xref: /linux/drivers/md/raid1.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37 
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44 
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define	NR_RAID1_BIOS 256
49 
50 
51 static void unplug_slaves(mddev_t *mddev);
52 
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55 
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58 	struct pool_info *pi = data;
59 	r1bio_t *r1_bio;
60 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61 
62 	/* allocate a r1bio with room for raid_disks entries in the bios array */
63 	r1_bio = kzalloc(size, gfp_flags);
64 	if (!r1_bio)
65 		unplug_slaves(pi->mddev);
66 
67 	return r1_bio;
68 }
69 
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72 	kfree(r1_bio);
73 }
74 
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80 
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83 	struct pool_info *pi = data;
84 	struct page *page;
85 	r1bio_t *r1_bio;
86 	struct bio *bio;
87 	int i, j;
88 
89 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 	if (!r1_bio) {
91 		unplug_slaves(pi->mddev);
92 		return NULL;
93 	}
94 
95 	/*
96 	 * Allocate bios : 1 for reading, n-1 for writing
97 	 */
98 	for (j = pi->raid_disks ; j-- ; ) {
99 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 		if (!bio)
101 			goto out_free_bio;
102 		r1_bio->bios[j] = bio;
103 	}
104 	/*
105 	 * Allocate RESYNC_PAGES data pages and attach them to
106 	 * the first bio.
107 	 * If this is a user-requested check/repair, allocate
108 	 * RESYNC_PAGES for each bio.
109 	 */
110 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 		j = pi->raid_disks;
112 	else
113 		j = 1;
114 	while(j--) {
115 		bio = r1_bio->bios[j];
116 		for (i = 0; i < RESYNC_PAGES; i++) {
117 			page = alloc_page(gfp_flags);
118 			if (unlikely(!page))
119 				goto out_free_pages;
120 
121 			bio->bi_io_vec[i].bv_page = page;
122 		}
123 	}
124 	/* If not user-requests, copy the page pointers to all bios */
125 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 		for (i=0; i<RESYNC_PAGES ; i++)
127 			for (j=1; j<pi->raid_disks; j++)
128 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
130 	}
131 
132 	r1_bio->master_bio = NULL;
133 
134 	return r1_bio;
135 
136 out_free_pages:
137 	for (i=0; i < RESYNC_PAGES ; i++)
138 		for (j=0 ; j < pi->raid_disks; j++)
139 			safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 	j = -1;
141 out_free_bio:
142 	while ( ++j < pi->raid_disks )
143 		bio_put(r1_bio->bios[j]);
144 	r1bio_pool_free(r1_bio, data);
145 	return NULL;
146 }
147 
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150 	struct pool_info *pi = data;
151 	int i,j;
152 	r1bio_t *r1bio = __r1_bio;
153 
154 	for (i = 0; i < RESYNC_PAGES; i++)
155 		for (j = pi->raid_disks; j-- ;) {
156 			if (j == 0 ||
157 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
159 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160 		}
161 	for (i=0 ; i < pi->raid_disks; i++)
162 		bio_put(r1bio->bios[i]);
163 
164 	r1bio_pool_free(r1bio, data);
165 }
166 
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169 	int i;
170 
171 	for (i = 0; i < conf->raid_disks; i++) {
172 		struct bio **bio = r1_bio->bios + i;
173 		if (*bio && *bio != IO_BLOCKED)
174 			bio_put(*bio);
175 		*bio = NULL;
176 	}
177 }
178 
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
182 
183 	/*
184 	 * Wake up any possible resync thread that waits for the device
185 	 * to go idle.
186 	 */
187 	allow_barrier(conf);
188 
189 	put_all_bios(conf, r1_bio);
190 	mempool_free(r1_bio, conf->r1bio_pool);
191 }
192 
193 static void put_buf(r1bio_t *r1_bio)
194 {
195 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 	int i;
197 
198 	for (i=0; i<conf->raid_disks; i++) {
199 		struct bio *bio = r1_bio->bios[i];
200 		if (bio->bi_end_io)
201 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202 	}
203 
204 	mempool_free(r1_bio, conf->r1buf_pool);
205 
206 	lower_barrier(conf);
207 }
208 
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211 	unsigned long flags;
212 	mddev_t *mddev = r1_bio->mddev;
213 	conf_t *conf = mddev_to_conf(mddev);
214 
215 	spin_lock_irqsave(&conf->device_lock, flags);
216 	list_add(&r1_bio->retry_list, &conf->retry_list);
217 	conf->nr_queued ++;
218 	spin_unlock_irqrestore(&conf->device_lock, flags);
219 
220 	wake_up(&conf->wait_barrier);
221 	md_wakeup_thread(mddev->thread);
222 }
223 
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231 	struct bio *bio = r1_bio->master_bio;
232 
233 	/* if nobody has done the final endio yet, do it now */
234 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
237 			(unsigned long long) bio->bi_sector,
238 			(unsigned long long) bio->bi_sector +
239 				(bio->bi_size >> 9) - 1);
240 
241 		bio_endio(bio, bio->bi_size,
242 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243 	}
244 	free_r1bio(r1_bio);
245 }
246 
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
253 
254 	conf->mirrors[disk].head_position =
255 		r1_bio->sector + (r1_bio->sectors);
256 }
257 
258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
259 {
260 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 	int mirror;
263 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
264 
265 	if (bio->bi_size)
266 		return 1;
267 
268 	mirror = r1_bio->read_disk;
269 	/*
270 	 * this branch is our 'one mirror IO has finished' event handler:
271 	 */
272 	update_head_pos(mirror, r1_bio);
273 
274 	if (uptodate || conf->working_disks <= 1) {
275 		/*
276 		 * Set R1BIO_Uptodate in our master bio, so that
277 		 * we will return a good error code for to the higher
278 		 * levels even if IO on some other mirrored buffer fails.
279 		 *
280 		 * The 'master' represents the composite IO operation to
281 		 * user-side. So if something waits for IO, then it will
282 		 * wait for the 'master' bio.
283 		 */
284 		if (uptodate)
285 			set_bit(R1BIO_Uptodate, &r1_bio->state);
286 
287 		raid_end_bio_io(r1_bio);
288 	} else {
289 		/*
290 		 * oops, read error:
291 		 */
292 		char b[BDEVNAME_SIZE];
293 		if (printk_ratelimit())
294 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
295 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
296 		reschedule_retry(r1_bio);
297 	}
298 
299 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
300 	return 0;
301 }
302 
303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
304 {
305 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 	struct bio *to_put = NULL;
310 
311 	if (bio->bi_size)
312 		return 1;
313 
314 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
315 		if (r1_bio->bios[mirror] == bio)
316 			break;
317 
318 	if (error == -ENOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
319 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
320 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
321 		r1_bio->mddev->barriers_work = 0;
322 	} else {
323 		/*
324 		 * this branch is our 'one mirror IO has finished' event handler:
325 		 */
326 		r1_bio->bios[mirror] = NULL;
327 		to_put = bio;
328 		if (!uptodate) {
329 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
330 			/* an I/O failed, we can't clear the bitmap */
331 			set_bit(R1BIO_Degraded, &r1_bio->state);
332 		} else
333 			/*
334 			 * Set R1BIO_Uptodate in our master bio, so that
335 			 * we will return a good error code for to the higher
336 			 * levels even if IO on some other mirrored buffer fails.
337 			 *
338 			 * The 'master' represents the composite IO operation to
339 			 * user-side. So if something waits for IO, then it will
340 			 * wait for the 'master' bio.
341 			 */
342 			set_bit(R1BIO_Uptodate, &r1_bio->state);
343 
344 		update_head_pos(mirror, r1_bio);
345 
346 		if (behind) {
347 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
348 				atomic_dec(&r1_bio->behind_remaining);
349 
350 			/* In behind mode, we ACK the master bio once the I/O has safely
351 			 * reached all non-writemostly disks. Setting the Returned bit
352 			 * ensures that this gets done only once -- we don't ever want to
353 			 * return -EIO here, instead we'll wait */
354 
355 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
356 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
357 				/* Maybe we can return now */
358 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
359 					struct bio *mbio = r1_bio->master_bio;
360 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
361 					       (unsigned long long) mbio->bi_sector,
362 					       (unsigned long long) mbio->bi_sector +
363 					       (mbio->bi_size >> 9) - 1);
364 					bio_endio(mbio, mbio->bi_size, 0);
365 				}
366 			}
367 		}
368 	}
369 	/*
370 	 *
371 	 * Let's see if all mirrored write operations have finished
372 	 * already.
373 	 */
374 	if (atomic_dec_and_test(&r1_bio->remaining)) {
375 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
376 			reschedule_retry(r1_bio);
377 			/* Don't dec_pending yet, we want to hold
378 			 * the reference over the retry
379 			 */
380 			goto out;
381 		}
382 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383 			/* free extra copy of the data pages */
384 			int i = bio->bi_vcnt;
385 			while (i--)
386 				safe_put_page(bio->bi_io_vec[i].bv_page);
387 		}
388 		/* clear the bitmap if all writes complete successfully */
389 		bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
390 				r1_bio->sectors,
391 				!test_bit(R1BIO_Degraded, &r1_bio->state),
392 				behind);
393 		md_write_end(r1_bio->mddev);
394 		raid_end_bio_io(r1_bio);
395 	}
396 
397 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
398  out:
399 	if (to_put)
400 		bio_put(to_put);
401 
402 	return 0;
403 }
404 
405 
406 /*
407  * This routine returns the disk from which the requested read should
408  * be done. There is a per-array 'next expected sequential IO' sector
409  * number - if this matches on the next IO then we use the last disk.
410  * There is also a per-disk 'last know head position' sector that is
411  * maintained from IRQ contexts, both the normal and the resync IO
412  * completion handlers update this position correctly. If there is no
413  * perfect sequential match then we pick the disk whose head is closest.
414  *
415  * If there are 2 mirrors in the same 2 devices, performance degrades
416  * because position is mirror, not device based.
417  *
418  * The rdev for the device selected will have nr_pending incremented.
419  */
420 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
421 {
422 	const unsigned long this_sector = r1_bio->sector;
423 	int new_disk = conf->last_used, disk = new_disk;
424 	int wonly_disk = -1;
425 	const int sectors = r1_bio->sectors;
426 	sector_t new_distance, current_distance;
427 	mdk_rdev_t *rdev;
428 
429 	rcu_read_lock();
430 	/*
431 	 * Check if we can balance. We can balance on the whole
432 	 * device if no resync is going on, or below the resync window.
433 	 * We take the first readable disk when above the resync window.
434 	 */
435  retry:
436 	if (conf->mddev->recovery_cp < MaxSector &&
437 	    (this_sector + sectors >= conf->next_resync)) {
438 		/* Choose the first operation device, for consistancy */
439 		new_disk = 0;
440 
441 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
442 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
443 		     !rdev || !test_bit(In_sync, &rdev->flags)
444 			     || test_bit(WriteMostly, &rdev->flags);
445 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
446 
447 			if (rdev && test_bit(In_sync, &rdev->flags) &&
448 				r1_bio->bios[new_disk] != IO_BLOCKED)
449 				wonly_disk = new_disk;
450 
451 			if (new_disk == conf->raid_disks - 1) {
452 				new_disk = wonly_disk;
453 				break;
454 			}
455 		}
456 		goto rb_out;
457 	}
458 
459 
460 	/* make sure the disk is operational */
461 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
462 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
463 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
464 		     test_bit(WriteMostly, &rdev->flags);
465 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
466 
467 		if (rdev && test_bit(In_sync, &rdev->flags) &&
468 		    r1_bio->bios[new_disk] != IO_BLOCKED)
469 			wonly_disk = new_disk;
470 
471 		if (new_disk <= 0)
472 			new_disk = conf->raid_disks;
473 		new_disk--;
474 		if (new_disk == disk) {
475 			new_disk = wonly_disk;
476 			break;
477 		}
478 	}
479 
480 	if (new_disk < 0)
481 		goto rb_out;
482 
483 	disk = new_disk;
484 	/* now disk == new_disk == starting point for search */
485 
486 	/*
487 	 * Don't change to another disk for sequential reads:
488 	 */
489 	if (conf->next_seq_sect == this_sector)
490 		goto rb_out;
491 	if (this_sector == conf->mirrors[new_disk].head_position)
492 		goto rb_out;
493 
494 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
495 
496 	/* Find the disk whose head is closest */
497 
498 	do {
499 		if (disk <= 0)
500 			disk = conf->raid_disks;
501 		disk--;
502 
503 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
504 
505 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
506 		    !test_bit(In_sync, &rdev->flags) ||
507 		    test_bit(WriteMostly, &rdev->flags))
508 			continue;
509 
510 		if (!atomic_read(&rdev->nr_pending)) {
511 			new_disk = disk;
512 			break;
513 		}
514 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
515 		if (new_distance < current_distance) {
516 			current_distance = new_distance;
517 			new_disk = disk;
518 		}
519 	} while (disk != conf->last_used);
520 
521  rb_out:
522 
523 
524 	if (new_disk >= 0) {
525 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
526 		if (!rdev)
527 			goto retry;
528 		atomic_inc(&rdev->nr_pending);
529 		if (!test_bit(In_sync, &rdev->flags)) {
530 			/* cannot risk returning a device that failed
531 			 * before we inc'ed nr_pending
532 			 */
533 			rdev_dec_pending(rdev, conf->mddev);
534 			goto retry;
535 		}
536 		conf->next_seq_sect = this_sector + sectors;
537 		conf->last_used = new_disk;
538 	}
539 	rcu_read_unlock();
540 
541 	return new_disk;
542 }
543 
544 static void unplug_slaves(mddev_t *mddev)
545 {
546 	conf_t *conf = mddev_to_conf(mddev);
547 	int i;
548 
549 	rcu_read_lock();
550 	for (i=0; i<mddev->raid_disks; i++) {
551 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
552 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
553 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
554 
555 			atomic_inc(&rdev->nr_pending);
556 			rcu_read_unlock();
557 
558 			if (r_queue->unplug_fn)
559 				r_queue->unplug_fn(r_queue);
560 
561 			rdev_dec_pending(rdev, mddev);
562 			rcu_read_lock();
563 		}
564 	}
565 	rcu_read_unlock();
566 }
567 
568 static void raid1_unplug(request_queue_t *q)
569 {
570 	mddev_t *mddev = q->queuedata;
571 
572 	unplug_slaves(mddev);
573 	md_wakeup_thread(mddev->thread);
574 }
575 
576 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
577 			     sector_t *error_sector)
578 {
579 	mddev_t *mddev = q->queuedata;
580 	conf_t *conf = mddev_to_conf(mddev);
581 	int i, ret = 0;
582 
583 	rcu_read_lock();
584 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
585 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
586 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
587 			struct block_device *bdev = rdev->bdev;
588 			request_queue_t *r_queue = bdev_get_queue(bdev);
589 
590 			if (!r_queue->issue_flush_fn)
591 				ret = -EOPNOTSUPP;
592 			else {
593 				atomic_inc(&rdev->nr_pending);
594 				rcu_read_unlock();
595 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
596 							      error_sector);
597 				rdev_dec_pending(rdev, mddev);
598 				rcu_read_lock();
599 			}
600 		}
601 	}
602 	rcu_read_unlock();
603 	return ret;
604 }
605 
606 /* Barriers....
607  * Sometimes we need to suspend IO while we do something else,
608  * either some resync/recovery, or reconfigure the array.
609  * To do this we raise a 'barrier'.
610  * The 'barrier' is a counter that can be raised multiple times
611  * to count how many activities are happening which preclude
612  * normal IO.
613  * We can only raise the barrier if there is no pending IO.
614  * i.e. if nr_pending == 0.
615  * We choose only to raise the barrier if no-one is waiting for the
616  * barrier to go down.  This means that as soon as an IO request
617  * is ready, no other operations which require a barrier will start
618  * until the IO request has had a chance.
619  *
620  * So: regular IO calls 'wait_barrier'.  When that returns there
621  *    is no backgroup IO happening,  It must arrange to call
622  *    allow_barrier when it has finished its IO.
623  * backgroup IO calls must call raise_barrier.  Once that returns
624  *    there is no normal IO happeing.  It must arrange to call
625  *    lower_barrier when the particular background IO completes.
626  */
627 #define RESYNC_DEPTH 32
628 
629 static void raise_barrier(conf_t *conf)
630 {
631 	spin_lock_irq(&conf->resync_lock);
632 
633 	/* Wait until no block IO is waiting */
634 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
635 			    conf->resync_lock,
636 			    raid1_unplug(conf->mddev->queue));
637 
638 	/* block any new IO from starting */
639 	conf->barrier++;
640 
641 	/* No wait for all pending IO to complete */
642 	wait_event_lock_irq(conf->wait_barrier,
643 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
644 			    conf->resync_lock,
645 			    raid1_unplug(conf->mddev->queue));
646 
647 	spin_unlock_irq(&conf->resync_lock);
648 }
649 
650 static void lower_barrier(conf_t *conf)
651 {
652 	unsigned long flags;
653 	spin_lock_irqsave(&conf->resync_lock, flags);
654 	conf->barrier--;
655 	spin_unlock_irqrestore(&conf->resync_lock, flags);
656 	wake_up(&conf->wait_barrier);
657 }
658 
659 static void wait_barrier(conf_t *conf)
660 {
661 	spin_lock_irq(&conf->resync_lock);
662 	if (conf->barrier) {
663 		conf->nr_waiting++;
664 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
665 				    conf->resync_lock,
666 				    raid1_unplug(conf->mddev->queue));
667 		conf->nr_waiting--;
668 	}
669 	conf->nr_pending++;
670 	spin_unlock_irq(&conf->resync_lock);
671 }
672 
673 static void allow_barrier(conf_t *conf)
674 {
675 	unsigned long flags;
676 	spin_lock_irqsave(&conf->resync_lock, flags);
677 	conf->nr_pending--;
678 	spin_unlock_irqrestore(&conf->resync_lock, flags);
679 	wake_up(&conf->wait_barrier);
680 }
681 
682 static void freeze_array(conf_t *conf)
683 {
684 	/* stop syncio and normal IO and wait for everything to
685 	 * go quite.
686 	 * We increment barrier and nr_waiting, and then
687 	 * wait until barrier+nr_pending match nr_queued+2
688 	 */
689 	spin_lock_irq(&conf->resync_lock);
690 	conf->barrier++;
691 	conf->nr_waiting++;
692 	wait_event_lock_irq(conf->wait_barrier,
693 			    conf->barrier+conf->nr_pending == conf->nr_queued+2,
694 			    conf->resync_lock,
695 			    raid1_unplug(conf->mddev->queue));
696 	spin_unlock_irq(&conf->resync_lock);
697 }
698 static void unfreeze_array(conf_t *conf)
699 {
700 	/* reverse the effect of the freeze */
701 	spin_lock_irq(&conf->resync_lock);
702 	conf->barrier--;
703 	conf->nr_waiting--;
704 	wake_up(&conf->wait_barrier);
705 	spin_unlock_irq(&conf->resync_lock);
706 }
707 
708 
709 /* duplicate the data pages for behind I/O */
710 static struct page **alloc_behind_pages(struct bio *bio)
711 {
712 	int i;
713 	struct bio_vec *bvec;
714 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
715 					GFP_NOIO);
716 	if (unlikely(!pages))
717 		goto do_sync_io;
718 
719 	bio_for_each_segment(bvec, bio, i) {
720 		pages[i] = alloc_page(GFP_NOIO);
721 		if (unlikely(!pages[i]))
722 			goto do_sync_io;
723 		memcpy(kmap(pages[i]) + bvec->bv_offset,
724 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
725 		kunmap(pages[i]);
726 		kunmap(bvec->bv_page);
727 	}
728 
729 	return pages;
730 
731 do_sync_io:
732 	if (pages)
733 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
734 			put_page(pages[i]);
735 	kfree(pages);
736 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
737 	return NULL;
738 }
739 
740 static int make_request(request_queue_t *q, struct bio * bio)
741 {
742 	mddev_t *mddev = q->queuedata;
743 	conf_t *conf = mddev_to_conf(mddev);
744 	mirror_info_t *mirror;
745 	r1bio_t *r1_bio;
746 	struct bio *read_bio;
747 	int i, targets = 0, disks;
748 	mdk_rdev_t *rdev;
749 	struct bitmap *bitmap = mddev->bitmap;
750 	unsigned long flags;
751 	struct bio_list bl;
752 	struct page **behind_pages = NULL;
753 	const int rw = bio_data_dir(bio);
754 	int do_barriers;
755 
756 	if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
757 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
758 		return 0;
759 	}
760 
761 	/*
762 	 * Register the new request and wait if the reconstruction
763 	 * thread has put up a bar for new requests.
764 	 * Continue immediately if no resync is active currently.
765 	 */
766 	md_write_start(mddev, bio); /* wait on superblock update early */
767 
768 	wait_barrier(conf);
769 
770 	disk_stat_inc(mddev->gendisk, ios[rw]);
771 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
772 
773 	/*
774 	 * make_request() can abort the operation when READA is being
775 	 * used and no empty request is available.
776 	 *
777 	 */
778 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
779 
780 	r1_bio->master_bio = bio;
781 	r1_bio->sectors = bio->bi_size >> 9;
782 	r1_bio->state = 0;
783 	r1_bio->mddev = mddev;
784 	r1_bio->sector = bio->bi_sector;
785 
786 	if (rw == READ) {
787 		/*
788 		 * read balancing logic:
789 		 */
790 		int rdisk = read_balance(conf, r1_bio);
791 
792 		if (rdisk < 0) {
793 			/* couldn't find anywhere to read from */
794 			raid_end_bio_io(r1_bio);
795 			return 0;
796 		}
797 		mirror = conf->mirrors + rdisk;
798 
799 		r1_bio->read_disk = rdisk;
800 
801 		read_bio = bio_clone(bio, GFP_NOIO);
802 
803 		r1_bio->bios[rdisk] = read_bio;
804 
805 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
806 		read_bio->bi_bdev = mirror->rdev->bdev;
807 		read_bio->bi_end_io = raid1_end_read_request;
808 		read_bio->bi_rw = READ;
809 		read_bio->bi_private = r1_bio;
810 
811 		generic_make_request(read_bio);
812 		return 0;
813 	}
814 
815 	/*
816 	 * WRITE:
817 	 */
818 	/* first select target devices under spinlock and
819 	 * inc refcount on their rdev.  Record them by setting
820 	 * bios[x] to bio
821 	 */
822 	disks = conf->raid_disks;
823 #if 0
824 	{ static int first=1;
825 	if (first) printk("First Write sector %llu disks %d\n",
826 			  (unsigned long long)r1_bio->sector, disks);
827 	first = 0;
828 	}
829 #endif
830 	rcu_read_lock();
831 	for (i = 0;  i < disks; i++) {
832 		if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
833 		    !test_bit(Faulty, &rdev->flags)) {
834 			atomic_inc(&rdev->nr_pending);
835 			if (test_bit(Faulty, &rdev->flags)) {
836 				rdev_dec_pending(rdev, mddev);
837 				r1_bio->bios[i] = NULL;
838 			} else
839 				r1_bio->bios[i] = bio;
840 			targets++;
841 		} else
842 			r1_bio->bios[i] = NULL;
843 	}
844 	rcu_read_unlock();
845 
846 	BUG_ON(targets == 0); /* we never fail the last device */
847 
848 	if (targets < conf->raid_disks) {
849 		/* array is degraded, we will not clear the bitmap
850 		 * on I/O completion (see raid1_end_write_request) */
851 		set_bit(R1BIO_Degraded, &r1_bio->state);
852 	}
853 
854 	/* do behind I/O ? */
855 	if (bitmap &&
856 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
857 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
858 		set_bit(R1BIO_BehindIO, &r1_bio->state);
859 
860 	atomic_set(&r1_bio->remaining, 0);
861 	atomic_set(&r1_bio->behind_remaining, 0);
862 
863 	do_barriers = bio_barrier(bio);
864 	if (do_barriers)
865 		set_bit(R1BIO_Barrier, &r1_bio->state);
866 
867 	bio_list_init(&bl);
868 	for (i = 0; i < disks; i++) {
869 		struct bio *mbio;
870 		if (!r1_bio->bios[i])
871 			continue;
872 
873 		mbio = bio_clone(bio, GFP_NOIO);
874 		r1_bio->bios[i] = mbio;
875 
876 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
877 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
878 		mbio->bi_end_io	= raid1_end_write_request;
879 		mbio->bi_rw = WRITE | do_barriers;
880 		mbio->bi_private = r1_bio;
881 
882 		if (behind_pages) {
883 			struct bio_vec *bvec;
884 			int j;
885 
886 			/* Yes, I really want the '__' version so that
887 			 * we clear any unused pointer in the io_vec, rather
888 			 * than leave them unchanged.  This is important
889 			 * because when we come to free the pages, we won't
890 			 * know the originial bi_idx, so we just free
891 			 * them all
892 			 */
893 			__bio_for_each_segment(bvec, mbio, j, 0)
894 				bvec->bv_page = behind_pages[j];
895 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
896 				atomic_inc(&r1_bio->behind_remaining);
897 		}
898 
899 		atomic_inc(&r1_bio->remaining);
900 
901 		bio_list_add(&bl, mbio);
902 	}
903 	kfree(behind_pages); /* the behind pages are attached to the bios now */
904 
905 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
906 				test_bit(R1BIO_BehindIO, &r1_bio->state));
907 	spin_lock_irqsave(&conf->device_lock, flags);
908 	bio_list_merge(&conf->pending_bio_list, &bl);
909 	bio_list_init(&bl);
910 
911 	blk_plug_device(mddev->queue);
912 	spin_unlock_irqrestore(&conf->device_lock, flags);
913 
914 #if 0
915 	while ((bio = bio_list_pop(&bl)) != NULL)
916 		generic_make_request(bio);
917 #endif
918 
919 	return 0;
920 }
921 
922 static void status(struct seq_file *seq, mddev_t *mddev)
923 {
924 	conf_t *conf = mddev_to_conf(mddev);
925 	int i;
926 
927 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
928 						conf->working_disks);
929 	for (i = 0; i < conf->raid_disks; i++)
930 		seq_printf(seq, "%s",
931 			      conf->mirrors[i].rdev &&
932 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
933 	seq_printf(seq, "]");
934 }
935 
936 
937 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
938 {
939 	char b[BDEVNAME_SIZE];
940 	conf_t *conf = mddev_to_conf(mddev);
941 
942 	/*
943 	 * If it is not operational, then we have already marked it as dead
944 	 * else if it is the last working disks, ignore the error, let the
945 	 * next level up know.
946 	 * else mark the drive as failed
947 	 */
948 	if (test_bit(In_sync, &rdev->flags)
949 	    && conf->working_disks == 1)
950 		/*
951 		 * Don't fail the drive, act as though we were just a
952 		 * normal single drive
953 		 */
954 		return;
955 	if (test_bit(In_sync, &rdev->flags)) {
956 		mddev->degraded++;
957 		conf->working_disks--;
958 		/*
959 		 * if recovery is running, make sure it aborts.
960 		 */
961 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
962 	}
963 	clear_bit(In_sync, &rdev->flags);
964 	set_bit(Faulty, &rdev->flags);
965 	mddev->sb_dirty = 1;
966 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
967 		"	Operation continuing on %d devices\n",
968 		bdevname(rdev->bdev,b), conf->working_disks);
969 }
970 
971 static void print_conf(conf_t *conf)
972 {
973 	int i;
974 	mirror_info_t *tmp;
975 
976 	printk("RAID1 conf printout:\n");
977 	if (!conf) {
978 		printk("(!conf)\n");
979 		return;
980 	}
981 	printk(" --- wd:%d rd:%d\n", conf->working_disks,
982 		conf->raid_disks);
983 
984 	for (i = 0; i < conf->raid_disks; i++) {
985 		char b[BDEVNAME_SIZE];
986 		tmp = conf->mirrors + i;
987 		if (tmp->rdev)
988 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
989 				i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags),
990 				bdevname(tmp->rdev->bdev,b));
991 	}
992 }
993 
994 static void close_sync(conf_t *conf)
995 {
996 	wait_barrier(conf);
997 	allow_barrier(conf);
998 
999 	mempool_destroy(conf->r1buf_pool);
1000 	conf->r1buf_pool = NULL;
1001 }
1002 
1003 static int raid1_spare_active(mddev_t *mddev)
1004 {
1005 	int i;
1006 	conf_t *conf = mddev->private;
1007 	mirror_info_t *tmp;
1008 
1009 	/*
1010 	 * Find all failed disks within the RAID1 configuration
1011 	 * and mark them readable
1012 	 */
1013 	for (i = 0; i < conf->raid_disks; i++) {
1014 		tmp = conf->mirrors + i;
1015 		if (tmp->rdev
1016 		    && !test_bit(Faulty, &tmp->rdev->flags)
1017 		    && !test_bit(In_sync, &tmp->rdev->flags)) {
1018 			conf->working_disks++;
1019 			mddev->degraded--;
1020 			set_bit(In_sync, &tmp->rdev->flags);
1021 		}
1022 	}
1023 
1024 	print_conf(conf);
1025 	return 0;
1026 }
1027 
1028 
1029 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1030 {
1031 	conf_t *conf = mddev->private;
1032 	int found = 0;
1033 	int mirror = 0;
1034 	mirror_info_t *p;
1035 
1036 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
1037 		if ( !(p=conf->mirrors+mirror)->rdev) {
1038 
1039 			blk_queue_stack_limits(mddev->queue,
1040 					       rdev->bdev->bd_disk->queue);
1041 			/* as we don't honour merge_bvec_fn, we must never risk
1042 			 * violating it, so limit ->max_sector to one PAGE, as
1043 			 * a one page request is never in violation.
1044 			 */
1045 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1046 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1047 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1048 
1049 			p->head_position = 0;
1050 			rdev->raid_disk = mirror;
1051 			found = 1;
1052 			/* As all devices are equivalent, we don't need a full recovery
1053 			 * if this was recently any drive of the array
1054 			 */
1055 			if (rdev->saved_raid_disk < 0)
1056 				conf->fullsync = 1;
1057 			rcu_assign_pointer(p->rdev, rdev);
1058 			break;
1059 		}
1060 
1061 	print_conf(conf);
1062 	return found;
1063 }
1064 
1065 static int raid1_remove_disk(mddev_t *mddev, int number)
1066 {
1067 	conf_t *conf = mddev->private;
1068 	int err = 0;
1069 	mdk_rdev_t *rdev;
1070 	mirror_info_t *p = conf->mirrors+ number;
1071 
1072 	print_conf(conf);
1073 	rdev = p->rdev;
1074 	if (rdev) {
1075 		if (test_bit(In_sync, &rdev->flags) ||
1076 		    atomic_read(&rdev->nr_pending)) {
1077 			err = -EBUSY;
1078 			goto abort;
1079 		}
1080 		p->rdev = NULL;
1081 		synchronize_rcu();
1082 		if (atomic_read(&rdev->nr_pending)) {
1083 			/* lost the race, try later */
1084 			err = -EBUSY;
1085 			p->rdev = rdev;
1086 		}
1087 	}
1088 abort:
1089 
1090 	print_conf(conf);
1091 	return err;
1092 }
1093 
1094 
1095 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1096 {
1097 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1098 	int i;
1099 
1100 	if (bio->bi_size)
1101 		return 1;
1102 
1103 	for (i=r1_bio->mddev->raid_disks; i--; )
1104 		if (r1_bio->bios[i] == bio)
1105 			break;
1106 	BUG_ON(i < 0);
1107 	update_head_pos(i, r1_bio);
1108 	/*
1109 	 * we have read a block, now it needs to be re-written,
1110 	 * or re-read if the read failed.
1111 	 * We don't do much here, just schedule handling by raid1d
1112 	 */
1113 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1114 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1115 
1116 	if (atomic_dec_and_test(&r1_bio->remaining))
1117 		reschedule_retry(r1_bio);
1118 	return 0;
1119 }
1120 
1121 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1122 {
1123 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1124 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1125 	mddev_t *mddev = r1_bio->mddev;
1126 	conf_t *conf = mddev_to_conf(mddev);
1127 	int i;
1128 	int mirror=0;
1129 
1130 	if (bio->bi_size)
1131 		return 1;
1132 
1133 	for (i = 0; i < conf->raid_disks; i++)
1134 		if (r1_bio->bios[i] == bio) {
1135 			mirror = i;
1136 			break;
1137 		}
1138 	if (!uptodate)
1139 		md_error(mddev, conf->mirrors[mirror].rdev);
1140 
1141 	update_head_pos(mirror, r1_bio);
1142 
1143 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1144 		md_done_sync(mddev, r1_bio->sectors, uptodate);
1145 		put_buf(r1_bio);
1146 	}
1147 	return 0;
1148 }
1149 
1150 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1151 {
1152 	conf_t *conf = mddev_to_conf(mddev);
1153 	int i;
1154 	int disks = conf->raid_disks;
1155 	struct bio *bio, *wbio;
1156 
1157 	bio = r1_bio->bios[r1_bio->read_disk];
1158 
1159 
1160 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1161 		/* We have read all readable devices.  If we haven't
1162 		 * got the block, then there is no hope left.
1163 		 * If we have, then we want to do a comparison
1164 		 * and skip the write if everything is the same.
1165 		 * If any blocks failed to read, then we need to
1166 		 * attempt an over-write
1167 		 */
1168 		int primary;
1169 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1170 			for (i=0; i<mddev->raid_disks; i++)
1171 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1172 					md_error(mddev, conf->mirrors[i].rdev);
1173 
1174 			md_done_sync(mddev, r1_bio->sectors, 1);
1175 			put_buf(r1_bio);
1176 			return;
1177 		}
1178 		for (primary=0; primary<mddev->raid_disks; primary++)
1179 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1180 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1181 				r1_bio->bios[primary]->bi_end_io = NULL;
1182 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1183 				break;
1184 			}
1185 		r1_bio->read_disk = primary;
1186 		for (i=0; i<mddev->raid_disks; i++)
1187 			if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
1188 			    test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
1189 				int j;
1190 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1191 				struct bio *pbio = r1_bio->bios[primary];
1192 				struct bio *sbio = r1_bio->bios[i];
1193 				for (j = vcnt; j-- ; )
1194 					if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
1195 						   page_address(sbio->bi_io_vec[j].bv_page),
1196 						   PAGE_SIZE))
1197 						break;
1198 				if (j >= 0)
1199 					mddev->resync_mismatches += r1_bio->sectors;
1200 				if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1201 					sbio->bi_end_io = NULL;
1202 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1203 				} else {
1204 					/* fixup the bio for reuse */
1205 					sbio->bi_vcnt = vcnt;
1206 					sbio->bi_size = r1_bio->sectors << 9;
1207 					sbio->bi_idx = 0;
1208 					sbio->bi_phys_segments = 0;
1209 					sbio->bi_hw_segments = 0;
1210 					sbio->bi_hw_front_size = 0;
1211 					sbio->bi_hw_back_size = 0;
1212 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1213 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1214 					sbio->bi_next = NULL;
1215 					sbio->bi_sector = r1_bio->sector +
1216 						conf->mirrors[i].rdev->data_offset;
1217 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1218 				}
1219 			}
1220 	}
1221 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1222 		/* ouch - failed to read all of that.
1223 		 * Try some synchronous reads of other devices to get
1224 		 * good data, much like with normal read errors.  Only
1225 		 * read into the pages we already have so they we don't
1226 		 * need to re-issue the read request.
1227 		 * We don't need to freeze the array, because being in an
1228 		 * active sync request, there is no normal IO, and
1229 		 * no overlapping syncs.
1230 		 */
1231 		sector_t sect = r1_bio->sector;
1232 		int sectors = r1_bio->sectors;
1233 		int idx = 0;
1234 
1235 		while(sectors) {
1236 			int s = sectors;
1237 			int d = r1_bio->read_disk;
1238 			int success = 0;
1239 			mdk_rdev_t *rdev;
1240 
1241 			if (s > (PAGE_SIZE>>9))
1242 				s = PAGE_SIZE >> 9;
1243 			do {
1244 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1245 					rdev = conf->mirrors[d].rdev;
1246 					if (sync_page_io(rdev->bdev,
1247 							 sect + rdev->data_offset,
1248 							 s<<9,
1249 							 bio->bi_io_vec[idx].bv_page,
1250 							 READ)) {
1251 						success = 1;
1252 						break;
1253 					}
1254 				}
1255 				d++;
1256 				if (d == conf->raid_disks)
1257 					d = 0;
1258 			} while (!success && d != r1_bio->read_disk);
1259 
1260 			if (success) {
1261 				int start = d;
1262 				/* write it back and re-read */
1263 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1264 				while (d != r1_bio->read_disk) {
1265 					if (d == 0)
1266 						d = conf->raid_disks;
1267 					d--;
1268 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1269 						continue;
1270 					rdev = conf->mirrors[d].rdev;
1271 					atomic_add(s, &rdev->corrected_errors);
1272 					if (sync_page_io(rdev->bdev,
1273 							 sect + rdev->data_offset,
1274 							 s<<9,
1275 							 bio->bi_io_vec[idx].bv_page,
1276 							 WRITE) == 0)
1277 						md_error(mddev, rdev);
1278 				}
1279 				d = start;
1280 				while (d != r1_bio->read_disk) {
1281 					if (d == 0)
1282 						d = conf->raid_disks;
1283 					d--;
1284 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1285 						continue;
1286 					rdev = conf->mirrors[d].rdev;
1287 					if (sync_page_io(rdev->bdev,
1288 							 sect + rdev->data_offset,
1289 							 s<<9,
1290 							 bio->bi_io_vec[idx].bv_page,
1291 							 READ) == 0)
1292 						md_error(mddev, rdev);
1293 				}
1294 			} else {
1295 				char b[BDEVNAME_SIZE];
1296 				/* Cannot read from anywhere, array is toast */
1297 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1298 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1299 				       " for block %llu\n",
1300 				       bdevname(bio->bi_bdev,b),
1301 				       (unsigned long long)r1_bio->sector);
1302 				md_done_sync(mddev, r1_bio->sectors, 0);
1303 				put_buf(r1_bio);
1304 				return;
1305 			}
1306 			sectors -= s;
1307 			sect += s;
1308 			idx ++;
1309 		}
1310 	}
1311 
1312 	/*
1313 	 * schedule writes
1314 	 */
1315 	atomic_set(&r1_bio->remaining, 1);
1316 	for (i = 0; i < disks ; i++) {
1317 		wbio = r1_bio->bios[i];
1318 		if (wbio->bi_end_io == NULL ||
1319 		    (wbio->bi_end_io == end_sync_read &&
1320 		     (i == r1_bio->read_disk ||
1321 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1322 			continue;
1323 
1324 		wbio->bi_rw = WRITE;
1325 		wbio->bi_end_io = end_sync_write;
1326 		atomic_inc(&r1_bio->remaining);
1327 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1328 
1329 		generic_make_request(wbio);
1330 	}
1331 
1332 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1333 		/* if we're here, all write(s) have completed, so clean up */
1334 		md_done_sync(mddev, r1_bio->sectors, 1);
1335 		put_buf(r1_bio);
1336 	}
1337 }
1338 
1339 /*
1340  * This is a kernel thread which:
1341  *
1342  *	1.	Retries failed read operations on working mirrors.
1343  *	2.	Updates the raid superblock when problems encounter.
1344  *	3.	Performs writes following reads for array syncronising.
1345  */
1346 
1347 static void raid1d(mddev_t *mddev)
1348 {
1349 	r1bio_t *r1_bio;
1350 	struct bio *bio;
1351 	unsigned long flags;
1352 	conf_t *conf = mddev_to_conf(mddev);
1353 	struct list_head *head = &conf->retry_list;
1354 	int unplug=0;
1355 	mdk_rdev_t *rdev;
1356 
1357 	md_check_recovery(mddev);
1358 
1359 	for (;;) {
1360 		char b[BDEVNAME_SIZE];
1361 		spin_lock_irqsave(&conf->device_lock, flags);
1362 
1363 		if (conf->pending_bio_list.head) {
1364 			bio = bio_list_get(&conf->pending_bio_list);
1365 			blk_remove_plug(mddev->queue);
1366 			spin_unlock_irqrestore(&conf->device_lock, flags);
1367 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1368 			if (bitmap_unplug(mddev->bitmap) != 0)
1369 				printk("%s: bitmap file write failed!\n", mdname(mddev));
1370 
1371 			while (bio) { /* submit pending writes */
1372 				struct bio *next = bio->bi_next;
1373 				bio->bi_next = NULL;
1374 				generic_make_request(bio);
1375 				bio = next;
1376 			}
1377 			unplug = 1;
1378 
1379 			continue;
1380 		}
1381 
1382 		if (list_empty(head))
1383 			break;
1384 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1385 		list_del(head->prev);
1386 		conf->nr_queued--;
1387 		spin_unlock_irqrestore(&conf->device_lock, flags);
1388 
1389 		mddev = r1_bio->mddev;
1390 		conf = mddev_to_conf(mddev);
1391 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1392 			sync_request_write(mddev, r1_bio);
1393 			unplug = 1;
1394 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1395 			/* some requests in the r1bio were BIO_RW_BARRIER
1396 			 * requests which failed with -ENOTSUPP.  Hohumm..
1397 			 * Better resubmit without the barrier.
1398 			 * We know which devices to resubmit for, because
1399 			 * all others have had their bios[] entry cleared.
1400 			 */
1401 			int i;
1402 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1403 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1404 			for (i=0; i < conf->raid_disks; i++)
1405 				if (r1_bio->bios[i]) {
1406 					struct bio_vec *bvec;
1407 					int j;
1408 
1409 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1410 					/* copy pages from the failed bio, as
1411 					 * this might be a write-behind device */
1412 					__bio_for_each_segment(bvec, bio, j, 0)
1413 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1414 					bio_put(r1_bio->bios[i]);
1415 					bio->bi_sector = r1_bio->sector +
1416 						conf->mirrors[i].rdev->data_offset;
1417 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1418 					bio->bi_end_io = raid1_end_write_request;
1419 					bio->bi_rw = WRITE;
1420 					bio->bi_private = r1_bio;
1421 					r1_bio->bios[i] = bio;
1422 					generic_make_request(bio);
1423 				}
1424 		} else {
1425 			int disk;
1426 
1427 			/* we got a read error. Maybe the drive is bad.  Maybe just
1428 			 * the block and we can fix it.
1429 			 * We freeze all other IO, and try reading the block from
1430 			 * other devices.  When we find one, we re-write
1431 			 * and check it that fixes the read error.
1432 			 * This is all done synchronously while the array is
1433 			 * frozen
1434 			 */
1435 			sector_t sect = r1_bio->sector;
1436 			int sectors = r1_bio->sectors;
1437 			freeze_array(conf);
1438 			if (mddev->ro == 0) while(sectors) {
1439 				int s = sectors;
1440 				int d = r1_bio->read_disk;
1441 				int success = 0;
1442 
1443 				if (s > (PAGE_SIZE>>9))
1444 					s = PAGE_SIZE >> 9;
1445 
1446 				do {
1447 					rdev = conf->mirrors[d].rdev;
1448 					if (rdev &&
1449 					    test_bit(In_sync, &rdev->flags) &&
1450 					    sync_page_io(rdev->bdev,
1451 							 sect + rdev->data_offset,
1452 							 s<<9,
1453 							 conf->tmppage, READ))
1454 						success = 1;
1455 					else {
1456 						d++;
1457 						if (d == conf->raid_disks)
1458 							d = 0;
1459 					}
1460 				} while (!success && d != r1_bio->read_disk);
1461 
1462 				if (success) {
1463 					/* write it back and re-read */
1464 					int start = d;
1465 					while (d != r1_bio->read_disk) {
1466 						if (d==0)
1467 							d = conf->raid_disks;
1468 						d--;
1469 						rdev = conf->mirrors[d].rdev;
1470 						atomic_add(s, &rdev->corrected_errors);
1471 						if (rdev &&
1472 						    test_bit(In_sync, &rdev->flags)) {
1473 							if (sync_page_io(rdev->bdev,
1474 									 sect + rdev->data_offset,
1475 									 s<<9, conf->tmppage, WRITE) == 0)
1476 								/* Well, this device is dead */
1477 								md_error(mddev, rdev);
1478 						}
1479 					}
1480 					d = start;
1481 					while (d != r1_bio->read_disk) {
1482 						if (d==0)
1483 							d = conf->raid_disks;
1484 						d--;
1485 						rdev = conf->mirrors[d].rdev;
1486 						if (rdev &&
1487 						    test_bit(In_sync, &rdev->flags)) {
1488 							if (sync_page_io(rdev->bdev,
1489 									 sect + rdev->data_offset,
1490 									 s<<9, conf->tmppage, READ) == 0)
1491 								/* Well, this device is dead */
1492 								md_error(mddev, rdev);
1493 						}
1494 					}
1495 				} else {
1496 					/* Cannot read from anywhere -- bye bye array */
1497 					md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1498 					break;
1499 				}
1500 				sectors -= s;
1501 				sect += s;
1502 			}
1503 
1504 			unfreeze_array(conf);
1505 
1506 			bio = r1_bio->bios[r1_bio->read_disk];
1507 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1508 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1509 				       " read error for block %llu\n",
1510 				       bdevname(bio->bi_bdev,b),
1511 				       (unsigned long long)r1_bio->sector);
1512 				raid_end_bio_io(r1_bio);
1513 			} else {
1514 				r1_bio->bios[r1_bio->read_disk] =
1515 					mddev->ro ? IO_BLOCKED : NULL;
1516 				r1_bio->read_disk = disk;
1517 				bio_put(bio);
1518 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1519 				r1_bio->bios[r1_bio->read_disk] = bio;
1520 				rdev = conf->mirrors[disk].rdev;
1521 				if (printk_ratelimit())
1522 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1523 					       " another mirror\n",
1524 					       bdevname(rdev->bdev,b),
1525 					       (unsigned long long)r1_bio->sector);
1526 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1527 				bio->bi_bdev = rdev->bdev;
1528 				bio->bi_end_io = raid1_end_read_request;
1529 				bio->bi_rw = READ;
1530 				bio->bi_private = r1_bio;
1531 				unplug = 1;
1532 				generic_make_request(bio);
1533 			}
1534 		}
1535 	}
1536 	spin_unlock_irqrestore(&conf->device_lock, flags);
1537 	if (unplug)
1538 		unplug_slaves(mddev);
1539 }
1540 
1541 
1542 static int init_resync(conf_t *conf)
1543 {
1544 	int buffs;
1545 
1546 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1547 	if (conf->r1buf_pool)
1548 		BUG();
1549 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1550 					  conf->poolinfo);
1551 	if (!conf->r1buf_pool)
1552 		return -ENOMEM;
1553 	conf->next_resync = 0;
1554 	return 0;
1555 }
1556 
1557 /*
1558  * perform a "sync" on one "block"
1559  *
1560  * We need to make sure that no normal I/O request - particularly write
1561  * requests - conflict with active sync requests.
1562  *
1563  * This is achieved by tracking pending requests and a 'barrier' concept
1564  * that can be installed to exclude normal IO requests.
1565  */
1566 
1567 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1568 {
1569 	conf_t *conf = mddev_to_conf(mddev);
1570 	r1bio_t *r1_bio;
1571 	struct bio *bio;
1572 	sector_t max_sector, nr_sectors;
1573 	int disk = -1;
1574 	int i;
1575 	int wonly = -1;
1576 	int write_targets = 0, read_targets = 0;
1577 	int sync_blocks;
1578 	int still_degraded = 0;
1579 
1580 	if (!conf->r1buf_pool)
1581 	{
1582 /*
1583 		printk("sync start - bitmap %p\n", mddev->bitmap);
1584 */
1585 		if (init_resync(conf))
1586 			return 0;
1587 	}
1588 
1589 	max_sector = mddev->size << 1;
1590 	if (sector_nr >= max_sector) {
1591 		/* If we aborted, we need to abort the
1592 		 * sync on the 'current' bitmap chunk (there will
1593 		 * only be one in raid1 resync.
1594 		 * We can find the current addess in mddev->curr_resync
1595 		 */
1596 		if (mddev->curr_resync < max_sector) /* aborted */
1597 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1598 						&sync_blocks, 1);
1599 		else /* completed sync */
1600 			conf->fullsync = 0;
1601 
1602 		bitmap_close_sync(mddev->bitmap);
1603 		close_sync(conf);
1604 		return 0;
1605 	}
1606 
1607 	/* before building a request, check if we can skip these blocks..
1608 	 * This call the bitmap_start_sync doesn't actually record anything
1609 	 */
1610 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1611 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1612 		/* We can skip this block, and probably several more */
1613 		*skipped = 1;
1614 		return sync_blocks;
1615 	}
1616 	/*
1617 	 * If there is non-resync activity waiting for a turn,
1618 	 * and resync is going fast enough,
1619 	 * then let it though before starting on this new sync request.
1620 	 */
1621 	if (!go_faster && conf->nr_waiting)
1622 		msleep_interruptible(1000);
1623 
1624 	raise_barrier(conf);
1625 
1626 	conf->next_resync = sector_nr;
1627 
1628 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1629 	rcu_read_lock();
1630 	/*
1631 	 * If we get a correctably read error during resync or recovery,
1632 	 * we might want to read from a different device.  So we
1633 	 * flag all drives that could conceivably be read from for READ,
1634 	 * and any others (which will be non-In_sync devices) for WRITE.
1635 	 * If a read fails, we try reading from something else for which READ
1636 	 * is OK.
1637 	 */
1638 
1639 	r1_bio->mddev = mddev;
1640 	r1_bio->sector = sector_nr;
1641 	r1_bio->state = 0;
1642 	set_bit(R1BIO_IsSync, &r1_bio->state);
1643 
1644 	for (i=0; i < conf->raid_disks; i++) {
1645 		mdk_rdev_t *rdev;
1646 		bio = r1_bio->bios[i];
1647 
1648 		/* take from bio_init */
1649 		bio->bi_next = NULL;
1650 		bio->bi_flags |= 1 << BIO_UPTODATE;
1651 		bio->bi_rw = 0;
1652 		bio->bi_vcnt = 0;
1653 		bio->bi_idx = 0;
1654 		bio->bi_phys_segments = 0;
1655 		bio->bi_hw_segments = 0;
1656 		bio->bi_size = 0;
1657 		bio->bi_end_io = NULL;
1658 		bio->bi_private = NULL;
1659 
1660 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1661 		if (rdev == NULL ||
1662 			   test_bit(Faulty, &rdev->flags)) {
1663 			still_degraded = 1;
1664 			continue;
1665 		} else if (!test_bit(In_sync, &rdev->flags)) {
1666 			bio->bi_rw = WRITE;
1667 			bio->bi_end_io = end_sync_write;
1668 			write_targets ++;
1669 		} else {
1670 			/* may need to read from here */
1671 			bio->bi_rw = READ;
1672 			bio->bi_end_io = end_sync_read;
1673 			if (test_bit(WriteMostly, &rdev->flags)) {
1674 				if (wonly < 0)
1675 					wonly = i;
1676 			} else {
1677 				if (disk < 0)
1678 					disk = i;
1679 			}
1680 			read_targets++;
1681 		}
1682 		atomic_inc(&rdev->nr_pending);
1683 		bio->bi_sector = sector_nr + rdev->data_offset;
1684 		bio->bi_bdev = rdev->bdev;
1685 		bio->bi_private = r1_bio;
1686 	}
1687 	rcu_read_unlock();
1688 	if (disk < 0)
1689 		disk = wonly;
1690 	r1_bio->read_disk = disk;
1691 
1692 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1693 		/* extra read targets are also write targets */
1694 		write_targets += read_targets-1;
1695 
1696 	if (write_targets == 0 || read_targets == 0) {
1697 		/* There is nowhere to write, so all non-sync
1698 		 * drives must be failed - so we are finished
1699 		 */
1700 		sector_t rv = max_sector - sector_nr;
1701 		*skipped = 1;
1702 		put_buf(r1_bio);
1703 		return rv;
1704 	}
1705 
1706 	nr_sectors = 0;
1707 	sync_blocks = 0;
1708 	do {
1709 		struct page *page;
1710 		int len = PAGE_SIZE;
1711 		if (sector_nr + (len>>9) > max_sector)
1712 			len = (max_sector - sector_nr) << 9;
1713 		if (len == 0)
1714 			break;
1715 		if (sync_blocks == 0) {
1716 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1717 					       &sync_blocks, still_degraded) &&
1718 			    !conf->fullsync &&
1719 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1720 				break;
1721 			if (sync_blocks < (PAGE_SIZE>>9))
1722 				BUG();
1723 			if (len > (sync_blocks<<9))
1724 				len = sync_blocks<<9;
1725 		}
1726 
1727 		for (i=0 ; i < conf->raid_disks; i++) {
1728 			bio = r1_bio->bios[i];
1729 			if (bio->bi_end_io) {
1730 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1731 				if (bio_add_page(bio, page, len, 0) == 0) {
1732 					/* stop here */
1733 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1734 					while (i > 0) {
1735 						i--;
1736 						bio = r1_bio->bios[i];
1737 						if (bio->bi_end_io==NULL)
1738 							continue;
1739 						/* remove last page from this bio */
1740 						bio->bi_vcnt--;
1741 						bio->bi_size -= len;
1742 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1743 					}
1744 					goto bio_full;
1745 				}
1746 			}
1747 		}
1748 		nr_sectors += len>>9;
1749 		sector_nr += len>>9;
1750 		sync_blocks -= (len>>9);
1751 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1752  bio_full:
1753 	r1_bio->sectors = nr_sectors;
1754 
1755 	/* For a user-requested sync, we read all readable devices and do a
1756 	 * compare
1757 	 */
1758 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1759 		atomic_set(&r1_bio->remaining, read_targets);
1760 		for (i=0; i<conf->raid_disks; i++) {
1761 			bio = r1_bio->bios[i];
1762 			if (bio->bi_end_io == end_sync_read) {
1763 				md_sync_acct(conf->mirrors[i].rdev->bdev, nr_sectors);
1764 				generic_make_request(bio);
1765 			}
1766 		}
1767 	} else {
1768 		atomic_set(&r1_bio->remaining, 1);
1769 		bio = r1_bio->bios[r1_bio->read_disk];
1770 		md_sync_acct(conf->mirrors[r1_bio->read_disk].rdev->bdev,
1771 			     nr_sectors);
1772 		generic_make_request(bio);
1773 
1774 	}
1775 
1776 	return nr_sectors;
1777 }
1778 
1779 static int run(mddev_t *mddev)
1780 {
1781 	conf_t *conf;
1782 	int i, j, disk_idx;
1783 	mirror_info_t *disk;
1784 	mdk_rdev_t *rdev;
1785 	struct list_head *tmp;
1786 
1787 	if (mddev->level != 1) {
1788 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1789 		       mdname(mddev), mddev->level);
1790 		goto out;
1791 	}
1792 	/*
1793 	 * copy the already verified devices into our private RAID1
1794 	 * bookkeeping area. [whatever we allocate in run(),
1795 	 * should be freed in stop()]
1796 	 */
1797 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1798 	mddev->private = conf;
1799 	if (!conf)
1800 		goto out_no_mem;
1801 
1802 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1803 				 GFP_KERNEL);
1804 	if (!conf->mirrors)
1805 		goto out_no_mem;
1806 
1807 	conf->tmppage = alloc_page(GFP_KERNEL);
1808 	if (!conf->tmppage)
1809 		goto out_no_mem;
1810 
1811 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1812 	if (!conf->poolinfo)
1813 		goto out_no_mem;
1814 	conf->poolinfo->mddev = mddev;
1815 	conf->poolinfo->raid_disks = mddev->raid_disks;
1816 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1817 					  r1bio_pool_free,
1818 					  conf->poolinfo);
1819 	if (!conf->r1bio_pool)
1820 		goto out_no_mem;
1821 
1822 	ITERATE_RDEV(mddev, rdev, tmp) {
1823 		disk_idx = rdev->raid_disk;
1824 		if (disk_idx >= mddev->raid_disks
1825 		    || disk_idx < 0)
1826 			continue;
1827 		disk = conf->mirrors + disk_idx;
1828 
1829 		disk->rdev = rdev;
1830 
1831 		blk_queue_stack_limits(mddev->queue,
1832 				       rdev->bdev->bd_disk->queue);
1833 		/* as we don't honour merge_bvec_fn, we must never risk
1834 		 * violating it, so limit ->max_sector to one PAGE, as
1835 		 * a one page request is never in violation.
1836 		 */
1837 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1838 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1839 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1840 
1841 		disk->head_position = 0;
1842 		if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1843 			conf->working_disks++;
1844 	}
1845 	conf->raid_disks = mddev->raid_disks;
1846 	conf->mddev = mddev;
1847 	spin_lock_init(&conf->device_lock);
1848 	INIT_LIST_HEAD(&conf->retry_list);
1849 	if (conf->working_disks == 1)
1850 		mddev->recovery_cp = MaxSector;
1851 
1852 	spin_lock_init(&conf->resync_lock);
1853 	init_waitqueue_head(&conf->wait_barrier);
1854 
1855 	bio_list_init(&conf->pending_bio_list);
1856 	bio_list_init(&conf->flushing_bio_list);
1857 
1858 	if (!conf->working_disks) {
1859 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1860 			mdname(mddev));
1861 		goto out_free_conf;
1862 	}
1863 
1864 	mddev->degraded = 0;
1865 	for (i = 0; i < conf->raid_disks; i++) {
1866 
1867 		disk = conf->mirrors + i;
1868 
1869 		if (!disk->rdev) {
1870 			disk->head_position = 0;
1871 			mddev->degraded++;
1872 		}
1873 	}
1874 
1875 	/*
1876 	 * find the first working one and use it as a starting point
1877 	 * to read balancing.
1878 	 */
1879 	for (j = 0; j < conf->raid_disks &&
1880 		     (!conf->mirrors[j].rdev ||
1881 		      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1882 		/* nothing */;
1883 	conf->last_used = j;
1884 
1885 
1886 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1887 	if (!mddev->thread) {
1888 		printk(KERN_ERR
1889 		       "raid1: couldn't allocate thread for %s\n",
1890 		       mdname(mddev));
1891 		goto out_free_conf;
1892 	}
1893 
1894 	printk(KERN_INFO
1895 		"raid1: raid set %s active with %d out of %d mirrors\n",
1896 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1897 		mddev->raid_disks);
1898 	/*
1899 	 * Ok, everything is just fine now
1900 	 */
1901 	mddev->array_size = mddev->size;
1902 
1903 	mddev->queue->unplug_fn = raid1_unplug;
1904 	mddev->queue->issue_flush_fn = raid1_issue_flush;
1905 
1906 	return 0;
1907 
1908 out_no_mem:
1909 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1910 	       mdname(mddev));
1911 
1912 out_free_conf:
1913 	if (conf) {
1914 		if (conf->r1bio_pool)
1915 			mempool_destroy(conf->r1bio_pool);
1916 		kfree(conf->mirrors);
1917 		safe_put_page(conf->tmppage);
1918 		kfree(conf->poolinfo);
1919 		kfree(conf);
1920 		mddev->private = NULL;
1921 	}
1922 out:
1923 	return -EIO;
1924 }
1925 
1926 static int stop(mddev_t *mddev)
1927 {
1928 	conf_t *conf = mddev_to_conf(mddev);
1929 	struct bitmap *bitmap = mddev->bitmap;
1930 	int behind_wait = 0;
1931 
1932 	/* wait for behind writes to complete */
1933 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1934 		behind_wait++;
1935 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1936 		set_current_state(TASK_UNINTERRUPTIBLE);
1937 		schedule_timeout(HZ); /* wait a second */
1938 		/* need to kick something here to make sure I/O goes? */
1939 	}
1940 
1941 	md_unregister_thread(mddev->thread);
1942 	mddev->thread = NULL;
1943 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1944 	if (conf->r1bio_pool)
1945 		mempool_destroy(conf->r1bio_pool);
1946 	kfree(conf->mirrors);
1947 	kfree(conf->poolinfo);
1948 	kfree(conf);
1949 	mddev->private = NULL;
1950 	return 0;
1951 }
1952 
1953 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1954 {
1955 	/* no resync is happening, and there is enough space
1956 	 * on all devices, so we can resize.
1957 	 * We need to make sure resync covers any new space.
1958 	 * If the array is shrinking we should possibly wait until
1959 	 * any io in the removed space completes, but it hardly seems
1960 	 * worth it.
1961 	 */
1962 	mddev->array_size = sectors>>1;
1963 	set_capacity(mddev->gendisk, mddev->array_size << 1);
1964 	mddev->changed = 1;
1965 	if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1966 		mddev->recovery_cp = mddev->size << 1;
1967 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1968 	}
1969 	mddev->size = mddev->array_size;
1970 	mddev->resync_max_sectors = sectors;
1971 	return 0;
1972 }
1973 
1974 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1975 {
1976 	/* We need to:
1977 	 * 1/ resize the r1bio_pool
1978 	 * 2/ resize conf->mirrors
1979 	 *
1980 	 * We allocate a new r1bio_pool if we can.
1981 	 * Then raise a device barrier and wait until all IO stops.
1982 	 * Then resize conf->mirrors and swap in the new r1bio pool.
1983 	 *
1984 	 * At the same time, we "pack" the devices so that all the missing
1985 	 * devices have the higher raid_disk numbers.
1986 	 */
1987 	mempool_t *newpool, *oldpool;
1988 	struct pool_info *newpoolinfo;
1989 	mirror_info_t *newmirrors;
1990 	conf_t *conf = mddev_to_conf(mddev);
1991 	int cnt;
1992 
1993 	int d, d2;
1994 
1995 	if (raid_disks < conf->raid_disks) {
1996 		cnt=0;
1997 		for (d= 0; d < conf->raid_disks; d++)
1998 			if (conf->mirrors[d].rdev)
1999 				cnt++;
2000 		if (cnt > raid_disks)
2001 			return -EBUSY;
2002 	}
2003 
2004 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2005 	if (!newpoolinfo)
2006 		return -ENOMEM;
2007 	newpoolinfo->mddev = mddev;
2008 	newpoolinfo->raid_disks = raid_disks;
2009 
2010 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2011 				 r1bio_pool_free, newpoolinfo);
2012 	if (!newpool) {
2013 		kfree(newpoolinfo);
2014 		return -ENOMEM;
2015 	}
2016 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2017 	if (!newmirrors) {
2018 		kfree(newpoolinfo);
2019 		mempool_destroy(newpool);
2020 		return -ENOMEM;
2021 	}
2022 
2023 	raise_barrier(conf);
2024 
2025 	/* ok, everything is stopped */
2026 	oldpool = conf->r1bio_pool;
2027 	conf->r1bio_pool = newpool;
2028 
2029 	for (d=d2=0; d < conf->raid_disks; d++)
2030 		if (conf->mirrors[d].rdev) {
2031 			conf->mirrors[d].rdev->raid_disk = d2;
2032 			newmirrors[d2++].rdev = conf->mirrors[d].rdev;
2033 		}
2034 	kfree(conf->mirrors);
2035 	conf->mirrors = newmirrors;
2036 	kfree(conf->poolinfo);
2037 	conf->poolinfo = newpoolinfo;
2038 
2039 	mddev->degraded += (raid_disks - conf->raid_disks);
2040 	conf->raid_disks = mddev->raid_disks = raid_disks;
2041 
2042 	conf->last_used = 0; /* just make sure it is in-range */
2043 	lower_barrier(conf);
2044 
2045 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2046 	md_wakeup_thread(mddev->thread);
2047 
2048 	mempool_destroy(oldpool);
2049 	return 0;
2050 }
2051 
2052 static void raid1_quiesce(mddev_t *mddev, int state)
2053 {
2054 	conf_t *conf = mddev_to_conf(mddev);
2055 
2056 	switch(state) {
2057 	case 1:
2058 		raise_barrier(conf);
2059 		break;
2060 	case 0:
2061 		lower_barrier(conf);
2062 		break;
2063 	}
2064 }
2065 
2066 
2067 static struct mdk_personality raid1_personality =
2068 {
2069 	.name		= "raid1",
2070 	.level		= 1,
2071 	.owner		= THIS_MODULE,
2072 	.make_request	= make_request,
2073 	.run		= run,
2074 	.stop		= stop,
2075 	.status		= status,
2076 	.error_handler	= error,
2077 	.hot_add_disk	= raid1_add_disk,
2078 	.hot_remove_disk= raid1_remove_disk,
2079 	.spare_active	= raid1_spare_active,
2080 	.sync_request	= sync_request,
2081 	.resize		= raid1_resize,
2082 	.reshape	= raid1_reshape,
2083 	.quiesce	= raid1_quiesce,
2084 };
2085 
2086 static int __init raid_init(void)
2087 {
2088 	return register_md_personality(&raid1_personality);
2089 }
2090 
2091 static void raid_exit(void)
2092 {
2093 	unregister_md_personality(&raid1_personality);
2094 }
2095 
2096 module_init(raid_init);
2097 module_exit(raid_exit);
2098 MODULE_LICENSE("GPL");
2099 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2100 MODULE_ALIAS("md-raid1");
2101 MODULE_ALIAS("md-level-1");
2102