xref: /linux/drivers/md/raid1.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* When there are this many requests queue to be written by
50  * the raid1 thread, we become 'congested' to provide back-pressure
51  * for writeback.
52  */
53 static int max_queued_requests = 1024;
54 
55 static void allow_barrier(struct r1conf *conf);
56 static void lower_barrier(struct r1conf *conf);
57 
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 {
60 	struct pool_info *pi = data;
61 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
62 
63 	/* allocate a r1bio with room for raid_disks entries in the bios array */
64 	return kzalloc(size, gfp_flags);
65 }
66 
67 static void r1bio_pool_free(void *r1_bio, void *data)
68 {
69 	kfree(r1_bio);
70 }
71 
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
77 
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 	struct pool_info *pi = data;
81 	struct page *page;
82 	struct r1bio *r1_bio;
83 	struct bio *bio;
84 	int i, j;
85 
86 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 	if (!r1_bio)
88 		return NULL;
89 
90 	/*
91 	 * Allocate bios : 1 for reading, n-1 for writing
92 	 */
93 	for (j = pi->raid_disks ; j-- ; ) {
94 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 		if (!bio)
96 			goto out_free_bio;
97 		r1_bio->bios[j] = bio;
98 	}
99 	/*
100 	 * Allocate RESYNC_PAGES data pages and attach them to
101 	 * the first bio.
102 	 * If this is a user-requested check/repair, allocate
103 	 * RESYNC_PAGES for each bio.
104 	 */
105 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 		j = pi->raid_disks;
107 	else
108 		j = 1;
109 	while(j--) {
110 		bio = r1_bio->bios[j];
111 		for (i = 0; i < RESYNC_PAGES; i++) {
112 			page = alloc_page(gfp_flags);
113 			if (unlikely(!page))
114 				goto out_free_pages;
115 
116 			bio->bi_io_vec[i].bv_page = page;
117 			bio->bi_vcnt = i+1;
118 		}
119 	}
120 	/* If not user-requests, copy the page pointers to all bios */
121 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 		for (i=0; i<RESYNC_PAGES ; i++)
123 			for (j=1; j<pi->raid_disks; j++)
124 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
126 	}
127 
128 	r1_bio->master_bio = NULL;
129 
130 	return r1_bio;
131 
132 out_free_pages:
133 	for (j=0 ; j < pi->raid_disks; j++)
134 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 	j = -1;
137 out_free_bio:
138 	while (++j < pi->raid_disks)
139 		bio_put(r1_bio->bios[j]);
140 	r1bio_pool_free(r1_bio, data);
141 	return NULL;
142 }
143 
144 static void r1buf_pool_free(void *__r1_bio, void *data)
145 {
146 	struct pool_info *pi = data;
147 	int i,j;
148 	struct r1bio *r1bio = __r1_bio;
149 
150 	for (i = 0; i < RESYNC_PAGES; i++)
151 		for (j = pi->raid_disks; j-- ;) {
152 			if (j == 0 ||
153 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
155 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156 		}
157 	for (i=0 ; i < pi->raid_disks; i++)
158 		bio_put(r1bio->bios[i]);
159 
160 	r1bio_pool_free(r1bio, data);
161 }
162 
163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
164 {
165 	int i;
166 
167 	for (i = 0; i < conf->raid_disks * 2; i++) {
168 		struct bio **bio = r1_bio->bios + i;
169 		if (!BIO_SPECIAL(*bio))
170 			bio_put(*bio);
171 		*bio = NULL;
172 	}
173 }
174 
175 static void free_r1bio(struct r1bio *r1_bio)
176 {
177 	struct r1conf *conf = r1_bio->mddev->private;
178 
179 	put_all_bios(conf, r1_bio);
180 	mempool_free(r1_bio, conf->r1bio_pool);
181 }
182 
183 static void put_buf(struct r1bio *r1_bio)
184 {
185 	struct r1conf *conf = r1_bio->mddev->private;
186 	int i;
187 
188 	for (i = 0; i < conf->raid_disks * 2; i++) {
189 		struct bio *bio = r1_bio->bios[i];
190 		if (bio->bi_end_io)
191 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192 	}
193 
194 	mempool_free(r1_bio, conf->r1buf_pool);
195 
196 	lower_barrier(conf);
197 }
198 
199 static void reschedule_retry(struct r1bio *r1_bio)
200 {
201 	unsigned long flags;
202 	struct mddev *mddev = r1_bio->mddev;
203 	struct r1conf *conf = mddev->private;
204 
205 	spin_lock_irqsave(&conf->device_lock, flags);
206 	list_add(&r1_bio->retry_list, &conf->retry_list);
207 	conf->nr_queued ++;
208 	spin_unlock_irqrestore(&conf->device_lock, flags);
209 
210 	wake_up(&conf->wait_barrier);
211 	md_wakeup_thread(mddev->thread);
212 }
213 
214 /*
215  * raid_end_bio_io() is called when we have finished servicing a mirrored
216  * operation and are ready to return a success/failure code to the buffer
217  * cache layer.
218  */
219 static void call_bio_endio(struct r1bio *r1_bio)
220 {
221 	struct bio *bio = r1_bio->master_bio;
222 	int done;
223 	struct r1conf *conf = r1_bio->mddev->private;
224 
225 	if (bio->bi_phys_segments) {
226 		unsigned long flags;
227 		spin_lock_irqsave(&conf->device_lock, flags);
228 		bio->bi_phys_segments--;
229 		done = (bio->bi_phys_segments == 0);
230 		spin_unlock_irqrestore(&conf->device_lock, flags);
231 	} else
232 		done = 1;
233 
234 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 	if (done) {
237 		bio_endio(bio, 0);
238 		/*
239 		 * Wake up any possible resync thread that waits for the device
240 		 * to go idle.
241 		 */
242 		allow_barrier(conf);
243 	}
244 }
245 
246 static void raid_end_bio_io(struct r1bio *r1_bio)
247 {
248 	struct bio *bio = r1_bio->master_bio;
249 
250 	/* if nobody has done the final endio yet, do it now */
251 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 			 (unsigned long long) bio->bi_sector,
255 			 (unsigned long long) bio->bi_sector +
256 			 (bio->bi_size >> 9) - 1);
257 
258 		call_bio_endio(r1_bio);
259 	}
260 	free_r1bio(r1_bio);
261 }
262 
263 /*
264  * Update disk head position estimator based on IRQ completion info.
265  */
266 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
267 {
268 	struct r1conf *conf = r1_bio->mddev->private;
269 
270 	conf->mirrors[disk].head_position =
271 		r1_bio->sector + (r1_bio->sectors);
272 }
273 
274 /*
275  * Find the disk number which triggered given bio
276  */
277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
278 {
279 	int mirror;
280 	struct r1conf *conf = r1_bio->mddev->private;
281 	int raid_disks = conf->raid_disks;
282 
283 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
284 		if (r1_bio->bios[mirror] == bio)
285 			break;
286 
287 	BUG_ON(mirror == raid_disks * 2);
288 	update_head_pos(mirror, r1_bio);
289 
290 	return mirror;
291 }
292 
293 static void raid1_end_read_request(struct bio *bio, int error)
294 {
295 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 	struct r1bio *r1_bio = bio->bi_private;
297 	int mirror;
298 	struct r1conf *conf = r1_bio->mddev->private;
299 
300 	mirror = r1_bio->read_disk;
301 	/*
302 	 * this branch is our 'one mirror IO has finished' event handler:
303 	 */
304 	update_head_pos(mirror, r1_bio);
305 
306 	if (uptodate)
307 		set_bit(R1BIO_Uptodate, &r1_bio->state);
308 	else {
309 		/* If all other devices have failed, we want to return
310 		 * the error upwards rather than fail the last device.
311 		 * Here we redefine "uptodate" to mean "Don't want to retry"
312 		 */
313 		unsigned long flags;
314 		spin_lock_irqsave(&conf->device_lock, flags);
315 		if (r1_bio->mddev->degraded == conf->raid_disks ||
316 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
317 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
318 			uptodate = 1;
319 		spin_unlock_irqrestore(&conf->device_lock, flags);
320 	}
321 
322 	if (uptodate)
323 		raid_end_bio_io(r1_bio);
324 	else {
325 		/*
326 		 * oops, read error:
327 		 */
328 		char b[BDEVNAME_SIZE];
329 		printk_ratelimited(
330 			KERN_ERR "md/raid1:%s: %s: "
331 			"rescheduling sector %llu\n",
332 			mdname(conf->mddev),
333 			bdevname(conf->mirrors[mirror].rdev->bdev,
334 				 b),
335 			(unsigned long long)r1_bio->sector);
336 		set_bit(R1BIO_ReadError, &r1_bio->state);
337 		reschedule_retry(r1_bio);
338 	}
339 
340 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
341 }
342 
343 static void close_write(struct r1bio *r1_bio)
344 {
345 	/* it really is the end of this request */
346 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
347 		/* free extra copy of the data pages */
348 		int i = r1_bio->behind_page_count;
349 		while (i--)
350 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
351 		kfree(r1_bio->behind_bvecs);
352 		r1_bio->behind_bvecs = NULL;
353 	}
354 	/* clear the bitmap if all writes complete successfully */
355 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356 			r1_bio->sectors,
357 			!test_bit(R1BIO_Degraded, &r1_bio->state),
358 			test_bit(R1BIO_BehindIO, &r1_bio->state));
359 	md_write_end(r1_bio->mddev);
360 }
361 
362 static void r1_bio_write_done(struct r1bio *r1_bio)
363 {
364 	if (!atomic_dec_and_test(&r1_bio->remaining))
365 		return;
366 
367 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
368 		reschedule_retry(r1_bio);
369 	else {
370 		close_write(r1_bio);
371 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372 			reschedule_retry(r1_bio);
373 		else
374 			raid_end_bio_io(r1_bio);
375 	}
376 }
377 
378 static void raid1_end_write_request(struct bio *bio, int error)
379 {
380 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
381 	struct r1bio *r1_bio = bio->bi_private;
382 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
383 	struct r1conf *conf = r1_bio->mddev->private;
384 	struct bio *to_put = NULL;
385 
386 	mirror = find_bio_disk(r1_bio, bio);
387 
388 	/*
389 	 * 'one mirror IO has finished' event handler:
390 	 */
391 	if (!uptodate) {
392 		set_bit(WriteErrorSeen,
393 			&conf->mirrors[mirror].rdev->flags);
394 		if (!test_and_set_bit(WantReplacement,
395 				      &conf->mirrors[mirror].rdev->flags))
396 			set_bit(MD_RECOVERY_NEEDED, &
397 				conf->mddev->recovery);
398 
399 		set_bit(R1BIO_WriteError, &r1_bio->state);
400 	} else {
401 		/*
402 		 * Set R1BIO_Uptodate in our master bio, so that we
403 		 * will return a good error code for to the higher
404 		 * levels even if IO on some other mirrored buffer
405 		 * fails.
406 		 *
407 		 * The 'master' represents the composite IO operation
408 		 * to user-side. So if something waits for IO, then it
409 		 * will wait for the 'master' bio.
410 		 */
411 		sector_t first_bad;
412 		int bad_sectors;
413 
414 		r1_bio->bios[mirror] = NULL;
415 		to_put = bio;
416 		set_bit(R1BIO_Uptodate, &r1_bio->state);
417 
418 		/* Maybe we can clear some bad blocks. */
419 		if (is_badblock(conf->mirrors[mirror].rdev,
420 				r1_bio->sector, r1_bio->sectors,
421 				&first_bad, &bad_sectors)) {
422 			r1_bio->bios[mirror] = IO_MADE_GOOD;
423 			set_bit(R1BIO_MadeGood, &r1_bio->state);
424 		}
425 	}
426 
427 	if (behind) {
428 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
429 			atomic_dec(&r1_bio->behind_remaining);
430 
431 		/*
432 		 * In behind mode, we ACK the master bio once the I/O
433 		 * has safely reached all non-writemostly
434 		 * disks. Setting the Returned bit ensures that this
435 		 * gets done only once -- we don't ever want to return
436 		 * -EIO here, instead we'll wait
437 		 */
438 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
439 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
440 			/* Maybe we can return now */
441 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
442 				struct bio *mbio = r1_bio->master_bio;
443 				pr_debug("raid1: behind end write sectors"
444 					 " %llu-%llu\n",
445 					 (unsigned long long) mbio->bi_sector,
446 					 (unsigned long long) mbio->bi_sector +
447 					 (mbio->bi_size >> 9) - 1);
448 				call_bio_endio(r1_bio);
449 			}
450 		}
451 	}
452 	if (r1_bio->bios[mirror] == NULL)
453 		rdev_dec_pending(conf->mirrors[mirror].rdev,
454 				 conf->mddev);
455 
456 	/*
457 	 * Let's see if all mirrored write operations have finished
458 	 * already.
459 	 */
460 	r1_bio_write_done(r1_bio);
461 
462 	if (to_put)
463 		bio_put(to_put);
464 }
465 
466 
467 /*
468  * This routine returns the disk from which the requested read should
469  * be done. There is a per-array 'next expected sequential IO' sector
470  * number - if this matches on the next IO then we use the last disk.
471  * There is also a per-disk 'last know head position' sector that is
472  * maintained from IRQ contexts, both the normal and the resync IO
473  * completion handlers update this position correctly. If there is no
474  * perfect sequential match then we pick the disk whose head is closest.
475  *
476  * If there are 2 mirrors in the same 2 devices, performance degrades
477  * because position is mirror, not device based.
478  *
479  * The rdev for the device selected will have nr_pending incremented.
480  */
481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
482 {
483 	const sector_t this_sector = r1_bio->sector;
484 	int sectors;
485 	int best_good_sectors;
486 	int start_disk;
487 	int best_disk;
488 	int i;
489 	sector_t best_dist;
490 	struct md_rdev *rdev;
491 	int choose_first;
492 
493 	rcu_read_lock();
494 	/*
495 	 * Check if we can balance. We can balance on the whole
496 	 * device if no resync is going on, or below the resync window.
497 	 * We take the first readable disk when above the resync window.
498 	 */
499  retry:
500 	sectors = r1_bio->sectors;
501 	best_disk = -1;
502 	best_dist = MaxSector;
503 	best_good_sectors = 0;
504 
505 	if (conf->mddev->recovery_cp < MaxSector &&
506 	    (this_sector + sectors >= conf->next_resync)) {
507 		choose_first = 1;
508 		start_disk = 0;
509 	} else {
510 		choose_first = 0;
511 		start_disk = conf->last_used;
512 	}
513 
514 	for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
515 		sector_t dist;
516 		sector_t first_bad;
517 		int bad_sectors;
518 
519 		int disk = start_disk + i;
520 		if (disk >= conf->raid_disks * 2)
521 			disk -= conf->raid_disks * 2;
522 
523 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
524 		if (r1_bio->bios[disk] == IO_BLOCKED
525 		    || rdev == NULL
526 		    || test_bit(Unmerged, &rdev->flags)
527 		    || test_bit(Faulty, &rdev->flags))
528 			continue;
529 		if (!test_bit(In_sync, &rdev->flags) &&
530 		    rdev->recovery_offset < this_sector + sectors)
531 			continue;
532 		if (test_bit(WriteMostly, &rdev->flags)) {
533 			/* Don't balance among write-mostly, just
534 			 * use the first as a last resort */
535 			if (best_disk < 0) {
536 				if (is_badblock(rdev, this_sector, sectors,
537 						&first_bad, &bad_sectors)) {
538 					if (first_bad < this_sector)
539 						/* Cannot use this */
540 						continue;
541 					best_good_sectors = first_bad - this_sector;
542 				} else
543 					best_good_sectors = sectors;
544 				best_disk = disk;
545 			}
546 			continue;
547 		}
548 		/* This is a reasonable device to use.  It might
549 		 * even be best.
550 		 */
551 		if (is_badblock(rdev, this_sector, sectors,
552 				&first_bad, &bad_sectors)) {
553 			if (best_dist < MaxSector)
554 				/* already have a better device */
555 				continue;
556 			if (first_bad <= this_sector) {
557 				/* cannot read here. If this is the 'primary'
558 				 * device, then we must not read beyond
559 				 * bad_sectors from another device..
560 				 */
561 				bad_sectors -= (this_sector - first_bad);
562 				if (choose_first && sectors > bad_sectors)
563 					sectors = bad_sectors;
564 				if (best_good_sectors > sectors)
565 					best_good_sectors = sectors;
566 
567 			} else {
568 				sector_t good_sectors = first_bad - this_sector;
569 				if (good_sectors > best_good_sectors) {
570 					best_good_sectors = good_sectors;
571 					best_disk = disk;
572 				}
573 				if (choose_first)
574 					break;
575 			}
576 			continue;
577 		} else
578 			best_good_sectors = sectors;
579 
580 		dist = abs(this_sector - conf->mirrors[disk].head_position);
581 		if (choose_first
582 		    /* Don't change to another disk for sequential reads */
583 		    || conf->next_seq_sect == this_sector
584 		    || dist == 0
585 		    /* If device is idle, use it */
586 		    || atomic_read(&rdev->nr_pending) == 0) {
587 			best_disk = disk;
588 			break;
589 		}
590 		if (dist < best_dist) {
591 			best_dist = dist;
592 			best_disk = disk;
593 		}
594 	}
595 
596 	if (best_disk >= 0) {
597 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
598 		if (!rdev)
599 			goto retry;
600 		atomic_inc(&rdev->nr_pending);
601 		if (test_bit(Faulty, &rdev->flags)) {
602 			/* cannot risk returning a device that failed
603 			 * before we inc'ed nr_pending
604 			 */
605 			rdev_dec_pending(rdev, conf->mddev);
606 			goto retry;
607 		}
608 		sectors = best_good_sectors;
609 		conf->next_seq_sect = this_sector + sectors;
610 		conf->last_used = best_disk;
611 	}
612 	rcu_read_unlock();
613 	*max_sectors = sectors;
614 
615 	return best_disk;
616 }
617 
618 static int raid1_mergeable_bvec(struct request_queue *q,
619 				struct bvec_merge_data *bvm,
620 				struct bio_vec *biovec)
621 {
622 	struct mddev *mddev = q->queuedata;
623 	struct r1conf *conf = mddev->private;
624 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
625 	int max = biovec->bv_len;
626 
627 	if (mddev->merge_check_needed) {
628 		int disk;
629 		rcu_read_lock();
630 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
631 			struct md_rdev *rdev = rcu_dereference(
632 				conf->mirrors[disk].rdev);
633 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
634 				struct request_queue *q =
635 					bdev_get_queue(rdev->bdev);
636 				if (q->merge_bvec_fn) {
637 					bvm->bi_sector = sector +
638 						rdev->data_offset;
639 					bvm->bi_bdev = rdev->bdev;
640 					max = min(max, q->merge_bvec_fn(
641 							  q, bvm, biovec));
642 				}
643 			}
644 		}
645 		rcu_read_unlock();
646 	}
647 	return max;
648 
649 }
650 
651 int md_raid1_congested(struct mddev *mddev, int bits)
652 {
653 	struct r1conf *conf = mddev->private;
654 	int i, ret = 0;
655 
656 	if ((bits & (1 << BDI_async_congested)) &&
657 	    conf->pending_count >= max_queued_requests)
658 		return 1;
659 
660 	rcu_read_lock();
661 	for (i = 0; i < conf->raid_disks * 2; i++) {
662 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
663 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
664 			struct request_queue *q = bdev_get_queue(rdev->bdev);
665 
666 			BUG_ON(!q);
667 
668 			/* Note the '|| 1' - when read_balance prefers
669 			 * non-congested targets, it can be removed
670 			 */
671 			if ((bits & (1<<BDI_async_congested)) || 1)
672 				ret |= bdi_congested(&q->backing_dev_info, bits);
673 			else
674 				ret &= bdi_congested(&q->backing_dev_info, bits);
675 		}
676 	}
677 	rcu_read_unlock();
678 	return ret;
679 }
680 EXPORT_SYMBOL_GPL(md_raid1_congested);
681 
682 static int raid1_congested(void *data, int bits)
683 {
684 	struct mddev *mddev = data;
685 
686 	return mddev_congested(mddev, bits) ||
687 		md_raid1_congested(mddev, bits);
688 }
689 
690 static void flush_pending_writes(struct r1conf *conf)
691 {
692 	/* Any writes that have been queued but are awaiting
693 	 * bitmap updates get flushed here.
694 	 */
695 	spin_lock_irq(&conf->device_lock);
696 
697 	if (conf->pending_bio_list.head) {
698 		struct bio *bio;
699 		bio = bio_list_get(&conf->pending_bio_list);
700 		conf->pending_count = 0;
701 		spin_unlock_irq(&conf->device_lock);
702 		/* flush any pending bitmap writes to
703 		 * disk before proceeding w/ I/O */
704 		bitmap_unplug(conf->mddev->bitmap);
705 		wake_up(&conf->wait_barrier);
706 
707 		while (bio) { /* submit pending writes */
708 			struct bio *next = bio->bi_next;
709 			bio->bi_next = NULL;
710 			generic_make_request(bio);
711 			bio = next;
712 		}
713 	} else
714 		spin_unlock_irq(&conf->device_lock);
715 }
716 
717 /* Barriers....
718  * Sometimes we need to suspend IO while we do something else,
719  * either some resync/recovery, or reconfigure the array.
720  * To do this we raise a 'barrier'.
721  * The 'barrier' is a counter that can be raised multiple times
722  * to count how many activities are happening which preclude
723  * normal IO.
724  * We can only raise the barrier if there is no pending IO.
725  * i.e. if nr_pending == 0.
726  * We choose only to raise the barrier if no-one is waiting for the
727  * barrier to go down.  This means that as soon as an IO request
728  * is ready, no other operations which require a barrier will start
729  * until the IO request has had a chance.
730  *
731  * So: regular IO calls 'wait_barrier'.  When that returns there
732  *    is no backgroup IO happening,  It must arrange to call
733  *    allow_barrier when it has finished its IO.
734  * backgroup IO calls must call raise_barrier.  Once that returns
735  *    there is no normal IO happeing.  It must arrange to call
736  *    lower_barrier when the particular background IO completes.
737  */
738 #define RESYNC_DEPTH 32
739 
740 static void raise_barrier(struct r1conf *conf)
741 {
742 	spin_lock_irq(&conf->resync_lock);
743 
744 	/* Wait until no block IO is waiting */
745 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
746 			    conf->resync_lock, );
747 
748 	/* block any new IO from starting */
749 	conf->barrier++;
750 
751 	/* Now wait for all pending IO to complete */
752 	wait_event_lock_irq(conf->wait_barrier,
753 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
754 			    conf->resync_lock, );
755 
756 	spin_unlock_irq(&conf->resync_lock);
757 }
758 
759 static void lower_barrier(struct r1conf *conf)
760 {
761 	unsigned long flags;
762 	BUG_ON(conf->barrier <= 0);
763 	spin_lock_irqsave(&conf->resync_lock, flags);
764 	conf->barrier--;
765 	spin_unlock_irqrestore(&conf->resync_lock, flags);
766 	wake_up(&conf->wait_barrier);
767 }
768 
769 static void wait_barrier(struct r1conf *conf)
770 {
771 	spin_lock_irq(&conf->resync_lock);
772 	if (conf->barrier) {
773 		conf->nr_waiting++;
774 		/* Wait for the barrier to drop.
775 		 * However if there are already pending
776 		 * requests (preventing the barrier from
777 		 * rising completely), and the
778 		 * pre-process bio queue isn't empty,
779 		 * then don't wait, as we need to empty
780 		 * that queue to get the nr_pending
781 		 * count down.
782 		 */
783 		wait_event_lock_irq(conf->wait_barrier,
784 				    !conf->barrier ||
785 				    (conf->nr_pending &&
786 				     current->bio_list &&
787 				     !bio_list_empty(current->bio_list)),
788 				    conf->resync_lock,
789 			);
790 		conf->nr_waiting--;
791 	}
792 	conf->nr_pending++;
793 	spin_unlock_irq(&conf->resync_lock);
794 }
795 
796 static void allow_barrier(struct r1conf *conf)
797 {
798 	unsigned long flags;
799 	spin_lock_irqsave(&conf->resync_lock, flags);
800 	conf->nr_pending--;
801 	spin_unlock_irqrestore(&conf->resync_lock, flags);
802 	wake_up(&conf->wait_barrier);
803 }
804 
805 static void freeze_array(struct r1conf *conf)
806 {
807 	/* stop syncio and normal IO and wait for everything to
808 	 * go quite.
809 	 * We increment barrier and nr_waiting, and then
810 	 * wait until nr_pending match nr_queued+1
811 	 * This is called in the context of one normal IO request
812 	 * that has failed. Thus any sync request that might be pending
813 	 * will be blocked by nr_pending, and we need to wait for
814 	 * pending IO requests to complete or be queued for re-try.
815 	 * Thus the number queued (nr_queued) plus this request (1)
816 	 * must match the number of pending IOs (nr_pending) before
817 	 * we continue.
818 	 */
819 	spin_lock_irq(&conf->resync_lock);
820 	conf->barrier++;
821 	conf->nr_waiting++;
822 	wait_event_lock_irq(conf->wait_barrier,
823 			    conf->nr_pending == conf->nr_queued+1,
824 			    conf->resync_lock,
825 			    flush_pending_writes(conf));
826 	spin_unlock_irq(&conf->resync_lock);
827 }
828 static void unfreeze_array(struct r1conf *conf)
829 {
830 	/* reverse the effect of the freeze */
831 	spin_lock_irq(&conf->resync_lock);
832 	conf->barrier--;
833 	conf->nr_waiting--;
834 	wake_up(&conf->wait_barrier);
835 	spin_unlock_irq(&conf->resync_lock);
836 }
837 
838 
839 /* duplicate the data pages for behind I/O
840  */
841 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
842 {
843 	int i;
844 	struct bio_vec *bvec;
845 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
846 					GFP_NOIO);
847 	if (unlikely(!bvecs))
848 		return;
849 
850 	bio_for_each_segment(bvec, bio, i) {
851 		bvecs[i] = *bvec;
852 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
853 		if (unlikely(!bvecs[i].bv_page))
854 			goto do_sync_io;
855 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
856 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
857 		kunmap(bvecs[i].bv_page);
858 		kunmap(bvec->bv_page);
859 	}
860 	r1_bio->behind_bvecs = bvecs;
861 	r1_bio->behind_page_count = bio->bi_vcnt;
862 	set_bit(R1BIO_BehindIO, &r1_bio->state);
863 	return;
864 
865 do_sync_io:
866 	for (i = 0; i < bio->bi_vcnt; i++)
867 		if (bvecs[i].bv_page)
868 			put_page(bvecs[i].bv_page);
869 	kfree(bvecs);
870 	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
871 }
872 
873 static void make_request(struct mddev *mddev, struct bio * bio)
874 {
875 	struct r1conf *conf = mddev->private;
876 	struct mirror_info *mirror;
877 	struct r1bio *r1_bio;
878 	struct bio *read_bio;
879 	int i, disks;
880 	struct bitmap *bitmap;
881 	unsigned long flags;
882 	const int rw = bio_data_dir(bio);
883 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
884 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
885 	struct md_rdev *blocked_rdev;
886 	int first_clone;
887 	int sectors_handled;
888 	int max_sectors;
889 
890 	/*
891 	 * Register the new request and wait if the reconstruction
892 	 * thread has put up a bar for new requests.
893 	 * Continue immediately if no resync is active currently.
894 	 */
895 
896 	md_write_start(mddev, bio); /* wait on superblock update early */
897 
898 	if (bio_data_dir(bio) == WRITE &&
899 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
900 	    bio->bi_sector < mddev->suspend_hi) {
901 		/* As the suspend_* range is controlled by
902 		 * userspace, we want an interruptible
903 		 * wait.
904 		 */
905 		DEFINE_WAIT(w);
906 		for (;;) {
907 			flush_signals(current);
908 			prepare_to_wait(&conf->wait_barrier,
909 					&w, TASK_INTERRUPTIBLE);
910 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
911 			    bio->bi_sector >= mddev->suspend_hi)
912 				break;
913 			schedule();
914 		}
915 		finish_wait(&conf->wait_barrier, &w);
916 	}
917 
918 	wait_barrier(conf);
919 
920 	bitmap = mddev->bitmap;
921 
922 	/*
923 	 * make_request() can abort the operation when READA is being
924 	 * used and no empty request is available.
925 	 *
926 	 */
927 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
928 
929 	r1_bio->master_bio = bio;
930 	r1_bio->sectors = bio->bi_size >> 9;
931 	r1_bio->state = 0;
932 	r1_bio->mddev = mddev;
933 	r1_bio->sector = bio->bi_sector;
934 
935 	/* We might need to issue multiple reads to different
936 	 * devices if there are bad blocks around, so we keep
937 	 * track of the number of reads in bio->bi_phys_segments.
938 	 * If this is 0, there is only one r1_bio and no locking
939 	 * will be needed when requests complete.  If it is
940 	 * non-zero, then it is the number of not-completed requests.
941 	 */
942 	bio->bi_phys_segments = 0;
943 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
944 
945 	if (rw == READ) {
946 		/*
947 		 * read balancing logic:
948 		 */
949 		int rdisk;
950 
951 read_again:
952 		rdisk = read_balance(conf, r1_bio, &max_sectors);
953 
954 		if (rdisk < 0) {
955 			/* couldn't find anywhere to read from */
956 			raid_end_bio_io(r1_bio);
957 			return;
958 		}
959 		mirror = conf->mirrors + rdisk;
960 
961 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
962 		    bitmap) {
963 			/* Reading from a write-mostly device must
964 			 * take care not to over-take any writes
965 			 * that are 'behind'
966 			 */
967 			wait_event(bitmap->behind_wait,
968 				   atomic_read(&bitmap->behind_writes) == 0);
969 		}
970 		r1_bio->read_disk = rdisk;
971 
972 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
973 		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
974 			    max_sectors);
975 
976 		r1_bio->bios[rdisk] = read_bio;
977 
978 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
979 		read_bio->bi_bdev = mirror->rdev->bdev;
980 		read_bio->bi_end_io = raid1_end_read_request;
981 		read_bio->bi_rw = READ | do_sync;
982 		read_bio->bi_private = r1_bio;
983 
984 		if (max_sectors < r1_bio->sectors) {
985 			/* could not read all from this device, so we will
986 			 * need another r1_bio.
987 			 */
988 
989 			sectors_handled = (r1_bio->sector + max_sectors
990 					   - bio->bi_sector);
991 			r1_bio->sectors = max_sectors;
992 			spin_lock_irq(&conf->device_lock);
993 			if (bio->bi_phys_segments == 0)
994 				bio->bi_phys_segments = 2;
995 			else
996 				bio->bi_phys_segments++;
997 			spin_unlock_irq(&conf->device_lock);
998 			/* Cannot call generic_make_request directly
999 			 * as that will be queued in __make_request
1000 			 * and subsequent mempool_alloc might block waiting
1001 			 * for it.  So hand bio over to raid1d.
1002 			 */
1003 			reschedule_retry(r1_bio);
1004 
1005 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1006 
1007 			r1_bio->master_bio = bio;
1008 			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1009 			r1_bio->state = 0;
1010 			r1_bio->mddev = mddev;
1011 			r1_bio->sector = bio->bi_sector + sectors_handled;
1012 			goto read_again;
1013 		} else
1014 			generic_make_request(read_bio);
1015 		return;
1016 	}
1017 
1018 	/*
1019 	 * WRITE:
1020 	 */
1021 	if (conf->pending_count >= max_queued_requests) {
1022 		md_wakeup_thread(mddev->thread);
1023 		wait_event(conf->wait_barrier,
1024 			   conf->pending_count < max_queued_requests);
1025 	}
1026 	/* first select target devices under rcu_lock and
1027 	 * inc refcount on their rdev.  Record them by setting
1028 	 * bios[x] to bio
1029 	 * If there are known/acknowledged bad blocks on any device on
1030 	 * which we have seen a write error, we want to avoid writing those
1031 	 * blocks.
1032 	 * This potentially requires several writes to write around
1033 	 * the bad blocks.  Each set of writes gets it's own r1bio
1034 	 * with a set of bios attached.
1035 	 */
1036 
1037 	disks = conf->raid_disks * 2;
1038  retry_write:
1039 	blocked_rdev = NULL;
1040 	rcu_read_lock();
1041 	max_sectors = r1_bio->sectors;
1042 	for (i = 0;  i < disks; i++) {
1043 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1044 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1045 			atomic_inc(&rdev->nr_pending);
1046 			blocked_rdev = rdev;
1047 			break;
1048 		}
1049 		r1_bio->bios[i] = NULL;
1050 		if (!rdev || test_bit(Faulty, &rdev->flags)
1051 		    || test_bit(Unmerged, &rdev->flags)) {
1052 			if (i < conf->raid_disks)
1053 				set_bit(R1BIO_Degraded, &r1_bio->state);
1054 			continue;
1055 		}
1056 
1057 		atomic_inc(&rdev->nr_pending);
1058 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1059 			sector_t first_bad;
1060 			int bad_sectors;
1061 			int is_bad;
1062 
1063 			is_bad = is_badblock(rdev, r1_bio->sector,
1064 					     max_sectors,
1065 					     &first_bad, &bad_sectors);
1066 			if (is_bad < 0) {
1067 				/* mustn't write here until the bad block is
1068 				 * acknowledged*/
1069 				set_bit(BlockedBadBlocks, &rdev->flags);
1070 				blocked_rdev = rdev;
1071 				break;
1072 			}
1073 			if (is_bad && first_bad <= r1_bio->sector) {
1074 				/* Cannot write here at all */
1075 				bad_sectors -= (r1_bio->sector - first_bad);
1076 				if (bad_sectors < max_sectors)
1077 					/* mustn't write more than bad_sectors
1078 					 * to other devices yet
1079 					 */
1080 					max_sectors = bad_sectors;
1081 				rdev_dec_pending(rdev, mddev);
1082 				/* We don't set R1BIO_Degraded as that
1083 				 * only applies if the disk is
1084 				 * missing, so it might be re-added,
1085 				 * and we want to know to recover this
1086 				 * chunk.
1087 				 * In this case the device is here,
1088 				 * and the fact that this chunk is not
1089 				 * in-sync is recorded in the bad
1090 				 * block log
1091 				 */
1092 				continue;
1093 			}
1094 			if (is_bad) {
1095 				int good_sectors = first_bad - r1_bio->sector;
1096 				if (good_sectors < max_sectors)
1097 					max_sectors = good_sectors;
1098 			}
1099 		}
1100 		r1_bio->bios[i] = bio;
1101 	}
1102 	rcu_read_unlock();
1103 
1104 	if (unlikely(blocked_rdev)) {
1105 		/* Wait for this device to become unblocked */
1106 		int j;
1107 
1108 		for (j = 0; j < i; j++)
1109 			if (r1_bio->bios[j])
1110 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1111 		r1_bio->state = 0;
1112 		allow_barrier(conf);
1113 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1114 		wait_barrier(conf);
1115 		goto retry_write;
1116 	}
1117 
1118 	if (max_sectors < r1_bio->sectors) {
1119 		/* We are splitting this write into multiple parts, so
1120 		 * we need to prepare for allocating another r1_bio.
1121 		 */
1122 		r1_bio->sectors = max_sectors;
1123 		spin_lock_irq(&conf->device_lock);
1124 		if (bio->bi_phys_segments == 0)
1125 			bio->bi_phys_segments = 2;
1126 		else
1127 			bio->bi_phys_segments++;
1128 		spin_unlock_irq(&conf->device_lock);
1129 	}
1130 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1131 
1132 	atomic_set(&r1_bio->remaining, 1);
1133 	atomic_set(&r1_bio->behind_remaining, 0);
1134 
1135 	first_clone = 1;
1136 	for (i = 0; i < disks; i++) {
1137 		struct bio *mbio;
1138 		if (!r1_bio->bios[i])
1139 			continue;
1140 
1141 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1142 		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1143 
1144 		if (first_clone) {
1145 			/* do behind I/O ?
1146 			 * Not if there are too many, or cannot
1147 			 * allocate memory, or a reader on WriteMostly
1148 			 * is waiting for behind writes to flush */
1149 			if (bitmap &&
1150 			    (atomic_read(&bitmap->behind_writes)
1151 			     < mddev->bitmap_info.max_write_behind) &&
1152 			    !waitqueue_active(&bitmap->behind_wait))
1153 				alloc_behind_pages(mbio, r1_bio);
1154 
1155 			bitmap_startwrite(bitmap, r1_bio->sector,
1156 					  r1_bio->sectors,
1157 					  test_bit(R1BIO_BehindIO,
1158 						   &r1_bio->state));
1159 			first_clone = 0;
1160 		}
1161 		if (r1_bio->behind_bvecs) {
1162 			struct bio_vec *bvec;
1163 			int j;
1164 
1165 			/* Yes, I really want the '__' version so that
1166 			 * we clear any unused pointer in the io_vec, rather
1167 			 * than leave them unchanged.  This is important
1168 			 * because when we come to free the pages, we won't
1169 			 * know the original bi_idx, so we just free
1170 			 * them all
1171 			 */
1172 			__bio_for_each_segment(bvec, mbio, j, 0)
1173 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1174 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1175 				atomic_inc(&r1_bio->behind_remaining);
1176 		}
1177 
1178 		r1_bio->bios[i] = mbio;
1179 
1180 		mbio->bi_sector	= (r1_bio->sector +
1181 				   conf->mirrors[i].rdev->data_offset);
1182 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1183 		mbio->bi_end_io	= raid1_end_write_request;
1184 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1185 		mbio->bi_private = r1_bio;
1186 
1187 		atomic_inc(&r1_bio->remaining);
1188 		spin_lock_irqsave(&conf->device_lock, flags);
1189 		bio_list_add(&conf->pending_bio_list, mbio);
1190 		conf->pending_count++;
1191 		spin_unlock_irqrestore(&conf->device_lock, flags);
1192 		if (!mddev_check_plugged(mddev))
1193 			md_wakeup_thread(mddev->thread);
1194 	}
1195 	/* Mustn't call r1_bio_write_done before this next test,
1196 	 * as it could result in the bio being freed.
1197 	 */
1198 	if (sectors_handled < (bio->bi_size >> 9)) {
1199 		r1_bio_write_done(r1_bio);
1200 		/* We need another r1_bio.  It has already been counted
1201 		 * in bio->bi_phys_segments
1202 		 */
1203 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1204 		r1_bio->master_bio = bio;
1205 		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1206 		r1_bio->state = 0;
1207 		r1_bio->mddev = mddev;
1208 		r1_bio->sector = bio->bi_sector + sectors_handled;
1209 		goto retry_write;
1210 	}
1211 
1212 	r1_bio_write_done(r1_bio);
1213 
1214 	/* In case raid1d snuck in to freeze_array */
1215 	wake_up(&conf->wait_barrier);
1216 }
1217 
1218 static void status(struct seq_file *seq, struct mddev *mddev)
1219 {
1220 	struct r1conf *conf = mddev->private;
1221 	int i;
1222 
1223 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1224 		   conf->raid_disks - mddev->degraded);
1225 	rcu_read_lock();
1226 	for (i = 0; i < conf->raid_disks; i++) {
1227 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1228 		seq_printf(seq, "%s",
1229 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1230 	}
1231 	rcu_read_unlock();
1232 	seq_printf(seq, "]");
1233 }
1234 
1235 
1236 static void error(struct mddev *mddev, struct md_rdev *rdev)
1237 {
1238 	char b[BDEVNAME_SIZE];
1239 	struct r1conf *conf = mddev->private;
1240 
1241 	/*
1242 	 * If it is not operational, then we have already marked it as dead
1243 	 * else if it is the last working disks, ignore the error, let the
1244 	 * next level up know.
1245 	 * else mark the drive as failed
1246 	 */
1247 	if (test_bit(In_sync, &rdev->flags)
1248 	    && (conf->raid_disks - mddev->degraded) == 1) {
1249 		/*
1250 		 * Don't fail the drive, act as though we were just a
1251 		 * normal single drive.
1252 		 * However don't try a recovery from this drive as
1253 		 * it is very likely to fail.
1254 		 */
1255 		conf->recovery_disabled = mddev->recovery_disabled;
1256 		return;
1257 	}
1258 	set_bit(Blocked, &rdev->flags);
1259 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1260 		unsigned long flags;
1261 		spin_lock_irqsave(&conf->device_lock, flags);
1262 		mddev->degraded++;
1263 		set_bit(Faulty, &rdev->flags);
1264 		spin_unlock_irqrestore(&conf->device_lock, flags);
1265 		/*
1266 		 * if recovery is running, make sure it aborts.
1267 		 */
1268 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1269 	} else
1270 		set_bit(Faulty, &rdev->flags);
1271 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1272 	printk(KERN_ALERT
1273 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1274 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1275 	       mdname(mddev), bdevname(rdev->bdev, b),
1276 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1277 }
1278 
1279 static void print_conf(struct r1conf *conf)
1280 {
1281 	int i;
1282 
1283 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1284 	if (!conf) {
1285 		printk(KERN_DEBUG "(!conf)\n");
1286 		return;
1287 	}
1288 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1289 		conf->raid_disks);
1290 
1291 	rcu_read_lock();
1292 	for (i = 0; i < conf->raid_disks; i++) {
1293 		char b[BDEVNAME_SIZE];
1294 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1295 		if (rdev)
1296 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1297 			       i, !test_bit(In_sync, &rdev->flags),
1298 			       !test_bit(Faulty, &rdev->flags),
1299 			       bdevname(rdev->bdev,b));
1300 	}
1301 	rcu_read_unlock();
1302 }
1303 
1304 static void close_sync(struct r1conf *conf)
1305 {
1306 	wait_barrier(conf);
1307 	allow_barrier(conf);
1308 
1309 	mempool_destroy(conf->r1buf_pool);
1310 	conf->r1buf_pool = NULL;
1311 }
1312 
1313 static int raid1_spare_active(struct mddev *mddev)
1314 {
1315 	int i;
1316 	struct r1conf *conf = mddev->private;
1317 	int count = 0;
1318 	unsigned long flags;
1319 
1320 	/*
1321 	 * Find all failed disks within the RAID1 configuration
1322 	 * and mark them readable.
1323 	 * Called under mddev lock, so rcu protection not needed.
1324 	 */
1325 	for (i = 0; i < conf->raid_disks; i++) {
1326 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1327 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1328 		if (repl
1329 		    && repl->recovery_offset == MaxSector
1330 		    && !test_bit(Faulty, &repl->flags)
1331 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1332 			/* replacement has just become active */
1333 			if (!rdev ||
1334 			    !test_and_clear_bit(In_sync, &rdev->flags))
1335 				count++;
1336 			if (rdev) {
1337 				/* Replaced device not technically
1338 				 * faulty, but we need to be sure
1339 				 * it gets removed and never re-added
1340 				 */
1341 				set_bit(Faulty, &rdev->flags);
1342 				sysfs_notify_dirent_safe(
1343 					rdev->sysfs_state);
1344 			}
1345 		}
1346 		if (rdev
1347 		    && !test_bit(Faulty, &rdev->flags)
1348 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1349 			count++;
1350 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1351 		}
1352 	}
1353 	spin_lock_irqsave(&conf->device_lock, flags);
1354 	mddev->degraded -= count;
1355 	spin_unlock_irqrestore(&conf->device_lock, flags);
1356 
1357 	print_conf(conf);
1358 	return count;
1359 }
1360 
1361 
1362 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1363 {
1364 	struct r1conf *conf = mddev->private;
1365 	int err = -EEXIST;
1366 	int mirror = 0;
1367 	struct mirror_info *p;
1368 	int first = 0;
1369 	int last = conf->raid_disks - 1;
1370 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1371 
1372 	if (mddev->recovery_disabled == conf->recovery_disabled)
1373 		return -EBUSY;
1374 
1375 	if (rdev->raid_disk >= 0)
1376 		first = last = rdev->raid_disk;
1377 
1378 	if (q->merge_bvec_fn) {
1379 		set_bit(Unmerged, &rdev->flags);
1380 		mddev->merge_check_needed = 1;
1381 	}
1382 
1383 	for (mirror = first; mirror <= last; mirror++) {
1384 		p = conf->mirrors+mirror;
1385 		if (!p->rdev) {
1386 
1387 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1388 					  rdev->data_offset << 9);
1389 
1390 			p->head_position = 0;
1391 			rdev->raid_disk = mirror;
1392 			err = 0;
1393 			/* As all devices are equivalent, we don't need a full recovery
1394 			 * if this was recently any drive of the array
1395 			 */
1396 			if (rdev->saved_raid_disk < 0)
1397 				conf->fullsync = 1;
1398 			rcu_assign_pointer(p->rdev, rdev);
1399 			break;
1400 		}
1401 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1402 		    p[conf->raid_disks].rdev == NULL) {
1403 			/* Add this device as a replacement */
1404 			clear_bit(In_sync, &rdev->flags);
1405 			set_bit(Replacement, &rdev->flags);
1406 			rdev->raid_disk = mirror;
1407 			err = 0;
1408 			conf->fullsync = 1;
1409 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1410 			break;
1411 		}
1412 	}
1413 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1414 		/* Some requests might not have seen this new
1415 		 * merge_bvec_fn.  We must wait for them to complete
1416 		 * before merging the device fully.
1417 		 * First we make sure any code which has tested
1418 		 * our function has submitted the request, then
1419 		 * we wait for all outstanding requests to complete.
1420 		 */
1421 		synchronize_sched();
1422 		raise_barrier(conf);
1423 		lower_barrier(conf);
1424 		clear_bit(Unmerged, &rdev->flags);
1425 	}
1426 	md_integrity_add_rdev(rdev, mddev);
1427 	print_conf(conf);
1428 	return err;
1429 }
1430 
1431 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1432 {
1433 	struct r1conf *conf = mddev->private;
1434 	int err = 0;
1435 	int number = rdev->raid_disk;
1436 	struct mirror_info *p = conf->mirrors+ number;
1437 
1438 	if (rdev != p->rdev)
1439 		p = conf->mirrors + conf->raid_disks + number;
1440 
1441 	print_conf(conf);
1442 	if (rdev == p->rdev) {
1443 		if (test_bit(In_sync, &rdev->flags) ||
1444 		    atomic_read(&rdev->nr_pending)) {
1445 			err = -EBUSY;
1446 			goto abort;
1447 		}
1448 		/* Only remove non-faulty devices if recovery
1449 		 * is not possible.
1450 		 */
1451 		if (!test_bit(Faulty, &rdev->flags) &&
1452 		    mddev->recovery_disabled != conf->recovery_disabled &&
1453 		    mddev->degraded < conf->raid_disks) {
1454 			err = -EBUSY;
1455 			goto abort;
1456 		}
1457 		p->rdev = NULL;
1458 		synchronize_rcu();
1459 		if (atomic_read(&rdev->nr_pending)) {
1460 			/* lost the race, try later */
1461 			err = -EBUSY;
1462 			p->rdev = rdev;
1463 			goto abort;
1464 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1465 			/* We just removed a device that is being replaced.
1466 			 * Move down the replacement.  We drain all IO before
1467 			 * doing this to avoid confusion.
1468 			 */
1469 			struct md_rdev *repl =
1470 				conf->mirrors[conf->raid_disks + number].rdev;
1471 			raise_barrier(conf);
1472 			clear_bit(Replacement, &repl->flags);
1473 			p->rdev = repl;
1474 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1475 			lower_barrier(conf);
1476 			clear_bit(WantReplacement, &rdev->flags);
1477 		} else
1478 			clear_bit(WantReplacement, &rdev->flags);
1479 		err = md_integrity_register(mddev);
1480 	}
1481 abort:
1482 
1483 	print_conf(conf);
1484 	return err;
1485 }
1486 
1487 
1488 static void end_sync_read(struct bio *bio, int error)
1489 {
1490 	struct r1bio *r1_bio = bio->bi_private;
1491 
1492 	update_head_pos(r1_bio->read_disk, r1_bio);
1493 
1494 	/*
1495 	 * we have read a block, now it needs to be re-written,
1496 	 * or re-read if the read failed.
1497 	 * We don't do much here, just schedule handling by raid1d
1498 	 */
1499 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1500 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1501 
1502 	if (atomic_dec_and_test(&r1_bio->remaining))
1503 		reschedule_retry(r1_bio);
1504 }
1505 
1506 static void end_sync_write(struct bio *bio, int error)
1507 {
1508 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1509 	struct r1bio *r1_bio = bio->bi_private;
1510 	struct mddev *mddev = r1_bio->mddev;
1511 	struct r1conf *conf = mddev->private;
1512 	int mirror=0;
1513 	sector_t first_bad;
1514 	int bad_sectors;
1515 
1516 	mirror = find_bio_disk(r1_bio, bio);
1517 
1518 	if (!uptodate) {
1519 		sector_t sync_blocks = 0;
1520 		sector_t s = r1_bio->sector;
1521 		long sectors_to_go = r1_bio->sectors;
1522 		/* make sure these bits doesn't get cleared. */
1523 		do {
1524 			bitmap_end_sync(mddev->bitmap, s,
1525 					&sync_blocks, 1);
1526 			s += sync_blocks;
1527 			sectors_to_go -= sync_blocks;
1528 		} while (sectors_to_go > 0);
1529 		set_bit(WriteErrorSeen,
1530 			&conf->mirrors[mirror].rdev->flags);
1531 		if (!test_and_set_bit(WantReplacement,
1532 				      &conf->mirrors[mirror].rdev->flags))
1533 			set_bit(MD_RECOVERY_NEEDED, &
1534 				mddev->recovery);
1535 		set_bit(R1BIO_WriteError, &r1_bio->state);
1536 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1537 			       r1_bio->sector,
1538 			       r1_bio->sectors,
1539 			       &first_bad, &bad_sectors) &&
1540 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1541 				r1_bio->sector,
1542 				r1_bio->sectors,
1543 				&first_bad, &bad_sectors)
1544 		)
1545 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1546 
1547 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1548 		int s = r1_bio->sectors;
1549 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1550 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1551 			reschedule_retry(r1_bio);
1552 		else {
1553 			put_buf(r1_bio);
1554 			md_done_sync(mddev, s, uptodate);
1555 		}
1556 	}
1557 }
1558 
1559 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1560 			    int sectors, struct page *page, int rw)
1561 {
1562 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1563 		/* success */
1564 		return 1;
1565 	if (rw == WRITE) {
1566 		set_bit(WriteErrorSeen, &rdev->flags);
1567 		if (!test_and_set_bit(WantReplacement,
1568 				      &rdev->flags))
1569 			set_bit(MD_RECOVERY_NEEDED, &
1570 				rdev->mddev->recovery);
1571 	}
1572 	/* need to record an error - either for the block or the device */
1573 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1574 		md_error(rdev->mddev, rdev);
1575 	return 0;
1576 }
1577 
1578 static int fix_sync_read_error(struct r1bio *r1_bio)
1579 {
1580 	/* Try some synchronous reads of other devices to get
1581 	 * good data, much like with normal read errors.  Only
1582 	 * read into the pages we already have so we don't
1583 	 * need to re-issue the read request.
1584 	 * We don't need to freeze the array, because being in an
1585 	 * active sync request, there is no normal IO, and
1586 	 * no overlapping syncs.
1587 	 * We don't need to check is_badblock() again as we
1588 	 * made sure that anything with a bad block in range
1589 	 * will have bi_end_io clear.
1590 	 */
1591 	struct mddev *mddev = r1_bio->mddev;
1592 	struct r1conf *conf = mddev->private;
1593 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1594 	sector_t sect = r1_bio->sector;
1595 	int sectors = r1_bio->sectors;
1596 	int idx = 0;
1597 
1598 	while(sectors) {
1599 		int s = sectors;
1600 		int d = r1_bio->read_disk;
1601 		int success = 0;
1602 		struct md_rdev *rdev;
1603 		int start;
1604 
1605 		if (s > (PAGE_SIZE>>9))
1606 			s = PAGE_SIZE >> 9;
1607 		do {
1608 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1609 				/* No rcu protection needed here devices
1610 				 * can only be removed when no resync is
1611 				 * active, and resync is currently active
1612 				 */
1613 				rdev = conf->mirrors[d].rdev;
1614 				if (sync_page_io(rdev, sect, s<<9,
1615 						 bio->bi_io_vec[idx].bv_page,
1616 						 READ, false)) {
1617 					success = 1;
1618 					break;
1619 				}
1620 			}
1621 			d++;
1622 			if (d == conf->raid_disks * 2)
1623 				d = 0;
1624 		} while (!success && d != r1_bio->read_disk);
1625 
1626 		if (!success) {
1627 			char b[BDEVNAME_SIZE];
1628 			int abort = 0;
1629 			/* Cannot read from anywhere, this block is lost.
1630 			 * Record a bad block on each device.  If that doesn't
1631 			 * work just disable and interrupt the recovery.
1632 			 * Don't fail devices as that won't really help.
1633 			 */
1634 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1635 			       " for block %llu\n",
1636 			       mdname(mddev),
1637 			       bdevname(bio->bi_bdev, b),
1638 			       (unsigned long long)r1_bio->sector);
1639 			for (d = 0; d < conf->raid_disks * 2; d++) {
1640 				rdev = conf->mirrors[d].rdev;
1641 				if (!rdev || test_bit(Faulty, &rdev->flags))
1642 					continue;
1643 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1644 					abort = 1;
1645 			}
1646 			if (abort) {
1647 				conf->recovery_disabled =
1648 					mddev->recovery_disabled;
1649 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1650 				md_done_sync(mddev, r1_bio->sectors, 0);
1651 				put_buf(r1_bio);
1652 				return 0;
1653 			}
1654 			/* Try next page */
1655 			sectors -= s;
1656 			sect += s;
1657 			idx++;
1658 			continue;
1659 		}
1660 
1661 		start = d;
1662 		/* write it back and re-read */
1663 		while (d != r1_bio->read_disk) {
1664 			if (d == 0)
1665 				d = conf->raid_disks * 2;
1666 			d--;
1667 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1668 				continue;
1669 			rdev = conf->mirrors[d].rdev;
1670 			if (r1_sync_page_io(rdev, sect, s,
1671 					    bio->bi_io_vec[idx].bv_page,
1672 					    WRITE) == 0) {
1673 				r1_bio->bios[d]->bi_end_io = NULL;
1674 				rdev_dec_pending(rdev, mddev);
1675 			}
1676 		}
1677 		d = start;
1678 		while (d != r1_bio->read_disk) {
1679 			if (d == 0)
1680 				d = conf->raid_disks * 2;
1681 			d--;
1682 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1683 				continue;
1684 			rdev = conf->mirrors[d].rdev;
1685 			if (r1_sync_page_io(rdev, sect, s,
1686 					    bio->bi_io_vec[idx].bv_page,
1687 					    READ) != 0)
1688 				atomic_add(s, &rdev->corrected_errors);
1689 		}
1690 		sectors -= s;
1691 		sect += s;
1692 		idx ++;
1693 	}
1694 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1695 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1696 	return 1;
1697 }
1698 
1699 static int process_checks(struct r1bio *r1_bio)
1700 {
1701 	/* We have read all readable devices.  If we haven't
1702 	 * got the block, then there is no hope left.
1703 	 * If we have, then we want to do a comparison
1704 	 * and skip the write if everything is the same.
1705 	 * If any blocks failed to read, then we need to
1706 	 * attempt an over-write
1707 	 */
1708 	struct mddev *mddev = r1_bio->mddev;
1709 	struct r1conf *conf = mddev->private;
1710 	int primary;
1711 	int i;
1712 	int vcnt;
1713 
1714 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1715 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1716 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1717 			r1_bio->bios[primary]->bi_end_io = NULL;
1718 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1719 			break;
1720 		}
1721 	r1_bio->read_disk = primary;
1722 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1723 	for (i = 0; i < conf->raid_disks * 2; i++) {
1724 		int j;
1725 		struct bio *pbio = r1_bio->bios[primary];
1726 		struct bio *sbio = r1_bio->bios[i];
1727 		int size;
1728 
1729 		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1730 			continue;
1731 
1732 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1733 			for (j = vcnt; j-- ; ) {
1734 				struct page *p, *s;
1735 				p = pbio->bi_io_vec[j].bv_page;
1736 				s = sbio->bi_io_vec[j].bv_page;
1737 				if (memcmp(page_address(p),
1738 					   page_address(s),
1739 					   sbio->bi_io_vec[j].bv_len))
1740 					break;
1741 			}
1742 		} else
1743 			j = 0;
1744 		if (j >= 0)
1745 			mddev->resync_mismatches += r1_bio->sectors;
1746 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1747 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1748 			/* No need to write to this device. */
1749 			sbio->bi_end_io = NULL;
1750 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1751 			continue;
1752 		}
1753 		/* fixup the bio for reuse */
1754 		sbio->bi_vcnt = vcnt;
1755 		sbio->bi_size = r1_bio->sectors << 9;
1756 		sbio->bi_idx = 0;
1757 		sbio->bi_phys_segments = 0;
1758 		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1759 		sbio->bi_flags |= 1 << BIO_UPTODATE;
1760 		sbio->bi_next = NULL;
1761 		sbio->bi_sector = r1_bio->sector +
1762 			conf->mirrors[i].rdev->data_offset;
1763 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1764 		size = sbio->bi_size;
1765 		for (j = 0; j < vcnt ; j++) {
1766 			struct bio_vec *bi;
1767 			bi = &sbio->bi_io_vec[j];
1768 			bi->bv_offset = 0;
1769 			if (size > PAGE_SIZE)
1770 				bi->bv_len = PAGE_SIZE;
1771 			else
1772 				bi->bv_len = size;
1773 			size -= PAGE_SIZE;
1774 			memcpy(page_address(bi->bv_page),
1775 			       page_address(pbio->bi_io_vec[j].bv_page),
1776 			       PAGE_SIZE);
1777 		}
1778 	}
1779 	return 0;
1780 }
1781 
1782 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1783 {
1784 	struct r1conf *conf = mddev->private;
1785 	int i;
1786 	int disks = conf->raid_disks * 2;
1787 	struct bio *bio, *wbio;
1788 
1789 	bio = r1_bio->bios[r1_bio->read_disk];
1790 
1791 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1792 		/* ouch - failed to read all of that. */
1793 		if (!fix_sync_read_error(r1_bio))
1794 			return;
1795 
1796 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1797 		if (process_checks(r1_bio) < 0)
1798 			return;
1799 	/*
1800 	 * schedule writes
1801 	 */
1802 	atomic_set(&r1_bio->remaining, 1);
1803 	for (i = 0; i < disks ; i++) {
1804 		wbio = r1_bio->bios[i];
1805 		if (wbio->bi_end_io == NULL ||
1806 		    (wbio->bi_end_io == end_sync_read &&
1807 		     (i == r1_bio->read_disk ||
1808 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1809 			continue;
1810 
1811 		wbio->bi_rw = WRITE;
1812 		wbio->bi_end_io = end_sync_write;
1813 		atomic_inc(&r1_bio->remaining);
1814 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1815 
1816 		generic_make_request(wbio);
1817 	}
1818 
1819 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1820 		/* if we're here, all write(s) have completed, so clean up */
1821 		int s = r1_bio->sectors;
1822 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1823 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1824 			reschedule_retry(r1_bio);
1825 		else {
1826 			put_buf(r1_bio);
1827 			md_done_sync(mddev, s, 1);
1828 		}
1829 	}
1830 }
1831 
1832 /*
1833  * This is a kernel thread which:
1834  *
1835  *	1.	Retries failed read operations on working mirrors.
1836  *	2.	Updates the raid superblock when problems encounter.
1837  *	3.	Performs writes following reads for array synchronising.
1838  */
1839 
1840 static void fix_read_error(struct r1conf *conf, int read_disk,
1841 			   sector_t sect, int sectors)
1842 {
1843 	struct mddev *mddev = conf->mddev;
1844 	while(sectors) {
1845 		int s = sectors;
1846 		int d = read_disk;
1847 		int success = 0;
1848 		int start;
1849 		struct md_rdev *rdev;
1850 
1851 		if (s > (PAGE_SIZE>>9))
1852 			s = PAGE_SIZE >> 9;
1853 
1854 		do {
1855 			/* Note: no rcu protection needed here
1856 			 * as this is synchronous in the raid1d thread
1857 			 * which is the thread that might remove
1858 			 * a device.  If raid1d ever becomes multi-threaded....
1859 			 */
1860 			sector_t first_bad;
1861 			int bad_sectors;
1862 
1863 			rdev = conf->mirrors[d].rdev;
1864 			if (rdev &&
1865 			    (test_bit(In_sync, &rdev->flags) ||
1866 			     (!test_bit(Faulty, &rdev->flags) &&
1867 			      rdev->recovery_offset >= sect + s)) &&
1868 			    is_badblock(rdev, sect, s,
1869 					&first_bad, &bad_sectors) == 0 &&
1870 			    sync_page_io(rdev, sect, s<<9,
1871 					 conf->tmppage, READ, false))
1872 				success = 1;
1873 			else {
1874 				d++;
1875 				if (d == conf->raid_disks * 2)
1876 					d = 0;
1877 			}
1878 		} while (!success && d != read_disk);
1879 
1880 		if (!success) {
1881 			/* Cannot read from anywhere - mark it bad */
1882 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1883 			if (!rdev_set_badblocks(rdev, sect, s, 0))
1884 				md_error(mddev, rdev);
1885 			break;
1886 		}
1887 		/* write it back and re-read */
1888 		start = d;
1889 		while (d != read_disk) {
1890 			if (d==0)
1891 				d = conf->raid_disks * 2;
1892 			d--;
1893 			rdev = conf->mirrors[d].rdev;
1894 			if (rdev &&
1895 			    test_bit(In_sync, &rdev->flags))
1896 				r1_sync_page_io(rdev, sect, s,
1897 						conf->tmppage, WRITE);
1898 		}
1899 		d = start;
1900 		while (d != read_disk) {
1901 			char b[BDEVNAME_SIZE];
1902 			if (d==0)
1903 				d = conf->raid_disks * 2;
1904 			d--;
1905 			rdev = conf->mirrors[d].rdev;
1906 			if (rdev &&
1907 			    test_bit(In_sync, &rdev->flags)) {
1908 				if (r1_sync_page_io(rdev, sect, s,
1909 						    conf->tmppage, READ)) {
1910 					atomic_add(s, &rdev->corrected_errors);
1911 					printk(KERN_INFO
1912 					       "md/raid1:%s: read error corrected "
1913 					       "(%d sectors at %llu on %s)\n",
1914 					       mdname(mddev), s,
1915 					       (unsigned long long)(sect +
1916 					           rdev->data_offset),
1917 					       bdevname(rdev->bdev, b));
1918 				}
1919 			}
1920 		}
1921 		sectors -= s;
1922 		sect += s;
1923 	}
1924 }
1925 
1926 static void bi_complete(struct bio *bio, int error)
1927 {
1928 	complete((struct completion *)bio->bi_private);
1929 }
1930 
1931 static int submit_bio_wait(int rw, struct bio *bio)
1932 {
1933 	struct completion event;
1934 	rw |= REQ_SYNC;
1935 
1936 	init_completion(&event);
1937 	bio->bi_private = &event;
1938 	bio->bi_end_io = bi_complete;
1939 	submit_bio(rw, bio);
1940 	wait_for_completion(&event);
1941 
1942 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1943 }
1944 
1945 static int narrow_write_error(struct r1bio *r1_bio, int i)
1946 {
1947 	struct mddev *mddev = r1_bio->mddev;
1948 	struct r1conf *conf = mddev->private;
1949 	struct md_rdev *rdev = conf->mirrors[i].rdev;
1950 	int vcnt, idx;
1951 	struct bio_vec *vec;
1952 
1953 	/* bio has the data to be written to device 'i' where
1954 	 * we just recently had a write error.
1955 	 * We repeatedly clone the bio and trim down to one block,
1956 	 * then try the write.  Where the write fails we record
1957 	 * a bad block.
1958 	 * It is conceivable that the bio doesn't exactly align with
1959 	 * blocks.  We must handle this somehow.
1960 	 *
1961 	 * We currently own a reference on the rdev.
1962 	 */
1963 
1964 	int block_sectors;
1965 	sector_t sector;
1966 	int sectors;
1967 	int sect_to_write = r1_bio->sectors;
1968 	int ok = 1;
1969 
1970 	if (rdev->badblocks.shift < 0)
1971 		return 0;
1972 
1973 	block_sectors = 1 << rdev->badblocks.shift;
1974 	sector = r1_bio->sector;
1975 	sectors = ((sector + block_sectors)
1976 		   & ~(sector_t)(block_sectors - 1))
1977 		- sector;
1978 
1979 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1980 		vcnt = r1_bio->behind_page_count;
1981 		vec = r1_bio->behind_bvecs;
1982 		idx = 0;
1983 		while (vec[idx].bv_page == NULL)
1984 			idx++;
1985 	} else {
1986 		vcnt = r1_bio->master_bio->bi_vcnt;
1987 		vec = r1_bio->master_bio->bi_io_vec;
1988 		idx = r1_bio->master_bio->bi_idx;
1989 	}
1990 	while (sect_to_write) {
1991 		struct bio *wbio;
1992 		if (sectors > sect_to_write)
1993 			sectors = sect_to_write;
1994 		/* Write at 'sector' for 'sectors'*/
1995 
1996 		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1997 		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1998 		wbio->bi_sector = r1_bio->sector;
1999 		wbio->bi_rw = WRITE;
2000 		wbio->bi_vcnt = vcnt;
2001 		wbio->bi_size = r1_bio->sectors << 9;
2002 		wbio->bi_idx = idx;
2003 
2004 		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2005 		wbio->bi_sector += rdev->data_offset;
2006 		wbio->bi_bdev = rdev->bdev;
2007 		if (submit_bio_wait(WRITE, wbio) == 0)
2008 			/* failure! */
2009 			ok = rdev_set_badblocks(rdev, sector,
2010 						sectors, 0)
2011 				&& ok;
2012 
2013 		bio_put(wbio);
2014 		sect_to_write -= sectors;
2015 		sector += sectors;
2016 		sectors = block_sectors;
2017 	}
2018 	return ok;
2019 }
2020 
2021 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2022 {
2023 	int m;
2024 	int s = r1_bio->sectors;
2025 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2026 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2027 		struct bio *bio = r1_bio->bios[m];
2028 		if (bio->bi_end_io == NULL)
2029 			continue;
2030 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2031 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2032 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2033 		}
2034 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2035 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2036 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2037 				md_error(conf->mddev, rdev);
2038 		}
2039 	}
2040 	put_buf(r1_bio);
2041 	md_done_sync(conf->mddev, s, 1);
2042 }
2043 
2044 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2045 {
2046 	int m;
2047 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2048 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2049 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2050 			rdev_clear_badblocks(rdev,
2051 					     r1_bio->sector,
2052 					     r1_bio->sectors, 0);
2053 			rdev_dec_pending(rdev, conf->mddev);
2054 		} else if (r1_bio->bios[m] != NULL) {
2055 			/* This drive got a write error.  We need to
2056 			 * narrow down and record precise write
2057 			 * errors.
2058 			 */
2059 			if (!narrow_write_error(r1_bio, m)) {
2060 				md_error(conf->mddev,
2061 					 conf->mirrors[m].rdev);
2062 				/* an I/O failed, we can't clear the bitmap */
2063 				set_bit(R1BIO_Degraded, &r1_bio->state);
2064 			}
2065 			rdev_dec_pending(conf->mirrors[m].rdev,
2066 					 conf->mddev);
2067 		}
2068 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2069 		close_write(r1_bio);
2070 	raid_end_bio_io(r1_bio);
2071 }
2072 
2073 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2074 {
2075 	int disk;
2076 	int max_sectors;
2077 	struct mddev *mddev = conf->mddev;
2078 	struct bio *bio;
2079 	char b[BDEVNAME_SIZE];
2080 	struct md_rdev *rdev;
2081 
2082 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2083 	/* we got a read error. Maybe the drive is bad.  Maybe just
2084 	 * the block and we can fix it.
2085 	 * We freeze all other IO, and try reading the block from
2086 	 * other devices.  When we find one, we re-write
2087 	 * and check it that fixes the read error.
2088 	 * This is all done synchronously while the array is
2089 	 * frozen
2090 	 */
2091 	if (mddev->ro == 0) {
2092 		freeze_array(conf);
2093 		fix_read_error(conf, r1_bio->read_disk,
2094 			       r1_bio->sector, r1_bio->sectors);
2095 		unfreeze_array(conf);
2096 	} else
2097 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2098 
2099 	bio = r1_bio->bios[r1_bio->read_disk];
2100 	bdevname(bio->bi_bdev, b);
2101 read_more:
2102 	disk = read_balance(conf, r1_bio, &max_sectors);
2103 	if (disk == -1) {
2104 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2105 		       " read error for block %llu\n",
2106 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2107 		raid_end_bio_io(r1_bio);
2108 	} else {
2109 		const unsigned long do_sync
2110 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2111 		if (bio) {
2112 			r1_bio->bios[r1_bio->read_disk] =
2113 				mddev->ro ? IO_BLOCKED : NULL;
2114 			bio_put(bio);
2115 		}
2116 		r1_bio->read_disk = disk;
2117 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2118 		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2119 		r1_bio->bios[r1_bio->read_disk] = bio;
2120 		rdev = conf->mirrors[disk].rdev;
2121 		printk_ratelimited(KERN_ERR
2122 				   "md/raid1:%s: redirecting sector %llu"
2123 				   " to other mirror: %s\n",
2124 				   mdname(mddev),
2125 				   (unsigned long long)r1_bio->sector,
2126 				   bdevname(rdev->bdev, b));
2127 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
2128 		bio->bi_bdev = rdev->bdev;
2129 		bio->bi_end_io = raid1_end_read_request;
2130 		bio->bi_rw = READ | do_sync;
2131 		bio->bi_private = r1_bio;
2132 		if (max_sectors < r1_bio->sectors) {
2133 			/* Drat - have to split this up more */
2134 			struct bio *mbio = r1_bio->master_bio;
2135 			int sectors_handled = (r1_bio->sector + max_sectors
2136 					       - mbio->bi_sector);
2137 			r1_bio->sectors = max_sectors;
2138 			spin_lock_irq(&conf->device_lock);
2139 			if (mbio->bi_phys_segments == 0)
2140 				mbio->bi_phys_segments = 2;
2141 			else
2142 				mbio->bi_phys_segments++;
2143 			spin_unlock_irq(&conf->device_lock);
2144 			generic_make_request(bio);
2145 			bio = NULL;
2146 
2147 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2148 
2149 			r1_bio->master_bio = mbio;
2150 			r1_bio->sectors = (mbio->bi_size >> 9)
2151 					  - sectors_handled;
2152 			r1_bio->state = 0;
2153 			set_bit(R1BIO_ReadError, &r1_bio->state);
2154 			r1_bio->mddev = mddev;
2155 			r1_bio->sector = mbio->bi_sector + sectors_handled;
2156 
2157 			goto read_more;
2158 		} else
2159 			generic_make_request(bio);
2160 	}
2161 }
2162 
2163 static void raid1d(struct mddev *mddev)
2164 {
2165 	struct r1bio *r1_bio;
2166 	unsigned long flags;
2167 	struct r1conf *conf = mddev->private;
2168 	struct list_head *head = &conf->retry_list;
2169 	struct blk_plug plug;
2170 
2171 	md_check_recovery(mddev);
2172 
2173 	blk_start_plug(&plug);
2174 	for (;;) {
2175 
2176 		if (atomic_read(&mddev->plug_cnt) == 0)
2177 			flush_pending_writes(conf);
2178 
2179 		spin_lock_irqsave(&conf->device_lock, flags);
2180 		if (list_empty(head)) {
2181 			spin_unlock_irqrestore(&conf->device_lock, flags);
2182 			break;
2183 		}
2184 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2185 		list_del(head->prev);
2186 		conf->nr_queued--;
2187 		spin_unlock_irqrestore(&conf->device_lock, flags);
2188 
2189 		mddev = r1_bio->mddev;
2190 		conf = mddev->private;
2191 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2192 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2193 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2194 				handle_sync_write_finished(conf, r1_bio);
2195 			else
2196 				sync_request_write(mddev, r1_bio);
2197 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2198 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2199 			handle_write_finished(conf, r1_bio);
2200 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2201 			handle_read_error(conf, r1_bio);
2202 		else
2203 			/* just a partial read to be scheduled from separate
2204 			 * context
2205 			 */
2206 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2207 
2208 		cond_resched();
2209 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2210 			md_check_recovery(mddev);
2211 	}
2212 	blk_finish_plug(&plug);
2213 }
2214 
2215 
2216 static int init_resync(struct r1conf *conf)
2217 {
2218 	int buffs;
2219 
2220 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2221 	BUG_ON(conf->r1buf_pool);
2222 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2223 					  conf->poolinfo);
2224 	if (!conf->r1buf_pool)
2225 		return -ENOMEM;
2226 	conf->next_resync = 0;
2227 	return 0;
2228 }
2229 
2230 /*
2231  * perform a "sync" on one "block"
2232  *
2233  * We need to make sure that no normal I/O request - particularly write
2234  * requests - conflict with active sync requests.
2235  *
2236  * This is achieved by tracking pending requests and a 'barrier' concept
2237  * that can be installed to exclude normal IO requests.
2238  */
2239 
2240 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2241 {
2242 	struct r1conf *conf = mddev->private;
2243 	struct r1bio *r1_bio;
2244 	struct bio *bio;
2245 	sector_t max_sector, nr_sectors;
2246 	int disk = -1;
2247 	int i;
2248 	int wonly = -1;
2249 	int write_targets = 0, read_targets = 0;
2250 	sector_t sync_blocks;
2251 	int still_degraded = 0;
2252 	int good_sectors = RESYNC_SECTORS;
2253 	int min_bad = 0; /* number of sectors that are bad in all devices */
2254 
2255 	if (!conf->r1buf_pool)
2256 		if (init_resync(conf))
2257 			return 0;
2258 
2259 	max_sector = mddev->dev_sectors;
2260 	if (sector_nr >= max_sector) {
2261 		/* If we aborted, we need to abort the
2262 		 * sync on the 'current' bitmap chunk (there will
2263 		 * only be one in raid1 resync.
2264 		 * We can find the current addess in mddev->curr_resync
2265 		 */
2266 		if (mddev->curr_resync < max_sector) /* aborted */
2267 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2268 						&sync_blocks, 1);
2269 		else /* completed sync */
2270 			conf->fullsync = 0;
2271 
2272 		bitmap_close_sync(mddev->bitmap);
2273 		close_sync(conf);
2274 		return 0;
2275 	}
2276 
2277 	if (mddev->bitmap == NULL &&
2278 	    mddev->recovery_cp == MaxSector &&
2279 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2280 	    conf->fullsync == 0) {
2281 		*skipped = 1;
2282 		return max_sector - sector_nr;
2283 	}
2284 	/* before building a request, check if we can skip these blocks..
2285 	 * This call the bitmap_start_sync doesn't actually record anything
2286 	 */
2287 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2288 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2289 		/* We can skip this block, and probably several more */
2290 		*skipped = 1;
2291 		return sync_blocks;
2292 	}
2293 	/*
2294 	 * If there is non-resync activity waiting for a turn,
2295 	 * and resync is going fast enough,
2296 	 * then let it though before starting on this new sync request.
2297 	 */
2298 	if (!go_faster && conf->nr_waiting)
2299 		msleep_interruptible(1000);
2300 
2301 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2302 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2303 	raise_barrier(conf);
2304 
2305 	conf->next_resync = sector_nr;
2306 
2307 	rcu_read_lock();
2308 	/*
2309 	 * If we get a correctably read error during resync or recovery,
2310 	 * we might want to read from a different device.  So we
2311 	 * flag all drives that could conceivably be read from for READ,
2312 	 * and any others (which will be non-In_sync devices) for WRITE.
2313 	 * If a read fails, we try reading from something else for which READ
2314 	 * is OK.
2315 	 */
2316 
2317 	r1_bio->mddev = mddev;
2318 	r1_bio->sector = sector_nr;
2319 	r1_bio->state = 0;
2320 	set_bit(R1BIO_IsSync, &r1_bio->state);
2321 
2322 	for (i = 0; i < conf->raid_disks * 2; i++) {
2323 		struct md_rdev *rdev;
2324 		bio = r1_bio->bios[i];
2325 
2326 		/* take from bio_init */
2327 		bio->bi_next = NULL;
2328 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2329 		bio->bi_flags |= 1 << BIO_UPTODATE;
2330 		bio->bi_rw = READ;
2331 		bio->bi_vcnt = 0;
2332 		bio->bi_idx = 0;
2333 		bio->bi_phys_segments = 0;
2334 		bio->bi_size = 0;
2335 		bio->bi_end_io = NULL;
2336 		bio->bi_private = NULL;
2337 
2338 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2339 		if (rdev == NULL ||
2340 		    test_bit(Faulty, &rdev->flags)) {
2341 			if (i < conf->raid_disks)
2342 				still_degraded = 1;
2343 		} else if (!test_bit(In_sync, &rdev->flags)) {
2344 			bio->bi_rw = WRITE;
2345 			bio->bi_end_io = end_sync_write;
2346 			write_targets ++;
2347 		} else {
2348 			/* may need to read from here */
2349 			sector_t first_bad = MaxSector;
2350 			int bad_sectors;
2351 
2352 			if (is_badblock(rdev, sector_nr, good_sectors,
2353 					&first_bad, &bad_sectors)) {
2354 				if (first_bad > sector_nr)
2355 					good_sectors = first_bad - sector_nr;
2356 				else {
2357 					bad_sectors -= (sector_nr - first_bad);
2358 					if (min_bad == 0 ||
2359 					    min_bad > bad_sectors)
2360 						min_bad = bad_sectors;
2361 				}
2362 			}
2363 			if (sector_nr < first_bad) {
2364 				if (test_bit(WriteMostly, &rdev->flags)) {
2365 					if (wonly < 0)
2366 						wonly = i;
2367 				} else {
2368 					if (disk < 0)
2369 						disk = i;
2370 				}
2371 				bio->bi_rw = READ;
2372 				bio->bi_end_io = end_sync_read;
2373 				read_targets++;
2374 			}
2375 		}
2376 		if (bio->bi_end_io) {
2377 			atomic_inc(&rdev->nr_pending);
2378 			bio->bi_sector = sector_nr + rdev->data_offset;
2379 			bio->bi_bdev = rdev->bdev;
2380 			bio->bi_private = r1_bio;
2381 		}
2382 	}
2383 	rcu_read_unlock();
2384 	if (disk < 0)
2385 		disk = wonly;
2386 	r1_bio->read_disk = disk;
2387 
2388 	if (read_targets == 0 && min_bad > 0) {
2389 		/* These sectors are bad on all InSync devices, so we
2390 		 * need to mark them bad on all write targets
2391 		 */
2392 		int ok = 1;
2393 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2394 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2395 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2396 				ok = rdev_set_badblocks(rdev, sector_nr,
2397 							min_bad, 0
2398 					) && ok;
2399 			}
2400 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2401 		*skipped = 1;
2402 		put_buf(r1_bio);
2403 
2404 		if (!ok) {
2405 			/* Cannot record the badblocks, so need to
2406 			 * abort the resync.
2407 			 * If there are multiple read targets, could just
2408 			 * fail the really bad ones ???
2409 			 */
2410 			conf->recovery_disabled = mddev->recovery_disabled;
2411 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2412 			return 0;
2413 		} else
2414 			return min_bad;
2415 
2416 	}
2417 	if (min_bad > 0 && min_bad < good_sectors) {
2418 		/* only resync enough to reach the next bad->good
2419 		 * transition */
2420 		good_sectors = min_bad;
2421 	}
2422 
2423 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2424 		/* extra read targets are also write targets */
2425 		write_targets += read_targets-1;
2426 
2427 	if (write_targets == 0 || read_targets == 0) {
2428 		/* There is nowhere to write, so all non-sync
2429 		 * drives must be failed - so we are finished
2430 		 */
2431 		sector_t rv = max_sector - sector_nr;
2432 		*skipped = 1;
2433 		put_buf(r1_bio);
2434 		return rv;
2435 	}
2436 
2437 	if (max_sector > mddev->resync_max)
2438 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2439 	if (max_sector > sector_nr + good_sectors)
2440 		max_sector = sector_nr + good_sectors;
2441 	nr_sectors = 0;
2442 	sync_blocks = 0;
2443 	do {
2444 		struct page *page;
2445 		int len = PAGE_SIZE;
2446 		if (sector_nr + (len>>9) > max_sector)
2447 			len = (max_sector - sector_nr) << 9;
2448 		if (len == 0)
2449 			break;
2450 		if (sync_blocks == 0) {
2451 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2452 					       &sync_blocks, still_degraded) &&
2453 			    !conf->fullsync &&
2454 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2455 				break;
2456 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2457 			if ((len >> 9) > sync_blocks)
2458 				len = sync_blocks<<9;
2459 		}
2460 
2461 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2462 			bio = r1_bio->bios[i];
2463 			if (bio->bi_end_io) {
2464 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2465 				if (bio_add_page(bio, page, len, 0) == 0) {
2466 					/* stop here */
2467 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2468 					while (i > 0) {
2469 						i--;
2470 						bio = r1_bio->bios[i];
2471 						if (bio->bi_end_io==NULL)
2472 							continue;
2473 						/* remove last page from this bio */
2474 						bio->bi_vcnt--;
2475 						bio->bi_size -= len;
2476 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2477 					}
2478 					goto bio_full;
2479 				}
2480 			}
2481 		}
2482 		nr_sectors += len>>9;
2483 		sector_nr += len>>9;
2484 		sync_blocks -= (len>>9);
2485 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2486  bio_full:
2487 	r1_bio->sectors = nr_sectors;
2488 
2489 	/* For a user-requested sync, we read all readable devices and do a
2490 	 * compare
2491 	 */
2492 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2493 		atomic_set(&r1_bio->remaining, read_targets);
2494 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2495 			bio = r1_bio->bios[i];
2496 			if (bio->bi_end_io == end_sync_read) {
2497 				read_targets--;
2498 				md_sync_acct(bio->bi_bdev, nr_sectors);
2499 				generic_make_request(bio);
2500 			}
2501 		}
2502 	} else {
2503 		atomic_set(&r1_bio->remaining, 1);
2504 		bio = r1_bio->bios[r1_bio->read_disk];
2505 		md_sync_acct(bio->bi_bdev, nr_sectors);
2506 		generic_make_request(bio);
2507 
2508 	}
2509 	return nr_sectors;
2510 }
2511 
2512 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2513 {
2514 	if (sectors)
2515 		return sectors;
2516 
2517 	return mddev->dev_sectors;
2518 }
2519 
2520 static struct r1conf *setup_conf(struct mddev *mddev)
2521 {
2522 	struct r1conf *conf;
2523 	int i;
2524 	struct mirror_info *disk;
2525 	struct md_rdev *rdev;
2526 	int err = -ENOMEM;
2527 
2528 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2529 	if (!conf)
2530 		goto abort;
2531 
2532 	conf->mirrors = kzalloc(sizeof(struct mirror_info)
2533 				* mddev->raid_disks * 2,
2534 				 GFP_KERNEL);
2535 	if (!conf->mirrors)
2536 		goto abort;
2537 
2538 	conf->tmppage = alloc_page(GFP_KERNEL);
2539 	if (!conf->tmppage)
2540 		goto abort;
2541 
2542 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2543 	if (!conf->poolinfo)
2544 		goto abort;
2545 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2546 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2547 					  r1bio_pool_free,
2548 					  conf->poolinfo);
2549 	if (!conf->r1bio_pool)
2550 		goto abort;
2551 
2552 	conf->poolinfo->mddev = mddev;
2553 
2554 	err = -EINVAL;
2555 	spin_lock_init(&conf->device_lock);
2556 	rdev_for_each(rdev, mddev) {
2557 		struct request_queue *q;
2558 		int disk_idx = rdev->raid_disk;
2559 		if (disk_idx >= mddev->raid_disks
2560 		    || disk_idx < 0)
2561 			continue;
2562 		if (test_bit(Replacement, &rdev->flags))
2563 			disk = conf->mirrors + conf->raid_disks + disk_idx;
2564 		else
2565 			disk = conf->mirrors + disk_idx;
2566 
2567 		if (disk->rdev)
2568 			goto abort;
2569 		disk->rdev = rdev;
2570 		q = bdev_get_queue(rdev->bdev);
2571 		if (q->merge_bvec_fn)
2572 			mddev->merge_check_needed = 1;
2573 
2574 		disk->head_position = 0;
2575 	}
2576 	conf->raid_disks = mddev->raid_disks;
2577 	conf->mddev = mddev;
2578 	INIT_LIST_HEAD(&conf->retry_list);
2579 
2580 	spin_lock_init(&conf->resync_lock);
2581 	init_waitqueue_head(&conf->wait_barrier);
2582 
2583 	bio_list_init(&conf->pending_bio_list);
2584 	conf->pending_count = 0;
2585 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2586 
2587 	err = -EIO;
2588 	conf->last_used = -1;
2589 	for (i = 0; i < conf->raid_disks * 2; i++) {
2590 
2591 		disk = conf->mirrors + i;
2592 
2593 		if (i < conf->raid_disks &&
2594 		    disk[conf->raid_disks].rdev) {
2595 			/* This slot has a replacement. */
2596 			if (!disk->rdev) {
2597 				/* No original, just make the replacement
2598 				 * a recovering spare
2599 				 */
2600 				disk->rdev =
2601 					disk[conf->raid_disks].rdev;
2602 				disk[conf->raid_disks].rdev = NULL;
2603 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2604 				/* Original is not in_sync - bad */
2605 				goto abort;
2606 		}
2607 
2608 		if (!disk->rdev ||
2609 		    !test_bit(In_sync, &disk->rdev->flags)) {
2610 			disk->head_position = 0;
2611 			if (disk->rdev &&
2612 			    (disk->rdev->saved_raid_disk < 0))
2613 				conf->fullsync = 1;
2614 		} else if (conf->last_used < 0)
2615 			/*
2616 			 * The first working device is used as a
2617 			 * starting point to read balancing.
2618 			 */
2619 			conf->last_used = i;
2620 	}
2621 
2622 	if (conf->last_used < 0) {
2623 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2624 		       mdname(mddev));
2625 		goto abort;
2626 	}
2627 	err = -ENOMEM;
2628 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2629 	if (!conf->thread) {
2630 		printk(KERN_ERR
2631 		       "md/raid1:%s: couldn't allocate thread\n",
2632 		       mdname(mddev));
2633 		goto abort;
2634 	}
2635 
2636 	return conf;
2637 
2638  abort:
2639 	if (conf) {
2640 		if (conf->r1bio_pool)
2641 			mempool_destroy(conf->r1bio_pool);
2642 		kfree(conf->mirrors);
2643 		safe_put_page(conf->tmppage);
2644 		kfree(conf->poolinfo);
2645 		kfree(conf);
2646 	}
2647 	return ERR_PTR(err);
2648 }
2649 
2650 static int stop(struct mddev *mddev);
2651 static int run(struct mddev *mddev)
2652 {
2653 	struct r1conf *conf;
2654 	int i;
2655 	struct md_rdev *rdev;
2656 	int ret;
2657 
2658 	if (mddev->level != 1) {
2659 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2660 		       mdname(mddev), mddev->level);
2661 		return -EIO;
2662 	}
2663 	if (mddev->reshape_position != MaxSector) {
2664 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2665 		       mdname(mddev));
2666 		return -EIO;
2667 	}
2668 	/*
2669 	 * copy the already verified devices into our private RAID1
2670 	 * bookkeeping area. [whatever we allocate in run(),
2671 	 * should be freed in stop()]
2672 	 */
2673 	if (mddev->private == NULL)
2674 		conf = setup_conf(mddev);
2675 	else
2676 		conf = mddev->private;
2677 
2678 	if (IS_ERR(conf))
2679 		return PTR_ERR(conf);
2680 
2681 	rdev_for_each(rdev, mddev) {
2682 		if (!mddev->gendisk)
2683 			continue;
2684 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2685 				  rdev->data_offset << 9);
2686 	}
2687 
2688 	mddev->degraded = 0;
2689 	for (i=0; i < conf->raid_disks; i++)
2690 		if (conf->mirrors[i].rdev == NULL ||
2691 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2692 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2693 			mddev->degraded++;
2694 
2695 	if (conf->raid_disks - mddev->degraded == 1)
2696 		mddev->recovery_cp = MaxSector;
2697 
2698 	if (mddev->recovery_cp != MaxSector)
2699 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2700 		       " -- starting background reconstruction\n",
2701 		       mdname(mddev));
2702 	printk(KERN_INFO
2703 		"md/raid1:%s: active with %d out of %d mirrors\n",
2704 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2705 		mddev->raid_disks);
2706 
2707 	/*
2708 	 * Ok, everything is just fine now
2709 	 */
2710 	mddev->thread = conf->thread;
2711 	conf->thread = NULL;
2712 	mddev->private = conf;
2713 
2714 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2715 
2716 	if (mddev->queue) {
2717 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2718 		mddev->queue->backing_dev_info.congested_data = mddev;
2719 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2720 	}
2721 
2722 	ret =  md_integrity_register(mddev);
2723 	if (ret)
2724 		stop(mddev);
2725 	return ret;
2726 }
2727 
2728 static int stop(struct mddev *mddev)
2729 {
2730 	struct r1conf *conf = mddev->private;
2731 	struct bitmap *bitmap = mddev->bitmap;
2732 
2733 	/* wait for behind writes to complete */
2734 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2735 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2736 		       mdname(mddev));
2737 		/* need to kick something here to make sure I/O goes? */
2738 		wait_event(bitmap->behind_wait,
2739 			   atomic_read(&bitmap->behind_writes) == 0);
2740 	}
2741 
2742 	raise_barrier(conf);
2743 	lower_barrier(conf);
2744 
2745 	md_unregister_thread(&mddev->thread);
2746 	if (conf->r1bio_pool)
2747 		mempool_destroy(conf->r1bio_pool);
2748 	kfree(conf->mirrors);
2749 	kfree(conf->poolinfo);
2750 	kfree(conf);
2751 	mddev->private = NULL;
2752 	return 0;
2753 }
2754 
2755 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2756 {
2757 	/* no resync is happening, and there is enough space
2758 	 * on all devices, so we can resize.
2759 	 * We need to make sure resync covers any new space.
2760 	 * If the array is shrinking we should possibly wait until
2761 	 * any io in the removed space completes, but it hardly seems
2762 	 * worth it.
2763 	 */
2764 	sector_t newsize = raid1_size(mddev, sectors, 0);
2765 	if (mddev->external_size &&
2766 	    mddev->array_sectors > newsize)
2767 		return -EINVAL;
2768 	if (mddev->bitmap) {
2769 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2770 		if (ret)
2771 			return ret;
2772 	}
2773 	md_set_array_sectors(mddev, newsize);
2774 	set_capacity(mddev->gendisk, mddev->array_sectors);
2775 	revalidate_disk(mddev->gendisk);
2776 	if (sectors > mddev->dev_sectors &&
2777 	    mddev->recovery_cp > mddev->dev_sectors) {
2778 		mddev->recovery_cp = mddev->dev_sectors;
2779 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2780 	}
2781 	mddev->dev_sectors = sectors;
2782 	mddev->resync_max_sectors = sectors;
2783 	return 0;
2784 }
2785 
2786 static int raid1_reshape(struct mddev *mddev)
2787 {
2788 	/* We need to:
2789 	 * 1/ resize the r1bio_pool
2790 	 * 2/ resize conf->mirrors
2791 	 *
2792 	 * We allocate a new r1bio_pool if we can.
2793 	 * Then raise a device barrier and wait until all IO stops.
2794 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2795 	 *
2796 	 * At the same time, we "pack" the devices so that all the missing
2797 	 * devices have the higher raid_disk numbers.
2798 	 */
2799 	mempool_t *newpool, *oldpool;
2800 	struct pool_info *newpoolinfo;
2801 	struct mirror_info *newmirrors;
2802 	struct r1conf *conf = mddev->private;
2803 	int cnt, raid_disks;
2804 	unsigned long flags;
2805 	int d, d2, err;
2806 
2807 	/* Cannot change chunk_size, layout, or level */
2808 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2809 	    mddev->layout != mddev->new_layout ||
2810 	    mddev->level != mddev->new_level) {
2811 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2812 		mddev->new_layout = mddev->layout;
2813 		mddev->new_level = mddev->level;
2814 		return -EINVAL;
2815 	}
2816 
2817 	err = md_allow_write(mddev);
2818 	if (err)
2819 		return err;
2820 
2821 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2822 
2823 	if (raid_disks < conf->raid_disks) {
2824 		cnt=0;
2825 		for (d= 0; d < conf->raid_disks; d++)
2826 			if (conf->mirrors[d].rdev)
2827 				cnt++;
2828 		if (cnt > raid_disks)
2829 			return -EBUSY;
2830 	}
2831 
2832 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2833 	if (!newpoolinfo)
2834 		return -ENOMEM;
2835 	newpoolinfo->mddev = mddev;
2836 	newpoolinfo->raid_disks = raid_disks * 2;
2837 
2838 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2839 				 r1bio_pool_free, newpoolinfo);
2840 	if (!newpool) {
2841 		kfree(newpoolinfo);
2842 		return -ENOMEM;
2843 	}
2844 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2845 			     GFP_KERNEL);
2846 	if (!newmirrors) {
2847 		kfree(newpoolinfo);
2848 		mempool_destroy(newpool);
2849 		return -ENOMEM;
2850 	}
2851 
2852 	raise_barrier(conf);
2853 
2854 	/* ok, everything is stopped */
2855 	oldpool = conf->r1bio_pool;
2856 	conf->r1bio_pool = newpool;
2857 
2858 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2859 		struct md_rdev *rdev = conf->mirrors[d].rdev;
2860 		if (rdev && rdev->raid_disk != d2) {
2861 			sysfs_unlink_rdev(mddev, rdev);
2862 			rdev->raid_disk = d2;
2863 			sysfs_unlink_rdev(mddev, rdev);
2864 			if (sysfs_link_rdev(mddev, rdev))
2865 				printk(KERN_WARNING
2866 				       "md/raid1:%s: cannot register rd%d\n",
2867 				       mdname(mddev), rdev->raid_disk);
2868 		}
2869 		if (rdev)
2870 			newmirrors[d2++].rdev = rdev;
2871 	}
2872 	kfree(conf->mirrors);
2873 	conf->mirrors = newmirrors;
2874 	kfree(conf->poolinfo);
2875 	conf->poolinfo = newpoolinfo;
2876 
2877 	spin_lock_irqsave(&conf->device_lock, flags);
2878 	mddev->degraded += (raid_disks - conf->raid_disks);
2879 	spin_unlock_irqrestore(&conf->device_lock, flags);
2880 	conf->raid_disks = mddev->raid_disks = raid_disks;
2881 	mddev->delta_disks = 0;
2882 
2883 	conf->last_used = 0; /* just make sure it is in-range */
2884 	lower_barrier(conf);
2885 
2886 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2887 	md_wakeup_thread(mddev->thread);
2888 
2889 	mempool_destroy(oldpool);
2890 	return 0;
2891 }
2892 
2893 static void raid1_quiesce(struct mddev *mddev, int state)
2894 {
2895 	struct r1conf *conf = mddev->private;
2896 
2897 	switch(state) {
2898 	case 2: /* wake for suspend */
2899 		wake_up(&conf->wait_barrier);
2900 		break;
2901 	case 1:
2902 		raise_barrier(conf);
2903 		break;
2904 	case 0:
2905 		lower_barrier(conf);
2906 		break;
2907 	}
2908 }
2909 
2910 static void *raid1_takeover(struct mddev *mddev)
2911 {
2912 	/* raid1 can take over:
2913 	 *  raid5 with 2 devices, any layout or chunk size
2914 	 */
2915 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2916 		struct r1conf *conf;
2917 		mddev->new_level = 1;
2918 		mddev->new_layout = 0;
2919 		mddev->new_chunk_sectors = 0;
2920 		conf = setup_conf(mddev);
2921 		if (!IS_ERR(conf))
2922 			conf->barrier = 1;
2923 		return conf;
2924 	}
2925 	return ERR_PTR(-EINVAL);
2926 }
2927 
2928 static struct md_personality raid1_personality =
2929 {
2930 	.name		= "raid1",
2931 	.level		= 1,
2932 	.owner		= THIS_MODULE,
2933 	.make_request	= make_request,
2934 	.run		= run,
2935 	.stop		= stop,
2936 	.status		= status,
2937 	.error_handler	= error,
2938 	.hot_add_disk	= raid1_add_disk,
2939 	.hot_remove_disk= raid1_remove_disk,
2940 	.spare_active	= raid1_spare_active,
2941 	.sync_request	= sync_request,
2942 	.resize		= raid1_resize,
2943 	.size		= raid1_size,
2944 	.check_reshape	= raid1_reshape,
2945 	.quiesce	= raid1_quiesce,
2946 	.takeover	= raid1_takeover,
2947 };
2948 
2949 static int __init raid_init(void)
2950 {
2951 	return register_md_personality(&raid1_personality);
2952 }
2953 
2954 static void raid_exit(void)
2955 {
2956 	unregister_md_personality(&raid1_personality);
2957 }
2958 
2959 module_init(raid_init);
2960 module_exit(raid_exit);
2961 MODULE_LICENSE("GPL");
2962 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2963 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2964 MODULE_ALIAS("md-raid1");
2965 MODULE_ALIAS("md-level-1");
2966 
2967 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
2968