1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* When there are this many requests queue to be written by 50 * the raid1 thread, we become 'congested' to provide back-pressure 51 * for writeback. 52 */ 53 static int max_queued_requests = 1024; 54 55 static void allow_barrier(struct r1conf *conf); 56 static void lower_barrier(struct r1conf *conf); 57 58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 59 { 60 struct pool_info *pi = data; 61 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 62 63 /* allocate a r1bio with room for raid_disks entries in the bios array */ 64 return kzalloc(size, gfp_flags); 65 } 66 67 static void r1bio_pool_free(void *r1_bio, void *data) 68 { 69 kfree(r1_bio); 70 } 71 72 #define RESYNC_BLOCK_SIZE (64*1024) 73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 76 #define RESYNC_WINDOW (2048*1024) 77 78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 79 { 80 struct pool_info *pi = data; 81 struct page *page; 82 struct r1bio *r1_bio; 83 struct bio *bio; 84 int i, j; 85 86 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 87 if (!r1_bio) 88 return NULL; 89 90 /* 91 * Allocate bios : 1 for reading, n-1 for writing 92 */ 93 for (j = pi->raid_disks ; j-- ; ) { 94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 95 if (!bio) 96 goto out_free_bio; 97 r1_bio->bios[j] = bio; 98 } 99 /* 100 * Allocate RESYNC_PAGES data pages and attach them to 101 * the first bio. 102 * If this is a user-requested check/repair, allocate 103 * RESYNC_PAGES for each bio. 104 */ 105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 106 j = pi->raid_disks; 107 else 108 j = 1; 109 while(j--) { 110 bio = r1_bio->bios[j]; 111 for (i = 0; i < RESYNC_PAGES; i++) { 112 page = alloc_page(gfp_flags); 113 if (unlikely(!page)) 114 goto out_free_pages; 115 116 bio->bi_io_vec[i].bv_page = page; 117 bio->bi_vcnt = i+1; 118 } 119 } 120 /* If not user-requests, copy the page pointers to all bios */ 121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 122 for (i=0; i<RESYNC_PAGES ; i++) 123 for (j=1; j<pi->raid_disks; j++) 124 r1_bio->bios[j]->bi_io_vec[i].bv_page = 125 r1_bio->bios[0]->bi_io_vec[i].bv_page; 126 } 127 128 r1_bio->master_bio = NULL; 129 130 return r1_bio; 131 132 out_free_pages: 133 for (j=0 ; j < pi->raid_disks; j++) 134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 136 j = -1; 137 out_free_bio: 138 while (++j < pi->raid_disks) 139 bio_put(r1_bio->bios[j]); 140 r1bio_pool_free(r1_bio, data); 141 return NULL; 142 } 143 144 static void r1buf_pool_free(void *__r1_bio, void *data) 145 { 146 struct pool_info *pi = data; 147 int i,j; 148 struct r1bio *r1bio = __r1_bio; 149 150 for (i = 0; i < RESYNC_PAGES; i++) 151 for (j = pi->raid_disks; j-- ;) { 152 if (j == 0 || 153 r1bio->bios[j]->bi_io_vec[i].bv_page != 154 r1bio->bios[0]->bi_io_vec[i].bv_page) 155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 156 } 157 for (i=0 ; i < pi->raid_disks; i++) 158 bio_put(r1bio->bios[i]); 159 160 r1bio_pool_free(r1bio, data); 161 } 162 163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 164 { 165 int i; 166 167 for (i = 0; i < conf->raid_disks * 2; i++) { 168 struct bio **bio = r1_bio->bios + i; 169 if (!BIO_SPECIAL(*bio)) 170 bio_put(*bio); 171 *bio = NULL; 172 } 173 } 174 175 static void free_r1bio(struct r1bio *r1_bio) 176 { 177 struct r1conf *conf = r1_bio->mddev->private; 178 179 put_all_bios(conf, r1_bio); 180 mempool_free(r1_bio, conf->r1bio_pool); 181 } 182 183 static void put_buf(struct r1bio *r1_bio) 184 { 185 struct r1conf *conf = r1_bio->mddev->private; 186 int i; 187 188 for (i = 0; i < conf->raid_disks * 2; i++) { 189 struct bio *bio = r1_bio->bios[i]; 190 if (bio->bi_end_io) 191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 192 } 193 194 mempool_free(r1_bio, conf->r1buf_pool); 195 196 lower_barrier(conf); 197 } 198 199 static void reschedule_retry(struct r1bio *r1_bio) 200 { 201 unsigned long flags; 202 struct mddev *mddev = r1_bio->mddev; 203 struct r1conf *conf = mddev->private; 204 205 spin_lock_irqsave(&conf->device_lock, flags); 206 list_add(&r1_bio->retry_list, &conf->retry_list); 207 conf->nr_queued ++; 208 spin_unlock_irqrestore(&conf->device_lock, flags); 209 210 wake_up(&conf->wait_barrier); 211 md_wakeup_thread(mddev->thread); 212 } 213 214 /* 215 * raid_end_bio_io() is called when we have finished servicing a mirrored 216 * operation and are ready to return a success/failure code to the buffer 217 * cache layer. 218 */ 219 static void call_bio_endio(struct r1bio *r1_bio) 220 { 221 struct bio *bio = r1_bio->master_bio; 222 int done; 223 struct r1conf *conf = r1_bio->mddev->private; 224 225 if (bio->bi_phys_segments) { 226 unsigned long flags; 227 spin_lock_irqsave(&conf->device_lock, flags); 228 bio->bi_phys_segments--; 229 done = (bio->bi_phys_segments == 0); 230 spin_unlock_irqrestore(&conf->device_lock, flags); 231 } else 232 done = 1; 233 234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 235 clear_bit(BIO_UPTODATE, &bio->bi_flags); 236 if (done) { 237 bio_endio(bio, 0); 238 /* 239 * Wake up any possible resync thread that waits for the device 240 * to go idle. 241 */ 242 allow_barrier(conf); 243 } 244 } 245 246 static void raid_end_bio_io(struct r1bio *r1_bio) 247 { 248 struct bio *bio = r1_bio->master_bio; 249 250 /* if nobody has done the final endio yet, do it now */ 251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 253 (bio_data_dir(bio) == WRITE) ? "write" : "read", 254 (unsigned long long) bio->bi_sector, 255 (unsigned long long) bio->bi_sector + 256 (bio->bi_size >> 9) - 1); 257 258 call_bio_endio(r1_bio); 259 } 260 free_r1bio(r1_bio); 261 } 262 263 /* 264 * Update disk head position estimator based on IRQ completion info. 265 */ 266 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 267 { 268 struct r1conf *conf = r1_bio->mddev->private; 269 270 conf->mirrors[disk].head_position = 271 r1_bio->sector + (r1_bio->sectors); 272 } 273 274 /* 275 * Find the disk number which triggered given bio 276 */ 277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 278 { 279 int mirror; 280 struct r1conf *conf = r1_bio->mddev->private; 281 int raid_disks = conf->raid_disks; 282 283 for (mirror = 0; mirror < raid_disks * 2; mirror++) 284 if (r1_bio->bios[mirror] == bio) 285 break; 286 287 BUG_ON(mirror == raid_disks * 2); 288 update_head_pos(mirror, r1_bio); 289 290 return mirror; 291 } 292 293 static void raid1_end_read_request(struct bio *bio, int error) 294 { 295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 296 struct r1bio *r1_bio = bio->bi_private; 297 int mirror; 298 struct r1conf *conf = r1_bio->mddev->private; 299 300 mirror = r1_bio->read_disk; 301 /* 302 * this branch is our 'one mirror IO has finished' event handler: 303 */ 304 update_head_pos(mirror, r1_bio); 305 306 if (uptodate) 307 set_bit(R1BIO_Uptodate, &r1_bio->state); 308 else { 309 /* If all other devices have failed, we want to return 310 * the error upwards rather than fail the last device. 311 * Here we redefine "uptodate" to mean "Don't want to retry" 312 */ 313 unsigned long flags; 314 spin_lock_irqsave(&conf->device_lock, flags); 315 if (r1_bio->mddev->degraded == conf->raid_disks || 316 (r1_bio->mddev->degraded == conf->raid_disks-1 && 317 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 318 uptodate = 1; 319 spin_unlock_irqrestore(&conf->device_lock, flags); 320 } 321 322 if (uptodate) 323 raid_end_bio_io(r1_bio); 324 else { 325 /* 326 * oops, read error: 327 */ 328 char b[BDEVNAME_SIZE]; 329 printk_ratelimited( 330 KERN_ERR "md/raid1:%s: %s: " 331 "rescheduling sector %llu\n", 332 mdname(conf->mddev), 333 bdevname(conf->mirrors[mirror].rdev->bdev, 334 b), 335 (unsigned long long)r1_bio->sector); 336 set_bit(R1BIO_ReadError, &r1_bio->state); 337 reschedule_retry(r1_bio); 338 } 339 340 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 341 } 342 343 static void close_write(struct r1bio *r1_bio) 344 { 345 /* it really is the end of this request */ 346 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 347 /* free extra copy of the data pages */ 348 int i = r1_bio->behind_page_count; 349 while (i--) 350 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 351 kfree(r1_bio->behind_bvecs); 352 r1_bio->behind_bvecs = NULL; 353 } 354 /* clear the bitmap if all writes complete successfully */ 355 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 356 r1_bio->sectors, 357 !test_bit(R1BIO_Degraded, &r1_bio->state), 358 test_bit(R1BIO_BehindIO, &r1_bio->state)); 359 md_write_end(r1_bio->mddev); 360 } 361 362 static void r1_bio_write_done(struct r1bio *r1_bio) 363 { 364 if (!atomic_dec_and_test(&r1_bio->remaining)) 365 return; 366 367 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 368 reschedule_retry(r1_bio); 369 else { 370 close_write(r1_bio); 371 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 372 reschedule_retry(r1_bio); 373 else 374 raid_end_bio_io(r1_bio); 375 } 376 } 377 378 static void raid1_end_write_request(struct bio *bio, int error) 379 { 380 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 381 struct r1bio *r1_bio = bio->bi_private; 382 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 383 struct r1conf *conf = r1_bio->mddev->private; 384 struct bio *to_put = NULL; 385 386 mirror = find_bio_disk(r1_bio, bio); 387 388 /* 389 * 'one mirror IO has finished' event handler: 390 */ 391 if (!uptodate) { 392 set_bit(WriteErrorSeen, 393 &conf->mirrors[mirror].rdev->flags); 394 if (!test_and_set_bit(WantReplacement, 395 &conf->mirrors[mirror].rdev->flags)) 396 set_bit(MD_RECOVERY_NEEDED, & 397 conf->mddev->recovery); 398 399 set_bit(R1BIO_WriteError, &r1_bio->state); 400 } else { 401 /* 402 * Set R1BIO_Uptodate in our master bio, so that we 403 * will return a good error code for to the higher 404 * levels even if IO on some other mirrored buffer 405 * fails. 406 * 407 * The 'master' represents the composite IO operation 408 * to user-side. So if something waits for IO, then it 409 * will wait for the 'master' bio. 410 */ 411 sector_t first_bad; 412 int bad_sectors; 413 414 r1_bio->bios[mirror] = NULL; 415 to_put = bio; 416 set_bit(R1BIO_Uptodate, &r1_bio->state); 417 418 /* Maybe we can clear some bad blocks. */ 419 if (is_badblock(conf->mirrors[mirror].rdev, 420 r1_bio->sector, r1_bio->sectors, 421 &first_bad, &bad_sectors)) { 422 r1_bio->bios[mirror] = IO_MADE_GOOD; 423 set_bit(R1BIO_MadeGood, &r1_bio->state); 424 } 425 } 426 427 if (behind) { 428 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 429 atomic_dec(&r1_bio->behind_remaining); 430 431 /* 432 * In behind mode, we ACK the master bio once the I/O 433 * has safely reached all non-writemostly 434 * disks. Setting the Returned bit ensures that this 435 * gets done only once -- we don't ever want to return 436 * -EIO here, instead we'll wait 437 */ 438 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 439 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 440 /* Maybe we can return now */ 441 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 442 struct bio *mbio = r1_bio->master_bio; 443 pr_debug("raid1: behind end write sectors" 444 " %llu-%llu\n", 445 (unsigned long long) mbio->bi_sector, 446 (unsigned long long) mbio->bi_sector + 447 (mbio->bi_size >> 9) - 1); 448 call_bio_endio(r1_bio); 449 } 450 } 451 } 452 if (r1_bio->bios[mirror] == NULL) 453 rdev_dec_pending(conf->mirrors[mirror].rdev, 454 conf->mddev); 455 456 /* 457 * Let's see if all mirrored write operations have finished 458 * already. 459 */ 460 r1_bio_write_done(r1_bio); 461 462 if (to_put) 463 bio_put(to_put); 464 } 465 466 467 /* 468 * This routine returns the disk from which the requested read should 469 * be done. There is a per-array 'next expected sequential IO' sector 470 * number - if this matches on the next IO then we use the last disk. 471 * There is also a per-disk 'last know head position' sector that is 472 * maintained from IRQ contexts, both the normal and the resync IO 473 * completion handlers update this position correctly. If there is no 474 * perfect sequential match then we pick the disk whose head is closest. 475 * 476 * If there are 2 mirrors in the same 2 devices, performance degrades 477 * because position is mirror, not device based. 478 * 479 * The rdev for the device selected will have nr_pending incremented. 480 */ 481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 482 { 483 const sector_t this_sector = r1_bio->sector; 484 int sectors; 485 int best_good_sectors; 486 int start_disk; 487 int best_disk; 488 int i; 489 sector_t best_dist; 490 struct md_rdev *rdev; 491 int choose_first; 492 493 rcu_read_lock(); 494 /* 495 * Check if we can balance. We can balance on the whole 496 * device if no resync is going on, or below the resync window. 497 * We take the first readable disk when above the resync window. 498 */ 499 retry: 500 sectors = r1_bio->sectors; 501 best_disk = -1; 502 best_dist = MaxSector; 503 best_good_sectors = 0; 504 505 if (conf->mddev->recovery_cp < MaxSector && 506 (this_sector + sectors >= conf->next_resync)) { 507 choose_first = 1; 508 start_disk = 0; 509 } else { 510 choose_first = 0; 511 start_disk = conf->last_used; 512 } 513 514 for (i = 0 ; i < conf->raid_disks * 2 ; i++) { 515 sector_t dist; 516 sector_t first_bad; 517 int bad_sectors; 518 519 int disk = start_disk + i; 520 if (disk >= conf->raid_disks * 2) 521 disk -= conf->raid_disks * 2; 522 523 rdev = rcu_dereference(conf->mirrors[disk].rdev); 524 if (r1_bio->bios[disk] == IO_BLOCKED 525 || rdev == NULL 526 || test_bit(Unmerged, &rdev->flags) 527 || test_bit(Faulty, &rdev->flags)) 528 continue; 529 if (!test_bit(In_sync, &rdev->flags) && 530 rdev->recovery_offset < this_sector + sectors) 531 continue; 532 if (test_bit(WriteMostly, &rdev->flags)) { 533 /* Don't balance among write-mostly, just 534 * use the first as a last resort */ 535 if (best_disk < 0) { 536 if (is_badblock(rdev, this_sector, sectors, 537 &first_bad, &bad_sectors)) { 538 if (first_bad < this_sector) 539 /* Cannot use this */ 540 continue; 541 best_good_sectors = first_bad - this_sector; 542 } else 543 best_good_sectors = sectors; 544 best_disk = disk; 545 } 546 continue; 547 } 548 /* This is a reasonable device to use. It might 549 * even be best. 550 */ 551 if (is_badblock(rdev, this_sector, sectors, 552 &first_bad, &bad_sectors)) { 553 if (best_dist < MaxSector) 554 /* already have a better device */ 555 continue; 556 if (first_bad <= this_sector) { 557 /* cannot read here. If this is the 'primary' 558 * device, then we must not read beyond 559 * bad_sectors from another device.. 560 */ 561 bad_sectors -= (this_sector - first_bad); 562 if (choose_first && sectors > bad_sectors) 563 sectors = bad_sectors; 564 if (best_good_sectors > sectors) 565 best_good_sectors = sectors; 566 567 } else { 568 sector_t good_sectors = first_bad - this_sector; 569 if (good_sectors > best_good_sectors) { 570 best_good_sectors = good_sectors; 571 best_disk = disk; 572 } 573 if (choose_first) 574 break; 575 } 576 continue; 577 } else 578 best_good_sectors = sectors; 579 580 dist = abs(this_sector - conf->mirrors[disk].head_position); 581 if (choose_first 582 /* Don't change to another disk for sequential reads */ 583 || conf->next_seq_sect == this_sector 584 || dist == 0 585 /* If device is idle, use it */ 586 || atomic_read(&rdev->nr_pending) == 0) { 587 best_disk = disk; 588 break; 589 } 590 if (dist < best_dist) { 591 best_dist = dist; 592 best_disk = disk; 593 } 594 } 595 596 if (best_disk >= 0) { 597 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 598 if (!rdev) 599 goto retry; 600 atomic_inc(&rdev->nr_pending); 601 if (test_bit(Faulty, &rdev->flags)) { 602 /* cannot risk returning a device that failed 603 * before we inc'ed nr_pending 604 */ 605 rdev_dec_pending(rdev, conf->mddev); 606 goto retry; 607 } 608 sectors = best_good_sectors; 609 conf->next_seq_sect = this_sector + sectors; 610 conf->last_used = best_disk; 611 } 612 rcu_read_unlock(); 613 *max_sectors = sectors; 614 615 return best_disk; 616 } 617 618 static int raid1_mergeable_bvec(struct request_queue *q, 619 struct bvec_merge_data *bvm, 620 struct bio_vec *biovec) 621 { 622 struct mddev *mddev = q->queuedata; 623 struct r1conf *conf = mddev->private; 624 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 625 int max = biovec->bv_len; 626 627 if (mddev->merge_check_needed) { 628 int disk; 629 rcu_read_lock(); 630 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 631 struct md_rdev *rdev = rcu_dereference( 632 conf->mirrors[disk].rdev); 633 if (rdev && !test_bit(Faulty, &rdev->flags)) { 634 struct request_queue *q = 635 bdev_get_queue(rdev->bdev); 636 if (q->merge_bvec_fn) { 637 bvm->bi_sector = sector + 638 rdev->data_offset; 639 bvm->bi_bdev = rdev->bdev; 640 max = min(max, q->merge_bvec_fn( 641 q, bvm, biovec)); 642 } 643 } 644 } 645 rcu_read_unlock(); 646 } 647 return max; 648 649 } 650 651 int md_raid1_congested(struct mddev *mddev, int bits) 652 { 653 struct r1conf *conf = mddev->private; 654 int i, ret = 0; 655 656 if ((bits & (1 << BDI_async_congested)) && 657 conf->pending_count >= max_queued_requests) 658 return 1; 659 660 rcu_read_lock(); 661 for (i = 0; i < conf->raid_disks * 2; i++) { 662 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 663 if (rdev && !test_bit(Faulty, &rdev->flags)) { 664 struct request_queue *q = bdev_get_queue(rdev->bdev); 665 666 BUG_ON(!q); 667 668 /* Note the '|| 1' - when read_balance prefers 669 * non-congested targets, it can be removed 670 */ 671 if ((bits & (1<<BDI_async_congested)) || 1) 672 ret |= bdi_congested(&q->backing_dev_info, bits); 673 else 674 ret &= bdi_congested(&q->backing_dev_info, bits); 675 } 676 } 677 rcu_read_unlock(); 678 return ret; 679 } 680 EXPORT_SYMBOL_GPL(md_raid1_congested); 681 682 static int raid1_congested(void *data, int bits) 683 { 684 struct mddev *mddev = data; 685 686 return mddev_congested(mddev, bits) || 687 md_raid1_congested(mddev, bits); 688 } 689 690 static void flush_pending_writes(struct r1conf *conf) 691 { 692 /* Any writes that have been queued but are awaiting 693 * bitmap updates get flushed here. 694 */ 695 spin_lock_irq(&conf->device_lock); 696 697 if (conf->pending_bio_list.head) { 698 struct bio *bio; 699 bio = bio_list_get(&conf->pending_bio_list); 700 conf->pending_count = 0; 701 spin_unlock_irq(&conf->device_lock); 702 /* flush any pending bitmap writes to 703 * disk before proceeding w/ I/O */ 704 bitmap_unplug(conf->mddev->bitmap); 705 wake_up(&conf->wait_barrier); 706 707 while (bio) { /* submit pending writes */ 708 struct bio *next = bio->bi_next; 709 bio->bi_next = NULL; 710 generic_make_request(bio); 711 bio = next; 712 } 713 } else 714 spin_unlock_irq(&conf->device_lock); 715 } 716 717 /* Barriers.... 718 * Sometimes we need to suspend IO while we do something else, 719 * either some resync/recovery, or reconfigure the array. 720 * To do this we raise a 'barrier'. 721 * The 'barrier' is a counter that can be raised multiple times 722 * to count how many activities are happening which preclude 723 * normal IO. 724 * We can only raise the barrier if there is no pending IO. 725 * i.e. if nr_pending == 0. 726 * We choose only to raise the barrier if no-one is waiting for the 727 * barrier to go down. This means that as soon as an IO request 728 * is ready, no other operations which require a barrier will start 729 * until the IO request has had a chance. 730 * 731 * So: regular IO calls 'wait_barrier'. When that returns there 732 * is no backgroup IO happening, It must arrange to call 733 * allow_barrier when it has finished its IO. 734 * backgroup IO calls must call raise_barrier. Once that returns 735 * there is no normal IO happeing. It must arrange to call 736 * lower_barrier when the particular background IO completes. 737 */ 738 #define RESYNC_DEPTH 32 739 740 static void raise_barrier(struct r1conf *conf) 741 { 742 spin_lock_irq(&conf->resync_lock); 743 744 /* Wait until no block IO is waiting */ 745 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 746 conf->resync_lock, ); 747 748 /* block any new IO from starting */ 749 conf->barrier++; 750 751 /* Now wait for all pending IO to complete */ 752 wait_event_lock_irq(conf->wait_barrier, 753 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 754 conf->resync_lock, ); 755 756 spin_unlock_irq(&conf->resync_lock); 757 } 758 759 static void lower_barrier(struct r1conf *conf) 760 { 761 unsigned long flags; 762 BUG_ON(conf->barrier <= 0); 763 spin_lock_irqsave(&conf->resync_lock, flags); 764 conf->barrier--; 765 spin_unlock_irqrestore(&conf->resync_lock, flags); 766 wake_up(&conf->wait_barrier); 767 } 768 769 static void wait_barrier(struct r1conf *conf) 770 { 771 spin_lock_irq(&conf->resync_lock); 772 if (conf->barrier) { 773 conf->nr_waiting++; 774 /* Wait for the barrier to drop. 775 * However if there are already pending 776 * requests (preventing the barrier from 777 * rising completely), and the 778 * pre-process bio queue isn't empty, 779 * then don't wait, as we need to empty 780 * that queue to get the nr_pending 781 * count down. 782 */ 783 wait_event_lock_irq(conf->wait_barrier, 784 !conf->barrier || 785 (conf->nr_pending && 786 current->bio_list && 787 !bio_list_empty(current->bio_list)), 788 conf->resync_lock, 789 ); 790 conf->nr_waiting--; 791 } 792 conf->nr_pending++; 793 spin_unlock_irq(&conf->resync_lock); 794 } 795 796 static void allow_barrier(struct r1conf *conf) 797 { 798 unsigned long flags; 799 spin_lock_irqsave(&conf->resync_lock, flags); 800 conf->nr_pending--; 801 spin_unlock_irqrestore(&conf->resync_lock, flags); 802 wake_up(&conf->wait_barrier); 803 } 804 805 static void freeze_array(struct r1conf *conf) 806 { 807 /* stop syncio and normal IO and wait for everything to 808 * go quite. 809 * We increment barrier and nr_waiting, and then 810 * wait until nr_pending match nr_queued+1 811 * This is called in the context of one normal IO request 812 * that has failed. Thus any sync request that might be pending 813 * will be blocked by nr_pending, and we need to wait for 814 * pending IO requests to complete or be queued for re-try. 815 * Thus the number queued (nr_queued) plus this request (1) 816 * must match the number of pending IOs (nr_pending) before 817 * we continue. 818 */ 819 spin_lock_irq(&conf->resync_lock); 820 conf->barrier++; 821 conf->nr_waiting++; 822 wait_event_lock_irq(conf->wait_barrier, 823 conf->nr_pending == conf->nr_queued+1, 824 conf->resync_lock, 825 flush_pending_writes(conf)); 826 spin_unlock_irq(&conf->resync_lock); 827 } 828 static void unfreeze_array(struct r1conf *conf) 829 { 830 /* reverse the effect of the freeze */ 831 spin_lock_irq(&conf->resync_lock); 832 conf->barrier--; 833 conf->nr_waiting--; 834 wake_up(&conf->wait_barrier); 835 spin_unlock_irq(&conf->resync_lock); 836 } 837 838 839 /* duplicate the data pages for behind I/O 840 */ 841 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 842 { 843 int i; 844 struct bio_vec *bvec; 845 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 846 GFP_NOIO); 847 if (unlikely(!bvecs)) 848 return; 849 850 bio_for_each_segment(bvec, bio, i) { 851 bvecs[i] = *bvec; 852 bvecs[i].bv_page = alloc_page(GFP_NOIO); 853 if (unlikely(!bvecs[i].bv_page)) 854 goto do_sync_io; 855 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 856 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 857 kunmap(bvecs[i].bv_page); 858 kunmap(bvec->bv_page); 859 } 860 r1_bio->behind_bvecs = bvecs; 861 r1_bio->behind_page_count = bio->bi_vcnt; 862 set_bit(R1BIO_BehindIO, &r1_bio->state); 863 return; 864 865 do_sync_io: 866 for (i = 0; i < bio->bi_vcnt; i++) 867 if (bvecs[i].bv_page) 868 put_page(bvecs[i].bv_page); 869 kfree(bvecs); 870 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 871 } 872 873 static void make_request(struct mddev *mddev, struct bio * bio) 874 { 875 struct r1conf *conf = mddev->private; 876 struct mirror_info *mirror; 877 struct r1bio *r1_bio; 878 struct bio *read_bio; 879 int i, disks; 880 struct bitmap *bitmap; 881 unsigned long flags; 882 const int rw = bio_data_dir(bio); 883 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 884 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 885 struct md_rdev *blocked_rdev; 886 int first_clone; 887 int sectors_handled; 888 int max_sectors; 889 890 /* 891 * Register the new request and wait if the reconstruction 892 * thread has put up a bar for new requests. 893 * Continue immediately if no resync is active currently. 894 */ 895 896 md_write_start(mddev, bio); /* wait on superblock update early */ 897 898 if (bio_data_dir(bio) == WRITE && 899 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 900 bio->bi_sector < mddev->suspend_hi) { 901 /* As the suspend_* range is controlled by 902 * userspace, we want an interruptible 903 * wait. 904 */ 905 DEFINE_WAIT(w); 906 for (;;) { 907 flush_signals(current); 908 prepare_to_wait(&conf->wait_barrier, 909 &w, TASK_INTERRUPTIBLE); 910 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 911 bio->bi_sector >= mddev->suspend_hi) 912 break; 913 schedule(); 914 } 915 finish_wait(&conf->wait_barrier, &w); 916 } 917 918 wait_barrier(conf); 919 920 bitmap = mddev->bitmap; 921 922 /* 923 * make_request() can abort the operation when READA is being 924 * used and no empty request is available. 925 * 926 */ 927 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 928 929 r1_bio->master_bio = bio; 930 r1_bio->sectors = bio->bi_size >> 9; 931 r1_bio->state = 0; 932 r1_bio->mddev = mddev; 933 r1_bio->sector = bio->bi_sector; 934 935 /* We might need to issue multiple reads to different 936 * devices if there are bad blocks around, so we keep 937 * track of the number of reads in bio->bi_phys_segments. 938 * If this is 0, there is only one r1_bio and no locking 939 * will be needed when requests complete. If it is 940 * non-zero, then it is the number of not-completed requests. 941 */ 942 bio->bi_phys_segments = 0; 943 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 944 945 if (rw == READ) { 946 /* 947 * read balancing logic: 948 */ 949 int rdisk; 950 951 read_again: 952 rdisk = read_balance(conf, r1_bio, &max_sectors); 953 954 if (rdisk < 0) { 955 /* couldn't find anywhere to read from */ 956 raid_end_bio_io(r1_bio); 957 return; 958 } 959 mirror = conf->mirrors + rdisk; 960 961 if (test_bit(WriteMostly, &mirror->rdev->flags) && 962 bitmap) { 963 /* Reading from a write-mostly device must 964 * take care not to over-take any writes 965 * that are 'behind' 966 */ 967 wait_event(bitmap->behind_wait, 968 atomic_read(&bitmap->behind_writes) == 0); 969 } 970 r1_bio->read_disk = rdisk; 971 972 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 973 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 974 max_sectors); 975 976 r1_bio->bios[rdisk] = read_bio; 977 978 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 979 read_bio->bi_bdev = mirror->rdev->bdev; 980 read_bio->bi_end_io = raid1_end_read_request; 981 read_bio->bi_rw = READ | do_sync; 982 read_bio->bi_private = r1_bio; 983 984 if (max_sectors < r1_bio->sectors) { 985 /* could not read all from this device, so we will 986 * need another r1_bio. 987 */ 988 989 sectors_handled = (r1_bio->sector + max_sectors 990 - bio->bi_sector); 991 r1_bio->sectors = max_sectors; 992 spin_lock_irq(&conf->device_lock); 993 if (bio->bi_phys_segments == 0) 994 bio->bi_phys_segments = 2; 995 else 996 bio->bi_phys_segments++; 997 spin_unlock_irq(&conf->device_lock); 998 /* Cannot call generic_make_request directly 999 * as that will be queued in __make_request 1000 * and subsequent mempool_alloc might block waiting 1001 * for it. So hand bio over to raid1d. 1002 */ 1003 reschedule_retry(r1_bio); 1004 1005 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1006 1007 r1_bio->master_bio = bio; 1008 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1009 r1_bio->state = 0; 1010 r1_bio->mddev = mddev; 1011 r1_bio->sector = bio->bi_sector + sectors_handled; 1012 goto read_again; 1013 } else 1014 generic_make_request(read_bio); 1015 return; 1016 } 1017 1018 /* 1019 * WRITE: 1020 */ 1021 if (conf->pending_count >= max_queued_requests) { 1022 md_wakeup_thread(mddev->thread); 1023 wait_event(conf->wait_barrier, 1024 conf->pending_count < max_queued_requests); 1025 } 1026 /* first select target devices under rcu_lock and 1027 * inc refcount on their rdev. Record them by setting 1028 * bios[x] to bio 1029 * If there are known/acknowledged bad blocks on any device on 1030 * which we have seen a write error, we want to avoid writing those 1031 * blocks. 1032 * This potentially requires several writes to write around 1033 * the bad blocks. Each set of writes gets it's own r1bio 1034 * with a set of bios attached. 1035 */ 1036 1037 disks = conf->raid_disks * 2; 1038 retry_write: 1039 blocked_rdev = NULL; 1040 rcu_read_lock(); 1041 max_sectors = r1_bio->sectors; 1042 for (i = 0; i < disks; i++) { 1043 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1044 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1045 atomic_inc(&rdev->nr_pending); 1046 blocked_rdev = rdev; 1047 break; 1048 } 1049 r1_bio->bios[i] = NULL; 1050 if (!rdev || test_bit(Faulty, &rdev->flags) 1051 || test_bit(Unmerged, &rdev->flags)) { 1052 if (i < conf->raid_disks) 1053 set_bit(R1BIO_Degraded, &r1_bio->state); 1054 continue; 1055 } 1056 1057 atomic_inc(&rdev->nr_pending); 1058 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1059 sector_t first_bad; 1060 int bad_sectors; 1061 int is_bad; 1062 1063 is_bad = is_badblock(rdev, r1_bio->sector, 1064 max_sectors, 1065 &first_bad, &bad_sectors); 1066 if (is_bad < 0) { 1067 /* mustn't write here until the bad block is 1068 * acknowledged*/ 1069 set_bit(BlockedBadBlocks, &rdev->flags); 1070 blocked_rdev = rdev; 1071 break; 1072 } 1073 if (is_bad && first_bad <= r1_bio->sector) { 1074 /* Cannot write here at all */ 1075 bad_sectors -= (r1_bio->sector - first_bad); 1076 if (bad_sectors < max_sectors) 1077 /* mustn't write more than bad_sectors 1078 * to other devices yet 1079 */ 1080 max_sectors = bad_sectors; 1081 rdev_dec_pending(rdev, mddev); 1082 /* We don't set R1BIO_Degraded as that 1083 * only applies if the disk is 1084 * missing, so it might be re-added, 1085 * and we want to know to recover this 1086 * chunk. 1087 * In this case the device is here, 1088 * and the fact that this chunk is not 1089 * in-sync is recorded in the bad 1090 * block log 1091 */ 1092 continue; 1093 } 1094 if (is_bad) { 1095 int good_sectors = first_bad - r1_bio->sector; 1096 if (good_sectors < max_sectors) 1097 max_sectors = good_sectors; 1098 } 1099 } 1100 r1_bio->bios[i] = bio; 1101 } 1102 rcu_read_unlock(); 1103 1104 if (unlikely(blocked_rdev)) { 1105 /* Wait for this device to become unblocked */ 1106 int j; 1107 1108 for (j = 0; j < i; j++) 1109 if (r1_bio->bios[j]) 1110 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1111 r1_bio->state = 0; 1112 allow_barrier(conf); 1113 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1114 wait_barrier(conf); 1115 goto retry_write; 1116 } 1117 1118 if (max_sectors < r1_bio->sectors) { 1119 /* We are splitting this write into multiple parts, so 1120 * we need to prepare for allocating another r1_bio. 1121 */ 1122 r1_bio->sectors = max_sectors; 1123 spin_lock_irq(&conf->device_lock); 1124 if (bio->bi_phys_segments == 0) 1125 bio->bi_phys_segments = 2; 1126 else 1127 bio->bi_phys_segments++; 1128 spin_unlock_irq(&conf->device_lock); 1129 } 1130 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1131 1132 atomic_set(&r1_bio->remaining, 1); 1133 atomic_set(&r1_bio->behind_remaining, 0); 1134 1135 first_clone = 1; 1136 for (i = 0; i < disks; i++) { 1137 struct bio *mbio; 1138 if (!r1_bio->bios[i]) 1139 continue; 1140 1141 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1142 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1143 1144 if (first_clone) { 1145 /* do behind I/O ? 1146 * Not if there are too many, or cannot 1147 * allocate memory, or a reader on WriteMostly 1148 * is waiting for behind writes to flush */ 1149 if (bitmap && 1150 (atomic_read(&bitmap->behind_writes) 1151 < mddev->bitmap_info.max_write_behind) && 1152 !waitqueue_active(&bitmap->behind_wait)) 1153 alloc_behind_pages(mbio, r1_bio); 1154 1155 bitmap_startwrite(bitmap, r1_bio->sector, 1156 r1_bio->sectors, 1157 test_bit(R1BIO_BehindIO, 1158 &r1_bio->state)); 1159 first_clone = 0; 1160 } 1161 if (r1_bio->behind_bvecs) { 1162 struct bio_vec *bvec; 1163 int j; 1164 1165 /* Yes, I really want the '__' version so that 1166 * we clear any unused pointer in the io_vec, rather 1167 * than leave them unchanged. This is important 1168 * because when we come to free the pages, we won't 1169 * know the original bi_idx, so we just free 1170 * them all 1171 */ 1172 __bio_for_each_segment(bvec, mbio, j, 0) 1173 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1174 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1175 atomic_inc(&r1_bio->behind_remaining); 1176 } 1177 1178 r1_bio->bios[i] = mbio; 1179 1180 mbio->bi_sector = (r1_bio->sector + 1181 conf->mirrors[i].rdev->data_offset); 1182 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1183 mbio->bi_end_io = raid1_end_write_request; 1184 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 1185 mbio->bi_private = r1_bio; 1186 1187 atomic_inc(&r1_bio->remaining); 1188 spin_lock_irqsave(&conf->device_lock, flags); 1189 bio_list_add(&conf->pending_bio_list, mbio); 1190 conf->pending_count++; 1191 spin_unlock_irqrestore(&conf->device_lock, flags); 1192 if (!mddev_check_plugged(mddev)) 1193 md_wakeup_thread(mddev->thread); 1194 } 1195 /* Mustn't call r1_bio_write_done before this next test, 1196 * as it could result in the bio being freed. 1197 */ 1198 if (sectors_handled < (bio->bi_size >> 9)) { 1199 r1_bio_write_done(r1_bio); 1200 /* We need another r1_bio. It has already been counted 1201 * in bio->bi_phys_segments 1202 */ 1203 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1204 r1_bio->master_bio = bio; 1205 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1206 r1_bio->state = 0; 1207 r1_bio->mddev = mddev; 1208 r1_bio->sector = bio->bi_sector + sectors_handled; 1209 goto retry_write; 1210 } 1211 1212 r1_bio_write_done(r1_bio); 1213 1214 /* In case raid1d snuck in to freeze_array */ 1215 wake_up(&conf->wait_barrier); 1216 } 1217 1218 static void status(struct seq_file *seq, struct mddev *mddev) 1219 { 1220 struct r1conf *conf = mddev->private; 1221 int i; 1222 1223 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1224 conf->raid_disks - mddev->degraded); 1225 rcu_read_lock(); 1226 for (i = 0; i < conf->raid_disks; i++) { 1227 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1228 seq_printf(seq, "%s", 1229 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1230 } 1231 rcu_read_unlock(); 1232 seq_printf(seq, "]"); 1233 } 1234 1235 1236 static void error(struct mddev *mddev, struct md_rdev *rdev) 1237 { 1238 char b[BDEVNAME_SIZE]; 1239 struct r1conf *conf = mddev->private; 1240 1241 /* 1242 * If it is not operational, then we have already marked it as dead 1243 * else if it is the last working disks, ignore the error, let the 1244 * next level up know. 1245 * else mark the drive as failed 1246 */ 1247 if (test_bit(In_sync, &rdev->flags) 1248 && (conf->raid_disks - mddev->degraded) == 1) { 1249 /* 1250 * Don't fail the drive, act as though we were just a 1251 * normal single drive. 1252 * However don't try a recovery from this drive as 1253 * it is very likely to fail. 1254 */ 1255 conf->recovery_disabled = mddev->recovery_disabled; 1256 return; 1257 } 1258 set_bit(Blocked, &rdev->flags); 1259 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1260 unsigned long flags; 1261 spin_lock_irqsave(&conf->device_lock, flags); 1262 mddev->degraded++; 1263 set_bit(Faulty, &rdev->flags); 1264 spin_unlock_irqrestore(&conf->device_lock, flags); 1265 /* 1266 * if recovery is running, make sure it aborts. 1267 */ 1268 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1269 } else 1270 set_bit(Faulty, &rdev->flags); 1271 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1272 printk(KERN_ALERT 1273 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1274 "md/raid1:%s: Operation continuing on %d devices.\n", 1275 mdname(mddev), bdevname(rdev->bdev, b), 1276 mdname(mddev), conf->raid_disks - mddev->degraded); 1277 } 1278 1279 static void print_conf(struct r1conf *conf) 1280 { 1281 int i; 1282 1283 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1284 if (!conf) { 1285 printk(KERN_DEBUG "(!conf)\n"); 1286 return; 1287 } 1288 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1289 conf->raid_disks); 1290 1291 rcu_read_lock(); 1292 for (i = 0; i < conf->raid_disks; i++) { 1293 char b[BDEVNAME_SIZE]; 1294 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1295 if (rdev) 1296 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1297 i, !test_bit(In_sync, &rdev->flags), 1298 !test_bit(Faulty, &rdev->flags), 1299 bdevname(rdev->bdev,b)); 1300 } 1301 rcu_read_unlock(); 1302 } 1303 1304 static void close_sync(struct r1conf *conf) 1305 { 1306 wait_barrier(conf); 1307 allow_barrier(conf); 1308 1309 mempool_destroy(conf->r1buf_pool); 1310 conf->r1buf_pool = NULL; 1311 } 1312 1313 static int raid1_spare_active(struct mddev *mddev) 1314 { 1315 int i; 1316 struct r1conf *conf = mddev->private; 1317 int count = 0; 1318 unsigned long flags; 1319 1320 /* 1321 * Find all failed disks within the RAID1 configuration 1322 * and mark them readable. 1323 * Called under mddev lock, so rcu protection not needed. 1324 */ 1325 for (i = 0; i < conf->raid_disks; i++) { 1326 struct md_rdev *rdev = conf->mirrors[i].rdev; 1327 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1328 if (repl 1329 && repl->recovery_offset == MaxSector 1330 && !test_bit(Faulty, &repl->flags) 1331 && !test_and_set_bit(In_sync, &repl->flags)) { 1332 /* replacement has just become active */ 1333 if (!rdev || 1334 !test_and_clear_bit(In_sync, &rdev->flags)) 1335 count++; 1336 if (rdev) { 1337 /* Replaced device not technically 1338 * faulty, but we need to be sure 1339 * it gets removed and never re-added 1340 */ 1341 set_bit(Faulty, &rdev->flags); 1342 sysfs_notify_dirent_safe( 1343 rdev->sysfs_state); 1344 } 1345 } 1346 if (rdev 1347 && !test_bit(Faulty, &rdev->flags) 1348 && !test_and_set_bit(In_sync, &rdev->flags)) { 1349 count++; 1350 sysfs_notify_dirent_safe(rdev->sysfs_state); 1351 } 1352 } 1353 spin_lock_irqsave(&conf->device_lock, flags); 1354 mddev->degraded -= count; 1355 spin_unlock_irqrestore(&conf->device_lock, flags); 1356 1357 print_conf(conf); 1358 return count; 1359 } 1360 1361 1362 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1363 { 1364 struct r1conf *conf = mddev->private; 1365 int err = -EEXIST; 1366 int mirror = 0; 1367 struct mirror_info *p; 1368 int first = 0; 1369 int last = conf->raid_disks - 1; 1370 struct request_queue *q = bdev_get_queue(rdev->bdev); 1371 1372 if (mddev->recovery_disabled == conf->recovery_disabled) 1373 return -EBUSY; 1374 1375 if (rdev->raid_disk >= 0) 1376 first = last = rdev->raid_disk; 1377 1378 if (q->merge_bvec_fn) { 1379 set_bit(Unmerged, &rdev->flags); 1380 mddev->merge_check_needed = 1; 1381 } 1382 1383 for (mirror = first; mirror <= last; mirror++) { 1384 p = conf->mirrors+mirror; 1385 if (!p->rdev) { 1386 1387 disk_stack_limits(mddev->gendisk, rdev->bdev, 1388 rdev->data_offset << 9); 1389 1390 p->head_position = 0; 1391 rdev->raid_disk = mirror; 1392 err = 0; 1393 /* As all devices are equivalent, we don't need a full recovery 1394 * if this was recently any drive of the array 1395 */ 1396 if (rdev->saved_raid_disk < 0) 1397 conf->fullsync = 1; 1398 rcu_assign_pointer(p->rdev, rdev); 1399 break; 1400 } 1401 if (test_bit(WantReplacement, &p->rdev->flags) && 1402 p[conf->raid_disks].rdev == NULL) { 1403 /* Add this device as a replacement */ 1404 clear_bit(In_sync, &rdev->flags); 1405 set_bit(Replacement, &rdev->flags); 1406 rdev->raid_disk = mirror; 1407 err = 0; 1408 conf->fullsync = 1; 1409 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1410 break; 1411 } 1412 } 1413 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1414 /* Some requests might not have seen this new 1415 * merge_bvec_fn. We must wait for them to complete 1416 * before merging the device fully. 1417 * First we make sure any code which has tested 1418 * our function has submitted the request, then 1419 * we wait for all outstanding requests to complete. 1420 */ 1421 synchronize_sched(); 1422 raise_barrier(conf); 1423 lower_barrier(conf); 1424 clear_bit(Unmerged, &rdev->flags); 1425 } 1426 md_integrity_add_rdev(rdev, mddev); 1427 print_conf(conf); 1428 return err; 1429 } 1430 1431 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1432 { 1433 struct r1conf *conf = mddev->private; 1434 int err = 0; 1435 int number = rdev->raid_disk; 1436 struct mirror_info *p = conf->mirrors+ number; 1437 1438 if (rdev != p->rdev) 1439 p = conf->mirrors + conf->raid_disks + number; 1440 1441 print_conf(conf); 1442 if (rdev == p->rdev) { 1443 if (test_bit(In_sync, &rdev->flags) || 1444 atomic_read(&rdev->nr_pending)) { 1445 err = -EBUSY; 1446 goto abort; 1447 } 1448 /* Only remove non-faulty devices if recovery 1449 * is not possible. 1450 */ 1451 if (!test_bit(Faulty, &rdev->flags) && 1452 mddev->recovery_disabled != conf->recovery_disabled && 1453 mddev->degraded < conf->raid_disks) { 1454 err = -EBUSY; 1455 goto abort; 1456 } 1457 p->rdev = NULL; 1458 synchronize_rcu(); 1459 if (atomic_read(&rdev->nr_pending)) { 1460 /* lost the race, try later */ 1461 err = -EBUSY; 1462 p->rdev = rdev; 1463 goto abort; 1464 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1465 /* We just removed a device that is being replaced. 1466 * Move down the replacement. We drain all IO before 1467 * doing this to avoid confusion. 1468 */ 1469 struct md_rdev *repl = 1470 conf->mirrors[conf->raid_disks + number].rdev; 1471 raise_barrier(conf); 1472 clear_bit(Replacement, &repl->flags); 1473 p->rdev = repl; 1474 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1475 lower_barrier(conf); 1476 clear_bit(WantReplacement, &rdev->flags); 1477 } else 1478 clear_bit(WantReplacement, &rdev->flags); 1479 err = md_integrity_register(mddev); 1480 } 1481 abort: 1482 1483 print_conf(conf); 1484 return err; 1485 } 1486 1487 1488 static void end_sync_read(struct bio *bio, int error) 1489 { 1490 struct r1bio *r1_bio = bio->bi_private; 1491 1492 update_head_pos(r1_bio->read_disk, r1_bio); 1493 1494 /* 1495 * we have read a block, now it needs to be re-written, 1496 * or re-read if the read failed. 1497 * We don't do much here, just schedule handling by raid1d 1498 */ 1499 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1500 set_bit(R1BIO_Uptodate, &r1_bio->state); 1501 1502 if (atomic_dec_and_test(&r1_bio->remaining)) 1503 reschedule_retry(r1_bio); 1504 } 1505 1506 static void end_sync_write(struct bio *bio, int error) 1507 { 1508 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1509 struct r1bio *r1_bio = bio->bi_private; 1510 struct mddev *mddev = r1_bio->mddev; 1511 struct r1conf *conf = mddev->private; 1512 int mirror=0; 1513 sector_t first_bad; 1514 int bad_sectors; 1515 1516 mirror = find_bio_disk(r1_bio, bio); 1517 1518 if (!uptodate) { 1519 sector_t sync_blocks = 0; 1520 sector_t s = r1_bio->sector; 1521 long sectors_to_go = r1_bio->sectors; 1522 /* make sure these bits doesn't get cleared. */ 1523 do { 1524 bitmap_end_sync(mddev->bitmap, s, 1525 &sync_blocks, 1); 1526 s += sync_blocks; 1527 sectors_to_go -= sync_blocks; 1528 } while (sectors_to_go > 0); 1529 set_bit(WriteErrorSeen, 1530 &conf->mirrors[mirror].rdev->flags); 1531 if (!test_and_set_bit(WantReplacement, 1532 &conf->mirrors[mirror].rdev->flags)) 1533 set_bit(MD_RECOVERY_NEEDED, & 1534 mddev->recovery); 1535 set_bit(R1BIO_WriteError, &r1_bio->state); 1536 } else if (is_badblock(conf->mirrors[mirror].rdev, 1537 r1_bio->sector, 1538 r1_bio->sectors, 1539 &first_bad, &bad_sectors) && 1540 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1541 r1_bio->sector, 1542 r1_bio->sectors, 1543 &first_bad, &bad_sectors) 1544 ) 1545 set_bit(R1BIO_MadeGood, &r1_bio->state); 1546 1547 if (atomic_dec_and_test(&r1_bio->remaining)) { 1548 int s = r1_bio->sectors; 1549 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1550 test_bit(R1BIO_WriteError, &r1_bio->state)) 1551 reschedule_retry(r1_bio); 1552 else { 1553 put_buf(r1_bio); 1554 md_done_sync(mddev, s, uptodate); 1555 } 1556 } 1557 } 1558 1559 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1560 int sectors, struct page *page, int rw) 1561 { 1562 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1563 /* success */ 1564 return 1; 1565 if (rw == WRITE) { 1566 set_bit(WriteErrorSeen, &rdev->flags); 1567 if (!test_and_set_bit(WantReplacement, 1568 &rdev->flags)) 1569 set_bit(MD_RECOVERY_NEEDED, & 1570 rdev->mddev->recovery); 1571 } 1572 /* need to record an error - either for the block or the device */ 1573 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1574 md_error(rdev->mddev, rdev); 1575 return 0; 1576 } 1577 1578 static int fix_sync_read_error(struct r1bio *r1_bio) 1579 { 1580 /* Try some synchronous reads of other devices to get 1581 * good data, much like with normal read errors. Only 1582 * read into the pages we already have so we don't 1583 * need to re-issue the read request. 1584 * We don't need to freeze the array, because being in an 1585 * active sync request, there is no normal IO, and 1586 * no overlapping syncs. 1587 * We don't need to check is_badblock() again as we 1588 * made sure that anything with a bad block in range 1589 * will have bi_end_io clear. 1590 */ 1591 struct mddev *mddev = r1_bio->mddev; 1592 struct r1conf *conf = mddev->private; 1593 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1594 sector_t sect = r1_bio->sector; 1595 int sectors = r1_bio->sectors; 1596 int idx = 0; 1597 1598 while(sectors) { 1599 int s = sectors; 1600 int d = r1_bio->read_disk; 1601 int success = 0; 1602 struct md_rdev *rdev; 1603 int start; 1604 1605 if (s > (PAGE_SIZE>>9)) 1606 s = PAGE_SIZE >> 9; 1607 do { 1608 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1609 /* No rcu protection needed here devices 1610 * can only be removed when no resync is 1611 * active, and resync is currently active 1612 */ 1613 rdev = conf->mirrors[d].rdev; 1614 if (sync_page_io(rdev, sect, s<<9, 1615 bio->bi_io_vec[idx].bv_page, 1616 READ, false)) { 1617 success = 1; 1618 break; 1619 } 1620 } 1621 d++; 1622 if (d == conf->raid_disks * 2) 1623 d = 0; 1624 } while (!success && d != r1_bio->read_disk); 1625 1626 if (!success) { 1627 char b[BDEVNAME_SIZE]; 1628 int abort = 0; 1629 /* Cannot read from anywhere, this block is lost. 1630 * Record a bad block on each device. If that doesn't 1631 * work just disable and interrupt the recovery. 1632 * Don't fail devices as that won't really help. 1633 */ 1634 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1635 " for block %llu\n", 1636 mdname(mddev), 1637 bdevname(bio->bi_bdev, b), 1638 (unsigned long long)r1_bio->sector); 1639 for (d = 0; d < conf->raid_disks * 2; d++) { 1640 rdev = conf->mirrors[d].rdev; 1641 if (!rdev || test_bit(Faulty, &rdev->flags)) 1642 continue; 1643 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1644 abort = 1; 1645 } 1646 if (abort) { 1647 conf->recovery_disabled = 1648 mddev->recovery_disabled; 1649 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1650 md_done_sync(mddev, r1_bio->sectors, 0); 1651 put_buf(r1_bio); 1652 return 0; 1653 } 1654 /* Try next page */ 1655 sectors -= s; 1656 sect += s; 1657 idx++; 1658 continue; 1659 } 1660 1661 start = d; 1662 /* write it back and re-read */ 1663 while (d != r1_bio->read_disk) { 1664 if (d == 0) 1665 d = conf->raid_disks * 2; 1666 d--; 1667 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1668 continue; 1669 rdev = conf->mirrors[d].rdev; 1670 if (r1_sync_page_io(rdev, sect, s, 1671 bio->bi_io_vec[idx].bv_page, 1672 WRITE) == 0) { 1673 r1_bio->bios[d]->bi_end_io = NULL; 1674 rdev_dec_pending(rdev, mddev); 1675 } 1676 } 1677 d = start; 1678 while (d != r1_bio->read_disk) { 1679 if (d == 0) 1680 d = conf->raid_disks * 2; 1681 d--; 1682 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1683 continue; 1684 rdev = conf->mirrors[d].rdev; 1685 if (r1_sync_page_io(rdev, sect, s, 1686 bio->bi_io_vec[idx].bv_page, 1687 READ) != 0) 1688 atomic_add(s, &rdev->corrected_errors); 1689 } 1690 sectors -= s; 1691 sect += s; 1692 idx ++; 1693 } 1694 set_bit(R1BIO_Uptodate, &r1_bio->state); 1695 set_bit(BIO_UPTODATE, &bio->bi_flags); 1696 return 1; 1697 } 1698 1699 static int process_checks(struct r1bio *r1_bio) 1700 { 1701 /* We have read all readable devices. If we haven't 1702 * got the block, then there is no hope left. 1703 * If we have, then we want to do a comparison 1704 * and skip the write if everything is the same. 1705 * If any blocks failed to read, then we need to 1706 * attempt an over-write 1707 */ 1708 struct mddev *mddev = r1_bio->mddev; 1709 struct r1conf *conf = mddev->private; 1710 int primary; 1711 int i; 1712 int vcnt; 1713 1714 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1715 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1716 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1717 r1_bio->bios[primary]->bi_end_io = NULL; 1718 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1719 break; 1720 } 1721 r1_bio->read_disk = primary; 1722 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1723 for (i = 0; i < conf->raid_disks * 2; i++) { 1724 int j; 1725 struct bio *pbio = r1_bio->bios[primary]; 1726 struct bio *sbio = r1_bio->bios[i]; 1727 int size; 1728 1729 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1730 continue; 1731 1732 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1733 for (j = vcnt; j-- ; ) { 1734 struct page *p, *s; 1735 p = pbio->bi_io_vec[j].bv_page; 1736 s = sbio->bi_io_vec[j].bv_page; 1737 if (memcmp(page_address(p), 1738 page_address(s), 1739 sbio->bi_io_vec[j].bv_len)) 1740 break; 1741 } 1742 } else 1743 j = 0; 1744 if (j >= 0) 1745 mddev->resync_mismatches += r1_bio->sectors; 1746 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1747 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1748 /* No need to write to this device. */ 1749 sbio->bi_end_io = NULL; 1750 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1751 continue; 1752 } 1753 /* fixup the bio for reuse */ 1754 sbio->bi_vcnt = vcnt; 1755 sbio->bi_size = r1_bio->sectors << 9; 1756 sbio->bi_idx = 0; 1757 sbio->bi_phys_segments = 0; 1758 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1759 sbio->bi_flags |= 1 << BIO_UPTODATE; 1760 sbio->bi_next = NULL; 1761 sbio->bi_sector = r1_bio->sector + 1762 conf->mirrors[i].rdev->data_offset; 1763 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1764 size = sbio->bi_size; 1765 for (j = 0; j < vcnt ; j++) { 1766 struct bio_vec *bi; 1767 bi = &sbio->bi_io_vec[j]; 1768 bi->bv_offset = 0; 1769 if (size > PAGE_SIZE) 1770 bi->bv_len = PAGE_SIZE; 1771 else 1772 bi->bv_len = size; 1773 size -= PAGE_SIZE; 1774 memcpy(page_address(bi->bv_page), 1775 page_address(pbio->bi_io_vec[j].bv_page), 1776 PAGE_SIZE); 1777 } 1778 } 1779 return 0; 1780 } 1781 1782 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1783 { 1784 struct r1conf *conf = mddev->private; 1785 int i; 1786 int disks = conf->raid_disks * 2; 1787 struct bio *bio, *wbio; 1788 1789 bio = r1_bio->bios[r1_bio->read_disk]; 1790 1791 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1792 /* ouch - failed to read all of that. */ 1793 if (!fix_sync_read_error(r1_bio)) 1794 return; 1795 1796 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1797 if (process_checks(r1_bio) < 0) 1798 return; 1799 /* 1800 * schedule writes 1801 */ 1802 atomic_set(&r1_bio->remaining, 1); 1803 for (i = 0; i < disks ; i++) { 1804 wbio = r1_bio->bios[i]; 1805 if (wbio->bi_end_io == NULL || 1806 (wbio->bi_end_io == end_sync_read && 1807 (i == r1_bio->read_disk || 1808 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1809 continue; 1810 1811 wbio->bi_rw = WRITE; 1812 wbio->bi_end_io = end_sync_write; 1813 atomic_inc(&r1_bio->remaining); 1814 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1815 1816 generic_make_request(wbio); 1817 } 1818 1819 if (atomic_dec_and_test(&r1_bio->remaining)) { 1820 /* if we're here, all write(s) have completed, so clean up */ 1821 int s = r1_bio->sectors; 1822 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1823 test_bit(R1BIO_WriteError, &r1_bio->state)) 1824 reschedule_retry(r1_bio); 1825 else { 1826 put_buf(r1_bio); 1827 md_done_sync(mddev, s, 1); 1828 } 1829 } 1830 } 1831 1832 /* 1833 * This is a kernel thread which: 1834 * 1835 * 1. Retries failed read operations on working mirrors. 1836 * 2. Updates the raid superblock when problems encounter. 1837 * 3. Performs writes following reads for array synchronising. 1838 */ 1839 1840 static void fix_read_error(struct r1conf *conf, int read_disk, 1841 sector_t sect, int sectors) 1842 { 1843 struct mddev *mddev = conf->mddev; 1844 while(sectors) { 1845 int s = sectors; 1846 int d = read_disk; 1847 int success = 0; 1848 int start; 1849 struct md_rdev *rdev; 1850 1851 if (s > (PAGE_SIZE>>9)) 1852 s = PAGE_SIZE >> 9; 1853 1854 do { 1855 /* Note: no rcu protection needed here 1856 * as this is synchronous in the raid1d thread 1857 * which is the thread that might remove 1858 * a device. If raid1d ever becomes multi-threaded.... 1859 */ 1860 sector_t first_bad; 1861 int bad_sectors; 1862 1863 rdev = conf->mirrors[d].rdev; 1864 if (rdev && 1865 (test_bit(In_sync, &rdev->flags) || 1866 (!test_bit(Faulty, &rdev->flags) && 1867 rdev->recovery_offset >= sect + s)) && 1868 is_badblock(rdev, sect, s, 1869 &first_bad, &bad_sectors) == 0 && 1870 sync_page_io(rdev, sect, s<<9, 1871 conf->tmppage, READ, false)) 1872 success = 1; 1873 else { 1874 d++; 1875 if (d == conf->raid_disks * 2) 1876 d = 0; 1877 } 1878 } while (!success && d != read_disk); 1879 1880 if (!success) { 1881 /* Cannot read from anywhere - mark it bad */ 1882 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 1883 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1884 md_error(mddev, rdev); 1885 break; 1886 } 1887 /* write it back and re-read */ 1888 start = d; 1889 while (d != read_disk) { 1890 if (d==0) 1891 d = conf->raid_disks * 2; 1892 d--; 1893 rdev = conf->mirrors[d].rdev; 1894 if (rdev && 1895 test_bit(In_sync, &rdev->flags)) 1896 r1_sync_page_io(rdev, sect, s, 1897 conf->tmppage, WRITE); 1898 } 1899 d = start; 1900 while (d != read_disk) { 1901 char b[BDEVNAME_SIZE]; 1902 if (d==0) 1903 d = conf->raid_disks * 2; 1904 d--; 1905 rdev = conf->mirrors[d].rdev; 1906 if (rdev && 1907 test_bit(In_sync, &rdev->flags)) { 1908 if (r1_sync_page_io(rdev, sect, s, 1909 conf->tmppage, READ)) { 1910 atomic_add(s, &rdev->corrected_errors); 1911 printk(KERN_INFO 1912 "md/raid1:%s: read error corrected " 1913 "(%d sectors at %llu on %s)\n", 1914 mdname(mddev), s, 1915 (unsigned long long)(sect + 1916 rdev->data_offset), 1917 bdevname(rdev->bdev, b)); 1918 } 1919 } 1920 } 1921 sectors -= s; 1922 sect += s; 1923 } 1924 } 1925 1926 static void bi_complete(struct bio *bio, int error) 1927 { 1928 complete((struct completion *)bio->bi_private); 1929 } 1930 1931 static int submit_bio_wait(int rw, struct bio *bio) 1932 { 1933 struct completion event; 1934 rw |= REQ_SYNC; 1935 1936 init_completion(&event); 1937 bio->bi_private = &event; 1938 bio->bi_end_io = bi_complete; 1939 submit_bio(rw, bio); 1940 wait_for_completion(&event); 1941 1942 return test_bit(BIO_UPTODATE, &bio->bi_flags); 1943 } 1944 1945 static int narrow_write_error(struct r1bio *r1_bio, int i) 1946 { 1947 struct mddev *mddev = r1_bio->mddev; 1948 struct r1conf *conf = mddev->private; 1949 struct md_rdev *rdev = conf->mirrors[i].rdev; 1950 int vcnt, idx; 1951 struct bio_vec *vec; 1952 1953 /* bio has the data to be written to device 'i' where 1954 * we just recently had a write error. 1955 * We repeatedly clone the bio and trim down to one block, 1956 * then try the write. Where the write fails we record 1957 * a bad block. 1958 * It is conceivable that the bio doesn't exactly align with 1959 * blocks. We must handle this somehow. 1960 * 1961 * We currently own a reference on the rdev. 1962 */ 1963 1964 int block_sectors; 1965 sector_t sector; 1966 int sectors; 1967 int sect_to_write = r1_bio->sectors; 1968 int ok = 1; 1969 1970 if (rdev->badblocks.shift < 0) 1971 return 0; 1972 1973 block_sectors = 1 << rdev->badblocks.shift; 1974 sector = r1_bio->sector; 1975 sectors = ((sector + block_sectors) 1976 & ~(sector_t)(block_sectors - 1)) 1977 - sector; 1978 1979 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 1980 vcnt = r1_bio->behind_page_count; 1981 vec = r1_bio->behind_bvecs; 1982 idx = 0; 1983 while (vec[idx].bv_page == NULL) 1984 idx++; 1985 } else { 1986 vcnt = r1_bio->master_bio->bi_vcnt; 1987 vec = r1_bio->master_bio->bi_io_vec; 1988 idx = r1_bio->master_bio->bi_idx; 1989 } 1990 while (sect_to_write) { 1991 struct bio *wbio; 1992 if (sectors > sect_to_write) 1993 sectors = sect_to_write; 1994 /* Write at 'sector' for 'sectors'*/ 1995 1996 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 1997 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 1998 wbio->bi_sector = r1_bio->sector; 1999 wbio->bi_rw = WRITE; 2000 wbio->bi_vcnt = vcnt; 2001 wbio->bi_size = r1_bio->sectors << 9; 2002 wbio->bi_idx = idx; 2003 2004 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 2005 wbio->bi_sector += rdev->data_offset; 2006 wbio->bi_bdev = rdev->bdev; 2007 if (submit_bio_wait(WRITE, wbio) == 0) 2008 /* failure! */ 2009 ok = rdev_set_badblocks(rdev, sector, 2010 sectors, 0) 2011 && ok; 2012 2013 bio_put(wbio); 2014 sect_to_write -= sectors; 2015 sector += sectors; 2016 sectors = block_sectors; 2017 } 2018 return ok; 2019 } 2020 2021 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2022 { 2023 int m; 2024 int s = r1_bio->sectors; 2025 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2026 struct md_rdev *rdev = conf->mirrors[m].rdev; 2027 struct bio *bio = r1_bio->bios[m]; 2028 if (bio->bi_end_io == NULL) 2029 continue; 2030 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2031 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2032 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2033 } 2034 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2035 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2036 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2037 md_error(conf->mddev, rdev); 2038 } 2039 } 2040 put_buf(r1_bio); 2041 md_done_sync(conf->mddev, s, 1); 2042 } 2043 2044 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2045 { 2046 int m; 2047 for (m = 0; m < conf->raid_disks * 2 ; m++) 2048 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2049 struct md_rdev *rdev = conf->mirrors[m].rdev; 2050 rdev_clear_badblocks(rdev, 2051 r1_bio->sector, 2052 r1_bio->sectors, 0); 2053 rdev_dec_pending(rdev, conf->mddev); 2054 } else if (r1_bio->bios[m] != NULL) { 2055 /* This drive got a write error. We need to 2056 * narrow down and record precise write 2057 * errors. 2058 */ 2059 if (!narrow_write_error(r1_bio, m)) { 2060 md_error(conf->mddev, 2061 conf->mirrors[m].rdev); 2062 /* an I/O failed, we can't clear the bitmap */ 2063 set_bit(R1BIO_Degraded, &r1_bio->state); 2064 } 2065 rdev_dec_pending(conf->mirrors[m].rdev, 2066 conf->mddev); 2067 } 2068 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2069 close_write(r1_bio); 2070 raid_end_bio_io(r1_bio); 2071 } 2072 2073 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2074 { 2075 int disk; 2076 int max_sectors; 2077 struct mddev *mddev = conf->mddev; 2078 struct bio *bio; 2079 char b[BDEVNAME_SIZE]; 2080 struct md_rdev *rdev; 2081 2082 clear_bit(R1BIO_ReadError, &r1_bio->state); 2083 /* we got a read error. Maybe the drive is bad. Maybe just 2084 * the block and we can fix it. 2085 * We freeze all other IO, and try reading the block from 2086 * other devices. When we find one, we re-write 2087 * and check it that fixes the read error. 2088 * This is all done synchronously while the array is 2089 * frozen 2090 */ 2091 if (mddev->ro == 0) { 2092 freeze_array(conf); 2093 fix_read_error(conf, r1_bio->read_disk, 2094 r1_bio->sector, r1_bio->sectors); 2095 unfreeze_array(conf); 2096 } else 2097 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2098 2099 bio = r1_bio->bios[r1_bio->read_disk]; 2100 bdevname(bio->bi_bdev, b); 2101 read_more: 2102 disk = read_balance(conf, r1_bio, &max_sectors); 2103 if (disk == -1) { 2104 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2105 " read error for block %llu\n", 2106 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2107 raid_end_bio_io(r1_bio); 2108 } else { 2109 const unsigned long do_sync 2110 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2111 if (bio) { 2112 r1_bio->bios[r1_bio->read_disk] = 2113 mddev->ro ? IO_BLOCKED : NULL; 2114 bio_put(bio); 2115 } 2116 r1_bio->read_disk = disk; 2117 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2118 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 2119 r1_bio->bios[r1_bio->read_disk] = bio; 2120 rdev = conf->mirrors[disk].rdev; 2121 printk_ratelimited(KERN_ERR 2122 "md/raid1:%s: redirecting sector %llu" 2123 " to other mirror: %s\n", 2124 mdname(mddev), 2125 (unsigned long long)r1_bio->sector, 2126 bdevname(rdev->bdev, b)); 2127 bio->bi_sector = r1_bio->sector + rdev->data_offset; 2128 bio->bi_bdev = rdev->bdev; 2129 bio->bi_end_io = raid1_end_read_request; 2130 bio->bi_rw = READ | do_sync; 2131 bio->bi_private = r1_bio; 2132 if (max_sectors < r1_bio->sectors) { 2133 /* Drat - have to split this up more */ 2134 struct bio *mbio = r1_bio->master_bio; 2135 int sectors_handled = (r1_bio->sector + max_sectors 2136 - mbio->bi_sector); 2137 r1_bio->sectors = max_sectors; 2138 spin_lock_irq(&conf->device_lock); 2139 if (mbio->bi_phys_segments == 0) 2140 mbio->bi_phys_segments = 2; 2141 else 2142 mbio->bi_phys_segments++; 2143 spin_unlock_irq(&conf->device_lock); 2144 generic_make_request(bio); 2145 bio = NULL; 2146 2147 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2148 2149 r1_bio->master_bio = mbio; 2150 r1_bio->sectors = (mbio->bi_size >> 9) 2151 - sectors_handled; 2152 r1_bio->state = 0; 2153 set_bit(R1BIO_ReadError, &r1_bio->state); 2154 r1_bio->mddev = mddev; 2155 r1_bio->sector = mbio->bi_sector + sectors_handled; 2156 2157 goto read_more; 2158 } else 2159 generic_make_request(bio); 2160 } 2161 } 2162 2163 static void raid1d(struct mddev *mddev) 2164 { 2165 struct r1bio *r1_bio; 2166 unsigned long flags; 2167 struct r1conf *conf = mddev->private; 2168 struct list_head *head = &conf->retry_list; 2169 struct blk_plug plug; 2170 2171 md_check_recovery(mddev); 2172 2173 blk_start_plug(&plug); 2174 for (;;) { 2175 2176 if (atomic_read(&mddev->plug_cnt) == 0) 2177 flush_pending_writes(conf); 2178 2179 spin_lock_irqsave(&conf->device_lock, flags); 2180 if (list_empty(head)) { 2181 spin_unlock_irqrestore(&conf->device_lock, flags); 2182 break; 2183 } 2184 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2185 list_del(head->prev); 2186 conf->nr_queued--; 2187 spin_unlock_irqrestore(&conf->device_lock, flags); 2188 2189 mddev = r1_bio->mddev; 2190 conf = mddev->private; 2191 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2192 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2193 test_bit(R1BIO_WriteError, &r1_bio->state)) 2194 handle_sync_write_finished(conf, r1_bio); 2195 else 2196 sync_request_write(mddev, r1_bio); 2197 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2198 test_bit(R1BIO_WriteError, &r1_bio->state)) 2199 handle_write_finished(conf, r1_bio); 2200 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2201 handle_read_error(conf, r1_bio); 2202 else 2203 /* just a partial read to be scheduled from separate 2204 * context 2205 */ 2206 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2207 2208 cond_resched(); 2209 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2210 md_check_recovery(mddev); 2211 } 2212 blk_finish_plug(&plug); 2213 } 2214 2215 2216 static int init_resync(struct r1conf *conf) 2217 { 2218 int buffs; 2219 2220 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2221 BUG_ON(conf->r1buf_pool); 2222 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2223 conf->poolinfo); 2224 if (!conf->r1buf_pool) 2225 return -ENOMEM; 2226 conf->next_resync = 0; 2227 return 0; 2228 } 2229 2230 /* 2231 * perform a "sync" on one "block" 2232 * 2233 * We need to make sure that no normal I/O request - particularly write 2234 * requests - conflict with active sync requests. 2235 * 2236 * This is achieved by tracking pending requests and a 'barrier' concept 2237 * that can be installed to exclude normal IO requests. 2238 */ 2239 2240 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2241 { 2242 struct r1conf *conf = mddev->private; 2243 struct r1bio *r1_bio; 2244 struct bio *bio; 2245 sector_t max_sector, nr_sectors; 2246 int disk = -1; 2247 int i; 2248 int wonly = -1; 2249 int write_targets = 0, read_targets = 0; 2250 sector_t sync_blocks; 2251 int still_degraded = 0; 2252 int good_sectors = RESYNC_SECTORS; 2253 int min_bad = 0; /* number of sectors that are bad in all devices */ 2254 2255 if (!conf->r1buf_pool) 2256 if (init_resync(conf)) 2257 return 0; 2258 2259 max_sector = mddev->dev_sectors; 2260 if (sector_nr >= max_sector) { 2261 /* If we aborted, we need to abort the 2262 * sync on the 'current' bitmap chunk (there will 2263 * only be one in raid1 resync. 2264 * We can find the current addess in mddev->curr_resync 2265 */ 2266 if (mddev->curr_resync < max_sector) /* aborted */ 2267 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2268 &sync_blocks, 1); 2269 else /* completed sync */ 2270 conf->fullsync = 0; 2271 2272 bitmap_close_sync(mddev->bitmap); 2273 close_sync(conf); 2274 return 0; 2275 } 2276 2277 if (mddev->bitmap == NULL && 2278 mddev->recovery_cp == MaxSector && 2279 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2280 conf->fullsync == 0) { 2281 *skipped = 1; 2282 return max_sector - sector_nr; 2283 } 2284 /* before building a request, check if we can skip these blocks.. 2285 * This call the bitmap_start_sync doesn't actually record anything 2286 */ 2287 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2288 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2289 /* We can skip this block, and probably several more */ 2290 *skipped = 1; 2291 return sync_blocks; 2292 } 2293 /* 2294 * If there is non-resync activity waiting for a turn, 2295 * and resync is going fast enough, 2296 * then let it though before starting on this new sync request. 2297 */ 2298 if (!go_faster && conf->nr_waiting) 2299 msleep_interruptible(1000); 2300 2301 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2302 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2303 raise_barrier(conf); 2304 2305 conf->next_resync = sector_nr; 2306 2307 rcu_read_lock(); 2308 /* 2309 * If we get a correctably read error during resync or recovery, 2310 * we might want to read from a different device. So we 2311 * flag all drives that could conceivably be read from for READ, 2312 * and any others (which will be non-In_sync devices) for WRITE. 2313 * If a read fails, we try reading from something else for which READ 2314 * is OK. 2315 */ 2316 2317 r1_bio->mddev = mddev; 2318 r1_bio->sector = sector_nr; 2319 r1_bio->state = 0; 2320 set_bit(R1BIO_IsSync, &r1_bio->state); 2321 2322 for (i = 0; i < conf->raid_disks * 2; i++) { 2323 struct md_rdev *rdev; 2324 bio = r1_bio->bios[i]; 2325 2326 /* take from bio_init */ 2327 bio->bi_next = NULL; 2328 bio->bi_flags &= ~(BIO_POOL_MASK-1); 2329 bio->bi_flags |= 1 << BIO_UPTODATE; 2330 bio->bi_rw = READ; 2331 bio->bi_vcnt = 0; 2332 bio->bi_idx = 0; 2333 bio->bi_phys_segments = 0; 2334 bio->bi_size = 0; 2335 bio->bi_end_io = NULL; 2336 bio->bi_private = NULL; 2337 2338 rdev = rcu_dereference(conf->mirrors[i].rdev); 2339 if (rdev == NULL || 2340 test_bit(Faulty, &rdev->flags)) { 2341 if (i < conf->raid_disks) 2342 still_degraded = 1; 2343 } else if (!test_bit(In_sync, &rdev->flags)) { 2344 bio->bi_rw = WRITE; 2345 bio->bi_end_io = end_sync_write; 2346 write_targets ++; 2347 } else { 2348 /* may need to read from here */ 2349 sector_t first_bad = MaxSector; 2350 int bad_sectors; 2351 2352 if (is_badblock(rdev, sector_nr, good_sectors, 2353 &first_bad, &bad_sectors)) { 2354 if (first_bad > sector_nr) 2355 good_sectors = first_bad - sector_nr; 2356 else { 2357 bad_sectors -= (sector_nr - first_bad); 2358 if (min_bad == 0 || 2359 min_bad > bad_sectors) 2360 min_bad = bad_sectors; 2361 } 2362 } 2363 if (sector_nr < first_bad) { 2364 if (test_bit(WriteMostly, &rdev->flags)) { 2365 if (wonly < 0) 2366 wonly = i; 2367 } else { 2368 if (disk < 0) 2369 disk = i; 2370 } 2371 bio->bi_rw = READ; 2372 bio->bi_end_io = end_sync_read; 2373 read_targets++; 2374 } 2375 } 2376 if (bio->bi_end_io) { 2377 atomic_inc(&rdev->nr_pending); 2378 bio->bi_sector = sector_nr + rdev->data_offset; 2379 bio->bi_bdev = rdev->bdev; 2380 bio->bi_private = r1_bio; 2381 } 2382 } 2383 rcu_read_unlock(); 2384 if (disk < 0) 2385 disk = wonly; 2386 r1_bio->read_disk = disk; 2387 2388 if (read_targets == 0 && min_bad > 0) { 2389 /* These sectors are bad on all InSync devices, so we 2390 * need to mark them bad on all write targets 2391 */ 2392 int ok = 1; 2393 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2394 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2395 struct md_rdev *rdev = conf->mirrors[i].rdev; 2396 ok = rdev_set_badblocks(rdev, sector_nr, 2397 min_bad, 0 2398 ) && ok; 2399 } 2400 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2401 *skipped = 1; 2402 put_buf(r1_bio); 2403 2404 if (!ok) { 2405 /* Cannot record the badblocks, so need to 2406 * abort the resync. 2407 * If there are multiple read targets, could just 2408 * fail the really bad ones ??? 2409 */ 2410 conf->recovery_disabled = mddev->recovery_disabled; 2411 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2412 return 0; 2413 } else 2414 return min_bad; 2415 2416 } 2417 if (min_bad > 0 && min_bad < good_sectors) { 2418 /* only resync enough to reach the next bad->good 2419 * transition */ 2420 good_sectors = min_bad; 2421 } 2422 2423 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2424 /* extra read targets are also write targets */ 2425 write_targets += read_targets-1; 2426 2427 if (write_targets == 0 || read_targets == 0) { 2428 /* There is nowhere to write, so all non-sync 2429 * drives must be failed - so we are finished 2430 */ 2431 sector_t rv = max_sector - sector_nr; 2432 *skipped = 1; 2433 put_buf(r1_bio); 2434 return rv; 2435 } 2436 2437 if (max_sector > mddev->resync_max) 2438 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2439 if (max_sector > sector_nr + good_sectors) 2440 max_sector = sector_nr + good_sectors; 2441 nr_sectors = 0; 2442 sync_blocks = 0; 2443 do { 2444 struct page *page; 2445 int len = PAGE_SIZE; 2446 if (sector_nr + (len>>9) > max_sector) 2447 len = (max_sector - sector_nr) << 9; 2448 if (len == 0) 2449 break; 2450 if (sync_blocks == 0) { 2451 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2452 &sync_blocks, still_degraded) && 2453 !conf->fullsync && 2454 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2455 break; 2456 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2457 if ((len >> 9) > sync_blocks) 2458 len = sync_blocks<<9; 2459 } 2460 2461 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2462 bio = r1_bio->bios[i]; 2463 if (bio->bi_end_io) { 2464 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2465 if (bio_add_page(bio, page, len, 0) == 0) { 2466 /* stop here */ 2467 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2468 while (i > 0) { 2469 i--; 2470 bio = r1_bio->bios[i]; 2471 if (bio->bi_end_io==NULL) 2472 continue; 2473 /* remove last page from this bio */ 2474 bio->bi_vcnt--; 2475 bio->bi_size -= len; 2476 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2477 } 2478 goto bio_full; 2479 } 2480 } 2481 } 2482 nr_sectors += len>>9; 2483 sector_nr += len>>9; 2484 sync_blocks -= (len>>9); 2485 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2486 bio_full: 2487 r1_bio->sectors = nr_sectors; 2488 2489 /* For a user-requested sync, we read all readable devices and do a 2490 * compare 2491 */ 2492 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2493 atomic_set(&r1_bio->remaining, read_targets); 2494 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2495 bio = r1_bio->bios[i]; 2496 if (bio->bi_end_io == end_sync_read) { 2497 read_targets--; 2498 md_sync_acct(bio->bi_bdev, nr_sectors); 2499 generic_make_request(bio); 2500 } 2501 } 2502 } else { 2503 atomic_set(&r1_bio->remaining, 1); 2504 bio = r1_bio->bios[r1_bio->read_disk]; 2505 md_sync_acct(bio->bi_bdev, nr_sectors); 2506 generic_make_request(bio); 2507 2508 } 2509 return nr_sectors; 2510 } 2511 2512 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2513 { 2514 if (sectors) 2515 return sectors; 2516 2517 return mddev->dev_sectors; 2518 } 2519 2520 static struct r1conf *setup_conf(struct mddev *mddev) 2521 { 2522 struct r1conf *conf; 2523 int i; 2524 struct mirror_info *disk; 2525 struct md_rdev *rdev; 2526 int err = -ENOMEM; 2527 2528 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2529 if (!conf) 2530 goto abort; 2531 2532 conf->mirrors = kzalloc(sizeof(struct mirror_info) 2533 * mddev->raid_disks * 2, 2534 GFP_KERNEL); 2535 if (!conf->mirrors) 2536 goto abort; 2537 2538 conf->tmppage = alloc_page(GFP_KERNEL); 2539 if (!conf->tmppage) 2540 goto abort; 2541 2542 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2543 if (!conf->poolinfo) 2544 goto abort; 2545 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2546 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2547 r1bio_pool_free, 2548 conf->poolinfo); 2549 if (!conf->r1bio_pool) 2550 goto abort; 2551 2552 conf->poolinfo->mddev = mddev; 2553 2554 err = -EINVAL; 2555 spin_lock_init(&conf->device_lock); 2556 rdev_for_each(rdev, mddev) { 2557 struct request_queue *q; 2558 int disk_idx = rdev->raid_disk; 2559 if (disk_idx >= mddev->raid_disks 2560 || disk_idx < 0) 2561 continue; 2562 if (test_bit(Replacement, &rdev->flags)) 2563 disk = conf->mirrors + conf->raid_disks + disk_idx; 2564 else 2565 disk = conf->mirrors + disk_idx; 2566 2567 if (disk->rdev) 2568 goto abort; 2569 disk->rdev = rdev; 2570 q = bdev_get_queue(rdev->bdev); 2571 if (q->merge_bvec_fn) 2572 mddev->merge_check_needed = 1; 2573 2574 disk->head_position = 0; 2575 } 2576 conf->raid_disks = mddev->raid_disks; 2577 conf->mddev = mddev; 2578 INIT_LIST_HEAD(&conf->retry_list); 2579 2580 spin_lock_init(&conf->resync_lock); 2581 init_waitqueue_head(&conf->wait_barrier); 2582 2583 bio_list_init(&conf->pending_bio_list); 2584 conf->pending_count = 0; 2585 conf->recovery_disabled = mddev->recovery_disabled - 1; 2586 2587 err = -EIO; 2588 conf->last_used = -1; 2589 for (i = 0; i < conf->raid_disks * 2; i++) { 2590 2591 disk = conf->mirrors + i; 2592 2593 if (i < conf->raid_disks && 2594 disk[conf->raid_disks].rdev) { 2595 /* This slot has a replacement. */ 2596 if (!disk->rdev) { 2597 /* No original, just make the replacement 2598 * a recovering spare 2599 */ 2600 disk->rdev = 2601 disk[conf->raid_disks].rdev; 2602 disk[conf->raid_disks].rdev = NULL; 2603 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2604 /* Original is not in_sync - bad */ 2605 goto abort; 2606 } 2607 2608 if (!disk->rdev || 2609 !test_bit(In_sync, &disk->rdev->flags)) { 2610 disk->head_position = 0; 2611 if (disk->rdev && 2612 (disk->rdev->saved_raid_disk < 0)) 2613 conf->fullsync = 1; 2614 } else if (conf->last_used < 0) 2615 /* 2616 * The first working device is used as a 2617 * starting point to read balancing. 2618 */ 2619 conf->last_used = i; 2620 } 2621 2622 if (conf->last_used < 0) { 2623 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 2624 mdname(mddev)); 2625 goto abort; 2626 } 2627 err = -ENOMEM; 2628 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2629 if (!conf->thread) { 2630 printk(KERN_ERR 2631 "md/raid1:%s: couldn't allocate thread\n", 2632 mdname(mddev)); 2633 goto abort; 2634 } 2635 2636 return conf; 2637 2638 abort: 2639 if (conf) { 2640 if (conf->r1bio_pool) 2641 mempool_destroy(conf->r1bio_pool); 2642 kfree(conf->mirrors); 2643 safe_put_page(conf->tmppage); 2644 kfree(conf->poolinfo); 2645 kfree(conf); 2646 } 2647 return ERR_PTR(err); 2648 } 2649 2650 static int stop(struct mddev *mddev); 2651 static int run(struct mddev *mddev) 2652 { 2653 struct r1conf *conf; 2654 int i; 2655 struct md_rdev *rdev; 2656 int ret; 2657 2658 if (mddev->level != 1) { 2659 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2660 mdname(mddev), mddev->level); 2661 return -EIO; 2662 } 2663 if (mddev->reshape_position != MaxSector) { 2664 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2665 mdname(mddev)); 2666 return -EIO; 2667 } 2668 /* 2669 * copy the already verified devices into our private RAID1 2670 * bookkeeping area. [whatever we allocate in run(), 2671 * should be freed in stop()] 2672 */ 2673 if (mddev->private == NULL) 2674 conf = setup_conf(mddev); 2675 else 2676 conf = mddev->private; 2677 2678 if (IS_ERR(conf)) 2679 return PTR_ERR(conf); 2680 2681 rdev_for_each(rdev, mddev) { 2682 if (!mddev->gendisk) 2683 continue; 2684 disk_stack_limits(mddev->gendisk, rdev->bdev, 2685 rdev->data_offset << 9); 2686 } 2687 2688 mddev->degraded = 0; 2689 for (i=0; i < conf->raid_disks; i++) 2690 if (conf->mirrors[i].rdev == NULL || 2691 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2692 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2693 mddev->degraded++; 2694 2695 if (conf->raid_disks - mddev->degraded == 1) 2696 mddev->recovery_cp = MaxSector; 2697 2698 if (mddev->recovery_cp != MaxSector) 2699 printk(KERN_NOTICE "md/raid1:%s: not clean" 2700 " -- starting background reconstruction\n", 2701 mdname(mddev)); 2702 printk(KERN_INFO 2703 "md/raid1:%s: active with %d out of %d mirrors\n", 2704 mdname(mddev), mddev->raid_disks - mddev->degraded, 2705 mddev->raid_disks); 2706 2707 /* 2708 * Ok, everything is just fine now 2709 */ 2710 mddev->thread = conf->thread; 2711 conf->thread = NULL; 2712 mddev->private = conf; 2713 2714 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2715 2716 if (mddev->queue) { 2717 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2718 mddev->queue->backing_dev_info.congested_data = mddev; 2719 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec); 2720 } 2721 2722 ret = md_integrity_register(mddev); 2723 if (ret) 2724 stop(mddev); 2725 return ret; 2726 } 2727 2728 static int stop(struct mddev *mddev) 2729 { 2730 struct r1conf *conf = mddev->private; 2731 struct bitmap *bitmap = mddev->bitmap; 2732 2733 /* wait for behind writes to complete */ 2734 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2735 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2736 mdname(mddev)); 2737 /* need to kick something here to make sure I/O goes? */ 2738 wait_event(bitmap->behind_wait, 2739 atomic_read(&bitmap->behind_writes) == 0); 2740 } 2741 2742 raise_barrier(conf); 2743 lower_barrier(conf); 2744 2745 md_unregister_thread(&mddev->thread); 2746 if (conf->r1bio_pool) 2747 mempool_destroy(conf->r1bio_pool); 2748 kfree(conf->mirrors); 2749 kfree(conf->poolinfo); 2750 kfree(conf); 2751 mddev->private = NULL; 2752 return 0; 2753 } 2754 2755 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2756 { 2757 /* no resync is happening, and there is enough space 2758 * on all devices, so we can resize. 2759 * We need to make sure resync covers any new space. 2760 * If the array is shrinking we should possibly wait until 2761 * any io in the removed space completes, but it hardly seems 2762 * worth it. 2763 */ 2764 sector_t newsize = raid1_size(mddev, sectors, 0); 2765 if (mddev->external_size && 2766 mddev->array_sectors > newsize) 2767 return -EINVAL; 2768 if (mddev->bitmap) { 2769 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 2770 if (ret) 2771 return ret; 2772 } 2773 md_set_array_sectors(mddev, newsize); 2774 set_capacity(mddev->gendisk, mddev->array_sectors); 2775 revalidate_disk(mddev->gendisk); 2776 if (sectors > mddev->dev_sectors && 2777 mddev->recovery_cp > mddev->dev_sectors) { 2778 mddev->recovery_cp = mddev->dev_sectors; 2779 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2780 } 2781 mddev->dev_sectors = sectors; 2782 mddev->resync_max_sectors = sectors; 2783 return 0; 2784 } 2785 2786 static int raid1_reshape(struct mddev *mddev) 2787 { 2788 /* We need to: 2789 * 1/ resize the r1bio_pool 2790 * 2/ resize conf->mirrors 2791 * 2792 * We allocate a new r1bio_pool if we can. 2793 * Then raise a device barrier and wait until all IO stops. 2794 * Then resize conf->mirrors and swap in the new r1bio pool. 2795 * 2796 * At the same time, we "pack" the devices so that all the missing 2797 * devices have the higher raid_disk numbers. 2798 */ 2799 mempool_t *newpool, *oldpool; 2800 struct pool_info *newpoolinfo; 2801 struct mirror_info *newmirrors; 2802 struct r1conf *conf = mddev->private; 2803 int cnt, raid_disks; 2804 unsigned long flags; 2805 int d, d2, err; 2806 2807 /* Cannot change chunk_size, layout, or level */ 2808 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2809 mddev->layout != mddev->new_layout || 2810 mddev->level != mddev->new_level) { 2811 mddev->new_chunk_sectors = mddev->chunk_sectors; 2812 mddev->new_layout = mddev->layout; 2813 mddev->new_level = mddev->level; 2814 return -EINVAL; 2815 } 2816 2817 err = md_allow_write(mddev); 2818 if (err) 2819 return err; 2820 2821 raid_disks = mddev->raid_disks + mddev->delta_disks; 2822 2823 if (raid_disks < conf->raid_disks) { 2824 cnt=0; 2825 for (d= 0; d < conf->raid_disks; d++) 2826 if (conf->mirrors[d].rdev) 2827 cnt++; 2828 if (cnt > raid_disks) 2829 return -EBUSY; 2830 } 2831 2832 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2833 if (!newpoolinfo) 2834 return -ENOMEM; 2835 newpoolinfo->mddev = mddev; 2836 newpoolinfo->raid_disks = raid_disks * 2; 2837 2838 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2839 r1bio_pool_free, newpoolinfo); 2840 if (!newpool) { 2841 kfree(newpoolinfo); 2842 return -ENOMEM; 2843 } 2844 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2, 2845 GFP_KERNEL); 2846 if (!newmirrors) { 2847 kfree(newpoolinfo); 2848 mempool_destroy(newpool); 2849 return -ENOMEM; 2850 } 2851 2852 raise_barrier(conf); 2853 2854 /* ok, everything is stopped */ 2855 oldpool = conf->r1bio_pool; 2856 conf->r1bio_pool = newpool; 2857 2858 for (d = d2 = 0; d < conf->raid_disks; d++) { 2859 struct md_rdev *rdev = conf->mirrors[d].rdev; 2860 if (rdev && rdev->raid_disk != d2) { 2861 sysfs_unlink_rdev(mddev, rdev); 2862 rdev->raid_disk = d2; 2863 sysfs_unlink_rdev(mddev, rdev); 2864 if (sysfs_link_rdev(mddev, rdev)) 2865 printk(KERN_WARNING 2866 "md/raid1:%s: cannot register rd%d\n", 2867 mdname(mddev), rdev->raid_disk); 2868 } 2869 if (rdev) 2870 newmirrors[d2++].rdev = rdev; 2871 } 2872 kfree(conf->mirrors); 2873 conf->mirrors = newmirrors; 2874 kfree(conf->poolinfo); 2875 conf->poolinfo = newpoolinfo; 2876 2877 spin_lock_irqsave(&conf->device_lock, flags); 2878 mddev->degraded += (raid_disks - conf->raid_disks); 2879 spin_unlock_irqrestore(&conf->device_lock, flags); 2880 conf->raid_disks = mddev->raid_disks = raid_disks; 2881 mddev->delta_disks = 0; 2882 2883 conf->last_used = 0; /* just make sure it is in-range */ 2884 lower_barrier(conf); 2885 2886 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2887 md_wakeup_thread(mddev->thread); 2888 2889 mempool_destroy(oldpool); 2890 return 0; 2891 } 2892 2893 static void raid1_quiesce(struct mddev *mddev, int state) 2894 { 2895 struct r1conf *conf = mddev->private; 2896 2897 switch(state) { 2898 case 2: /* wake for suspend */ 2899 wake_up(&conf->wait_barrier); 2900 break; 2901 case 1: 2902 raise_barrier(conf); 2903 break; 2904 case 0: 2905 lower_barrier(conf); 2906 break; 2907 } 2908 } 2909 2910 static void *raid1_takeover(struct mddev *mddev) 2911 { 2912 /* raid1 can take over: 2913 * raid5 with 2 devices, any layout or chunk size 2914 */ 2915 if (mddev->level == 5 && mddev->raid_disks == 2) { 2916 struct r1conf *conf; 2917 mddev->new_level = 1; 2918 mddev->new_layout = 0; 2919 mddev->new_chunk_sectors = 0; 2920 conf = setup_conf(mddev); 2921 if (!IS_ERR(conf)) 2922 conf->barrier = 1; 2923 return conf; 2924 } 2925 return ERR_PTR(-EINVAL); 2926 } 2927 2928 static struct md_personality raid1_personality = 2929 { 2930 .name = "raid1", 2931 .level = 1, 2932 .owner = THIS_MODULE, 2933 .make_request = make_request, 2934 .run = run, 2935 .stop = stop, 2936 .status = status, 2937 .error_handler = error, 2938 .hot_add_disk = raid1_add_disk, 2939 .hot_remove_disk= raid1_remove_disk, 2940 .spare_active = raid1_spare_active, 2941 .sync_request = sync_request, 2942 .resize = raid1_resize, 2943 .size = raid1_size, 2944 .check_reshape = raid1_reshape, 2945 .quiesce = raid1_quiesce, 2946 .takeover = raid1_takeover, 2947 }; 2948 2949 static int __init raid_init(void) 2950 { 2951 return register_md_personality(&raid1_personality); 2952 } 2953 2954 static void raid_exit(void) 2955 { 2956 unregister_md_personality(&raid1_personality); 2957 } 2958 2959 module_init(raid_init); 2960 module_exit(raid_exit); 2961 MODULE_LICENSE("GPL"); 2962 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2963 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2964 MODULE_ALIAS("md-raid1"); 2965 MODULE_ALIAS("md-level-1"); 2966 2967 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 2968