xref: /linux/drivers/md/raid1.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37 
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44 
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define	NR_RAID1_BIOS 256
49 
50 static mdk_personality_t raid1_personality;
51 
52 static void unplug_slaves(mddev_t *mddev);
53 
54 
55 static void * r1bio_pool_alloc(unsigned int __nocast gfp_flags, void *data)
56 {
57 	struct pool_info *pi = data;
58 	r1bio_t *r1_bio;
59 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
60 
61 	/* allocate a r1bio with room for raid_disks entries in the bios array */
62 	r1_bio = kmalloc(size, gfp_flags);
63 	if (r1_bio)
64 		memset(r1_bio, 0, size);
65 	else
66 		unplug_slaves(pi->mddev);
67 
68 	return r1_bio;
69 }
70 
71 static void r1bio_pool_free(void *r1_bio, void *data)
72 {
73 	kfree(r1_bio);
74 }
75 
76 #define RESYNC_BLOCK_SIZE (64*1024)
77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 #define RESYNC_WINDOW (2048*1024)
81 
82 static void * r1buf_pool_alloc(unsigned int __nocast gfp_flags, void *data)
83 {
84 	struct pool_info *pi = data;
85 	struct page *page;
86 	r1bio_t *r1_bio;
87 	struct bio *bio;
88 	int i, j;
89 
90 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
91 	if (!r1_bio) {
92 		unplug_slaves(pi->mddev);
93 		return NULL;
94 	}
95 
96 	/*
97 	 * Allocate bios : 1 for reading, n-1 for writing
98 	 */
99 	for (j = pi->raid_disks ; j-- ; ) {
100 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
101 		if (!bio)
102 			goto out_free_bio;
103 		r1_bio->bios[j] = bio;
104 	}
105 	/*
106 	 * Allocate RESYNC_PAGES data pages and attach them to
107 	 * the first bio;
108 	 */
109 	bio = r1_bio->bios[0];
110 	for (i = 0; i < RESYNC_PAGES; i++) {
111 		page = alloc_page(gfp_flags);
112 		if (unlikely(!page))
113 			goto out_free_pages;
114 
115 		bio->bi_io_vec[i].bv_page = page;
116 	}
117 
118 	r1_bio->master_bio = NULL;
119 
120 	return r1_bio;
121 
122 out_free_pages:
123 	for ( ; i > 0 ; i--)
124 		__free_page(bio->bi_io_vec[i-1].bv_page);
125 out_free_bio:
126 	while ( ++j < pi->raid_disks )
127 		bio_put(r1_bio->bios[j]);
128 	r1bio_pool_free(r1_bio, data);
129 	return NULL;
130 }
131 
132 static void r1buf_pool_free(void *__r1_bio, void *data)
133 {
134 	struct pool_info *pi = data;
135 	int i;
136 	r1bio_t *r1bio = __r1_bio;
137 	struct bio *bio = r1bio->bios[0];
138 
139 	for (i = 0; i < RESYNC_PAGES; i++) {
140 		__free_page(bio->bi_io_vec[i].bv_page);
141 		bio->bi_io_vec[i].bv_page = NULL;
142 	}
143 	for (i=0 ; i < pi->raid_disks; i++)
144 		bio_put(r1bio->bios[i]);
145 
146 	r1bio_pool_free(r1bio, data);
147 }
148 
149 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
150 {
151 	int i;
152 
153 	for (i = 0; i < conf->raid_disks; i++) {
154 		struct bio **bio = r1_bio->bios + i;
155 		if (*bio)
156 			bio_put(*bio);
157 		*bio = NULL;
158 	}
159 }
160 
161 static inline void free_r1bio(r1bio_t *r1_bio)
162 {
163 	unsigned long flags;
164 
165 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
166 
167 	/*
168 	 * Wake up any possible resync thread that waits for the device
169 	 * to go idle.
170 	 */
171 	spin_lock_irqsave(&conf->resync_lock, flags);
172 	if (!--conf->nr_pending) {
173 		wake_up(&conf->wait_idle);
174 		wake_up(&conf->wait_resume);
175 	}
176 	spin_unlock_irqrestore(&conf->resync_lock, flags);
177 
178 	put_all_bios(conf, r1_bio);
179 	mempool_free(r1_bio, conf->r1bio_pool);
180 }
181 
182 static inline void put_buf(r1bio_t *r1_bio)
183 {
184 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
185 	unsigned long flags;
186 
187 	mempool_free(r1_bio, conf->r1buf_pool);
188 
189 	spin_lock_irqsave(&conf->resync_lock, flags);
190 	if (!conf->barrier)
191 		BUG();
192 	--conf->barrier;
193 	wake_up(&conf->wait_resume);
194 	wake_up(&conf->wait_idle);
195 
196 	if (!--conf->nr_pending) {
197 		wake_up(&conf->wait_idle);
198 		wake_up(&conf->wait_resume);
199 	}
200 	spin_unlock_irqrestore(&conf->resync_lock, flags);
201 }
202 
203 static void reschedule_retry(r1bio_t *r1_bio)
204 {
205 	unsigned long flags;
206 	mddev_t *mddev = r1_bio->mddev;
207 	conf_t *conf = mddev_to_conf(mddev);
208 
209 	spin_lock_irqsave(&conf->device_lock, flags);
210 	list_add(&r1_bio->retry_list, &conf->retry_list);
211 	spin_unlock_irqrestore(&conf->device_lock, flags);
212 
213 	md_wakeup_thread(mddev->thread);
214 }
215 
216 /*
217  * raid_end_bio_io() is called when we have finished servicing a mirrored
218  * operation and are ready to return a success/failure code to the buffer
219  * cache layer.
220  */
221 static void raid_end_bio_io(r1bio_t *r1_bio)
222 {
223 	struct bio *bio = r1_bio->master_bio;
224 
225 	bio_endio(bio, bio->bi_size,
226 		test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
227 	free_r1bio(r1_bio);
228 }
229 
230 /*
231  * Update disk head position estimator based on IRQ completion info.
232  */
233 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
234 {
235 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
236 
237 	conf->mirrors[disk].head_position =
238 		r1_bio->sector + (r1_bio->sectors);
239 }
240 
241 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
242 {
243 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
244 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
245 	int mirror;
246 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
247 
248 	if (bio->bi_size)
249 		return 1;
250 
251 	mirror = r1_bio->read_disk;
252 	/*
253 	 * this branch is our 'one mirror IO has finished' event handler:
254 	 */
255 	if (!uptodate)
256 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
257 	else
258 		/*
259 		 * Set R1BIO_Uptodate in our master bio, so that
260 		 * we will return a good error code for to the higher
261 		 * levels even if IO on some other mirrored buffer fails.
262 		 *
263 		 * The 'master' represents the composite IO operation to
264 		 * user-side. So if something waits for IO, then it will
265 		 * wait for the 'master' bio.
266 		 */
267 		set_bit(R1BIO_Uptodate, &r1_bio->state);
268 
269 	update_head_pos(mirror, r1_bio);
270 
271 	/*
272 	 * we have only one bio on the read side
273 	 */
274 	if (uptodate)
275 		raid_end_bio_io(r1_bio);
276 	else {
277 		/*
278 		 * oops, read error:
279 		 */
280 		char b[BDEVNAME_SIZE];
281 		if (printk_ratelimit())
282 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
283 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
284 		reschedule_retry(r1_bio);
285 	}
286 
287 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
288 	return 0;
289 }
290 
291 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
292 {
293 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
294 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
295 	int mirror;
296 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
297 
298 	if (bio->bi_size)
299 		return 1;
300 
301 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
302 		if (r1_bio->bios[mirror] == bio)
303 			break;
304 
305 	/*
306 	 * this branch is our 'one mirror IO has finished' event handler:
307 	 */
308 	if (!uptodate) {
309 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
310 		/* an I/O failed, we can't clear the bitmap */
311 		set_bit(R1BIO_Degraded, &r1_bio->state);
312 	} else
313 		/*
314 		 * Set R1BIO_Uptodate in our master bio, so that
315 		 * we will return a good error code for to the higher
316 		 * levels even if IO on some other mirrored buffer fails.
317 		 *
318 		 * The 'master' represents the composite IO operation to
319 		 * user-side. So if something waits for IO, then it will
320 		 * wait for the 'master' bio.
321 		 */
322 		set_bit(R1BIO_Uptodate, &r1_bio->state);
323 
324 	update_head_pos(mirror, r1_bio);
325 
326 	/*
327 	 *
328 	 * Let's see if all mirrored write operations have finished
329 	 * already.
330 	 */
331 	if (atomic_dec_and_test(&r1_bio->remaining)) {
332 		/* clear the bitmap if all writes complete successfully */
333 		bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
334 				r1_bio->sectors,
335 				!test_bit(R1BIO_Degraded, &r1_bio->state));
336 		md_write_end(r1_bio->mddev);
337 		raid_end_bio_io(r1_bio);
338 	}
339 
340 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
341 	return 0;
342 }
343 
344 
345 /*
346  * This routine returns the disk from which the requested read should
347  * be done. There is a per-array 'next expected sequential IO' sector
348  * number - if this matches on the next IO then we use the last disk.
349  * There is also a per-disk 'last know head position' sector that is
350  * maintained from IRQ contexts, both the normal and the resync IO
351  * completion handlers update this position correctly. If there is no
352  * perfect sequential match then we pick the disk whose head is closest.
353  *
354  * If there are 2 mirrors in the same 2 devices, performance degrades
355  * because position is mirror, not device based.
356  *
357  * The rdev for the device selected will have nr_pending incremented.
358  */
359 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
360 {
361 	const unsigned long this_sector = r1_bio->sector;
362 	int new_disk = conf->last_used, disk = new_disk;
363 	const int sectors = r1_bio->sectors;
364 	sector_t new_distance, current_distance;
365 	mdk_rdev_t *new_rdev, *rdev;
366 
367 	rcu_read_lock();
368 	/*
369 	 * Check if it if we can balance. We can balance on the whole
370 	 * device if no resync is going on, or below the resync window.
371 	 * We take the first readable disk when above the resync window.
372 	 */
373  retry:
374 	if (conf->mddev->recovery_cp < MaxSector &&
375 	    (this_sector + sectors >= conf->next_resync)) {
376 		/* Choose the first operation device, for consistancy */
377 		new_disk = 0;
378 
379 		while ((new_rdev=conf->mirrors[new_disk].rdev) == NULL ||
380 		       !new_rdev->in_sync) {
381 			new_disk++;
382 			if (new_disk == conf->raid_disks) {
383 				new_disk = -1;
384 				break;
385 			}
386 		}
387 		goto rb_out;
388 	}
389 
390 
391 	/* make sure the disk is operational */
392 	while ((new_rdev=conf->mirrors[new_disk].rdev) == NULL ||
393 	       !new_rdev->in_sync) {
394 		if (new_disk <= 0)
395 			new_disk = conf->raid_disks;
396 		new_disk--;
397 		if (new_disk == disk) {
398 			new_disk = -1;
399 			goto rb_out;
400 		}
401 	}
402 	disk = new_disk;
403 	/* now disk == new_disk == starting point for search */
404 
405 	/*
406 	 * Don't change to another disk for sequential reads:
407 	 */
408 	if (conf->next_seq_sect == this_sector)
409 		goto rb_out;
410 	if (this_sector == conf->mirrors[new_disk].head_position)
411 		goto rb_out;
412 
413 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
414 
415 	/* Find the disk whose head is closest */
416 
417 	do {
418 		if (disk <= 0)
419 			disk = conf->raid_disks;
420 		disk--;
421 
422 		if ((rdev=conf->mirrors[disk].rdev) == NULL ||
423 		    !rdev->in_sync)
424 			continue;
425 
426 		if (!atomic_read(&rdev->nr_pending)) {
427 			new_disk = disk;
428 			new_rdev = rdev;
429 			break;
430 		}
431 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
432 		if (new_distance < current_distance) {
433 			current_distance = new_distance;
434 			new_disk = disk;
435 			new_rdev = rdev;
436 		}
437 	} while (disk != conf->last_used);
438 
439 rb_out:
440 
441 
442 	if (new_disk >= 0) {
443 		conf->next_seq_sect = this_sector + sectors;
444 		conf->last_used = new_disk;
445 		atomic_inc(&new_rdev->nr_pending);
446 		if (!new_rdev->in_sync) {
447 			/* cannot risk returning a device that failed
448 			 * before we inc'ed nr_pending
449 			 */
450 			atomic_dec(&new_rdev->nr_pending);
451 			goto retry;
452 		}
453 	}
454 	rcu_read_unlock();
455 
456 	return new_disk;
457 }
458 
459 static void unplug_slaves(mddev_t *mddev)
460 {
461 	conf_t *conf = mddev_to_conf(mddev);
462 	int i;
463 
464 	rcu_read_lock();
465 	for (i=0; i<mddev->raid_disks; i++) {
466 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
467 		if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
468 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
469 
470 			atomic_inc(&rdev->nr_pending);
471 			rcu_read_unlock();
472 
473 			if (r_queue->unplug_fn)
474 				r_queue->unplug_fn(r_queue);
475 
476 			rdev_dec_pending(rdev, mddev);
477 			rcu_read_lock();
478 		}
479 	}
480 	rcu_read_unlock();
481 }
482 
483 static void raid1_unplug(request_queue_t *q)
484 {
485 	mddev_t *mddev = q->queuedata;
486 
487 	unplug_slaves(mddev);
488 	md_wakeup_thread(mddev->thread);
489 }
490 
491 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
492 			     sector_t *error_sector)
493 {
494 	mddev_t *mddev = q->queuedata;
495 	conf_t *conf = mddev_to_conf(mddev);
496 	int i, ret = 0;
497 
498 	rcu_read_lock();
499 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
500 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
501 		if (rdev && !rdev->faulty) {
502 			struct block_device *bdev = rdev->bdev;
503 			request_queue_t *r_queue = bdev_get_queue(bdev);
504 
505 			if (!r_queue->issue_flush_fn)
506 				ret = -EOPNOTSUPP;
507 			else {
508 				atomic_inc(&rdev->nr_pending);
509 				rcu_read_unlock();
510 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
511 							      error_sector);
512 				rdev_dec_pending(rdev, mddev);
513 				rcu_read_lock();
514 			}
515 		}
516 	}
517 	rcu_read_unlock();
518 	return ret;
519 }
520 
521 /*
522  * Throttle resync depth, so that we can both get proper overlapping of
523  * requests, but are still able to handle normal requests quickly.
524  */
525 #define RESYNC_DEPTH 32
526 
527 static void device_barrier(conf_t *conf, sector_t sect)
528 {
529 	spin_lock_irq(&conf->resync_lock);
530 	wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
531 			    conf->resync_lock, raid1_unplug(conf->mddev->queue));
532 
533 	if (!conf->barrier++) {
534 		wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
535 				    conf->resync_lock, raid1_unplug(conf->mddev->queue));
536 		if (conf->nr_pending)
537 			BUG();
538 	}
539 	wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
540 			    conf->resync_lock, raid1_unplug(conf->mddev->queue));
541 	conf->next_resync = sect;
542 	spin_unlock_irq(&conf->resync_lock);
543 }
544 
545 static int make_request(request_queue_t *q, struct bio * bio)
546 {
547 	mddev_t *mddev = q->queuedata;
548 	conf_t *conf = mddev_to_conf(mddev);
549 	mirror_info_t *mirror;
550 	r1bio_t *r1_bio;
551 	struct bio *read_bio;
552 	int i, targets = 0, disks;
553 	mdk_rdev_t *rdev;
554 	struct bitmap *bitmap = mddev->bitmap;
555 	unsigned long flags;
556 	struct bio_list bl;
557 
558 
559 	/*
560 	 * Register the new request and wait if the reconstruction
561 	 * thread has put up a bar for new requests.
562 	 * Continue immediately if no resync is active currently.
563 	 */
564 	md_write_start(mddev, bio); /* wait on superblock update early */
565 
566 	spin_lock_irq(&conf->resync_lock);
567 	wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
568 	conf->nr_pending++;
569 	spin_unlock_irq(&conf->resync_lock);
570 
571 	if (bio_data_dir(bio)==WRITE) {
572 		disk_stat_inc(mddev->gendisk, writes);
573 		disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
574 	} else {
575 		disk_stat_inc(mddev->gendisk, reads);
576 		disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
577 	}
578 
579 	/*
580 	 * make_request() can abort the operation when READA is being
581 	 * used and no empty request is available.
582 	 *
583 	 */
584 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
585 
586 	r1_bio->master_bio = bio;
587 	r1_bio->sectors = bio->bi_size >> 9;
588 	r1_bio->state = 0;
589 	r1_bio->mddev = mddev;
590 	r1_bio->sector = bio->bi_sector;
591 
592 	r1_bio->state = 0;
593 
594 	if (bio_data_dir(bio) == READ) {
595 		/*
596 		 * read balancing logic:
597 		 */
598 		int rdisk = read_balance(conf, r1_bio);
599 
600 		if (rdisk < 0) {
601 			/* couldn't find anywhere to read from */
602 			raid_end_bio_io(r1_bio);
603 			return 0;
604 		}
605 		mirror = conf->mirrors + rdisk;
606 
607 		r1_bio->read_disk = rdisk;
608 
609 		read_bio = bio_clone(bio, GFP_NOIO);
610 
611 		r1_bio->bios[rdisk] = read_bio;
612 
613 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
614 		read_bio->bi_bdev = mirror->rdev->bdev;
615 		read_bio->bi_end_io = raid1_end_read_request;
616 		read_bio->bi_rw = READ;
617 		read_bio->bi_private = r1_bio;
618 
619 		generic_make_request(read_bio);
620 		return 0;
621 	}
622 
623 	/*
624 	 * WRITE:
625 	 */
626 	/* first select target devices under spinlock and
627 	 * inc refcount on their rdev.  Record them by setting
628 	 * bios[x] to bio
629 	 */
630 	disks = conf->raid_disks;
631 #if 0
632 	{ static int first=1;
633 	if (first) printk("First Write sector %llu disks %d\n",
634 			  (unsigned long long)r1_bio->sector, disks);
635 	first = 0;
636 	}
637 #endif
638 	rcu_read_lock();
639 	for (i = 0;  i < disks; i++) {
640 		if ((rdev=conf->mirrors[i].rdev) != NULL &&
641 		    !rdev->faulty) {
642 			atomic_inc(&rdev->nr_pending);
643 			if (rdev->faulty) {
644 				atomic_dec(&rdev->nr_pending);
645 				r1_bio->bios[i] = NULL;
646 			} else
647 				r1_bio->bios[i] = bio;
648 			targets++;
649 		} else
650 			r1_bio->bios[i] = NULL;
651 	}
652 	rcu_read_unlock();
653 
654 	if (targets < conf->raid_disks) {
655 		/* array is degraded, we will not clear the bitmap
656 		 * on I/O completion (see raid1_end_write_request) */
657 		set_bit(R1BIO_Degraded, &r1_bio->state);
658 	}
659 
660 	atomic_set(&r1_bio->remaining, 0);
661 
662 	bio_list_init(&bl);
663 	for (i = 0; i < disks; i++) {
664 		struct bio *mbio;
665 		if (!r1_bio->bios[i])
666 			continue;
667 
668 		mbio = bio_clone(bio, GFP_NOIO);
669 		r1_bio->bios[i] = mbio;
670 
671 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
672 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
673 		mbio->bi_end_io	= raid1_end_write_request;
674 		mbio->bi_rw = WRITE;
675 		mbio->bi_private = r1_bio;
676 
677 		atomic_inc(&r1_bio->remaining);
678 
679 		bio_list_add(&bl, mbio);
680 	}
681 
682 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors);
683 	spin_lock_irqsave(&conf->device_lock, flags);
684 	bio_list_merge(&conf->pending_bio_list, &bl);
685 	bio_list_init(&bl);
686 
687 	blk_plug_device(mddev->queue);
688 	spin_unlock_irqrestore(&conf->device_lock, flags);
689 
690 #if 0
691 	while ((bio = bio_list_pop(&bl)) != NULL)
692 		generic_make_request(bio);
693 #endif
694 
695 	return 0;
696 }
697 
698 static void status(struct seq_file *seq, mddev_t *mddev)
699 {
700 	conf_t *conf = mddev_to_conf(mddev);
701 	int i;
702 
703 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
704 						conf->working_disks);
705 	for (i = 0; i < conf->raid_disks; i++)
706 		seq_printf(seq, "%s",
707 			      conf->mirrors[i].rdev &&
708 			      conf->mirrors[i].rdev->in_sync ? "U" : "_");
709 	seq_printf(seq, "]");
710 }
711 
712 
713 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
714 {
715 	char b[BDEVNAME_SIZE];
716 	conf_t *conf = mddev_to_conf(mddev);
717 
718 	/*
719 	 * If it is not operational, then we have already marked it as dead
720 	 * else if it is the last working disks, ignore the error, let the
721 	 * next level up know.
722 	 * else mark the drive as failed
723 	 */
724 	if (rdev->in_sync
725 	    && conf->working_disks == 1)
726 		/*
727 		 * Don't fail the drive, act as though we were just a
728 		 * normal single drive
729 		 */
730 		return;
731 	if (rdev->in_sync) {
732 		mddev->degraded++;
733 		conf->working_disks--;
734 		/*
735 		 * if recovery is running, make sure it aborts.
736 		 */
737 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
738 	}
739 	rdev->in_sync = 0;
740 	rdev->faulty = 1;
741 	mddev->sb_dirty = 1;
742 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
743 		"	Operation continuing on %d devices\n",
744 		bdevname(rdev->bdev,b), conf->working_disks);
745 }
746 
747 static void print_conf(conf_t *conf)
748 {
749 	int i;
750 	mirror_info_t *tmp;
751 
752 	printk("RAID1 conf printout:\n");
753 	if (!conf) {
754 		printk("(!conf)\n");
755 		return;
756 	}
757 	printk(" --- wd:%d rd:%d\n", conf->working_disks,
758 		conf->raid_disks);
759 
760 	for (i = 0; i < conf->raid_disks; i++) {
761 		char b[BDEVNAME_SIZE];
762 		tmp = conf->mirrors + i;
763 		if (tmp->rdev)
764 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
765 				i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
766 				bdevname(tmp->rdev->bdev,b));
767 	}
768 }
769 
770 static void close_sync(conf_t *conf)
771 {
772 	spin_lock_irq(&conf->resync_lock);
773 	wait_event_lock_irq(conf->wait_resume, !conf->barrier,
774 			    conf->resync_lock, 	raid1_unplug(conf->mddev->queue));
775 	spin_unlock_irq(&conf->resync_lock);
776 
777 	if (conf->barrier) BUG();
778 	if (waitqueue_active(&conf->wait_idle)) BUG();
779 
780 	mempool_destroy(conf->r1buf_pool);
781 	conf->r1buf_pool = NULL;
782 }
783 
784 static int raid1_spare_active(mddev_t *mddev)
785 {
786 	int i;
787 	conf_t *conf = mddev->private;
788 	mirror_info_t *tmp;
789 
790 	/*
791 	 * Find all failed disks within the RAID1 configuration
792 	 * and mark them readable
793 	 */
794 	for (i = 0; i < conf->raid_disks; i++) {
795 		tmp = conf->mirrors + i;
796 		if (tmp->rdev
797 		    && !tmp->rdev->faulty
798 		    && !tmp->rdev->in_sync) {
799 			conf->working_disks++;
800 			mddev->degraded--;
801 			tmp->rdev->in_sync = 1;
802 		}
803 	}
804 
805 	print_conf(conf);
806 	return 0;
807 }
808 
809 
810 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
811 {
812 	conf_t *conf = mddev->private;
813 	int found = 0;
814 	int mirror = 0;
815 	mirror_info_t *p;
816 
817 	if (rdev->saved_raid_disk >= 0 &&
818 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
819 		mirror = rdev->saved_raid_disk;
820 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
821 		if ( !(p=conf->mirrors+mirror)->rdev) {
822 
823 			blk_queue_stack_limits(mddev->queue,
824 					       rdev->bdev->bd_disk->queue);
825 			/* as we don't honour merge_bvec_fn, we must never risk
826 			 * violating it, so limit ->max_sector to one PAGE, as
827 			 * a one page request is never in violation.
828 			 */
829 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
830 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
831 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
832 
833 			p->head_position = 0;
834 			rdev->raid_disk = mirror;
835 			found = 1;
836 			if (rdev->saved_raid_disk != mirror)
837 				conf->fullsync = 1;
838 			p->rdev = rdev;
839 			break;
840 		}
841 
842 	print_conf(conf);
843 	return found;
844 }
845 
846 static int raid1_remove_disk(mddev_t *mddev, int number)
847 {
848 	conf_t *conf = mddev->private;
849 	int err = 0;
850 	mdk_rdev_t *rdev;
851 	mirror_info_t *p = conf->mirrors+ number;
852 
853 	print_conf(conf);
854 	rdev = p->rdev;
855 	if (rdev) {
856 		if (rdev->in_sync ||
857 		    atomic_read(&rdev->nr_pending)) {
858 			err = -EBUSY;
859 			goto abort;
860 		}
861 		p->rdev = NULL;
862 		synchronize_rcu();
863 		if (atomic_read(&rdev->nr_pending)) {
864 			/* lost the race, try later */
865 			err = -EBUSY;
866 			p->rdev = rdev;
867 		}
868 	}
869 abort:
870 
871 	print_conf(conf);
872 	return err;
873 }
874 
875 
876 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
877 {
878 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
879 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
880 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
881 
882 	if (bio->bi_size)
883 		return 1;
884 
885 	if (r1_bio->bios[r1_bio->read_disk] != bio)
886 		BUG();
887 	update_head_pos(r1_bio->read_disk, r1_bio);
888 	/*
889 	 * we have read a block, now it needs to be re-written,
890 	 * or re-read if the read failed.
891 	 * We don't do much here, just schedule handling by raid1d
892 	 */
893 	if (!uptodate) {
894 		md_error(r1_bio->mddev,
895 			 conf->mirrors[r1_bio->read_disk].rdev);
896 		set_bit(R1BIO_Degraded, &r1_bio->state);
897 	} else
898 		set_bit(R1BIO_Uptodate, &r1_bio->state);
899 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
900 	reschedule_retry(r1_bio);
901 	return 0;
902 }
903 
904 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
905 {
906 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
907 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
908 	mddev_t *mddev = r1_bio->mddev;
909 	conf_t *conf = mddev_to_conf(mddev);
910 	int i;
911 	int mirror=0;
912 
913 	if (bio->bi_size)
914 		return 1;
915 
916 	for (i = 0; i < conf->raid_disks; i++)
917 		if (r1_bio->bios[i] == bio) {
918 			mirror = i;
919 			break;
920 		}
921 	if (!uptodate) {
922 		md_error(mddev, conf->mirrors[mirror].rdev);
923 		set_bit(R1BIO_Degraded, &r1_bio->state);
924 	}
925 	update_head_pos(mirror, r1_bio);
926 
927 	if (atomic_dec_and_test(&r1_bio->remaining)) {
928 		md_done_sync(mddev, r1_bio->sectors, uptodate);
929 		put_buf(r1_bio);
930 	}
931 	rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
932 	return 0;
933 }
934 
935 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
936 {
937 	conf_t *conf = mddev_to_conf(mddev);
938 	int i;
939 	int disks = conf->raid_disks;
940 	struct bio *bio, *wbio;
941 
942 	bio = r1_bio->bios[r1_bio->read_disk];
943 
944 /*
945 	if (r1_bio->sector == 0) printk("First sync write startss\n");
946 */
947 	/*
948 	 * schedule writes
949 	 */
950 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
951 		/*
952 		 * There is no point trying a read-for-reconstruct as
953 		 * reconstruct is about to be aborted
954 		 */
955 		char b[BDEVNAME_SIZE];
956 		printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
957 			" for block %llu\n",
958 			bdevname(bio->bi_bdev,b),
959 			(unsigned long long)r1_bio->sector);
960 		md_done_sync(mddev, r1_bio->sectors, 0);
961 		put_buf(r1_bio);
962 		return;
963 	}
964 
965 	atomic_set(&r1_bio->remaining, 1);
966 	for (i = 0; i < disks ; i++) {
967 		wbio = r1_bio->bios[i];
968 		if (wbio->bi_end_io != end_sync_write)
969 			continue;
970 
971 		atomic_inc(&conf->mirrors[i].rdev->nr_pending);
972 		atomic_inc(&r1_bio->remaining);
973 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
974 
975 		generic_make_request(wbio);
976 	}
977 
978 	if (atomic_dec_and_test(&r1_bio->remaining)) {
979 		/* if we're here, all write(s) have completed, so clean up */
980 		md_done_sync(mddev, r1_bio->sectors, 1);
981 		put_buf(r1_bio);
982 	}
983 }
984 
985 /*
986  * This is a kernel thread which:
987  *
988  *	1.	Retries failed read operations on working mirrors.
989  *	2.	Updates the raid superblock when problems encounter.
990  *	3.	Performs writes following reads for array syncronising.
991  */
992 
993 static void raid1d(mddev_t *mddev)
994 {
995 	r1bio_t *r1_bio;
996 	struct bio *bio;
997 	unsigned long flags;
998 	conf_t *conf = mddev_to_conf(mddev);
999 	struct list_head *head = &conf->retry_list;
1000 	int unplug=0;
1001 	mdk_rdev_t *rdev;
1002 
1003 	md_check_recovery(mddev);
1004 
1005 	for (;;) {
1006 		char b[BDEVNAME_SIZE];
1007 		spin_lock_irqsave(&conf->device_lock, flags);
1008 
1009 		if (conf->pending_bio_list.head) {
1010 			bio = bio_list_get(&conf->pending_bio_list);
1011 			blk_remove_plug(mddev->queue);
1012 			spin_unlock_irqrestore(&conf->device_lock, flags);
1013 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1014 			if (bitmap_unplug(mddev->bitmap) != 0)
1015 				printk("%s: bitmap file write failed!\n", mdname(mddev));
1016 
1017 			while (bio) { /* submit pending writes */
1018 				struct bio *next = bio->bi_next;
1019 				bio->bi_next = NULL;
1020 				generic_make_request(bio);
1021 				bio = next;
1022 			}
1023 			unplug = 1;
1024 
1025 			continue;
1026 		}
1027 
1028 		if (list_empty(head))
1029 			break;
1030 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1031 		list_del(head->prev);
1032 		spin_unlock_irqrestore(&conf->device_lock, flags);
1033 
1034 		mddev = r1_bio->mddev;
1035 		conf = mddev_to_conf(mddev);
1036 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1037 			sync_request_write(mddev, r1_bio);
1038 			unplug = 1;
1039 		} else {
1040 			int disk;
1041 			bio = r1_bio->bios[r1_bio->read_disk];
1042 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1043 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1044 				       " read error for block %llu\n",
1045 				       bdevname(bio->bi_bdev,b),
1046 				       (unsigned long long)r1_bio->sector);
1047 				raid_end_bio_io(r1_bio);
1048 			} else {
1049 				r1_bio->bios[r1_bio->read_disk] = NULL;
1050 				r1_bio->read_disk = disk;
1051 				bio_put(bio);
1052 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1053 				r1_bio->bios[r1_bio->read_disk] = bio;
1054 				rdev = conf->mirrors[disk].rdev;
1055 				if (printk_ratelimit())
1056 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1057 					       " another mirror\n",
1058 					       bdevname(rdev->bdev,b),
1059 					       (unsigned long long)r1_bio->sector);
1060 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1061 				bio->bi_bdev = rdev->bdev;
1062 				bio->bi_end_io = raid1_end_read_request;
1063 				bio->bi_rw = READ;
1064 				bio->bi_private = r1_bio;
1065 				unplug = 1;
1066 				generic_make_request(bio);
1067 			}
1068 		}
1069 	}
1070 	spin_unlock_irqrestore(&conf->device_lock, flags);
1071 	if (unplug)
1072 		unplug_slaves(mddev);
1073 }
1074 
1075 
1076 static int init_resync(conf_t *conf)
1077 {
1078 	int buffs;
1079 
1080 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1081 	if (conf->r1buf_pool)
1082 		BUG();
1083 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1084 					  conf->poolinfo);
1085 	if (!conf->r1buf_pool)
1086 		return -ENOMEM;
1087 	conf->next_resync = 0;
1088 	return 0;
1089 }
1090 
1091 /*
1092  * perform a "sync" on one "block"
1093  *
1094  * We need to make sure that no normal I/O request - particularly write
1095  * requests - conflict with active sync requests.
1096  *
1097  * This is achieved by tracking pending requests and a 'barrier' concept
1098  * that can be installed to exclude normal IO requests.
1099  */
1100 
1101 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1102 {
1103 	conf_t *conf = mddev_to_conf(mddev);
1104 	mirror_info_t *mirror;
1105 	r1bio_t *r1_bio;
1106 	struct bio *bio;
1107 	sector_t max_sector, nr_sectors;
1108 	int disk;
1109 	int i;
1110 	int write_targets = 0;
1111 	int sync_blocks;
1112 
1113 	if (!conf->r1buf_pool)
1114 	{
1115 /*
1116 		printk("sync start - bitmap %p\n", mddev->bitmap);
1117 */
1118 		if (init_resync(conf))
1119 			return 0;
1120 	}
1121 
1122 	max_sector = mddev->size << 1;
1123 	if (sector_nr >= max_sector) {
1124 		/* If we aborted, we need to abort the
1125 		 * sync on the 'current' bitmap chunk (there will
1126 		 * only be one in raid1 resync.
1127 		 * We can find the current addess in mddev->curr_resync
1128 		 */
1129 		if (!conf->fullsync) {
1130 			if (mddev->curr_resync < max_sector)
1131 				bitmap_end_sync(mddev->bitmap,
1132 						mddev->curr_resync,
1133 						&sync_blocks, 1);
1134 			bitmap_close_sync(mddev->bitmap);
1135 		}
1136 		if (mddev->curr_resync >= max_sector)
1137 			conf->fullsync = 0;
1138 		close_sync(conf);
1139 		return 0;
1140 	}
1141 
1142 	if (!conf->fullsync &&
1143 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks)) {
1144 		/* We can skip this block, and probably several more */
1145 		*skipped = 1;
1146 		return sync_blocks;
1147 	}
1148 	/*
1149 	 * If there is non-resync activity waiting for us then
1150 	 * put in a delay to throttle resync.
1151 	 */
1152 	if (!go_faster && waitqueue_active(&conf->wait_resume))
1153 		msleep_interruptible(1000);
1154 	device_barrier(conf, sector_nr + RESYNC_SECTORS);
1155 
1156 	/*
1157 	 * If reconstructing, and >1 working disc,
1158 	 * could dedicate one to rebuild and others to
1159 	 * service read requests ..
1160 	 */
1161 	disk = conf->last_used;
1162 	/* make sure disk is operational */
1163 
1164 	while (conf->mirrors[disk].rdev == NULL ||
1165 	       !conf->mirrors[disk].rdev->in_sync) {
1166 		if (disk <= 0)
1167 			disk = conf->raid_disks;
1168 		disk--;
1169 		if (disk == conf->last_used)
1170 			break;
1171 	}
1172 	conf->last_used = disk;
1173 	atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
1174 
1175 
1176 	mirror = conf->mirrors + disk;
1177 
1178 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1179 
1180 	spin_lock_irq(&conf->resync_lock);
1181 	conf->nr_pending++;
1182 	spin_unlock_irq(&conf->resync_lock);
1183 
1184 	r1_bio->mddev = mddev;
1185 	r1_bio->sector = sector_nr;
1186 	r1_bio->state = 0;
1187 	set_bit(R1BIO_IsSync, &r1_bio->state);
1188 	r1_bio->read_disk = disk;
1189 
1190 	for (i=0; i < conf->raid_disks; i++) {
1191 		bio = r1_bio->bios[i];
1192 
1193 		/* take from bio_init */
1194 		bio->bi_next = NULL;
1195 		bio->bi_flags |= 1 << BIO_UPTODATE;
1196 		bio->bi_rw = 0;
1197 		bio->bi_vcnt = 0;
1198 		bio->bi_idx = 0;
1199 		bio->bi_phys_segments = 0;
1200 		bio->bi_hw_segments = 0;
1201 		bio->bi_size = 0;
1202 		bio->bi_end_io = NULL;
1203 		bio->bi_private = NULL;
1204 
1205 		if (i == disk) {
1206 			bio->bi_rw = READ;
1207 			bio->bi_end_io = end_sync_read;
1208 		} else if (conf->mirrors[i].rdev &&
1209 			   !conf->mirrors[i].rdev->faulty &&
1210 			   (!conf->mirrors[i].rdev->in_sync ||
1211 			    sector_nr + RESYNC_SECTORS > mddev->recovery_cp)) {
1212 			bio->bi_rw = WRITE;
1213 			bio->bi_end_io = end_sync_write;
1214 			write_targets ++;
1215 		} else
1216 			continue;
1217 		bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset;
1218 		bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1219 		bio->bi_private = r1_bio;
1220 	}
1221 
1222 	if (write_targets + 1 < conf->raid_disks)
1223 		/* array degraded, can't clear bitmap */
1224 		set_bit(R1BIO_Degraded, &r1_bio->state);
1225 
1226 	if (write_targets == 0) {
1227 		/* There is nowhere to write, so all non-sync
1228 		 * drives must be failed - so we are finished
1229 		 */
1230 		sector_t rv = max_sector - sector_nr;
1231 		*skipped = 1;
1232 		put_buf(r1_bio);
1233 		rdev_dec_pending(conf->mirrors[disk].rdev, mddev);
1234 		return rv;
1235 	}
1236 
1237 	nr_sectors = 0;
1238 	sync_blocks = 0;
1239 	do {
1240 		struct page *page;
1241 		int len = PAGE_SIZE;
1242 		if (sector_nr + (len>>9) > max_sector)
1243 			len = (max_sector - sector_nr) << 9;
1244 		if (len == 0)
1245 			break;
1246 		if (!conf->fullsync) {
1247 			if (sync_blocks == 0) {
1248 				if (!bitmap_start_sync(mddev->bitmap,
1249 						       sector_nr, &sync_blocks))
1250 					break;
1251 				if (sync_blocks < (PAGE_SIZE>>9))
1252 					BUG();
1253 				if (len > (sync_blocks<<9)) len = sync_blocks<<9;
1254 			}
1255 		}
1256 
1257 		for (i=0 ; i < conf->raid_disks; i++) {
1258 			bio = r1_bio->bios[i];
1259 			if (bio->bi_end_io) {
1260 				page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page;
1261 				if (bio_add_page(bio, page, len, 0) == 0) {
1262 					/* stop here */
1263 					r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page;
1264 					while (i > 0) {
1265 						i--;
1266 						bio = r1_bio->bios[i];
1267 						if (bio->bi_end_io==NULL) continue;
1268 						/* remove last page from this bio */
1269 						bio->bi_vcnt--;
1270 						bio->bi_size -= len;
1271 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1272 					}
1273 					goto bio_full;
1274 				}
1275 			}
1276 		}
1277 		nr_sectors += len>>9;
1278 		sector_nr += len>>9;
1279 		sync_blocks -= (len>>9);
1280 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1281  bio_full:
1282 	bio = r1_bio->bios[disk];
1283 	r1_bio->sectors = nr_sectors;
1284 
1285 	md_sync_acct(mirror->rdev->bdev, nr_sectors);
1286 
1287 	generic_make_request(bio);
1288 
1289 	return nr_sectors;
1290 }
1291 
1292 static int run(mddev_t *mddev)
1293 {
1294 	conf_t *conf;
1295 	int i, j, disk_idx;
1296 	mirror_info_t *disk;
1297 	mdk_rdev_t *rdev;
1298 	struct list_head *tmp;
1299 
1300 	if (mddev->level != 1) {
1301 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1302 		       mdname(mddev), mddev->level);
1303 		goto out;
1304 	}
1305 	/*
1306 	 * copy the already verified devices into our private RAID1
1307 	 * bookkeeping area. [whatever we allocate in run(),
1308 	 * should be freed in stop()]
1309 	 */
1310 	conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1311 	mddev->private = conf;
1312 	if (!conf)
1313 		goto out_no_mem;
1314 
1315 	memset(conf, 0, sizeof(*conf));
1316 	conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1317 				 GFP_KERNEL);
1318 	if (!conf->mirrors)
1319 		goto out_no_mem;
1320 
1321 	memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1322 
1323 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1324 	if (!conf->poolinfo)
1325 		goto out_no_mem;
1326 	conf->poolinfo->mddev = mddev;
1327 	conf->poolinfo->raid_disks = mddev->raid_disks;
1328 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1329 					  r1bio_pool_free,
1330 					  conf->poolinfo);
1331 	if (!conf->r1bio_pool)
1332 		goto out_no_mem;
1333 
1334 	ITERATE_RDEV(mddev, rdev, tmp) {
1335 		disk_idx = rdev->raid_disk;
1336 		if (disk_idx >= mddev->raid_disks
1337 		    || disk_idx < 0)
1338 			continue;
1339 		disk = conf->mirrors + disk_idx;
1340 
1341 		disk->rdev = rdev;
1342 
1343 		blk_queue_stack_limits(mddev->queue,
1344 				       rdev->bdev->bd_disk->queue);
1345 		/* as we don't honour merge_bvec_fn, we must never risk
1346 		 * violating it, so limit ->max_sector to one PAGE, as
1347 		 * a one page request is never in violation.
1348 		 */
1349 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1350 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1351 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1352 
1353 		disk->head_position = 0;
1354 		if (!rdev->faulty && rdev->in_sync)
1355 			conf->working_disks++;
1356 	}
1357 	conf->raid_disks = mddev->raid_disks;
1358 	conf->mddev = mddev;
1359 	spin_lock_init(&conf->device_lock);
1360 	INIT_LIST_HEAD(&conf->retry_list);
1361 	if (conf->working_disks == 1)
1362 		mddev->recovery_cp = MaxSector;
1363 
1364 	spin_lock_init(&conf->resync_lock);
1365 	init_waitqueue_head(&conf->wait_idle);
1366 	init_waitqueue_head(&conf->wait_resume);
1367 
1368 	bio_list_init(&conf->pending_bio_list);
1369 	bio_list_init(&conf->flushing_bio_list);
1370 
1371 	if (!conf->working_disks) {
1372 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1373 			mdname(mddev));
1374 		goto out_free_conf;
1375 	}
1376 
1377 	mddev->degraded = 0;
1378 	for (i = 0; i < conf->raid_disks; i++) {
1379 
1380 		disk = conf->mirrors + i;
1381 
1382 		if (!disk->rdev) {
1383 			disk->head_position = 0;
1384 			mddev->degraded++;
1385 		}
1386 	}
1387 
1388 	/*
1389 	 * find the first working one and use it as a starting point
1390 	 * to read balancing.
1391 	 */
1392 	for (j = 0; j < conf->raid_disks &&
1393 		     (!conf->mirrors[j].rdev ||
1394 		      !conf->mirrors[j].rdev->in_sync) ; j++)
1395 		/* nothing */;
1396 	conf->last_used = j;
1397 
1398 
1399 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1400 	if (!mddev->thread) {
1401 		printk(KERN_ERR
1402 		       "raid1: couldn't allocate thread for %s\n",
1403 		       mdname(mddev));
1404 		goto out_free_conf;
1405 	}
1406 	if (mddev->bitmap) mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1407 
1408 	printk(KERN_INFO
1409 		"raid1: raid set %s active with %d out of %d mirrors\n",
1410 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1411 		mddev->raid_disks);
1412 	/*
1413 	 * Ok, everything is just fine now
1414 	 */
1415 	mddev->array_size = mddev->size;
1416 
1417 	mddev->queue->unplug_fn = raid1_unplug;
1418 	mddev->queue->issue_flush_fn = raid1_issue_flush;
1419 
1420 	return 0;
1421 
1422 out_no_mem:
1423 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1424 	       mdname(mddev));
1425 
1426 out_free_conf:
1427 	if (conf) {
1428 		if (conf->r1bio_pool)
1429 			mempool_destroy(conf->r1bio_pool);
1430 		kfree(conf->mirrors);
1431 		kfree(conf->poolinfo);
1432 		kfree(conf);
1433 		mddev->private = NULL;
1434 	}
1435 out:
1436 	return -EIO;
1437 }
1438 
1439 static int stop(mddev_t *mddev)
1440 {
1441 	conf_t *conf = mddev_to_conf(mddev);
1442 
1443 	md_unregister_thread(mddev->thread);
1444 	mddev->thread = NULL;
1445 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1446 	if (conf->r1bio_pool)
1447 		mempool_destroy(conf->r1bio_pool);
1448 	kfree(conf->mirrors);
1449 	kfree(conf->poolinfo);
1450 	kfree(conf);
1451 	mddev->private = NULL;
1452 	return 0;
1453 }
1454 
1455 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1456 {
1457 	/* no resync is happening, and there is enough space
1458 	 * on all devices, so we can resize.
1459 	 * We need to make sure resync covers any new space.
1460 	 * If the array is shrinking we should possibly wait until
1461 	 * any io in the removed space completes, but it hardly seems
1462 	 * worth it.
1463 	 */
1464 	mddev->array_size = sectors>>1;
1465 	set_capacity(mddev->gendisk, mddev->array_size << 1);
1466 	mddev->changed = 1;
1467 	if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1468 		mddev->recovery_cp = mddev->size << 1;
1469 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1470 	}
1471 	mddev->size = mddev->array_size;
1472 	return 0;
1473 }
1474 
1475 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1476 {
1477 	/* We need to:
1478 	 * 1/ resize the r1bio_pool
1479 	 * 2/ resize conf->mirrors
1480 	 *
1481 	 * We allocate a new r1bio_pool if we can.
1482 	 * Then raise a device barrier and wait until all IO stops.
1483 	 * Then resize conf->mirrors and swap in the new r1bio pool.
1484 	 *
1485 	 * At the same time, we "pack" the devices so that all the missing
1486 	 * devices have the higher raid_disk numbers.
1487 	 */
1488 	mempool_t *newpool, *oldpool;
1489 	struct pool_info *newpoolinfo;
1490 	mirror_info_t *newmirrors;
1491 	conf_t *conf = mddev_to_conf(mddev);
1492 	int cnt;
1493 
1494 	int d, d2;
1495 
1496 	if (raid_disks < conf->raid_disks) {
1497 		cnt=0;
1498 		for (d= 0; d < conf->raid_disks; d++)
1499 			if (conf->mirrors[d].rdev)
1500 				cnt++;
1501 		if (cnt > raid_disks)
1502 			return -EBUSY;
1503 	}
1504 
1505 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
1506 	if (!newpoolinfo)
1507 		return -ENOMEM;
1508 	newpoolinfo->mddev = mddev;
1509 	newpoolinfo->raid_disks = raid_disks;
1510 
1511 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1512 				 r1bio_pool_free, newpoolinfo);
1513 	if (!newpool) {
1514 		kfree(newpoolinfo);
1515 		return -ENOMEM;
1516 	}
1517 	newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1518 	if (!newmirrors) {
1519 		kfree(newpoolinfo);
1520 		mempool_destroy(newpool);
1521 		return -ENOMEM;
1522 	}
1523 	memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
1524 
1525 	spin_lock_irq(&conf->resync_lock);
1526 	conf->barrier++;
1527 	wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1528 			    conf->resync_lock, raid1_unplug(mddev->queue));
1529 	spin_unlock_irq(&conf->resync_lock);
1530 
1531 	/* ok, everything is stopped */
1532 	oldpool = conf->r1bio_pool;
1533 	conf->r1bio_pool = newpool;
1534 
1535 	for (d=d2=0; d < conf->raid_disks; d++)
1536 		if (conf->mirrors[d].rdev) {
1537 			conf->mirrors[d].rdev->raid_disk = d2;
1538 			newmirrors[d2++].rdev = conf->mirrors[d].rdev;
1539 		}
1540 	kfree(conf->mirrors);
1541 	conf->mirrors = newmirrors;
1542 	kfree(conf->poolinfo);
1543 	conf->poolinfo = newpoolinfo;
1544 
1545 	mddev->degraded += (raid_disks - conf->raid_disks);
1546 	conf->raid_disks = mddev->raid_disks = raid_disks;
1547 
1548 	conf->last_used = 0; /* just make sure it is in-range */
1549 	spin_lock_irq(&conf->resync_lock);
1550 	conf->barrier--;
1551 	spin_unlock_irq(&conf->resync_lock);
1552 	wake_up(&conf->wait_resume);
1553 	wake_up(&conf->wait_idle);
1554 
1555 
1556 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1557 	md_wakeup_thread(mddev->thread);
1558 
1559 	mempool_destroy(oldpool);
1560 	return 0;
1561 }
1562 
1563 
1564 static mdk_personality_t raid1_personality =
1565 {
1566 	.name		= "raid1",
1567 	.owner		= THIS_MODULE,
1568 	.make_request	= make_request,
1569 	.run		= run,
1570 	.stop		= stop,
1571 	.status		= status,
1572 	.error_handler	= error,
1573 	.hot_add_disk	= raid1_add_disk,
1574 	.hot_remove_disk= raid1_remove_disk,
1575 	.spare_active	= raid1_spare_active,
1576 	.sync_request	= sync_request,
1577 	.resize		= raid1_resize,
1578 	.reshape	= raid1_reshape,
1579 };
1580 
1581 static int __init raid_init(void)
1582 {
1583 	return register_md_personality(RAID1, &raid1_personality);
1584 }
1585 
1586 static void raid_exit(void)
1587 {
1588 	unregister_md_personality(RAID1);
1589 }
1590 
1591 module_init(raid_init);
1592 module_exit(raid_exit);
1593 MODULE_LICENSE("GPL");
1594 MODULE_ALIAS("md-personality-3"); /* RAID1 */
1595