1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 static mdk_personality_t raid1_personality; 51 52 static void unplug_slaves(mddev_t *mddev); 53 54 55 static void * r1bio_pool_alloc(unsigned int __nocast gfp_flags, void *data) 56 { 57 struct pool_info *pi = data; 58 r1bio_t *r1_bio; 59 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 60 61 /* allocate a r1bio with room for raid_disks entries in the bios array */ 62 r1_bio = kmalloc(size, gfp_flags); 63 if (r1_bio) 64 memset(r1_bio, 0, size); 65 else 66 unplug_slaves(pi->mddev); 67 68 return r1_bio; 69 } 70 71 static void r1bio_pool_free(void *r1_bio, void *data) 72 { 73 kfree(r1_bio); 74 } 75 76 #define RESYNC_BLOCK_SIZE (64*1024) 77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 80 #define RESYNC_WINDOW (2048*1024) 81 82 static void * r1buf_pool_alloc(unsigned int __nocast gfp_flags, void *data) 83 { 84 struct pool_info *pi = data; 85 struct page *page; 86 r1bio_t *r1_bio; 87 struct bio *bio; 88 int i, j; 89 90 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 91 if (!r1_bio) { 92 unplug_slaves(pi->mddev); 93 return NULL; 94 } 95 96 /* 97 * Allocate bios : 1 for reading, n-1 for writing 98 */ 99 for (j = pi->raid_disks ; j-- ; ) { 100 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 101 if (!bio) 102 goto out_free_bio; 103 r1_bio->bios[j] = bio; 104 } 105 /* 106 * Allocate RESYNC_PAGES data pages and attach them to 107 * the first bio; 108 */ 109 bio = r1_bio->bios[0]; 110 for (i = 0; i < RESYNC_PAGES; i++) { 111 page = alloc_page(gfp_flags); 112 if (unlikely(!page)) 113 goto out_free_pages; 114 115 bio->bi_io_vec[i].bv_page = page; 116 } 117 118 r1_bio->master_bio = NULL; 119 120 return r1_bio; 121 122 out_free_pages: 123 for ( ; i > 0 ; i--) 124 __free_page(bio->bi_io_vec[i-1].bv_page); 125 out_free_bio: 126 while ( ++j < pi->raid_disks ) 127 bio_put(r1_bio->bios[j]); 128 r1bio_pool_free(r1_bio, data); 129 return NULL; 130 } 131 132 static void r1buf_pool_free(void *__r1_bio, void *data) 133 { 134 struct pool_info *pi = data; 135 int i; 136 r1bio_t *r1bio = __r1_bio; 137 struct bio *bio = r1bio->bios[0]; 138 139 for (i = 0; i < RESYNC_PAGES; i++) { 140 __free_page(bio->bi_io_vec[i].bv_page); 141 bio->bi_io_vec[i].bv_page = NULL; 142 } 143 for (i=0 ; i < pi->raid_disks; i++) 144 bio_put(r1bio->bios[i]); 145 146 r1bio_pool_free(r1bio, data); 147 } 148 149 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 150 { 151 int i; 152 153 for (i = 0; i < conf->raid_disks; i++) { 154 struct bio **bio = r1_bio->bios + i; 155 if (*bio) 156 bio_put(*bio); 157 *bio = NULL; 158 } 159 } 160 161 static inline void free_r1bio(r1bio_t *r1_bio) 162 { 163 unsigned long flags; 164 165 conf_t *conf = mddev_to_conf(r1_bio->mddev); 166 167 /* 168 * Wake up any possible resync thread that waits for the device 169 * to go idle. 170 */ 171 spin_lock_irqsave(&conf->resync_lock, flags); 172 if (!--conf->nr_pending) { 173 wake_up(&conf->wait_idle); 174 wake_up(&conf->wait_resume); 175 } 176 spin_unlock_irqrestore(&conf->resync_lock, flags); 177 178 put_all_bios(conf, r1_bio); 179 mempool_free(r1_bio, conf->r1bio_pool); 180 } 181 182 static inline void put_buf(r1bio_t *r1_bio) 183 { 184 conf_t *conf = mddev_to_conf(r1_bio->mddev); 185 unsigned long flags; 186 187 mempool_free(r1_bio, conf->r1buf_pool); 188 189 spin_lock_irqsave(&conf->resync_lock, flags); 190 if (!conf->barrier) 191 BUG(); 192 --conf->barrier; 193 wake_up(&conf->wait_resume); 194 wake_up(&conf->wait_idle); 195 196 if (!--conf->nr_pending) { 197 wake_up(&conf->wait_idle); 198 wake_up(&conf->wait_resume); 199 } 200 spin_unlock_irqrestore(&conf->resync_lock, flags); 201 } 202 203 static void reschedule_retry(r1bio_t *r1_bio) 204 { 205 unsigned long flags; 206 mddev_t *mddev = r1_bio->mddev; 207 conf_t *conf = mddev_to_conf(mddev); 208 209 spin_lock_irqsave(&conf->device_lock, flags); 210 list_add(&r1_bio->retry_list, &conf->retry_list); 211 spin_unlock_irqrestore(&conf->device_lock, flags); 212 213 md_wakeup_thread(mddev->thread); 214 } 215 216 /* 217 * raid_end_bio_io() is called when we have finished servicing a mirrored 218 * operation and are ready to return a success/failure code to the buffer 219 * cache layer. 220 */ 221 static void raid_end_bio_io(r1bio_t *r1_bio) 222 { 223 struct bio *bio = r1_bio->master_bio; 224 225 bio_endio(bio, bio->bi_size, 226 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 227 free_r1bio(r1_bio); 228 } 229 230 /* 231 * Update disk head position estimator based on IRQ completion info. 232 */ 233 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 234 { 235 conf_t *conf = mddev_to_conf(r1_bio->mddev); 236 237 conf->mirrors[disk].head_position = 238 r1_bio->sector + (r1_bio->sectors); 239 } 240 241 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 242 { 243 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 244 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 245 int mirror; 246 conf_t *conf = mddev_to_conf(r1_bio->mddev); 247 248 if (bio->bi_size) 249 return 1; 250 251 mirror = r1_bio->read_disk; 252 /* 253 * this branch is our 'one mirror IO has finished' event handler: 254 */ 255 if (!uptodate) 256 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 257 else 258 /* 259 * Set R1BIO_Uptodate in our master bio, so that 260 * we will return a good error code for to the higher 261 * levels even if IO on some other mirrored buffer fails. 262 * 263 * The 'master' represents the composite IO operation to 264 * user-side. So if something waits for IO, then it will 265 * wait for the 'master' bio. 266 */ 267 set_bit(R1BIO_Uptodate, &r1_bio->state); 268 269 update_head_pos(mirror, r1_bio); 270 271 /* 272 * we have only one bio on the read side 273 */ 274 if (uptodate) 275 raid_end_bio_io(r1_bio); 276 else { 277 /* 278 * oops, read error: 279 */ 280 char b[BDEVNAME_SIZE]; 281 if (printk_ratelimit()) 282 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 283 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 284 reschedule_retry(r1_bio); 285 } 286 287 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 288 return 0; 289 } 290 291 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 292 { 293 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 294 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 295 int mirror; 296 conf_t *conf = mddev_to_conf(r1_bio->mddev); 297 298 if (bio->bi_size) 299 return 1; 300 301 for (mirror = 0; mirror < conf->raid_disks; mirror++) 302 if (r1_bio->bios[mirror] == bio) 303 break; 304 305 /* 306 * this branch is our 'one mirror IO has finished' event handler: 307 */ 308 if (!uptodate) { 309 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 310 /* an I/O failed, we can't clear the bitmap */ 311 set_bit(R1BIO_Degraded, &r1_bio->state); 312 } else 313 /* 314 * Set R1BIO_Uptodate in our master bio, so that 315 * we will return a good error code for to the higher 316 * levels even if IO on some other mirrored buffer fails. 317 * 318 * The 'master' represents the composite IO operation to 319 * user-side. So if something waits for IO, then it will 320 * wait for the 'master' bio. 321 */ 322 set_bit(R1BIO_Uptodate, &r1_bio->state); 323 324 update_head_pos(mirror, r1_bio); 325 326 /* 327 * 328 * Let's see if all mirrored write operations have finished 329 * already. 330 */ 331 if (atomic_dec_and_test(&r1_bio->remaining)) { 332 /* clear the bitmap if all writes complete successfully */ 333 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 334 r1_bio->sectors, 335 !test_bit(R1BIO_Degraded, &r1_bio->state)); 336 md_write_end(r1_bio->mddev); 337 raid_end_bio_io(r1_bio); 338 } 339 340 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 341 return 0; 342 } 343 344 345 /* 346 * This routine returns the disk from which the requested read should 347 * be done. There is a per-array 'next expected sequential IO' sector 348 * number - if this matches on the next IO then we use the last disk. 349 * There is also a per-disk 'last know head position' sector that is 350 * maintained from IRQ contexts, both the normal and the resync IO 351 * completion handlers update this position correctly. If there is no 352 * perfect sequential match then we pick the disk whose head is closest. 353 * 354 * If there are 2 mirrors in the same 2 devices, performance degrades 355 * because position is mirror, not device based. 356 * 357 * The rdev for the device selected will have nr_pending incremented. 358 */ 359 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 360 { 361 const unsigned long this_sector = r1_bio->sector; 362 int new_disk = conf->last_used, disk = new_disk; 363 const int sectors = r1_bio->sectors; 364 sector_t new_distance, current_distance; 365 mdk_rdev_t *new_rdev, *rdev; 366 367 rcu_read_lock(); 368 /* 369 * Check if it if we can balance. We can balance on the whole 370 * device if no resync is going on, or below the resync window. 371 * We take the first readable disk when above the resync window. 372 */ 373 retry: 374 if (conf->mddev->recovery_cp < MaxSector && 375 (this_sector + sectors >= conf->next_resync)) { 376 /* Choose the first operation device, for consistancy */ 377 new_disk = 0; 378 379 while ((new_rdev=conf->mirrors[new_disk].rdev) == NULL || 380 !new_rdev->in_sync) { 381 new_disk++; 382 if (new_disk == conf->raid_disks) { 383 new_disk = -1; 384 break; 385 } 386 } 387 goto rb_out; 388 } 389 390 391 /* make sure the disk is operational */ 392 while ((new_rdev=conf->mirrors[new_disk].rdev) == NULL || 393 !new_rdev->in_sync) { 394 if (new_disk <= 0) 395 new_disk = conf->raid_disks; 396 new_disk--; 397 if (new_disk == disk) { 398 new_disk = -1; 399 goto rb_out; 400 } 401 } 402 disk = new_disk; 403 /* now disk == new_disk == starting point for search */ 404 405 /* 406 * Don't change to another disk for sequential reads: 407 */ 408 if (conf->next_seq_sect == this_sector) 409 goto rb_out; 410 if (this_sector == conf->mirrors[new_disk].head_position) 411 goto rb_out; 412 413 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 414 415 /* Find the disk whose head is closest */ 416 417 do { 418 if (disk <= 0) 419 disk = conf->raid_disks; 420 disk--; 421 422 if ((rdev=conf->mirrors[disk].rdev) == NULL || 423 !rdev->in_sync) 424 continue; 425 426 if (!atomic_read(&rdev->nr_pending)) { 427 new_disk = disk; 428 new_rdev = rdev; 429 break; 430 } 431 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 432 if (new_distance < current_distance) { 433 current_distance = new_distance; 434 new_disk = disk; 435 new_rdev = rdev; 436 } 437 } while (disk != conf->last_used); 438 439 rb_out: 440 441 442 if (new_disk >= 0) { 443 conf->next_seq_sect = this_sector + sectors; 444 conf->last_used = new_disk; 445 atomic_inc(&new_rdev->nr_pending); 446 if (!new_rdev->in_sync) { 447 /* cannot risk returning a device that failed 448 * before we inc'ed nr_pending 449 */ 450 atomic_dec(&new_rdev->nr_pending); 451 goto retry; 452 } 453 } 454 rcu_read_unlock(); 455 456 return new_disk; 457 } 458 459 static void unplug_slaves(mddev_t *mddev) 460 { 461 conf_t *conf = mddev_to_conf(mddev); 462 int i; 463 464 rcu_read_lock(); 465 for (i=0; i<mddev->raid_disks; i++) { 466 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 467 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) { 468 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 469 470 atomic_inc(&rdev->nr_pending); 471 rcu_read_unlock(); 472 473 if (r_queue->unplug_fn) 474 r_queue->unplug_fn(r_queue); 475 476 rdev_dec_pending(rdev, mddev); 477 rcu_read_lock(); 478 } 479 } 480 rcu_read_unlock(); 481 } 482 483 static void raid1_unplug(request_queue_t *q) 484 { 485 mddev_t *mddev = q->queuedata; 486 487 unplug_slaves(mddev); 488 md_wakeup_thread(mddev->thread); 489 } 490 491 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk, 492 sector_t *error_sector) 493 { 494 mddev_t *mddev = q->queuedata; 495 conf_t *conf = mddev_to_conf(mddev); 496 int i, ret = 0; 497 498 rcu_read_lock(); 499 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 500 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 501 if (rdev && !rdev->faulty) { 502 struct block_device *bdev = rdev->bdev; 503 request_queue_t *r_queue = bdev_get_queue(bdev); 504 505 if (!r_queue->issue_flush_fn) 506 ret = -EOPNOTSUPP; 507 else { 508 atomic_inc(&rdev->nr_pending); 509 rcu_read_unlock(); 510 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 511 error_sector); 512 rdev_dec_pending(rdev, mddev); 513 rcu_read_lock(); 514 } 515 } 516 } 517 rcu_read_unlock(); 518 return ret; 519 } 520 521 /* 522 * Throttle resync depth, so that we can both get proper overlapping of 523 * requests, but are still able to handle normal requests quickly. 524 */ 525 #define RESYNC_DEPTH 32 526 527 static void device_barrier(conf_t *conf, sector_t sect) 528 { 529 spin_lock_irq(&conf->resync_lock); 530 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume), 531 conf->resync_lock, raid1_unplug(conf->mddev->queue)); 532 533 if (!conf->barrier++) { 534 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending, 535 conf->resync_lock, raid1_unplug(conf->mddev->queue)); 536 if (conf->nr_pending) 537 BUG(); 538 } 539 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH, 540 conf->resync_lock, raid1_unplug(conf->mddev->queue)); 541 conf->next_resync = sect; 542 spin_unlock_irq(&conf->resync_lock); 543 } 544 545 static int make_request(request_queue_t *q, struct bio * bio) 546 { 547 mddev_t *mddev = q->queuedata; 548 conf_t *conf = mddev_to_conf(mddev); 549 mirror_info_t *mirror; 550 r1bio_t *r1_bio; 551 struct bio *read_bio; 552 int i, targets = 0, disks; 553 mdk_rdev_t *rdev; 554 struct bitmap *bitmap = mddev->bitmap; 555 unsigned long flags; 556 struct bio_list bl; 557 558 559 /* 560 * Register the new request and wait if the reconstruction 561 * thread has put up a bar for new requests. 562 * Continue immediately if no resync is active currently. 563 */ 564 md_write_start(mddev, bio); /* wait on superblock update early */ 565 566 spin_lock_irq(&conf->resync_lock); 567 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, ); 568 conf->nr_pending++; 569 spin_unlock_irq(&conf->resync_lock); 570 571 if (bio_data_dir(bio)==WRITE) { 572 disk_stat_inc(mddev->gendisk, writes); 573 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio)); 574 } else { 575 disk_stat_inc(mddev->gendisk, reads); 576 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio)); 577 } 578 579 /* 580 * make_request() can abort the operation when READA is being 581 * used and no empty request is available. 582 * 583 */ 584 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 585 586 r1_bio->master_bio = bio; 587 r1_bio->sectors = bio->bi_size >> 9; 588 r1_bio->state = 0; 589 r1_bio->mddev = mddev; 590 r1_bio->sector = bio->bi_sector; 591 592 r1_bio->state = 0; 593 594 if (bio_data_dir(bio) == READ) { 595 /* 596 * read balancing logic: 597 */ 598 int rdisk = read_balance(conf, r1_bio); 599 600 if (rdisk < 0) { 601 /* couldn't find anywhere to read from */ 602 raid_end_bio_io(r1_bio); 603 return 0; 604 } 605 mirror = conf->mirrors + rdisk; 606 607 r1_bio->read_disk = rdisk; 608 609 read_bio = bio_clone(bio, GFP_NOIO); 610 611 r1_bio->bios[rdisk] = read_bio; 612 613 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 614 read_bio->bi_bdev = mirror->rdev->bdev; 615 read_bio->bi_end_io = raid1_end_read_request; 616 read_bio->bi_rw = READ; 617 read_bio->bi_private = r1_bio; 618 619 generic_make_request(read_bio); 620 return 0; 621 } 622 623 /* 624 * WRITE: 625 */ 626 /* first select target devices under spinlock and 627 * inc refcount on their rdev. Record them by setting 628 * bios[x] to bio 629 */ 630 disks = conf->raid_disks; 631 #if 0 632 { static int first=1; 633 if (first) printk("First Write sector %llu disks %d\n", 634 (unsigned long long)r1_bio->sector, disks); 635 first = 0; 636 } 637 #endif 638 rcu_read_lock(); 639 for (i = 0; i < disks; i++) { 640 if ((rdev=conf->mirrors[i].rdev) != NULL && 641 !rdev->faulty) { 642 atomic_inc(&rdev->nr_pending); 643 if (rdev->faulty) { 644 atomic_dec(&rdev->nr_pending); 645 r1_bio->bios[i] = NULL; 646 } else 647 r1_bio->bios[i] = bio; 648 targets++; 649 } else 650 r1_bio->bios[i] = NULL; 651 } 652 rcu_read_unlock(); 653 654 if (targets < conf->raid_disks) { 655 /* array is degraded, we will not clear the bitmap 656 * on I/O completion (see raid1_end_write_request) */ 657 set_bit(R1BIO_Degraded, &r1_bio->state); 658 } 659 660 atomic_set(&r1_bio->remaining, 0); 661 662 bio_list_init(&bl); 663 for (i = 0; i < disks; i++) { 664 struct bio *mbio; 665 if (!r1_bio->bios[i]) 666 continue; 667 668 mbio = bio_clone(bio, GFP_NOIO); 669 r1_bio->bios[i] = mbio; 670 671 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 672 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 673 mbio->bi_end_io = raid1_end_write_request; 674 mbio->bi_rw = WRITE; 675 mbio->bi_private = r1_bio; 676 677 atomic_inc(&r1_bio->remaining); 678 679 bio_list_add(&bl, mbio); 680 } 681 682 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors); 683 spin_lock_irqsave(&conf->device_lock, flags); 684 bio_list_merge(&conf->pending_bio_list, &bl); 685 bio_list_init(&bl); 686 687 blk_plug_device(mddev->queue); 688 spin_unlock_irqrestore(&conf->device_lock, flags); 689 690 #if 0 691 while ((bio = bio_list_pop(&bl)) != NULL) 692 generic_make_request(bio); 693 #endif 694 695 return 0; 696 } 697 698 static void status(struct seq_file *seq, mddev_t *mddev) 699 { 700 conf_t *conf = mddev_to_conf(mddev); 701 int i; 702 703 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 704 conf->working_disks); 705 for (i = 0; i < conf->raid_disks; i++) 706 seq_printf(seq, "%s", 707 conf->mirrors[i].rdev && 708 conf->mirrors[i].rdev->in_sync ? "U" : "_"); 709 seq_printf(seq, "]"); 710 } 711 712 713 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 714 { 715 char b[BDEVNAME_SIZE]; 716 conf_t *conf = mddev_to_conf(mddev); 717 718 /* 719 * If it is not operational, then we have already marked it as dead 720 * else if it is the last working disks, ignore the error, let the 721 * next level up know. 722 * else mark the drive as failed 723 */ 724 if (rdev->in_sync 725 && conf->working_disks == 1) 726 /* 727 * Don't fail the drive, act as though we were just a 728 * normal single drive 729 */ 730 return; 731 if (rdev->in_sync) { 732 mddev->degraded++; 733 conf->working_disks--; 734 /* 735 * if recovery is running, make sure it aborts. 736 */ 737 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 738 } 739 rdev->in_sync = 0; 740 rdev->faulty = 1; 741 mddev->sb_dirty = 1; 742 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 743 " Operation continuing on %d devices\n", 744 bdevname(rdev->bdev,b), conf->working_disks); 745 } 746 747 static void print_conf(conf_t *conf) 748 { 749 int i; 750 mirror_info_t *tmp; 751 752 printk("RAID1 conf printout:\n"); 753 if (!conf) { 754 printk("(!conf)\n"); 755 return; 756 } 757 printk(" --- wd:%d rd:%d\n", conf->working_disks, 758 conf->raid_disks); 759 760 for (i = 0; i < conf->raid_disks; i++) { 761 char b[BDEVNAME_SIZE]; 762 tmp = conf->mirrors + i; 763 if (tmp->rdev) 764 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 765 i, !tmp->rdev->in_sync, !tmp->rdev->faulty, 766 bdevname(tmp->rdev->bdev,b)); 767 } 768 } 769 770 static void close_sync(conf_t *conf) 771 { 772 spin_lock_irq(&conf->resync_lock); 773 wait_event_lock_irq(conf->wait_resume, !conf->barrier, 774 conf->resync_lock, raid1_unplug(conf->mddev->queue)); 775 spin_unlock_irq(&conf->resync_lock); 776 777 if (conf->barrier) BUG(); 778 if (waitqueue_active(&conf->wait_idle)) BUG(); 779 780 mempool_destroy(conf->r1buf_pool); 781 conf->r1buf_pool = NULL; 782 } 783 784 static int raid1_spare_active(mddev_t *mddev) 785 { 786 int i; 787 conf_t *conf = mddev->private; 788 mirror_info_t *tmp; 789 790 /* 791 * Find all failed disks within the RAID1 configuration 792 * and mark them readable 793 */ 794 for (i = 0; i < conf->raid_disks; i++) { 795 tmp = conf->mirrors + i; 796 if (tmp->rdev 797 && !tmp->rdev->faulty 798 && !tmp->rdev->in_sync) { 799 conf->working_disks++; 800 mddev->degraded--; 801 tmp->rdev->in_sync = 1; 802 } 803 } 804 805 print_conf(conf); 806 return 0; 807 } 808 809 810 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 811 { 812 conf_t *conf = mddev->private; 813 int found = 0; 814 int mirror = 0; 815 mirror_info_t *p; 816 817 if (rdev->saved_raid_disk >= 0 && 818 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 819 mirror = rdev->saved_raid_disk; 820 for (mirror=0; mirror < mddev->raid_disks; mirror++) 821 if ( !(p=conf->mirrors+mirror)->rdev) { 822 823 blk_queue_stack_limits(mddev->queue, 824 rdev->bdev->bd_disk->queue); 825 /* as we don't honour merge_bvec_fn, we must never risk 826 * violating it, so limit ->max_sector to one PAGE, as 827 * a one page request is never in violation. 828 */ 829 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 830 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 831 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 832 833 p->head_position = 0; 834 rdev->raid_disk = mirror; 835 found = 1; 836 if (rdev->saved_raid_disk != mirror) 837 conf->fullsync = 1; 838 p->rdev = rdev; 839 break; 840 } 841 842 print_conf(conf); 843 return found; 844 } 845 846 static int raid1_remove_disk(mddev_t *mddev, int number) 847 { 848 conf_t *conf = mddev->private; 849 int err = 0; 850 mdk_rdev_t *rdev; 851 mirror_info_t *p = conf->mirrors+ number; 852 853 print_conf(conf); 854 rdev = p->rdev; 855 if (rdev) { 856 if (rdev->in_sync || 857 atomic_read(&rdev->nr_pending)) { 858 err = -EBUSY; 859 goto abort; 860 } 861 p->rdev = NULL; 862 synchronize_rcu(); 863 if (atomic_read(&rdev->nr_pending)) { 864 /* lost the race, try later */ 865 err = -EBUSY; 866 p->rdev = rdev; 867 } 868 } 869 abort: 870 871 print_conf(conf); 872 return err; 873 } 874 875 876 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 877 { 878 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 879 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 880 conf_t *conf = mddev_to_conf(r1_bio->mddev); 881 882 if (bio->bi_size) 883 return 1; 884 885 if (r1_bio->bios[r1_bio->read_disk] != bio) 886 BUG(); 887 update_head_pos(r1_bio->read_disk, r1_bio); 888 /* 889 * we have read a block, now it needs to be re-written, 890 * or re-read if the read failed. 891 * We don't do much here, just schedule handling by raid1d 892 */ 893 if (!uptodate) { 894 md_error(r1_bio->mddev, 895 conf->mirrors[r1_bio->read_disk].rdev); 896 set_bit(R1BIO_Degraded, &r1_bio->state); 897 } else 898 set_bit(R1BIO_Uptodate, &r1_bio->state); 899 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 900 reschedule_retry(r1_bio); 901 return 0; 902 } 903 904 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 905 { 906 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 907 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 908 mddev_t *mddev = r1_bio->mddev; 909 conf_t *conf = mddev_to_conf(mddev); 910 int i; 911 int mirror=0; 912 913 if (bio->bi_size) 914 return 1; 915 916 for (i = 0; i < conf->raid_disks; i++) 917 if (r1_bio->bios[i] == bio) { 918 mirror = i; 919 break; 920 } 921 if (!uptodate) { 922 md_error(mddev, conf->mirrors[mirror].rdev); 923 set_bit(R1BIO_Degraded, &r1_bio->state); 924 } 925 update_head_pos(mirror, r1_bio); 926 927 if (atomic_dec_and_test(&r1_bio->remaining)) { 928 md_done_sync(mddev, r1_bio->sectors, uptodate); 929 put_buf(r1_bio); 930 } 931 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev); 932 return 0; 933 } 934 935 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 936 { 937 conf_t *conf = mddev_to_conf(mddev); 938 int i; 939 int disks = conf->raid_disks; 940 struct bio *bio, *wbio; 941 942 bio = r1_bio->bios[r1_bio->read_disk]; 943 944 /* 945 if (r1_bio->sector == 0) printk("First sync write startss\n"); 946 */ 947 /* 948 * schedule writes 949 */ 950 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 951 /* 952 * There is no point trying a read-for-reconstruct as 953 * reconstruct is about to be aborted 954 */ 955 char b[BDEVNAME_SIZE]; 956 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 957 " for block %llu\n", 958 bdevname(bio->bi_bdev,b), 959 (unsigned long long)r1_bio->sector); 960 md_done_sync(mddev, r1_bio->sectors, 0); 961 put_buf(r1_bio); 962 return; 963 } 964 965 atomic_set(&r1_bio->remaining, 1); 966 for (i = 0; i < disks ; i++) { 967 wbio = r1_bio->bios[i]; 968 if (wbio->bi_end_io != end_sync_write) 969 continue; 970 971 atomic_inc(&conf->mirrors[i].rdev->nr_pending); 972 atomic_inc(&r1_bio->remaining); 973 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 974 975 generic_make_request(wbio); 976 } 977 978 if (atomic_dec_and_test(&r1_bio->remaining)) { 979 /* if we're here, all write(s) have completed, so clean up */ 980 md_done_sync(mddev, r1_bio->sectors, 1); 981 put_buf(r1_bio); 982 } 983 } 984 985 /* 986 * This is a kernel thread which: 987 * 988 * 1. Retries failed read operations on working mirrors. 989 * 2. Updates the raid superblock when problems encounter. 990 * 3. Performs writes following reads for array syncronising. 991 */ 992 993 static void raid1d(mddev_t *mddev) 994 { 995 r1bio_t *r1_bio; 996 struct bio *bio; 997 unsigned long flags; 998 conf_t *conf = mddev_to_conf(mddev); 999 struct list_head *head = &conf->retry_list; 1000 int unplug=0; 1001 mdk_rdev_t *rdev; 1002 1003 md_check_recovery(mddev); 1004 1005 for (;;) { 1006 char b[BDEVNAME_SIZE]; 1007 spin_lock_irqsave(&conf->device_lock, flags); 1008 1009 if (conf->pending_bio_list.head) { 1010 bio = bio_list_get(&conf->pending_bio_list); 1011 blk_remove_plug(mddev->queue); 1012 spin_unlock_irqrestore(&conf->device_lock, flags); 1013 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1014 if (bitmap_unplug(mddev->bitmap) != 0) 1015 printk("%s: bitmap file write failed!\n", mdname(mddev)); 1016 1017 while (bio) { /* submit pending writes */ 1018 struct bio *next = bio->bi_next; 1019 bio->bi_next = NULL; 1020 generic_make_request(bio); 1021 bio = next; 1022 } 1023 unplug = 1; 1024 1025 continue; 1026 } 1027 1028 if (list_empty(head)) 1029 break; 1030 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1031 list_del(head->prev); 1032 spin_unlock_irqrestore(&conf->device_lock, flags); 1033 1034 mddev = r1_bio->mddev; 1035 conf = mddev_to_conf(mddev); 1036 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1037 sync_request_write(mddev, r1_bio); 1038 unplug = 1; 1039 } else { 1040 int disk; 1041 bio = r1_bio->bios[r1_bio->read_disk]; 1042 if ((disk=read_balance(conf, r1_bio)) == -1) { 1043 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1044 " read error for block %llu\n", 1045 bdevname(bio->bi_bdev,b), 1046 (unsigned long long)r1_bio->sector); 1047 raid_end_bio_io(r1_bio); 1048 } else { 1049 r1_bio->bios[r1_bio->read_disk] = NULL; 1050 r1_bio->read_disk = disk; 1051 bio_put(bio); 1052 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1053 r1_bio->bios[r1_bio->read_disk] = bio; 1054 rdev = conf->mirrors[disk].rdev; 1055 if (printk_ratelimit()) 1056 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1057 " another mirror\n", 1058 bdevname(rdev->bdev,b), 1059 (unsigned long long)r1_bio->sector); 1060 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1061 bio->bi_bdev = rdev->bdev; 1062 bio->bi_end_io = raid1_end_read_request; 1063 bio->bi_rw = READ; 1064 bio->bi_private = r1_bio; 1065 unplug = 1; 1066 generic_make_request(bio); 1067 } 1068 } 1069 } 1070 spin_unlock_irqrestore(&conf->device_lock, flags); 1071 if (unplug) 1072 unplug_slaves(mddev); 1073 } 1074 1075 1076 static int init_resync(conf_t *conf) 1077 { 1078 int buffs; 1079 1080 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1081 if (conf->r1buf_pool) 1082 BUG(); 1083 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1084 conf->poolinfo); 1085 if (!conf->r1buf_pool) 1086 return -ENOMEM; 1087 conf->next_resync = 0; 1088 return 0; 1089 } 1090 1091 /* 1092 * perform a "sync" on one "block" 1093 * 1094 * We need to make sure that no normal I/O request - particularly write 1095 * requests - conflict with active sync requests. 1096 * 1097 * This is achieved by tracking pending requests and a 'barrier' concept 1098 * that can be installed to exclude normal IO requests. 1099 */ 1100 1101 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1102 { 1103 conf_t *conf = mddev_to_conf(mddev); 1104 mirror_info_t *mirror; 1105 r1bio_t *r1_bio; 1106 struct bio *bio; 1107 sector_t max_sector, nr_sectors; 1108 int disk; 1109 int i; 1110 int write_targets = 0; 1111 int sync_blocks; 1112 1113 if (!conf->r1buf_pool) 1114 { 1115 /* 1116 printk("sync start - bitmap %p\n", mddev->bitmap); 1117 */ 1118 if (init_resync(conf)) 1119 return 0; 1120 } 1121 1122 max_sector = mddev->size << 1; 1123 if (sector_nr >= max_sector) { 1124 /* If we aborted, we need to abort the 1125 * sync on the 'current' bitmap chunk (there will 1126 * only be one in raid1 resync. 1127 * We can find the current addess in mddev->curr_resync 1128 */ 1129 if (!conf->fullsync) { 1130 if (mddev->curr_resync < max_sector) 1131 bitmap_end_sync(mddev->bitmap, 1132 mddev->curr_resync, 1133 &sync_blocks, 1); 1134 bitmap_close_sync(mddev->bitmap); 1135 } 1136 if (mddev->curr_resync >= max_sector) 1137 conf->fullsync = 0; 1138 close_sync(conf); 1139 return 0; 1140 } 1141 1142 if (!conf->fullsync && 1143 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks)) { 1144 /* We can skip this block, and probably several more */ 1145 *skipped = 1; 1146 return sync_blocks; 1147 } 1148 /* 1149 * If there is non-resync activity waiting for us then 1150 * put in a delay to throttle resync. 1151 */ 1152 if (!go_faster && waitqueue_active(&conf->wait_resume)) 1153 msleep_interruptible(1000); 1154 device_barrier(conf, sector_nr + RESYNC_SECTORS); 1155 1156 /* 1157 * If reconstructing, and >1 working disc, 1158 * could dedicate one to rebuild and others to 1159 * service read requests .. 1160 */ 1161 disk = conf->last_used; 1162 /* make sure disk is operational */ 1163 1164 while (conf->mirrors[disk].rdev == NULL || 1165 !conf->mirrors[disk].rdev->in_sync) { 1166 if (disk <= 0) 1167 disk = conf->raid_disks; 1168 disk--; 1169 if (disk == conf->last_used) 1170 break; 1171 } 1172 conf->last_used = disk; 1173 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 1174 1175 1176 mirror = conf->mirrors + disk; 1177 1178 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1179 1180 spin_lock_irq(&conf->resync_lock); 1181 conf->nr_pending++; 1182 spin_unlock_irq(&conf->resync_lock); 1183 1184 r1_bio->mddev = mddev; 1185 r1_bio->sector = sector_nr; 1186 r1_bio->state = 0; 1187 set_bit(R1BIO_IsSync, &r1_bio->state); 1188 r1_bio->read_disk = disk; 1189 1190 for (i=0; i < conf->raid_disks; i++) { 1191 bio = r1_bio->bios[i]; 1192 1193 /* take from bio_init */ 1194 bio->bi_next = NULL; 1195 bio->bi_flags |= 1 << BIO_UPTODATE; 1196 bio->bi_rw = 0; 1197 bio->bi_vcnt = 0; 1198 bio->bi_idx = 0; 1199 bio->bi_phys_segments = 0; 1200 bio->bi_hw_segments = 0; 1201 bio->bi_size = 0; 1202 bio->bi_end_io = NULL; 1203 bio->bi_private = NULL; 1204 1205 if (i == disk) { 1206 bio->bi_rw = READ; 1207 bio->bi_end_io = end_sync_read; 1208 } else if (conf->mirrors[i].rdev && 1209 !conf->mirrors[i].rdev->faulty && 1210 (!conf->mirrors[i].rdev->in_sync || 1211 sector_nr + RESYNC_SECTORS > mddev->recovery_cp)) { 1212 bio->bi_rw = WRITE; 1213 bio->bi_end_io = end_sync_write; 1214 write_targets ++; 1215 } else 1216 continue; 1217 bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset; 1218 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1219 bio->bi_private = r1_bio; 1220 } 1221 1222 if (write_targets + 1 < conf->raid_disks) 1223 /* array degraded, can't clear bitmap */ 1224 set_bit(R1BIO_Degraded, &r1_bio->state); 1225 1226 if (write_targets == 0) { 1227 /* There is nowhere to write, so all non-sync 1228 * drives must be failed - so we are finished 1229 */ 1230 sector_t rv = max_sector - sector_nr; 1231 *skipped = 1; 1232 put_buf(r1_bio); 1233 rdev_dec_pending(conf->mirrors[disk].rdev, mddev); 1234 return rv; 1235 } 1236 1237 nr_sectors = 0; 1238 sync_blocks = 0; 1239 do { 1240 struct page *page; 1241 int len = PAGE_SIZE; 1242 if (sector_nr + (len>>9) > max_sector) 1243 len = (max_sector - sector_nr) << 9; 1244 if (len == 0) 1245 break; 1246 if (!conf->fullsync) { 1247 if (sync_blocks == 0) { 1248 if (!bitmap_start_sync(mddev->bitmap, 1249 sector_nr, &sync_blocks)) 1250 break; 1251 if (sync_blocks < (PAGE_SIZE>>9)) 1252 BUG(); 1253 if (len > (sync_blocks<<9)) len = sync_blocks<<9; 1254 } 1255 } 1256 1257 for (i=0 ; i < conf->raid_disks; i++) { 1258 bio = r1_bio->bios[i]; 1259 if (bio->bi_end_io) { 1260 page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page; 1261 if (bio_add_page(bio, page, len, 0) == 0) { 1262 /* stop here */ 1263 r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page; 1264 while (i > 0) { 1265 i--; 1266 bio = r1_bio->bios[i]; 1267 if (bio->bi_end_io==NULL) continue; 1268 /* remove last page from this bio */ 1269 bio->bi_vcnt--; 1270 bio->bi_size -= len; 1271 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1272 } 1273 goto bio_full; 1274 } 1275 } 1276 } 1277 nr_sectors += len>>9; 1278 sector_nr += len>>9; 1279 sync_blocks -= (len>>9); 1280 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1281 bio_full: 1282 bio = r1_bio->bios[disk]; 1283 r1_bio->sectors = nr_sectors; 1284 1285 md_sync_acct(mirror->rdev->bdev, nr_sectors); 1286 1287 generic_make_request(bio); 1288 1289 return nr_sectors; 1290 } 1291 1292 static int run(mddev_t *mddev) 1293 { 1294 conf_t *conf; 1295 int i, j, disk_idx; 1296 mirror_info_t *disk; 1297 mdk_rdev_t *rdev; 1298 struct list_head *tmp; 1299 1300 if (mddev->level != 1) { 1301 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1302 mdname(mddev), mddev->level); 1303 goto out; 1304 } 1305 /* 1306 * copy the already verified devices into our private RAID1 1307 * bookkeeping area. [whatever we allocate in run(), 1308 * should be freed in stop()] 1309 */ 1310 conf = kmalloc(sizeof(conf_t), GFP_KERNEL); 1311 mddev->private = conf; 1312 if (!conf) 1313 goto out_no_mem; 1314 1315 memset(conf, 0, sizeof(*conf)); 1316 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1317 GFP_KERNEL); 1318 if (!conf->mirrors) 1319 goto out_no_mem; 1320 1321 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks); 1322 1323 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1324 if (!conf->poolinfo) 1325 goto out_no_mem; 1326 conf->poolinfo->mddev = mddev; 1327 conf->poolinfo->raid_disks = mddev->raid_disks; 1328 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1329 r1bio_pool_free, 1330 conf->poolinfo); 1331 if (!conf->r1bio_pool) 1332 goto out_no_mem; 1333 1334 ITERATE_RDEV(mddev, rdev, tmp) { 1335 disk_idx = rdev->raid_disk; 1336 if (disk_idx >= mddev->raid_disks 1337 || disk_idx < 0) 1338 continue; 1339 disk = conf->mirrors + disk_idx; 1340 1341 disk->rdev = rdev; 1342 1343 blk_queue_stack_limits(mddev->queue, 1344 rdev->bdev->bd_disk->queue); 1345 /* as we don't honour merge_bvec_fn, we must never risk 1346 * violating it, so limit ->max_sector to one PAGE, as 1347 * a one page request is never in violation. 1348 */ 1349 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1350 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1351 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1352 1353 disk->head_position = 0; 1354 if (!rdev->faulty && rdev->in_sync) 1355 conf->working_disks++; 1356 } 1357 conf->raid_disks = mddev->raid_disks; 1358 conf->mddev = mddev; 1359 spin_lock_init(&conf->device_lock); 1360 INIT_LIST_HEAD(&conf->retry_list); 1361 if (conf->working_disks == 1) 1362 mddev->recovery_cp = MaxSector; 1363 1364 spin_lock_init(&conf->resync_lock); 1365 init_waitqueue_head(&conf->wait_idle); 1366 init_waitqueue_head(&conf->wait_resume); 1367 1368 bio_list_init(&conf->pending_bio_list); 1369 bio_list_init(&conf->flushing_bio_list); 1370 1371 if (!conf->working_disks) { 1372 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1373 mdname(mddev)); 1374 goto out_free_conf; 1375 } 1376 1377 mddev->degraded = 0; 1378 for (i = 0; i < conf->raid_disks; i++) { 1379 1380 disk = conf->mirrors + i; 1381 1382 if (!disk->rdev) { 1383 disk->head_position = 0; 1384 mddev->degraded++; 1385 } 1386 } 1387 1388 /* 1389 * find the first working one and use it as a starting point 1390 * to read balancing. 1391 */ 1392 for (j = 0; j < conf->raid_disks && 1393 (!conf->mirrors[j].rdev || 1394 !conf->mirrors[j].rdev->in_sync) ; j++) 1395 /* nothing */; 1396 conf->last_used = j; 1397 1398 1399 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1400 if (!mddev->thread) { 1401 printk(KERN_ERR 1402 "raid1: couldn't allocate thread for %s\n", 1403 mdname(mddev)); 1404 goto out_free_conf; 1405 } 1406 if (mddev->bitmap) mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 1407 1408 printk(KERN_INFO 1409 "raid1: raid set %s active with %d out of %d mirrors\n", 1410 mdname(mddev), mddev->raid_disks - mddev->degraded, 1411 mddev->raid_disks); 1412 /* 1413 * Ok, everything is just fine now 1414 */ 1415 mddev->array_size = mddev->size; 1416 1417 mddev->queue->unplug_fn = raid1_unplug; 1418 mddev->queue->issue_flush_fn = raid1_issue_flush; 1419 1420 return 0; 1421 1422 out_no_mem: 1423 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 1424 mdname(mddev)); 1425 1426 out_free_conf: 1427 if (conf) { 1428 if (conf->r1bio_pool) 1429 mempool_destroy(conf->r1bio_pool); 1430 kfree(conf->mirrors); 1431 kfree(conf->poolinfo); 1432 kfree(conf); 1433 mddev->private = NULL; 1434 } 1435 out: 1436 return -EIO; 1437 } 1438 1439 static int stop(mddev_t *mddev) 1440 { 1441 conf_t *conf = mddev_to_conf(mddev); 1442 1443 md_unregister_thread(mddev->thread); 1444 mddev->thread = NULL; 1445 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 1446 if (conf->r1bio_pool) 1447 mempool_destroy(conf->r1bio_pool); 1448 kfree(conf->mirrors); 1449 kfree(conf->poolinfo); 1450 kfree(conf); 1451 mddev->private = NULL; 1452 return 0; 1453 } 1454 1455 static int raid1_resize(mddev_t *mddev, sector_t sectors) 1456 { 1457 /* no resync is happening, and there is enough space 1458 * on all devices, so we can resize. 1459 * We need to make sure resync covers any new space. 1460 * If the array is shrinking we should possibly wait until 1461 * any io in the removed space completes, but it hardly seems 1462 * worth it. 1463 */ 1464 mddev->array_size = sectors>>1; 1465 set_capacity(mddev->gendisk, mddev->array_size << 1); 1466 mddev->changed = 1; 1467 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 1468 mddev->recovery_cp = mddev->size << 1; 1469 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1470 } 1471 mddev->size = mddev->array_size; 1472 return 0; 1473 } 1474 1475 static int raid1_reshape(mddev_t *mddev, int raid_disks) 1476 { 1477 /* We need to: 1478 * 1/ resize the r1bio_pool 1479 * 2/ resize conf->mirrors 1480 * 1481 * We allocate a new r1bio_pool if we can. 1482 * Then raise a device barrier and wait until all IO stops. 1483 * Then resize conf->mirrors and swap in the new r1bio pool. 1484 * 1485 * At the same time, we "pack" the devices so that all the missing 1486 * devices have the higher raid_disk numbers. 1487 */ 1488 mempool_t *newpool, *oldpool; 1489 struct pool_info *newpoolinfo; 1490 mirror_info_t *newmirrors; 1491 conf_t *conf = mddev_to_conf(mddev); 1492 int cnt; 1493 1494 int d, d2; 1495 1496 if (raid_disks < conf->raid_disks) { 1497 cnt=0; 1498 for (d= 0; d < conf->raid_disks; d++) 1499 if (conf->mirrors[d].rdev) 1500 cnt++; 1501 if (cnt > raid_disks) 1502 return -EBUSY; 1503 } 1504 1505 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 1506 if (!newpoolinfo) 1507 return -ENOMEM; 1508 newpoolinfo->mddev = mddev; 1509 newpoolinfo->raid_disks = raid_disks; 1510 1511 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1512 r1bio_pool_free, newpoolinfo); 1513 if (!newpool) { 1514 kfree(newpoolinfo); 1515 return -ENOMEM; 1516 } 1517 newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 1518 if (!newmirrors) { 1519 kfree(newpoolinfo); 1520 mempool_destroy(newpool); 1521 return -ENOMEM; 1522 } 1523 memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks); 1524 1525 spin_lock_irq(&conf->resync_lock); 1526 conf->barrier++; 1527 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending, 1528 conf->resync_lock, raid1_unplug(mddev->queue)); 1529 spin_unlock_irq(&conf->resync_lock); 1530 1531 /* ok, everything is stopped */ 1532 oldpool = conf->r1bio_pool; 1533 conf->r1bio_pool = newpool; 1534 1535 for (d=d2=0; d < conf->raid_disks; d++) 1536 if (conf->mirrors[d].rdev) { 1537 conf->mirrors[d].rdev->raid_disk = d2; 1538 newmirrors[d2++].rdev = conf->mirrors[d].rdev; 1539 } 1540 kfree(conf->mirrors); 1541 conf->mirrors = newmirrors; 1542 kfree(conf->poolinfo); 1543 conf->poolinfo = newpoolinfo; 1544 1545 mddev->degraded += (raid_disks - conf->raid_disks); 1546 conf->raid_disks = mddev->raid_disks = raid_disks; 1547 1548 conf->last_used = 0; /* just make sure it is in-range */ 1549 spin_lock_irq(&conf->resync_lock); 1550 conf->barrier--; 1551 spin_unlock_irq(&conf->resync_lock); 1552 wake_up(&conf->wait_resume); 1553 wake_up(&conf->wait_idle); 1554 1555 1556 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1557 md_wakeup_thread(mddev->thread); 1558 1559 mempool_destroy(oldpool); 1560 return 0; 1561 } 1562 1563 1564 static mdk_personality_t raid1_personality = 1565 { 1566 .name = "raid1", 1567 .owner = THIS_MODULE, 1568 .make_request = make_request, 1569 .run = run, 1570 .stop = stop, 1571 .status = status, 1572 .error_handler = error, 1573 .hot_add_disk = raid1_add_disk, 1574 .hot_remove_disk= raid1_remove_disk, 1575 .spare_active = raid1_spare_active, 1576 .sync_request = sync_request, 1577 .resize = raid1_resize, 1578 .reshape = raid1_reshape, 1579 }; 1580 1581 static int __init raid_init(void) 1582 { 1583 return register_md_personality(RAID1, &raid1_personality); 1584 } 1585 1586 static void raid_exit(void) 1587 { 1588 unregister_md_personality(RAID1); 1589 } 1590 1591 module_init(raid_init); 1592 module_exit(raid_exit); 1593 MODULE_LICENSE("GPL"); 1594 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 1595