xref: /linux/drivers/md/raid1.c (revision cf4cebcec619d963fa7496018f03cb0ff00dc257)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define RAID_1_10_NAME "raid1"
50 #include "raid1-10.c"
51 
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 		     START, LAST, static inline, raid1_rb);
56 
57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 				struct serial_info *si, int idx)
59 {
60 	unsigned long flags;
61 	int ret = 0;
62 	sector_t lo = r1_bio->sector;
63 	sector_t hi = lo + r1_bio->sectors;
64 	struct serial_in_rdev *serial = &rdev->serial[idx];
65 
66 	spin_lock_irqsave(&serial->serial_lock, flags);
67 	/* collision happened */
68 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69 		ret = -EBUSY;
70 	else {
71 		si->start = lo;
72 		si->last = hi;
73 		raid1_rb_insert(si, &serial->serial_rb);
74 	}
75 	spin_unlock_irqrestore(&serial->serial_lock, flags);
76 
77 	return ret;
78 }
79 
80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
81 {
82 	struct mddev *mddev = rdev->mddev;
83 	struct serial_info *si;
84 	int idx = sector_to_idx(r1_bio->sector);
85 	struct serial_in_rdev *serial = &rdev->serial[idx];
86 
87 	if (WARN_ON(!mddev->serial_info_pool))
88 		return;
89 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 	wait_event(serial->serial_io_wait,
91 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
92 }
93 
94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
95 {
96 	struct serial_info *si;
97 	unsigned long flags;
98 	int found = 0;
99 	struct mddev *mddev = rdev->mddev;
100 	int idx = sector_to_idx(lo);
101 	struct serial_in_rdev *serial = &rdev->serial[idx];
102 
103 	spin_lock_irqsave(&serial->serial_lock, flags);
104 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
106 		if (si->start == lo && si->last == hi) {
107 			raid1_rb_remove(si, &serial->serial_rb);
108 			mempool_free(si, mddev->serial_info_pool);
109 			found = 1;
110 			break;
111 		}
112 	}
113 	if (!found)
114 		WARN(1, "The write IO is not recorded for serialization\n");
115 	spin_unlock_irqrestore(&serial->serial_lock, flags);
116 	wake_up(&serial->serial_io_wait);
117 }
118 
119 /*
120  * for resync bio, r1bio pointer can be retrieved from the per-bio
121  * 'struct resync_pages'.
122  */
123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
124 {
125 	return get_resync_pages(bio)->raid_bio;
126 }
127 
128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
129 {
130 	struct pool_info *pi = data;
131 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
132 
133 	/* allocate a r1bio with room for raid_disks entries in the bios array */
134 	return kzalloc(size, gfp_flags);
135 }
136 
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
143 
144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
145 {
146 	struct pool_info *pi = data;
147 	struct r1bio *r1_bio;
148 	struct bio *bio;
149 	int need_pages;
150 	int j;
151 	struct resync_pages *rps;
152 
153 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
154 	if (!r1_bio)
155 		return NULL;
156 
157 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158 			    gfp_flags);
159 	if (!rps)
160 		goto out_free_r1bio;
161 
162 	/*
163 	 * Allocate bios : 1 for reading, n-1 for writing
164 	 */
165 	for (j = pi->raid_disks ; j-- ; ) {
166 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
167 		if (!bio)
168 			goto out_free_bio;
169 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170 		r1_bio->bios[j] = bio;
171 	}
172 	/*
173 	 * Allocate RESYNC_PAGES data pages and attach them to
174 	 * the first bio.
175 	 * If this is a user-requested check/repair, allocate
176 	 * RESYNC_PAGES for each bio.
177 	 */
178 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179 		need_pages = pi->raid_disks;
180 	else
181 		need_pages = 1;
182 	for (j = 0; j < pi->raid_disks; j++) {
183 		struct resync_pages *rp = &rps[j];
184 
185 		bio = r1_bio->bios[j];
186 
187 		if (j < need_pages) {
188 			if (resync_alloc_pages(rp, gfp_flags))
189 				goto out_free_pages;
190 		} else {
191 			memcpy(rp, &rps[0], sizeof(*rp));
192 			resync_get_all_pages(rp);
193 		}
194 
195 		rp->raid_bio = r1_bio;
196 		bio->bi_private = rp;
197 	}
198 
199 	r1_bio->master_bio = NULL;
200 
201 	return r1_bio;
202 
203 out_free_pages:
204 	while (--j >= 0)
205 		resync_free_pages(&rps[j]);
206 
207 out_free_bio:
208 	while (++j < pi->raid_disks) {
209 		bio_uninit(r1_bio->bios[j]);
210 		kfree(r1_bio->bios[j]);
211 	}
212 	kfree(rps);
213 
214 out_free_r1bio:
215 	rbio_pool_free(r1_bio, data);
216 	return NULL;
217 }
218 
219 static void r1buf_pool_free(void *__r1_bio, void *data)
220 {
221 	struct pool_info *pi = data;
222 	int i;
223 	struct r1bio *r1bio = __r1_bio;
224 	struct resync_pages *rp = NULL;
225 
226 	for (i = pi->raid_disks; i--; ) {
227 		rp = get_resync_pages(r1bio->bios[i]);
228 		resync_free_pages(rp);
229 		bio_uninit(r1bio->bios[i]);
230 		kfree(r1bio->bios[i]);
231 	}
232 
233 	/* resync pages array stored in the 1st bio's .bi_private */
234 	kfree(rp);
235 
236 	rbio_pool_free(r1bio, data);
237 }
238 
239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
240 {
241 	int i;
242 
243 	for (i = 0; i < conf->raid_disks * 2; i++) {
244 		struct bio **bio = r1_bio->bios + i;
245 		if (!BIO_SPECIAL(*bio))
246 			bio_put(*bio);
247 		*bio = NULL;
248 	}
249 }
250 
251 static void free_r1bio(struct r1bio *r1_bio)
252 {
253 	struct r1conf *conf = r1_bio->mddev->private;
254 
255 	put_all_bios(conf, r1_bio);
256 	mempool_free(r1_bio, &conf->r1bio_pool);
257 }
258 
259 static void put_buf(struct r1bio *r1_bio)
260 {
261 	struct r1conf *conf = r1_bio->mddev->private;
262 	sector_t sect = r1_bio->sector;
263 	int i;
264 
265 	for (i = 0; i < conf->raid_disks * 2; i++) {
266 		struct bio *bio = r1_bio->bios[i];
267 		if (bio->bi_end_io)
268 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 	}
270 
271 	mempool_free(r1_bio, &conf->r1buf_pool);
272 
273 	lower_barrier(conf, sect);
274 }
275 
276 static void reschedule_retry(struct r1bio *r1_bio)
277 {
278 	unsigned long flags;
279 	struct mddev *mddev = r1_bio->mddev;
280 	struct r1conf *conf = mddev->private;
281 	int idx;
282 
283 	idx = sector_to_idx(r1_bio->sector);
284 	spin_lock_irqsave(&conf->device_lock, flags);
285 	list_add(&r1_bio->retry_list, &conf->retry_list);
286 	atomic_inc(&conf->nr_queued[idx]);
287 	spin_unlock_irqrestore(&conf->device_lock, flags);
288 
289 	wake_up(&conf->wait_barrier);
290 	md_wakeup_thread(mddev->thread);
291 }
292 
293 /*
294  * raid_end_bio_io() is called when we have finished servicing a mirrored
295  * operation and are ready to return a success/failure code to the buffer
296  * cache layer.
297  */
298 static void call_bio_endio(struct r1bio *r1_bio)
299 {
300 	struct bio *bio = r1_bio->master_bio;
301 
302 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303 		bio->bi_status = BLK_STS_IOERR;
304 
305 	bio_endio(bio);
306 }
307 
308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310 	struct bio *bio = r1_bio->master_bio;
311 	struct r1conf *conf = r1_bio->mddev->private;
312 	sector_t sector = r1_bio->sector;
313 
314 	/* if nobody has done the final endio yet, do it now */
315 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
318 			 (unsigned long long) bio->bi_iter.bi_sector,
319 			 (unsigned long long) bio_end_sector(bio) - 1);
320 
321 		call_bio_endio(r1_bio);
322 	}
323 
324 	free_r1bio(r1_bio);
325 	/*
326 	 * Wake up any possible resync thread that waits for the device
327 	 * to go idle.  All I/Os, even write-behind writes, are done.
328 	 */
329 	allow_barrier(conf, sector);
330 }
331 
332 /*
333  * Update disk head position estimator based on IRQ completion info.
334  */
335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336 {
337 	struct r1conf *conf = r1_bio->mddev->private;
338 
339 	conf->mirrors[disk].head_position =
340 		r1_bio->sector + (r1_bio->sectors);
341 }
342 
343 /*
344  * Find the disk number which triggered given bio
345  */
346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
347 {
348 	int mirror;
349 	struct r1conf *conf = r1_bio->mddev->private;
350 	int raid_disks = conf->raid_disks;
351 
352 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
353 		if (r1_bio->bios[mirror] == bio)
354 			break;
355 
356 	BUG_ON(mirror == raid_disks * 2);
357 	update_head_pos(mirror, r1_bio);
358 
359 	return mirror;
360 }
361 
362 static void raid1_end_read_request(struct bio *bio)
363 {
364 	int uptodate = !bio->bi_status;
365 	struct r1bio *r1_bio = bio->bi_private;
366 	struct r1conf *conf = r1_bio->mddev->private;
367 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
368 
369 	/*
370 	 * this branch is our 'one mirror IO has finished' event handler:
371 	 */
372 	update_head_pos(r1_bio->read_disk, r1_bio);
373 
374 	if (uptodate)
375 		set_bit(R1BIO_Uptodate, &r1_bio->state);
376 	else if (test_bit(FailFast, &rdev->flags) &&
377 		 test_bit(R1BIO_FailFast, &r1_bio->state))
378 		/* This was a fail-fast read so we definitely
379 		 * want to retry */
380 		;
381 	else {
382 		/* If all other devices have failed, we want to return
383 		 * the error upwards rather than fail the last device.
384 		 * Here we redefine "uptodate" to mean "Don't want to retry"
385 		 */
386 		unsigned long flags;
387 		spin_lock_irqsave(&conf->device_lock, flags);
388 		if (r1_bio->mddev->degraded == conf->raid_disks ||
389 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390 		     test_bit(In_sync, &rdev->flags)))
391 			uptodate = 1;
392 		spin_unlock_irqrestore(&conf->device_lock, flags);
393 	}
394 
395 	if (uptodate) {
396 		raid_end_bio_io(r1_bio);
397 		rdev_dec_pending(rdev, conf->mddev);
398 	} else {
399 		/*
400 		 * oops, read error:
401 		 */
402 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
403 				   mdname(conf->mddev),
404 				   rdev->bdev,
405 				   (unsigned long long)r1_bio->sector);
406 		set_bit(R1BIO_ReadError, &r1_bio->state);
407 		reschedule_retry(r1_bio);
408 		/* don't drop the reference on read_disk yet */
409 	}
410 }
411 
412 static void close_write(struct r1bio *r1_bio)
413 {
414 	/* it really is the end of this request */
415 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 		bio_free_pages(r1_bio->behind_master_bio);
417 		bio_put(r1_bio->behind_master_bio);
418 		r1_bio->behind_master_bio = NULL;
419 	}
420 	/* clear the bitmap if all writes complete successfully */
421 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422 			   r1_bio->sectors,
423 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
424 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
425 	md_write_end(r1_bio->mddev);
426 }
427 
428 static void r1_bio_write_done(struct r1bio *r1_bio)
429 {
430 	if (!atomic_dec_and_test(&r1_bio->remaining))
431 		return;
432 
433 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 		reschedule_retry(r1_bio);
435 	else {
436 		close_write(r1_bio);
437 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 			reschedule_retry(r1_bio);
439 		else
440 			raid_end_bio_io(r1_bio);
441 	}
442 }
443 
444 static void raid1_end_write_request(struct bio *bio)
445 {
446 	struct r1bio *r1_bio = bio->bi_private;
447 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 	struct r1conf *conf = r1_bio->mddev->private;
449 	struct bio *to_put = NULL;
450 	int mirror = find_bio_disk(r1_bio, bio);
451 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
452 	bool discard_error;
453 	sector_t lo = r1_bio->sector;
454 	sector_t hi = r1_bio->sector + r1_bio->sectors;
455 
456 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
457 
458 	/*
459 	 * 'one mirror IO has finished' event handler:
460 	 */
461 	if (bio->bi_status && !discard_error) {
462 		set_bit(WriteErrorSeen,	&rdev->flags);
463 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 			set_bit(MD_RECOVERY_NEEDED, &
465 				conf->mddev->recovery);
466 
467 		if (test_bit(FailFast, &rdev->flags) &&
468 		    (bio->bi_opf & MD_FAILFAST) &&
469 		    /* We never try FailFast to WriteMostly devices */
470 		    !test_bit(WriteMostly, &rdev->flags)) {
471 			md_error(r1_bio->mddev, rdev);
472 		}
473 
474 		/*
475 		 * When the device is faulty, it is not necessary to
476 		 * handle write error.
477 		 */
478 		if (!test_bit(Faulty, &rdev->flags))
479 			set_bit(R1BIO_WriteError, &r1_bio->state);
480 		else {
481 			/* Fail the request */
482 			set_bit(R1BIO_Degraded, &r1_bio->state);
483 			/* Finished with this branch */
484 			r1_bio->bios[mirror] = NULL;
485 			to_put = bio;
486 		}
487 	} else {
488 		/*
489 		 * Set R1BIO_Uptodate in our master bio, so that we
490 		 * will return a good error code for to the higher
491 		 * levels even if IO on some other mirrored buffer
492 		 * fails.
493 		 *
494 		 * The 'master' represents the composite IO operation
495 		 * to user-side. So if something waits for IO, then it
496 		 * will wait for the 'master' bio.
497 		 */
498 		r1_bio->bios[mirror] = NULL;
499 		to_put = bio;
500 		/*
501 		 * Do not set R1BIO_Uptodate if the current device is
502 		 * rebuilding or Faulty. This is because we cannot use
503 		 * such device for properly reading the data back (we could
504 		 * potentially use it, if the current write would have felt
505 		 * before rdev->recovery_offset, but for simplicity we don't
506 		 * check this here.
507 		 */
508 		if (test_bit(In_sync, &rdev->flags) &&
509 		    !test_bit(Faulty, &rdev->flags))
510 			set_bit(R1BIO_Uptodate, &r1_bio->state);
511 
512 		/* Maybe we can clear some bad blocks. */
513 		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
514 		    !discard_error) {
515 			r1_bio->bios[mirror] = IO_MADE_GOOD;
516 			set_bit(R1BIO_MadeGood, &r1_bio->state);
517 		}
518 	}
519 
520 	if (behind) {
521 		if (test_bit(CollisionCheck, &rdev->flags))
522 			remove_serial(rdev, lo, hi);
523 		if (test_bit(WriteMostly, &rdev->flags))
524 			atomic_dec(&r1_bio->behind_remaining);
525 
526 		/*
527 		 * In behind mode, we ACK the master bio once the I/O
528 		 * has safely reached all non-writemostly
529 		 * disks. Setting the Returned bit ensures that this
530 		 * gets done only once -- we don't ever want to return
531 		 * -EIO here, instead we'll wait
532 		 */
533 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535 			/* Maybe we can return now */
536 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537 				struct bio *mbio = r1_bio->master_bio;
538 				pr_debug("raid1: behind end write sectors"
539 					 " %llu-%llu\n",
540 					 (unsigned long long) mbio->bi_iter.bi_sector,
541 					 (unsigned long long) bio_end_sector(mbio) - 1);
542 				call_bio_endio(r1_bio);
543 			}
544 		}
545 	} else if (rdev->mddev->serialize_policy)
546 		remove_serial(rdev, lo, hi);
547 	if (r1_bio->bios[mirror] == NULL)
548 		rdev_dec_pending(rdev, conf->mddev);
549 
550 	/*
551 	 * Let's see if all mirrored write operations have finished
552 	 * already.
553 	 */
554 	r1_bio_write_done(r1_bio);
555 
556 	if (to_put)
557 		bio_put(to_put);
558 }
559 
560 static sector_t align_to_barrier_unit_end(sector_t start_sector,
561 					  sector_t sectors)
562 {
563 	sector_t len;
564 
565 	WARN_ON(sectors == 0);
566 	/*
567 	 * len is the number of sectors from start_sector to end of the
568 	 * barrier unit which start_sector belongs to.
569 	 */
570 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
571 	      start_sector;
572 
573 	if (len > sectors)
574 		len = sectors;
575 
576 	return len;
577 }
578 
579 static void update_read_sectors(struct r1conf *conf, int disk,
580 				sector_t this_sector, int len)
581 {
582 	struct raid1_info *info = &conf->mirrors[disk];
583 
584 	atomic_inc(&info->rdev->nr_pending);
585 	if (info->next_seq_sect != this_sector)
586 		info->seq_start = this_sector;
587 	info->next_seq_sect = this_sector + len;
588 }
589 
590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
591 			     int *max_sectors)
592 {
593 	sector_t this_sector = r1_bio->sector;
594 	int len = r1_bio->sectors;
595 	int disk;
596 
597 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 		struct md_rdev *rdev;
599 		int read_len;
600 
601 		if (r1_bio->bios[disk] == IO_BLOCKED)
602 			continue;
603 
604 		rdev = conf->mirrors[disk].rdev;
605 		if (!rdev || test_bit(Faulty, &rdev->flags))
606 			continue;
607 
608 		/* choose the first disk even if it has some bad blocks. */
609 		read_len = raid1_check_read_range(rdev, this_sector, &len);
610 		if (read_len > 0) {
611 			update_read_sectors(conf, disk, this_sector, read_len);
612 			*max_sectors = read_len;
613 			return disk;
614 		}
615 	}
616 
617 	return -1;
618 }
619 
620 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
621 {
622 	return !test_bit(In_sync, &rdev->flags) &&
623 	       rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
624 }
625 
626 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
627 			  int *max_sectors)
628 {
629 	sector_t this_sector = r1_bio->sector;
630 	int best_disk = -1;
631 	int best_len = 0;
632 	int disk;
633 
634 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
635 		struct md_rdev *rdev;
636 		int len;
637 		int read_len;
638 
639 		if (r1_bio->bios[disk] == IO_BLOCKED)
640 			continue;
641 
642 		rdev = conf->mirrors[disk].rdev;
643 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
644 		    rdev_in_recovery(rdev, r1_bio) ||
645 		    test_bit(WriteMostly, &rdev->flags))
646 			continue;
647 
648 		/* keep track of the disk with the most readable sectors. */
649 		len = r1_bio->sectors;
650 		read_len = raid1_check_read_range(rdev, this_sector, &len);
651 		if (read_len > best_len) {
652 			best_disk = disk;
653 			best_len = read_len;
654 		}
655 	}
656 
657 	if (best_disk != -1) {
658 		*max_sectors = best_len;
659 		update_read_sectors(conf, best_disk, this_sector, best_len);
660 	}
661 
662 	return best_disk;
663 }
664 
665 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
666 			    int *max_sectors)
667 {
668 	sector_t this_sector = r1_bio->sector;
669 	int bb_disk = -1;
670 	int bb_read_len = 0;
671 	int disk;
672 
673 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
674 		struct md_rdev *rdev;
675 		int len;
676 		int read_len;
677 
678 		if (r1_bio->bios[disk] == IO_BLOCKED)
679 			continue;
680 
681 		rdev = conf->mirrors[disk].rdev;
682 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
683 		    !test_bit(WriteMostly, &rdev->flags) ||
684 		    rdev_in_recovery(rdev, r1_bio))
685 			continue;
686 
687 		/* there are no bad blocks, we can use this disk */
688 		len = r1_bio->sectors;
689 		read_len = raid1_check_read_range(rdev, this_sector, &len);
690 		if (read_len == r1_bio->sectors) {
691 			*max_sectors = read_len;
692 			update_read_sectors(conf, disk, this_sector, read_len);
693 			return disk;
694 		}
695 
696 		/*
697 		 * there are partial bad blocks, choose the rdev with largest
698 		 * read length.
699 		 */
700 		if (read_len > bb_read_len) {
701 			bb_disk = disk;
702 			bb_read_len = read_len;
703 		}
704 	}
705 
706 	if (bb_disk != -1) {
707 		*max_sectors = bb_read_len;
708 		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
709 	}
710 
711 	return bb_disk;
712 }
713 
714 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
715 {
716 	/* TODO: address issues with this check and concurrency. */
717 	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
718 	       conf->mirrors[disk].head_position == r1_bio->sector;
719 }
720 
721 /*
722  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
723  * disk. If yes, choose the idle disk.
724  */
725 static bool should_choose_next(struct r1conf *conf, int disk)
726 {
727 	struct raid1_info *mirror = &conf->mirrors[disk];
728 	int opt_iosize;
729 
730 	if (!test_bit(Nonrot, &mirror->rdev->flags))
731 		return false;
732 
733 	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
734 	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
735 	       mirror->next_seq_sect > opt_iosize &&
736 	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
737 }
738 
739 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
740 {
741 	if (!rdev || test_bit(Faulty, &rdev->flags))
742 		return false;
743 
744 	if (rdev_in_recovery(rdev, r1_bio))
745 		return false;
746 
747 	/* don't read from slow disk unless have to */
748 	if (test_bit(WriteMostly, &rdev->flags))
749 		return false;
750 
751 	/* don't split IO for bad blocks unless have to */
752 	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
753 		return false;
754 
755 	return true;
756 }
757 
758 struct read_balance_ctl {
759 	sector_t closest_dist;
760 	int closest_dist_disk;
761 	int min_pending;
762 	int min_pending_disk;
763 	int sequential_disk;
764 	int readable_disks;
765 };
766 
767 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
768 {
769 	int disk;
770 	struct read_balance_ctl ctl = {
771 		.closest_dist_disk      = -1,
772 		.closest_dist           = MaxSector,
773 		.min_pending_disk       = -1,
774 		.min_pending            = UINT_MAX,
775 		.sequential_disk	= -1,
776 	};
777 
778 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
779 		struct md_rdev *rdev;
780 		sector_t dist;
781 		unsigned int pending;
782 
783 		if (r1_bio->bios[disk] == IO_BLOCKED)
784 			continue;
785 
786 		rdev = conf->mirrors[disk].rdev;
787 		if (!rdev_readable(rdev, r1_bio))
788 			continue;
789 
790 		/* At least two disks to choose from so failfast is OK */
791 		if (ctl.readable_disks++ == 1)
792 			set_bit(R1BIO_FailFast, &r1_bio->state);
793 
794 		pending = atomic_read(&rdev->nr_pending);
795 		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
796 
797 		/* Don't change to another disk for sequential reads */
798 		if (is_sequential(conf, disk, r1_bio)) {
799 			if (!should_choose_next(conf, disk))
800 				return disk;
801 
802 			/*
803 			 * Add 'pending' to avoid choosing this disk if
804 			 * there is other idle disk.
805 			 */
806 			pending++;
807 			/*
808 			 * If there is no other idle disk, this disk
809 			 * will be chosen.
810 			 */
811 			ctl.sequential_disk = disk;
812 		}
813 
814 		if (ctl.min_pending > pending) {
815 			ctl.min_pending = pending;
816 			ctl.min_pending_disk = disk;
817 		}
818 
819 		if (ctl.closest_dist > dist) {
820 			ctl.closest_dist = dist;
821 			ctl.closest_dist_disk = disk;
822 		}
823 	}
824 
825 	/*
826 	 * sequential IO size exceeds optimal iosize, however, there is no other
827 	 * idle disk, so choose the sequential disk.
828 	 */
829 	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
830 		return ctl.sequential_disk;
831 
832 	/*
833 	 * If all disks are rotational, choose the closest disk. If any disk is
834 	 * non-rotational, choose the disk with less pending request even the
835 	 * disk is rotational, which might/might not be optimal for raids with
836 	 * mixed ratation/non-rotational disks depending on workload.
837 	 */
838 	if (ctl.min_pending_disk != -1 &&
839 	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
840 		return ctl.min_pending_disk;
841 	else
842 		return ctl.closest_dist_disk;
843 }
844 
845 /*
846  * This routine returns the disk from which the requested read should be done.
847  *
848  * 1) If resync is in progress, find the first usable disk and use it even if it
849  * has some bad blocks.
850  *
851  * 2) Now that there is no resync, loop through all disks and skipping slow
852  * disks and disks with bad blocks for now. Only pay attention to key disk
853  * choice.
854  *
855  * 3) If we've made it this far, now look for disks with bad blocks and choose
856  * the one with most number of sectors.
857  *
858  * 4) If we are all the way at the end, we have no choice but to use a disk even
859  * if it is write mostly.
860  *
861  * The rdev for the device selected will have nr_pending incremented.
862  */
863 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
864 			int *max_sectors)
865 {
866 	int disk;
867 
868 	clear_bit(R1BIO_FailFast, &r1_bio->state);
869 
870 	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
871 				    r1_bio->sectors))
872 		return choose_first_rdev(conf, r1_bio, max_sectors);
873 
874 	disk = choose_best_rdev(conf, r1_bio);
875 	if (disk >= 0) {
876 		*max_sectors = r1_bio->sectors;
877 		update_read_sectors(conf, disk, r1_bio->sector,
878 				    r1_bio->sectors);
879 		return disk;
880 	}
881 
882 	/*
883 	 * If we are here it means we didn't find a perfectly good disk so
884 	 * now spend a bit more time trying to find one with the most good
885 	 * sectors.
886 	 */
887 	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
888 	if (disk >= 0)
889 		return disk;
890 
891 	return choose_slow_rdev(conf, r1_bio, max_sectors);
892 }
893 
894 static void wake_up_barrier(struct r1conf *conf)
895 {
896 	if (wq_has_sleeper(&conf->wait_barrier))
897 		wake_up(&conf->wait_barrier);
898 }
899 
900 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
901 {
902 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
903 	raid1_prepare_flush_writes(conf->mddev->bitmap);
904 	wake_up_barrier(conf);
905 
906 	while (bio) { /* submit pending writes */
907 		struct bio *next = bio->bi_next;
908 
909 		raid1_submit_write(bio);
910 		bio = next;
911 		cond_resched();
912 	}
913 }
914 
915 static void flush_pending_writes(struct r1conf *conf)
916 {
917 	/* Any writes that have been queued but are awaiting
918 	 * bitmap updates get flushed here.
919 	 */
920 	spin_lock_irq(&conf->device_lock);
921 
922 	if (conf->pending_bio_list.head) {
923 		struct blk_plug plug;
924 		struct bio *bio;
925 
926 		bio = bio_list_get(&conf->pending_bio_list);
927 		spin_unlock_irq(&conf->device_lock);
928 
929 		/*
930 		 * As this is called in a wait_event() loop (see freeze_array),
931 		 * current->state might be TASK_UNINTERRUPTIBLE which will
932 		 * cause a warning when we prepare to wait again.  As it is
933 		 * rare that this path is taken, it is perfectly safe to force
934 		 * us to go around the wait_event() loop again, so the warning
935 		 * is a false-positive.  Silence the warning by resetting
936 		 * thread state
937 		 */
938 		__set_current_state(TASK_RUNNING);
939 		blk_start_plug(&plug);
940 		flush_bio_list(conf, bio);
941 		blk_finish_plug(&plug);
942 	} else
943 		spin_unlock_irq(&conf->device_lock);
944 }
945 
946 /* Barriers....
947  * Sometimes we need to suspend IO while we do something else,
948  * either some resync/recovery, or reconfigure the array.
949  * To do this we raise a 'barrier'.
950  * The 'barrier' is a counter that can be raised multiple times
951  * to count how many activities are happening which preclude
952  * normal IO.
953  * We can only raise the barrier if there is no pending IO.
954  * i.e. if nr_pending == 0.
955  * We choose only to raise the barrier if no-one is waiting for the
956  * barrier to go down.  This means that as soon as an IO request
957  * is ready, no other operations which require a barrier will start
958  * until the IO request has had a chance.
959  *
960  * So: regular IO calls 'wait_barrier'.  When that returns there
961  *    is no backgroup IO happening,  It must arrange to call
962  *    allow_barrier when it has finished its IO.
963  * backgroup IO calls must call raise_barrier.  Once that returns
964  *    there is no normal IO happeing.  It must arrange to call
965  *    lower_barrier when the particular background IO completes.
966  *
967  * If resync/recovery is interrupted, returns -EINTR;
968  * Otherwise, returns 0.
969  */
970 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
971 {
972 	int idx = sector_to_idx(sector_nr);
973 
974 	spin_lock_irq(&conf->resync_lock);
975 
976 	/* Wait until no block IO is waiting */
977 	wait_event_lock_irq(conf->wait_barrier,
978 			    !atomic_read(&conf->nr_waiting[idx]),
979 			    conf->resync_lock);
980 
981 	/* block any new IO from starting */
982 	atomic_inc(&conf->barrier[idx]);
983 	/*
984 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
985 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
986 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
987 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
988 	 * be fetched before conf->barrier[idx] is increased. Otherwise
989 	 * there will be a race between raise_barrier() and _wait_barrier().
990 	 */
991 	smp_mb__after_atomic();
992 
993 	/* For these conditions we must wait:
994 	 * A: while the array is in frozen state
995 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
996 	 *    existing in corresponding I/O barrier bucket.
997 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
998 	 *    max resync count which allowed on current I/O barrier bucket.
999 	 */
1000 	wait_event_lock_irq(conf->wait_barrier,
1001 			    (!conf->array_frozen &&
1002 			     !atomic_read(&conf->nr_pending[idx]) &&
1003 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1004 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1005 			    conf->resync_lock);
1006 
1007 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1008 		atomic_dec(&conf->barrier[idx]);
1009 		spin_unlock_irq(&conf->resync_lock);
1010 		wake_up(&conf->wait_barrier);
1011 		return -EINTR;
1012 	}
1013 
1014 	atomic_inc(&conf->nr_sync_pending);
1015 	spin_unlock_irq(&conf->resync_lock);
1016 
1017 	return 0;
1018 }
1019 
1020 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1021 {
1022 	int idx = sector_to_idx(sector_nr);
1023 
1024 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1025 
1026 	atomic_dec(&conf->barrier[idx]);
1027 	atomic_dec(&conf->nr_sync_pending);
1028 	wake_up(&conf->wait_barrier);
1029 }
1030 
1031 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1032 {
1033 	bool ret = true;
1034 
1035 	/*
1036 	 * We need to increase conf->nr_pending[idx] very early here,
1037 	 * then raise_barrier() can be blocked when it waits for
1038 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1039 	 * conf->resync_lock when there is no barrier raised in same
1040 	 * barrier unit bucket. Also if the array is frozen, I/O
1041 	 * should be blocked until array is unfrozen.
1042 	 */
1043 	atomic_inc(&conf->nr_pending[idx]);
1044 	/*
1045 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1046 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1047 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1048 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
1049 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1050 	 * will be a race between _wait_barrier() and raise_barrier().
1051 	 */
1052 	smp_mb__after_atomic();
1053 
1054 	/*
1055 	 * Don't worry about checking two atomic_t variables at same time
1056 	 * here. If during we check conf->barrier[idx], the array is
1057 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1058 	 * 0, it is safe to return and make the I/O continue. Because the
1059 	 * array is frozen, all I/O returned here will eventually complete
1060 	 * or be queued, no race will happen. See code comment in
1061 	 * frozen_array().
1062 	 */
1063 	if (!READ_ONCE(conf->array_frozen) &&
1064 	    !atomic_read(&conf->barrier[idx]))
1065 		return ret;
1066 
1067 	/*
1068 	 * After holding conf->resync_lock, conf->nr_pending[idx]
1069 	 * should be decreased before waiting for barrier to drop.
1070 	 * Otherwise, we may encounter a race condition because
1071 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
1072 	 * to be 0 at same time.
1073 	 */
1074 	spin_lock_irq(&conf->resync_lock);
1075 	atomic_inc(&conf->nr_waiting[idx]);
1076 	atomic_dec(&conf->nr_pending[idx]);
1077 	/*
1078 	 * In case freeze_array() is waiting for
1079 	 * get_unqueued_pending() == extra
1080 	 */
1081 	wake_up_barrier(conf);
1082 	/* Wait for the barrier in same barrier unit bucket to drop. */
1083 
1084 	/* Return false when nowait flag is set */
1085 	if (nowait) {
1086 		ret = false;
1087 	} else {
1088 		wait_event_lock_irq(conf->wait_barrier,
1089 				!conf->array_frozen &&
1090 				!atomic_read(&conf->barrier[idx]),
1091 				conf->resync_lock);
1092 		atomic_inc(&conf->nr_pending[idx]);
1093 	}
1094 
1095 	atomic_dec(&conf->nr_waiting[idx]);
1096 	spin_unlock_irq(&conf->resync_lock);
1097 	return ret;
1098 }
1099 
1100 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1101 {
1102 	int idx = sector_to_idx(sector_nr);
1103 	bool ret = true;
1104 
1105 	/*
1106 	 * Very similar to _wait_barrier(). The difference is, for read
1107 	 * I/O we don't need wait for sync I/O, but if the whole array
1108 	 * is frozen, the read I/O still has to wait until the array is
1109 	 * unfrozen. Since there is no ordering requirement with
1110 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1111 	 */
1112 	atomic_inc(&conf->nr_pending[idx]);
1113 
1114 	if (!READ_ONCE(conf->array_frozen))
1115 		return ret;
1116 
1117 	spin_lock_irq(&conf->resync_lock);
1118 	atomic_inc(&conf->nr_waiting[idx]);
1119 	atomic_dec(&conf->nr_pending[idx]);
1120 	/*
1121 	 * In case freeze_array() is waiting for
1122 	 * get_unqueued_pending() == extra
1123 	 */
1124 	wake_up_barrier(conf);
1125 	/* Wait for array to be unfrozen */
1126 
1127 	/* Return false when nowait flag is set */
1128 	if (nowait) {
1129 		/* Return false when nowait flag is set */
1130 		ret = false;
1131 	} else {
1132 		wait_event_lock_irq(conf->wait_barrier,
1133 				!conf->array_frozen,
1134 				conf->resync_lock);
1135 		atomic_inc(&conf->nr_pending[idx]);
1136 	}
1137 
1138 	atomic_dec(&conf->nr_waiting[idx]);
1139 	spin_unlock_irq(&conf->resync_lock);
1140 	return ret;
1141 }
1142 
1143 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1144 {
1145 	int idx = sector_to_idx(sector_nr);
1146 
1147 	return _wait_barrier(conf, idx, nowait);
1148 }
1149 
1150 static void _allow_barrier(struct r1conf *conf, int idx)
1151 {
1152 	atomic_dec(&conf->nr_pending[idx]);
1153 	wake_up_barrier(conf);
1154 }
1155 
1156 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1157 {
1158 	int idx = sector_to_idx(sector_nr);
1159 
1160 	_allow_barrier(conf, idx);
1161 }
1162 
1163 /* conf->resync_lock should be held */
1164 static int get_unqueued_pending(struct r1conf *conf)
1165 {
1166 	int idx, ret;
1167 
1168 	ret = atomic_read(&conf->nr_sync_pending);
1169 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1170 		ret += atomic_read(&conf->nr_pending[idx]) -
1171 			atomic_read(&conf->nr_queued[idx]);
1172 
1173 	return ret;
1174 }
1175 
1176 static void freeze_array(struct r1conf *conf, int extra)
1177 {
1178 	/* Stop sync I/O and normal I/O and wait for everything to
1179 	 * go quiet.
1180 	 * This is called in two situations:
1181 	 * 1) management command handlers (reshape, remove disk, quiesce).
1182 	 * 2) one normal I/O request failed.
1183 
1184 	 * After array_frozen is set to 1, new sync IO will be blocked at
1185 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1186 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1187 	 * queued. When everything goes quite, there are only queued I/Os left.
1188 
1189 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1190 	 * barrier bucket index which this I/O request hits. When all sync and
1191 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1192 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1193 	 * in handle_read_error(), we may call freeze_array() before trying to
1194 	 * fix the read error. In this case, the error read I/O is not queued,
1195 	 * so get_unqueued_pending() == 1.
1196 	 *
1197 	 * Therefore before this function returns, we need to wait until
1198 	 * get_unqueued_pendings(conf) gets equal to extra. For
1199 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1200 	 */
1201 	spin_lock_irq(&conf->resync_lock);
1202 	conf->array_frozen = 1;
1203 	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1204 	wait_event_lock_irq_cmd(
1205 		conf->wait_barrier,
1206 		get_unqueued_pending(conf) == extra,
1207 		conf->resync_lock,
1208 		flush_pending_writes(conf));
1209 	spin_unlock_irq(&conf->resync_lock);
1210 }
1211 static void unfreeze_array(struct r1conf *conf)
1212 {
1213 	/* reverse the effect of the freeze */
1214 	spin_lock_irq(&conf->resync_lock);
1215 	conf->array_frozen = 0;
1216 	spin_unlock_irq(&conf->resync_lock);
1217 	wake_up(&conf->wait_barrier);
1218 }
1219 
1220 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1221 					   struct bio *bio)
1222 {
1223 	int size = bio->bi_iter.bi_size;
1224 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1225 	int i = 0;
1226 	struct bio *behind_bio = NULL;
1227 
1228 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1229 				      &r1_bio->mddev->bio_set);
1230 
1231 	/* discard op, we don't support writezero/writesame yet */
1232 	if (!bio_has_data(bio)) {
1233 		behind_bio->bi_iter.bi_size = size;
1234 		goto skip_copy;
1235 	}
1236 
1237 	while (i < vcnt && size) {
1238 		struct page *page;
1239 		int len = min_t(int, PAGE_SIZE, size);
1240 
1241 		page = alloc_page(GFP_NOIO);
1242 		if (unlikely(!page))
1243 			goto free_pages;
1244 
1245 		if (!bio_add_page(behind_bio, page, len, 0)) {
1246 			put_page(page);
1247 			goto free_pages;
1248 		}
1249 
1250 		size -= len;
1251 		i++;
1252 	}
1253 
1254 	bio_copy_data(behind_bio, bio);
1255 skip_copy:
1256 	r1_bio->behind_master_bio = behind_bio;
1257 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1258 
1259 	return;
1260 
1261 free_pages:
1262 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1263 		 bio->bi_iter.bi_size);
1264 	bio_free_pages(behind_bio);
1265 	bio_put(behind_bio);
1266 }
1267 
1268 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1269 {
1270 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1271 						  cb);
1272 	struct mddev *mddev = plug->cb.data;
1273 	struct r1conf *conf = mddev->private;
1274 	struct bio *bio;
1275 
1276 	if (from_schedule) {
1277 		spin_lock_irq(&conf->device_lock);
1278 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1279 		spin_unlock_irq(&conf->device_lock);
1280 		wake_up_barrier(conf);
1281 		md_wakeup_thread(mddev->thread);
1282 		kfree(plug);
1283 		return;
1284 	}
1285 
1286 	/* we aren't scheduling, so we can do the write-out directly. */
1287 	bio = bio_list_get(&plug->pending);
1288 	flush_bio_list(conf, bio);
1289 	kfree(plug);
1290 }
1291 
1292 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1293 {
1294 	r1_bio->master_bio = bio;
1295 	r1_bio->sectors = bio_sectors(bio);
1296 	r1_bio->state = 0;
1297 	r1_bio->mddev = mddev;
1298 	r1_bio->sector = bio->bi_iter.bi_sector;
1299 }
1300 
1301 static inline struct r1bio *
1302 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1303 {
1304 	struct r1conf *conf = mddev->private;
1305 	struct r1bio *r1_bio;
1306 
1307 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1308 	/* Ensure no bio records IO_BLOCKED */
1309 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1310 	init_r1bio(r1_bio, mddev, bio);
1311 	return r1_bio;
1312 }
1313 
1314 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1315 			       int max_read_sectors, struct r1bio *r1_bio)
1316 {
1317 	struct r1conf *conf = mddev->private;
1318 	struct raid1_info *mirror;
1319 	struct bio *read_bio;
1320 	struct bitmap *bitmap = mddev->bitmap;
1321 	const enum req_op op = bio_op(bio);
1322 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1323 	int max_sectors;
1324 	int rdisk;
1325 	bool r1bio_existed = !!r1_bio;
1326 	char b[BDEVNAME_SIZE];
1327 
1328 	/*
1329 	 * If r1_bio is set, we are blocking the raid1d thread
1330 	 * so there is a tiny risk of deadlock.  So ask for
1331 	 * emergency memory if needed.
1332 	 */
1333 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1334 
1335 	if (r1bio_existed) {
1336 		/* Need to get the block device name carefully */
1337 		struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1338 
1339 		if (rdev)
1340 			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1341 		else
1342 			strcpy(b, "???");
1343 	}
1344 
1345 	/*
1346 	 * Still need barrier for READ in case that whole
1347 	 * array is frozen.
1348 	 */
1349 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1350 				bio->bi_opf & REQ_NOWAIT)) {
1351 		bio_wouldblock_error(bio);
1352 		return;
1353 	}
1354 
1355 	if (!r1_bio)
1356 		r1_bio = alloc_r1bio(mddev, bio);
1357 	else
1358 		init_r1bio(r1_bio, mddev, bio);
1359 	r1_bio->sectors = max_read_sectors;
1360 
1361 	/*
1362 	 * make_request() can abort the operation when read-ahead is being
1363 	 * used and no empty request is available.
1364 	 */
1365 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1366 
1367 	if (rdisk < 0) {
1368 		/* couldn't find anywhere to read from */
1369 		if (r1bio_existed) {
1370 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1371 					    mdname(mddev),
1372 					    b,
1373 					    (unsigned long long)r1_bio->sector);
1374 		}
1375 		raid_end_bio_io(r1_bio);
1376 		return;
1377 	}
1378 	mirror = conf->mirrors + rdisk;
1379 
1380 	if (r1bio_existed)
1381 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1382 				    mdname(mddev),
1383 				    (unsigned long long)r1_bio->sector,
1384 				    mirror->rdev->bdev);
1385 
1386 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1387 	    bitmap) {
1388 		/*
1389 		 * Reading from a write-mostly device must take care not to
1390 		 * over-take any writes that are 'behind'
1391 		 */
1392 		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1393 		wait_event(bitmap->behind_wait,
1394 			   atomic_read(&bitmap->behind_writes) == 0);
1395 	}
1396 
1397 	if (max_sectors < bio_sectors(bio)) {
1398 		struct bio *split = bio_split(bio, max_sectors,
1399 					      gfp, &conf->bio_split);
1400 		bio_chain(split, bio);
1401 		submit_bio_noacct(bio);
1402 		bio = split;
1403 		r1_bio->master_bio = bio;
1404 		r1_bio->sectors = max_sectors;
1405 	}
1406 
1407 	r1_bio->read_disk = rdisk;
1408 	if (!r1bio_existed) {
1409 		md_account_bio(mddev, &bio);
1410 		r1_bio->master_bio = bio;
1411 	}
1412 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1413 				   &mddev->bio_set);
1414 
1415 	r1_bio->bios[rdisk] = read_bio;
1416 
1417 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1418 		mirror->rdev->data_offset;
1419 	read_bio->bi_end_io = raid1_end_read_request;
1420 	read_bio->bi_opf = op | do_sync;
1421 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1422 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1423 	        read_bio->bi_opf |= MD_FAILFAST;
1424 	read_bio->bi_private = r1_bio;
1425 	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1426 	submit_bio_noacct(read_bio);
1427 }
1428 
1429 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1430 				int max_write_sectors)
1431 {
1432 	struct r1conf *conf = mddev->private;
1433 	struct r1bio *r1_bio;
1434 	int i, disks;
1435 	struct bitmap *bitmap = mddev->bitmap;
1436 	unsigned long flags;
1437 	struct md_rdev *blocked_rdev;
1438 	int first_clone;
1439 	int max_sectors;
1440 	bool write_behind = false;
1441 	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1442 
1443 	if (mddev_is_clustered(mddev) &&
1444 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1445 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1446 
1447 		DEFINE_WAIT(w);
1448 		if (bio->bi_opf & REQ_NOWAIT) {
1449 			bio_wouldblock_error(bio);
1450 			return;
1451 		}
1452 		for (;;) {
1453 			prepare_to_wait(&conf->wait_barrier,
1454 					&w, TASK_IDLE);
1455 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1456 							bio->bi_iter.bi_sector,
1457 							bio_end_sector(bio)))
1458 				break;
1459 			schedule();
1460 		}
1461 		finish_wait(&conf->wait_barrier, &w);
1462 	}
1463 
1464 	/*
1465 	 * Register the new request and wait if the reconstruction
1466 	 * thread has put up a bar for new requests.
1467 	 * Continue immediately if no resync is active currently.
1468 	 */
1469 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1470 				bio->bi_opf & REQ_NOWAIT)) {
1471 		bio_wouldblock_error(bio);
1472 		return;
1473 	}
1474 
1475  retry_write:
1476 	r1_bio = alloc_r1bio(mddev, bio);
1477 	r1_bio->sectors = max_write_sectors;
1478 
1479 	/* first select target devices under rcu_lock and
1480 	 * inc refcount on their rdev.  Record them by setting
1481 	 * bios[x] to bio
1482 	 * If there are known/acknowledged bad blocks on any device on
1483 	 * which we have seen a write error, we want to avoid writing those
1484 	 * blocks.
1485 	 * This potentially requires several writes to write around
1486 	 * the bad blocks.  Each set of writes gets it's own r1bio
1487 	 * with a set of bios attached.
1488 	 */
1489 
1490 	disks = conf->raid_disks * 2;
1491 	blocked_rdev = NULL;
1492 	max_sectors = r1_bio->sectors;
1493 	for (i = 0;  i < disks; i++) {
1494 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1495 
1496 		/*
1497 		 * The write-behind io is only attempted on drives marked as
1498 		 * write-mostly, which means we could allocate write behind
1499 		 * bio later.
1500 		 */
1501 		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1502 			write_behind = true;
1503 
1504 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1505 			atomic_inc(&rdev->nr_pending);
1506 			blocked_rdev = rdev;
1507 			break;
1508 		}
1509 		r1_bio->bios[i] = NULL;
1510 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1511 			if (i < conf->raid_disks)
1512 				set_bit(R1BIO_Degraded, &r1_bio->state);
1513 			continue;
1514 		}
1515 
1516 		atomic_inc(&rdev->nr_pending);
1517 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1518 			sector_t first_bad;
1519 			int bad_sectors;
1520 			int is_bad;
1521 
1522 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1523 					     &first_bad, &bad_sectors);
1524 			if (is_bad < 0) {
1525 				/* mustn't write here until the bad block is
1526 				 * acknowledged*/
1527 				set_bit(BlockedBadBlocks, &rdev->flags);
1528 				blocked_rdev = rdev;
1529 				break;
1530 			}
1531 			if (is_bad && first_bad <= r1_bio->sector) {
1532 				/* Cannot write here at all */
1533 				bad_sectors -= (r1_bio->sector - first_bad);
1534 				if (bad_sectors < max_sectors)
1535 					/* mustn't write more than bad_sectors
1536 					 * to other devices yet
1537 					 */
1538 					max_sectors = bad_sectors;
1539 				rdev_dec_pending(rdev, mddev);
1540 				/* We don't set R1BIO_Degraded as that
1541 				 * only applies if the disk is
1542 				 * missing, so it might be re-added,
1543 				 * and we want to know to recover this
1544 				 * chunk.
1545 				 * In this case the device is here,
1546 				 * and the fact that this chunk is not
1547 				 * in-sync is recorded in the bad
1548 				 * block log
1549 				 */
1550 				continue;
1551 			}
1552 			if (is_bad) {
1553 				int good_sectors = first_bad - r1_bio->sector;
1554 				if (good_sectors < max_sectors)
1555 					max_sectors = good_sectors;
1556 			}
1557 		}
1558 		r1_bio->bios[i] = bio;
1559 	}
1560 
1561 	if (unlikely(blocked_rdev)) {
1562 		/* Wait for this device to become unblocked */
1563 		int j;
1564 
1565 		for (j = 0; j < i; j++)
1566 			if (r1_bio->bios[j])
1567 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1568 		mempool_free(r1_bio, &conf->r1bio_pool);
1569 		allow_barrier(conf, bio->bi_iter.bi_sector);
1570 
1571 		if (bio->bi_opf & REQ_NOWAIT) {
1572 			bio_wouldblock_error(bio);
1573 			return;
1574 		}
1575 		mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1576 				blocked_rdev->raid_disk);
1577 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1578 		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1579 		goto retry_write;
1580 	}
1581 
1582 	/*
1583 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1584 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1585 	 * at a time and thus needs a new bio that can fit the whole payload
1586 	 * this bio in page sized chunks.
1587 	 */
1588 	if (write_behind && bitmap)
1589 		max_sectors = min_t(int, max_sectors,
1590 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1591 	if (max_sectors < bio_sectors(bio)) {
1592 		struct bio *split = bio_split(bio, max_sectors,
1593 					      GFP_NOIO, &conf->bio_split);
1594 		bio_chain(split, bio);
1595 		submit_bio_noacct(bio);
1596 		bio = split;
1597 		r1_bio->master_bio = bio;
1598 		r1_bio->sectors = max_sectors;
1599 	}
1600 
1601 	md_account_bio(mddev, &bio);
1602 	r1_bio->master_bio = bio;
1603 	atomic_set(&r1_bio->remaining, 1);
1604 	atomic_set(&r1_bio->behind_remaining, 0);
1605 
1606 	first_clone = 1;
1607 
1608 	for (i = 0; i < disks; i++) {
1609 		struct bio *mbio = NULL;
1610 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1611 		if (!r1_bio->bios[i])
1612 			continue;
1613 
1614 		if (first_clone) {
1615 			/* do behind I/O ?
1616 			 * Not if there are too many, or cannot
1617 			 * allocate memory, or a reader on WriteMostly
1618 			 * is waiting for behind writes to flush */
1619 			if (bitmap && write_behind &&
1620 			    (atomic_read(&bitmap->behind_writes)
1621 			     < mddev->bitmap_info.max_write_behind) &&
1622 			    !waitqueue_active(&bitmap->behind_wait)) {
1623 				alloc_behind_master_bio(r1_bio, bio);
1624 			}
1625 
1626 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1627 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1628 			first_clone = 0;
1629 		}
1630 
1631 		if (r1_bio->behind_master_bio) {
1632 			mbio = bio_alloc_clone(rdev->bdev,
1633 					       r1_bio->behind_master_bio,
1634 					       GFP_NOIO, &mddev->bio_set);
1635 			if (test_bit(CollisionCheck, &rdev->flags))
1636 				wait_for_serialization(rdev, r1_bio);
1637 			if (test_bit(WriteMostly, &rdev->flags))
1638 				atomic_inc(&r1_bio->behind_remaining);
1639 		} else {
1640 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1641 					       &mddev->bio_set);
1642 
1643 			if (mddev->serialize_policy)
1644 				wait_for_serialization(rdev, r1_bio);
1645 		}
1646 
1647 		r1_bio->bios[i] = mbio;
1648 
1649 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1650 		mbio->bi_end_io	= raid1_end_write_request;
1651 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1652 		if (test_bit(FailFast, &rdev->flags) &&
1653 		    !test_bit(WriteMostly, &rdev->flags) &&
1654 		    conf->raid_disks - mddev->degraded > 1)
1655 			mbio->bi_opf |= MD_FAILFAST;
1656 		mbio->bi_private = r1_bio;
1657 
1658 		atomic_inc(&r1_bio->remaining);
1659 		mddev_trace_remap(mddev, mbio, r1_bio->sector);
1660 		/* flush_pending_writes() needs access to the rdev so...*/
1661 		mbio->bi_bdev = (void *)rdev;
1662 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1663 			spin_lock_irqsave(&conf->device_lock, flags);
1664 			bio_list_add(&conf->pending_bio_list, mbio);
1665 			spin_unlock_irqrestore(&conf->device_lock, flags);
1666 			md_wakeup_thread(mddev->thread);
1667 		}
1668 	}
1669 
1670 	r1_bio_write_done(r1_bio);
1671 
1672 	/* In case raid1d snuck in to freeze_array */
1673 	wake_up_barrier(conf);
1674 }
1675 
1676 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1677 {
1678 	sector_t sectors;
1679 
1680 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1681 	    && md_flush_request(mddev, bio))
1682 		return true;
1683 
1684 	/*
1685 	 * There is a limit to the maximum size, but
1686 	 * the read/write handler might find a lower limit
1687 	 * due to bad blocks.  To avoid multiple splits,
1688 	 * we pass the maximum number of sectors down
1689 	 * and let the lower level perform the split.
1690 	 */
1691 	sectors = align_to_barrier_unit_end(
1692 		bio->bi_iter.bi_sector, bio_sectors(bio));
1693 
1694 	if (bio_data_dir(bio) == READ)
1695 		raid1_read_request(mddev, bio, sectors, NULL);
1696 	else {
1697 		md_write_start(mddev,bio);
1698 		raid1_write_request(mddev, bio, sectors);
1699 	}
1700 	return true;
1701 }
1702 
1703 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1704 {
1705 	struct r1conf *conf = mddev->private;
1706 	int i;
1707 
1708 	lockdep_assert_held(&mddev->lock);
1709 
1710 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1711 		   conf->raid_disks - mddev->degraded);
1712 	for (i = 0; i < conf->raid_disks; i++) {
1713 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1714 
1715 		seq_printf(seq, "%s",
1716 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1717 	}
1718 	seq_printf(seq, "]");
1719 }
1720 
1721 /**
1722  * raid1_error() - RAID1 error handler.
1723  * @mddev: affected md device.
1724  * @rdev: member device to fail.
1725  *
1726  * The routine acknowledges &rdev failure and determines new @mddev state.
1727  * If it failed, then:
1728  *	- &MD_BROKEN flag is set in &mddev->flags.
1729  *	- recovery is disabled.
1730  * Otherwise, it must be degraded:
1731  *	- recovery is interrupted.
1732  *	- &mddev->degraded is bumped.
1733  *
1734  * @rdev is marked as &Faulty excluding case when array is failed and
1735  * &mddev->fail_last_dev is off.
1736  */
1737 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1738 {
1739 	struct r1conf *conf = mddev->private;
1740 	unsigned long flags;
1741 
1742 	spin_lock_irqsave(&conf->device_lock, flags);
1743 
1744 	if (test_bit(In_sync, &rdev->flags) &&
1745 	    (conf->raid_disks - mddev->degraded) == 1) {
1746 		set_bit(MD_BROKEN, &mddev->flags);
1747 
1748 		if (!mddev->fail_last_dev) {
1749 			conf->recovery_disabled = mddev->recovery_disabled;
1750 			spin_unlock_irqrestore(&conf->device_lock, flags);
1751 			return;
1752 		}
1753 	}
1754 	set_bit(Blocked, &rdev->flags);
1755 	if (test_and_clear_bit(In_sync, &rdev->flags))
1756 		mddev->degraded++;
1757 	set_bit(Faulty, &rdev->flags);
1758 	spin_unlock_irqrestore(&conf->device_lock, flags);
1759 	/*
1760 	 * if recovery is running, make sure it aborts.
1761 	 */
1762 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1763 	set_mask_bits(&mddev->sb_flags, 0,
1764 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1765 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1766 		"md/raid1:%s: Operation continuing on %d devices.\n",
1767 		mdname(mddev), rdev->bdev,
1768 		mdname(mddev), conf->raid_disks - mddev->degraded);
1769 }
1770 
1771 static void print_conf(struct r1conf *conf)
1772 {
1773 	int i;
1774 
1775 	pr_debug("RAID1 conf printout:\n");
1776 	if (!conf) {
1777 		pr_debug("(!conf)\n");
1778 		return;
1779 	}
1780 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1781 		 conf->raid_disks);
1782 
1783 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1784 	for (i = 0; i < conf->raid_disks; i++) {
1785 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1786 		if (rdev)
1787 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1788 				 i, !test_bit(In_sync, &rdev->flags),
1789 				 !test_bit(Faulty, &rdev->flags),
1790 				 rdev->bdev);
1791 	}
1792 }
1793 
1794 static void close_sync(struct r1conf *conf)
1795 {
1796 	int idx;
1797 
1798 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1799 		_wait_barrier(conf, idx, false);
1800 		_allow_barrier(conf, idx);
1801 	}
1802 
1803 	mempool_exit(&conf->r1buf_pool);
1804 }
1805 
1806 static int raid1_spare_active(struct mddev *mddev)
1807 {
1808 	int i;
1809 	struct r1conf *conf = mddev->private;
1810 	int count = 0;
1811 	unsigned long flags;
1812 
1813 	/*
1814 	 * Find all failed disks within the RAID1 configuration
1815 	 * and mark them readable.
1816 	 * Called under mddev lock, so rcu protection not needed.
1817 	 * device_lock used to avoid races with raid1_end_read_request
1818 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1819 	 */
1820 	spin_lock_irqsave(&conf->device_lock, flags);
1821 	for (i = 0; i < conf->raid_disks; i++) {
1822 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1823 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1824 		if (repl
1825 		    && !test_bit(Candidate, &repl->flags)
1826 		    && repl->recovery_offset == MaxSector
1827 		    && !test_bit(Faulty, &repl->flags)
1828 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1829 			/* replacement has just become active */
1830 			if (!rdev ||
1831 			    !test_and_clear_bit(In_sync, &rdev->flags))
1832 				count++;
1833 			if (rdev) {
1834 				/* Replaced device not technically
1835 				 * faulty, but we need to be sure
1836 				 * it gets removed and never re-added
1837 				 */
1838 				set_bit(Faulty, &rdev->flags);
1839 				sysfs_notify_dirent_safe(
1840 					rdev->sysfs_state);
1841 			}
1842 		}
1843 		if (rdev
1844 		    && rdev->recovery_offset == MaxSector
1845 		    && !test_bit(Faulty, &rdev->flags)
1846 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1847 			count++;
1848 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1849 		}
1850 	}
1851 	mddev->degraded -= count;
1852 	spin_unlock_irqrestore(&conf->device_lock, flags);
1853 
1854 	print_conf(conf);
1855 	return count;
1856 }
1857 
1858 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1859 			   bool replacement)
1860 {
1861 	struct raid1_info *info = conf->mirrors + disk;
1862 
1863 	if (replacement)
1864 		info += conf->raid_disks;
1865 
1866 	if (info->rdev)
1867 		return false;
1868 
1869 	if (bdev_nonrot(rdev->bdev)) {
1870 		set_bit(Nonrot, &rdev->flags);
1871 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1872 	}
1873 
1874 	rdev->raid_disk = disk;
1875 	info->head_position = 0;
1876 	info->seq_start = MaxSector;
1877 	WRITE_ONCE(info->rdev, rdev);
1878 
1879 	return true;
1880 }
1881 
1882 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1883 {
1884 	struct raid1_info *info = conf->mirrors + disk;
1885 	struct md_rdev *rdev = info->rdev;
1886 
1887 	if (!rdev || test_bit(In_sync, &rdev->flags) ||
1888 	    atomic_read(&rdev->nr_pending))
1889 		return false;
1890 
1891 	/* Only remove non-faulty devices if recovery is not possible. */
1892 	if (!test_bit(Faulty, &rdev->flags) &&
1893 	    rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1894 	    rdev->mddev->degraded < conf->raid_disks)
1895 		return false;
1896 
1897 	if (test_and_clear_bit(Nonrot, &rdev->flags))
1898 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1899 
1900 	WRITE_ONCE(info->rdev, NULL);
1901 	return true;
1902 }
1903 
1904 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1905 {
1906 	struct r1conf *conf = mddev->private;
1907 	int err = -EEXIST;
1908 	int mirror = 0, repl_slot = -1;
1909 	struct raid1_info *p;
1910 	int first = 0;
1911 	int last = conf->raid_disks - 1;
1912 
1913 	if (mddev->recovery_disabled == conf->recovery_disabled)
1914 		return -EBUSY;
1915 
1916 	if (rdev->raid_disk >= 0)
1917 		first = last = rdev->raid_disk;
1918 
1919 	/*
1920 	 * find the disk ... but prefer rdev->saved_raid_disk
1921 	 * if possible.
1922 	 */
1923 	if (rdev->saved_raid_disk >= 0 &&
1924 	    rdev->saved_raid_disk >= first &&
1925 	    rdev->saved_raid_disk < conf->raid_disks &&
1926 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1927 		first = last = rdev->saved_raid_disk;
1928 
1929 	for (mirror = first; mirror <= last; mirror++) {
1930 		p = conf->mirrors + mirror;
1931 		if (!p->rdev) {
1932 			err = mddev_stack_new_rdev(mddev, rdev);
1933 			if (err)
1934 				return err;
1935 
1936 			raid1_add_conf(conf, rdev, mirror, false);
1937 			/* As all devices are equivalent, we don't need a full recovery
1938 			 * if this was recently any drive of the array
1939 			 */
1940 			if (rdev->saved_raid_disk < 0)
1941 				conf->fullsync = 1;
1942 			break;
1943 		}
1944 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1945 		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1946 			repl_slot = mirror;
1947 	}
1948 
1949 	if (err && repl_slot >= 0) {
1950 		/* Add this device as a replacement */
1951 		clear_bit(In_sync, &rdev->flags);
1952 		set_bit(Replacement, &rdev->flags);
1953 		raid1_add_conf(conf, rdev, repl_slot, true);
1954 		err = 0;
1955 		conf->fullsync = 1;
1956 	}
1957 
1958 	print_conf(conf);
1959 	return err;
1960 }
1961 
1962 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1963 {
1964 	struct r1conf *conf = mddev->private;
1965 	int err = 0;
1966 	int number = rdev->raid_disk;
1967 	struct raid1_info *p = conf->mirrors + number;
1968 
1969 	if (unlikely(number >= conf->raid_disks))
1970 		goto abort;
1971 
1972 	if (rdev != p->rdev) {
1973 		number += conf->raid_disks;
1974 		p = conf->mirrors + number;
1975 	}
1976 
1977 	print_conf(conf);
1978 	if (rdev == p->rdev) {
1979 		if (!raid1_remove_conf(conf, number)) {
1980 			err = -EBUSY;
1981 			goto abort;
1982 		}
1983 
1984 		if (number < conf->raid_disks &&
1985 		    conf->mirrors[conf->raid_disks + number].rdev) {
1986 			/* We just removed a device that is being replaced.
1987 			 * Move down the replacement.  We drain all IO before
1988 			 * doing this to avoid confusion.
1989 			 */
1990 			struct md_rdev *repl =
1991 				conf->mirrors[conf->raid_disks + number].rdev;
1992 			freeze_array(conf, 0);
1993 			if (atomic_read(&repl->nr_pending)) {
1994 				/* It means that some queued IO of retry_list
1995 				 * hold repl. Thus, we cannot set replacement
1996 				 * as NULL, avoiding rdev NULL pointer
1997 				 * dereference in sync_request_write and
1998 				 * handle_write_finished.
1999 				 */
2000 				err = -EBUSY;
2001 				unfreeze_array(conf);
2002 				goto abort;
2003 			}
2004 			clear_bit(Replacement, &repl->flags);
2005 			WRITE_ONCE(p->rdev, repl);
2006 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
2007 			unfreeze_array(conf);
2008 		}
2009 
2010 		clear_bit(WantReplacement, &rdev->flags);
2011 		err = md_integrity_register(mddev);
2012 	}
2013 abort:
2014 
2015 	print_conf(conf);
2016 	return err;
2017 }
2018 
2019 static void end_sync_read(struct bio *bio)
2020 {
2021 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2022 
2023 	update_head_pos(r1_bio->read_disk, r1_bio);
2024 
2025 	/*
2026 	 * we have read a block, now it needs to be re-written,
2027 	 * or re-read if the read failed.
2028 	 * We don't do much here, just schedule handling by raid1d
2029 	 */
2030 	if (!bio->bi_status)
2031 		set_bit(R1BIO_Uptodate, &r1_bio->state);
2032 
2033 	if (atomic_dec_and_test(&r1_bio->remaining))
2034 		reschedule_retry(r1_bio);
2035 }
2036 
2037 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2038 {
2039 	sector_t sync_blocks = 0;
2040 	sector_t s = r1_bio->sector;
2041 	long sectors_to_go = r1_bio->sectors;
2042 
2043 	/* make sure these bits don't get cleared. */
2044 	do {
2045 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
2046 		s += sync_blocks;
2047 		sectors_to_go -= sync_blocks;
2048 	} while (sectors_to_go > 0);
2049 }
2050 
2051 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2052 {
2053 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2054 		struct mddev *mddev = r1_bio->mddev;
2055 		int s = r1_bio->sectors;
2056 
2057 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2058 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2059 			reschedule_retry(r1_bio);
2060 		else {
2061 			put_buf(r1_bio);
2062 			md_done_sync(mddev, s, uptodate);
2063 		}
2064 	}
2065 }
2066 
2067 static void end_sync_write(struct bio *bio)
2068 {
2069 	int uptodate = !bio->bi_status;
2070 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2071 	struct mddev *mddev = r1_bio->mddev;
2072 	struct r1conf *conf = mddev->private;
2073 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2074 
2075 	if (!uptodate) {
2076 		abort_sync_write(mddev, r1_bio);
2077 		set_bit(WriteErrorSeen, &rdev->flags);
2078 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2079 			set_bit(MD_RECOVERY_NEEDED, &
2080 				mddev->recovery);
2081 		set_bit(R1BIO_WriteError, &r1_bio->state);
2082 	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2083 		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2084 				      r1_bio->sector, r1_bio->sectors)) {
2085 		set_bit(R1BIO_MadeGood, &r1_bio->state);
2086 	}
2087 
2088 	put_sync_write_buf(r1_bio, uptodate);
2089 }
2090 
2091 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2092 			   int sectors, struct page *page, blk_opf_t rw)
2093 {
2094 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2095 		/* success */
2096 		return 1;
2097 	if (rw == REQ_OP_WRITE) {
2098 		set_bit(WriteErrorSeen, &rdev->flags);
2099 		if (!test_and_set_bit(WantReplacement,
2100 				      &rdev->flags))
2101 			set_bit(MD_RECOVERY_NEEDED, &
2102 				rdev->mddev->recovery);
2103 	}
2104 	/* need to record an error - either for the block or the device */
2105 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2106 		md_error(rdev->mddev, rdev);
2107 	return 0;
2108 }
2109 
2110 static int fix_sync_read_error(struct r1bio *r1_bio)
2111 {
2112 	/* Try some synchronous reads of other devices to get
2113 	 * good data, much like with normal read errors.  Only
2114 	 * read into the pages we already have so we don't
2115 	 * need to re-issue the read request.
2116 	 * We don't need to freeze the array, because being in an
2117 	 * active sync request, there is no normal IO, and
2118 	 * no overlapping syncs.
2119 	 * We don't need to check is_badblock() again as we
2120 	 * made sure that anything with a bad block in range
2121 	 * will have bi_end_io clear.
2122 	 */
2123 	struct mddev *mddev = r1_bio->mddev;
2124 	struct r1conf *conf = mddev->private;
2125 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2126 	struct page **pages = get_resync_pages(bio)->pages;
2127 	sector_t sect = r1_bio->sector;
2128 	int sectors = r1_bio->sectors;
2129 	int idx = 0;
2130 	struct md_rdev *rdev;
2131 
2132 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2133 	if (test_bit(FailFast, &rdev->flags)) {
2134 		/* Don't try recovering from here - just fail it
2135 		 * ... unless it is the last working device of course */
2136 		md_error(mddev, rdev);
2137 		if (test_bit(Faulty, &rdev->flags))
2138 			/* Don't try to read from here, but make sure
2139 			 * put_buf does it's thing
2140 			 */
2141 			bio->bi_end_io = end_sync_write;
2142 	}
2143 
2144 	while(sectors) {
2145 		int s = sectors;
2146 		int d = r1_bio->read_disk;
2147 		int success = 0;
2148 		int start;
2149 
2150 		if (s > (PAGE_SIZE>>9))
2151 			s = PAGE_SIZE >> 9;
2152 		do {
2153 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2154 				/* No rcu protection needed here devices
2155 				 * can only be removed when no resync is
2156 				 * active, and resync is currently active
2157 				 */
2158 				rdev = conf->mirrors[d].rdev;
2159 				if (sync_page_io(rdev, sect, s<<9,
2160 						 pages[idx],
2161 						 REQ_OP_READ, false)) {
2162 					success = 1;
2163 					break;
2164 				}
2165 			}
2166 			d++;
2167 			if (d == conf->raid_disks * 2)
2168 				d = 0;
2169 		} while (!success && d != r1_bio->read_disk);
2170 
2171 		if (!success) {
2172 			int abort = 0;
2173 			/* Cannot read from anywhere, this block is lost.
2174 			 * Record a bad block on each device.  If that doesn't
2175 			 * work just disable and interrupt the recovery.
2176 			 * Don't fail devices as that won't really help.
2177 			 */
2178 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2179 					    mdname(mddev), bio->bi_bdev,
2180 					    (unsigned long long)r1_bio->sector);
2181 			for (d = 0; d < conf->raid_disks * 2; d++) {
2182 				rdev = conf->mirrors[d].rdev;
2183 				if (!rdev || test_bit(Faulty, &rdev->flags))
2184 					continue;
2185 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2186 					abort = 1;
2187 			}
2188 			if (abort) {
2189 				conf->recovery_disabled =
2190 					mddev->recovery_disabled;
2191 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2192 				md_done_sync(mddev, r1_bio->sectors, 0);
2193 				put_buf(r1_bio);
2194 				return 0;
2195 			}
2196 			/* Try next page */
2197 			sectors -= s;
2198 			sect += s;
2199 			idx++;
2200 			continue;
2201 		}
2202 
2203 		start = d;
2204 		/* write it back and re-read */
2205 		while (d != r1_bio->read_disk) {
2206 			if (d == 0)
2207 				d = conf->raid_disks * 2;
2208 			d--;
2209 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2210 				continue;
2211 			rdev = conf->mirrors[d].rdev;
2212 			if (r1_sync_page_io(rdev, sect, s,
2213 					    pages[idx],
2214 					    REQ_OP_WRITE) == 0) {
2215 				r1_bio->bios[d]->bi_end_io = NULL;
2216 				rdev_dec_pending(rdev, mddev);
2217 			}
2218 		}
2219 		d = start;
2220 		while (d != r1_bio->read_disk) {
2221 			if (d == 0)
2222 				d = conf->raid_disks * 2;
2223 			d--;
2224 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2225 				continue;
2226 			rdev = conf->mirrors[d].rdev;
2227 			if (r1_sync_page_io(rdev, sect, s,
2228 					    pages[idx],
2229 					    REQ_OP_READ) != 0)
2230 				atomic_add(s, &rdev->corrected_errors);
2231 		}
2232 		sectors -= s;
2233 		sect += s;
2234 		idx ++;
2235 	}
2236 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2237 	bio->bi_status = 0;
2238 	return 1;
2239 }
2240 
2241 static void process_checks(struct r1bio *r1_bio)
2242 {
2243 	/* We have read all readable devices.  If we haven't
2244 	 * got the block, then there is no hope left.
2245 	 * If we have, then we want to do a comparison
2246 	 * and skip the write if everything is the same.
2247 	 * If any blocks failed to read, then we need to
2248 	 * attempt an over-write
2249 	 */
2250 	struct mddev *mddev = r1_bio->mddev;
2251 	struct r1conf *conf = mddev->private;
2252 	int primary;
2253 	int i;
2254 	int vcnt;
2255 
2256 	/* Fix variable parts of all bios */
2257 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2258 	for (i = 0; i < conf->raid_disks * 2; i++) {
2259 		blk_status_t status;
2260 		struct bio *b = r1_bio->bios[i];
2261 		struct resync_pages *rp = get_resync_pages(b);
2262 		if (b->bi_end_io != end_sync_read)
2263 			continue;
2264 		/* fixup the bio for reuse, but preserve errno */
2265 		status = b->bi_status;
2266 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2267 		b->bi_status = status;
2268 		b->bi_iter.bi_sector = r1_bio->sector +
2269 			conf->mirrors[i].rdev->data_offset;
2270 		b->bi_end_io = end_sync_read;
2271 		rp->raid_bio = r1_bio;
2272 		b->bi_private = rp;
2273 
2274 		/* initialize bvec table again */
2275 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2276 	}
2277 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2278 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2279 		    !r1_bio->bios[primary]->bi_status) {
2280 			r1_bio->bios[primary]->bi_end_io = NULL;
2281 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2282 			break;
2283 		}
2284 	r1_bio->read_disk = primary;
2285 	for (i = 0; i < conf->raid_disks * 2; i++) {
2286 		int j = 0;
2287 		struct bio *pbio = r1_bio->bios[primary];
2288 		struct bio *sbio = r1_bio->bios[i];
2289 		blk_status_t status = sbio->bi_status;
2290 		struct page **ppages = get_resync_pages(pbio)->pages;
2291 		struct page **spages = get_resync_pages(sbio)->pages;
2292 		struct bio_vec *bi;
2293 		int page_len[RESYNC_PAGES] = { 0 };
2294 		struct bvec_iter_all iter_all;
2295 
2296 		if (sbio->bi_end_io != end_sync_read)
2297 			continue;
2298 		/* Now we can 'fixup' the error value */
2299 		sbio->bi_status = 0;
2300 
2301 		bio_for_each_segment_all(bi, sbio, iter_all)
2302 			page_len[j++] = bi->bv_len;
2303 
2304 		if (!status) {
2305 			for (j = vcnt; j-- ; ) {
2306 				if (memcmp(page_address(ppages[j]),
2307 					   page_address(spages[j]),
2308 					   page_len[j]))
2309 					break;
2310 			}
2311 		} else
2312 			j = 0;
2313 		if (j >= 0)
2314 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2315 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2316 			      && !status)) {
2317 			/* No need to write to this device. */
2318 			sbio->bi_end_io = NULL;
2319 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2320 			continue;
2321 		}
2322 
2323 		bio_copy_data(sbio, pbio);
2324 	}
2325 }
2326 
2327 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2328 {
2329 	struct r1conf *conf = mddev->private;
2330 	int i;
2331 	int disks = conf->raid_disks * 2;
2332 	struct bio *wbio;
2333 
2334 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2335 		/* ouch - failed to read all of that. */
2336 		if (!fix_sync_read_error(r1_bio))
2337 			return;
2338 
2339 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2340 		process_checks(r1_bio);
2341 
2342 	/*
2343 	 * schedule writes
2344 	 */
2345 	atomic_set(&r1_bio->remaining, 1);
2346 	for (i = 0; i < disks ; i++) {
2347 		wbio = r1_bio->bios[i];
2348 		if (wbio->bi_end_io == NULL ||
2349 		    (wbio->bi_end_io == end_sync_read &&
2350 		     (i == r1_bio->read_disk ||
2351 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2352 			continue;
2353 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2354 			abort_sync_write(mddev, r1_bio);
2355 			continue;
2356 		}
2357 
2358 		wbio->bi_opf = REQ_OP_WRITE;
2359 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2360 			wbio->bi_opf |= MD_FAILFAST;
2361 
2362 		wbio->bi_end_io = end_sync_write;
2363 		atomic_inc(&r1_bio->remaining);
2364 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2365 
2366 		submit_bio_noacct(wbio);
2367 	}
2368 
2369 	put_sync_write_buf(r1_bio, 1);
2370 }
2371 
2372 /*
2373  * This is a kernel thread which:
2374  *
2375  *	1.	Retries failed read operations on working mirrors.
2376  *	2.	Updates the raid superblock when problems encounter.
2377  *	3.	Performs writes following reads for array synchronising.
2378  */
2379 
2380 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2381 {
2382 	sector_t sect = r1_bio->sector;
2383 	int sectors = r1_bio->sectors;
2384 	int read_disk = r1_bio->read_disk;
2385 	struct mddev *mddev = conf->mddev;
2386 	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2387 
2388 	if (exceed_read_errors(mddev, rdev)) {
2389 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2390 		return;
2391 	}
2392 
2393 	while(sectors) {
2394 		int s = sectors;
2395 		int d = read_disk;
2396 		int success = 0;
2397 		int start;
2398 
2399 		if (s > (PAGE_SIZE>>9))
2400 			s = PAGE_SIZE >> 9;
2401 
2402 		do {
2403 			rdev = conf->mirrors[d].rdev;
2404 			if (rdev &&
2405 			    (test_bit(In_sync, &rdev->flags) ||
2406 			     (!test_bit(Faulty, &rdev->flags) &&
2407 			      rdev->recovery_offset >= sect + s)) &&
2408 			    rdev_has_badblock(rdev, sect, s) == 0) {
2409 				atomic_inc(&rdev->nr_pending);
2410 				if (sync_page_io(rdev, sect, s<<9,
2411 					 conf->tmppage, REQ_OP_READ, false))
2412 					success = 1;
2413 				rdev_dec_pending(rdev, mddev);
2414 				if (success)
2415 					break;
2416 			}
2417 
2418 			d++;
2419 			if (d == conf->raid_disks * 2)
2420 				d = 0;
2421 		} while (d != read_disk);
2422 
2423 		if (!success) {
2424 			/* Cannot read from anywhere - mark it bad */
2425 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2426 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2427 				md_error(mddev, rdev);
2428 			break;
2429 		}
2430 		/* write it back and re-read */
2431 		start = d;
2432 		while (d != read_disk) {
2433 			if (d==0)
2434 				d = conf->raid_disks * 2;
2435 			d--;
2436 			rdev = conf->mirrors[d].rdev;
2437 			if (rdev &&
2438 			    !test_bit(Faulty, &rdev->flags)) {
2439 				atomic_inc(&rdev->nr_pending);
2440 				r1_sync_page_io(rdev, sect, s,
2441 						conf->tmppage, REQ_OP_WRITE);
2442 				rdev_dec_pending(rdev, mddev);
2443 			}
2444 		}
2445 		d = start;
2446 		while (d != read_disk) {
2447 			if (d==0)
2448 				d = conf->raid_disks * 2;
2449 			d--;
2450 			rdev = conf->mirrors[d].rdev;
2451 			if (rdev &&
2452 			    !test_bit(Faulty, &rdev->flags)) {
2453 				atomic_inc(&rdev->nr_pending);
2454 				if (r1_sync_page_io(rdev, sect, s,
2455 						conf->tmppage, REQ_OP_READ)) {
2456 					atomic_add(s, &rdev->corrected_errors);
2457 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2458 						mdname(mddev), s,
2459 						(unsigned long long)(sect +
2460 								     rdev->data_offset),
2461 						rdev->bdev);
2462 				}
2463 				rdev_dec_pending(rdev, mddev);
2464 			}
2465 		}
2466 		sectors -= s;
2467 		sect += s;
2468 	}
2469 }
2470 
2471 static int narrow_write_error(struct r1bio *r1_bio, int i)
2472 {
2473 	struct mddev *mddev = r1_bio->mddev;
2474 	struct r1conf *conf = mddev->private;
2475 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2476 
2477 	/* bio has the data to be written to device 'i' where
2478 	 * we just recently had a write error.
2479 	 * We repeatedly clone the bio and trim down to one block,
2480 	 * then try the write.  Where the write fails we record
2481 	 * a bad block.
2482 	 * It is conceivable that the bio doesn't exactly align with
2483 	 * blocks.  We must handle this somehow.
2484 	 *
2485 	 * We currently own a reference on the rdev.
2486 	 */
2487 
2488 	int block_sectors;
2489 	sector_t sector;
2490 	int sectors;
2491 	int sect_to_write = r1_bio->sectors;
2492 	int ok = 1;
2493 
2494 	if (rdev->badblocks.shift < 0)
2495 		return 0;
2496 
2497 	block_sectors = roundup(1 << rdev->badblocks.shift,
2498 				bdev_logical_block_size(rdev->bdev) >> 9);
2499 	sector = r1_bio->sector;
2500 	sectors = ((sector + block_sectors)
2501 		   & ~(sector_t)(block_sectors - 1))
2502 		- sector;
2503 
2504 	while (sect_to_write) {
2505 		struct bio *wbio;
2506 		if (sectors > sect_to_write)
2507 			sectors = sect_to_write;
2508 		/* Write at 'sector' for 'sectors'*/
2509 
2510 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2511 			wbio = bio_alloc_clone(rdev->bdev,
2512 					       r1_bio->behind_master_bio,
2513 					       GFP_NOIO, &mddev->bio_set);
2514 		} else {
2515 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2516 					       GFP_NOIO, &mddev->bio_set);
2517 		}
2518 
2519 		wbio->bi_opf = REQ_OP_WRITE;
2520 		wbio->bi_iter.bi_sector = r1_bio->sector;
2521 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2522 
2523 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2524 		wbio->bi_iter.bi_sector += rdev->data_offset;
2525 
2526 		if (submit_bio_wait(wbio) < 0)
2527 			/* failure! */
2528 			ok = rdev_set_badblocks(rdev, sector,
2529 						sectors, 0)
2530 				&& ok;
2531 
2532 		bio_put(wbio);
2533 		sect_to_write -= sectors;
2534 		sector += sectors;
2535 		sectors = block_sectors;
2536 	}
2537 	return ok;
2538 }
2539 
2540 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2541 {
2542 	int m;
2543 	int s = r1_bio->sectors;
2544 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2545 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2546 		struct bio *bio = r1_bio->bios[m];
2547 		if (bio->bi_end_io == NULL)
2548 			continue;
2549 		if (!bio->bi_status &&
2550 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2551 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2552 		}
2553 		if (bio->bi_status &&
2554 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2555 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2556 				md_error(conf->mddev, rdev);
2557 		}
2558 	}
2559 	put_buf(r1_bio);
2560 	md_done_sync(conf->mddev, s, 1);
2561 }
2562 
2563 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2564 {
2565 	int m, idx;
2566 	bool fail = false;
2567 
2568 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2569 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2570 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2571 			rdev_clear_badblocks(rdev,
2572 					     r1_bio->sector,
2573 					     r1_bio->sectors, 0);
2574 			rdev_dec_pending(rdev, conf->mddev);
2575 		} else if (r1_bio->bios[m] != NULL) {
2576 			/* This drive got a write error.  We need to
2577 			 * narrow down and record precise write
2578 			 * errors.
2579 			 */
2580 			fail = true;
2581 			if (!narrow_write_error(r1_bio, m)) {
2582 				md_error(conf->mddev,
2583 					 conf->mirrors[m].rdev);
2584 				/* an I/O failed, we can't clear the bitmap */
2585 				set_bit(R1BIO_Degraded, &r1_bio->state);
2586 			}
2587 			rdev_dec_pending(conf->mirrors[m].rdev,
2588 					 conf->mddev);
2589 		}
2590 	if (fail) {
2591 		spin_lock_irq(&conf->device_lock);
2592 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2593 		idx = sector_to_idx(r1_bio->sector);
2594 		atomic_inc(&conf->nr_queued[idx]);
2595 		spin_unlock_irq(&conf->device_lock);
2596 		/*
2597 		 * In case freeze_array() is waiting for condition
2598 		 * get_unqueued_pending() == extra to be true.
2599 		 */
2600 		wake_up(&conf->wait_barrier);
2601 		md_wakeup_thread(conf->mddev->thread);
2602 	} else {
2603 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2604 			close_write(r1_bio);
2605 		raid_end_bio_io(r1_bio);
2606 	}
2607 }
2608 
2609 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2610 {
2611 	struct mddev *mddev = conf->mddev;
2612 	struct bio *bio;
2613 	struct md_rdev *rdev;
2614 	sector_t sector;
2615 
2616 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2617 	/* we got a read error. Maybe the drive is bad.  Maybe just
2618 	 * the block and we can fix it.
2619 	 * We freeze all other IO, and try reading the block from
2620 	 * other devices.  When we find one, we re-write
2621 	 * and check it that fixes the read error.
2622 	 * This is all done synchronously while the array is
2623 	 * frozen
2624 	 */
2625 
2626 	bio = r1_bio->bios[r1_bio->read_disk];
2627 	bio_put(bio);
2628 	r1_bio->bios[r1_bio->read_disk] = NULL;
2629 
2630 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2631 	if (mddev->ro == 0
2632 	    && !test_bit(FailFast, &rdev->flags)) {
2633 		freeze_array(conf, 1);
2634 		fix_read_error(conf, r1_bio);
2635 		unfreeze_array(conf);
2636 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2637 		md_error(mddev, rdev);
2638 	} else {
2639 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2640 	}
2641 
2642 	rdev_dec_pending(rdev, conf->mddev);
2643 	sector = r1_bio->sector;
2644 	bio = r1_bio->master_bio;
2645 
2646 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2647 	r1_bio->state = 0;
2648 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2649 	allow_barrier(conf, sector);
2650 }
2651 
2652 static void raid1d(struct md_thread *thread)
2653 {
2654 	struct mddev *mddev = thread->mddev;
2655 	struct r1bio *r1_bio;
2656 	unsigned long flags;
2657 	struct r1conf *conf = mddev->private;
2658 	struct list_head *head = &conf->retry_list;
2659 	struct blk_plug plug;
2660 	int idx;
2661 
2662 	md_check_recovery(mddev);
2663 
2664 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2665 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2666 		LIST_HEAD(tmp);
2667 		spin_lock_irqsave(&conf->device_lock, flags);
2668 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2669 			list_splice_init(&conf->bio_end_io_list, &tmp);
2670 		spin_unlock_irqrestore(&conf->device_lock, flags);
2671 		while (!list_empty(&tmp)) {
2672 			r1_bio = list_first_entry(&tmp, struct r1bio,
2673 						  retry_list);
2674 			list_del(&r1_bio->retry_list);
2675 			idx = sector_to_idx(r1_bio->sector);
2676 			atomic_dec(&conf->nr_queued[idx]);
2677 			if (mddev->degraded)
2678 				set_bit(R1BIO_Degraded, &r1_bio->state);
2679 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2680 				close_write(r1_bio);
2681 			raid_end_bio_io(r1_bio);
2682 		}
2683 	}
2684 
2685 	blk_start_plug(&plug);
2686 	for (;;) {
2687 
2688 		flush_pending_writes(conf);
2689 
2690 		spin_lock_irqsave(&conf->device_lock, flags);
2691 		if (list_empty(head)) {
2692 			spin_unlock_irqrestore(&conf->device_lock, flags);
2693 			break;
2694 		}
2695 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2696 		list_del(head->prev);
2697 		idx = sector_to_idx(r1_bio->sector);
2698 		atomic_dec(&conf->nr_queued[idx]);
2699 		spin_unlock_irqrestore(&conf->device_lock, flags);
2700 
2701 		mddev = r1_bio->mddev;
2702 		conf = mddev->private;
2703 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2704 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2705 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2706 				handle_sync_write_finished(conf, r1_bio);
2707 			else
2708 				sync_request_write(mddev, r1_bio);
2709 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2710 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2711 			handle_write_finished(conf, r1_bio);
2712 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2713 			handle_read_error(conf, r1_bio);
2714 		else
2715 			WARN_ON_ONCE(1);
2716 
2717 		cond_resched();
2718 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2719 			md_check_recovery(mddev);
2720 	}
2721 	blk_finish_plug(&plug);
2722 }
2723 
2724 static int init_resync(struct r1conf *conf)
2725 {
2726 	int buffs;
2727 
2728 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2729 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2730 
2731 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2732 			    r1buf_pool_free, conf->poolinfo);
2733 }
2734 
2735 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2736 {
2737 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2738 	struct resync_pages *rps;
2739 	struct bio *bio;
2740 	int i;
2741 
2742 	for (i = conf->poolinfo->raid_disks; i--; ) {
2743 		bio = r1bio->bios[i];
2744 		rps = bio->bi_private;
2745 		bio_reset(bio, NULL, 0);
2746 		bio->bi_private = rps;
2747 	}
2748 	r1bio->master_bio = NULL;
2749 	return r1bio;
2750 }
2751 
2752 /*
2753  * perform a "sync" on one "block"
2754  *
2755  * We need to make sure that no normal I/O request - particularly write
2756  * requests - conflict with active sync requests.
2757  *
2758  * This is achieved by tracking pending requests and a 'barrier' concept
2759  * that can be installed to exclude normal IO requests.
2760  */
2761 
2762 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2763 				   sector_t max_sector, int *skipped)
2764 {
2765 	struct r1conf *conf = mddev->private;
2766 	struct r1bio *r1_bio;
2767 	struct bio *bio;
2768 	sector_t nr_sectors;
2769 	int disk = -1;
2770 	int i;
2771 	int wonly = -1;
2772 	int write_targets = 0, read_targets = 0;
2773 	sector_t sync_blocks;
2774 	int still_degraded = 0;
2775 	int good_sectors = RESYNC_SECTORS;
2776 	int min_bad = 0; /* number of sectors that are bad in all devices */
2777 	int idx = sector_to_idx(sector_nr);
2778 	int page_idx = 0;
2779 
2780 	if (!mempool_initialized(&conf->r1buf_pool))
2781 		if (init_resync(conf))
2782 			return 0;
2783 
2784 	if (sector_nr >= max_sector) {
2785 		/* If we aborted, we need to abort the
2786 		 * sync on the 'current' bitmap chunk (there will
2787 		 * only be one in raid1 resync.
2788 		 * We can find the current addess in mddev->curr_resync
2789 		 */
2790 		if (mddev->curr_resync < max_sector) /* aborted */
2791 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2792 					   &sync_blocks, 1);
2793 		else /* completed sync */
2794 			conf->fullsync = 0;
2795 
2796 		md_bitmap_close_sync(mddev->bitmap);
2797 		close_sync(conf);
2798 
2799 		if (mddev_is_clustered(mddev)) {
2800 			conf->cluster_sync_low = 0;
2801 			conf->cluster_sync_high = 0;
2802 		}
2803 		return 0;
2804 	}
2805 
2806 	if (mddev->bitmap == NULL &&
2807 	    mddev->recovery_cp == MaxSector &&
2808 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2809 	    conf->fullsync == 0) {
2810 		*skipped = 1;
2811 		return max_sector - sector_nr;
2812 	}
2813 	/* before building a request, check if we can skip these blocks..
2814 	 * This call the bitmap_start_sync doesn't actually record anything
2815 	 */
2816 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2817 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2818 		/* We can skip this block, and probably several more */
2819 		*skipped = 1;
2820 		return sync_blocks;
2821 	}
2822 
2823 	/*
2824 	 * If there is non-resync activity waiting for a turn, then let it
2825 	 * though before starting on this new sync request.
2826 	 */
2827 	if (atomic_read(&conf->nr_waiting[idx]))
2828 		schedule_timeout_uninterruptible(1);
2829 
2830 	/* we are incrementing sector_nr below. To be safe, we check against
2831 	 * sector_nr + two times RESYNC_SECTORS
2832 	 */
2833 
2834 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2835 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2836 
2837 
2838 	if (raise_barrier(conf, sector_nr))
2839 		return 0;
2840 
2841 	r1_bio = raid1_alloc_init_r1buf(conf);
2842 
2843 	/*
2844 	 * If we get a correctably read error during resync or recovery,
2845 	 * we might want to read from a different device.  So we
2846 	 * flag all drives that could conceivably be read from for READ,
2847 	 * and any others (which will be non-In_sync devices) for WRITE.
2848 	 * If a read fails, we try reading from something else for which READ
2849 	 * is OK.
2850 	 */
2851 
2852 	r1_bio->mddev = mddev;
2853 	r1_bio->sector = sector_nr;
2854 	r1_bio->state = 0;
2855 	set_bit(R1BIO_IsSync, &r1_bio->state);
2856 	/* make sure good_sectors won't go across barrier unit boundary */
2857 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2858 
2859 	for (i = 0; i < conf->raid_disks * 2; i++) {
2860 		struct md_rdev *rdev;
2861 		bio = r1_bio->bios[i];
2862 
2863 		rdev = conf->mirrors[i].rdev;
2864 		if (rdev == NULL ||
2865 		    test_bit(Faulty, &rdev->flags)) {
2866 			if (i < conf->raid_disks)
2867 				still_degraded = 1;
2868 		} else if (!test_bit(In_sync, &rdev->flags)) {
2869 			bio->bi_opf = REQ_OP_WRITE;
2870 			bio->bi_end_io = end_sync_write;
2871 			write_targets ++;
2872 		} else {
2873 			/* may need to read from here */
2874 			sector_t first_bad = MaxSector;
2875 			int bad_sectors;
2876 
2877 			if (is_badblock(rdev, sector_nr, good_sectors,
2878 					&first_bad, &bad_sectors)) {
2879 				if (first_bad > sector_nr)
2880 					good_sectors = first_bad - sector_nr;
2881 				else {
2882 					bad_sectors -= (sector_nr - first_bad);
2883 					if (min_bad == 0 ||
2884 					    min_bad > bad_sectors)
2885 						min_bad = bad_sectors;
2886 				}
2887 			}
2888 			if (sector_nr < first_bad) {
2889 				if (test_bit(WriteMostly, &rdev->flags)) {
2890 					if (wonly < 0)
2891 						wonly = i;
2892 				} else {
2893 					if (disk < 0)
2894 						disk = i;
2895 				}
2896 				bio->bi_opf = REQ_OP_READ;
2897 				bio->bi_end_io = end_sync_read;
2898 				read_targets++;
2899 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2900 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2901 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2902 				/*
2903 				 * The device is suitable for reading (InSync),
2904 				 * but has bad block(s) here. Let's try to correct them,
2905 				 * if we are doing resync or repair. Otherwise, leave
2906 				 * this device alone for this sync request.
2907 				 */
2908 				bio->bi_opf = REQ_OP_WRITE;
2909 				bio->bi_end_io = end_sync_write;
2910 				write_targets++;
2911 			}
2912 		}
2913 		if (rdev && bio->bi_end_io) {
2914 			atomic_inc(&rdev->nr_pending);
2915 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2916 			bio_set_dev(bio, rdev->bdev);
2917 			if (test_bit(FailFast, &rdev->flags))
2918 				bio->bi_opf |= MD_FAILFAST;
2919 		}
2920 	}
2921 	if (disk < 0)
2922 		disk = wonly;
2923 	r1_bio->read_disk = disk;
2924 
2925 	if (read_targets == 0 && min_bad > 0) {
2926 		/* These sectors are bad on all InSync devices, so we
2927 		 * need to mark them bad on all write targets
2928 		 */
2929 		int ok = 1;
2930 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2931 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2932 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2933 				ok = rdev_set_badblocks(rdev, sector_nr,
2934 							min_bad, 0
2935 					) && ok;
2936 			}
2937 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2938 		*skipped = 1;
2939 		put_buf(r1_bio);
2940 
2941 		if (!ok) {
2942 			/* Cannot record the badblocks, so need to
2943 			 * abort the resync.
2944 			 * If there are multiple read targets, could just
2945 			 * fail the really bad ones ???
2946 			 */
2947 			conf->recovery_disabled = mddev->recovery_disabled;
2948 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2949 			return 0;
2950 		} else
2951 			return min_bad;
2952 
2953 	}
2954 	if (min_bad > 0 && min_bad < good_sectors) {
2955 		/* only resync enough to reach the next bad->good
2956 		 * transition */
2957 		good_sectors = min_bad;
2958 	}
2959 
2960 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2961 		/* extra read targets are also write targets */
2962 		write_targets += read_targets-1;
2963 
2964 	if (write_targets == 0 || read_targets == 0) {
2965 		/* There is nowhere to write, so all non-sync
2966 		 * drives must be failed - so we are finished
2967 		 */
2968 		sector_t rv;
2969 		if (min_bad > 0)
2970 			max_sector = sector_nr + min_bad;
2971 		rv = max_sector - sector_nr;
2972 		*skipped = 1;
2973 		put_buf(r1_bio);
2974 		return rv;
2975 	}
2976 
2977 	if (max_sector > mddev->resync_max)
2978 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2979 	if (max_sector > sector_nr + good_sectors)
2980 		max_sector = sector_nr + good_sectors;
2981 	nr_sectors = 0;
2982 	sync_blocks = 0;
2983 	do {
2984 		struct page *page;
2985 		int len = PAGE_SIZE;
2986 		if (sector_nr + (len>>9) > max_sector)
2987 			len = (max_sector - sector_nr) << 9;
2988 		if (len == 0)
2989 			break;
2990 		if (sync_blocks == 0) {
2991 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2992 						  &sync_blocks, still_degraded) &&
2993 			    !conf->fullsync &&
2994 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2995 				break;
2996 			if ((len >> 9) > sync_blocks)
2997 				len = sync_blocks<<9;
2998 		}
2999 
3000 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
3001 			struct resync_pages *rp;
3002 
3003 			bio = r1_bio->bios[i];
3004 			rp = get_resync_pages(bio);
3005 			if (bio->bi_end_io) {
3006 				page = resync_fetch_page(rp, page_idx);
3007 
3008 				/*
3009 				 * won't fail because the vec table is big
3010 				 * enough to hold all these pages
3011 				 */
3012 				__bio_add_page(bio, page, len, 0);
3013 			}
3014 		}
3015 		nr_sectors += len>>9;
3016 		sector_nr += len>>9;
3017 		sync_blocks -= (len>>9);
3018 	} while (++page_idx < RESYNC_PAGES);
3019 
3020 	r1_bio->sectors = nr_sectors;
3021 
3022 	if (mddev_is_clustered(mddev) &&
3023 			conf->cluster_sync_high < sector_nr + nr_sectors) {
3024 		conf->cluster_sync_low = mddev->curr_resync_completed;
3025 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3026 		/* Send resync message */
3027 		md_cluster_ops->resync_info_update(mddev,
3028 				conf->cluster_sync_low,
3029 				conf->cluster_sync_high);
3030 	}
3031 
3032 	/* For a user-requested sync, we read all readable devices and do a
3033 	 * compare
3034 	 */
3035 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3036 		atomic_set(&r1_bio->remaining, read_targets);
3037 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3038 			bio = r1_bio->bios[i];
3039 			if (bio->bi_end_io == end_sync_read) {
3040 				read_targets--;
3041 				md_sync_acct_bio(bio, nr_sectors);
3042 				if (read_targets == 1)
3043 					bio->bi_opf &= ~MD_FAILFAST;
3044 				submit_bio_noacct(bio);
3045 			}
3046 		}
3047 	} else {
3048 		atomic_set(&r1_bio->remaining, 1);
3049 		bio = r1_bio->bios[r1_bio->read_disk];
3050 		md_sync_acct_bio(bio, nr_sectors);
3051 		if (read_targets == 1)
3052 			bio->bi_opf &= ~MD_FAILFAST;
3053 		submit_bio_noacct(bio);
3054 	}
3055 	return nr_sectors;
3056 }
3057 
3058 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3059 {
3060 	if (sectors)
3061 		return sectors;
3062 
3063 	return mddev->dev_sectors;
3064 }
3065 
3066 static struct r1conf *setup_conf(struct mddev *mddev)
3067 {
3068 	struct r1conf *conf;
3069 	int i;
3070 	struct raid1_info *disk;
3071 	struct md_rdev *rdev;
3072 	int err = -ENOMEM;
3073 
3074 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3075 	if (!conf)
3076 		goto abort;
3077 
3078 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3079 				   sizeof(atomic_t), GFP_KERNEL);
3080 	if (!conf->nr_pending)
3081 		goto abort;
3082 
3083 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3084 				   sizeof(atomic_t), GFP_KERNEL);
3085 	if (!conf->nr_waiting)
3086 		goto abort;
3087 
3088 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3089 				  sizeof(atomic_t), GFP_KERNEL);
3090 	if (!conf->nr_queued)
3091 		goto abort;
3092 
3093 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3094 				sizeof(atomic_t), GFP_KERNEL);
3095 	if (!conf->barrier)
3096 		goto abort;
3097 
3098 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3099 					    mddev->raid_disks, 2),
3100 				GFP_KERNEL);
3101 	if (!conf->mirrors)
3102 		goto abort;
3103 
3104 	conf->tmppage = alloc_page(GFP_KERNEL);
3105 	if (!conf->tmppage)
3106 		goto abort;
3107 
3108 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3109 	if (!conf->poolinfo)
3110 		goto abort;
3111 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3112 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3113 			   rbio_pool_free, conf->poolinfo);
3114 	if (err)
3115 		goto abort;
3116 
3117 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3118 	if (err)
3119 		goto abort;
3120 
3121 	conf->poolinfo->mddev = mddev;
3122 
3123 	err = -EINVAL;
3124 	spin_lock_init(&conf->device_lock);
3125 	conf->raid_disks = mddev->raid_disks;
3126 	rdev_for_each(rdev, mddev) {
3127 		int disk_idx = rdev->raid_disk;
3128 
3129 		if (disk_idx >= conf->raid_disks || disk_idx < 0)
3130 			continue;
3131 
3132 		if (!raid1_add_conf(conf, rdev, disk_idx,
3133 				    test_bit(Replacement, &rdev->flags)))
3134 			goto abort;
3135 	}
3136 	conf->mddev = mddev;
3137 	INIT_LIST_HEAD(&conf->retry_list);
3138 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3139 
3140 	spin_lock_init(&conf->resync_lock);
3141 	init_waitqueue_head(&conf->wait_barrier);
3142 
3143 	bio_list_init(&conf->pending_bio_list);
3144 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3145 
3146 	err = -EIO;
3147 	for (i = 0; i < conf->raid_disks * 2; i++) {
3148 
3149 		disk = conf->mirrors + i;
3150 
3151 		if (i < conf->raid_disks &&
3152 		    disk[conf->raid_disks].rdev) {
3153 			/* This slot has a replacement. */
3154 			if (!disk->rdev) {
3155 				/* No original, just make the replacement
3156 				 * a recovering spare
3157 				 */
3158 				disk->rdev =
3159 					disk[conf->raid_disks].rdev;
3160 				disk[conf->raid_disks].rdev = NULL;
3161 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3162 				/* Original is not in_sync - bad */
3163 				goto abort;
3164 		}
3165 
3166 		if (!disk->rdev ||
3167 		    !test_bit(In_sync, &disk->rdev->flags)) {
3168 			disk->head_position = 0;
3169 			if (disk->rdev &&
3170 			    (disk->rdev->saved_raid_disk < 0))
3171 				conf->fullsync = 1;
3172 		}
3173 	}
3174 
3175 	err = -ENOMEM;
3176 	rcu_assign_pointer(conf->thread,
3177 			   md_register_thread(raid1d, mddev, "raid1"));
3178 	if (!conf->thread)
3179 		goto abort;
3180 
3181 	return conf;
3182 
3183  abort:
3184 	if (conf) {
3185 		mempool_exit(&conf->r1bio_pool);
3186 		kfree(conf->mirrors);
3187 		safe_put_page(conf->tmppage);
3188 		kfree(conf->poolinfo);
3189 		kfree(conf->nr_pending);
3190 		kfree(conf->nr_waiting);
3191 		kfree(conf->nr_queued);
3192 		kfree(conf->barrier);
3193 		bioset_exit(&conf->bio_split);
3194 		kfree(conf);
3195 	}
3196 	return ERR_PTR(err);
3197 }
3198 
3199 static int raid1_set_limits(struct mddev *mddev)
3200 {
3201 	struct queue_limits lim;
3202 	int err;
3203 
3204 	md_init_stacking_limits(&lim);
3205 	lim.max_write_zeroes_sectors = 0;
3206 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3207 	if (err) {
3208 		queue_limits_cancel_update(mddev->gendisk->queue);
3209 		return err;
3210 	}
3211 	return queue_limits_set(mddev->gendisk->queue, &lim);
3212 }
3213 
3214 static int raid1_run(struct mddev *mddev)
3215 {
3216 	struct r1conf *conf;
3217 	int i;
3218 	int ret;
3219 
3220 	if (mddev->level != 1) {
3221 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3222 			mdname(mddev), mddev->level);
3223 		return -EIO;
3224 	}
3225 	if (mddev->reshape_position != MaxSector) {
3226 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3227 			mdname(mddev));
3228 		return -EIO;
3229 	}
3230 
3231 	/*
3232 	 * copy the already verified devices into our private RAID1
3233 	 * bookkeeping area. [whatever we allocate in run(),
3234 	 * should be freed in raid1_free()]
3235 	 */
3236 	if (mddev->private == NULL)
3237 		conf = setup_conf(mddev);
3238 	else
3239 		conf = mddev->private;
3240 
3241 	if (IS_ERR(conf))
3242 		return PTR_ERR(conf);
3243 
3244 	if (!mddev_is_dm(mddev)) {
3245 		ret = raid1_set_limits(mddev);
3246 		if (ret)
3247 			return ret;
3248 	}
3249 
3250 	mddev->degraded = 0;
3251 	for (i = 0; i < conf->raid_disks; i++)
3252 		if (conf->mirrors[i].rdev == NULL ||
3253 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3254 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3255 			mddev->degraded++;
3256 	/*
3257 	 * RAID1 needs at least one disk in active
3258 	 */
3259 	if (conf->raid_disks - mddev->degraded < 1) {
3260 		md_unregister_thread(mddev, &conf->thread);
3261 		return -EINVAL;
3262 	}
3263 
3264 	if (conf->raid_disks - mddev->degraded == 1)
3265 		mddev->recovery_cp = MaxSector;
3266 
3267 	if (mddev->recovery_cp != MaxSector)
3268 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3269 			mdname(mddev));
3270 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3271 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3272 		mddev->raid_disks);
3273 
3274 	/*
3275 	 * Ok, everything is just fine now
3276 	 */
3277 	rcu_assign_pointer(mddev->thread, conf->thread);
3278 	rcu_assign_pointer(conf->thread, NULL);
3279 	mddev->private = conf;
3280 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3281 
3282 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3283 
3284 	ret = md_integrity_register(mddev);
3285 	if (ret)
3286 		md_unregister_thread(mddev, &mddev->thread);
3287 	return ret;
3288 }
3289 
3290 static void raid1_free(struct mddev *mddev, void *priv)
3291 {
3292 	struct r1conf *conf = priv;
3293 
3294 	mempool_exit(&conf->r1bio_pool);
3295 	kfree(conf->mirrors);
3296 	safe_put_page(conf->tmppage);
3297 	kfree(conf->poolinfo);
3298 	kfree(conf->nr_pending);
3299 	kfree(conf->nr_waiting);
3300 	kfree(conf->nr_queued);
3301 	kfree(conf->barrier);
3302 	bioset_exit(&conf->bio_split);
3303 	kfree(conf);
3304 }
3305 
3306 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3307 {
3308 	/* no resync is happening, and there is enough space
3309 	 * on all devices, so we can resize.
3310 	 * We need to make sure resync covers any new space.
3311 	 * If the array is shrinking we should possibly wait until
3312 	 * any io in the removed space completes, but it hardly seems
3313 	 * worth it.
3314 	 */
3315 	sector_t newsize = raid1_size(mddev, sectors, 0);
3316 	if (mddev->external_size &&
3317 	    mddev->array_sectors > newsize)
3318 		return -EINVAL;
3319 	if (mddev->bitmap) {
3320 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3321 		if (ret)
3322 			return ret;
3323 	}
3324 	md_set_array_sectors(mddev, newsize);
3325 	if (sectors > mddev->dev_sectors &&
3326 	    mddev->recovery_cp > mddev->dev_sectors) {
3327 		mddev->recovery_cp = mddev->dev_sectors;
3328 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3329 	}
3330 	mddev->dev_sectors = sectors;
3331 	mddev->resync_max_sectors = sectors;
3332 	return 0;
3333 }
3334 
3335 static int raid1_reshape(struct mddev *mddev)
3336 {
3337 	/* We need to:
3338 	 * 1/ resize the r1bio_pool
3339 	 * 2/ resize conf->mirrors
3340 	 *
3341 	 * We allocate a new r1bio_pool if we can.
3342 	 * Then raise a device barrier and wait until all IO stops.
3343 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3344 	 *
3345 	 * At the same time, we "pack" the devices so that all the missing
3346 	 * devices have the higher raid_disk numbers.
3347 	 */
3348 	mempool_t newpool, oldpool;
3349 	struct pool_info *newpoolinfo;
3350 	struct raid1_info *newmirrors;
3351 	struct r1conf *conf = mddev->private;
3352 	int cnt, raid_disks;
3353 	unsigned long flags;
3354 	int d, d2;
3355 	int ret;
3356 
3357 	memset(&newpool, 0, sizeof(newpool));
3358 	memset(&oldpool, 0, sizeof(oldpool));
3359 
3360 	/* Cannot change chunk_size, layout, or level */
3361 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3362 	    mddev->layout != mddev->new_layout ||
3363 	    mddev->level != mddev->new_level) {
3364 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3365 		mddev->new_layout = mddev->layout;
3366 		mddev->new_level = mddev->level;
3367 		return -EINVAL;
3368 	}
3369 
3370 	if (!mddev_is_clustered(mddev))
3371 		md_allow_write(mddev);
3372 
3373 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3374 
3375 	if (raid_disks < conf->raid_disks) {
3376 		cnt=0;
3377 		for (d= 0; d < conf->raid_disks; d++)
3378 			if (conf->mirrors[d].rdev)
3379 				cnt++;
3380 		if (cnt > raid_disks)
3381 			return -EBUSY;
3382 	}
3383 
3384 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3385 	if (!newpoolinfo)
3386 		return -ENOMEM;
3387 	newpoolinfo->mddev = mddev;
3388 	newpoolinfo->raid_disks = raid_disks * 2;
3389 
3390 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3391 			   rbio_pool_free, newpoolinfo);
3392 	if (ret) {
3393 		kfree(newpoolinfo);
3394 		return ret;
3395 	}
3396 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3397 					 raid_disks, 2),
3398 			     GFP_KERNEL);
3399 	if (!newmirrors) {
3400 		kfree(newpoolinfo);
3401 		mempool_exit(&newpool);
3402 		return -ENOMEM;
3403 	}
3404 
3405 	freeze_array(conf, 0);
3406 
3407 	/* ok, everything is stopped */
3408 	oldpool = conf->r1bio_pool;
3409 	conf->r1bio_pool = newpool;
3410 
3411 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3412 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3413 		if (rdev && rdev->raid_disk != d2) {
3414 			sysfs_unlink_rdev(mddev, rdev);
3415 			rdev->raid_disk = d2;
3416 			sysfs_unlink_rdev(mddev, rdev);
3417 			if (sysfs_link_rdev(mddev, rdev))
3418 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3419 					mdname(mddev), rdev->raid_disk);
3420 		}
3421 		if (rdev)
3422 			newmirrors[d2++].rdev = rdev;
3423 	}
3424 	kfree(conf->mirrors);
3425 	conf->mirrors = newmirrors;
3426 	kfree(conf->poolinfo);
3427 	conf->poolinfo = newpoolinfo;
3428 
3429 	spin_lock_irqsave(&conf->device_lock, flags);
3430 	mddev->degraded += (raid_disks - conf->raid_disks);
3431 	spin_unlock_irqrestore(&conf->device_lock, flags);
3432 	conf->raid_disks = mddev->raid_disks = raid_disks;
3433 	mddev->delta_disks = 0;
3434 
3435 	unfreeze_array(conf);
3436 
3437 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3438 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3439 	md_wakeup_thread(mddev->thread);
3440 
3441 	mempool_exit(&oldpool);
3442 	return 0;
3443 }
3444 
3445 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3446 {
3447 	struct r1conf *conf = mddev->private;
3448 
3449 	if (quiesce)
3450 		freeze_array(conf, 0);
3451 	else
3452 		unfreeze_array(conf);
3453 }
3454 
3455 static void *raid1_takeover(struct mddev *mddev)
3456 {
3457 	/* raid1 can take over:
3458 	 *  raid5 with 2 devices, any layout or chunk size
3459 	 */
3460 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3461 		struct r1conf *conf;
3462 		mddev->new_level = 1;
3463 		mddev->new_layout = 0;
3464 		mddev->new_chunk_sectors = 0;
3465 		conf = setup_conf(mddev);
3466 		if (!IS_ERR(conf)) {
3467 			/* Array must appear to be quiesced */
3468 			conf->array_frozen = 1;
3469 			mddev_clear_unsupported_flags(mddev,
3470 				UNSUPPORTED_MDDEV_FLAGS);
3471 		}
3472 		return conf;
3473 	}
3474 	return ERR_PTR(-EINVAL);
3475 }
3476 
3477 static struct md_personality raid1_personality =
3478 {
3479 	.name		= "raid1",
3480 	.level		= 1,
3481 	.owner		= THIS_MODULE,
3482 	.make_request	= raid1_make_request,
3483 	.run		= raid1_run,
3484 	.free		= raid1_free,
3485 	.status		= raid1_status,
3486 	.error_handler	= raid1_error,
3487 	.hot_add_disk	= raid1_add_disk,
3488 	.hot_remove_disk= raid1_remove_disk,
3489 	.spare_active	= raid1_spare_active,
3490 	.sync_request	= raid1_sync_request,
3491 	.resize		= raid1_resize,
3492 	.size		= raid1_size,
3493 	.check_reshape	= raid1_reshape,
3494 	.quiesce	= raid1_quiesce,
3495 	.takeover	= raid1_takeover,
3496 };
3497 
3498 static int __init raid_init(void)
3499 {
3500 	return register_md_personality(&raid1_personality);
3501 }
3502 
3503 static void raid_exit(void)
3504 {
3505 	unregister_md_personality(&raid1_personality);
3506 }
3507 
3508 module_init(raid_init);
3509 module_exit(raid_exit);
3510 MODULE_LICENSE("GPL");
3511 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3512 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3513 MODULE_ALIAS("md-raid1");
3514 MODULE_ALIAS("md-level-1");
3515