_io(r1_bio);
373 	}
374 }
375 
376 static void raid1_end_write_request(struct bio *bio, int error)
377 {
378 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
379 	struct r1bio *r1_bio = bio->bi_private;
380 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
381 	struct r1conf *conf = r1_bio->mddev->private;
382 	struct bio *to_put = NULL;
383 
384 	mirror = find_bio_disk(r1_bio, bio);
385 
386 	/*
387 	 * 'one mirror IO has finished' event handler:
388 	 */
389 	if (!uptodate) {
390 		set_bit(WriteErrorSeen,
391 			&conf->mirrors[mirror].rdev->flags);
392 		set_bit(R1BIO_WriteError, &r1_bio->state);
393 	} else {
394 		/*
395 		 * Set R1BIO_Uptodate in our master bio, so that we
396 		 * will return a good error code for to the higher
397 		 * levels even if IO on some other mirrored buffer
398 		 * fails.
399 		 *
400 		 * The 'master' represents the composite IO operation
401 		 * to user-side. So if something waits for IO, then it
402 		 * will wait for the 'master' bio.
403 		 */
404 		sector_t first_bad;
405 		int bad_sectors;
406 
407 		r1_bio->bios[mirror] = NULL;
408 		to_put = bio;
409 		set_bit(R1BIO_Uptodate, &r1_bio->state);
410 
411 		/* Maybe we can clear some bad blocks. */
412 		if (is_badblock(conf->mirrors[mirror].rdev,
413 				r1_bio->sector, r1_bio->sectors,
414 				&first_bad, &bad_sectors)) {
415 			r1_bio->bios[mirror] = IO_MADE_GOOD;
416 			set_bit(R1BIO_MadeGood, &r1_bio->state);
417 		}
418 	}
419 
420 	if (behind) {
421 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
422 			atomic_dec(&r1_bio->behind_remaining);
423 
424 		/*
425 		 * In behind mode, we ACK the master bio once the I/O
426 		 * has safely reached all non-writemostly
427 		 * disks. Setting the Returned bit ensures that this
428 		 * gets done only once -- we don't ever want to return
429 		 * -EIO here, instead we'll wait
430 		 */
431 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
432 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
433 			/* Maybe we can return now */
434 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
435 				struct bio *mbio = r1_bio->master_bio;
436 				pr_debug("raid1: behind end write sectors"
437 					 " %llu-%llu\n",
438 					 (unsigned long long) mbio->bi_sector,
439 					 (unsigned long long) mbio->bi_sector +
440 					 (mbio->bi_size >> 9) - 1);
441 				call_bio_endio(r1_bio);
442 			}
443 		}
444 	}
445 	if (r1_bio->bios[mirror] == NULL)
446 		rdev_dec_pending(conf->mirrors[mirror].rdev,
447 				 conf->mddev);
448 
449 	/*
450 	 * Let's see if all mirrored write operations have finished
451 	 * already.
452 	 */
453 	r1_bio_write_done(r1_bio);
454 
455 	if (to_put)
456 		bio_put(to_put);
457 }
458 
459 
460 /*
461  * This routine returns the disk from which the requested read should
462  * be done. There is a per-array 'next expected sequential IO' sector
463  * number - if this matches on the next IO then we use the last disk.
464  * There is also a per-disk 'last know head position' sector that is
465  * maintained from IRQ contexts, both the normal and the resync IO
466  * completion handlers update this position correctly. If there is no
467  * perfect sequential match then we pick the disk whose head is closest.
468  *
469  * If there are 2 mirrors in the same 2 devices, performance degrades
470  * because position is mirror, not device based.
471  *
472  * The rdev for the device selected will have nr_pending incremented.
473  */
474 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
475 {
476 	const sector_t this_sector = r1_bio->sector;
477 	int sectors;
478 	int best_good_sectors;
479 	int start_disk;
480 	int best_disk;
481 	int i;
482 	sector_t best_dist;
483 	struct md_rdev *rdev;
484 	int choose_first;
485 
486 	rcu_read_lock();
487 	/*
488 	 * Check if we can balance. We can balance on the whole
489 	 * device if no resync is going on, or below the resync window.
490 	 * We take the first readable disk when above the resync window.
491 	 */
492  retry:
493 	sectors = r1_bio->sectors;
494 	best_disk = -1;
495 	best_dist = MaxSector;
496 	best_good_sectors = 0;
497 
498 	if (conf->mddev->recovery_cp < MaxSector &&
499 	    (this_sector + sectors >= conf->next_resync)) {
500 		choose_first = 1;
501 		start_disk = 0;
502 	} else {
503 		choose_first = 0;
504 		start_disk = conf->last_used;
505 	}
506 
507 	for (i = 0 ; i < conf->raid_disks ; i++) {
508 		sector_t dist;
509 		sector_t first_bad;
510 		int bad_sectors;
511 
512 		int disk = start_disk + i;
513 		if (disk >= conf->raid_disks)
514 			disk -= conf->raid_disks;
515 
516 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
517 		if (r1_bio->bios[disk] == IO_BLOCKED
518 		    || rdev == NULL
519 		    || test_bit(Faulty, &rdev->flags))
520 			continue;
521 		if (!test_bit(In_sync, &rdev->flags) &&
522 		    rdev->recovery_offset < this_sector + sectors)
523 			continue;
524 		if (test_bit(WriteMostly, &rdev->flags)) {
525 			/* Don't balance among write-mostly, just
526 			 * use the first as a last resort */
527 			if (best_disk < 0)
528 				best_disk = disk;
529 			continue;
530 		}
531 		/* This is a reasonable device to use.  It might
532 		 * even be best.
533 		 */
534 		if (is_badblock(rdev, this_sector, sectors,
535 				&first_bad, &bad_sectors)) {
536 			if (best_dist < MaxSector)
537 				/* already have a better device */
538 				continue;
539 			if (first_bad <= this_sector) {
540 				/* cannot read here. If this is the 'primary'
541 				 * device, then we must not read beyond
542 				 * bad_sectors from another device..
543 				 */
544 				bad_sectors -= (this_sector - first_bad);
545 				if (choose_first && sectors > bad_sectors)
546 					sectors = bad_sectors;
547 				if (best_good_sectors > sectors)
548 					best_good_sectors = sectors;
549 
550 			} else {
551 				sector_t good_sectors = first_bad - this_sector;
552 				if (good_sectors > best_good_sectors) {
553 					best_good_sectors = good_sectors;
554 					best_disk = disk;
555 				}
556 				if (choose_first)
557 					break;
558 			}
559 			continue;
560 		} else
561 			best_good_sectors = sectors;
562 
563 		dist = abs(this_sector - conf->mirrors[disk].head_position);
564 		if (choose_first
565 		    /* Don't change to another disk for sequential reads */
566 		    || conf->next_seq_sect == this_sector
567 		    || dist == 0
568 		    /* If device is idle, use it */
569 		    || atomic_read(&rdev->nr_pending) == 0) {
570 			best_disk = disk;
571 			break;
572 		}
573 		if (dist < best_dist) {
574 			best_dist = dist;
575 			best_disk = disk;
576 		}
577 	}
578 
579 	if (best_disk >= 0) {
580 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
581 		if (!rdev)
582 			goto retry;
583 		atomic_inc(&rdev->nr_pending);
584 		if (test_bit(Faulty, &rdev->flags)) {
585 			/* cannot risk returning a device that failed
586 			 * before we inc'ed nr_pending
587 			 */
588 			rdev_dec_pending(rdev, conf->mddev);
589 			goto retry;
590 		}
591 		sectors = best_good_sectors;
592 		conf->next_seq_sect = this_sector + sectors;
593 		conf->last_used = best_disk;
594 	}
595 	rcu_read_unlock();
596 	*max_sectors = sectors;
597 
598 	return best_disk;
599 }
600 
601 int md_raid1_congested(struct mddev *mddev, int bits)
602 {
603 	struct r1conf *conf = mddev->private;
604 	int i, ret = 0;
605 
606 	if ((bits & (1 << BDI_async_congested)) &&
607 	    conf->pending_count >= max_queued_requests)
608 		return 1;
609 
610 	rcu_read_lock();
611 	for (i = 0; i < mddev->raid_disks; i++) {
612 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
613 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
614 			struct request_queue *q = bdev_get_queue(rdev->bdev);
615 
616 			BUG_ON(!q);
617 
618 			/* Note the '|| 1' - when read_balance prefers
619 			 * non-congested targets, it can be removed
620 			 */
621 			if ((bits & (1<<BDI_async_congested)) || 1)
622 				ret |= bdi_congested(&q->backing_dev_info, bits);
623 			else
624 				ret &= bdi_congested(&q->backing_dev_info, bits);
625 		}
626 	}
627 	rcu_read_unlock();
628 	return ret;
629 }
630 EXPORT_SYMBOL_GPL(md_raid1_congested);
631 
632 static int raid1_congested(void *data, int bits)
633 {
634 	struct mddev *mddev = data;
635 
636 	return mddev_congested(mddev, bits) ||
637 		md_raid1_congested(mddev, bits);
638 }
639 
640 static void flush_pending_writes(struct r1conf *conf)
641 {
642 	/* Any writes that have been queued but are awaiting
643 	 * bitmap updates get flushed here.
644 	 */
645 	spin_lock_irq(&conf->device_lock);
646 
647 	if (conf->pending_bio_list.head) {
648 		struct bio *bio;
649 		bio = bio_list_get(&conf->pending_bio_list);
650 		conf->pending_count = 0;
651 		spin_unlock_irq(&conf->device_lock);
652 		/* flush any pending bitmap writes to
653 		 * disk before proceeding w/ I/O */
654 		bitmap_unplug(conf->mddev->bitmap);
655 		wake_up(&conf->wait_barrier);
656 
657 		while (bio) { /* submit pending writes */
658 			struct bio *next = bio->bi_next;
659 			bio->bi_next = NULL;
660 			generic_make_request(bio);
661 			bio = next;
662 		}
663 	} else
664 		spin_unlock_irq(&conf->device_lock);
665 }
666 
667 /* Barriers....
668  * Sometimes we need to suspend IO while we do something else,
669  * either some resync/recovery, or reconfigure the array.
670  * To do this we raise a 'barrier'.
671  * The 'barrier' is a counter that can be raised multiple times
672  * to count how many activities are happening which preclude
673  * normal IO.
674  * We can only raise the barrier if there is no pending IO.
675  * i.e. if nr_pending == 0.
676  * We choose only to raise the barrier if no-one is waiting for the
677  * barrier to go down.  This means that as soon as an IO request
678  * is ready, no other operations which require a barrier will start
679  * until the IO request has had a chance.
680  *
681  * So: regular IO calls 'wait_barrier'.  When that returns there
682  *    is no backgroup IO happening,  It must arrange to call
683  *    allow_barrier when it has finished its IO.
684  * backgroup IO calls must call raise_barrier.  Once that returns
685  *    there is no normal IO happeing.  It must arrange to call
686  *    lower_barrier when the particular background IO completes.
687  */
688 #define RESYNC_DEPTH 32
689 
690 static void raise_barrier(struct r1conf *conf)
691 {
692 	spin_lock_irq(&conf->resync_lock);
693 
694 	/* Wait until no block IO is waiting */
695 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
696 			    conf->resync_lock, );
697 
698 	/* block any new IO from starting */
699 	conf->barrier++;
700 
701 	/* Now wait for all pending IO to complete */
702 	wait_event_lock_irq(conf->wait_barrier,
703 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
704 			    conf->resync_lock, );
705 
706 	spin_unlock_irq(&conf->resync_lock);
707 }
708 
709 static void lower_barrier(struct r1conf *conf)
710 {
711 	unsigned long flags;
712 	BUG_ON(conf->barrier <= 0);
713 	spin_lock_irqsave(&conf->resync_lock, flags);
714 	conf->barrier--;
715 	spin_unlock_irqrestore(&conf->resync_lock, flags);
716 	wake_up(&conf->wait_barrier);
717 }
718 
719 static void wait_barrier(struct r1conf *conf)
720 {
721 	spin_lock_irq(&conf->resync_lock);
722 	if (conf->barrier) {
723 		conf->nr_waiting++;
724 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
725 				    conf->resync_lock,
726 				    );
727 		conf->nr_waiting--;
728 	}
729 	conf->nr_pending++;
730 	spin_unlock_irq(&conf->resync_lock);
731 }
732 
733 static void allow_barrier(struct r1conf *conf)
734 {
735 	unsigned long flags;
736 	spin_lock_irqsave(&conf->resync_lock, flags);
737 	conf->nr_pending--;
738 	spin_unlock_irqrestore(&conf->resync_lock, flags);
739 	wake_up(&conf->wait_barrier);
740 }
741 
742 static void freeze_array(struct r1conf *conf)
743 {
744 	/* stop syncio and normal IO and wait for everything to
745 	 * go quite.
746 	 * We increment barrier and nr_waiting, and then
747 	 * wait until nr_pending match nr_queued+1
748 	 * This is called in the context of one normal IO request
749 	 * that has failed. Thus any sync request that might be pending
750 	 * will be blocked by nr_pending, and we need to wait for
751 	 * pending IO requests to complete or be queued for re-try.
752 	 * Thus the number queued (nr_queued) plus this request (1)
753 	 * must match the number of pending IOs (nr_pending) before
754 	 * we continue.
755 	 */
756 	spin_lock_irq(&conf->resync_lock);
757 	conf->barrier++;
758 	conf->nr_waiting++;
759 	wait_event_lock_irq(conf->wait_barrier,
760 			    conf->nr_pending == conf->nr_queued+1,
761 			    conf->resync_lock,
762 			    flush_pending_writes(conf));
763 	spin_unlock_irq(&conf->resync_lock);
764 }
765 static void unfreeze_array(struct r1conf *conf)
766 {
767 	/* reverse the effect of the freeze */
768 	spin_lock_irq(&conf->resync_lock);
769 	conf->barrier--;
770 	conf->nr_waiting--;
771 	wake_up(&conf->wait_barrier);
772 	spin_unlock_irq(&conf->resync_lock);
773 }
774 
775 
776 /* duplicate the data pages for behind I/O
777  */
778 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
779 {
780 	int i;
781 	struct bio_vec *bvec;
782 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
783 					GFP_NOIO);
784 	if (unlikely(!bvecs))
785 		return;
786 
787 	bio_for_each_segment(bvec, bio, i) {
788 		bvecs[i] = *bvec;
789 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
790 		if (unlikely(!bvecs[i].bv_page))
791 			goto do_sync_io;
792 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
793 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
794 		kunmap(bvecs[i].bv_page);
795 		kunmap(bvec->bv_page);
796 	}
797 	r1_bio->behind_bvecs = bvecs;
798 	r1_bio->behind_page_count = bio->bi_vcnt;
799 	set_bit(R1BIO_BehindIO, &r1_bio->state);
800 	return;
801 
802 do_sync_io:
803 	for (i = 0; i < bio->bi_vcnt; i++)
804 		if (bvecs[i].bv_page)
805 			put_page(bvecs[i].bv_page);
806 	kfree(bvecs);
807 	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
808 }
809 
810 static int make_request(struct mddev *mddev, struct bio * bio)
811 {
812 	struct r1conf *conf = mddev->private;
813 	struct mirror_info *mirror;
814 	struct r1bio *r1_bio;
815 	struct bio *read_bio;
816 	int i, disks;
817 	struct bitmap *bitmap;
818 	unsigned long flags;
819 	const int rw = bio_data_dir(bio);
820 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
821 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
822 	struct md_rdev *blocked_rdev;
823 	int plugged;
824 	int first_clone;
825 	int sectors_handled;
826 	int max_sectors;
827 
828 	/*
829 	 * Register the new request and wait if the reconstruction
830 	 * thread has put up a bar for new requests.
831 	 * Continue immediately if no resync is active currently.
832 	 */
833 
834 	md_write_start(mddev, bio); /* wait on superblock update early */
835 
836 	if (bio_data_dir(bio) == WRITE &&
837 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
838 	    bio->bi_sector < mddev->suspend_hi) {
839 		/* As the suspend_* range is controlled by
840 		 * userspace, we want an interruptible
841 		 * wait.
842 		 */
843 		DEFINE_WAIT(w);
844 		for (;;) {
845 			flush_signals(current);
846 			prepare_to_wait(&conf->wait_barrier,
847 					&w, TASK_INTERRUPTIBLE);
848 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
849 			    bio->bi_sector >= mddev->suspend_hi)
850 				break;
851 			schedule();
852 		}
853 		finish_wait(&conf->wait_barrier, &w);
854 	}
855 
856 	wait_barrier(conf);
857 
858 	bitmap = mddev->bitmap;
859 
860 	/*
861 	 * make_request() can abort the operation when READA is being
862 	 * used and no empty request is available.
863 	 *
864 	 */
865 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
866 
867 	r1_bio->master_bio = bio;
868 	r1_bio->sectors = bio->bi_size >> 9;
869 	r1_bio->state = 0;
870 	r1_bio->mddev = mddev;
871 	r1_bio->sector = bio->bi_sector;
872 
873 	/* We might need to issue multiple reads to different
874 	 * devices if there are bad blocks around, so we keep
875 	 * track of the number of reads in bio->bi_phys_segments.
876 	 * If this is 0, there is only one r1_bio and no locking
877 	 * will be needed when requests complete.  If it is
878 	 * non-zero, then it is the number of not-completed requests.
879 	 */
880 	bio->bi_phys_segments = 0;
881 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
882 
883 	if (rw == READ) {
884 		/*
885 		 * read balancing logic:
886 		 */
887 		int rdisk;
888 
889 read_again:
890 		rdisk = read_balance(conf, r1_bio, &max_sectors);
891 
892 		if (rdisk < 0) {
893 			/* couldn't find anywhere to read from */
894 			raid_end_bio_io(r1_bio);
895 			return 0;
896 		}
897 		mirror = conf->mirrors + rdisk;
898 
899 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
900 		    bitmap) {
901 			/* Reading from a write-mostly device must
902 			 * take care not to over-take any writes
903 			 * that are 'behind'
904 			 */
905 			wait_event(bitmap->behind_wait,
906 				   atomic_read(&bitmap->behind_writes) == 0);
907 		}
908 		r1_bio->read_disk = rdisk;
909 
910 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
911 		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
912 			    max_sectors);
913 
914 		r1_bio->bios[rdisk] = read_bio;
915 
916 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
917 		read_bio->bi_bdev = mirror->rdev->bdev;
918 		read_bio->bi_end_io = raid1_end_read_request;
919 		read_bio->bi_rw = READ | do_sync;
920 		read_bio->bi_private = r1_bio;
921 
922 		if (max_sectors < r1_bio->sectors) {
923 			/* could not read all from this device, so we will
924 			 * need another r1_bio.
925 			 */
926 
927 			sectors_handled = (r1_bio->sector + max_sectors
928 					   - bio->bi_sector);
929 			r1_bio->sectors = max_sectors;
930 			spin_lock_irq(&conf->device_lock);
931 			if (bio->bi_phys_segments == 0)
932 				bio->bi_phys_segments = 2;
933 			else
934 				bio->bi_phys_segments++;
935 			spin_unlock_irq(&conf->device_lock);
936 			/* Cannot call generic_make_request directly
937 			 * as that will be queued in __make_request
938 			 * and subsequent mempool_alloc might block waiting
939 			 * for it.  So hand bio over to raid1d.
940 			 */
941 			reschedule_retry(r1_bio);
942 
943 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
944 
945 			r1_bio->master_bio = bio;
946 			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
947 			r1_bio->state = 0;
948 			r1_bio->mddev = mddev;
949 			r1_bio->sector = bio->bi_sector + sectors_handled;
950 			goto read_again;
951 		} else
952 			generic_make_request(read_bio);
953 		return 0;
954 	}
955 
956 	/*
957 	 * WRITE:
958 	 */
959 	if (conf->pending_count >= max_queued_requests) {
960 		md_wakeup_thread(mddev->thread);
961 		wait_event(conf->wait_barrier,
962 			   conf->pending_count < max_queued_requests);
963 	}
964 	/* first select target devices under rcu_lock and
965 	 * inc refcount on their rdev.  Record them by setting
966 	 * bios[x] to bio
967 	 * If there are known/acknowledged bad blocks on any device on
968 	 * which we have seen a write error, we want to avoid writing those
969 	 * blocks.
970 	 * This potentially requires several writes to write around
971 	 * the bad blocks.  Each set of writes gets it's own r1bio
972 	 * with a set of bios attached.
973 	 */
974 	plugged = mddev_check_plugged(mddev);
975 
976 	disks = conf->raid_disks;
977  retry_write:
978 	blocked_rdev = NULL;
979 	rcu_read_lock();
980 	max_sectors = r1_bio->sectors;
981 	for (i = 0;  i < disks; i++) {
982 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
983 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
984 			atomic_inc(&rdev->nr_pending);
985 			blocked_rdev = rdev;
986 			break;
987 		}
988 		r1_bio->bios[i] = NULL;
989 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
990 			set_bit(R1BIO_Degraded, &r1_bio->state);
991 			continue;
992 		}
993 
994 		atomic_inc(&rdev->nr_pending);
995 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
996 			sector_t first_bad;
997 			int bad_sectors;
998 			int is_bad;
999 
1000 			is_bad = is_badblock(rdev, r1_bio->sector,
1001 					     max_sectors,
1002 					     &first_bad, &bad_sectors);
1003 			if (is_bad < 0) {
1004 				/* mustn't write here until the bad block is
1005 				 * acknowledged*/
1006 				set_bit(BlockedBadBlocks, &rdev->flags);
1007 				blocked_rdev = rdev;
1008 				break;
1009 			}
1010 			if (is_bad && first_bad <= r1_bio->sector) {
1011 				/* Cannot write here at all */
1012 				bad_sectors -= (r1_bio->sector - first_bad);
1013 				if (bad_sectors < max_sectors)
1014 					/* mustn't write more than bad_sectors
1015 					 * to other devices yet
1016 					 */
1017 					max_sectors = bad_sectors;
1018 				rdev_dec_pending(rdev, mddev);
1019 				/* We don't set R1BIO_Degraded as that
1020 				 * only applies if the disk is
1021 				 * missing, so it might be re-added,
1022 				 * and we want to know to recover this
1023 				 * chunk.
1024 				 * In this case the device is here,
1025 				 * and the fact that this chunk is not
1026 				 * in-sync is recorded in the bad
1027 				 * block log
1028 				 */
1029 				continue;
1030 			}
1031 			if (is_bad) {
1032 				int good_sectors = first_bad - r1_bio->sector;
1033 				if (good_sectors < max_sectors)
1034 					max_sectors = good_sectors;
1035 			}
1036 		}
1037 		r1_bio->bios[i] = bio;
1038 	}
1039 	rcu_read_unlock();
1040 
1041 	if (unlikely(blocked_rdev)) {
1042 		/* Wait for this device to become unblocked */
1043 		int j;
1044 
1045 		for (j = 0; j < i; j++)
1046 			if (r1_bio->bios[j])
1047 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1048 		r1_bio->state = 0;
1049 		allow_barrier(conf);
1050 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1051 		wait_barrier(conf);
1052 		goto retry_write;
1053 	}
1054 
1055 	if (max_sectors < r1_bio->sectors) {
1056 		/* We are splitting this write into multiple parts, so
1057 		 * we need to prepare for allocating another r1_bio.
1058 		 */
1059 		r1_bio->sectors = max_sectors;
1060 		spin_lock_irq(&conf->device_lock);
1061 		if (bio->bi_phys_segments == 0)
1062 			bio->bi_phys_segments = 2;
1063 		else
1064 			bio->bi_phys_segments++;
1065 		spin_unlock_irq(&conf->device_lock);
1066 	}
1067 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1068 
1069 	atomic_set(&r1_bio->remaining, 1);
1070 	atomic_set(&r1_bio->behind_remaining, 0);
1071 
1072 	first_clone = 1;
1073 	for (i = 0; i < disks; i++) {
1074 		struct bio *mbio;
1075 		if (!r1_bio->bios[i])
1076 			continue;
1077 
1078 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1079 		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1080 
1081 		if (first_clone) {
1082 			/* do behind I/O ?
1083 			 * Not if there are too many, or cannot
1084 			 * allocate memory, or a reader on WriteMostly
1085 			 * is waiting for behind writes to flush */
1086 			if (bitmap &&
1087 			    (atomic_read(&bitmap->behind_writes)
1088 			     < mddev->bitmap_info.max_write_behind) &&
1089 			    !waitqueue_active(&bitmap->behind_wait))
1090 				alloc_behind_pages(mbio, r1_bio);
1091 
1092 			bitmap_startwrite(bitmap, r1_bio->sector,
1093 					  r1_bio->sectors,
1094 					  test_bit(R1BIO_BehindIO,
1095 						   &r1_bio->state));
1096 			first_clone = 0;
1097 		}
1098 		if (r1_bio->behind_bvecs) {
1099 			struct bio_vec *bvec;
1100 			int j;
1101 
1102 			/* Yes, I really want the '__' version so that
1103 			 * we clear any unused pointer in the io_vec, rather
1104 			 * than leave them unchanged.  This is important
1105 			 * because when we come to free the pages, we won't
1106 			 * know the original bi_idx, so we just free
1107 			 * them all
1108 			 */
1109 			__bio_for_each_segment(bvec, mbio, j, 0)
1110 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1111 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1112 				atomic_inc(&r1_bio->behind_remaining);
1113 		}
1114 
1115 		r1_bio->bios[i] = mbio;
1116 
1117 		mbio->bi_sector	= (r1_bio->sector +
1118 				   conf->mirrors[i].rdev->data_offset);
1119 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1120 		mbio->bi_end_io	= raid1_end_write_request;
1121 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1122 		mbio->bi_private = r1_bio;
1123 
1124 		atomic_inc(&r1_bio->remaining);
1125 		spin_lock_irqsave(&conf->device_lock, flags);
1126 		bio_list_add(&conf->pending_bio_list, mbio);
1127 		conf->pending_count++;
1128 		spin_unlock_irqrestore(&conf->device_lock, flags);
1129 	}
1130 	/* Mustn't call r1_bio_write_done before this next test,
1131 	 * as it could result in the bio being freed.
1132 	 */
1133 	if (sectors_handled < (bio->bi_size >> 9)) {
1134 		r1_bio_write_done(r1_bio);
1135 		/* We need another r1_bio.  It has already been counted
1136 		 * in bio->bi_phys_segments
1137 		 */
1138 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1139 		r1_bio->master_bio = bio;
1140 		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1141 		r1_bio->state = 0;
1142 		r1_bio->mddev = mddev;
1143 		r1_bio->sector = bio->bi_sector + sectors_handled;
1144 		goto retry_write;
1145 	}
1146 
1147 	r1_bio_write_done(r1_bio);
1148 
1149 	/* In case raid1d snuck in to freeze_array */
1150 	wake_up(&conf->wait_barrier);
1151 
1152 	if (do_sync || !bitmap || !plugged)
1153 		md_wakeup_thread(mddev->thread);
1154 
1155 	return 0;
1156 }
1157 
1158 static void status(struct seq_file *seq, struct mddev *mddev)
1159 {
1160 	struct r1conf *conf = mddev->private;
1161 	int i;
1162 
1163 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1164 		   conf->raid_disks - mddev->degraded);
1165 	rcu_read_lock();
1166 	for (i = 0; i < conf->raid_disks; i++) {
1167 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1168 		seq_printf(seq, "%s",
1169 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1170 	}
1171 	rcu_read_unlock();
1172 	seq_printf(seq, "]");
1173 }
1174 
1175 
1176 static void error(struct mddev *mddev, struct md_rdev *rdev)
1177 {
1178 	char b[BDEVNAME_SIZE];
1179 	struct r1conf *conf = mddev->private;
1180 
1181 	/*
1182 	 * If it is not operational, then we have already marked it as dead
1183 	 * else if it is the last working disks, ignore the error, let the
1184 	 * next level up know.
1185 	 * else mark the drive as failed
1186 	 */
1187 	if (test_bit(In_sync, &rdev->flags)
1188 	    && (conf->raid_disks - mddev->degraded) == 1) {
1189 		/*
1190 		 * Don't fail the drive, act as though we were just a
1191 		 * normal single drive.
1192 		 * However don't try a recovery from this drive as
1193 		 * it is very likely to fail.
1194 		 */
1195 		conf->recovery_disabled = mddev->recovery_disabled;
1196 		return;
1197 	}
1198 	set_bit(Blocked, &rdev->flags);
1199 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1200 		unsigned long flags;
1201 		spin_lock_irqsave(&conf->device_lock, flags);
1202 		mddev->degraded++;
1203 		set_bit(Faulty, &rdev->flags);
1204 		spin_unlock_irqrestore(&conf->device_lock, flags);
1205 		/*
1206 		 * if recovery is running, make sure it aborts.
1207 		 */
1208 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1209 	} else
1210 		set_bit(Faulty, &rdev->flags);
1211 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1212 	printk(KERN_ALERT
1213 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1214 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1215 	       mdname(mddev), bdevname(rdev->bdev, b),
1216 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1217 }
1218 
1219 static void print_conf(struct r1conf *conf)
1220 {
1221 	int i;
1222 
1223 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1224 	if (!conf) {
1225 		printk(KERN_DEBUG "(!conf)\n");
1226 		return;
1227 	}
1228 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1229 		conf->raid_disks);
1230 
1231 	rcu_read_lock();
1232 	for (i = 0; i < conf->raid_disks; i++) {
1233 		char b[BDEVNAME_SIZE];
1234 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1235 		if (rdev)
1236 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1237 			       i, !test_bit(In_sync, &rdev->flags),
1238 			       !test_bit(Faulty, &rdev->flags),
1239 			       bdevname(rdev->bdev,b));
1240 	}
1241 	rcu_read_unlock();
1242 }
1243 
1244 static void close_sync(struct r1conf *conf)
1245 {
1246 	wait_barrier(conf);
1247 	allow_barrier(conf);
1248 
1249 	mempool_destroy(conf->r1buf_pool);
1250 	conf->r1buf_pool = NULL;
1251 }
1252 
1253 static int raid1_spare_active(struct mddev *mddev)
1254 {
1255 	int i;
1256 	struct r1conf *conf = mddev->private;
1257 	int count = 0;
1258 	unsigned long flags;
1259 
1260 	/*
1261 	 * Find all failed disks within the RAID1 configuration
1262 	 * and mark them readable.
1263 	 * Called under mddev lock, so rcu protection not needed.
1264 	 */
1265 	for (i = 0; i < conf->raid_disks; i++) {
1266 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1267 		if (rdev
1268 		    && !test_bit(Faulty, &rdev->flags)
1269 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1270 			count++;
1271 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1272 		}
1273 	}
1274 	spin_lock_irqsave(&conf->device_lock, flags);
1275 	mddev->degraded -= count;
1276 	spin_unlock_irqrestore(&conf->device_lock, flags);
1277 
1278 	print_conf(conf);
1279 	return count;
1280 }
1281 
1282 
1283 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1284 {
1285 	struct r1conf *conf = mddev->private;
1286 	int err = -EEXIST;
1287 	int mirror = 0;
1288 	struct mirror_info *p;
1289 	int first = 0;
1290 	int last = mddev->raid_disks - 1;
1291 
1292 	if (mddev->recovery_disabled == conf->recovery_disabled)
1293 		return -EBUSY;
1294 
1295 	if (rdev->raid_disk >= 0)
1296 		first = last = rdev->raid_disk;
1297 
1298 	for (mirror = first; mirror <= last; mirror++)
1299 		if ( !(p=conf->mirrors+mirror)->rdev) {
1300 
1301 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1302 					  rdev->data_offset << 9);
1303 			/* as we don't honour merge_bvec_fn, we must
1304 			 * never risk violating it, so limit
1305 			 * ->max_segments to one lying with a single
1306 			 * page, as a one page request is never in
1307 			 * violation.
1308 			 */
1309 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1310 				blk_queue_max_segments(mddev->queue, 1);
1311 				blk_queue_segment_boundary(mddev->queue,
1312 							   PAGE_CACHE_SIZE - 1);
1313 			}
1314 
1315 			p->head_position = 0;
1316 			rdev->raid_disk = mirror;
1317 			err = 0;
1318 			/* As all devices are equivalent, we don't need a full recovery
1319 			 * if this was recently any drive of the array
1320 			 */
1321 			if (rdev->saved_raid_disk < 0)
1322 				conf->fullsync = 1;
1323 			rcu_assign_pointer(p->rdev, rdev);
1324 			break;
1325 		}
1326 	md_integrity_add_rdev(rdev, mddev);
1327 	print_conf(conf);
1328 	return err;
1329 }
1330 
1331 static int raid1_remove_disk(struct mddev *mddev, int number)
1332 {
1333 	struct r1conf *conf = mddev->private;
1334 	int err = 0;
1335 	struct md_rdev *rdev;
1336 	struct mirror_info *p = conf->mirrors+ number;
1337 
1338 	print_conf(conf);
1339 	rdev = p->rdev;
1340 	if (rdev) {
1341 		if (test_bit(In_sync, &rdev->flags) ||
1342 		    atomic_read(&rdev->nr_pending)) {
1343 			err = -EBUSY;
1344 			goto abort;
1345 		}
1346 		/* Only remove non-faulty devices if recovery
1347 		 * is not possible.
1348 		 */
1349 		if (!test_bit(Faulty, &rdev->flags) &&
1350 		    mddev->recovery_disabled != conf->recovery_disabled &&
1351 		    mddev->degraded < conf->raid_disks) {
1352 			err = -EBUSY;
1353 			goto abort;
1354 		}
1355 		p->rdev = NULL;
1356 		synchronize_rcu();
1357 		if (atomic_read(&rdev->nr_pending)) {
1358 			/* lost the race, try later */
1359 			err = -EBUSY;
1360 			p->rdev = rdev;
1361 			goto abort;
1362 		}
1363 		err = md_integrity_register(mddev);
1364 	}
1365 abort:
1366 
1367 	print_conf(conf);
1368 	return err;
1369 }
1370 
1371 
1372 static void end_sync_read(struct bio *bio, int error)
1373 {
1374 	struct r1bio *r1_bio = bio->bi_private;
1375 
1376 	update_head_pos(r1_bio->read_disk, r1_bio);
1377 
1378 	/*
1379 	 * we have read a block, now it needs to be re-written,
1380 	 * or re-read if the read failed.
1381 	 * We don't do much here, just schedule handling by raid1d
1382 	 */
1383 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1384 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1385 
1386 	if (atomic_dec_and_test(&r1_bio->remaining))
1387 		reschedule_retry(r1_bio);
1388 }
1389 
1390 static void end_sync_write(struct bio *bio, int error)
1391 {
1392 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1393 	struct r1bio *r1_bio = bio->bi_private;
1394 	struct mddev *mddev = r1_bio->mddev;
1395 	struct r1conf *conf = mddev->private;
1396 	int mirror=0;
1397 	sector_t first_bad;
1398 	int bad_sectors;
1399 
1400 	mirror = find_bio_disk(r1_bio, bio);
1401 
1402 	if (!uptodate) {
1403 		sector_t sync_blocks = 0;
1404 		sector_t s = r1_bio->sector;
1405 		long sectors_to_go = r1_bio->sectors;
1406 		/* make sure these bits doesn't get cleared. */
1407 		do {
1408 			bitmap_end_sync(mddev->bitmap, s,
1409 					&sync_blocks, 1);
1410 			s += sync_blocks;
1411 			sectors_to_go -= sync_blocks;
1412 		} while (sectors_to_go > 0);
1413 		set_bit(WriteErrorSeen,
1414 			&conf->mirrors[mirror].rdev->flags);
1415 		set_bit(R1BIO_WriteError, &r1_bio->state);
1416 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1417 			       r1_bio->sector,
1418 			       r1_bio->sectors,
1419 			       &first_bad, &bad_sectors) &&
1420 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1421 				r1_bio->sector,
1422 				r1_bio->sectors,
1423 				&first_bad, &bad_sectors)
1424 		)
1425 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1426 
1427 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1428 		int s = r1_bio->sectors;
1429 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1430 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1431 			reschedule_retry(r1_bio);
1432 		else {
1433 			put_buf(r1_bio);
1434 			md_done_sync(mddev, s, uptodate);
1435 		}
1436 	}
1437 }
1438 
1439 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1440 			    int sectors, struct page *page, int rw)
1441 {
1442 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1443 		/* success */
1444 		return 1;
1445 	if (rw == WRITE)
1446 		set_bit(WriteErrorSeen, &rdev->flags);
1447 	/* need to record an error - either for the block or the device */
1448 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1449 		md_error(rdev->mddev, rdev);
1450 	return 0;
1451 }
1452 
1453 static int fix_sync_read_error(struct r1bio *r1_bio)
1454 {
1455 	/* Try some synchronous reads of other devices to get
1456 	 * good data, much like with normal read errors.  Only
1457 	 * read into the pages we already have so we don't
1458 	 * need to re-issue the read request.
1459 	 * We don't need to freeze the array, because being in an
1460 	 * active sync request, there is no normal IO, and
1461 	 * no overlapping syncs.
1462 	 * We don't need to check is_badblock() again as we
1463 	 * made sure that anything with a bad block in range
1464 	 * will have bi_end_io clear.
1465 	 */
1466 	struct mddev *mddev = r1_bio->mddev;
1467 	struct r1conf *conf = mddev->private;
1468 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1469 	sector_t sect = r1_bio->sector;
1470 	int sectors = r1_bio->sectors;
1471 	int idx = 0;
1472 
1473 	while(sectors) {
1474 		int s = sectors;
1475 		int d = r1_bio->read_disk;
1476 		int success = 0;
1477 		struct md_rdev *rdev;
1478 		int start;
1479 
1480 		if (s > (PAGE_SIZE>>9))
1481 			s = PAGE_SIZE >> 9;
1482 		do {
1483 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1484 				/* No rcu protection needed here devices
1485 				 * can only be removed when no resync is
1486 				 * active, and resync is currently active
1487 				 */
1488 				rdev = conf->mirrors[d].rdev;
1489 				if (sync_page_io(rdev, sect, s<<9,
1490 						 bio->bi_io_vec[idx].bv_page,
1491 						 READ, false)) {
1492 					success = 1;
1493 					break;
1494 				}
1495 			}
1496 			d++;
1497 			if (d == conf->raid_disks)
1498 				d = 0;
1499 		} while (!success && d != r1_bio->read_disk);
1500 
1501 		if (!success) {
1502 			char b[BDEVNAME_SIZE];
1503 			int abort = 0;
1504 			/* Cannot read from anywhere, this block is lost.
1505 			 * Record a bad block on each device.  If that doesn't
1506 			 * work just disable and interrupt the recovery.
1507 			 * Don't fail devices as that won't really help.
1508 			 */
1509 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1510 			       " for block %llu\n",
1511 			       mdname(mddev),
1512 			       bdevname(bio->bi_bdev, b),
1513 			       (unsigned long long)r1_bio->sector);
1514 			for (d = 0; d < conf->raid_disks; d++) {
1515 				rdev = conf->mirrors[d].rdev;
1516 				if (!rdev || test_bit(Faulty, &rdev->flags))
1517 					continue;
1518 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1519 					abort = 1;
1520 			}
1521 			if (abort) {
1522 				conf->recovery_disabled =
1523 					mddev->recovery_disabled;
1524 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1525 				md_done_sync(mddev, r1_bio->sectors, 0);
1526 				put_buf(r1_bio);
1527 				return 0;
1528 			}
1529 			/* Try next page */
1530 			sectors -= s;
1531 			sect += s;
1532 			idx++;
1533 			continue;
1534 		}
1535 
1536 		start = d;
1537 		/* write it back and re-read */
1538 		while (d != r1_bio->read_disk) {
1539 			if (d == 0)
1540 				d = conf->raid_disks;
1541 			d--;
1542 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1543 				continue;
1544 			rdev = conf->mirrors[d].rdev;
1545 			if (r1_sync_page_io(rdev, sect, s,
1546 					    bio->bi_io_vec[idx].bv_page,
1547 					    WRITE) == 0) {
1548 				r1_bio->bios[d]->bi_end_io = NULL;
1549 				rdev_dec_pending(rdev, mddev);
1550 			}
1551 		}
1552 		d = start;
1553 		while (d != r1_bio->read_disk) {
1554 			if (d == 0)
1555 				d = conf->raid_disks;
1556 			d--;
1557 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1558 				continue;
1559 			rdev = conf->mirrors[d].rdev;
1560 			if (r1_sync_page_io(rdev, sect, s,
1561 					    bio->bi_io_vec[idx].bv_page,
1562 					    READ) != 0)
1563 				atomic_add(s, &rdev->corrected_errors);
1564 		}
1565 		sectors -= s;
1566 		sect += s;
1567 		idx ++;
1568 	}
1569 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1570 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1571 	return 1;
1572 }
1573 
1574 static int process_checks(struct r1bio *r1_bio)
1575 {
1576 	/* We have read all readable devices.  If we haven't
1577 	 * got the block, then there is no hope left.
1578 	 * If we have, then we want to do a comparison
1579 	 * and skip the write if everything is the same.
1580 	 * If any blocks failed to read, then we need to
1581 	 * attempt an over-write
1582 	 */
1583 	struct mddev *mddev = r1_bio->mddev;
1584 	struct r1conf *conf = mddev->private;
1585 	int primary;
1586 	int i;
1587 
1588 	for (primary = 0; primary < conf->raid_disks; primary++)
1589 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1590 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1591 			r1_bio->bios[primary]->bi_end_io = NULL;
1592 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1593 			break;
1594 		}
1595 	r1_bio->read_disk = primary;
1596 	for (i = 0; i < conf->raid_disks; i++) {
1597 		int j;
1598 		int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1599 		struct bio *pbio = r1_bio->bios[primary];
1600 		struct bio *sbio = r1_bio->bios[i];
1601 		int size;
1602 
1603 		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1604 			continue;
1605 
1606 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1607 			for (j = vcnt; j-- ; ) {
1608 				struct page *p, *s;
1609 				p = pbio->bi_io_vec[j].bv_page;
1610 				s = sbio->bi_io_vec[j].bv_page;
1611 				if (memcmp(page_address(p),
1612 					   page_address(s),
1613 					   PAGE_SIZE))
1614 					break;
1615 			}
1616 		} else
1617 			j = 0;
1618 		if (j >= 0)
1619 			mddev->resync_mismatches += r1_bio->sectors;
1620 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1621 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1622 			/* No need to write to this device. */
1623 			sbio->bi_end_io = NULL;
1624 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1625 			continue;
1626 		}
1627 		/* fixup the bio for reuse */
1628 		sbio->bi_vcnt = vcnt;
1629 		sbio->bi_size = r1_bio->sectors << 9;
1630 		sbio->bi_idx = 0;
1631 		sbio->bi_phys_segments = 0;
1632 		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1633 		sbio->bi_flags |= 1 << BIO_UPTODATE;
1634 		sbio->bi_next = NULL;
1635 		sbio->bi_sector = r1_bio->sector +
1636 			conf->mirrors[i].rdev->data_offset;
1637 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1638 		size = sbio->bi_size;
1639 		for (j = 0; j < vcnt ; j++) {
1640 			struct bio_vec *bi;
1641 			bi = &sbio->bi_io_vec[j];
1642 			bi->bv_offset = 0;
1643 			if (size > PAGE_SIZE)
1644 				bi->bv_len = PAGE_SIZE;
1645 			else
1646 				bi->bv_len = size;
1647 			size -= PAGE_SIZE;
1648 			memcpy(page_address(bi->bv_page),
1649 			       page_address(pbio->bi_io_vec[j].bv_page),
1650 			       PAGE_SIZE);
1651 		}
1652 	}
1653 	return 0;
1654 }
1655 
1656 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1657 {
1658 	struct r1conf *conf = mddev->private;
1659 	int i;
1660 	int disks = conf->raid_disks;
1661 	struct bio *bio, *wbio;
1662 
1663 	bio = r1_bio->bios[r1_bio->read_disk];
1664 
1665 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1666 		/* ouch - failed to read all of that. */
1667 		if (!fix_sync_read_error(r1_bio))
1668 			return;
1669 
1670 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1671 		if (process_checks(r1_bio) < 0)
1672 			return;
1673 	/*
1674 	 * schedule writes
1675 	 */
1676 	atomic_set(&r1_bio->remaining, 1);
1677 	for (i = 0; i < disks ; i++) {
1678 		wbio = r1_bio->bios[i];
1679 		if (wbio->bi_end_io == NULL ||
1680 		    (wbio->bi_end_io == end_sync_read &&
1681 		     (i == r1_bio->read_disk ||
1682 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1683 			continue;
1684 
1685 		wbio->bi_rw = WRITE;
1686 		wbio->bi_end_io = end_sync_write;
1687 		atomic_inc(&r1_bio->remaining);
1688 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1689 
1690 		generic_make_request(wbio);
1691 	}
1692 
1693 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1694 		/* if we're here, all write(s) have completed, so clean up */
1695 		md_done_sync(mddev, r1_bio->sectors, 1);
1696 		put_buf(r1_bio);
1697 	}
1698 }
1699 
1700 /*
1701  * This is a kernel thread which:
1702  *
1703  *	1.	Retries failed read operations on working mirrors.
1704  *	2.	Updates the raid superblock when problems encounter.
1705  *	3.	Performs writes following reads for array synchronising.
1706  */
1707 
1708 static void fix_read_error(struct r1conf *conf, int read_disk,
1709 			   sector_t sect, int sectors)
1710 {
1711 	struct mddev *mddev = conf->mddev;
1712 	while(sectors) {
1713 		int s = sectors;
1714 		int d = read_disk;
1715 		int success = 0;
1716 		int start;
1717 		struct md_rdev *rdev;
1718 
1719 		if (s > (PAGE_SIZE>>9))
1720 			s = PAGE_SIZE >> 9;
1721 
1722 		do {
1723 			/* Note: no rcu protection needed here
1724 			 * as this is synchronous in the raid1d thread
1725 			 * which is the thread that might remove
1726 			 * a device.  If raid1d ever becomes multi-threaded....
1727 			 */
1728 			sector_t first_bad;
1729 			int bad_sectors;
1730 
1731 			rdev = conf->mirrors[d].rdev;
1732 			if (rdev &&
1733 			    test_bit(In_sync, &rdev->flags) &&
1734 			    is_badblock(rdev, sect, s,
1735 					&first_bad, &bad_sectors) == 0 &&
1736 			    sync_page_io(rdev, sect, s<<9,
1737 					 conf->tmppage, READ, false))
1738 				success = 1;
1739 			else {
1740 				d++;
1741 				if (d == conf->raid_disks)
1742 					d = 0;
1743 			}
1744 		} while (!success && d != read_disk);
1745 
1746 		if (!success) {
1747 			/* Cannot read from anywhere - mark it bad */
1748 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1749 			if (!rdev_set_badblocks(rdev, sect, s, 0))
1750 				md_error(mddev, rdev);
1751 			break;
1752 		}
1753 		/* write it back and re-read */
1754 		start = d;
1755 		while (d != read_disk) {
1756 			if (d==0)
1757 				d = conf->raid_disks;
1758 			d--;
1759 			rdev = conf->mirrors[d].rdev;
1760 			if (rdev &&
1761 			    test_bit(In_sync, &rdev->flags))
1762 				r1_sync_page_io(rdev, sect, s,
1763 						conf->tmppage, WRITE);
1764 		}
1765 		d = start;
1766 		while (d != read_disk) {
1767 			char b[BDEVNAME_SIZE];
1768 			if (d==0)
1769 				d = conf->raid_disks;
1770 			d--;
1771 			rdev = conf->mirrors[d].rdev;
1772 			if (rdev &&
1773 			    test_bit(In_sync, &rdev->flags)) {
1774 				if (r1_sync_page_io(rdev, sect, s,
1775 						    conf->tmppage, READ)) {
1776 					atomic_add(s, &rdev->corrected_errors);
1777 					printk(KERN_INFO
1778 					       "md/raid1:%s: read error corrected "
1779 					       "(%d sectors at %llu on %s)\n",
1780 					       mdname(mddev), s,
1781 					       (unsigned long long)(sect +
1782 					           rdev->data_offset),
1783 					       bdevname(rdev->bdev, b));
1784 				}
1785 			}
1786 		}
1787 		sectors -= s;
1788 		sect += s;
1789 	}
1790 }
1791 
1792 static void bi_complete(struct bio *bio, int error)
1793 {
1794 	complete((struct completion *)bio->bi_private);
1795 }
1796 
1797 static int submit_bio_wait(int rw, struct bio *bio)
1798 {
1799 	struct completion event;
1800 	rw |= REQ_SYNC;
1801 
1802 	init_completion(&event);
1803 	bio->bi_private = &event;
1804 	bio->bi_end_io = bi_complete;
1805 	submit_bio(rw, bio);
1806 	wait_for_completion(&event);
1807 
1808 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1809 }
1810 
1811 static int narrow_write_error(struct r1bio *r1_bio, int i)
1812 {
1813 	struct mddev *mddev = r1_bio->mddev;
1814 	struct r1conf *conf = mddev->private;
1815 	struct md_rdev *rdev = conf->mirrors[i].rdev;
1816 	int vcnt, idx;
1817 	struct bio_vec *vec;
1818 
1819 	/* bio has the data to be written to device 'i' where
1820 	 * we just recently had a write error.
1821 	 * We repeatedly clone the bio and trim down to one block,
1822 	 * then try the write.  Where the write fails we record
1823 	 * a bad block.
1824 	 * It is conceivable that the bio doesn't exactly align with
1825 	 * blocks.  We must handle this somehow.
1826 	 *
1827 	 * We currently own a reference on the rdev.
1828 	 */
1829 
1830 	int block_sectors;
1831 	sector_t sector;
1832 	int sectors;
1833 	int sect_to_write = r1_bio->sectors;
1834 	int ok = 1;
1835 
1836 	if (rdev->badblocks.shift < 0)
1837 		return 0;
1838 
1839 	block_sectors = 1 << rdev->badblocks.shift;
1840 	sector = r1_bio->sector;
1841 	sectors = ((sector + block_sectors)
1842 		   & ~(sector_t)(block_sectors - 1))
1843 		- sector;
1844 
1845 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1846 		vcnt = r1_bio->behind_page_count;
1847 		vec = r1_bio->behind_bvecs;
1848 		idx = 0;
1849 		while (vec[idx].bv_page == NULL)
1850 			idx++;
1851 	} else {
1852 		vcnt = r1_bio->master_bio->bi_vcnt;
1853 		vec = r1_bio->master_bio->bi_io_vec;
1854 		idx = r1_bio->master_bio->bi_idx;
1855 	}
1856 	while (sect_to_write) {
1857 		struct bio *wbio;
1858 		if (sectors > sect_to_write)
1859 			sectors = sect_to_write;
1860 		/* Write at 'sector' for 'sectors'*/
1861 
1862 		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1863 		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1864 		wbio->bi_sector = r1_bio->sector;
1865 		wbio->bi_rw = WRITE;
1866 		wbio->bi_vcnt = vcnt;
1867 		wbio->bi_size = r1_bio->sectors << 9;
1868 		wbio->bi_idx = idx;
1869 
1870 		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1871 		wbio->bi_sector += rdev->data_offset;
1872 		wbio->bi_bdev = rdev->bdev;
1873 		if (submit_bio_wait(WRITE, wbio) == 0)
1874 			/* failure! */
1875 			ok = rdev_set_badblocks(rdev, sector,
1876 						sectors, 0)
1877 				&& ok;
1878 
1879 		bio_put(wbio);
1880 		sect_to_write -= sectors;
1881 		sector += sectors;
1882 		sectors = block_sectors;
1883 	}
1884 	return ok;
1885 }
1886 
1887 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1888 {
1889 	int m;
1890 	int s = r1_bio->sectors;
1891 	for (m = 0; m < conf->raid_disks ; m++) {
1892 		struct md_rdev *rdev = conf->mirrors[m].rdev;
1893 		struct bio *bio = r1_bio->bios[m];
1894 		if (bio->bi_end_io == NULL)
1895 			continue;
1896 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1897 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1898 			rdev_clear_badblocks(rdev, r1_bio->sector, s);
1899 		}
1900 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1901 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
1902 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1903 				md_error(conf->mddev, rdev);
1904 		}
1905 	}
1906 	put_buf(r1_bio);
1907 	md_done_sync(conf->mddev, s, 1);
1908 }
1909 
1910 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1911 {
1912 	int m;
1913 	for (m = 0; m < conf->raid_disks ; m++)
1914 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
1915 			struct md_rdev *rdev = conf->mirrors[m].rdev;
1916 			rdev_clear_badblocks(rdev,
1917 					     r1_bio->sector,
1918 					     r1_bio->sectors);
1919 			rdev_dec_pending(rdev, conf->mddev);
1920 		} else if (r1_bio->bios[m] != NULL) {
1921 			/* This drive got a write error.  We need to
1922 			 * narrow down and record precise write
1923 			 * errors.
1924 			 */
1925 			if (!narrow_write_error(r1_bio, m)) {
1926 				md_error(conf->mddev,
1927 					 conf->mirrors[m].rdev);
1928 				/* an I/O failed, we can't clear the bitmap */
1929 				set_bit(R1BIO_Degraded, &r1_bio->state);
1930 			}
1931 			rdev_dec_pending(conf->mirrors[m].rdev,
1932 					 conf->mddev);
1933 		}
1934 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
1935 		close_write(r1_bio);
1936 	raid_end_bio_io(r1_bio);
1937 }
1938 
1939 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
1940 {
1941 	int disk;
1942 	int max_sectors;
1943 	struct mddev *mddev = conf->mddev;
1944 	struct bio *bio;
1945 	char b[BDEVNAME_SIZE];
1946 	struct md_rdev *rdev;
1947 
1948 	clear_bit(R1BIO_ReadError, &r1_bio->state);
1949 	/* we got a read error. Maybe the drive is bad.  Maybe just
1950 	 * the block and we can fix it.
1951 	 * We freeze all other IO, and try reading the block from
1952 	 * other devices.  When we find one, we re-write
1953 	 * and check it that fixes the read error.
1954 	 * This is all done synchronously while the array is
1955 	 * frozen
1956 	 */
1957 	if (mddev->ro == 0) {
1958 		freeze_array(conf);
1959 		fix_read_error(conf, r1_bio->read_disk,
1960 			       r1_bio->sector, r1_bio->sectors);
1961 		unfreeze_array(conf);
1962 	} else
1963 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1964 
1965 	bio = r1_bio->bios[r1_bio->read_disk];
1966 	bdevname(bio->bi_bdev, b);
1967 read_more:
1968 	disk = read_balance(conf, r1_bio, &max_sectors);
1969 	if (disk == -1) {
1970 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1971 		       " read error for block %llu\n",
1972 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
1973 		raid_end_bio_io(r1_bio);
1974 	} else {
1975 		const unsigned long do_sync
1976 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
1977 		if (bio) {
1978 			r1_bio->bios[r1_bio->read_disk] =
1979 				mddev->ro ? IO_BLOCKED : NULL;
1980 			bio_put(bio);
1981 		}
1982 		r1_bio->read_disk = disk;
1983 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1984 		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1985 		r1_bio->bios[r1_bio->read_disk] = bio;
1986 		rdev = conf->mirrors[disk].rdev;
1987 		printk_ratelimited(KERN_ERR
1988 				   "md/raid1:%s: redirecting sector %llu"
1989 				   " to other mirror: %s\n",
1990 				   mdname(mddev),
1991 				   (unsigned long long)r1_bio->sector,
1992 				   bdevname(rdev->bdev, b));
1993 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
1994 		bio->bi_bdev = rdev->bdev;
1995 		bio->bi_end_io = raid1_end_read_request;
1996 		bio->bi_rw = READ | do_sync;
1997 		bio->bi_private = r1_bio;
1998 		if (max_sectors < r1_bio->sectors) {
1999 			/* Drat - have to split this up more */
2000 			struct bio *mbio = r1_bio->master_bio;
2001 			int sectors_handled = (r1_bio->sector + max_sectors
2002 					       - mbio->bi_sector);
2003 			r1_bio->sectors = max_sectors;
2004 			spin_lock_irq(&conf->device_lock);
2005 			if (mbio->bi_phys_segments == 0)
2006 				mbio->bi_phys_segments = 2;
2007 			else
2008 				mbio->bi_phys_segments++;
2009 			spin_unlock_irq(&conf->device_lock);
2010 			generic_make_request(bio);
2011 			bio = NULL;
2012 
2013 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2014 
2015 			r1_bio->master_bio = mbio;
2016 			r1_bio->sectors = (mbio->bi_size >> 9)
2017 					  - sectors_handled;
2018 			r1_bio->state = 0;
2019 			set_bit(R1BIO_ReadError, &r1_bio->state);
2020 			r1_bio->mddev = mddev;
2021 			r1_bio->sector = mbio->bi_sector + sectors_handled;
2022 
2023 			goto read_more;
2024 		} else
2025 			generic_make_request(bio);
2026 	}
2027 }
2028 
2029 static void raid1d(struct mddev *mddev)
2030 {
2031 	struct r1bio *r1_bio;
2032 	unsigned long flags;
2033 	struct r1conf *conf = mddev->private;
2034 	struct list_head *head = &conf->retry_list;
2035 	struct blk_plug plug;
2036 
2037 	md_check_recovery(mddev);
2038 
2039 	blk_start_plug(&plug);
2040 	for (;;) {
2041 
2042 		if (atomic_read(&mddev->plug_cnt) == 0)
2043 			flush_pending_writes(conf);
2044 
2045 		spin_lock_irqsave(&conf->device_lock, flags);
2046 		if (list_empty(head)) {
2047 			spin_unlock_irqrestore(&conf->device_lock, flags);
2048 			break;
2049 		}
2050 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2051 		list_del(head->prev);
2052 		conf->nr_queued--;
2053 		spin_unlock_irqrestore(&conf->device_lock, flags);
2054 
2055 		mddev = r1_bio->mddev;
2056 		conf = mddev->private;
2057 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2058 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2059 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2060 				handle_sync_write_finished(conf, r1_bio);
2061 			else
2062 				sync_request_write(mddev, r1_bio);
2063 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2064 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2065 			handle_write_finished(conf, r1_bio);
2066 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2067 			handle_read_error(conf, r1_bio);
2068 		else
2069 			/* just a partial read to be scheduled from separate
2070 			 * context
2071 			 */
2072 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2073 
2074 		cond_resched();
2075 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2076 			md_check_recovery(mddev);
2077 	}
2078 	blk_finish_plug(&plug);
2079 }
2080 
2081 
2082 static int init_resync(struct r1conf *conf)
2083 {
2084 	int buffs;
2085 
2086 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2087 	BUG_ON(conf->r1buf_pool);
2088 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2089 					  conf->poolinfo);
2090 	if (!conf->r1buf_pool)
2091 		return -ENOMEM;
2092 	conf->next_resync = 0;
2093 	return 0;
2094 }
2095 
2096 /*
2097  * perform a "sync" on one "block"
2098  *
2099  * We need to make sure that no normal I/O request - particularly write
2100  * requests - conflict with active sync requests.
2101  *
2102  * This is achieved by tracking pending requests and a 'barrier' concept
2103  * that can be installed to exclude normal IO requests.
2104  */
2105 
2106 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2107 {
2108 	struct r1conf *conf = mddev->private;
2109 	struct r1bio *r1_bio;
2110 	struct bio *bio;
2111 	sector_t max_sector, nr_sectors;
2112 	int disk = -1;
2113 	int i;
2114 	int wonly = -1;
2115 	int write_targets = 0, read_targets = 0;
2116 	sector_t sync_blocks;
2117 	int still_degraded = 0;
2118 	int good_sectors = RESYNC_SECTORS;
2119 	int min_bad = 0; /* number of sectors that are bad in all devices */
2120 
2121 	if (!conf->r1buf_pool)
2122 		if (init_resync(conf))
2123 			return 0;
2124 
2125 	max_sector = mddev->dev_sectors;
2126 	if (sector_nr >= max_sector) {
2127 		/* If we aborted, we need to abort the
2128 		 * sync on the 'current' bitmap chunk (there will
2129 		 * only be one in raid1 resync.
2130 		 * We can find the current addess in mddev->curr_resync
2131 		 */
2132 		if (mddev->curr_resync < max_sector) /* aborted */
2133 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2134 						&sync_blocks, 1);
2135 		else /* completed sync */
2136 			conf->fullsync = 0;
2137 
2138 		bitmap_close_sync(mddev->bitmap);
2139 		close_sync(conf);
2140 		return 0;
2141 	}
2142 
2143 	if (mddev->bitmap == NULL &&
2144 	    mddev->recovery_cp == MaxSector &&
2145 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2146 	    conf->fullsync == 0) {
2147 		*skipped = 1;
2148 		return max_sector - sector_nr;
2149 	}
2150 	/* before building a request, check if we can skip these blocks..
2151 	 * This call the bitmap_start_sync doesn't actually record anything
2152 	 */
2153 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2154 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2155 		/* We can skip this block, and probably several more */
2156 		*skipped = 1;
2157 		return sync_blocks;
2158 	}
2159 	/*
2160 	 * If there is non-resync activity waiting for a turn,
2161 	 * and resync is going fast enough,
2162 	 * then let it though before starting on this new sync request.
2163 	 */
2164 	if (!go_faster && conf->nr_waiting)
2165 		msleep_interruptible(1000);
2166 
2167 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2168 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2169 	raise_barrier(conf);
2170 
2171 	conf->next_resync = sector_nr;
2172 
2173 	rcu_read_lock();
2174 	/*
2175 	 * If we get a correctably read error during resync or recovery,
2176 	 * we might want to read from a different device.  So we
2177 	 * flag all drives that could conceivably be read from for READ,
2178 	 * and any others (which will be non-In_sync devices) for WRITE.
2179 	 * If a read fails, we try reading from something else for which READ
2180 	 * is OK.
2181 	 */
2182 
2183 	r1_bio->mddev = mddev;
2184 	r1_bio->sector = sector_nr;
2185 	r1_bio->state = 0;
2186 	set_bit(R1BIO_IsSync, &r1_bio->state);
2187 
2188 	for (i=0; i < conf->raid_disks; i++) {
2189 		struct md_rdev *rdev;
2190 		bio = r1_bio->bios[i];
2191 
2192 		/* take from bio_init */
2193 		bio->bi_next = NULL;
2194 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2195 		bio->bi_flags |= 1 << BIO_UPTODATE;
2196 		bio->bi_comp_cpu = -1;
2197 		bio->bi_rw = READ;
2198 		bio->bi_vcnt = 0;
2199 		bio->bi_idx = 0;
2200 		bio->bi_phys_segments = 0;
2201 		bio->bi_size = 0;
2202 		bio->bi_end_io = NULL;
2203 		bio->bi_private = NULL;
2204 
2205 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2206 		if (rdev == NULL ||
2207 		    test_bit(Faulty, &rdev->flags)) {
2208 			still_degraded = 1;
2209 		} else if (!test_bit(In_sync, &rdev->flags)) {
2210 			bio->bi_rw = WRITE;
2211 			bio->bi_end_io = end_sync_write;
2212 			write_targets ++;
2213 		} else {
2214 			/* may need to read from here */
2215 			sector_t first_bad = MaxSector;
2216 			int bad_sectors;
2217 
2218 			if (is_badblock(rdev, sector_nr, good_sectors,
2219 					&first_bad, &bad_sectors)) {
2220 				if (first_bad > sector_nr)
2221 					good_sectors = first_bad - sector_nr;
2222 				else {
2223 					bad_sectors -= (sector_nr - first_bad);
2224 					if (min_bad == 0 ||
2225 					    min_bad > bad_sectors)
2226 						min_bad = bad_sectors;
2227 				}
2228 			}
2229 			if (sector_nr < first_bad) {
2230 				if (test_bit(WriteMostly, &rdev->flags)) {
2231 					if (wonly < 0)
2232 						wonly = i;
2233 				} else {
2234 					if (disk < 0)
2235 						disk = i;
2236 				}
2237 				bio->bi_rw = READ;
2238 				bio->bi_end_io = end_sync_read;
2239 				read_targets++;
2240 			}
2241 		}
2242 		if (bio->bi_end_io) {
2243 			atomic_inc(&rdev->nr_pending);
2244 			bio->bi_sector = sector_nr + rdev->data_offset;
2245 			bio->bi_bdev = rdev->bdev;
2246 			bio->bi_private = r1_bio;
2247 		}
2248 	}
2249 	rcu_read_unlock();
2250 	if (disk < 0)
2251 		disk = wonly;
2252 	r1_bio->read_disk = disk;
2253 
2254 	if (read_targets == 0 && min_bad > 0) {
2255 		/* These sectors are bad on all InSync devices, so we
2256 		 * need to mark them bad on all write targets
2257 		 */
2258 		int ok = 1;
2259 		for (i = 0 ; i < conf->raid_disks ; i++)
2260 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2261 				struct md_rdev *rdev =
2262 					rcu_dereference(conf->mirrors[i].rdev);
2263 				ok = rdev_set_badblocks(rdev, sector_nr,
2264 							min_bad, 0
2265 					) && ok;
2266 			}
2267 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2268 		*skipped = 1;
2269 		put_buf(r1_bio);
2270 
2271 		if (!ok) {
2272 			/* Cannot record the badblocks, so need to
2273 			 * abort the resync.
2274 			 * If there are multiple read targets, could just
2275 			 * fail the really bad ones ???
2276 			 */
2277 			conf->recovery_disabled = mddev->recovery_disabled;
2278 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2279 			return 0;
2280 		} else
2281 			return min_bad;
2282 
2283 	}
2284 	if (min_bad > 0 && min_bad < good_sectors) {
2285 		/* only resync enough to reach the next bad->good
2286 		 * transition */
2287 		good_sectors = min_bad;
2288 	}
2289 
2290 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2291 		/* extra read targets are also write targets */
2292 		write_targets += read_targets-1;
2293 
2294 	if (write_targets == 0 || read_targets == 0) {
2295 		/* There is nowhere to write, so all non-sync
2296 		 * drives must be failed - so we are finished
2297 		 */
2298 		sector_t rv = max_sector - sector_nr;
2299 		*skipped = 1;
2300 		put_buf(r1_bio);
2301 		return rv;
2302 	}
2303 
2304 	if (max_sector > mddev->resync_max)
2305 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2306 	if (max_sector > sector_nr + good_sectors)
2307 		max_sector = sector_nr + good_sectors;
2308 	nr_sectors = 0;
2309 	sync_blocks = 0;
2310 	do {
2311 		struct page *page;
2312 		int len = PAGE_SIZE;
2313 		if (sector_nr + (len>>9) > max_sector)
2314 			len = (max_sector - sector_nr) << 9;
2315 		if (len == 0)
2316 			break;
2317 		if (sync_blocks == 0) {
2318 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2319 					       &sync_blocks, still_degraded) &&
2320 			    !conf->fullsync &&
2321 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2322 				break;
2323 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2324 			if ((len >> 9) > sync_blocks)
2325 				len = sync_blocks<<9;
2326 		}
2327 
2328 		for (i=0 ; i < conf->raid_disks; i++) {
2329 			bio = r1_bio->bios[i];
2330 			if (bio->bi_end_io) {
2331 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2332 				if (bio_add_page(bio, page, len, 0) == 0) {
2333 					/* stop here */
2334 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2335 					while (i > 0) {
2336 						i--;
2337 						bio = r1_bio->bios[i];
2338 						if (bio->bi_end_io==NULL)
2339 							continue;
2340 						/* remove last page from this bio */
2341 						bio->bi_vcnt--;
2342 						bio->bi_size -= len;
2343 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2344 					}
2345 					goto bio_full;
2346 				}
2347 			}
2348 		}
2349 		nr_sectors += len>>9;
2350 		sector_nr += len>>9;
2351 		sync_blocks -= (len>>9);
2352 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2353  bio_full:
2354 	r1_bio->sectors = nr_sectors;
2355 
2356 	/* For a user-requested sync, we read all readable devices and do a
2357 	 * compare
2358 	 */
2359 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2360 		atomic_set(&r1_bio->remaining, read_targets);
2361 		for (i=0; i<conf->raid_disks; i++) {
2362 			bio = r1_bio->bios[i];
2363 			if (bio->bi_end_io == end_sync_read) {
2364 				md_sync_acct(bio->bi_bdev, nr_sectors);
2365 				generic_make_request(bio);
2366 			}
2367 		}
2368 	} else {
2369 		atomic_set(&r1_bio->remaining, 1);
2370 		bio = r1_bio->bios[r1_bio->read_disk];
2371 		md_sync_acct(bio->bi_bdev, nr_sectors);
2372 		generic_make_request(bio);
2373 
2374 	}
2375 	return nr_sectors;
2376 }
2377 
2378 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2379 {
2380 	if (sectors)
2381 		return sectors;
2382 
2383 	return mddev->dev_sectors;
2384 }
2385 
2386 static struct r1conf *setup_conf(struct mddev *mddev)
2387 {
2388 	struct r1conf *conf;
2389 	int i;
2390 	struct mirror_info *disk;
2391 	struct md_rdev *rdev;
2392 	int err = -ENOMEM;
2393 
2394 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2395 	if (!conf)
2396 		goto abort;
2397 
2398 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2399 				 GFP_KERNEL);
2400 	if (!conf->mirrors)
2401 		goto abort;
2402 
2403 	conf->tmppage = alloc_page(GFP_KERNEL);
2404 	if (!conf->tmppage)
2405 		goto abort;
2406 
2407 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2408 	if (!conf->poolinfo)
2409 		goto abort;
2410 	conf->poolinfo->raid_disks = mddev->raid_disks;
2411 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2412 					  r1bio_pool_free,
2413 					  conf->poolinfo);
2414 	if (!conf->r1bio_pool)
2415 		goto abort;
2416 
2417 	conf->poolinfo->mddev = mddev;
2418 
2419 	spin_lock_init(&conf->device_lock);
2420 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2421 		int disk_idx = rdev->raid_disk;
2422 		if (disk_idx >= mddev->raid_disks
2423 		    || disk_idx < 0)
2424 			continue;
2425 		disk = conf->mirrors + disk_idx;
2426 
2427 		disk->rdev = rdev;
2428 
2429 		disk->head_position = 0;
2430 	}
2431 	conf->raid_disks = mddev->raid_disks;
2432 	conf->mddev = mddev;
2433 	INIT_LIST_HEAD(&conf->retry_list);
2434 
2435 	spin_lock_init(&conf->resync_lock);
2436 	init_waitqueue_head(&conf->wait_barrier);
2437 
2438 	bio_list_init(&conf->pending_bio_list);
2439 	conf->pending_count = 0;
2440 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2441 
2442 	conf->last_used = -1;
2443 	for (i = 0; i < conf->raid_disks; i++) {
2444 
2445 		disk = conf->mirrors + i;
2446 
2447 		if (!disk->rdev ||
2448 		    !test_bit(In_sync, &disk->rdev->flags)) {
2449 			disk->head_position = 0;
2450 			if (disk->rdev)
2451 				conf->fullsync = 1;
2452 		} else if (conf->last_used < 0)
2453 			/*
2454 			 * The first working device is used as a
2455 			 * starting point to read balancing.
2456 			 */
2457 			conf->last_used = i;
2458 	}
2459 
2460 	err = -EIO;
2461 	if (conf->last_used < 0) {
2462 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2463 		       mdname(mddev));
2464 		goto abort;
2465 	}
2466 	err = -ENOMEM;
2467 	conf->thread = md_register_thread(raid1d, mddev, NULL);
2468 	if (!conf->thread) {
2469 		printk(KERN_ERR
2470 		       "md/raid1:%s: couldn't allocate thread\n",
2471 		       mdname(mddev));
2472 		goto abort;
2473 	}
2474 
2475 	return conf;
2476 
2477  abort:
2478 	if (conf) {
2479 		if (conf->r1bio_pool)
2480 			mempool_destroy(conf->r1bio_pool);
2481 		kfree(conf->mirrors);
2482 		safe_put_page(conf->tmppage);
2483 		kfree(conf->poolinfo);
2484 		kfree(conf);
2485 	}
2486 	return ERR_PTR(err);
2487 }
2488 
2489 static int run(struct mddev *mddev)
2490 {
2491 	struct r1conf *conf;
2492 	int i;
2493 	struct md_rdev *rdev;
2494 
2495 	if (mddev->level != 1) {
2496 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2497 		       mdname(mddev), mddev->level);
2498 		return -EIO;
2499 	}
2500 	if (mddev->reshape_position != MaxSector) {
2501 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2502 		       mdname(mddev));
2503 		return -EIO;
2504 	}
2505 	/*
2506 	 * copy the already verified devices into our private RAID1
2507 	 * bookkeeping area. [whatever we allocate in run(),
2508 	 * should be freed in stop()]
2509 	 */
2510 	if (mddev->private == NULL)
2511 		conf = setup_conf(mddev);
2512 	else
2513 		conf = mddev->private;
2514 
2515 	if (IS_ERR(conf))
2516 		return PTR_ERR(conf);
2517 
2518 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2519 		if (!mddev->gendisk)
2520 			continue;
2521 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2522 				  rdev->data_offset << 9);
2523 		/* as we don't honour merge_bvec_fn, we must never risk
2524 		 * violating it, so limit ->max_segments to 1 lying within
2525 		 * a single page, as a one page request is never in violation.
2526 		 */
2527 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2528 			blk_queue_max_segments(mddev->queue, 1);
2529 			blk_queue_segment_boundary(mddev->queue,
2530 						   PAGE_CACHE_SIZE - 1);
2531 		}
2532 	}
2533 
2534 	mddev->degraded = 0;
2535 	for (i=0; i < conf->raid_disks; i++)
2536 		if (conf->mirrors[i].rdev == NULL ||
2537 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2538 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2539 			mddev->degraded++;
2540 
2541 	if (conf->raid_disks - mddev->degraded == 1)
2542 		mddev->recovery_cp = MaxSector;
2543 
2544 	if (mddev->recovery_cp != MaxSector)
2545 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2546 		       " -- starting background reconstruction\n",
2547 		       mdname(mddev));
2548 	printk(KERN_INFO
2549 		"md/raid1:%s: active with %d out of %d mirrors\n",
2550 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2551 		mddev->raid_disks);
2552 
2553 	/*
2554 	 * Ok, everything is just fine now
2555 	 */
2556 	mddev->thread = conf->thread;
2557 	conf->thread = NULL;
2558 	mddev->private = conf;
2559 
2560 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2561 
2562 	if (mddev->queue) {
2563 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2564 		mddev->queue->backing_dev_info.congested_data = mddev;
2565 	}
2566 	return md_integrity_register(mddev);
2567 }
2568 
2569 static int stop(struct mddev *mddev)
2570 {
2571 	struct r1conf *conf = mddev->private;
2572 	struct bitmap *bitmap = mddev->bitmap;
2573 
2574 	/* wait for behind writes to complete */
2575 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2576 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2577 		       mdname(mddev));
2578 		/* need to kick something here to make sure I/O goes? */
2579 		wait_event(bitmap->behind_wait,
2580 			   atomic_read(&bitmap->behind_writes) == 0);
2581 	}
2582 
2583 	raise_barrier(conf);
2584 	lower_barrier(conf);
2585 
2586 	md_unregister_thread(&mddev->thread);
2587 	if (conf->r1bio_pool)
2588 		mempool_destroy(conf->r1bio_pool);
2589 	kfree(conf->mirrors);
2590 	kfree(conf->poolinfo);
2591 	kfree(conf);
2592 	mddev->private = NULL;
2593 	return 0;
2594 }
2595 
2596 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2597 {
2598 	/* no resync is happening, and there is enough space
2599 	 * on all devices, so we can resize.
2600 	 * We need to make sure resync covers any new space.
2601 	 * If the array is shrinking we should possibly wait until
2602 	 * any io in the removed space completes, but it hardly seems
2603 	 * worth it.
2604 	 */
2605 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2606 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2607 		return -EINVAL;
2608 	set_capacity(mddev->gendisk, mddev->array_sectors);
2609 	revalidate_disk(mddev->gendisk);
2610 	if (sectors > mddev->dev_sectors &&
2611 	    mddev->recovery_cp > mddev->dev_sectors) {
2612 		mddev->recovery_cp = mddev->dev_sectors;
2613 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2614 	}
2615 	mddev->dev_sectors = sectors;
2616 	mddev->resync_max_sectors = sectors;
2617 	return 0;
2618 }
2619 
2620 static int raid1_reshape(struct mddev *mddev)
2621 {
2622 	/* We need to:
2623 	 * 1/ resize the r1bio_pool
2624 	 * 2/ resize conf->mirrors
2625 	 *
2626 	 * We allocate a new r1bio_pool if we can.
2627 	 * Then raise a device barrier and wait until all IO stops.
2628 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2629 	 *
2630 	 * At the same time, we "pack" the devices so that all the missing
2631 	 * devices have the higher raid_disk numbers.
2632 	 */
2633 	mempool_t *newpool, *oldpool;
2634 	struct pool_info *newpoolinfo;
2635 	struct mirror_info *newmirrors;
2636 	struct r1conf *conf = mddev->private;
2637 	int cnt, raid_disks;
2638 	unsigned long flags;
2639 	int d, d2, err;
2640 
2641 	/* Cannot change chunk_size, layout, or level */
2642 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2643 	    mddev->layout != mddev->new_layout ||
2644 	    mddev->level != mddev->new_level) {
2645 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2646 		mddev->new_layout = mddev->layout;
2647 		mddev->new_level = mddev->level;
2648 		return -EINVAL;
2649 	}
2650 
2651 	err = md_allow_write(mddev);
2652 	if (err)
2653 		return err;
2654 
2655 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2656 
2657 	if (raid_disks < conf->raid_disks) {
2658 		cnt=0;
2659 		for (d= 0; d < conf->raid_disks; d++)
2660 			if (conf->mirrors[d].rdev)
2661 				cnt++;
2662 		if (cnt > raid_disks)
2663 			return -EBUSY;
2664 	}
2665 
2666 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2667 	if (!newpoolinfo)
2668 		return -ENOMEM;
2669 	newpoolinfo->mddev = mddev;
2670 	newpoolinfo->raid_disks = raid_disks;
2671 
2672 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2673 				 r1bio_pool_free, newpoolinfo);
2674 	if (!newpool) {
2675 		kfree(newpoolinfo);
2676 		return -ENOMEM;
2677 	}
2678 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2679 	if (!newmirrors) {
2680 		kfree(newpoolinfo);
2681 		mempool_destroy(newpool);
2682 		return -ENOMEM;
2683 	}
2684 
2685 	raise_barrier(conf);
2686 
2687 	/* ok, everything is stopped */
2688 	oldpool = conf->r1bio_pool;
2689 	conf->r1bio_pool = newpool;
2690 
2691 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2692 		struct md_rdev *rdev = conf->mirrors[d].rdev;
2693 		if (rdev && rdev->raid_disk != d2) {
2694 			sysfs_unlink_rdev(mddev, rdev);
2695 			rdev->raid_disk = d2;
2696 			sysfs_unlink_rdev(mddev, rdev);
2697 			if (sysfs_link_rdev(mddev, rdev))
2698 				printk(KERN_WARNING
2699 				       "md/raid1:%s: cannot register rd%d\n",
2700 				       mdname(mddev), rdev->raid_disk);
2701 		}
2702 		if (rdev)
2703 			newmirrors[d2++].rdev = rdev;
2704 	}
2705 	kfree(conf->mirrors);
2706 	conf->mirrors = newmirrors;
2707 	kfree(conf->poolinfo);
2708 	conf->poolinfo = newpoolinfo;
2709 
2710 	spin_lock_irqsave(&conf->device_lock, flags);
2711 	mddev->degraded += (raid_disks - conf->raid_disks);
2712 	spin_unlock_irqrestore(&conf->device_lock, flags);
2713 	conf->raid_disks = mddev->raid_disks = raid_disks;
2714 	mddev->delta_disks = 0;
2715 
2716 	conf->last_used = 0; /* just make sure it is in-range */
2717 	lower_barrier(conf);
2718 
2719 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2720 	md_wakeup_thread(mddev->thread);
2721 
2722 	mempool_destroy(oldpool);
2723 	return 0;
2724 }
2725 
2726 static void raid1_quiesce(struct mddev *mddev, int state)
2727 {
2728 	struct r1conf *conf = mddev->private;
2729 
2730 	switch(state) {
2731 	case 2: /* wake for suspend */
2732 		wake_up(&conf->wait_barrier);
2733 		break;
2734 	case 1:
2735 		raise_barrier(conf);
2736 		break;
2737 	case 0:
2738 		lower_barrier(conf);
2739 		break;
2740 	}
2741 }
2742 
2743 static void *raid1_takeover(struct mddev *mddev)
2744 {
2745 	/* raid1 can take over:
2746 	 *  raid5 with 2 devices, any layout or chunk size
2747 	 */
2748 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2749 		struct r1conf *conf;
2750 		mddev->new_level = 1;
2751 		mddev->new_layout = 0;
2752 		mddev->new_chunk_sectors = 0;
2753 		conf = setup_conf(mddev);
2754 		if (!IS_ERR(conf))
2755 			conf->barrier = 1;
2756 		return conf;
2757 	}
2758 	return ERR_PTR(-EINVAL);
2759 }
2760 
2761 static struct md_personality raid1_personality =
2762 {
2763 	.name		= "raid1",
2764 	.level		= 1,
2765 	.owner		= THIS_MODULE,
2766 	.make_request	= make_request,
2767 	.run		= run,
2768 	.stop		= stop,
2769 	.status		= status,
2770 	.error_handler	= error,
2771 	.hot_add_disk	= raid1_add_disk,
2772 	.hot_remove_disk= raid1_remove_disk,
2773 	.spare_active	= raid1_spare_active,
2774 	.sync_request	= sync_request,
2775 	.resize		= raid1_resize,
2776 	.size		= raid1_size,
2777 	.check_reshape	= raid1_reshape,
2778 	.quiesce	= raid1_quiesce,
2779 	.takeover	= raid1_takeover,
2780 };
2781 
2782 static int __init raid_init(void)
2783 {
2784 	return register_md_personality(&raid1_personality);
2785 }
2786 
2787 static void raid_exit(void)
2788 {
2789 	unregister_md_personality(&raid1_personality);
2790 }
2791 
2792 module_init(raid_init);
2793 module_exit(raid_exit);
2794 MODULE_LICENSE("GPL");
2795 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2796 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2797 MODULE_ALIAS("md-raid1");
2798 MODULE_ALIAS("md-level-1");
2799 
2800 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
2801