1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/seq_file.h> 38 #include "md.h" 39 #include "raid1.h" 40 #include "bitmap.h" 41 42 #define DEBUG 0 43 #if DEBUG 44 #define PRINTK(x...) printk(x) 45 #else 46 #define PRINTK(x...) 47 #endif 48 49 /* 50 * Number of guaranteed r1bios in case of extreme VM load: 51 */ 52 #define NR_RAID1_BIOS 256 53 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 struct pool_info *pi = data; 63 r1bio_t *r1_bio; 64 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 65 66 /* allocate a r1bio with room for raid_disks entries in the bios array */ 67 r1_bio = kzalloc(size, gfp_flags); 68 if (!r1_bio && pi->mddev) 69 unplug_slaves(pi->mddev); 70 71 return r1_bio; 72 } 73 74 static void r1bio_pool_free(void *r1_bio, void *data) 75 { 76 kfree(r1_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 86 { 87 struct pool_info *pi = data; 88 struct page *page; 89 r1bio_t *r1_bio; 90 struct bio *bio; 91 int i, j; 92 93 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 94 if (!r1_bio) { 95 unplug_slaves(pi->mddev); 96 return NULL; 97 } 98 99 /* 100 * Allocate bios : 1 for reading, n-1 for writing 101 */ 102 for (j = pi->raid_disks ; j-- ; ) { 103 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 104 if (!bio) 105 goto out_free_bio; 106 r1_bio->bios[j] = bio; 107 } 108 /* 109 * Allocate RESYNC_PAGES data pages and attach them to 110 * the first bio. 111 * If this is a user-requested check/repair, allocate 112 * RESYNC_PAGES for each bio. 113 */ 114 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 115 j = pi->raid_disks; 116 else 117 j = 1; 118 while(j--) { 119 bio = r1_bio->bios[j]; 120 for (i = 0; i < RESYNC_PAGES; i++) { 121 page = alloc_page(gfp_flags); 122 if (unlikely(!page)) 123 goto out_free_pages; 124 125 bio->bi_io_vec[i].bv_page = page; 126 bio->bi_vcnt = i+1; 127 } 128 } 129 /* If not user-requests, copy the page pointers to all bios */ 130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 131 for (i=0; i<RESYNC_PAGES ; i++) 132 for (j=1; j<pi->raid_disks; j++) 133 r1_bio->bios[j]->bi_io_vec[i].bv_page = 134 r1_bio->bios[0]->bi_io_vec[i].bv_page; 135 } 136 137 r1_bio->master_bio = NULL; 138 139 return r1_bio; 140 141 out_free_pages: 142 for (j=0 ; j < pi->raid_disks; j++) 143 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 144 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 145 j = -1; 146 out_free_bio: 147 while ( ++j < pi->raid_disks ) 148 bio_put(r1_bio->bios[j]); 149 r1bio_pool_free(r1_bio, data); 150 return NULL; 151 } 152 153 static void r1buf_pool_free(void *__r1_bio, void *data) 154 { 155 struct pool_info *pi = data; 156 int i,j; 157 r1bio_t *r1bio = __r1_bio; 158 159 for (i = 0; i < RESYNC_PAGES; i++) 160 for (j = pi->raid_disks; j-- ;) { 161 if (j == 0 || 162 r1bio->bios[j]->bi_io_vec[i].bv_page != 163 r1bio->bios[0]->bi_io_vec[i].bv_page) 164 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 165 } 166 for (i=0 ; i < pi->raid_disks; i++) 167 bio_put(r1bio->bios[i]); 168 169 r1bio_pool_free(r1bio, data); 170 } 171 172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->raid_disks; i++) { 177 struct bio **bio = r1_bio->bios + i; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r1bio(r1bio_t *r1_bio) 185 { 186 conf_t *conf = r1_bio->mddev->private; 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r1_bio); 195 mempool_free(r1_bio, conf->r1bio_pool); 196 } 197 198 static void put_buf(r1bio_t *r1_bio) 199 { 200 conf_t *conf = r1_bio->mddev->private; 201 int i; 202 203 for (i=0; i<conf->raid_disks; i++) { 204 struct bio *bio = r1_bio->bios[i]; 205 if (bio->bi_end_io) 206 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 207 } 208 209 mempool_free(r1_bio, conf->r1buf_pool); 210 211 lower_barrier(conf); 212 } 213 214 static void reschedule_retry(r1bio_t *r1_bio) 215 { 216 unsigned long flags; 217 mddev_t *mddev = r1_bio->mddev; 218 conf_t *conf = mddev->private; 219 220 spin_lock_irqsave(&conf->device_lock, flags); 221 list_add(&r1_bio->retry_list, &conf->retry_list); 222 conf->nr_queued ++; 223 spin_unlock_irqrestore(&conf->device_lock, flags); 224 225 wake_up(&conf->wait_barrier); 226 md_wakeup_thread(mddev->thread); 227 } 228 229 /* 230 * raid_end_bio_io() is called when we have finished servicing a mirrored 231 * operation and are ready to return a success/failure code to the buffer 232 * cache layer. 233 */ 234 static void raid_end_bio_io(r1bio_t *r1_bio) 235 { 236 struct bio *bio = r1_bio->master_bio; 237 238 /* if nobody has done the final endio yet, do it now */ 239 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 240 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 241 (bio_data_dir(bio) == WRITE) ? "write" : "read", 242 (unsigned long long) bio->bi_sector, 243 (unsigned long long) bio->bi_sector + 244 (bio->bi_size >> 9) - 1); 245 246 bio_endio(bio, 247 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 248 } 249 free_r1bio(r1_bio); 250 } 251 252 /* 253 * Update disk head position estimator based on IRQ completion info. 254 */ 255 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 256 { 257 conf_t *conf = r1_bio->mddev->private; 258 259 conf->mirrors[disk].head_position = 260 r1_bio->sector + (r1_bio->sectors); 261 } 262 263 static void raid1_end_read_request(struct bio *bio, int error) 264 { 265 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 266 r1bio_t *r1_bio = bio->bi_private; 267 int mirror; 268 conf_t *conf = r1_bio->mddev->private; 269 270 mirror = r1_bio->read_disk; 271 /* 272 * this branch is our 'one mirror IO has finished' event handler: 273 */ 274 update_head_pos(mirror, r1_bio); 275 276 if (uptodate) 277 set_bit(R1BIO_Uptodate, &r1_bio->state); 278 else { 279 /* If all other devices have failed, we want to return 280 * the error upwards rather than fail the last device. 281 * Here we redefine "uptodate" to mean "Don't want to retry" 282 */ 283 unsigned long flags; 284 spin_lock_irqsave(&conf->device_lock, flags); 285 if (r1_bio->mddev->degraded == conf->raid_disks || 286 (r1_bio->mddev->degraded == conf->raid_disks-1 && 287 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 288 uptodate = 1; 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 } 291 292 if (uptodate) 293 raid_end_bio_io(r1_bio); 294 else { 295 /* 296 * oops, read error: 297 */ 298 char b[BDEVNAME_SIZE]; 299 if (printk_ratelimit()) 300 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n", 301 mdname(conf->mddev), 302 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 303 reschedule_retry(r1_bio); 304 } 305 306 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 307 } 308 309 static void raid1_end_write_request(struct bio *bio, int error) 310 { 311 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 312 r1bio_t *r1_bio = bio->bi_private; 313 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 314 conf_t *conf = r1_bio->mddev->private; 315 struct bio *to_put = NULL; 316 317 318 for (mirror = 0; mirror < conf->raid_disks; mirror++) 319 if (r1_bio->bios[mirror] == bio) 320 break; 321 322 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 323 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 324 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 325 r1_bio->mddev->barriers_work = 0; 326 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 327 } else { 328 /* 329 * this branch is our 'one mirror IO has finished' event handler: 330 */ 331 r1_bio->bios[mirror] = NULL; 332 to_put = bio; 333 if (!uptodate) { 334 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 335 /* an I/O failed, we can't clear the bitmap */ 336 set_bit(R1BIO_Degraded, &r1_bio->state); 337 } else 338 /* 339 * Set R1BIO_Uptodate in our master bio, so that 340 * we will return a good error code for to the higher 341 * levels even if IO on some other mirrored buffer fails. 342 * 343 * The 'master' represents the composite IO operation to 344 * user-side. So if something waits for IO, then it will 345 * wait for the 'master' bio. 346 */ 347 set_bit(R1BIO_Uptodate, &r1_bio->state); 348 349 update_head_pos(mirror, r1_bio); 350 351 if (behind) { 352 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 353 atomic_dec(&r1_bio->behind_remaining); 354 355 /* In behind mode, we ACK the master bio once the I/O has safely 356 * reached all non-writemostly disks. Setting the Returned bit 357 * ensures that this gets done only once -- we don't ever want to 358 * return -EIO here, instead we'll wait */ 359 360 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 361 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 362 /* Maybe we can return now */ 363 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 364 struct bio *mbio = r1_bio->master_bio; 365 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 366 (unsigned long long) mbio->bi_sector, 367 (unsigned long long) mbio->bi_sector + 368 (mbio->bi_size >> 9) - 1); 369 bio_endio(mbio, 0); 370 } 371 } 372 } 373 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 374 } 375 /* 376 * 377 * Let's see if all mirrored write operations have finished 378 * already. 379 */ 380 if (atomic_dec_and_test(&r1_bio->remaining)) { 381 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 382 reschedule_retry(r1_bio); 383 else { 384 /* it really is the end of this request */ 385 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 386 /* free extra copy of the data pages */ 387 int i = bio->bi_vcnt; 388 while (i--) 389 safe_put_page(bio->bi_io_vec[i].bv_page); 390 } 391 /* clear the bitmap if all writes complete successfully */ 392 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 393 r1_bio->sectors, 394 !test_bit(R1BIO_Degraded, &r1_bio->state), 395 behind); 396 md_write_end(r1_bio->mddev); 397 raid_end_bio_io(r1_bio); 398 } 399 } 400 401 if (to_put) 402 bio_put(to_put); 403 } 404 405 406 /* 407 * This routine returns the disk from which the requested read should 408 * be done. There is a per-array 'next expected sequential IO' sector 409 * number - if this matches on the next IO then we use the last disk. 410 * There is also a per-disk 'last know head position' sector that is 411 * maintained from IRQ contexts, both the normal and the resync IO 412 * completion handlers update this position correctly. If there is no 413 * perfect sequential match then we pick the disk whose head is closest. 414 * 415 * If there are 2 mirrors in the same 2 devices, performance degrades 416 * because position is mirror, not device based. 417 * 418 * The rdev for the device selected will have nr_pending incremented. 419 */ 420 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 421 { 422 const sector_t this_sector = r1_bio->sector; 423 int new_disk = conf->last_used, disk = new_disk; 424 int wonly_disk = -1; 425 const int sectors = r1_bio->sectors; 426 sector_t new_distance, current_distance; 427 mdk_rdev_t *rdev; 428 429 rcu_read_lock(); 430 /* 431 * Check if we can balance. We can balance on the whole 432 * device if no resync is going on, or below the resync window. 433 * We take the first readable disk when above the resync window. 434 */ 435 retry: 436 if (conf->mddev->recovery_cp < MaxSector && 437 (this_sector + sectors >= conf->next_resync)) { 438 /* Choose the first operational device, for consistancy */ 439 new_disk = 0; 440 441 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 442 r1_bio->bios[new_disk] == IO_BLOCKED || 443 !rdev || !test_bit(In_sync, &rdev->flags) 444 || test_bit(WriteMostly, &rdev->flags); 445 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 446 447 if (rdev && test_bit(In_sync, &rdev->flags) && 448 r1_bio->bios[new_disk] != IO_BLOCKED) 449 wonly_disk = new_disk; 450 451 if (new_disk == conf->raid_disks - 1) { 452 new_disk = wonly_disk; 453 break; 454 } 455 } 456 goto rb_out; 457 } 458 459 460 /* make sure the disk is operational */ 461 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 462 r1_bio->bios[new_disk] == IO_BLOCKED || 463 !rdev || !test_bit(In_sync, &rdev->flags) || 464 test_bit(WriteMostly, &rdev->flags); 465 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 466 467 if (rdev && test_bit(In_sync, &rdev->flags) && 468 r1_bio->bios[new_disk] != IO_BLOCKED) 469 wonly_disk = new_disk; 470 471 if (new_disk <= 0) 472 new_disk = conf->raid_disks; 473 new_disk--; 474 if (new_disk == disk) { 475 new_disk = wonly_disk; 476 break; 477 } 478 } 479 480 if (new_disk < 0) 481 goto rb_out; 482 483 disk = new_disk; 484 /* now disk == new_disk == starting point for search */ 485 486 /* 487 * Don't change to another disk for sequential reads: 488 */ 489 if (conf->next_seq_sect == this_sector) 490 goto rb_out; 491 if (this_sector == conf->mirrors[new_disk].head_position) 492 goto rb_out; 493 494 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 495 496 /* Find the disk whose head is closest */ 497 498 do { 499 if (disk <= 0) 500 disk = conf->raid_disks; 501 disk--; 502 503 rdev = rcu_dereference(conf->mirrors[disk].rdev); 504 505 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 506 !test_bit(In_sync, &rdev->flags) || 507 test_bit(WriteMostly, &rdev->flags)) 508 continue; 509 510 if (!atomic_read(&rdev->nr_pending)) { 511 new_disk = disk; 512 break; 513 } 514 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 515 if (new_distance < current_distance) { 516 current_distance = new_distance; 517 new_disk = disk; 518 } 519 } while (disk != conf->last_used); 520 521 rb_out: 522 523 524 if (new_disk >= 0) { 525 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 526 if (!rdev) 527 goto retry; 528 atomic_inc(&rdev->nr_pending); 529 if (!test_bit(In_sync, &rdev->flags)) { 530 /* cannot risk returning a device that failed 531 * before we inc'ed nr_pending 532 */ 533 rdev_dec_pending(rdev, conf->mddev); 534 goto retry; 535 } 536 conf->next_seq_sect = this_sector + sectors; 537 conf->last_used = new_disk; 538 } 539 rcu_read_unlock(); 540 541 return new_disk; 542 } 543 544 static void unplug_slaves(mddev_t *mddev) 545 { 546 conf_t *conf = mddev->private; 547 int i; 548 549 rcu_read_lock(); 550 for (i=0; i<mddev->raid_disks; i++) { 551 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 552 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 553 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 554 555 atomic_inc(&rdev->nr_pending); 556 rcu_read_unlock(); 557 558 blk_unplug(r_queue); 559 560 rdev_dec_pending(rdev, mddev); 561 rcu_read_lock(); 562 } 563 } 564 rcu_read_unlock(); 565 } 566 567 static void raid1_unplug(struct request_queue *q) 568 { 569 mddev_t *mddev = q->queuedata; 570 571 unplug_slaves(mddev); 572 md_wakeup_thread(mddev->thread); 573 } 574 575 static int raid1_congested(void *data, int bits) 576 { 577 mddev_t *mddev = data; 578 conf_t *conf = mddev->private; 579 int i, ret = 0; 580 581 if (mddev_congested(mddev, bits)) 582 return 1; 583 584 rcu_read_lock(); 585 for (i = 0; i < mddev->raid_disks; i++) { 586 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 587 if (rdev && !test_bit(Faulty, &rdev->flags)) { 588 struct request_queue *q = bdev_get_queue(rdev->bdev); 589 590 /* Note the '|| 1' - when read_balance prefers 591 * non-congested targets, it can be removed 592 */ 593 if ((bits & (1<<BDI_async_congested)) || 1) 594 ret |= bdi_congested(&q->backing_dev_info, bits); 595 else 596 ret &= bdi_congested(&q->backing_dev_info, bits); 597 } 598 } 599 rcu_read_unlock(); 600 return ret; 601 } 602 603 604 static int flush_pending_writes(conf_t *conf) 605 { 606 /* Any writes that have been queued but are awaiting 607 * bitmap updates get flushed here. 608 * We return 1 if any requests were actually submitted. 609 */ 610 int rv = 0; 611 612 spin_lock_irq(&conf->device_lock); 613 614 if (conf->pending_bio_list.head) { 615 struct bio *bio; 616 bio = bio_list_get(&conf->pending_bio_list); 617 blk_remove_plug(conf->mddev->queue); 618 spin_unlock_irq(&conf->device_lock); 619 /* flush any pending bitmap writes to 620 * disk before proceeding w/ I/O */ 621 bitmap_unplug(conf->mddev->bitmap); 622 623 while (bio) { /* submit pending writes */ 624 struct bio *next = bio->bi_next; 625 bio->bi_next = NULL; 626 generic_make_request(bio); 627 bio = next; 628 } 629 rv = 1; 630 } else 631 spin_unlock_irq(&conf->device_lock); 632 return rv; 633 } 634 635 /* Barriers.... 636 * Sometimes we need to suspend IO while we do something else, 637 * either some resync/recovery, or reconfigure the array. 638 * To do this we raise a 'barrier'. 639 * The 'barrier' is a counter that can be raised multiple times 640 * to count how many activities are happening which preclude 641 * normal IO. 642 * We can only raise the barrier if there is no pending IO. 643 * i.e. if nr_pending == 0. 644 * We choose only to raise the barrier if no-one is waiting for the 645 * barrier to go down. This means that as soon as an IO request 646 * is ready, no other operations which require a barrier will start 647 * until the IO request has had a chance. 648 * 649 * So: regular IO calls 'wait_barrier'. When that returns there 650 * is no backgroup IO happening, It must arrange to call 651 * allow_barrier when it has finished its IO. 652 * backgroup IO calls must call raise_barrier. Once that returns 653 * there is no normal IO happeing. It must arrange to call 654 * lower_barrier when the particular background IO completes. 655 */ 656 #define RESYNC_DEPTH 32 657 658 static void raise_barrier(conf_t *conf) 659 { 660 spin_lock_irq(&conf->resync_lock); 661 662 /* Wait until no block IO is waiting */ 663 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 664 conf->resync_lock, 665 raid1_unplug(conf->mddev->queue)); 666 667 /* block any new IO from starting */ 668 conf->barrier++; 669 670 /* No wait for all pending IO to complete */ 671 wait_event_lock_irq(conf->wait_barrier, 672 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 673 conf->resync_lock, 674 raid1_unplug(conf->mddev->queue)); 675 676 spin_unlock_irq(&conf->resync_lock); 677 } 678 679 static void lower_barrier(conf_t *conf) 680 { 681 unsigned long flags; 682 BUG_ON(conf->barrier <= 0); 683 spin_lock_irqsave(&conf->resync_lock, flags); 684 conf->barrier--; 685 spin_unlock_irqrestore(&conf->resync_lock, flags); 686 wake_up(&conf->wait_barrier); 687 } 688 689 static void wait_barrier(conf_t *conf) 690 { 691 spin_lock_irq(&conf->resync_lock); 692 if (conf->barrier) { 693 conf->nr_waiting++; 694 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 695 conf->resync_lock, 696 raid1_unplug(conf->mddev->queue)); 697 conf->nr_waiting--; 698 } 699 conf->nr_pending++; 700 spin_unlock_irq(&conf->resync_lock); 701 } 702 703 static void allow_barrier(conf_t *conf) 704 { 705 unsigned long flags; 706 spin_lock_irqsave(&conf->resync_lock, flags); 707 conf->nr_pending--; 708 spin_unlock_irqrestore(&conf->resync_lock, flags); 709 wake_up(&conf->wait_barrier); 710 } 711 712 static void freeze_array(conf_t *conf) 713 { 714 /* stop syncio and normal IO and wait for everything to 715 * go quite. 716 * We increment barrier and nr_waiting, and then 717 * wait until nr_pending match nr_queued+1 718 * This is called in the context of one normal IO request 719 * that has failed. Thus any sync request that might be pending 720 * will be blocked by nr_pending, and we need to wait for 721 * pending IO requests to complete or be queued for re-try. 722 * Thus the number queued (nr_queued) plus this request (1) 723 * must match the number of pending IOs (nr_pending) before 724 * we continue. 725 */ 726 spin_lock_irq(&conf->resync_lock); 727 conf->barrier++; 728 conf->nr_waiting++; 729 wait_event_lock_irq(conf->wait_barrier, 730 conf->nr_pending == conf->nr_queued+1, 731 conf->resync_lock, 732 ({ flush_pending_writes(conf); 733 raid1_unplug(conf->mddev->queue); })); 734 spin_unlock_irq(&conf->resync_lock); 735 } 736 static void unfreeze_array(conf_t *conf) 737 { 738 /* reverse the effect of the freeze */ 739 spin_lock_irq(&conf->resync_lock); 740 conf->barrier--; 741 conf->nr_waiting--; 742 wake_up(&conf->wait_barrier); 743 spin_unlock_irq(&conf->resync_lock); 744 } 745 746 747 /* duplicate the data pages for behind I/O */ 748 static struct page **alloc_behind_pages(struct bio *bio) 749 { 750 int i; 751 struct bio_vec *bvec; 752 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 753 GFP_NOIO); 754 if (unlikely(!pages)) 755 goto do_sync_io; 756 757 bio_for_each_segment(bvec, bio, i) { 758 pages[i] = alloc_page(GFP_NOIO); 759 if (unlikely(!pages[i])) 760 goto do_sync_io; 761 memcpy(kmap(pages[i]) + bvec->bv_offset, 762 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 763 kunmap(pages[i]); 764 kunmap(bvec->bv_page); 765 } 766 767 return pages; 768 769 do_sync_io: 770 if (pages) 771 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 772 put_page(pages[i]); 773 kfree(pages); 774 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 775 return NULL; 776 } 777 778 static int make_request(mddev_t *mddev, struct bio * bio) 779 { 780 conf_t *conf = mddev->private; 781 mirror_info_t *mirror; 782 r1bio_t *r1_bio; 783 struct bio *read_bio; 784 int i, targets = 0, disks; 785 struct bitmap *bitmap; 786 unsigned long flags; 787 struct bio_list bl; 788 struct page **behind_pages = NULL; 789 const int rw = bio_data_dir(bio); 790 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 791 unsigned long do_barriers; 792 mdk_rdev_t *blocked_rdev; 793 794 /* 795 * Register the new request and wait if the reconstruction 796 * thread has put up a bar for new requests. 797 * Continue immediately if no resync is active currently. 798 * We test barriers_work *after* md_write_start as md_write_start 799 * may cause the first superblock write, and that will check out 800 * if barriers work. 801 */ 802 803 md_write_start(mddev, bio); /* wait on superblock update early */ 804 805 if (bio_data_dir(bio) == WRITE && 806 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 807 bio->bi_sector < mddev->suspend_hi) { 808 /* As the suspend_* range is controlled by 809 * userspace, we want an interruptible 810 * wait. 811 */ 812 DEFINE_WAIT(w); 813 for (;;) { 814 flush_signals(current); 815 prepare_to_wait(&conf->wait_barrier, 816 &w, TASK_INTERRUPTIBLE); 817 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 818 bio->bi_sector >= mddev->suspend_hi) 819 break; 820 schedule(); 821 } 822 finish_wait(&conf->wait_barrier, &w); 823 } 824 if (unlikely(!mddev->barriers_work && 825 (bio->bi_rw & REQ_HARDBARRIER))) { 826 if (rw == WRITE) 827 md_write_end(mddev); 828 bio_endio(bio, -EOPNOTSUPP); 829 return 0; 830 } 831 832 wait_barrier(conf); 833 834 bitmap = mddev->bitmap; 835 836 /* 837 * make_request() can abort the operation when READA is being 838 * used and no empty request is available. 839 * 840 */ 841 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 842 843 r1_bio->master_bio = bio; 844 r1_bio->sectors = bio->bi_size >> 9; 845 r1_bio->state = 0; 846 r1_bio->mddev = mddev; 847 r1_bio->sector = bio->bi_sector; 848 849 if (rw == READ) { 850 /* 851 * read balancing logic: 852 */ 853 int rdisk = read_balance(conf, r1_bio); 854 855 if (rdisk < 0) { 856 /* couldn't find anywhere to read from */ 857 raid_end_bio_io(r1_bio); 858 return 0; 859 } 860 mirror = conf->mirrors + rdisk; 861 862 if (test_bit(WriteMostly, &mirror->rdev->flags) && 863 bitmap) { 864 /* Reading from a write-mostly device must 865 * take care not to over-take any writes 866 * that are 'behind' 867 */ 868 wait_event(bitmap->behind_wait, 869 atomic_read(&bitmap->behind_writes) == 0); 870 } 871 r1_bio->read_disk = rdisk; 872 873 read_bio = bio_clone(bio, GFP_NOIO); 874 875 r1_bio->bios[rdisk] = read_bio; 876 877 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 878 read_bio->bi_bdev = mirror->rdev->bdev; 879 read_bio->bi_end_io = raid1_end_read_request; 880 read_bio->bi_rw = READ | do_sync; 881 read_bio->bi_private = r1_bio; 882 883 generic_make_request(read_bio); 884 return 0; 885 } 886 887 /* 888 * WRITE: 889 */ 890 /* first select target devices under spinlock and 891 * inc refcount on their rdev. Record them by setting 892 * bios[x] to bio 893 */ 894 disks = conf->raid_disks; 895 #if 0 896 { static int first=1; 897 if (first) printk("First Write sector %llu disks %d\n", 898 (unsigned long long)r1_bio->sector, disks); 899 first = 0; 900 } 901 #endif 902 retry_write: 903 blocked_rdev = NULL; 904 rcu_read_lock(); 905 for (i = 0; i < disks; i++) { 906 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 907 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 908 atomic_inc(&rdev->nr_pending); 909 blocked_rdev = rdev; 910 break; 911 } 912 if (rdev && !test_bit(Faulty, &rdev->flags)) { 913 atomic_inc(&rdev->nr_pending); 914 if (test_bit(Faulty, &rdev->flags)) { 915 rdev_dec_pending(rdev, mddev); 916 r1_bio->bios[i] = NULL; 917 } else { 918 r1_bio->bios[i] = bio; 919 targets++; 920 } 921 } else 922 r1_bio->bios[i] = NULL; 923 } 924 rcu_read_unlock(); 925 926 if (unlikely(blocked_rdev)) { 927 /* Wait for this device to become unblocked */ 928 int j; 929 930 for (j = 0; j < i; j++) 931 if (r1_bio->bios[j]) 932 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 933 934 allow_barrier(conf); 935 md_wait_for_blocked_rdev(blocked_rdev, mddev); 936 wait_barrier(conf); 937 goto retry_write; 938 } 939 940 BUG_ON(targets == 0); /* we never fail the last device */ 941 942 if (targets < conf->raid_disks) { 943 /* array is degraded, we will not clear the bitmap 944 * on I/O completion (see raid1_end_write_request) */ 945 set_bit(R1BIO_Degraded, &r1_bio->state); 946 } 947 948 /* do behind I/O ? 949 * Not if there are too many, or cannot allocate memory, 950 * or a reader on WriteMostly is waiting for behind writes 951 * to flush */ 952 if (bitmap && 953 (atomic_read(&bitmap->behind_writes) 954 < mddev->bitmap_info.max_write_behind) && 955 !waitqueue_active(&bitmap->behind_wait) && 956 (behind_pages = alloc_behind_pages(bio)) != NULL) 957 set_bit(R1BIO_BehindIO, &r1_bio->state); 958 959 atomic_set(&r1_bio->remaining, 0); 960 atomic_set(&r1_bio->behind_remaining, 0); 961 962 do_barriers = bio->bi_rw & REQ_HARDBARRIER; 963 if (do_barriers) 964 set_bit(R1BIO_Barrier, &r1_bio->state); 965 966 bio_list_init(&bl); 967 for (i = 0; i < disks; i++) { 968 struct bio *mbio; 969 if (!r1_bio->bios[i]) 970 continue; 971 972 mbio = bio_clone(bio, GFP_NOIO); 973 r1_bio->bios[i] = mbio; 974 975 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 976 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 977 mbio->bi_end_io = raid1_end_write_request; 978 mbio->bi_rw = WRITE | do_barriers | do_sync; 979 mbio->bi_private = r1_bio; 980 981 if (behind_pages) { 982 struct bio_vec *bvec; 983 int j; 984 985 /* Yes, I really want the '__' version so that 986 * we clear any unused pointer in the io_vec, rather 987 * than leave them unchanged. This is important 988 * because when we come to free the pages, we won't 989 * know the originial bi_idx, so we just free 990 * them all 991 */ 992 __bio_for_each_segment(bvec, mbio, j, 0) 993 bvec->bv_page = behind_pages[j]; 994 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 995 atomic_inc(&r1_bio->behind_remaining); 996 } 997 998 atomic_inc(&r1_bio->remaining); 999 1000 bio_list_add(&bl, mbio); 1001 } 1002 kfree(behind_pages); /* the behind pages are attached to the bios now */ 1003 1004 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 1005 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1006 spin_lock_irqsave(&conf->device_lock, flags); 1007 bio_list_merge(&conf->pending_bio_list, &bl); 1008 bio_list_init(&bl); 1009 1010 blk_plug_device(mddev->queue); 1011 spin_unlock_irqrestore(&conf->device_lock, flags); 1012 1013 /* In case raid1d snuck into freeze_array */ 1014 wake_up(&conf->wait_barrier); 1015 1016 if (do_sync) 1017 md_wakeup_thread(mddev->thread); 1018 #if 0 1019 while ((bio = bio_list_pop(&bl)) != NULL) 1020 generic_make_request(bio); 1021 #endif 1022 1023 return 0; 1024 } 1025 1026 static void status(struct seq_file *seq, mddev_t *mddev) 1027 { 1028 conf_t *conf = mddev->private; 1029 int i; 1030 1031 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1032 conf->raid_disks - mddev->degraded); 1033 rcu_read_lock(); 1034 for (i = 0; i < conf->raid_disks; i++) { 1035 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1036 seq_printf(seq, "%s", 1037 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1038 } 1039 rcu_read_unlock(); 1040 seq_printf(seq, "]"); 1041 } 1042 1043 1044 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1045 { 1046 char b[BDEVNAME_SIZE]; 1047 conf_t *conf = mddev->private; 1048 1049 /* 1050 * If it is not operational, then we have already marked it as dead 1051 * else if it is the last working disks, ignore the error, let the 1052 * next level up know. 1053 * else mark the drive as failed 1054 */ 1055 if (test_bit(In_sync, &rdev->flags) 1056 && (conf->raid_disks - mddev->degraded) == 1) { 1057 /* 1058 * Don't fail the drive, act as though we were just a 1059 * normal single drive. 1060 * However don't try a recovery from this drive as 1061 * it is very likely to fail. 1062 */ 1063 mddev->recovery_disabled = 1; 1064 return; 1065 } 1066 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1067 unsigned long flags; 1068 spin_lock_irqsave(&conf->device_lock, flags); 1069 mddev->degraded++; 1070 set_bit(Faulty, &rdev->flags); 1071 spin_unlock_irqrestore(&conf->device_lock, flags); 1072 /* 1073 * if recovery is running, make sure it aborts. 1074 */ 1075 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1076 } else 1077 set_bit(Faulty, &rdev->flags); 1078 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1079 printk(KERN_ALERT "md/raid1:%s: Disk failure on %s, disabling device.\n" 1080 KERN_ALERT "md/raid1:%s: Operation continuing on %d devices.\n", 1081 mdname(mddev), bdevname(rdev->bdev, b), 1082 mdname(mddev), conf->raid_disks - mddev->degraded); 1083 } 1084 1085 static void print_conf(conf_t *conf) 1086 { 1087 int i; 1088 1089 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1090 if (!conf) { 1091 printk(KERN_DEBUG "(!conf)\n"); 1092 return; 1093 } 1094 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1095 conf->raid_disks); 1096 1097 rcu_read_lock(); 1098 for (i = 0; i < conf->raid_disks; i++) { 1099 char b[BDEVNAME_SIZE]; 1100 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1101 if (rdev) 1102 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1103 i, !test_bit(In_sync, &rdev->flags), 1104 !test_bit(Faulty, &rdev->flags), 1105 bdevname(rdev->bdev,b)); 1106 } 1107 rcu_read_unlock(); 1108 } 1109 1110 static void close_sync(conf_t *conf) 1111 { 1112 wait_barrier(conf); 1113 allow_barrier(conf); 1114 1115 mempool_destroy(conf->r1buf_pool); 1116 conf->r1buf_pool = NULL; 1117 } 1118 1119 static int raid1_spare_active(mddev_t *mddev) 1120 { 1121 int i; 1122 conf_t *conf = mddev->private; 1123 int count = 0; 1124 unsigned long flags; 1125 1126 /* 1127 * Find all failed disks within the RAID1 configuration 1128 * and mark them readable. 1129 * Called under mddev lock, so rcu protection not needed. 1130 */ 1131 for (i = 0; i < conf->raid_disks; i++) { 1132 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1133 if (rdev 1134 && !test_bit(Faulty, &rdev->flags) 1135 && !test_and_set_bit(In_sync, &rdev->flags)) { 1136 count++; 1137 sysfs_notify_dirent(rdev->sysfs_state); 1138 } 1139 } 1140 spin_lock_irqsave(&conf->device_lock, flags); 1141 mddev->degraded -= count; 1142 spin_unlock_irqrestore(&conf->device_lock, flags); 1143 1144 print_conf(conf); 1145 return count; 1146 } 1147 1148 1149 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1150 { 1151 conf_t *conf = mddev->private; 1152 int err = -EEXIST; 1153 int mirror = 0; 1154 mirror_info_t *p; 1155 int first = 0; 1156 int last = mddev->raid_disks - 1; 1157 1158 if (rdev->raid_disk >= 0) 1159 first = last = rdev->raid_disk; 1160 1161 for (mirror = first; mirror <= last; mirror++) 1162 if ( !(p=conf->mirrors+mirror)->rdev) { 1163 1164 disk_stack_limits(mddev->gendisk, rdev->bdev, 1165 rdev->data_offset << 9); 1166 /* as we don't honour merge_bvec_fn, we must 1167 * never risk violating it, so limit 1168 * ->max_segments to one lying with a single 1169 * page, as a one page request is never in 1170 * violation. 1171 */ 1172 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1173 blk_queue_max_segments(mddev->queue, 1); 1174 blk_queue_segment_boundary(mddev->queue, 1175 PAGE_CACHE_SIZE - 1); 1176 } 1177 1178 p->head_position = 0; 1179 rdev->raid_disk = mirror; 1180 err = 0; 1181 /* As all devices are equivalent, we don't need a full recovery 1182 * if this was recently any drive of the array 1183 */ 1184 if (rdev->saved_raid_disk < 0) 1185 conf->fullsync = 1; 1186 rcu_assign_pointer(p->rdev, rdev); 1187 break; 1188 } 1189 md_integrity_add_rdev(rdev, mddev); 1190 print_conf(conf); 1191 return err; 1192 } 1193 1194 static int raid1_remove_disk(mddev_t *mddev, int number) 1195 { 1196 conf_t *conf = mddev->private; 1197 int err = 0; 1198 mdk_rdev_t *rdev; 1199 mirror_info_t *p = conf->mirrors+ number; 1200 1201 print_conf(conf); 1202 rdev = p->rdev; 1203 if (rdev) { 1204 if (test_bit(In_sync, &rdev->flags) || 1205 atomic_read(&rdev->nr_pending)) { 1206 err = -EBUSY; 1207 goto abort; 1208 } 1209 /* Only remove non-faulty devices is recovery 1210 * is not possible. 1211 */ 1212 if (!test_bit(Faulty, &rdev->flags) && 1213 mddev->degraded < conf->raid_disks) { 1214 err = -EBUSY; 1215 goto abort; 1216 } 1217 p->rdev = NULL; 1218 synchronize_rcu(); 1219 if (atomic_read(&rdev->nr_pending)) { 1220 /* lost the race, try later */ 1221 err = -EBUSY; 1222 p->rdev = rdev; 1223 goto abort; 1224 } 1225 md_integrity_register(mddev); 1226 } 1227 abort: 1228 1229 print_conf(conf); 1230 return err; 1231 } 1232 1233 1234 static void end_sync_read(struct bio *bio, int error) 1235 { 1236 r1bio_t *r1_bio = bio->bi_private; 1237 int i; 1238 1239 for (i=r1_bio->mddev->raid_disks; i--; ) 1240 if (r1_bio->bios[i] == bio) 1241 break; 1242 BUG_ON(i < 0); 1243 update_head_pos(i, r1_bio); 1244 /* 1245 * we have read a block, now it needs to be re-written, 1246 * or re-read if the read failed. 1247 * We don't do much here, just schedule handling by raid1d 1248 */ 1249 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1250 set_bit(R1BIO_Uptodate, &r1_bio->state); 1251 1252 if (atomic_dec_and_test(&r1_bio->remaining)) 1253 reschedule_retry(r1_bio); 1254 } 1255 1256 static void end_sync_write(struct bio *bio, int error) 1257 { 1258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1259 r1bio_t *r1_bio = bio->bi_private; 1260 mddev_t *mddev = r1_bio->mddev; 1261 conf_t *conf = mddev->private; 1262 int i; 1263 int mirror=0; 1264 1265 for (i = 0; i < conf->raid_disks; i++) 1266 if (r1_bio->bios[i] == bio) { 1267 mirror = i; 1268 break; 1269 } 1270 if (!uptodate) { 1271 int sync_blocks = 0; 1272 sector_t s = r1_bio->sector; 1273 long sectors_to_go = r1_bio->sectors; 1274 /* make sure these bits doesn't get cleared. */ 1275 do { 1276 bitmap_end_sync(mddev->bitmap, s, 1277 &sync_blocks, 1); 1278 s += sync_blocks; 1279 sectors_to_go -= sync_blocks; 1280 } while (sectors_to_go > 0); 1281 md_error(mddev, conf->mirrors[mirror].rdev); 1282 } 1283 1284 update_head_pos(mirror, r1_bio); 1285 1286 if (atomic_dec_and_test(&r1_bio->remaining)) { 1287 sector_t s = r1_bio->sectors; 1288 put_buf(r1_bio); 1289 md_done_sync(mddev, s, uptodate); 1290 } 1291 } 1292 1293 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1294 { 1295 conf_t *conf = mddev->private; 1296 int i; 1297 int disks = conf->raid_disks; 1298 struct bio *bio, *wbio; 1299 1300 bio = r1_bio->bios[r1_bio->read_disk]; 1301 1302 1303 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1304 /* We have read all readable devices. If we haven't 1305 * got the block, then there is no hope left. 1306 * If we have, then we want to do a comparison 1307 * and skip the write if everything is the same. 1308 * If any blocks failed to read, then we need to 1309 * attempt an over-write 1310 */ 1311 int primary; 1312 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1313 for (i=0; i<mddev->raid_disks; i++) 1314 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1315 md_error(mddev, conf->mirrors[i].rdev); 1316 1317 md_done_sync(mddev, r1_bio->sectors, 1); 1318 put_buf(r1_bio); 1319 return; 1320 } 1321 for (primary=0; primary<mddev->raid_disks; primary++) 1322 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1323 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1324 r1_bio->bios[primary]->bi_end_io = NULL; 1325 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1326 break; 1327 } 1328 r1_bio->read_disk = primary; 1329 for (i=0; i<mddev->raid_disks; i++) 1330 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1331 int j; 1332 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1333 struct bio *pbio = r1_bio->bios[primary]; 1334 struct bio *sbio = r1_bio->bios[i]; 1335 1336 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1337 for (j = vcnt; j-- ; ) { 1338 struct page *p, *s; 1339 p = pbio->bi_io_vec[j].bv_page; 1340 s = sbio->bi_io_vec[j].bv_page; 1341 if (memcmp(page_address(p), 1342 page_address(s), 1343 PAGE_SIZE)) 1344 break; 1345 } 1346 } else 1347 j = 0; 1348 if (j >= 0) 1349 mddev->resync_mismatches += r1_bio->sectors; 1350 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1351 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1352 sbio->bi_end_io = NULL; 1353 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1354 } else { 1355 /* fixup the bio for reuse */ 1356 int size; 1357 sbio->bi_vcnt = vcnt; 1358 sbio->bi_size = r1_bio->sectors << 9; 1359 sbio->bi_idx = 0; 1360 sbio->bi_phys_segments = 0; 1361 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1362 sbio->bi_flags |= 1 << BIO_UPTODATE; 1363 sbio->bi_next = NULL; 1364 sbio->bi_sector = r1_bio->sector + 1365 conf->mirrors[i].rdev->data_offset; 1366 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1367 size = sbio->bi_size; 1368 for (j = 0; j < vcnt ; j++) { 1369 struct bio_vec *bi; 1370 bi = &sbio->bi_io_vec[j]; 1371 bi->bv_offset = 0; 1372 if (size > PAGE_SIZE) 1373 bi->bv_len = PAGE_SIZE; 1374 else 1375 bi->bv_len = size; 1376 size -= PAGE_SIZE; 1377 memcpy(page_address(bi->bv_page), 1378 page_address(pbio->bi_io_vec[j].bv_page), 1379 PAGE_SIZE); 1380 } 1381 1382 } 1383 } 1384 } 1385 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1386 /* ouch - failed to read all of that. 1387 * Try some synchronous reads of other devices to get 1388 * good data, much like with normal read errors. Only 1389 * read into the pages we already have so we don't 1390 * need to re-issue the read request. 1391 * We don't need to freeze the array, because being in an 1392 * active sync request, there is no normal IO, and 1393 * no overlapping syncs. 1394 */ 1395 sector_t sect = r1_bio->sector; 1396 int sectors = r1_bio->sectors; 1397 int idx = 0; 1398 1399 while(sectors) { 1400 int s = sectors; 1401 int d = r1_bio->read_disk; 1402 int success = 0; 1403 mdk_rdev_t *rdev; 1404 1405 if (s > (PAGE_SIZE>>9)) 1406 s = PAGE_SIZE >> 9; 1407 do { 1408 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1409 /* No rcu protection needed here devices 1410 * can only be removed when no resync is 1411 * active, and resync is currently active 1412 */ 1413 rdev = conf->mirrors[d].rdev; 1414 if (sync_page_io(rdev->bdev, 1415 sect + rdev->data_offset, 1416 s<<9, 1417 bio->bi_io_vec[idx].bv_page, 1418 READ)) { 1419 success = 1; 1420 break; 1421 } 1422 } 1423 d++; 1424 if (d == conf->raid_disks) 1425 d = 0; 1426 } while (!success && d != r1_bio->read_disk); 1427 1428 if (success) { 1429 int start = d; 1430 /* write it back and re-read */ 1431 set_bit(R1BIO_Uptodate, &r1_bio->state); 1432 while (d != r1_bio->read_disk) { 1433 if (d == 0) 1434 d = conf->raid_disks; 1435 d--; 1436 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1437 continue; 1438 rdev = conf->mirrors[d].rdev; 1439 atomic_add(s, &rdev->corrected_errors); 1440 if (sync_page_io(rdev->bdev, 1441 sect + rdev->data_offset, 1442 s<<9, 1443 bio->bi_io_vec[idx].bv_page, 1444 WRITE) == 0) 1445 md_error(mddev, rdev); 1446 } 1447 d = start; 1448 while (d != r1_bio->read_disk) { 1449 if (d == 0) 1450 d = conf->raid_disks; 1451 d--; 1452 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1453 continue; 1454 rdev = conf->mirrors[d].rdev; 1455 if (sync_page_io(rdev->bdev, 1456 sect + rdev->data_offset, 1457 s<<9, 1458 bio->bi_io_vec[idx].bv_page, 1459 READ) == 0) 1460 md_error(mddev, rdev); 1461 } 1462 } else { 1463 char b[BDEVNAME_SIZE]; 1464 /* Cannot read from anywhere, array is toast */ 1465 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1466 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1467 " for block %llu\n", 1468 mdname(mddev), 1469 bdevname(bio->bi_bdev, b), 1470 (unsigned long long)r1_bio->sector); 1471 md_done_sync(mddev, r1_bio->sectors, 0); 1472 put_buf(r1_bio); 1473 return; 1474 } 1475 sectors -= s; 1476 sect += s; 1477 idx ++; 1478 } 1479 } 1480 1481 /* 1482 * schedule writes 1483 */ 1484 atomic_set(&r1_bio->remaining, 1); 1485 for (i = 0; i < disks ; i++) { 1486 wbio = r1_bio->bios[i]; 1487 if (wbio->bi_end_io == NULL || 1488 (wbio->bi_end_io == end_sync_read && 1489 (i == r1_bio->read_disk || 1490 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1491 continue; 1492 1493 wbio->bi_rw = WRITE; 1494 wbio->bi_end_io = end_sync_write; 1495 atomic_inc(&r1_bio->remaining); 1496 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1497 1498 generic_make_request(wbio); 1499 } 1500 1501 if (atomic_dec_and_test(&r1_bio->remaining)) { 1502 /* if we're here, all write(s) have completed, so clean up */ 1503 md_done_sync(mddev, r1_bio->sectors, 1); 1504 put_buf(r1_bio); 1505 } 1506 } 1507 1508 /* 1509 * This is a kernel thread which: 1510 * 1511 * 1. Retries failed read operations on working mirrors. 1512 * 2. Updates the raid superblock when problems encounter. 1513 * 3. Performs writes following reads for array syncronising. 1514 */ 1515 1516 static void fix_read_error(conf_t *conf, int read_disk, 1517 sector_t sect, int sectors) 1518 { 1519 mddev_t *mddev = conf->mddev; 1520 while(sectors) { 1521 int s = sectors; 1522 int d = read_disk; 1523 int success = 0; 1524 int start; 1525 mdk_rdev_t *rdev; 1526 1527 if (s > (PAGE_SIZE>>9)) 1528 s = PAGE_SIZE >> 9; 1529 1530 do { 1531 /* Note: no rcu protection needed here 1532 * as this is synchronous in the raid1d thread 1533 * which is the thread that might remove 1534 * a device. If raid1d ever becomes multi-threaded.... 1535 */ 1536 rdev = conf->mirrors[d].rdev; 1537 if (rdev && 1538 test_bit(In_sync, &rdev->flags) && 1539 sync_page_io(rdev->bdev, 1540 sect + rdev->data_offset, 1541 s<<9, 1542 conf->tmppage, READ)) 1543 success = 1; 1544 else { 1545 d++; 1546 if (d == conf->raid_disks) 1547 d = 0; 1548 } 1549 } while (!success && d != read_disk); 1550 1551 if (!success) { 1552 /* Cannot read from anywhere -- bye bye array */ 1553 md_error(mddev, conf->mirrors[read_disk].rdev); 1554 break; 1555 } 1556 /* write it back and re-read */ 1557 start = d; 1558 while (d != read_disk) { 1559 if (d==0) 1560 d = conf->raid_disks; 1561 d--; 1562 rdev = conf->mirrors[d].rdev; 1563 if (rdev && 1564 test_bit(In_sync, &rdev->flags)) { 1565 if (sync_page_io(rdev->bdev, 1566 sect + rdev->data_offset, 1567 s<<9, conf->tmppage, WRITE) 1568 == 0) 1569 /* Well, this device is dead */ 1570 md_error(mddev, rdev); 1571 } 1572 } 1573 d = start; 1574 while (d != read_disk) { 1575 char b[BDEVNAME_SIZE]; 1576 if (d==0) 1577 d = conf->raid_disks; 1578 d--; 1579 rdev = conf->mirrors[d].rdev; 1580 if (rdev && 1581 test_bit(In_sync, &rdev->flags)) { 1582 if (sync_page_io(rdev->bdev, 1583 sect + rdev->data_offset, 1584 s<<9, conf->tmppage, READ) 1585 == 0) 1586 /* Well, this device is dead */ 1587 md_error(mddev, rdev); 1588 else { 1589 atomic_add(s, &rdev->corrected_errors); 1590 printk(KERN_INFO 1591 "md/raid1:%s: read error corrected " 1592 "(%d sectors at %llu on %s)\n", 1593 mdname(mddev), s, 1594 (unsigned long long)(sect + 1595 rdev->data_offset), 1596 bdevname(rdev->bdev, b)); 1597 } 1598 } 1599 } 1600 sectors -= s; 1601 sect += s; 1602 } 1603 } 1604 1605 static void raid1d(mddev_t *mddev) 1606 { 1607 r1bio_t *r1_bio; 1608 struct bio *bio; 1609 unsigned long flags; 1610 conf_t *conf = mddev->private; 1611 struct list_head *head = &conf->retry_list; 1612 int unplug=0; 1613 mdk_rdev_t *rdev; 1614 1615 md_check_recovery(mddev); 1616 1617 for (;;) { 1618 char b[BDEVNAME_SIZE]; 1619 1620 unplug += flush_pending_writes(conf); 1621 1622 spin_lock_irqsave(&conf->device_lock, flags); 1623 if (list_empty(head)) { 1624 spin_unlock_irqrestore(&conf->device_lock, flags); 1625 break; 1626 } 1627 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1628 list_del(head->prev); 1629 conf->nr_queued--; 1630 spin_unlock_irqrestore(&conf->device_lock, flags); 1631 1632 mddev = r1_bio->mddev; 1633 conf = mddev->private; 1634 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1635 sync_request_write(mddev, r1_bio); 1636 unplug = 1; 1637 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1638 /* some requests in the r1bio were REQ_HARDBARRIER 1639 * requests which failed with -EOPNOTSUPP. Hohumm.. 1640 * Better resubmit without the barrier. 1641 * We know which devices to resubmit for, because 1642 * all others have had their bios[] entry cleared. 1643 * We already have a nr_pending reference on these rdevs. 1644 */ 1645 int i; 1646 const unsigned long do_sync = (r1_bio->master_bio->bi_rw & REQ_SYNC); 1647 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1648 clear_bit(R1BIO_Barrier, &r1_bio->state); 1649 for (i=0; i < conf->raid_disks; i++) 1650 if (r1_bio->bios[i]) 1651 atomic_inc(&r1_bio->remaining); 1652 for (i=0; i < conf->raid_disks; i++) 1653 if (r1_bio->bios[i]) { 1654 struct bio_vec *bvec; 1655 int j; 1656 1657 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1658 /* copy pages from the failed bio, as 1659 * this might be a write-behind device */ 1660 __bio_for_each_segment(bvec, bio, j, 0) 1661 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1662 bio_put(r1_bio->bios[i]); 1663 bio->bi_sector = r1_bio->sector + 1664 conf->mirrors[i].rdev->data_offset; 1665 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1666 bio->bi_end_io = raid1_end_write_request; 1667 bio->bi_rw = WRITE | do_sync; 1668 bio->bi_private = r1_bio; 1669 r1_bio->bios[i] = bio; 1670 generic_make_request(bio); 1671 } 1672 } else { 1673 int disk; 1674 1675 /* we got a read error. Maybe the drive is bad. Maybe just 1676 * the block and we can fix it. 1677 * We freeze all other IO, and try reading the block from 1678 * other devices. When we find one, we re-write 1679 * and check it that fixes the read error. 1680 * This is all done synchronously while the array is 1681 * frozen 1682 */ 1683 if (mddev->ro == 0) { 1684 freeze_array(conf); 1685 fix_read_error(conf, r1_bio->read_disk, 1686 r1_bio->sector, 1687 r1_bio->sectors); 1688 unfreeze_array(conf); 1689 } else 1690 md_error(mddev, 1691 conf->mirrors[r1_bio->read_disk].rdev); 1692 1693 bio = r1_bio->bios[r1_bio->read_disk]; 1694 if ((disk=read_balance(conf, r1_bio)) == -1) { 1695 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 1696 " read error for block %llu\n", 1697 mdname(mddev), 1698 bdevname(bio->bi_bdev,b), 1699 (unsigned long long)r1_bio->sector); 1700 raid_end_bio_io(r1_bio); 1701 } else { 1702 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC; 1703 r1_bio->bios[r1_bio->read_disk] = 1704 mddev->ro ? IO_BLOCKED : NULL; 1705 r1_bio->read_disk = disk; 1706 bio_put(bio); 1707 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1708 r1_bio->bios[r1_bio->read_disk] = bio; 1709 rdev = conf->mirrors[disk].rdev; 1710 if (printk_ratelimit()) 1711 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to" 1712 " other mirror: %s\n", 1713 mdname(mddev), 1714 (unsigned long long)r1_bio->sector, 1715 bdevname(rdev->bdev,b)); 1716 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1717 bio->bi_bdev = rdev->bdev; 1718 bio->bi_end_io = raid1_end_read_request; 1719 bio->bi_rw = READ | do_sync; 1720 bio->bi_private = r1_bio; 1721 unplug = 1; 1722 generic_make_request(bio); 1723 } 1724 } 1725 cond_resched(); 1726 } 1727 if (unplug) 1728 unplug_slaves(mddev); 1729 } 1730 1731 1732 static int init_resync(conf_t *conf) 1733 { 1734 int buffs; 1735 1736 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1737 BUG_ON(conf->r1buf_pool); 1738 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1739 conf->poolinfo); 1740 if (!conf->r1buf_pool) 1741 return -ENOMEM; 1742 conf->next_resync = 0; 1743 return 0; 1744 } 1745 1746 /* 1747 * perform a "sync" on one "block" 1748 * 1749 * We need to make sure that no normal I/O request - particularly write 1750 * requests - conflict with active sync requests. 1751 * 1752 * This is achieved by tracking pending requests and a 'barrier' concept 1753 * that can be installed to exclude normal IO requests. 1754 */ 1755 1756 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1757 { 1758 conf_t *conf = mddev->private; 1759 r1bio_t *r1_bio; 1760 struct bio *bio; 1761 sector_t max_sector, nr_sectors; 1762 int disk = -1; 1763 int i; 1764 int wonly = -1; 1765 int write_targets = 0, read_targets = 0; 1766 int sync_blocks; 1767 int still_degraded = 0; 1768 1769 if (!conf->r1buf_pool) 1770 if (init_resync(conf)) 1771 return 0; 1772 1773 max_sector = mddev->dev_sectors; 1774 if (sector_nr >= max_sector) { 1775 /* If we aborted, we need to abort the 1776 * sync on the 'current' bitmap chunk (there will 1777 * only be one in raid1 resync. 1778 * We can find the current addess in mddev->curr_resync 1779 */ 1780 if (mddev->curr_resync < max_sector) /* aborted */ 1781 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1782 &sync_blocks, 1); 1783 else /* completed sync */ 1784 conf->fullsync = 0; 1785 1786 bitmap_close_sync(mddev->bitmap); 1787 close_sync(conf); 1788 return 0; 1789 } 1790 1791 if (mddev->bitmap == NULL && 1792 mddev->recovery_cp == MaxSector && 1793 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1794 conf->fullsync == 0) { 1795 *skipped = 1; 1796 return max_sector - sector_nr; 1797 } 1798 /* before building a request, check if we can skip these blocks.. 1799 * This call the bitmap_start_sync doesn't actually record anything 1800 */ 1801 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1802 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1803 /* We can skip this block, and probably several more */ 1804 *skipped = 1; 1805 return sync_blocks; 1806 } 1807 /* 1808 * If there is non-resync activity waiting for a turn, 1809 * and resync is going fast enough, 1810 * then let it though before starting on this new sync request. 1811 */ 1812 if (!go_faster && conf->nr_waiting) 1813 msleep_interruptible(1000); 1814 1815 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1816 raise_barrier(conf); 1817 1818 conf->next_resync = sector_nr; 1819 1820 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1821 rcu_read_lock(); 1822 /* 1823 * If we get a correctably read error during resync or recovery, 1824 * we might want to read from a different device. So we 1825 * flag all drives that could conceivably be read from for READ, 1826 * and any others (which will be non-In_sync devices) for WRITE. 1827 * If a read fails, we try reading from something else for which READ 1828 * is OK. 1829 */ 1830 1831 r1_bio->mddev = mddev; 1832 r1_bio->sector = sector_nr; 1833 r1_bio->state = 0; 1834 set_bit(R1BIO_IsSync, &r1_bio->state); 1835 1836 for (i=0; i < conf->raid_disks; i++) { 1837 mdk_rdev_t *rdev; 1838 bio = r1_bio->bios[i]; 1839 1840 /* take from bio_init */ 1841 bio->bi_next = NULL; 1842 bio->bi_flags |= 1 << BIO_UPTODATE; 1843 bio->bi_rw = READ; 1844 bio->bi_vcnt = 0; 1845 bio->bi_idx = 0; 1846 bio->bi_phys_segments = 0; 1847 bio->bi_size = 0; 1848 bio->bi_end_io = NULL; 1849 bio->bi_private = NULL; 1850 1851 rdev = rcu_dereference(conf->mirrors[i].rdev); 1852 if (rdev == NULL || 1853 test_bit(Faulty, &rdev->flags)) { 1854 still_degraded = 1; 1855 continue; 1856 } else if (!test_bit(In_sync, &rdev->flags)) { 1857 bio->bi_rw = WRITE; 1858 bio->bi_end_io = end_sync_write; 1859 write_targets ++; 1860 } else { 1861 /* may need to read from here */ 1862 bio->bi_rw = READ; 1863 bio->bi_end_io = end_sync_read; 1864 if (test_bit(WriteMostly, &rdev->flags)) { 1865 if (wonly < 0) 1866 wonly = i; 1867 } else { 1868 if (disk < 0) 1869 disk = i; 1870 } 1871 read_targets++; 1872 } 1873 atomic_inc(&rdev->nr_pending); 1874 bio->bi_sector = sector_nr + rdev->data_offset; 1875 bio->bi_bdev = rdev->bdev; 1876 bio->bi_private = r1_bio; 1877 } 1878 rcu_read_unlock(); 1879 if (disk < 0) 1880 disk = wonly; 1881 r1_bio->read_disk = disk; 1882 1883 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1884 /* extra read targets are also write targets */ 1885 write_targets += read_targets-1; 1886 1887 if (write_targets == 0 || read_targets == 0) { 1888 /* There is nowhere to write, so all non-sync 1889 * drives must be failed - so we are finished 1890 */ 1891 sector_t rv = max_sector - sector_nr; 1892 *skipped = 1; 1893 put_buf(r1_bio); 1894 return rv; 1895 } 1896 1897 if (max_sector > mddev->resync_max) 1898 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1899 nr_sectors = 0; 1900 sync_blocks = 0; 1901 do { 1902 struct page *page; 1903 int len = PAGE_SIZE; 1904 if (sector_nr + (len>>9) > max_sector) 1905 len = (max_sector - sector_nr) << 9; 1906 if (len == 0) 1907 break; 1908 if (sync_blocks == 0) { 1909 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1910 &sync_blocks, still_degraded) && 1911 !conf->fullsync && 1912 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1913 break; 1914 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1915 if (len > (sync_blocks<<9)) 1916 len = sync_blocks<<9; 1917 } 1918 1919 for (i=0 ; i < conf->raid_disks; i++) { 1920 bio = r1_bio->bios[i]; 1921 if (bio->bi_end_io) { 1922 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1923 if (bio_add_page(bio, page, len, 0) == 0) { 1924 /* stop here */ 1925 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1926 while (i > 0) { 1927 i--; 1928 bio = r1_bio->bios[i]; 1929 if (bio->bi_end_io==NULL) 1930 continue; 1931 /* remove last page from this bio */ 1932 bio->bi_vcnt--; 1933 bio->bi_size -= len; 1934 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1935 } 1936 goto bio_full; 1937 } 1938 } 1939 } 1940 nr_sectors += len>>9; 1941 sector_nr += len>>9; 1942 sync_blocks -= (len>>9); 1943 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1944 bio_full: 1945 r1_bio->sectors = nr_sectors; 1946 1947 /* For a user-requested sync, we read all readable devices and do a 1948 * compare 1949 */ 1950 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1951 atomic_set(&r1_bio->remaining, read_targets); 1952 for (i=0; i<conf->raid_disks; i++) { 1953 bio = r1_bio->bios[i]; 1954 if (bio->bi_end_io == end_sync_read) { 1955 md_sync_acct(bio->bi_bdev, nr_sectors); 1956 generic_make_request(bio); 1957 } 1958 } 1959 } else { 1960 atomic_set(&r1_bio->remaining, 1); 1961 bio = r1_bio->bios[r1_bio->read_disk]; 1962 md_sync_acct(bio->bi_bdev, nr_sectors); 1963 generic_make_request(bio); 1964 1965 } 1966 return nr_sectors; 1967 } 1968 1969 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1970 { 1971 if (sectors) 1972 return sectors; 1973 1974 return mddev->dev_sectors; 1975 } 1976 1977 static conf_t *setup_conf(mddev_t *mddev) 1978 { 1979 conf_t *conf; 1980 int i; 1981 mirror_info_t *disk; 1982 mdk_rdev_t *rdev; 1983 int err = -ENOMEM; 1984 1985 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1986 if (!conf) 1987 goto abort; 1988 1989 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1990 GFP_KERNEL); 1991 if (!conf->mirrors) 1992 goto abort; 1993 1994 conf->tmppage = alloc_page(GFP_KERNEL); 1995 if (!conf->tmppage) 1996 goto abort; 1997 1998 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1999 if (!conf->poolinfo) 2000 goto abort; 2001 conf->poolinfo->raid_disks = mddev->raid_disks; 2002 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2003 r1bio_pool_free, 2004 conf->poolinfo); 2005 if (!conf->r1bio_pool) 2006 goto abort; 2007 2008 conf->poolinfo->mddev = mddev; 2009 2010 spin_lock_init(&conf->device_lock); 2011 list_for_each_entry(rdev, &mddev->disks, same_set) { 2012 int disk_idx = rdev->raid_disk; 2013 if (disk_idx >= mddev->raid_disks 2014 || disk_idx < 0) 2015 continue; 2016 disk = conf->mirrors + disk_idx; 2017 2018 disk->rdev = rdev; 2019 2020 disk->head_position = 0; 2021 } 2022 conf->raid_disks = mddev->raid_disks; 2023 conf->mddev = mddev; 2024 INIT_LIST_HEAD(&conf->retry_list); 2025 2026 spin_lock_init(&conf->resync_lock); 2027 init_waitqueue_head(&conf->wait_barrier); 2028 2029 bio_list_init(&conf->pending_bio_list); 2030 bio_list_init(&conf->flushing_bio_list); 2031 2032 conf->last_used = -1; 2033 for (i = 0; i < conf->raid_disks; i++) { 2034 2035 disk = conf->mirrors + i; 2036 2037 if (!disk->rdev || 2038 !test_bit(In_sync, &disk->rdev->flags)) { 2039 disk->head_position = 0; 2040 if (disk->rdev) 2041 conf->fullsync = 1; 2042 } else if (conf->last_used < 0) 2043 /* 2044 * The first working device is used as a 2045 * starting point to read balancing. 2046 */ 2047 conf->last_used = i; 2048 } 2049 2050 err = -EIO; 2051 if (conf->last_used < 0) { 2052 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 2053 mdname(mddev)); 2054 goto abort; 2055 } 2056 err = -ENOMEM; 2057 conf->thread = md_register_thread(raid1d, mddev, NULL); 2058 if (!conf->thread) { 2059 printk(KERN_ERR 2060 "md/raid1:%s: couldn't allocate thread\n", 2061 mdname(mddev)); 2062 goto abort; 2063 } 2064 2065 return conf; 2066 2067 abort: 2068 if (conf) { 2069 if (conf->r1bio_pool) 2070 mempool_destroy(conf->r1bio_pool); 2071 kfree(conf->mirrors); 2072 safe_put_page(conf->tmppage); 2073 kfree(conf->poolinfo); 2074 kfree(conf); 2075 } 2076 return ERR_PTR(err); 2077 } 2078 2079 static int run(mddev_t *mddev) 2080 { 2081 conf_t *conf; 2082 int i; 2083 mdk_rdev_t *rdev; 2084 2085 if (mddev->level != 1) { 2086 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2087 mdname(mddev), mddev->level); 2088 return -EIO; 2089 } 2090 if (mddev->reshape_position != MaxSector) { 2091 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2092 mdname(mddev)); 2093 return -EIO; 2094 } 2095 /* 2096 * copy the already verified devices into our private RAID1 2097 * bookkeeping area. [whatever we allocate in run(), 2098 * should be freed in stop()] 2099 */ 2100 if (mddev->private == NULL) 2101 conf = setup_conf(mddev); 2102 else 2103 conf = mddev->private; 2104 2105 if (IS_ERR(conf)) 2106 return PTR_ERR(conf); 2107 2108 mddev->queue->queue_lock = &conf->device_lock; 2109 list_for_each_entry(rdev, &mddev->disks, same_set) { 2110 disk_stack_limits(mddev->gendisk, rdev->bdev, 2111 rdev->data_offset << 9); 2112 /* as we don't honour merge_bvec_fn, we must never risk 2113 * violating it, so limit ->max_segments to 1 lying within 2114 * a single page, as a one page request is never in violation. 2115 */ 2116 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2117 blk_queue_max_segments(mddev->queue, 1); 2118 blk_queue_segment_boundary(mddev->queue, 2119 PAGE_CACHE_SIZE - 1); 2120 } 2121 } 2122 2123 mddev->degraded = 0; 2124 for (i=0; i < conf->raid_disks; i++) 2125 if (conf->mirrors[i].rdev == NULL || 2126 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2127 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2128 mddev->degraded++; 2129 2130 if (conf->raid_disks - mddev->degraded == 1) 2131 mddev->recovery_cp = MaxSector; 2132 2133 if (mddev->recovery_cp != MaxSector) 2134 printk(KERN_NOTICE "md/raid1:%s: not clean" 2135 " -- starting background reconstruction\n", 2136 mdname(mddev)); 2137 printk(KERN_INFO 2138 "md/raid1:%s: active with %d out of %d mirrors\n", 2139 mdname(mddev), mddev->raid_disks - mddev->degraded, 2140 mddev->raid_disks); 2141 2142 /* 2143 * Ok, everything is just fine now 2144 */ 2145 mddev->thread = conf->thread; 2146 conf->thread = NULL; 2147 mddev->private = conf; 2148 2149 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2150 2151 mddev->queue->unplug_fn = raid1_unplug; 2152 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2153 mddev->queue->backing_dev_info.congested_data = mddev; 2154 md_integrity_register(mddev); 2155 return 0; 2156 } 2157 2158 static int stop(mddev_t *mddev) 2159 { 2160 conf_t *conf = mddev->private; 2161 struct bitmap *bitmap = mddev->bitmap; 2162 2163 /* wait for behind writes to complete */ 2164 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2165 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2166 mdname(mddev)); 2167 /* need to kick something here to make sure I/O goes? */ 2168 wait_event(bitmap->behind_wait, 2169 atomic_read(&bitmap->behind_writes) == 0); 2170 } 2171 2172 raise_barrier(conf); 2173 lower_barrier(conf); 2174 2175 md_unregister_thread(mddev->thread); 2176 mddev->thread = NULL; 2177 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2178 if (conf->r1bio_pool) 2179 mempool_destroy(conf->r1bio_pool); 2180 kfree(conf->mirrors); 2181 kfree(conf->poolinfo); 2182 kfree(conf); 2183 mddev->private = NULL; 2184 return 0; 2185 } 2186 2187 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2188 { 2189 /* no resync is happening, and there is enough space 2190 * on all devices, so we can resize. 2191 * We need to make sure resync covers any new space. 2192 * If the array is shrinking we should possibly wait until 2193 * any io in the removed space completes, but it hardly seems 2194 * worth it. 2195 */ 2196 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2197 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2198 return -EINVAL; 2199 set_capacity(mddev->gendisk, mddev->array_sectors); 2200 revalidate_disk(mddev->gendisk); 2201 if (sectors > mddev->dev_sectors && 2202 mddev->recovery_cp == MaxSector) { 2203 mddev->recovery_cp = mddev->dev_sectors; 2204 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2205 } 2206 mddev->dev_sectors = sectors; 2207 mddev->resync_max_sectors = sectors; 2208 return 0; 2209 } 2210 2211 static int raid1_reshape(mddev_t *mddev) 2212 { 2213 /* We need to: 2214 * 1/ resize the r1bio_pool 2215 * 2/ resize conf->mirrors 2216 * 2217 * We allocate a new r1bio_pool if we can. 2218 * Then raise a device barrier and wait until all IO stops. 2219 * Then resize conf->mirrors and swap in the new r1bio pool. 2220 * 2221 * At the same time, we "pack" the devices so that all the missing 2222 * devices have the higher raid_disk numbers. 2223 */ 2224 mempool_t *newpool, *oldpool; 2225 struct pool_info *newpoolinfo; 2226 mirror_info_t *newmirrors; 2227 conf_t *conf = mddev->private; 2228 int cnt, raid_disks; 2229 unsigned long flags; 2230 int d, d2, err; 2231 2232 /* Cannot change chunk_size, layout, or level */ 2233 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2234 mddev->layout != mddev->new_layout || 2235 mddev->level != mddev->new_level) { 2236 mddev->new_chunk_sectors = mddev->chunk_sectors; 2237 mddev->new_layout = mddev->layout; 2238 mddev->new_level = mddev->level; 2239 return -EINVAL; 2240 } 2241 2242 err = md_allow_write(mddev); 2243 if (err) 2244 return err; 2245 2246 raid_disks = mddev->raid_disks + mddev->delta_disks; 2247 2248 if (raid_disks < conf->raid_disks) { 2249 cnt=0; 2250 for (d= 0; d < conf->raid_disks; d++) 2251 if (conf->mirrors[d].rdev) 2252 cnt++; 2253 if (cnt > raid_disks) 2254 return -EBUSY; 2255 } 2256 2257 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2258 if (!newpoolinfo) 2259 return -ENOMEM; 2260 newpoolinfo->mddev = mddev; 2261 newpoolinfo->raid_disks = raid_disks; 2262 2263 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2264 r1bio_pool_free, newpoolinfo); 2265 if (!newpool) { 2266 kfree(newpoolinfo); 2267 return -ENOMEM; 2268 } 2269 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2270 if (!newmirrors) { 2271 kfree(newpoolinfo); 2272 mempool_destroy(newpool); 2273 return -ENOMEM; 2274 } 2275 2276 raise_barrier(conf); 2277 2278 /* ok, everything is stopped */ 2279 oldpool = conf->r1bio_pool; 2280 conf->r1bio_pool = newpool; 2281 2282 for (d = d2 = 0; d < conf->raid_disks; d++) { 2283 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2284 if (rdev && rdev->raid_disk != d2) { 2285 char nm[20]; 2286 sprintf(nm, "rd%d", rdev->raid_disk); 2287 sysfs_remove_link(&mddev->kobj, nm); 2288 rdev->raid_disk = d2; 2289 sprintf(nm, "rd%d", rdev->raid_disk); 2290 sysfs_remove_link(&mddev->kobj, nm); 2291 if (sysfs_create_link(&mddev->kobj, 2292 &rdev->kobj, nm)) 2293 printk(KERN_WARNING 2294 "md/raid1:%s: cannot register " 2295 "%s\n", 2296 mdname(mddev), nm); 2297 } 2298 if (rdev) 2299 newmirrors[d2++].rdev = rdev; 2300 } 2301 kfree(conf->mirrors); 2302 conf->mirrors = newmirrors; 2303 kfree(conf->poolinfo); 2304 conf->poolinfo = newpoolinfo; 2305 2306 spin_lock_irqsave(&conf->device_lock, flags); 2307 mddev->degraded += (raid_disks - conf->raid_disks); 2308 spin_unlock_irqrestore(&conf->device_lock, flags); 2309 conf->raid_disks = mddev->raid_disks = raid_disks; 2310 mddev->delta_disks = 0; 2311 2312 conf->last_used = 0; /* just make sure it is in-range */ 2313 lower_barrier(conf); 2314 2315 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2316 md_wakeup_thread(mddev->thread); 2317 2318 mempool_destroy(oldpool); 2319 return 0; 2320 } 2321 2322 static void raid1_quiesce(mddev_t *mddev, int state) 2323 { 2324 conf_t *conf = mddev->private; 2325 2326 switch(state) { 2327 case 2: /* wake for suspend */ 2328 wake_up(&conf->wait_barrier); 2329 break; 2330 case 1: 2331 raise_barrier(conf); 2332 break; 2333 case 0: 2334 lower_barrier(conf); 2335 break; 2336 } 2337 } 2338 2339 static void *raid1_takeover(mddev_t *mddev) 2340 { 2341 /* raid1 can take over: 2342 * raid5 with 2 devices, any layout or chunk size 2343 */ 2344 if (mddev->level == 5 && mddev->raid_disks == 2) { 2345 conf_t *conf; 2346 mddev->new_level = 1; 2347 mddev->new_layout = 0; 2348 mddev->new_chunk_sectors = 0; 2349 conf = setup_conf(mddev); 2350 if (!IS_ERR(conf)) 2351 conf->barrier = 1; 2352 return conf; 2353 } 2354 return ERR_PTR(-EINVAL); 2355 } 2356 2357 static struct mdk_personality raid1_personality = 2358 { 2359 .name = "raid1", 2360 .level = 1, 2361 .owner = THIS_MODULE, 2362 .make_request = make_request, 2363 .run = run, 2364 .stop = stop, 2365 .status = status, 2366 .error_handler = error, 2367 .hot_add_disk = raid1_add_disk, 2368 .hot_remove_disk= raid1_remove_disk, 2369 .spare_active = raid1_spare_active, 2370 .sync_request = sync_request, 2371 .resize = raid1_resize, 2372 .size = raid1_size, 2373 .check_reshape = raid1_reshape, 2374 .quiesce = raid1_quiesce, 2375 .takeover = raid1_takeover, 2376 }; 2377 2378 static int __init raid_init(void) 2379 { 2380 return register_md_personality(&raid1_personality); 2381 } 2382 2383 static void raid_exit(void) 2384 { 2385 unregister_md_personality(&raid1_personality); 2386 } 2387 2388 module_init(raid_init); 2389 module_exit(raid_exit); 2390 MODULE_LICENSE("GPL"); 2391 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2392 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2393 MODULE_ALIAS("md-raid1"); 2394 MODULE_ALIAS("md-level-1"); 2395