1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/seq_file.h> 38 #include <linux/ratelimit.h> 39 #include "md.h" 40 #include "raid1.h" 41 #include "bitmap.h" 42 43 /* 44 * Number of guaranteed r1bios in case of extreme VM load: 45 */ 46 #define NR_RAID1_BIOS 256 47 48 /* When there are this many requests queue to be written by 49 * the raid1 thread, we become 'congested' to provide back-pressure 50 * for writeback. 51 */ 52 static int max_queued_requests = 1024; 53 54 static void allow_barrier(struct r1conf *conf); 55 static void lower_barrier(struct r1conf *conf); 56 57 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 58 { 59 struct pool_info *pi = data; 60 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 61 62 /* allocate a r1bio with room for raid_disks entries in the bios array */ 63 return kzalloc(size, gfp_flags); 64 } 65 66 static void r1bio_pool_free(void *r1_bio, void *data) 67 { 68 kfree(r1_bio); 69 } 70 71 #define RESYNC_BLOCK_SIZE (64*1024) 72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 75 #define RESYNC_WINDOW (2048*1024) 76 77 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 78 { 79 struct pool_info *pi = data; 80 struct page *page; 81 struct r1bio *r1_bio; 82 struct bio *bio; 83 int i, j; 84 85 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 86 if (!r1_bio) 87 return NULL; 88 89 /* 90 * Allocate bios : 1 for reading, n-1 for writing 91 */ 92 for (j = pi->raid_disks ; j-- ; ) { 93 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 94 if (!bio) 95 goto out_free_bio; 96 r1_bio->bios[j] = bio; 97 } 98 /* 99 * Allocate RESYNC_PAGES data pages and attach them to 100 * the first bio. 101 * If this is a user-requested check/repair, allocate 102 * RESYNC_PAGES for each bio. 103 */ 104 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 105 j = pi->raid_disks; 106 else 107 j = 1; 108 while(j--) { 109 bio = r1_bio->bios[j]; 110 for (i = 0; i < RESYNC_PAGES; i++) { 111 page = alloc_page(gfp_flags); 112 if (unlikely(!page)) 113 goto out_free_pages; 114 115 bio->bi_io_vec[i].bv_page = page; 116 bio->bi_vcnt = i+1; 117 } 118 } 119 /* If not user-requests, copy the page pointers to all bios */ 120 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 121 for (i=0; i<RESYNC_PAGES ; i++) 122 for (j=1; j<pi->raid_disks; j++) 123 r1_bio->bios[j]->bi_io_vec[i].bv_page = 124 r1_bio->bios[0]->bi_io_vec[i].bv_page; 125 } 126 127 r1_bio->master_bio = NULL; 128 129 return r1_bio; 130 131 out_free_pages: 132 for (j=0 ; j < pi->raid_disks; j++) 133 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 134 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 135 j = -1; 136 out_free_bio: 137 while ( ++j < pi->raid_disks ) 138 bio_put(r1_bio->bios[j]); 139 r1bio_pool_free(r1_bio, data); 140 return NULL; 141 } 142 143 static void r1buf_pool_free(void *__r1_bio, void *data) 144 { 145 struct pool_info *pi = data; 146 int i,j; 147 struct r1bio *r1bio = __r1_bio; 148 149 for (i = 0; i < RESYNC_PAGES; i++) 150 for (j = pi->raid_disks; j-- ;) { 151 if (j == 0 || 152 r1bio->bios[j]->bi_io_vec[i].bv_page != 153 r1bio->bios[0]->bi_io_vec[i].bv_page) 154 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 155 } 156 for (i=0 ; i < pi->raid_disks; i++) 157 bio_put(r1bio->bios[i]); 158 159 r1bio_pool_free(r1bio, data); 160 } 161 162 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 163 { 164 int i; 165 166 for (i = 0; i < conf->raid_disks; i++) { 167 struct bio **bio = r1_bio->bios + i; 168 if (!BIO_SPECIAL(*bio)) 169 bio_put(*bio); 170 *bio = NULL; 171 } 172 } 173 174 static void free_r1bio(struct r1bio *r1_bio) 175 { 176 struct r1conf *conf = r1_bio->mddev->private; 177 178 put_all_bios(conf, r1_bio); 179 mempool_free(r1_bio, conf->r1bio_pool); 180 } 181 182 static void put_buf(struct r1bio *r1_bio) 183 { 184 struct r1conf *conf = r1_bio->mddev->private; 185 int i; 186 187 for (i=0; i<conf->raid_disks; i++) { 188 struct bio *bio = r1_bio->bios[i]; 189 if (bio->bi_end_io) 190 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 191 } 192 193 mempool_free(r1_bio, conf->r1buf_pool); 194 195 lower_barrier(conf); 196 } 197 198 static void reschedule_retry(struct r1bio *r1_bio) 199 { 200 unsigned long flags; 201 struct mddev *mddev = r1_bio->mddev; 202 struct r1conf *conf = mddev->private; 203 204 spin_lock_irqsave(&conf->device_lock, flags); 205 list_add(&r1_bio->retry_list, &conf->retry_list); 206 conf->nr_queued ++; 207 spin_unlock_irqrestore(&conf->device_lock, flags); 208 209 wake_up(&conf->wait_barrier); 210 md_wakeup_thread(mddev->thread); 211 } 212 213 /* 214 * raid_end_bio_io() is called when we have finished servicing a mirrored 215 * operation and are ready to return a success/failure code to the buffer 216 * cache layer. 217 */ 218 static void call_bio_endio(struct r1bio *r1_bio) 219 { 220 struct bio *bio = r1_bio->master_bio; 221 int done; 222 struct r1conf *conf = r1_bio->mddev->private; 223 224 if (bio->bi_phys_segments) { 225 unsigned long flags; 226 spin_lock_irqsave(&conf->device_lock, flags); 227 bio->bi_phys_segments--; 228 done = (bio->bi_phys_segments == 0); 229 spin_unlock_irqrestore(&conf->device_lock, flags); 230 } else 231 done = 1; 232 233 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 234 clear_bit(BIO_UPTODATE, &bio->bi_flags); 235 if (done) { 236 bio_endio(bio, 0); 237 /* 238 * Wake up any possible resync thread that waits for the device 239 * to go idle. 240 */ 241 allow_barrier(conf); 242 } 243 } 244 245 static void raid_end_bio_io(struct r1bio *r1_bio) 246 { 247 struct bio *bio = r1_bio->master_bio; 248 249 /* if nobody has done the final endio yet, do it now */ 250 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 251 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 252 (bio_data_dir(bio) == WRITE) ? "write" : "read", 253 (unsigned long long) bio->bi_sector, 254 (unsigned long long) bio->bi_sector + 255 (bio->bi_size >> 9) - 1); 256 257 call_bio_endio(r1_bio); 258 } 259 free_r1bio(r1_bio); 260 } 261 262 /* 263 * Update disk head position estimator based on IRQ completion info. 264 */ 265 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 266 { 267 struct r1conf *conf = r1_bio->mddev->private; 268 269 conf->mirrors[disk].head_position = 270 r1_bio->sector + (r1_bio->sectors); 271 } 272 273 /* 274 * Find the disk number which triggered given bio 275 */ 276 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 277 { 278 int mirror; 279 int raid_disks = r1_bio->mddev->raid_disks; 280 281 for (mirror = 0; mirror < raid_disks; mirror++) 282 if (r1_bio->bios[mirror] == bio) 283 break; 284 285 BUG_ON(mirror == raid_disks); 286 update_head_pos(mirror, r1_bio); 287 288 return mirror; 289 } 290 291 static void raid1_end_read_request(struct bio *bio, int error) 292 { 293 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 294 struct r1bio *r1_bio = bio->bi_private; 295 int mirror; 296 struct r1conf *conf = r1_bio->mddev->private; 297 298 mirror = r1_bio->read_disk; 299 /* 300 * this branch is our 'one mirror IO has finished' event handler: 301 */ 302 update_head_pos(mirror, r1_bio); 303 304 if (uptodate) 305 set_bit(R1BIO_Uptodate, &r1_bio->state); 306 else { 307 /* If all other devices have failed, we want to return 308 * the error upwards rather than fail the last device. 309 * Here we redefine "uptodate" to mean "Don't want to retry" 310 */ 311 unsigned long flags; 312 spin_lock_irqsave(&conf->device_lock, flags); 313 if (r1_bio->mddev->degraded == conf->raid_disks || 314 (r1_bio->mddev->degraded == conf->raid_disks-1 && 315 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 316 uptodate = 1; 317 spin_unlock_irqrestore(&conf->device_lock, flags); 318 } 319 320 if (uptodate) 321 raid_end_bio_io(r1_bio); 322 else { 323 /* 324 * oops, read error: 325 */ 326 char b[BDEVNAME_SIZE]; 327 printk_ratelimited( 328 KERN_ERR "md/raid1:%s: %s: " 329 "rescheduling sector %llu\n", 330 mdname(conf->mddev), 331 bdevname(conf->mirrors[mirror].rdev->bdev, 332 b), 333 (unsigned long long)r1_bio->sector); 334 set_bit(R1BIO_ReadError, &r1_bio->state); 335 reschedule_retry(r1_bio); 336 } 337 338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 339 } 340 341 static void close_write(struct r1bio *r1_bio) 342 { 343 /* it really is the end of this request */ 344 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 345 /* free extra copy of the data pages */ 346 int i = r1_bio->behind_page_count; 347 while (i--) 348 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 349 kfree(r1_bio->behind_bvecs); 350 r1_bio->behind_bvecs = NULL; 351 } 352 /* clear the bitmap if all writes complete successfully */ 353 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 354 r1_bio->sectors, 355 !test_bit(R1BIO_Degraded, &r1_bio->state), 356 test_bit(R1BIO_BehindIO, &r1_bio->state)); 357 md_write_end(r1_bio->mddev); 358 } 359 360 static void r1_bio_write_done(struct r1bio *r1_bio) 361 { 362 if (!atomic_dec_and_test(&r1_bio->remaining)) 363 return; 364 365 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 366 reschedule_retry(r1_bio); 367 else { 368 close_write(r1_bio); 369 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 370 reschedule_retry(r1_bio); 371 else 372 raid_end_bio_io(r1_bio); 373 } 374 } 375 376 static void raid1_end_write_request(struct bio *bio, int error) 377 { 378 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 379 struct r1bio *r1_bio = bio->bi_private; 380 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 381 struct r1conf *conf = r1_bio->mddev->private; 382 struct bio *to_put = NULL; 383 384 mirror = find_bio_disk(r1_bio, bio); 385 386 /* 387 * 'one mirror IO has finished' event handler: 388 */ 389 if (!uptodate) { 390 set_bit(WriteErrorSeen, 391 &conf->mirrors[mirror].rdev->flags); 392 set_bit(R1BIO_WriteError, &r1_bio->state); 393 } else { 394 /* 395 * Set R1BIO_Uptodate in our master bio, so that we 396 * will return a good error code for to the higher 397 * levels even if IO on some other mirrored buffer 398 * fails. 399 * 400 * The 'master' represents the composite IO operation 401 * to user-side. So if something waits for IO, then it 402 * will wait for the 'master' bio. 403 */ 404 sector_t first_bad; 405 int bad_sectors; 406 407 r1_bio->bios[mirror] = NULL; 408 to_put = bio; 409 set_bit(R1BIO_Uptodate, &r1_bio->state); 410 411 /* Maybe we can clear some bad blocks. */ 412 if (is_badblock(conf->mirrors[mirror].rdev, 413 r1_bio->sector, r1_bio->sectors, 414 &first_bad, &bad_sectors)) { 415 r1_bio->bios[mirror] = IO_MADE_GOOD; 416 set_bit(R1BIO_MadeGood, &r1_bio->state); 417 } 418 } 419 420 if (behind) { 421 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 422 atomic_dec(&r1_bio->behind_remaining); 423 424 /* 425 * In behind mode, we ACK the master bio once the I/O 426 * has safely reached all non-writemostly 427 * disks. Setting the Returned bit ensures that this 428 * gets done only once -- we don't ever want to return 429 * -EIO here, instead we'll wait 430 */ 431 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 432 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 433 /* Maybe we can return now */ 434 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 435 struct bio *mbio = r1_bio->master_bio; 436 pr_debug("raid1: behind end write sectors" 437 " %llu-%llu\n", 438 (unsigned long long) mbio->bi_sector, 439 (unsigned long long) mbio->bi_sector + 440 (mbio->bi_size >> 9) - 1); 441 call_bio_endio(r1_bio); 442 } 443 } 444 } 445 if (r1_bio->bios[mirror] == NULL) 446 rdev_dec_pending(conf->mirrors[mirror].rdev, 447 conf->mddev); 448 449 /* 450 * Let's see if all mirrored write operations have finished 451 * already. 452 */ 453 r1_bio_write_done(r1_bio); 454 455 if (to_put) 456 bio_put(to_put); 457 } 458 459 460 /* 461 * This routine returns the disk from which the requested read should 462 * be done. There is a per-array 'next expected sequential IO' sector 463 * number - if this matches on the next IO then we use the last disk. 464 * There is also a per-disk 'last know head position' sector that is 465 * maintained from IRQ contexts, both the normal and the resync IO 466 * completion handlers update this position correctly. If there is no 467 * perfect sequential match then we pick the disk whose head is closest. 468 * 469 * If there are 2 mirrors in the same 2 devices, performance degrades 470 * because position is mirror, not device based. 471 * 472 * The rdev for the device selected will have nr_pending incremented. 473 */ 474 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 475 { 476 const sector_t this_sector = r1_bio->sector; 477 int sectors; 478 int best_good_sectors; 479 int start_disk; 480 int best_disk; 481 int i; 482 sector_t best_dist; 483 struct md_rdev *rdev; 484 int choose_first; 485 486 rcu_read_lock(); 487 /* 488 * Check if we can balance. We can balance on the whole 489 * device if no resync is going on, or below the resync window. 490 * We take the first readable disk when above the resync window. 491 */ 492 retry: 493 sectors = r1_bio->sectors; 494 best_disk = -1; 495 best_dist = MaxSector; 496 best_good_sectors = 0; 497 498 if (conf->mddev->recovery_cp < MaxSector && 499 (this_sector + sectors >= conf->next_resync)) { 500 choose_first = 1; 501 start_disk = 0; 502 } else { 503 choose_first = 0; 504 start_disk = conf->last_used; 505 } 506 507 for (i = 0 ; i < conf->raid_disks ; i++) { 508 sector_t dist; 509 sector_t first_bad; 510 int bad_sectors; 511 512 int disk = start_disk + i; 513 if (disk >= conf->raid_disks) 514 disk -= conf->raid_disks; 515 516 rdev = rcu_dereference(conf->mirrors[disk].rdev); 517 if (r1_bio->bios[disk] == IO_BLOCKED 518 || rdev == NULL 519 || test_bit(Faulty, &rdev->flags)) 520 continue; 521 if (!test_bit(In_sync, &rdev->flags) && 522 rdev->recovery_offset < this_sector + sectors) 523 continue; 524 if (test_bit(WriteMostly, &rdev->flags)) { 525 /* Don't balance among write-mostly, just 526 * use the first as a last resort */ 527 if (best_disk < 0) 528 best_disk = disk; 529 continue; 530 } 531 /* This is a reasonable device to use. It might 532 * even be best. 533 */ 534 if (is_badblock(rdev, this_sector, sectors, 535 &first_bad, &bad_sectors)) { 536 if (best_dist < MaxSector) 537 /* already have a better device */ 538 continue; 539 if (first_bad <= this_sector) { 540 /* cannot read here. If this is the 'primary' 541 * device, then we must not read beyond 542 * bad_sectors from another device.. 543 */ 544 bad_sectors -= (this_sector - first_bad); 545 if (choose_first && sectors > bad_sectors) 546 sectors = bad_sectors; 547 if (best_good_sectors > sectors) 548 best_good_sectors = sectors; 549 550 } else { 551 sector_t good_sectors = first_bad - this_sector; 552 if (good_sectors > best_good_sectors) { 553 best_good_sectors = good_sectors; 554 best_disk = disk; 555 } 556 if (choose_first) 557 break; 558 } 559 continue; 560 } else 561 best_good_sectors = sectors; 562 563 dist = abs(this_sector - conf->mirrors[disk].head_position); 564 if (choose_first 565 /* Don't change to another disk for sequential reads */ 566 || conf->next_seq_sect == this_sector 567 || dist == 0 568 /* If device is idle, use it */ 569 || atomic_read(&rdev->nr_pending) == 0) { 570 best_disk = disk; 571 break; 572 } 573 if (dist < best_dist) { 574 best_dist = dist; 575 best_disk = disk; 576 } 577 } 578 579 if (best_disk >= 0) { 580 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 581 if (!rdev) 582 goto retry; 583 atomic_inc(&rdev->nr_pending); 584 if (test_bit(Faulty, &rdev->flags)) { 585 /* cannot risk returning a device that failed 586 * before we inc'ed nr_pending 587 */ 588 rdev_dec_pending(rdev, conf->mddev); 589 goto retry; 590 } 591 sectors = best_good_sectors; 592 conf->next_seq_sect = this_sector + sectors; 593 conf->last_used = best_disk; 594 } 595 rcu_read_unlock(); 596 *max_sectors = sectors; 597 598 return best_disk; 599 } 600 601 int md_raid1_congested(struct mddev *mddev, int bits) 602 { 603 struct r1conf *conf = mddev->private; 604 int i, ret = 0; 605 606 if ((bits & (1 << BDI_async_congested)) && 607 conf->pending_count >= max_queued_requests) 608 return 1; 609 610 rcu_read_lock(); 611 for (i = 0; i < mddev->raid_disks; i++) { 612 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 613 if (rdev && !test_bit(Faulty, &rdev->flags)) { 614 struct request_queue *q = bdev_get_queue(rdev->bdev); 615 616 BUG_ON(!q); 617 618 /* Note the '|| 1' - when read_balance prefers 619 * non-congested targets, it can be removed 620 */ 621 if ((bits & (1<<BDI_async_congested)) || 1) 622 ret |= bdi_congested(&q->backing_dev_info, bits); 623 else 624 ret &= bdi_congested(&q->backing_dev_info, bits); 625 } 626 } 627 rcu_read_unlock(); 628 return ret; 629 } 630 EXPORT_SYMBOL_GPL(md_raid1_congested); 631 632 static int raid1_congested(void *data, int bits) 633 { 634 struct mddev *mddev = data; 635 636 return mddev_congested(mddev, bits) || 637 md_raid1_congested(mddev, bits); 638 } 639 640 static void flush_pending_writes(struct r1conf *conf) 641 { 642 /* Any writes that have been queued but are awaiting 643 * bitmap updates get flushed here. 644 */ 645 spin_lock_irq(&conf->device_lock); 646 647 if (conf->pending_bio_list.head) { 648 struct bio *bio; 649 bio = bio_list_get(&conf->pending_bio_list); 650 conf->pending_count = 0; 651 spin_unlock_irq(&conf->device_lock); 652 /* flush any pending bitmap writes to 653 * disk before proceeding w/ I/O */ 654 bitmap_unplug(conf->mddev->bitmap); 655 wake_up(&conf->wait_barrier); 656 657 while (bio) { /* submit pending writes */ 658 struct bio *next = bio->bi_next; 659 bio->bi_next = NULL; 660 generic_make_request(bio); 661 bio = next; 662 } 663 } else 664 spin_unlock_irq(&conf->device_lock); 665 } 666 667 /* Barriers.... 668 * Sometimes we need to suspend IO while we do something else, 669 * either some resync/recovery, or reconfigure the array. 670 * To do this we raise a 'barrier'. 671 * The 'barrier' is a counter that can be raised multiple times 672 * to count how many activities are happening which preclude 673 * normal IO. 674 * We can only raise the barrier if there is no pending IO. 675 * i.e. if nr_pending == 0. 676 * We choose only to raise the barrier if no-one is waiting for the 677 * barrier to go down. This means that as soon as an IO request 678 * is ready, no other operations which require a barrier will start 679 * until the IO request has had a chance. 680 * 681 * So: regular IO calls 'wait_barrier'. When that returns there 682 * is no backgroup IO happening, It must arrange to call 683 * allow_barrier when it has finished its IO. 684 * backgroup IO calls must call raise_barrier. Once that returns 685 * there is no normal IO happeing. It must arrange to call 686 * lower_barrier when the particular background IO completes. 687 */ 688 #define RESYNC_DEPTH 32 689 690 static void raise_barrier(struct r1conf *conf) 691 { 692 spin_lock_irq(&conf->resync_lock); 693 694 /* Wait until no block IO is waiting */ 695 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 696 conf->resync_lock, ); 697 698 /* block any new IO from starting */ 699 conf->barrier++; 700 701 /* Now wait for all pending IO to complete */ 702 wait_event_lock_irq(conf->wait_barrier, 703 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 704 conf->resync_lock, ); 705 706 spin_unlock_irq(&conf->resync_lock); 707 } 708 709 static void lower_barrier(struct r1conf *conf) 710 { 711 unsigned long flags; 712 BUG_ON(conf->barrier <= 0); 713 spin_lock_irqsave(&conf->resync_lock, flags); 714 conf->barrier--; 715 spin_unlock_irqrestore(&conf->resync_lock, flags); 716 wake_up(&conf->wait_barrier); 717 } 718 719 static void wait_barrier(struct r1conf *conf) 720 { 721 spin_lock_irq(&conf->resync_lock); 722 if (conf->barrier) { 723 conf->nr_waiting++; 724 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 725 conf->resync_lock, 726 ); 727 conf->nr_waiting--; 728 } 729 conf->nr_pending++; 730 spin_unlock_irq(&conf->resync_lock); 731 } 732 733 static void allow_barrier(struct r1conf *conf) 734 { 735 unsigned long flags; 736 spin_lock_irqsave(&conf->resync_lock, flags); 737 conf->nr_pending--; 738 spin_unlock_irqrestore(&conf->resync_lock, flags); 739 wake_up(&conf->wait_barrier); 740 } 741 742 static void freeze_array(struct r1conf *conf) 743 { 744 /* stop syncio and normal IO and wait for everything to 745 * go quite. 746 * We increment barrier and nr_waiting, and then 747 * wait until nr_pending match nr_queued+1 748 * This is called in the context of one normal IO request 749 * that has failed. Thus any sync request that might be pending 750 * will be blocked by nr_pending, and we need to wait for 751 * pending IO requests to complete or be queued for re-try. 752 * Thus the number queued (nr_queued) plus this request (1) 753 * must match the number of pending IOs (nr_pending) before 754 * we continue. 755 */ 756 spin_lock_irq(&conf->resync_lock); 757 conf->barrier++; 758 conf->nr_waiting++; 759 wait_event_lock_irq(conf->wait_barrier, 760 conf->nr_pending == conf->nr_queued+1, 761 conf->resync_lock, 762 flush_pending_writes(conf)); 763 spin_unlock_irq(&conf->resync_lock); 764 } 765 static void unfreeze_array(struct r1conf *conf) 766 { 767 /* reverse the effect of the freeze */ 768 spin_lock_irq(&conf->resync_lock); 769 conf->barrier--; 770 conf->nr_waiting--; 771 wake_up(&conf->wait_barrier); 772 spin_unlock_irq(&conf->resync_lock); 773 } 774 775 776 /* duplicate the data pages for behind I/O 777 */ 778 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 779 { 780 int i; 781 struct bio_vec *bvec; 782 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 783 GFP_NOIO); 784 if (unlikely(!bvecs)) 785 return; 786 787 bio_for_each_segment(bvec, bio, i) { 788 bvecs[i] = *bvec; 789 bvecs[i].bv_page = alloc_page(GFP_NOIO); 790 if (unlikely(!bvecs[i].bv_page)) 791 goto do_sync_io; 792 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 793 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 794 kunmap(bvecs[i].bv_page); 795 kunmap(bvec->bv_page); 796 } 797 r1_bio->behind_bvecs = bvecs; 798 r1_bio->behind_page_count = bio->bi_vcnt; 799 set_bit(R1BIO_BehindIO, &r1_bio->state); 800 return; 801 802 do_sync_io: 803 for (i = 0; i < bio->bi_vcnt; i++) 804 if (bvecs[i].bv_page) 805 put_page(bvecs[i].bv_page); 806 kfree(bvecs); 807 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 808 } 809 810 static int make_request(struct mddev *mddev, struct bio * bio) 811 { 812 struct r1conf *conf = mddev->private; 813 struct mirror_info *mirror; 814 struct r1bio *r1_bio; 815 struct bio *read_bio; 816 int i, disks; 817 struct bitmap *bitmap; 818 unsigned long flags; 819 const int rw = bio_data_dir(bio); 820 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 821 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 822 struct md_rdev *blocked_rdev; 823 int plugged; 824 int first_clone; 825 int sectors_handled; 826 int max_sectors; 827 828 /* 829 * Register the new request and wait if the reconstruction 830 * thread has put up a bar for new requests. 831 * Continue immediately if no resync is active currently. 832 */ 833 834 md_write_start(mddev, bio); /* wait on superblock update early */ 835 836 if (bio_data_dir(bio) == WRITE && 837 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 838 bio->bi_sector < mddev->suspend_hi) { 839 /* As the suspend_* range is controlled by 840 * userspace, we want an interruptible 841 * wait. 842 */ 843 DEFINE_WAIT(w); 844 for (;;) { 845 flush_signals(current); 846 prepare_to_wait(&conf->wait_barrier, 847 &w, TASK_INTERRUPTIBLE); 848 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 849 bio->bi_sector >= mddev->suspend_hi) 850 break; 851 schedule(); 852 } 853 finish_wait(&conf->wait_barrier, &w); 854 } 855 856 wait_barrier(conf); 857 858 bitmap = mddev->bitmap; 859 860 /* 861 * make_request() can abort the operation when READA is being 862 * used and no empty request is available. 863 * 864 */ 865 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 866 867 r1_bio->master_bio = bio; 868 r1_bio->sectors = bio->bi_size >> 9; 869 r1_bio->state = 0; 870 r1_bio->mddev = mddev; 871 r1_bio->sector = bio->bi_sector; 872 873 /* We might need to issue multiple reads to different 874 * devices if there are bad blocks around, so we keep 875 * track of the number of reads in bio->bi_phys_segments. 876 * If this is 0, there is only one r1_bio and no locking 877 * will be needed when requests complete. If it is 878 * non-zero, then it is the number of not-completed requests. 879 */ 880 bio->bi_phys_segments = 0; 881 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 882 883 if (rw == READ) { 884 /* 885 * read balancing logic: 886 */ 887 int rdisk; 888 889 read_again: 890 rdisk = read_balance(conf, r1_bio, &max_sectors); 891 892 if (rdisk < 0) { 893 /* couldn't find anywhere to read from */ 894 raid_end_bio_io(r1_bio); 895 return 0; 896 } 897 mirror = conf->mirrors + rdisk; 898 899 if (test_bit(WriteMostly, &mirror->rdev->flags) && 900 bitmap) { 901 /* Reading from a write-mostly device must 902 * take care not to over-take any writes 903 * that are 'behind' 904 */ 905 wait_event(bitmap->behind_wait, 906 atomic_read(&bitmap->behind_writes) == 0); 907 } 908 r1_bio->read_disk = rdisk; 909 910 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 911 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 912 max_sectors); 913 914 r1_bio->bios[rdisk] = read_bio; 915 916 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 917 read_bio->bi_bdev = mirror->rdev->bdev; 918 read_bio->bi_end_io = raid1_end_read_request; 919 read_bio->bi_rw = READ | do_sync; 920 read_bio->bi_private = r1_bio; 921 922 if (max_sectors < r1_bio->sectors) { 923 /* could not read all from this device, so we will 924 * need another r1_bio. 925 */ 926 927 sectors_handled = (r1_bio->sector + max_sectors 928 - bio->bi_sector); 929 r1_bio->sectors = max_sectors; 930 spin_lock_irq(&conf->device_lock); 931 if (bio->bi_phys_segments == 0) 932 bio->bi_phys_segments = 2; 933 else 934 bio->bi_phys_segments++; 935 spin_unlock_irq(&conf->device_lock); 936 /* Cannot call generic_make_request directly 937 * as that will be queued in __make_request 938 * and subsequent mempool_alloc might block waiting 939 * for it. So hand bio over to raid1d. 940 */ 941 reschedule_retry(r1_bio); 942 943 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 944 945 r1_bio->master_bio = bio; 946 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 947 r1_bio->state = 0; 948 r1_bio->mddev = mddev; 949 r1_bio->sector = bio->bi_sector + sectors_handled; 950 goto read_again; 951 } else 952 generic_make_request(read_bio); 953 return 0; 954 } 955 956 /* 957 * WRITE: 958 */ 959 if (conf->pending_count >= max_queued_requests) { 960 md_wakeup_thread(mddev->thread); 961 wait_event(conf->wait_barrier, 962 conf->pending_count < max_queued_requests); 963 } 964 /* first select target devices under rcu_lock and 965 * inc refcount on their rdev. Record them by setting 966 * bios[x] to bio 967 * If there are known/acknowledged bad blocks on any device on 968 * which we have seen a write error, we want to avoid writing those 969 * blocks. 970 * This potentially requires several writes to write around 971 * the bad blocks. Each set of writes gets it's own r1bio 972 * with a set of bios attached. 973 */ 974 plugged = mddev_check_plugged(mddev); 975 976 disks = conf->raid_disks; 977 retry_write: 978 blocked_rdev = NULL; 979 rcu_read_lock(); 980 max_sectors = r1_bio->sectors; 981 for (i = 0; i < disks; i++) { 982 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 983 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 984 atomic_inc(&rdev->nr_pending); 985 blocked_rdev = rdev; 986 break; 987 } 988 r1_bio->bios[i] = NULL; 989 if (!rdev || test_bit(Faulty, &rdev->flags)) { 990 set_bit(R1BIO_Degraded, &r1_bio->state); 991 continue; 992 } 993 994 atomic_inc(&rdev->nr_pending); 995 if (test_bit(WriteErrorSeen, &rdev->flags)) { 996 sector_t first_bad; 997 int bad_sectors; 998 int is_bad; 999 1000 is_bad = is_badblock(rdev, r1_bio->sector, 1001 max_sectors, 1002 &first_bad, &bad_sectors); 1003 if (is_bad < 0) { 1004 /* mustn't write here until the bad block is 1005 * acknowledged*/ 1006 set_bit(BlockedBadBlocks, &rdev->flags); 1007 blocked_rdev = rdev; 1008 break; 1009 } 1010 if (is_bad && first_bad <= r1_bio->sector) { 1011 /* Cannot write here at all */ 1012 bad_sectors -= (r1_bio->sector - first_bad); 1013 if (bad_sectors < max_sectors) 1014 /* mustn't write more than bad_sectors 1015 * to other devices yet 1016 */ 1017 max_sectors = bad_sectors; 1018 rdev_dec_pending(rdev, mddev); 1019 /* We don't set R1BIO_Degraded as that 1020 * only applies if the disk is 1021 * missing, so it might be re-added, 1022 * and we want to know to recover this 1023 * chunk. 1024 * In this case the device is here, 1025 * and the fact that this chunk is not 1026 * in-sync is recorded in the bad 1027 * block log 1028 */ 1029 continue; 1030 } 1031 if (is_bad) { 1032 int good_sectors = first_bad - r1_bio->sector; 1033 if (good_sectors < max_sectors) 1034 max_sectors = good_sectors; 1035 } 1036 } 1037 r1_bio->bios[i] = bio; 1038 } 1039 rcu_read_unlock(); 1040 1041 if (unlikely(blocked_rdev)) { 1042 /* Wait for this device to become unblocked */ 1043 int j; 1044 1045 for (j = 0; j < i; j++) 1046 if (r1_bio->bios[j]) 1047 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1048 r1_bio->state = 0; 1049 allow_barrier(conf); 1050 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1051 wait_barrier(conf); 1052 goto retry_write; 1053 } 1054 1055 if (max_sectors < r1_bio->sectors) { 1056 /* We are splitting this write into multiple parts, so 1057 * we need to prepare for allocating another r1_bio. 1058 */ 1059 r1_bio->sectors = max_sectors; 1060 spin_lock_irq(&conf->device_lock); 1061 if (bio->bi_phys_segments == 0) 1062 bio->bi_phys_segments = 2; 1063 else 1064 bio->bi_phys_segments++; 1065 spin_unlock_irq(&conf->device_lock); 1066 } 1067 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1068 1069 atomic_set(&r1_bio->remaining, 1); 1070 atomic_set(&r1_bio->behind_remaining, 0); 1071 1072 first_clone = 1; 1073 for (i = 0; i < disks; i++) { 1074 struct bio *mbio; 1075 if (!r1_bio->bios[i]) 1076 continue; 1077 1078 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1079 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1080 1081 if (first_clone) { 1082 /* do behind I/O ? 1083 * Not if there are too many, or cannot 1084 * allocate memory, or a reader on WriteMostly 1085 * is waiting for behind writes to flush */ 1086 if (bitmap && 1087 (atomic_read(&bitmap->behind_writes) 1088 < mddev->bitmap_info.max_write_behind) && 1089 !waitqueue_active(&bitmap->behind_wait)) 1090 alloc_behind_pages(mbio, r1_bio); 1091 1092 bitmap_startwrite(bitmap, r1_bio->sector, 1093 r1_bio->sectors, 1094 test_bit(R1BIO_BehindIO, 1095 &r1_bio->state)); 1096 first_clone = 0; 1097 } 1098 if (r1_bio->behind_bvecs) { 1099 struct bio_vec *bvec; 1100 int j; 1101 1102 /* Yes, I really want the '__' version so that 1103 * we clear any unused pointer in the io_vec, rather 1104 * than leave them unchanged. This is important 1105 * because when we come to free the pages, we won't 1106 * know the original bi_idx, so we just free 1107 * them all 1108 */ 1109 __bio_for_each_segment(bvec, mbio, j, 0) 1110 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1111 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1112 atomic_inc(&r1_bio->behind_remaining); 1113 } 1114 1115 r1_bio->bios[i] = mbio; 1116 1117 mbio->bi_sector = (r1_bio->sector + 1118 conf->mirrors[i].rdev->data_offset); 1119 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1120 mbio->bi_end_io = raid1_end_write_request; 1121 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 1122 mbio->bi_private = r1_bio; 1123 1124 atomic_inc(&r1_bio->remaining); 1125 spin_lock_irqsave(&conf->device_lock, flags); 1126 bio_list_add(&conf->pending_bio_list, mbio); 1127 conf->pending_count++; 1128 spin_unlock_irqrestore(&conf->device_lock, flags); 1129 } 1130 /* Mustn't call r1_bio_write_done before this next test, 1131 * as it could result in the bio being freed. 1132 */ 1133 if (sectors_handled < (bio->bi_size >> 9)) { 1134 r1_bio_write_done(r1_bio); 1135 /* We need another r1_bio. It has already been counted 1136 * in bio->bi_phys_segments 1137 */ 1138 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1139 r1_bio->master_bio = bio; 1140 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1141 r1_bio->state = 0; 1142 r1_bio->mddev = mddev; 1143 r1_bio->sector = bio->bi_sector + sectors_handled; 1144 goto retry_write; 1145 } 1146 1147 r1_bio_write_done(r1_bio); 1148 1149 /* In case raid1d snuck in to freeze_array */ 1150 wake_up(&conf->wait_barrier); 1151 1152 if (do_sync || !bitmap || !plugged) 1153 md_wakeup_thread(mddev->thread); 1154 1155 return 0; 1156 } 1157 1158 static void status(struct seq_file *seq, struct mddev *mddev) 1159 { 1160 struct r1conf *conf = mddev->private; 1161 int i; 1162 1163 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1164 conf->raid_disks - mddev->degraded); 1165 rcu_read_lock(); 1166 for (i = 0; i < conf->raid_disks; i++) { 1167 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1168 seq_printf(seq, "%s", 1169 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1170 } 1171 rcu_read_unlock(); 1172 seq_printf(seq, "]"); 1173 } 1174 1175 1176 static void error(struct mddev *mddev, struct md_rdev *rdev) 1177 { 1178 char b[BDEVNAME_SIZE]; 1179 struct r1conf *conf = mddev->private; 1180 1181 /* 1182 * If it is not operational, then we have already marked it as dead 1183 * else if it is the last working disks, ignore the error, let the 1184 * next level up know. 1185 * else mark the drive as failed 1186 */ 1187 if (test_bit(In_sync, &rdev->flags) 1188 && (conf->raid_disks - mddev->degraded) == 1) { 1189 /* 1190 * Don't fail the drive, act as though we were just a 1191 * normal single drive. 1192 * However don't try a recovery from this drive as 1193 * it is very likely to fail. 1194 */ 1195 conf->recovery_disabled = mddev->recovery_disabled; 1196 return; 1197 } 1198 set_bit(Blocked, &rdev->flags); 1199 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1200 unsigned long flags; 1201 spin_lock_irqsave(&conf->device_lock, flags); 1202 mddev->degraded++; 1203 set_bit(Faulty, &rdev->flags); 1204 spin_unlock_irqrestore(&conf->device_lock, flags); 1205 /* 1206 * if recovery is running, make sure it aborts. 1207 */ 1208 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1209 } else 1210 set_bit(Faulty, &rdev->flags); 1211 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1212 printk(KERN_ALERT 1213 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1214 "md/raid1:%s: Operation continuing on %d devices.\n", 1215 mdname(mddev), bdevname(rdev->bdev, b), 1216 mdname(mddev), conf->raid_disks - mddev->degraded); 1217 } 1218 1219 static void print_conf(struct r1conf *conf) 1220 { 1221 int i; 1222 1223 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1224 if (!conf) { 1225 printk(KERN_DEBUG "(!conf)\n"); 1226 return; 1227 } 1228 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1229 conf->raid_disks); 1230 1231 rcu_read_lock(); 1232 for (i = 0; i < conf->raid_disks; i++) { 1233 char b[BDEVNAME_SIZE]; 1234 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1235 if (rdev) 1236 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1237 i, !test_bit(In_sync, &rdev->flags), 1238 !test_bit(Faulty, &rdev->flags), 1239 bdevname(rdev->bdev,b)); 1240 } 1241 rcu_read_unlock(); 1242 } 1243 1244 static void close_sync(struct r1conf *conf) 1245 { 1246 wait_barrier(conf); 1247 allow_barrier(conf); 1248 1249 mempool_destroy(conf->r1buf_pool); 1250 conf->r1buf_pool = NULL; 1251 } 1252 1253 static int raid1_spare_active(struct mddev *mddev) 1254 { 1255 int i; 1256 struct r1conf *conf = mddev->private; 1257 int count = 0; 1258 unsigned long flags; 1259 1260 /* 1261 * Find all failed disks within the RAID1 configuration 1262 * and mark them readable. 1263 * Called under mddev lock, so rcu protection not needed. 1264 */ 1265 for (i = 0; i < conf->raid_disks; i++) { 1266 struct md_rdev *rdev = conf->mirrors[i].rdev; 1267 if (rdev 1268 && !test_bit(Faulty, &rdev->flags) 1269 && !test_and_set_bit(In_sync, &rdev->flags)) { 1270 count++; 1271 sysfs_notify_dirent_safe(rdev->sysfs_state); 1272 } 1273 } 1274 spin_lock_irqsave(&conf->device_lock, flags); 1275 mddev->degraded -= count; 1276 spin_unlock_irqrestore(&conf->device_lock, flags); 1277 1278 print_conf(conf); 1279 return count; 1280 } 1281 1282 1283 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1284 { 1285 struct r1conf *conf = mddev->private; 1286 int err = -EEXIST; 1287 int mirror = 0; 1288 struct mirror_info *p; 1289 int first = 0; 1290 int last = mddev->raid_disks - 1; 1291 1292 if (mddev->recovery_disabled == conf->recovery_disabled) 1293 return -EBUSY; 1294 1295 if (rdev->raid_disk >= 0) 1296 first = last = rdev->raid_disk; 1297 1298 for (mirror = first; mirror <= last; mirror++) 1299 if ( !(p=conf->mirrors+mirror)->rdev) { 1300 1301 disk_stack_limits(mddev->gendisk, rdev->bdev, 1302 rdev->data_offset << 9); 1303 /* as we don't honour merge_bvec_fn, we must 1304 * never risk violating it, so limit 1305 * ->max_segments to one lying with a single 1306 * page, as a one page request is never in 1307 * violation. 1308 */ 1309 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1310 blk_queue_max_segments(mddev->queue, 1); 1311 blk_queue_segment_boundary(mddev->queue, 1312 PAGE_CACHE_SIZE - 1); 1313 } 1314 1315 p->head_position = 0; 1316 rdev->raid_disk = mirror; 1317 err = 0; 1318 /* As all devices are equivalent, we don't need a full recovery 1319 * if this was recently any drive of the array 1320 */ 1321 if (rdev->saved_raid_disk < 0) 1322 conf->fullsync = 1; 1323 rcu_assign_pointer(p->rdev, rdev); 1324 break; 1325 } 1326 md_integrity_add_rdev(rdev, mddev); 1327 print_conf(conf); 1328 return err; 1329 } 1330 1331 static int raid1_remove_disk(struct mddev *mddev, int number) 1332 { 1333 struct r1conf *conf = mddev->private; 1334 int err = 0; 1335 struct md_rdev *rdev; 1336 struct mirror_info *p = conf->mirrors+ number; 1337 1338 print_conf(conf); 1339 rdev = p->rdev; 1340 if (rdev) { 1341 if (test_bit(In_sync, &rdev->flags) || 1342 atomic_read(&rdev->nr_pending)) { 1343 err = -EBUSY; 1344 goto abort; 1345 } 1346 /* Only remove non-faulty devices if recovery 1347 * is not possible. 1348 */ 1349 if (!test_bit(Faulty, &rdev->flags) && 1350 mddev->recovery_disabled != conf->recovery_disabled && 1351 mddev->degraded < conf->raid_disks) { 1352 err = -EBUSY; 1353 goto abort; 1354 } 1355 p->rdev = NULL; 1356 synchronize_rcu(); 1357 if (atomic_read(&rdev->nr_pending)) { 1358 /* lost the race, try later */ 1359 err = -EBUSY; 1360 p->rdev = rdev; 1361 goto abort; 1362 } 1363 err = md_integrity_register(mddev); 1364 } 1365 abort: 1366 1367 print_conf(conf); 1368 return err; 1369 } 1370 1371 1372 static void end_sync_read(struct bio *bio, int error) 1373 { 1374 struct r1bio *r1_bio = bio->bi_private; 1375 1376 update_head_pos(r1_bio->read_disk, r1_bio); 1377 1378 /* 1379 * we have read a block, now it needs to be re-written, 1380 * or re-read if the read failed. 1381 * We don't do much here, just schedule handling by raid1d 1382 */ 1383 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1384 set_bit(R1BIO_Uptodate, &r1_bio->state); 1385 1386 if (atomic_dec_and_test(&r1_bio->remaining)) 1387 reschedule_retry(r1_bio); 1388 } 1389 1390 static void end_sync_write(struct bio *bio, int error) 1391 { 1392 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1393 struct r1bio *r1_bio = bio->bi_private; 1394 struct mddev *mddev = r1_bio->mddev; 1395 struct r1conf *conf = mddev->private; 1396 int mirror=0; 1397 sector_t first_bad; 1398 int bad_sectors; 1399 1400 mirror = find_bio_disk(r1_bio, bio); 1401 1402 if (!uptodate) { 1403 sector_t sync_blocks = 0; 1404 sector_t s = r1_bio->sector; 1405 long sectors_to_go = r1_bio->sectors; 1406 /* make sure these bits doesn't get cleared. */ 1407 do { 1408 bitmap_end_sync(mddev->bitmap, s, 1409 &sync_blocks, 1); 1410 s += sync_blocks; 1411 sectors_to_go -= sync_blocks; 1412 } while (sectors_to_go > 0); 1413 set_bit(WriteErrorSeen, 1414 &conf->mirrors[mirror].rdev->flags); 1415 set_bit(R1BIO_WriteError, &r1_bio->state); 1416 } else if (is_badblock(conf->mirrors[mirror].rdev, 1417 r1_bio->sector, 1418 r1_bio->sectors, 1419 &first_bad, &bad_sectors) && 1420 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1421 r1_bio->sector, 1422 r1_bio->sectors, 1423 &first_bad, &bad_sectors) 1424 ) 1425 set_bit(R1BIO_MadeGood, &r1_bio->state); 1426 1427 if (atomic_dec_and_test(&r1_bio->remaining)) { 1428 int s = r1_bio->sectors; 1429 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1430 test_bit(R1BIO_WriteError, &r1_bio->state)) 1431 reschedule_retry(r1_bio); 1432 else { 1433 put_buf(r1_bio); 1434 md_done_sync(mddev, s, uptodate); 1435 } 1436 } 1437 } 1438 1439 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1440 int sectors, struct page *page, int rw) 1441 { 1442 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1443 /* success */ 1444 return 1; 1445 if (rw == WRITE) 1446 set_bit(WriteErrorSeen, &rdev->flags); 1447 /* need to record an error - either for the block or the device */ 1448 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1449 md_error(rdev->mddev, rdev); 1450 return 0; 1451 } 1452 1453 static int fix_sync_read_error(struct r1bio *r1_bio) 1454 { 1455 /* Try some synchronous reads of other devices to get 1456 * good data, much like with normal read errors. Only 1457 * read into the pages we already have so we don't 1458 * need to re-issue the read request. 1459 * We don't need to freeze the array, because being in an 1460 * active sync request, there is no normal IO, and 1461 * no overlapping syncs. 1462 * We don't need to check is_badblock() again as we 1463 * made sure that anything with a bad block in range 1464 * will have bi_end_io clear. 1465 */ 1466 struct mddev *mddev = r1_bio->mddev; 1467 struct r1conf *conf = mddev->private; 1468 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1469 sector_t sect = r1_bio->sector; 1470 int sectors = r1_bio->sectors; 1471 int idx = 0; 1472 1473 while(sectors) { 1474 int s = sectors; 1475 int d = r1_bio->read_disk; 1476 int success = 0; 1477 struct md_rdev *rdev; 1478 int start; 1479 1480 if (s > (PAGE_SIZE>>9)) 1481 s = PAGE_SIZE >> 9; 1482 do { 1483 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1484 /* No rcu protection needed here devices 1485 * can only be removed when no resync is 1486 * active, and resync is currently active 1487 */ 1488 rdev = conf->mirrors[d].rdev; 1489 if (sync_page_io(rdev, sect, s<<9, 1490 bio->bi_io_vec[idx].bv_page, 1491 READ, false)) { 1492 success = 1; 1493 break; 1494 } 1495 } 1496 d++; 1497 if (d == conf->raid_disks) 1498 d = 0; 1499 } while (!success && d != r1_bio->read_disk); 1500 1501 if (!success) { 1502 char b[BDEVNAME_SIZE]; 1503 int abort = 0; 1504 /* Cannot read from anywhere, this block is lost. 1505 * Record a bad block on each device. If that doesn't 1506 * work just disable and interrupt the recovery. 1507 * Don't fail devices as that won't really help. 1508 */ 1509 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1510 " for block %llu\n", 1511 mdname(mddev), 1512 bdevname(bio->bi_bdev, b), 1513 (unsigned long long)r1_bio->sector); 1514 for (d = 0; d < conf->raid_disks; d++) { 1515 rdev = conf->mirrors[d].rdev; 1516 if (!rdev || test_bit(Faulty, &rdev->flags)) 1517 continue; 1518 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1519 abort = 1; 1520 } 1521 if (abort) { 1522 conf->recovery_disabled = 1523 mddev->recovery_disabled; 1524 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1525 md_done_sync(mddev, r1_bio->sectors, 0); 1526 put_buf(r1_bio); 1527 return 0; 1528 } 1529 /* Try next page */ 1530 sectors -= s; 1531 sect += s; 1532 idx++; 1533 continue; 1534 } 1535 1536 start = d; 1537 /* write it back and re-read */ 1538 while (d != r1_bio->read_disk) { 1539 if (d == 0) 1540 d = conf->raid_disks; 1541 d--; 1542 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1543 continue; 1544 rdev = conf->mirrors[d].rdev; 1545 if (r1_sync_page_io(rdev, sect, s, 1546 bio->bi_io_vec[idx].bv_page, 1547 WRITE) == 0) { 1548 r1_bio->bios[d]->bi_end_io = NULL; 1549 rdev_dec_pending(rdev, mddev); 1550 } 1551 } 1552 d = start; 1553 while (d != r1_bio->read_disk) { 1554 if (d == 0) 1555 d = conf->raid_disks; 1556 d--; 1557 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1558 continue; 1559 rdev = conf->mirrors[d].rdev; 1560 if (r1_sync_page_io(rdev, sect, s, 1561 bio->bi_io_vec[idx].bv_page, 1562 READ) != 0) 1563 atomic_add(s, &rdev->corrected_errors); 1564 } 1565 sectors -= s; 1566 sect += s; 1567 idx ++; 1568 } 1569 set_bit(R1BIO_Uptodate, &r1_bio->state); 1570 set_bit(BIO_UPTODATE, &bio->bi_flags); 1571 return 1; 1572 } 1573 1574 static int process_checks(struct r1bio *r1_bio) 1575 { 1576 /* We have read all readable devices. If we haven't 1577 * got the block, then there is no hope left. 1578 * If we have, then we want to do a comparison 1579 * and skip the write if everything is the same. 1580 * If any blocks failed to read, then we need to 1581 * attempt an over-write 1582 */ 1583 struct mddev *mddev = r1_bio->mddev; 1584 struct r1conf *conf = mddev->private; 1585 int primary; 1586 int i; 1587 1588 for (primary = 0; primary < conf->raid_disks; primary++) 1589 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1590 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1591 r1_bio->bios[primary]->bi_end_io = NULL; 1592 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1593 break; 1594 } 1595 r1_bio->read_disk = primary; 1596 for (i = 0; i < conf->raid_disks; i++) { 1597 int j; 1598 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1599 struct bio *pbio = r1_bio->bios[primary]; 1600 struct bio *sbio = r1_bio->bios[i]; 1601 int size; 1602 1603 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1604 continue; 1605 1606 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1607 for (j = vcnt; j-- ; ) { 1608 struct page *p, *s; 1609 p = pbio->bi_io_vec[j].bv_page; 1610 s = sbio->bi_io_vec[j].bv_page; 1611 if (memcmp(page_address(p), 1612 page_address(s), 1613 PAGE_SIZE)) 1614 break; 1615 } 1616 } else 1617 j = 0; 1618 if (j >= 0) 1619 mddev->resync_mismatches += r1_bio->sectors; 1620 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1621 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1622 /* No need to write to this device. */ 1623 sbio->bi_end_io = NULL; 1624 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1625 continue; 1626 } 1627 /* fixup the bio for reuse */ 1628 sbio->bi_vcnt = vcnt; 1629 sbio->bi_size = r1_bio->sectors << 9; 1630 sbio->bi_idx = 0; 1631 sbio->bi_phys_segments = 0; 1632 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1633 sbio->bi_flags |= 1 << BIO_UPTODATE; 1634 sbio->bi_next = NULL; 1635 sbio->bi_sector = r1_bio->sector + 1636 conf->mirrors[i].rdev->data_offset; 1637 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1638 size = sbio->bi_size; 1639 for (j = 0; j < vcnt ; j++) { 1640 struct bio_vec *bi; 1641 bi = &sbio->bi_io_vec[j]; 1642 bi->bv_offset = 0; 1643 if (size > PAGE_SIZE) 1644 bi->bv_len = PAGE_SIZE; 1645 else 1646 bi->bv_len = size; 1647 size -= PAGE_SIZE; 1648 memcpy(page_address(bi->bv_page), 1649 page_address(pbio->bi_io_vec[j].bv_page), 1650 PAGE_SIZE); 1651 } 1652 } 1653 return 0; 1654 } 1655 1656 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1657 { 1658 struct r1conf *conf = mddev->private; 1659 int i; 1660 int disks = conf->raid_disks; 1661 struct bio *bio, *wbio; 1662 1663 bio = r1_bio->bios[r1_bio->read_disk]; 1664 1665 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1666 /* ouch - failed to read all of that. */ 1667 if (!fix_sync_read_error(r1_bio)) 1668 return; 1669 1670 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1671 if (process_checks(r1_bio) < 0) 1672 return; 1673 /* 1674 * schedule writes 1675 */ 1676 atomic_set(&r1_bio->remaining, 1); 1677 for (i = 0; i < disks ; i++) { 1678 wbio = r1_bio->bios[i]; 1679 if (wbio->bi_end_io == NULL || 1680 (wbio->bi_end_io == end_sync_read && 1681 (i == r1_bio->read_disk || 1682 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1683 continue; 1684 1685 wbio->bi_rw = WRITE; 1686 wbio->bi_end_io = end_sync_write; 1687 atomic_inc(&r1_bio->remaining); 1688 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1689 1690 generic_make_request(wbio); 1691 } 1692 1693 if (atomic_dec_and_test(&r1_bio->remaining)) { 1694 /* if we're here, all write(s) have completed, so clean up */ 1695 md_done_sync(mddev, r1_bio->sectors, 1); 1696 put_buf(r1_bio); 1697 } 1698 } 1699 1700 /* 1701 * This is a kernel thread which: 1702 * 1703 * 1. Retries failed read operations on working mirrors. 1704 * 2. Updates the raid superblock when problems encounter. 1705 * 3. Performs writes following reads for array synchronising. 1706 */ 1707 1708 static void fix_read_error(struct r1conf *conf, int read_disk, 1709 sector_t sect, int sectors) 1710 { 1711 struct mddev *mddev = conf->mddev; 1712 while(sectors) { 1713 int s = sectors; 1714 int d = read_disk; 1715 int success = 0; 1716 int start; 1717 struct md_rdev *rdev; 1718 1719 if (s > (PAGE_SIZE>>9)) 1720 s = PAGE_SIZE >> 9; 1721 1722 do { 1723 /* Note: no rcu protection needed here 1724 * as this is synchronous in the raid1d thread 1725 * which is the thread that might remove 1726 * a device. If raid1d ever becomes multi-threaded.... 1727 */ 1728 sector_t first_bad; 1729 int bad_sectors; 1730 1731 rdev = conf->mirrors[d].rdev; 1732 if (rdev && 1733 test_bit(In_sync, &rdev->flags) && 1734 is_badblock(rdev, sect, s, 1735 &first_bad, &bad_sectors) == 0 && 1736 sync_page_io(rdev, sect, s<<9, 1737 conf->tmppage, READ, false)) 1738 success = 1; 1739 else { 1740 d++; 1741 if (d == conf->raid_disks) 1742 d = 0; 1743 } 1744 } while (!success && d != read_disk); 1745 1746 if (!success) { 1747 /* Cannot read from anywhere - mark it bad */ 1748 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 1749 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1750 md_error(mddev, rdev); 1751 break; 1752 } 1753 /* write it back and re-read */ 1754 start = d; 1755 while (d != read_disk) { 1756 if (d==0) 1757 d = conf->raid_disks; 1758 d--; 1759 rdev = conf->mirrors[d].rdev; 1760 if (rdev && 1761 test_bit(In_sync, &rdev->flags)) 1762 r1_sync_page_io(rdev, sect, s, 1763 conf->tmppage, WRITE); 1764 } 1765 d = start; 1766 while (d != read_disk) { 1767 char b[BDEVNAME_SIZE]; 1768 if (d==0) 1769 d = conf->raid_disks; 1770 d--; 1771 rdev = conf->mirrors[d].rdev; 1772 if (rdev && 1773 test_bit(In_sync, &rdev->flags)) { 1774 if (r1_sync_page_io(rdev, sect, s, 1775 conf->tmppage, READ)) { 1776 atomic_add(s, &rdev->corrected_errors); 1777 printk(KERN_INFO 1778 "md/raid1:%s: read error corrected " 1779 "(%d sectors at %llu on %s)\n", 1780 mdname(mddev), s, 1781 (unsigned long long)(sect + 1782 rdev->data_offset), 1783 bdevname(rdev->bdev, b)); 1784 } 1785 } 1786 } 1787 sectors -= s; 1788 sect += s; 1789 } 1790 } 1791 1792 static void bi_complete(struct bio *bio, int error) 1793 { 1794 complete((struct completion *)bio->bi_private); 1795 } 1796 1797 static int submit_bio_wait(int rw, struct bio *bio) 1798 { 1799 struct completion event; 1800 rw |= REQ_SYNC; 1801 1802 init_completion(&event); 1803 bio->bi_private = &event; 1804 bio->bi_end_io = bi_complete; 1805 submit_bio(rw, bio); 1806 wait_for_completion(&event); 1807 1808 return test_bit(BIO_UPTODATE, &bio->bi_flags); 1809 } 1810 1811 static int narrow_write_error(struct r1bio *r1_bio, int i) 1812 { 1813 struct mddev *mddev = r1_bio->mddev; 1814 struct r1conf *conf = mddev->private; 1815 struct md_rdev *rdev = conf->mirrors[i].rdev; 1816 int vcnt, idx; 1817 struct bio_vec *vec; 1818 1819 /* bio has the data to be written to device 'i' where 1820 * we just recently had a write error. 1821 * We repeatedly clone the bio and trim down to one block, 1822 * then try the write. Where the write fails we record 1823 * a bad block. 1824 * It is conceivable that the bio doesn't exactly align with 1825 * blocks. We must handle this somehow. 1826 * 1827 * We currently own a reference on the rdev. 1828 */ 1829 1830 int block_sectors; 1831 sector_t sector; 1832 int sectors; 1833 int sect_to_write = r1_bio->sectors; 1834 int ok = 1; 1835 1836 if (rdev->badblocks.shift < 0) 1837 return 0; 1838 1839 block_sectors = 1 << rdev->badblocks.shift; 1840 sector = r1_bio->sector; 1841 sectors = ((sector + block_sectors) 1842 & ~(sector_t)(block_sectors - 1)) 1843 - sector; 1844 1845 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 1846 vcnt = r1_bio->behind_page_count; 1847 vec = r1_bio->behind_bvecs; 1848 idx = 0; 1849 while (vec[idx].bv_page == NULL) 1850 idx++; 1851 } else { 1852 vcnt = r1_bio->master_bio->bi_vcnt; 1853 vec = r1_bio->master_bio->bi_io_vec; 1854 idx = r1_bio->master_bio->bi_idx; 1855 } 1856 while (sect_to_write) { 1857 struct bio *wbio; 1858 if (sectors > sect_to_write) 1859 sectors = sect_to_write; 1860 /* Write at 'sector' for 'sectors'*/ 1861 1862 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 1863 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 1864 wbio->bi_sector = r1_bio->sector; 1865 wbio->bi_rw = WRITE; 1866 wbio->bi_vcnt = vcnt; 1867 wbio->bi_size = r1_bio->sectors << 9; 1868 wbio->bi_idx = idx; 1869 1870 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 1871 wbio->bi_sector += rdev->data_offset; 1872 wbio->bi_bdev = rdev->bdev; 1873 if (submit_bio_wait(WRITE, wbio) == 0) 1874 /* failure! */ 1875 ok = rdev_set_badblocks(rdev, sector, 1876 sectors, 0) 1877 && ok; 1878 1879 bio_put(wbio); 1880 sect_to_write -= sectors; 1881 sector += sectors; 1882 sectors = block_sectors; 1883 } 1884 return ok; 1885 } 1886 1887 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 1888 { 1889 int m; 1890 int s = r1_bio->sectors; 1891 for (m = 0; m < conf->raid_disks ; m++) { 1892 struct md_rdev *rdev = conf->mirrors[m].rdev; 1893 struct bio *bio = r1_bio->bios[m]; 1894 if (bio->bi_end_io == NULL) 1895 continue; 1896 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 1897 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 1898 rdev_clear_badblocks(rdev, r1_bio->sector, s); 1899 } 1900 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 1901 test_bit(R1BIO_WriteError, &r1_bio->state)) { 1902 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 1903 md_error(conf->mddev, rdev); 1904 } 1905 } 1906 put_buf(r1_bio); 1907 md_done_sync(conf->mddev, s, 1); 1908 } 1909 1910 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 1911 { 1912 int m; 1913 for (m = 0; m < conf->raid_disks ; m++) 1914 if (r1_bio->bios[m] == IO_MADE_GOOD) { 1915 struct md_rdev *rdev = conf->mirrors[m].rdev; 1916 rdev_clear_badblocks(rdev, 1917 r1_bio->sector, 1918 r1_bio->sectors); 1919 rdev_dec_pending(rdev, conf->mddev); 1920 } else if (r1_bio->bios[m] != NULL) { 1921 /* This drive got a write error. We need to 1922 * narrow down and record precise write 1923 * errors. 1924 */ 1925 if (!narrow_write_error(r1_bio, m)) { 1926 md_error(conf->mddev, 1927 conf->mirrors[m].rdev); 1928 /* an I/O failed, we can't clear the bitmap */ 1929 set_bit(R1BIO_Degraded, &r1_bio->state); 1930 } 1931 rdev_dec_pending(conf->mirrors[m].rdev, 1932 conf->mddev); 1933 } 1934 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 1935 close_write(r1_bio); 1936 raid_end_bio_io(r1_bio); 1937 } 1938 1939 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 1940 { 1941 int disk; 1942 int max_sectors; 1943 struct mddev *mddev = conf->mddev; 1944 struct bio *bio; 1945 char b[BDEVNAME_SIZE]; 1946 struct md_rdev *rdev; 1947 1948 clear_bit(R1BIO_ReadError, &r1_bio->state); 1949 /* we got a read error. Maybe the drive is bad. Maybe just 1950 * the block and we can fix it. 1951 * We freeze all other IO, and try reading the block from 1952 * other devices. When we find one, we re-write 1953 * and check it that fixes the read error. 1954 * This is all done synchronously while the array is 1955 * frozen 1956 */ 1957 if (mddev->ro == 0) { 1958 freeze_array(conf); 1959 fix_read_error(conf, r1_bio->read_disk, 1960 r1_bio->sector, r1_bio->sectors); 1961 unfreeze_array(conf); 1962 } else 1963 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1964 1965 bio = r1_bio->bios[r1_bio->read_disk]; 1966 bdevname(bio->bi_bdev, b); 1967 read_more: 1968 disk = read_balance(conf, r1_bio, &max_sectors); 1969 if (disk == -1) { 1970 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 1971 " read error for block %llu\n", 1972 mdname(mddev), b, (unsigned long long)r1_bio->sector); 1973 raid_end_bio_io(r1_bio); 1974 } else { 1975 const unsigned long do_sync 1976 = r1_bio->master_bio->bi_rw & REQ_SYNC; 1977 if (bio) { 1978 r1_bio->bios[r1_bio->read_disk] = 1979 mddev->ro ? IO_BLOCKED : NULL; 1980 bio_put(bio); 1981 } 1982 r1_bio->read_disk = disk; 1983 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 1984 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 1985 r1_bio->bios[r1_bio->read_disk] = bio; 1986 rdev = conf->mirrors[disk].rdev; 1987 printk_ratelimited(KERN_ERR 1988 "md/raid1:%s: redirecting sector %llu" 1989 " to other mirror: %s\n", 1990 mdname(mddev), 1991 (unsigned long long)r1_bio->sector, 1992 bdevname(rdev->bdev, b)); 1993 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1994 bio->bi_bdev = rdev->bdev; 1995 bio->bi_end_io = raid1_end_read_request; 1996 bio->bi_rw = READ | do_sync; 1997 bio->bi_private = r1_bio; 1998 if (max_sectors < r1_bio->sectors) { 1999 /* Drat - have to split this up more */ 2000 struct bio *mbio = r1_bio->master_bio; 2001 int sectors_handled = (r1_bio->sector + max_sectors 2002 - mbio->bi_sector); 2003 r1_bio->sectors = max_sectors; 2004 spin_lock_irq(&conf->device_lock); 2005 if (mbio->bi_phys_segments == 0) 2006 mbio->bi_phys_segments = 2; 2007 else 2008 mbio->bi_phys_segments++; 2009 spin_unlock_irq(&conf->device_lock); 2010 generic_make_request(bio); 2011 bio = NULL; 2012 2013 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2014 2015 r1_bio->master_bio = mbio; 2016 r1_bio->sectors = (mbio->bi_size >> 9) 2017 - sectors_handled; 2018 r1_bio->state = 0; 2019 set_bit(R1BIO_ReadError, &r1_bio->state); 2020 r1_bio->mddev = mddev; 2021 r1_bio->sector = mbio->bi_sector + sectors_handled; 2022 2023 goto read_more; 2024 } else 2025 generic_make_request(bio); 2026 } 2027 } 2028 2029 static void raid1d(struct mddev *mddev) 2030 { 2031 struct r1bio *r1_bio; 2032 unsigned long flags; 2033 struct r1conf *conf = mddev->private; 2034 struct list_head *head = &conf->retry_list; 2035 struct blk_plug plug; 2036 2037 md_check_recovery(mddev); 2038 2039 blk_start_plug(&plug); 2040 for (;;) { 2041 2042 if (atomic_read(&mddev->plug_cnt) == 0) 2043 flush_pending_writes(conf); 2044 2045 spin_lock_irqsave(&conf->device_lock, flags); 2046 if (list_empty(head)) { 2047 spin_unlock_irqrestore(&conf->device_lock, flags); 2048 break; 2049 } 2050 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2051 list_del(head->prev); 2052 conf->nr_queued--; 2053 spin_unlock_irqrestore(&conf->device_lock, flags); 2054 2055 mddev = r1_bio->mddev; 2056 conf = mddev->private; 2057 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2058 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2059 test_bit(R1BIO_WriteError, &r1_bio->state)) 2060 handle_sync_write_finished(conf, r1_bio); 2061 else 2062 sync_request_write(mddev, r1_bio); 2063 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2064 test_bit(R1BIO_WriteError, &r1_bio->state)) 2065 handle_write_finished(conf, r1_bio); 2066 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2067 handle_read_error(conf, r1_bio); 2068 else 2069 /* just a partial read to be scheduled from separate 2070 * context 2071 */ 2072 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2073 2074 cond_resched(); 2075 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2076 md_check_recovery(mddev); 2077 } 2078 blk_finish_plug(&plug); 2079 } 2080 2081 2082 static int init_resync(struct r1conf *conf) 2083 { 2084 int buffs; 2085 2086 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2087 BUG_ON(conf->r1buf_pool); 2088 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2089 conf->poolinfo); 2090 if (!conf->r1buf_pool) 2091 return -ENOMEM; 2092 conf->next_resync = 0; 2093 return 0; 2094 } 2095 2096 /* 2097 * perform a "sync" on one "block" 2098 * 2099 * We need to make sure that no normal I/O request - particularly write 2100 * requests - conflict with active sync requests. 2101 * 2102 * This is achieved by tracking pending requests and a 'barrier' concept 2103 * that can be installed to exclude normal IO requests. 2104 */ 2105 2106 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2107 { 2108 struct r1conf *conf = mddev->private; 2109 struct r1bio *r1_bio; 2110 struct bio *bio; 2111 sector_t max_sector, nr_sectors; 2112 int disk = -1; 2113 int i; 2114 int wonly = -1; 2115 int write_targets = 0, read_targets = 0; 2116 sector_t sync_blocks; 2117 int still_degraded = 0; 2118 int good_sectors = RESYNC_SECTORS; 2119 int min_bad = 0; /* number of sectors that are bad in all devices */ 2120 2121 if (!conf->r1buf_pool) 2122 if (init_resync(conf)) 2123 return 0; 2124 2125 max_sector = mddev->dev_sectors; 2126 if (sector_nr >= max_sector) { 2127 /* If we aborted, we need to abort the 2128 * sync on the 'current' bitmap chunk (there will 2129 * only be one in raid1 resync. 2130 * We can find the current addess in mddev->curr_resync 2131 */ 2132 if (mddev->curr_resync < max_sector) /* aborted */ 2133 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2134 &sync_blocks, 1); 2135 else /* completed sync */ 2136 conf->fullsync = 0; 2137 2138 bitmap_close_sync(mddev->bitmap); 2139 close_sync(conf); 2140 return 0; 2141 } 2142 2143 if (mddev->bitmap == NULL && 2144 mddev->recovery_cp == MaxSector && 2145 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2146 conf->fullsync == 0) { 2147 *skipped = 1; 2148 return max_sector - sector_nr; 2149 } 2150 /* before building a request, check if we can skip these blocks.. 2151 * This call the bitmap_start_sync doesn't actually record anything 2152 */ 2153 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2154 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2155 /* We can skip this block, and probably several more */ 2156 *skipped = 1; 2157 return sync_blocks; 2158 } 2159 /* 2160 * If there is non-resync activity waiting for a turn, 2161 * and resync is going fast enough, 2162 * then let it though before starting on this new sync request. 2163 */ 2164 if (!go_faster && conf->nr_waiting) 2165 msleep_interruptible(1000); 2166 2167 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2168 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2169 raise_barrier(conf); 2170 2171 conf->next_resync = sector_nr; 2172 2173 rcu_read_lock(); 2174 /* 2175 * If we get a correctably read error during resync or recovery, 2176 * we might want to read from a different device. So we 2177 * flag all drives that could conceivably be read from for READ, 2178 * and any others (which will be non-In_sync devices) for WRITE. 2179 * If a read fails, we try reading from something else for which READ 2180 * is OK. 2181 */ 2182 2183 r1_bio->mddev = mddev; 2184 r1_bio->sector = sector_nr; 2185 r1_bio->state = 0; 2186 set_bit(R1BIO_IsSync, &r1_bio->state); 2187 2188 for (i=0; i < conf->raid_disks; i++) { 2189 struct md_rdev *rdev; 2190 bio = r1_bio->bios[i]; 2191 2192 /* take from bio_init */ 2193 bio->bi_next = NULL; 2194 bio->bi_flags &= ~(BIO_POOL_MASK-1); 2195 bio->bi_flags |= 1 << BIO_UPTODATE; 2196 bio->bi_comp_cpu = -1; 2197 bio->bi_rw = READ; 2198 bio->bi_vcnt = 0; 2199 bio->bi_idx = 0; 2200 bio->bi_phys_segments = 0; 2201 bio->bi_size = 0; 2202 bio->bi_end_io = NULL; 2203 bio->bi_private = NULL; 2204 2205 rdev = rcu_dereference(conf->mirrors[i].rdev); 2206 if (rdev == NULL || 2207 test_bit(Faulty, &rdev->flags)) { 2208 still_degraded = 1; 2209 } else if (!test_bit(In_sync, &rdev->flags)) { 2210 bio->bi_rw = WRITE; 2211 bio->bi_end_io = end_sync_write; 2212 write_targets ++; 2213 } else { 2214 /* may need to read from here */ 2215 sector_t first_bad = MaxSector; 2216 int bad_sectors; 2217 2218 if (is_badblock(rdev, sector_nr, good_sectors, 2219 &first_bad, &bad_sectors)) { 2220 if (first_bad > sector_nr) 2221 good_sectors = first_bad - sector_nr; 2222 else { 2223 bad_sectors -= (sector_nr - first_bad); 2224 if (min_bad == 0 || 2225 min_bad > bad_sectors) 2226 min_bad = bad_sectors; 2227 } 2228 } 2229 if (sector_nr < first_bad) { 2230 if (test_bit(WriteMostly, &rdev->flags)) { 2231 if (wonly < 0) 2232 wonly = i; 2233 } else { 2234 if (disk < 0) 2235 disk = i; 2236 } 2237 bio->bi_rw = READ; 2238 bio->bi_end_io = end_sync_read; 2239 read_targets++; 2240 } 2241 } 2242 if (bio->bi_end_io) { 2243 atomic_inc(&rdev->nr_pending); 2244 bio->bi_sector = sector_nr + rdev->data_offset; 2245 bio->bi_bdev = rdev->bdev; 2246 bio->bi_private = r1_bio; 2247 } 2248 } 2249 rcu_read_unlock(); 2250 if (disk < 0) 2251 disk = wonly; 2252 r1_bio->read_disk = disk; 2253 2254 if (read_targets == 0 && min_bad > 0) { 2255 /* These sectors are bad on all InSync devices, so we 2256 * need to mark them bad on all write targets 2257 */ 2258 int ok = 1; 2259 for (i = 0 ; i < conf->raid_disks ; i++) 2260 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2261 struct md_rdev *rdev = 2262 rcu_dereference(conf->mirrors[i].rdev); 2263 ok = rdev_set_badblocks(rdev, sector_nr, 2264 min_bad, 0 2265 ) && ok; 2266 } 2267 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2268 *skipped = 1; 2269 put_buf(r1_bio); 2270 2271 if (!ok) { 2272 /* Cannot record the badblocks, so need to 2273 * abort the resync. 2274 * If there are multiple read targets, could just 2275 * fail the really bad ones ??? 2276 */ 2277 conf->recovery_disabled = mddev->recovery_disabled; 2278 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2279 return 0; 2280 } else 2281 return min_bad; 2282 2283 } 2284 if (min_bad > 0 && min_bad < good_sectors) { 2285 /* only resync enough to reach the next bad->good 2286 * transition */ 2287 good_sectors = min_bad; 2288 } 2289 2290 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2291 /* extra read targets are also write targets */ 2292 write_targets += read_targets-1; 2293 2294 if (write_targets == 0 || read_targets == 0) { 2295 /* There is nowhere to write, so all non-sync 2296 * drives must be failed - so we are finished 2297 */ 2298 sector_t rv = max_sector - sector_nr; 2299 *skipped = 1; 2300 put_buf(r1_bio); 2301 return rv; 2302 } 2303 2304 if (max_sector > mddev->resync_max) 2305 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2306 if (max_sector > sector_nr + good_sectors) 2307 max_sector = sector_nr + good_sectors; 2308 nr_sectors = 0; 2309 sync_blocks = 0; 2310 do { 2311 struct page *page; 2312 int len = PAGE_SIZE; 2313 if (sector_nr + (len>>9) > max_sector) 2314 len = (max_sector - sector_nr) << 9; 2315 if (len == 0) 2316 break; 2317 if (sync_blocks == 0) { 2318 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2319 &sync_blocks, still_degraded) && 2320 !conf->fullsync && 2321 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2322 break; 2323 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2324 if ((len >> 9) > sync_blocks) 2325 len = sync_blocks<<9; 2326 } 2327 2328 for (i=0 ; i < conf->raid_disks; i++) { 2329 bio = r1_bio->bios[i]; 2330 if (bio->bi_end_io) { 2331 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2332 if (bio_add_page(bio, page, len, 0) == 0) { 2333 /* stop here */ 2334 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2335 while (i > 0) { 2336 i--; 2337 bio = r1_bio->bios[i]; 2338 if (bio->bi_end_io==NULL) 2339 continue; 2340 /* remove last page from this bio */ 2341 bio->bi_vcnt--; 2342 bio->bi_size -= len; 2343 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2344 } 2345 goto bio_full; 2346 } 2347 } 2348 } 2349 nr_sectors += len>>9; 2350 sector_nr += len>>9; 2351 sync_blocks -= (len>>9); 2352 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2353 bio_full: 2354 r1_bio->sectors = nr_sectors; 2355 2356 /* For a user-requested sync, we read all readable devices and do a 2357 * compare 2358 */ 2359 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2360 atomic_set(&r1_bio->remaining, read_targets); 2361 for (i=0; i<conf->raid_disks; i++) { 2362 bio = r1_bio->bios[i]; 2363 if (bio->bi_end_io == end_sync_read) { 2364 md_sync_acct(bio->bi_bdev, nr_sectors); 2365 generic_make_request(bio); 2366 } 2367 } 2368 } else { 2369 atomic_set(&r1_bio->remaining, 1); 2370 bio = r1_bio->bios[r1_bio->read_disk]; 2371 md_sync_acct(bio->bi_bdev, nr_sectors); 2372 generic_make_request(bio); 2373 2374 } 2375 return nr_sectors; 2376 } 2377 2378 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2379 { 2380 if (sectors) 2381 return sectors; 2382 2383 return mddev->dev_sectors; 2384 } 2385 2386 static struct r1conf *setup_conf(struct mddev *mddev) 2387 { 2388 struct r1conf *conf; 2389 int i; 2390 struct mirror_info *disk; 2391 struct md_rdev *rdev; 2392 int err = -ENOMEM; 2393 2394 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2395 if (!conf) 2396 goto abort; 2397 2398 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2399 GFP_KERNEL); 2400 if (!conf->mirrors) 2401 goto abort; 2402 2403 conf->tmppage = alloc_page(GFP_KERNEL); 2404 if (!conf->tmppage) 2405 goto abort; 2406 2407 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2408 if (!conf->poolinfo) 2409 goto abort; 2410 conf->poolinfo->raid_disks = mddev->raid_disks; 2411 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2412 r1bio_pool_free, 2413 conf->poolinfo); 2414 if (!conf->r1bio_pool) 2415 goto abort; 2416 2417 conf->poolinfo->mddev = mddev; 2418 2419 spin_lock_init(&conf->device_lock); 2420 list_for_each_entry(rdev, &mddev->disks, same_set) { 2421 int disk_idx = rdev->raid_disk; 2422 if (disk_idx >= mddev->raid_disks 2423 || disk_idx < 0) 2424 continue; 2425 disk = conf->mirrors + disk_idx; 2426 2427 disk->rdev = rdev; 2428 2429 disk->head_position = 0; 2430 } 2431 conf->raid_disks = mddev->raid_disks; 2432 conf->mddev = mddev; 2433 INIT_LIST_HEAD(&conf->retry_list); 2434 2435 spin_lock_init(&conf->resync_lock); 2436 init_waitqueue_head(&conf->wait_barrier); 2437 2438 bio_list_init(&conf->pending_bio_list); 2439 conf->pending_count = 0; 2440 conf->recovery_disabled = mddev->recovery_disabled - 1; 2441 2442 conf->last_used = -1; 2443 for (i = 0; i < conf->raid_disks; i++) { 2444 2445 disk = conf->mirrors + i; 2446 2447 if (!disk->rdev || 2448 !test_bit(In_sync, &disk->rdev->flags)) { 2449 disk->head_position = 0; 2450 if (disk->rdev) 2451 conf->fullsync = 1; 2452 } else if (conf->last_used < 0) 2453 /* 2454 * The first working device is used as a 2455 * starting point to read balancing. 2456 */ 2457 conf->last_used = i; 2458 } 2459 2460 err = -EIO; 2461 if (conf->last_used < 0) { 2462 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 2463 mdname(mddev)); 2464 goto abort; 2465 } 2466 err = -ENOMEM; 2467 conf->thread = md_register_thread(raid1d, mddev, NULL); 2468 if (!conf->thread) { 2469 printk(KERN_ERR 2470 "md/raid1:%s: couldn't allocate thread\n", 2471 mdname(mddev)); 2472 goto abort; 2473 } 2474 2475 return conf; 2476 2477 abort: 2478 if (conf) { 2479 if (conf->r1bio_pool) 2480 mempool_destroy(conf->r1bio_pool); 2481 kfree(conf->mirrors); 2482 safe_put_page(conf->tmppage); 2483 kfree(conf->poolinfo); 2484 kfree(conf); 2485 } 2486 return ERR_PTR(err); 2487 } 2488 2489 static int run(struct mddev *mddev) 2490 { 2491 struct r1conf *conf; 2492 int i; 2493 struct md_rdev *rdev; 2494 2495 if (mddev->level != 1) { 2496 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2497 mdname(mddev), mddev->level); 2498 return -EIO; 2499 } 2500 if (mddev->reshape_position != MaxSector) { 2501 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2502 mdname(mddev)); 2503 return -EIO; 2504 } 2505 /* 2506 * copy the already verified devices into our private RAID1 2507 * bookkeeping area. [whatever we allocate in run(), 2508 * should be freed in stop()] 2509 */ 2510 if (mddev->private == NULL) 2511 conf = setup_conf(mddev); 2512 else 2513 conf = mddev->private; 2514 2515 if (IS_ERR(conf)) 2516 return PTR_ERR(conf); 2517 2518 list_for_each_entry(rdev, &mddev->disks, same_set) { 2519 if (!mddev->gendisk) 2520 continue; 2521 disk_stack_limits(mddev->gendisk, rdev->bdev, 2522 rdev->data_offset << 9); 2523 /* as we don't honour merge_bvec_fn, we must never risk 2524 * violating it, so limit ->max_segments to 1 lying within 2525 * a single page, as a one page request is never in violation. 2526 */ 2527 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2528 blk_queue_max_segments(mddev->queue, 1); 2529 blk_queue_segment_boundary(mddev->queue, 2530 PAGE_CACHE_SIZE - 1); 2531 } 2532 } 2533 2534 mddev->degraded = 0; 2535 for (i=0; i < conf->raid_disks; i++) 2536 if (conf->mirrors[i].rdev == NULL || 2537 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2538 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2539 mddev->degraded++; 2540 2541 if (conf->raid_disks - mddev->degraded == 1) 2542 mddev->recovery_cp = MaxSector; 2543 2544 if (mddev->recovery_cp != MaxSector) 2545 printk(KERN_NOTICE "md/raid1:%s: not clean" 2546 " -- starting background reconstruction\n", 2547 mdname(mddev)); 2548 printk(KERN_INFO 2549 "md/raid1:%s: active with %d out of %d mirrors\n", 2550 mdname(mddev), mddev->raid_disks - mddev->degraded, 2551 mddev->raid_disks); 2552 2553 /* 2554 * Ok, everything is just fine now 2555 */ 2556 mddev->thread = conf->thread; 2557 conf->thread = NULL; 2558 mddev->private = conf; 2559 2560 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2561 2562 if (mddev->queue) { 2563 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2564 mddev->queue->backing_dev_info.congested_data = mddev; 2565 } 2566 return md_integrity_register(mddev); 2567 } 2568 2569 static int stop(struct mddev *mddev) 2570 { 2571 struct r1conf *conf = mddev->private; 2572 struct bitmap *bitmap = mddev->bitmap; 2573 2574 /* wait for behind writes to complete */ 2575 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2576 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2577 mdname(mddev)); 2578 /* need to kick something here to make sure I/O goes? */ 2579 wait_event(bitmap->behind_wait, 2580 atomic_read(&bitmap->behind_writes) == 0); 2581 } 2582 2583 raise_barrier(conf); 2584 lower_barrier(conf); 2585 2586 md_unregister_thread(&mddev->thread); 2587 if (conf->r1bio_pool) 2588 mempool_destroy(conf->r1bio_pool); 2589 kfree(conf->mirrors); 2590 kfree(conf->poolinfo); 2591 kfree(conf); 2592 mddev->private = NULL; 2593 return 0; 2594 } 2595 2596 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2597 { 2598 /* no resync is happening, and there is enough space 2599 * on all devices, so we can resize. 2600 * We need to make sure resync covers any new space. 2601 * If the array is shrinking we should possibly wait until 2602 * any io in the removed space completes, but it hardly seems 2603 * worth it. 2604 */ 2605 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2606 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2607 return -EINVAL; 2608 set_capacity(mddev->gendisk, mddev->array_sectors); 2609 revalidate_disk(mddev->gendisk); 2610 if (sectors > mddev->dev_sectors && 2611 mddev->recovery_cp > mddev->dev_sectors) { 2612 mddev->recovery_cp = mddev->dev_sectors; 2613 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2614 } 2615 mddev->dev_sectors = sectors; 2616 mddev->resync_max_sectors = sectors; 2617 return 0; 2618 } 2619 2620 static int raid1_reshape(struct mddev *mddev) 2621 { 2622 /* We need to: 2623 * 1/ resize the r1bio_pool 2624 * 2/ resize conf->mirrors 2625 * 2626 * We allocate a new r1bio_pool if we can. 2627 * Then raise a device barrier and wait until all IO stops. 2628 * Then resize conf->mirrors and swap in the new r1bio pool. 2629 * 2630 * At the same time, we "pack" the devices so that all the missing 2631 * devices have the higher raid_disk numbers. 2632 */ 2633 mempool_t *newpool, *oldpool; 2634 struct pool_info *newpoolinfo; 2635 struct mirror_info *newmirrors; 2636 struct r1conf *conf = mddev->private; 2637 int cnt, raid_disks; 2638 unsigned long flags; 2639 int d, d2, err; 2640 2641 /* Cannot change chunk_size, layout, or level */ 2642 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2643 mddev->layout != mddev->new_layout || 2644 mddev->level != mddev->new_level) { 2645 mddev->new_chunk_sectors = mddev->chunk_sectors; 2646 mddev->new_layout = mddev->layout; 2647 mddev->new_level = mddev->level; 2648 return -EINVAL; 2649 } 2650 2651 err = md_allow_write(mddev); 2652 if (err) 2653 return err; 2654 2655 raid_disks = mddev->raid_disks + mddev->delta_disks; 2656 2657 if (raid_disks < conf->raid_disks) { 2658 cnt=0; 2659 for (d= 0; d < conf->raid_disks; d++) 2660 if (conf->mirrors[d].rdev) 2661 cnt++; 2662 if (cnt > raid_disks) 2663 return -EBUSY; 2664 } 2665 2666 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2667 if (!newpoolinfo) 2668 return -ENOMEM; 2669 newpoolinfo->mddev = mddev; 2670 newpoolinfo->raid_disks = raid_disks; 2671 2672 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2673 r1bio_pool_free, newpoolinfo); 2674 if (!newpool) { 2675 kfree(newpoolinfo); 2676 return -ENOMEM; 2677 } 2678 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2679 if (!newmirrors) { 2680 kfree(newpoolinfo); 2681 mempool_destroy(newpool); 2682 return -ENOMEM; 2683 } 2684 2685 raise_barrier(conf); 2686 2687 /* ok, everything is stopped */ 2688 oldpool = conf->r1bio_pool; 2689 conf->r1bio_pool = newpool; 2690 2691 for (d = d2 = 0; d < conf->raid_disks; d++) { 2692 struct md_rdev *rdev = conf->mirrors[d].rdev; 2693 if (rdev && rdev->raid_disk != d2) { 2694 sysfs_unlink_rdev(mddev, rdev); 2695 rdev->raid_disk = d2; 2696 sysfs_unlink_rdev(mddev, rdev); 2697 if (sysfs_link_rdev(mddev, rdev)) 2698 printk(KERN_WARNING 2699 "md/raid1:%s: cannot register rd%d\n", 2700 mdname(mddev), rdev->raid_disk); 2701 } 2702 if (rdev) 2703 newmirrors[d2++].rdev = rdev; 2704 } 2705 kfree(conf->mirrors); 2706 conf->mirrors = newmirrors; 2707 kfree(conf->poolinfo); 2708 conf->poolinfo = newpoolinfo; 2709 2710 spin_lock_irqsave(&conf->device_lock, flags); 2711 mddev->degraded += (raid_disks - conf->raid_disks); 2712 spin_unlock_irqrestore(&conf->device_lock, flags); 2713 conf->raid_disks = mddev->raid_disks = raid_disks; 2714 mddev->delta_disks = 0; 2715 2716 conf->last_used = 0; /* just make sure it is in-range */ 2717 lower_barrier(conf); 2718 2719 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2720 md_wakeup_thread(mddev->thread); 2721 2722 mempool_destroy(oldpool); 2723 return 0; 2724 } 2725 2726 static void raid1_quiesce(struct mddev *mddev, int state) 2727 { 2728 struct r1conf *conf = mddev->private; 2729 2730 switch(state) { 2731 case 2: /* wake for suspend */ 2732 wake_up(&conf->wait_barrier); 2733 break; 2734 case 1: 2735 raise_barrier(conf); 2736 break; 2737 case 0: 2738 lower_barrier(conf); 2739 break; 2740 } 2741 } 2742 2743 static void *raid1_takeover(struct mddev *mddev) 2744 { 2745 /* raid1 can take over: 2746 * raid5 with 2 devices, any layout or chunk size 2747 */ 2748 if (mddev->level == 5 && mddev->raid_disks == 2) { 2749 struct r1conf *conf; 2750 mddev->new_level = 1; 2751 mddev->new_layout = 0; 2752 mddev->new_chunk_sectors = 0; 2753 conf = setup_conf(mddev); 2754 if (!IS_ERR(conf)) 2755 conf->barrier = 1; 2756 return conf; 2757 } 2758 return ERR_PTR(-EINVAL); 2759 } 2760 2761 static struct md_personality raid1_personality = 2762 { 2763 .name = "raid1", 2764 .level = 1, 2765 .owner = THIS_MODULE, 2766 .make_request = make_request, 2767 .run = run, 2768 .stop = stop, 2769 .status = status, 2770 .error_handler = error, 2771 .hot_add_disk = raid1_add_disk, 2772 .hot_remove_disk= raid1_remove_disk, 2773 .spare_active = raid1_spare_active, 2774 .sync_request = sync_request, 2775 .resize = raid1_resize, 2776 .size = raid1_size, 2777 .check_reshape = raid1_reshape, 2778 .quiesce = raid1_quiesce, 2779 .takeover = raid1_takeover, 2780 }; 2781 2782 static int __init raid_init(void) 2783 { 2784 return register_md_personality(&raid1_personality); 2785 } 2786 2787 static void raid_exit(void) 2788 { 2789 unregister_md_personality(&raid1_personality); 2790 } 2791 2792 module_init(raid_init); 2793 module_exit(raid_exit); 2794 MODULE_LICENSE("GPL"); 2795 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2796 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2797 MODULE_ALIAS("md-raid1"); 2798 MODULE_ALIAS("md-level-1"); 2799 2800 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 2801