xref: /linux/drivers/md/raid1.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
41 
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	struct pool_info *pi = data;
63 	r1bio_t *r1_bio;
64 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
65 
66 	/* allocate a r1bio with room for raid_disks entries in the bios array */
67 	r1_bio = kzalloc(size, gfp_flags);
68 	if (!r1_bio && pi->mddev)
69 		unplug_slaves(pi->mddev);
70 
71 	return r1_bio;
72 }
73 
74 static void r1bio_pool_free(void *r1_bio, void *data)
75 {
76 	kfree(r1_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
86 {
87 	struct pool_info *pi = data;
88 	struct page *page;
89 	r1bio_t *r1_bio;
90 	struct bio *bio;
91 	int i, j;
92 
93 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94 	if (!r1_bio) {
95 		unplug_slaves(pi->mddev);
96 		return NULL;
97 	}
98 
99 	/*
100 	 * Allocate bios : 1 for reading, n-1 for writing
101 	 */
102 	for (j = pi->raid_disks ; j-- ; ) {
103 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
104 		if (!bio)
105 			goto out_free_bio;
106 		r1_bio->bios[j] = bio;
107 	}
108 	/*
109 	 * Allocate RESYNC_PAGES data pages and attach them to
110 	 * the first bio.
111 	 * If this is a user-requested check/repair, allocate
112 	 * RESYNC_PAGES for each bio.
113 	 */
114 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115 		j = pi->raid_disks;
116 	else
117 		j = 1;
118 	while(j--) {
119 		bio = r1_bio->bios[j];
120 		for (i = 0; i < RESYNC_PAGES; i++) {
121 			page = alloc_page(gfp_flags);
122 			if (unlikely(!page))
123 				goto out_free_pages;
124 
125 			bio->bi_io_vec[i].bv_page = page;
126 			bio->bi_vcnt = i+1;
127 		}
128 	}
129 	/* If not user-requests, copy the page pointers to all bios */
130 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 		for (i=0; i<RESYNC_PAGES ; i++)
132 			for (j=1; j<pi->raid_disks; j++)
133 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
135 	}
136 
137 	r1_bio->master_bio = NULL;
138 
139 	return r1_bio;
140 
141 out_free_pages:
142 	for (j=0 ; j < pi->raid_disks; j++)
143 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
145 	j = -1;
146 out_free_bio:
147 	while ( ++j < pi->raid_disks )
148 		bio_put(r1_bio->bios[j]);
149 	r1bio_pool_free(r1_bio, data);
150 	return NULL;
151 }
152 
153 static void r1buf_pool_free(void *__r1_bio, void *data)
154 {
155 	struct pool_info *pi = data;
156 	int i,j;
157 	r1bio_t *r1bio = __r1_bio;
158 
159 	for (i = 0; i < RESYNC_PAGES; i++)
160 		for (j = pi->raid_disks; j-- ;) {
161 			if (j == 0 ||
162 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
163 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
164 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
165 		}
166 	for (i=0 ; i < pi->raid_disks; i++)
167 		bio_put(r1bio->bios[i]);
168 
169 	r1bio_pool_free(r1bio, data);
170 }
171 
172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->raid_disks; i++) {
177 		struct bio **bio = r1_bio->bios + i;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r1bio(r1bio_t *r1_bio)
185 {
186 	conf_t *conf = r1_bio->mddev->private;
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r1_bio);
195 	mempool_free(r1_bio, conf->r1bio_pool);
196 }
197 
198 static void put_buf(r1bio_t *r1_bio)
199 {
200 	conf_t *conf = r1_bio->mddev->private;
201 	int i;
202 
203 	for (i=0; i<conf->raid_disks; i++) {
204 		struct bio *bio = r1_bio->bios[i];
205 		if (bio->bi_end_io)
206 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
207 	}
208 
209 	mempool_free(r1_bio, conf->r1buf_pool);
210 
211 	lower_barrier(conf);
212 }
213 
214 static void reschedule_retry(r1bio_t *r1_bio)
215 {
216 	unsigned long flags;
217 	mddev_t *mddev = r1_bio->mddev;
218 	conf_t *conf = mddev->private;
219 
220 	spin_lock_irqsave(&conf->device_lock, flags);
221 	list_add(&r1_bio->retry_list, &conf->retry_list);
222 	conf->nr_queued ++;
223 	spin_unlock_irqrestore(&conf->device_lock, flags);
224 
225 	wake_up(&conf->wait_barrier);
226 	md_wakeup_thread(mddev->thread);
227 }
228 
229 /*
230  * raid_end_bio_io() is called when we have finished servicing a mirrored
231  * operation and are ready to return a success/failure code to the buffer
232  * cache layer.
233  */
234 static void raid_end_bio_io(r1bio_t *r1_bio)
235 {
236 	struct bio *bio = r1_bio->master_bio;
237 
238 	/* if nobody has done the final endio yet, do it now */
239 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
242 			(unsigned long long) bio->bi_sector,
243 			(unsigned long long) bio->bi_sector +
244 				(bio->bi_size >> 9) - 1);
245 
246 		bio_endio(bio,
247 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
248 	}
249 	free_r1bio(r1_bio);
250 }
251 
252 /*
253  * Update disk head position estimator based on IRQ completion info.
254  */
255 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
256 {
257 	conf_t *conf = r1_bio->mddev->private;
258 
259 	conf->mirrors[disk].head_position =
260 		r1_bio->sector + (r1_bio->sectors);
261 }
262 
263 static void raid1_end_read_request(struct bio *bio, int error)
264 {
265 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
266 	r1bio_t *r1_bio = bio->bi_private;
267 	int mirror;
268 	conf_t *conf = r1_bio->mddev->private;
269 
270 	mirror = r1_bio->read_disk;
271 	/*
272 	 * this branch is our 'one mirror IO has finished' event handler:
273 	 */
274 	update_head_pos(mirror, r1_bio);
275 
276 	if (uptodate)
277 		set_bit(R1BIO_Uptodate, &r1_bio->state);
278 	else {
279 		/* If all other devices have failed, we want to return
280 		 * the error upwards rather than fail the last device.
281 		 * Here we redefine "uptodate" to mean "Don't want to retry"
282 		 */
283 		unsigned long flags;
284 		spin_lock_irqsave(&conf->device_lock, flags);
285 		if (r1_bio->mddev->degraded == conf->raid_disks ||
286 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288 			uptodate = 1;
289 		spin_unlock_irqrestore(&conf->device_lock, flags);
290 	}
291 
292 	if (uptodate)
293 		raid_end_bio_io(r1_bio);
294 	else {
295 		/*
296 		 * oops, read error:
297 		 */
298 		char b[BDEVNAME_SIZE];
299 		if (printk_ratelimit())
300 			printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
301 			       mdname(conf->mddev),
302 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
303 		reschedule_retry(r1_bio);
304 	}
305 
306 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
307 }
308 
309 static void raid1_end_write_request(struct bio *bio, int error)
310 {
311 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
312 	r1bio_t *r1_bio = bio->bi_private;
313 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
314 	conf_t *conf = r1_bio->mddev->private;
315 	struct bio *to_put = NULL;
316 
317 
318 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
319 		if (r1_bio->bios[mirror] == bio)
320 			break;
321 
322 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
323 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
324 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
325 		r1_bio->mddev->barriers_work = 0;
326 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
327 	} else {
328 		/*
329 		 * this branch is our 'one mirror IO has finished' event handler:
330 		 */
331 		r1_bio->bios[mirror] = NULL;
332 		to_put = bio;
333 		if (!uptodate) {
334 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
335 			/* an I/O failed, we can't clear the bitmap */
336 			set_bit(R1BIO_Degraded, &r1_bio->state);
337 		} else
338 			/*
339 			 * Set R1BIO_Uptodate in our master bio, so that
340 			 * we will return a good error code for to the higher
341 			 * levels even if IO on some other mirrored buffer fails.
342 			 *
343 			 * The 'master' represents the composite IO operation to
344 			 * user-side. So if something waits for IO, then it will
345 			 * wait for the 'master' bio.
346 			 */
347 			set_bit(R1BIO_Uptodate, &r1_bio->state);
348 
349 		update_head_pos(mirror, r1_bio);
350 
351 		if (behind) {
352 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
353 				atomic_dec(&r1_bio->behind_remaining);
354 
355 			/* In behind mode, we ACK the master bio once the I/O has safely
356 			 * reached all non-writemostly disks. Setting the Returned bit
357 			 * ensures that this gets done only once -- we don't ever want to
358 			 * return -EIO here, instead we'll wait */
359 
360 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
361 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
362 				/* Maybe we can return now */
363 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
364 					struct bio *mbio = r1_bio->master_bio;
365 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
366 					       (unsigned long long) mbio->bi_sector,
367 					       (unsigned long long) mbio->bi_sector +
368 					       (mbio->bi_size >> 9) - 1);
369 					bio_endio(mbio, 0);
370 				}
371 			}
372 		}
373 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
374 	}
375 	/*
376 	 *
377 	 * Let's see if all mirrored write operations have finished
378 	 * already.
379 	 */
380 	if (atomic_dec_and_test(&r1_bio->remaining)) {
381 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
382 			reschedule_retry(r1_bio);
383 		else {
384 			/* it really is the end of this request */
385 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
386 				/* free extra copy of the data pages */
387 				int i = bio->bi_vcnt;
388 				while (i--)
389 					safe_put_page(bio->bi_io_vec[i].bv_page);
390 			}
391 			/* clear the bitmap if all writes complete successfully */
392 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
393 					r1_bio->sectors,
394 					!test_bit(R1BIO_Degraded, &r1_bio->state),
395 					behind);
396 			md_write_end(r1_bio->mddev);
397 			raid_end_bio_io(r1_bio);
398 		}
399 	}
400 
401 	if (to_put)
402 		bio_put(to_put);
403 }
404 
405 
406 /*
407  * This routine returns the disk from which the requested read should
408  * be done. There is a per-array 'next expected sequential IO' sector
409  * number - if this matches on the next IO then we use the last disk.
410  * There is also a per-disk 'last know head position' sector that is
411  * maintained from IRQ contexts, both the normal and the resync IO
412  * completion handlers update this position correctly. If there is no
413  * perfect sequential match then we pick the disk whose head is closest.
414  *
415  * If there are 2 mirrors in the same 2 devices, performance degrades
416  * because position is mirror, not device based.
417  *
418  * The rdev for the device selected will have nr_pending incremented.
419  */
420 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
421 {
422 	const sector_t this_sector = r1_bio->sector;
423 	int new_disk = conf->last_used, disk = new_disk;
424 	int wonly_disk = -1;
425 	const int sectors = r1_bio->sectors;
426 	sector_t new_distance, current_distance;
427 	mdk_rdev_t *rdev;
428 
429 	rcu_read_lock();
430 	/*
431 	 * Check if we can balance. We can balance on the whole
432 	 * device if no resync is going on, or below the resync window.
433 	 * We take the first readable disk when above the resync window.
434 	 */
435  retry:
436 	if (conf->mddev->recovery_cp < MaxSector &&
437 	    (this_sector + sectors >= conf->next_resync)) {
438 		/* Choose the first operational device, for consistancy */
439 		new_disk = 0;
440 
441 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
442 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
443 		     !rdev || !test_bit(In_sync, &rdev->flags)
444 			     || test_bit(WriteMostly, &rdev->flags);
445 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
446 
447 			if (rdev && test_bit(In_sync, &rdev->flags) &&
448 				r1_bio->bios[new_disk] != IO_BLOCKED)
449 				wonly_disk = new_disk;
450 
451 			if (new_disk == conf->raid_disks - 1) {
452 				new_disk = wonly_disk;
453 				break;
454 			}
455 		}
456 		goto rb_out;
457 	}
458 
459 
460 	/* make sure the disk is operational */
461 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
462 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
463 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
464 		     test_bit(WriteMostly, &rdev->flags);
465 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
466 
467 		if (rdev && test_bit(In_sync, &rdev->flags) &&
468 		    r1_bio->bios[new_disk] != IO_BLOCKED)
469 			wonly_disk = new_disk;
470 
471 		if (new_disk <= 0)
472 			new_disk = conf->raid_disks;
473 		new_disk--;
474 		if (new_disk == disk) {
475 			new_disk = wonly_disk;
476 			break;
477 		}
478 	}
479 
480 	if (new_disk < 0)
481 		goto rb_out;
482 
483 	disk = new_disk;
484 	/* now disk == new_disk == starting point for search */
485 
486 	/*
487 	 * Don't change to another disk for sequential reads:
488 	 */
489 	if (conf->next_seq_sect == this_sector)
490 		goto rb_out;
491 	if (this_sector == conf->mirrors[new_disk].head_position)
492 		goto rb_out;
493 
494 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
495 
496 	/* Find the disk whose head is closest */
497 
498 	do {
499 		if (disk <= 0)
500 			disk = conf->raid_disks;
501 		disk--;
502 
503 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
504 
505 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
506 		    !test_bit(In_sync, &rdev->flags) ||
507 		    test_bit(WriteMostly, &rdev->flags))
508 			continue;
509 
510 		if (!atomic_read(&rdev->nr_pending)) {
511 			new_disk = disk;
512 			break;
513 		}
514 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
515 		if (new_distance < current_distance) {
516 			current_distance = new_distance;
517 			new_disk = disk;
518 		}
519 	} while (disk != conf->last_used);
520 
521  rb_out:
522 
523 
524 	if (new_disk >= 0) {
525 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
526 		if (!rdev)
527 			goto retry;
528 		atomic_inc(&rdev->nr_pending);
529 		if (!test_bit(In_sync, &rdev->flags)) {
530 			/* cannot risk returning a device that failed
531 			 * before we inc'ed nr_pending
532 			 */
533 			rdev_dec_pending(rdev, conf->mddev);
534 			goto retry;
535 		}
536 		conf->next_seq_sect = this_sector + sectors;
537 		conf->last_used = new_disk;
538 	}
539 	rcu_read_unlock();
540 
541 	return new_disk;
542 }
543 
544 static void unplug_slaves(mddev_t *mddev)
545 {
546 	conf_t *conf = mddev->private;
547 	int i;
548 
549 	rcu_read_lock();
550 	for (i=0; i<mddev->raid_disks; i++) {
551 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
552 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
553 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
554 
555 			atomic_inc(&rdev->nr_pending);
556 			rcu_read_unlock();
557 
558 			blk_unplug(r_queue);
559 
560 			rdev_dec_pending(rdev, mddev);
561 			rcu_read_lock();
562 		}
563 	}
564 	rcu_read_unlock();
565 }
566 
567 static void raid1_unplug(struct request_queue *q)
568 {
569 	mddev_t *mddev = q->queuedata;
570 
571 	unplug_slaves(mddev);
572 	md_wakeup_thread(mddev->thread);
573 }
574 
575 static int raid1_congested(void *data, int bits)
576 {
577 	mddev_t *mddev = data;
578 	conf_t *conf = mddev->private;
579 	int i, ret = 0;
580 
581 	if (mddev_congested(mddev, bits))
582 		return 1;
583 
584 	rcu_read_lock();
585 	for (i = 0; i < mddev->raid_disks; i++) {
586 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
587 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
588 			struct request_queue *q = bdev_get_queue(rdev->bdev);
589 
590 			/* Note the '|| 1' - when read_balance prefers
591 			 * non-congested targets, it can be removed
592 			 */
593 			if ((bits & (1<<BDI_async_congested)) || 1)
594 				ret |= bdi_congested(&q->backing_dev_info, bits);
595 			else
596 				ret &= bdi_congested(&q->backing_dev_info, bits);
597 		}
598 	}
599 	rcu_read_unlock();
600 	return ret;
601 }
602 
603 
604 static int flush_pending_writes(conf_t *conf)
605 {
606 	/* Any writes that have been queued but are awaiting
607 	 * bitmap updates get flushed here.
608 	 * We return 1 if any requests were actually submitted.
609 	 */
610 	int rv = 0;
611 
612 	spin_lock_irq(&conf->device_lock);
613 
614 	if (conf->pending_bio_list.head) {
615 		struct bio *bio;
616 		bio = bio_list_get(&conf->pending_bio_list);
617 		blk_remove_plug(conf->mddev->queue);
618 		spin_unlock_irq(&conf->device_lock);
619 		/* flush any pending bitmap writes to
620 		 * disk before proceeding w/ I/O */
621 		bitmap_unplug(conf->mddev->bitmap);
622 
623 		while (bio) { /* submit pending writes */
624 			struct bio *next = bio->bi_next;
625 			bio->bi_next = NULL;
626 			generic_make_request(bio);
627 			bio = next;
628 		}
629 		rv = 1;
630 	} else
631 		spin_unlock_irq(&conf->device_lock);
632 	return rv;
633 }
634 
635 /* Barriers....
636  * Sometimes we need to suspend IO while we do something else,
637  * either some resync/recovery, or reconfigure the array.
638  * To do this we raise a 'barrier'.
639  * The 'barrier' is a counter that can be raised multiple times
640  * to count how many activities are happening which preclude
641  * normal IO.
642  * We can only raise the barrier if there is no pending IO.
643  * i.e. if nr_pending == 0.
644  * We choose only to raise the barrier if no-one is waiting for the
645  * barrier to go down.  This means that as soon as an IO request
646  * is ready, no other operations which require a barrier will start
647  * until the IO request has had a chance.
648  *
649  * So: regular IO calls 'wait_barrier'.  When that returns there
650  *    is no backgroup IO happening,  It must arrange to call
651  *    allow_barrier when it has finished its IO.
652  * backgroup IO calls must call raise_barrier.  Once that returns
653  *    there is no normal IO happeing.  It must arrange to call
654  *    lower_barrier when the particular background IO completes.
655  */
656 #define RESYNC_DEPTH 32
657 
658 static void raise_barrier(conf_t *conf)
659 {
660 	spin_lock_irq(&conf->resync_lock);
661 
662 	/* Wait until no block IO is waiting */
663 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
664 			    conf->resync_lock,
665 			    raid1_unplug(conf->mddev->queue));
666 
667 	/* block any new IO from starting */
668 	conf->barrier++;
669 
670 	/* No wait for all pending IO to complete */
671 	wait_event_lock_irq(conf->wait_barrier,
672 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
673 			    conf->resync_lock,
674 			    raid1_unplug(conf->mddev->queue));
675 
676 	spin_unlock_irq(&conf->resync_lock);
677 }
678 
679 static void lower_barrier(conf_t *conf)
680 {
681 	unsigned long flags;
682 	BUG_ON(conf->barrier <= 0);
683 	spin_lock_irqsave(&conf->resync_lock, flags);
684 	conf->barrier--;
685 	spin_unlock_irqrestore(&conf->resync_lock, flags);
686 	wake_up(&conf->wait_barrier);
687 }
688 
689 static void wait_barrier(conf_t *conf)
690 {
691 	spin_lock_irq(&conf->resync_lock);
692 	if (conf->barrier) {
693 		conf->nr_waiting++;
694 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
695 				    conf->resync_lock,
696 				    raid1_unplug(conf->mddev->queue));
697 		conf->nr_waiting--;
698 	}
699 	conf->nr_pending++;
700 	spin_unlock_irq(&conf->resync_lock);
701 }
702 
703 static void allow_barrier(conf_t *conf)
704 {
705 	unsigned long flags;
706 	spin_lock_irqsave(&conf->resync_lock, flags);
707 	conf->nr_pending--;
708 	spin_unlock_irqrestore(&conf->resync_lock, flags);
709 	wake_up(&conf->wait_barrier);
710 }
711 
712 static void freeze_array(conf_t *conf)
713 {
714 	/* stop syncio and normal IO and wait for everything to
715 	 * go quite.
716 	 * We increment barrier and nr_waiting, and then
717 	 * wait until nr_pending match nr_queued+1
718 	 * This is called in the context of one normal IO request
719 	 * that has failed. Thus any sync request that might be pending
720 	 * will be blocked by nr_pending, and we need to wait for
721 	 * pending IO requests to complete or be queued for re-try.
722 	 * Thus the number queued (nr_queued) plus this request (1)
723 	 * must match the number of pending IOs (nr_pending) before
724 	 * we continue.
725 	 */
726 	spin_lock_irq(&conf->resync_lock);
727 	conf->barrier++;
728 	conf->nr_waiting++;
729 	wait_event_lock_irq(conf->wait_barrier,
730 			    conf->nr_pending == conf->nr_queued+1,
731 			    conf->resync_lock,
732 			    ({ flush_pending_writes(conf);
733 			       raid1_unplug(conf->mddev->queue); }));
734 	spin_unlock_irq(&conf->resync_lock);
735 }
736 static void unfreeze_array(conf_t *conf)
737 {
738 	/* reverse the effect of the freeze */
739 	spin_lock_irq(&conf->resync_lock);
740 	conf->barrier--;
741 	conf->nr_waiting--;
742 	wake_up(&conf->wait_barrier);
743 	spin_unlock_irq(&conf->resync_lock);
744 }
745 
746 
747 /* duplicate the data pages for behind I/O */
748 static struct page **alloc_behind_pages(struct bio *bio)
749 {
750 	int i;
751 	struct bio_vec *bvec;
752 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
753 					GFP_NOIO);
754 	if (unlikely(!pages))
755 		goto do_sync_io;
756 
757 	bio_for_each_segment(bvec, bio, i) {
758 		pages[i] = alloc_page(GFP_NOIO);
759 		if (unlikely(!pages[i]))
760 			goto do_sync_io;
761 		memcpy(kmap(pages[i]) + bvec->bv_offset,
762 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
763 		kunmap(pages[i]);
764 		kunmap(bvec->bv_page);
765 	}
766 
767 	return pages;
768 
769 do_sync_io:
770 	if (pages)
771 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
772 			put_page(pages[i]);
773 	kfree(pages);
774 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
775 	return NULL;
776 }
777 
778 static int make_request(mddev_t *mddev, struct bio * bio)
779 {
780 	conf_t *conf = mddev->private;
781 	mirror_info_t *mirror;
782 	r1bio_t *r1_bio;
783 	struct bio *read_bio;
784 	int i, targets = 0, disks;
785 	struct bitmap *bitmap;
786 	unsigned long flags;
787 	struct bio_list bl;
788 	struct page **behind_pages = NULL;
789 	const int rw = bio_data_dir(bio);
790 	const bool do_sync = (bio->bi_rw & REQ_SYNC);
791 	bool do_barriers;
792 	mdk_rdev_t *blocked_rdev;
793 
794 	/*
795 	 * Register the new request and wait if the reconstruction
796 	 * thread has put up a bar for new requests.
797 	 * Continue immediately if no resync is active currently.
798 	 * We test barriers_work *after* md_write_start as md_write_start
799 	 * may cause the first superblock write, and that will check out
800 	 * if barriers work.
801 	 */
802 
803 	md_write_start(mddev, bio); /* wait on superblock update early */
804 
805 	if (bio_data_dir(bio) == WRITE &&
806 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
807 	    bio->bi_sector < mddev->suspend_hi) {
808 		/* As the suspend_* range is controlled by
809 		 * userspace, we want an interruptible
810 		 * wait.
811 		 */
812 		DEFINE_WAIT(w);
813 		for (;;) {
814 			flush_signals(current);
815 			prepare_to_wait(&conf->wait_barrier,
816 					&w, TASK_INTERRUPTIBLE);
817 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
818 			    bio->bi_sector >= mddev->suspend_hi)
819 				break;
820 			schedule();
821 		}
822 		finish_wait(&conf->wait_barrier, &w);
823 	}
824 	if (unlikely(!mddev->barriers_work &&
825 		     (bio->bi_rw & REQ_HARDBARRIER))) {
826 		if (rw == WRITE)
827 			md_write_end(mddev);
828 		bio_endio(bio, -EOPNOTSUPP);
829 		return 0;
830 	}
831 
832 	wait_barrier(conf);
833 
834 	bitmap = mddev->bitmap;
835 
836 	/*
837 	 * make_request() can abort the operation when READA is being
838 	 * used and no empty request is available.
839 	 *
840 	 */
841 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
842 
843 	r1_bio->master_bio = bio;
844 	r1_bio->sectors = bio->bi_size >> 9;
845 	r1_bio->state = 0;
846 	r1_bio->mddev = mddev;
847 	r1_bio->sector = bio->bi_sector;
848 
849 	if (rw == READ) {
850 		/*
851 		 * read balancing logic:
852 		 */
853 		int rdisk = read_balance(conf, r1_bio);
854 
855 		if (rdisk < 0) {
856 			/* couldn't find anywhere to read from */
857 			raid_end_bio_io(r1_bio);
858 			return 0;
859 		}
860 		mirror = conf->mirrors + rdisk;
861 
862 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
863 		    bitmap) {
864 			/* Reading from a write-mostly device must
865 			 * take care not to over-take any writes
866 			 * that are 'behind'
867 			 */
868 			wait_event(bitmap->behind_wait,
869 				   atomic_read(&bitmap->behind_writes) == 0);
870 		}
871 		r1_bio->read_disk = rdisk;
872 
873 		read_bio = bio_clone(bio, GFP_NOIO);
874 
875 		r1_bio->bios[rdisk] = read_bio;
876 
877 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
878 		read_bio->bi_bdev = mirror->rdev->bdev;
879 		read_bio->bi_end_io = raid1_end_read_request;
880 		read_bio->bi_rw = READ | do_sync;
881 		read_bio->bi_private = r1_bio;
882 
883 		generic_make_request(read_bio);
884 		return 0;
885 	}
886 
887 	/*
888 	 * WRITE:
889 	 */
890 	/* first select target devices under spinlock and
891 	 * inc refcount on their rdev.  Record them by setting
892 	 * bios[x] to bio
893 	 */
894 	disks = conf->raid_disks;
895 #if 0
896 	{ static int first=1;
897 	if (first) printk("First Write sector %llu disks %d\n",
898 			  (unsigned long long)r1_bio->sector, disks);
899 	first = 0;
900 	}
901 #endif
902  retry_write:
903 	blocked_rdev = NULL;
904 	rcu_read_lock();
905 	for (i = 0;  i < disks; i++) {
906 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
907 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
908 			atomic_inc(&rdev->nr_pending);
909 			blocked_rdev = rdev;
910 			break;
911 		}
912 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
913 			atomic_inc(&rdev->nr_pending);
914 			if (test_bit(Faulty, &rdev->flags)) {
915 				rdev_dec_pending(rdev, mddev);
916 				r1_bio->bios[i] = NULL;
917 			} else {
918 				r1_bio->bios[i] = bio;
919 				targets++;
920 			}
921 		} else
922 			r1_bio->bios[i] = NULL;
923 	}
924 	rcu_read_unlock();
925 
926 	if (unlikely(blocked_rdev)) {
927 		/* Wait for this device to become unblocked */
928 		int j;
929 
930 		for (j = 0; j < i; j++)
931 			if (r1_bio->bios[j])
932 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
933 
934 		allow_barrier(conf);
935 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
936 		wait_barrier(conf);
937 		goto retry_write;
938 	}
939 
940 	BUG_ON(targets == 0); /* we never fail the last device */
941 
942 	if (targets < conf->raid_disks) {
943 		/* array is degraded, we will not clear the bitmap
944 		 * on I/O completion (see raid1_end_write_request) */
945 		set_bit(R1BIO_Degraded, &r1_bio->state);
946 	}
947 
948 	/* do behind I/O ?
949 	 * Not if there are too many, or cannot allocate memory,
950 	 * or a reader on WriteMostly is waiting for behind writes
951 	 * to flush */
952 	if (bitmap &&
953 	    (atomic_read(&bitmap->behind_writes)
954 	     < mddev->bitmap_info.max_write_behind) &&
955 	    !waitqueue_active(&bitmap->behind_wait) &&
956 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
957 		set_bit(R1BIO_BehindIO, &r1_bio->state);
958 
959 	atomic_set(&r1_bio->remaining, 0);
960 	atomic_set(&r1_bio->behind_remaining, 0);
961 
962 	do_barriers = bio->bi_rw & REQ_HARDBARRIER;
963 	if (do_barriers)
964 		set_bit(R1BIO_Barrier, &r1_bio->state);
965 
966 	bio_list_init(&bl);
967 	for (i = 0; i < disks; i++) {
968 		struct bio *mbio;
969 		if (!r1_bio->bios[i])
970 			continue;
971 
972 		mbio = bio_clone(bio, GFP_NOIO);
973 		r1_bio->bios[i] = mbio;
974 
975 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
976 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
977 		mbio->bi_end_io	= raid1_end_write_request;
978 		mbio->bi_rw = WRITE | do_barriers | do_sync;
979 		mbio->bi_private = r1_bio;
980 
981 		if (behind_pages) {
982 			struct bio_vec *bvec;
983 			int j;
984 
985 			/* Yes, I really want the '__' version so that
986 			 * we clear any unused pointer in the io_vec, rather
987 			 * than leave them unchanged.  This is important
988 			 * because when we come to free the pages, we won't
989 			 * know the originial bi_idx, so we just free
990 			 * them all
991 			 */
992 			__bio_for_each_segment(bvec, mbio, j, 0)
993 				bvec->bv_page = behind_pages[j];
994 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
995 				atomic_inc(&r1_bio->behind_remaining);
996 		}
997 
998 		atomic_inc(&r1_bio->remaining);
999 
1000 		bio_list_add(&bl, mbio);
1001 	}
1002 	kfree(behind_pages); /* the behind pages are attached to the bios now */
1003 
1004 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
1005 				test_bit(R1BIO_BehindIO, &r1_bio->state));
1006 	spin_lock_irqsave(&conf->device_lock, flags);
1007 	bio_list_merge(&conf->pending_bio_list, &bl);
1008 	bio_list_init(&bl);
1009 
1010 	blk_plug_device(mddev->queue);
1011 	spin_unlock_irqrestore(&conf->device_lock, flags);
1012 
1013 	/* In case raid1d snuck into freeze_array */
1014 	wake_up(&conf->wait_barrier);
1015 
1016 	if (do_sync)
1017 		md_wakeup_thread(mddev->thread);
1018 #if 0
1019 	while ((bio = bio_list_pop(&bl)) != NULL)
1020 		generic_make_request(bio);
1021 #endif
1022 
1023 	return 0;
1024 }
1025 
1026 static void status(struct seq_file *seq, mddev_t *mddev)
1027 {
1028 	conf_t *conf = mddev->private;
1029 	int i;
1030 
1031 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1032 		   conf->raid_disks - mddev->degraded);
1033 	rcu_read_lock();
1034 	for (i = 0; i < conf->raid_disks; i++) {
1035 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1036 		seq_printf(seq, "%s",
1037 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1038 	}
1039 	rcu_read_unlock();
1040 	seq_printf(seq, "]");
1041 }
1042 
1043 
1044 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1045 {
1046 	char b[BDEVNAME_SIZE];
1047 	conf_t *conf = mddev->private;
1048 
1049 	/*
1050 	 * If it is not operational, then we have already marked it as dead
1051 	 * else if it is the last working disks, ignore the error, let the
1052 	 * next level up know.
1053 	 * else mark the drive as failed
1054 	 */
1055 	if (test_bit(In_sync, &rdev->flags)
1056 	    && (conf->raid_disks - mddev->degraded) == 1) {
1057 		/*
1058 		 * Don't fail the drive, act as though we were just a
1059 		 * normal single drive.
1060 		 * However don't try a recovery from this drive as
1061 		 * it is very likely to fail.
1062 		 */
1063 		mddev->recovery_disabled = 1;
1064 		return;
1065 	}
1066 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1067 		unsigned long flags;
1068 		spin_lock_irqsave(&conf->device_lock, flags);
1069 		mddev->degraded++;
1070 		set_bit(Faulty, &rdev->flags);
1071 		spin_unlock_irqrestore(&conf->device_lock, flags);
1072 		/*
1073 		 * if recovery is running, make sure it aborts.
1074 		 */
1075 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1076 	} else
1077 		set_bit(Faulty, &rdev->flags);
1078 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1079 	printk(KERN_ALERT "md/raid1:%s: Disk failure on %s, disabling device.\n"
1080 	       KERN_ALERT "md/raid1:%s: Operation continuing on %d devices.\n",
1081 	       mdname(mddev), bdevname(rdev->bdev, b),
1082 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1083 }
1084 
1085 static void print_conf(conf_t *conf)
1086 {
1087 	int i;
1088 
1089 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1090 	if (!conf) {
1091 		printk(KERN_DEBUG "(!conf)\n");
1092 		return;
1093 	}
1094 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1095 		conf->raid_disks);
1096 
1097 	rcu_read_lock();
1098 	for (i = 0; i < conf->raid_disks; i++) {
1099 		char b[BDEVNAME_SIZE];
1100 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1101 		if (rdev)
1102 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1103 			       i, !test_bit(In_sync, &rdev->flags),
1104 			       !test_bit(Faulty, &rdev->flags),
1105 			       bdevname(rdev->bdev,b));
1106 	}
1107 	rcu_read_unlock();
1108 }
1109 
1110 static void close_sync(conf_t *conf)
1111 {
1112 	wait_barrier(conf);
1113 	allow_barrier(conf);
1114 
1115 	mempool_destroy(conf->r1buf_pool);
1116 	conf->r1buf_pool = NULL;
1117 }
1118 
1119 static int raid1_spare_active(mddev_t *mddev)
1120 {
1121 	int i;
1122 	conf_t *conf = mddev->private;
1123 
1124 	/*
1125 	 * Find all failed disks within the RAID1 configuration
1126 	 * and mark them readable.
1127 	 * Called under mddev lock, so rcu protection not needed.
1128 	 */
1129 	for (i = 0; i < conf->raid_disks; i++) {
1130 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1131 		if (rdev
1132 		    && !test_bit(Faulty, &rdev->flags)
1133 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1134 			unsigned long flags;
1135 			spin_lock_irqsave(&conf->device_lock, flags);
1136 			mddev->degraded--;
1137 			spin_unlock_irqrestore(&conf->device_lock, flags);
1138 		}
1139 	}
1140 
1141 	print_conf(conf);
1142 	return 0;
1143 }
1144 
1145 
1146 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1147 {
1148 	conf_t *conf = mddev->private;
1149 	int err = -EEXIST;
1150 	int mirror = 0;
1151 	mirror_info_t *p;
1152 	int first = 0;
1153 	int last = mddev->raid_disks - 1;
1154 
1155 	if (rdev->raid_disk >= 0)
1156 		first = last = rdev->raid_disk;
1157 
1158 	for (mirror = first; mirror <= last; mirror++)
1159 		if ( !(p=conf->mirrors+mirror)->rdev) {
1160 
1161 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1162 					  rdev->data_offset << 9);
1163 			/* as we don't honour merge_bvec_fn, we must
1164 			 * never risk violating it, so limit
1165 			 * ->max_segments to one lying with a single
1166 			 * page, as a one page request is never in
1167 			 * violation.
1168 			 */
1169 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1170 				blk_queue_max_segments(mddev->queue, 1);
1171 				blk_queue_segment_boundary(mddev->queue,
1172 							   PAGE_CACHE_SIZE - 1);
1173 			}
1174 
1175 			p->head_position = 0;
1176 			rdev->raid_disk = mirror;
1177 			err = 0;
1178 			/* As all devices are equivalent, we don't need a full recovery
1179 			 * if this was recently any drive of the array
1180 			 */
1181 			if (rdev->saved_raid_disk < 0)
1182 				conf->fullsync = 1;
1183 			rcu_assign_pointer(p->rdev, rdev);
1184 			break;
1185 		}
1186 	md_integrity_add_rdev(rdev, mddev);
1187 	print_conf(conf);
1188 	return err;
1189 }
1190 
1191 static int raid1_remove_disk(mddev_t *mddev, int number)
1192 {
1193 	conf_t *conf = mddev->private;
1194 	int err = 0;
1195 	mdk_rdev_t *rdev;
1196 	mirror_info_t *p = conf->mirrors+ number;
1197 
1198 	print_conf(conf);
1199 	rdev = p->rdev;
1200 	if (rdev) {
1201 		if (test_bit(In_sync, &rdev->flags) ||
1202 		    atomic_read(&rdev->nr_pending)) {
1203 			err = -EBUSY;
1204 			goto abort;
1205 		}
1206 		/* Only remove non-faulty devices is recovery
1207 		 * is not possible.
1208 		 */
1209 		if (!test_bit(Faulty, &rdev->flags) &&
1210 		    mddev->degraded < conf->raid_disks) {
1211 			err = -EBUSY;
1212 			goto abort;
1213 		}
1214 		p->rdev = NULL;
1215 		synchronize_rcu();
1216 		if (atomic_read(&rdev->nr_pending)) {
1217 			/* lost the race, try later */
1218 			err = -EBUSY;
1219 			p->rdev = rdev;
1220 			goto abort;
1221 		}
1222 		md_integrity_register(mddev);
1223 	}
1224 abort:
1225 
1226 	print_conf(conf);
1227 	return err;
1228 }
1229 
1230 
1231 static void end_sync_read(struct bio *bio, int error)
1232 {
1233 	r1bio_t *r1_bio = bio->bi_private;
1234 	int i;
1235 
1236 	for (i=r1_bio->mddev->raid_disks; i--; )
1237 		if (r1_bio->bios[i] == bio)
1238 			break;
1239 	BUG_ON(i < 0);
1240 	update_head_pos(i, r1_bio);
1241 	/*
1242 	 * we have read a block, now it needs to be re-written,
1243 	 * or re-read if the read failed.
1244 	 * We don't do much here, just schedule handling by raid1d
1245 	 */
1246 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1247 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1248 
1249 	if (atomic_dec_and_test(&r1_bio->remaining))
1250 		reschedule_retry(r1_bio);
1251 }
1252 
1253 static void end_sync_write(struct bio *bio, int error)
1254 {
1255 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1256 	r1bio_t *r1_bio = bio->bi_private;
1257 	mddev_t *mddev = r1_bio->mddev;
1258 	conf_t *conf = mddev->private;
1259 	int i;
1260 	int mirror=0;
1261 
1262 	for (i = 0; i < conf->raid_disks; i++)
1263 		if (r1_bio->bios[i] == bio) {
1264 			mirror = i;
1265 			break;
1266 		}
1267 	if (!uptodate) {
1268 		int sync_blocks = 0;
1269 		sector_t s = r1_bio->sector;
1270 		long sectors_to_go = r1_bio->sectors;
1271 		/* make sure these bits doesn't get cleared. */
1272 		do {
1273 			bitmap_end_sync(mddev->bitmap, s,
1274 					&sync_blocks, 1);
1275 			s += sync_blocks;
1276 			sectors_to_go -= sync_blocks;
1277 		} while (sectors_to_go > 0);
1278 		md_error(mddev, conf->mirrors[mirror].rdev);
1279 	}
1280 
1281 	update_head_pos(mirror, r1_bio);
1282 
1283 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1284 		sector_t s = r1_bio->sectors;
1285 		put_buf(r1_bio);
1286 		md_done_sync(mddev, s, uptodate);
1287 	}
1288 }
1289 
1290 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1291 {
1292 	conf_t *conf = mddev->private;
1293 	int i;
1294 	int disks = conf->raid_disks;
1295 	struct bio *bio, *wbio;
1296 
1297 	bio = r1_bio->bios[r1_bio->read_disk];
1298 
1299 
1300 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1301 		/* We have read all readable devices.  If we haven't
1302 		 * got the block, then there is no hope left.
1303 		 * If we have, then we want to do a comparison
1304 		 * and skip the write if everything is the same.
1305 		 * If any blocks failed to read, then we need to
1306 		 * attempt an over-write
1307 		 */
1308 		int primary;
1309 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1310 			for (i=0; i<mddev->raid_disks; i++)
1311 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1312 					md_error(mddev, conf->mirrors[i].rdev);
1313 
1314 			md_done_sync(mddev, r1_bio->sectors, 1);
1315 			put_buf(r1_bio);
1316 			return;
1317 		}
1318 		for (primary=0; primary<mddev->raid_disks; primary++)
1319 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1320 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1321 				r1_bio->bios[primary]->bi_end_io = NULL;
1322 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1323 				break;
1324 			}
1325 		r1_bio->read_disk = primary;
1326 		for (i=0; i<mddev->raid_disks; i++)
1327 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1328 				int j;
1329 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1330 				struct bio *pbio = r1_bio->bios[primary];
1331 				struct bio *sbio = r1_bio->bios[i];
1332 
1333 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1334 					for (j = vcnt; j-- ; ) {
1335 						struct page *p, *s;
1336 						p = pbio->bi_io_vec[j].bv_page;
1337 						s = sbio->bi_io_vec[j].bv_page;
1338 						if (memcmp(page_address(p),
1339 							   page_address(s),
1340 							   PAGE_SIZE))
1341 							break;
1342 					}
1343 				} else
1344 					j = 0;
1345 				if (j >= 0)
1346 					mddev->resync_mismatches += r1_bio->sectors;
1347 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1348 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1349 					sbio->bi_end_io = NULL;
1350 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1351 				} else {
1352 					/* fixup the bio for reuse */
1353 					int size;
1354 					sbio->bi_vcnt = vcnt;
1355 					sbio->bi_size = r1_bio->sectors << 9;
1356 					sbio->bi_idx = 0;
1357 					sbio->bi_phys_segments = 0;
1358 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1359 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1360 					sbio->bi_next = NULL;
1361 					sbio->bi_sector = r1_bio->sector +
1362 						conf->mirrors[i].rdev->data_offset;
1363 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1364 					size = sbio->bi_size;
1365 					for (j = 0; j < vcnt ; j++) {
1366 						struct bio_vec *bi;
1367 						bi = &sbio->bi_io_vec[j];
1368 						bi->bv_offset = 0;
1369 						if (size > PAGE_SIZE)
1370 							bi->bv_len = PAGE_SIZE;
1371 						else
1372 							bi->bv_len = size;
1373 						size -= PAGE_SIZE;
1374 						memcpy(page_address(bi->bv_page),
1375 						       page_address(pbio->bi_io_vec[j].bv_page),
1376 						       PAGE_SIZE);
1377 					}
1378 
1379 				}
1380 			}
1381 	}
1382 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1383 		/* ouch - failed to read all of that.
1384 		 * Try some synchronous reads of other devices to get
1385 		 * good data, much like with normal read errors.  Only
1386 		 * read into the pages we already have so we don't
1387 		 * need to re-issue the read request.
1388 		 * We don't need to freeze the array, because being in an
1389 		 * active sync request, there is no normal IO, and
1390 		 * no overlapping syncs.
1391 		 */
1392 		sector_t sect = r1_bio->sector;
1393 		int sectors = r1_bio->sectors;
1394 		int idx = 0;
1395 
1396 		while(sectors) {
1397 			int s = sectors;
1398 			int d = r1_bio->read_disk;
1399 			int success = 0;
1400 			mdk_rdev_t *rdev;
1401 
1402 			if (s > (PAGE_SIZE>>9))
1403 				s = PAGE_SIZE >> 9;
1404 			do {
1405 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1406 					/* No rcu protection needed here devices
1407 					 * can only be removed when no resync is
1408 					 * active, and resync is currently active
1409 					 */
1410 					rdev = conf->mirrors[d].rdev;
1411 					if (sync_page_io(rdev->bdev,
1412 							 sect + rdev->data_offset,
1413 							 s<<9,
1414 							 bio->bi_io_vec[idx].bv_page,
1415 							 READ)) {
1416 						success = 1;
1417 						break;
1418 					}
1419 				}
1420 				d++;
1421 				if (d == conf->raid_disks)
1422 					d = 0;
1423 			} while (!success && d != r1_bio->read_disk);
1424 
1425 			if (success) {
1426 				int start = d;
1427 				/* write it back and re-read */
1428 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1429 				while (d != r1_bio->read_disk) {
1430 					if (d == 0)
1431 						d = conf->raid_disks;
1432 					d--;
1433 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1434 						continue;
1435 					rdev = conf->mirrors[d].rdev;
1436 					atomic_add(s, &rdev->corrected_errors);
1437 					if (sync_page_io(rdev->bdev,
1438 							 sect + rdev->data_offset,
1439 							 s<<9,
1440 							 bio->bi_io_vec[idx].bv_page,
1441 							 WRITE) == 0)
1442 						md_error(mddev, rdev);
1443 				}
1444 				d = start;
1445 				while (d != r1_bio->read_disk) {
1446 					if (d == 0)
1447 						d = conf->raid_disks;
1448 					d--;
1449 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1450 						continue;
1451 					rdev = conf->mirrors[d].rdev;
1452 					if (sync_page_io(rdev->bdev,
1453 							 sect + rdev->data_offset,
1454 							 s<<9,
1455 							 bio->bi_io_vec[idx].bv_page,
1456 							 READ) == 0)
1457 						md_error(mddev, rdev);
1458 				}
1459 			} else {
1460 				char b[BDEVNAME_SIZE];
1461 				/* Cannot read from anywhere, array is toast */
1462 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1463 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1464 				       " for block %llu\n",
1465 				       mdname(mddev),
1466 				       bdevname(bio->bi_bdev, b),
1467 				       (unsigned long long)r1_bio->sector);
1468 				md_done_sync(mddev, r1_bio->sectors, 0);
1469 				put_buf(r1_bio);
1470 				return;
1471 			}
1472 			sectors -= s;
1473 			sect += s;
1474 			idx ++;
1475 		}
1476 	}
1477 
1478 	/*
1479 	 * schedule writes
1480 	 */
1481 	atomic_set(&r1_bio->remaining, 1);
1482 	for (i = 0; i < disks ; i++) {
1483 		wbio = r1_bio->bios[i];
1484 		if (wbio->bi_end_io == NULL ||
1485 		    (wbio->bi_end_io == end_sync_read &&
1486 		     (i == r1_bio->read_disk ||
1487 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1488 			continue;
1489 
1490 		wbio->bi_rw = WRITE;
1491 		wbio->bi_end_io = end_sync_write;
1492 		atomic_inc(&r1_bio->remaining);
1493 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1494 
1495 		generic_make_request(wbio);
1496 	}
1497 
1498 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1499 		/* if we're here, all write(s) have completed, so clean up */
1500 		md_done_sync(mddev, r1_bio->sectors, 1);
1501 		put_buf(r1_bio);
1502 	}
1503 }
1504 
1505 /*
1506  * This is a kernel thread which:
1507  *
1508  *	1.	Retries failed read operations on working mirrors.
1509  *	2.	Updates the raid superblock when problems encounter.
1510  *	3.	Performs writes following reads for array syncronising.
1511  */
1512 
1513 static void fix_read_error(conf_t *conf, int read_disk,
1514 			   sector_t sect, int sectors)
1515 {
1516 	mddev_t *mddev = conf->mddev;
1517 	while(sectors) {
1518 		int s = sectors;
1519 		int d = read_disk;
1520 		int success = 0;
1521 		int start;
1522 		mdk_rdev_t *rdev;
1523 
1524 		if (s > (PAGE_SIZE>>9))
1525 			s = PAGE_SIZE >> 9;
1526 
1527 		do {
1528 			/* Note: no rcu protection needed here
1529 			 * as this is synchronous in the raid1d thread
1530 			 * which is the thread that might remove
1531 			 * a device.  If raid1d ever becomes multi-threaded....
1532 			 */
1533 			rdev = conf->mirrors[d].rdev;
1534 			if (rdev &&
1535 			    test_bit(In_sync, &rdev->flags) &&
1536 			    sync_page_io(rdev->bdev,
1537 					 sect + rdev->data_offset,
1538 					 s<<9,
1539 					 conf->tmppage, READ))
1540 				success = 1;
1541 			else {
1542 				d++;
1543 				if (d == conf->raid_disks)
1544 					d = 0;
1545 			}
1546 		} while (!success && d != read_disk);
1547 
1548 		if (!success) {
1549 			/* Cannot read from anywhere -- bye bye array */
1550 			md_error(mddev, conf->mirrors[read_disk].rdev);
1551 			break;
1552 		}
1553 		/* write it back and re-read */
1554 		start = d;
1555 		while (d != read_disk) {
1556 			if (d==0)
1557 				d = conf->raid_disks;
1558 			d--;
1559 			rdev = conf->mirrors[d].rdev;
1560 			if (rdev &&
1561 			    test_bit(In_sync, &rdev->flags)) {
1562 				if (sync_page_io(rdev->bdev,
1563 						 sect + rdev->data_offset,
1564 						 s<<9, conf->tmppage, WRITE)
1565 				    == 0)
1566 					/* Well, this device is dead */
1567 					md_error(mddev, rdev);
1568 			}
1569 		}
1570 		d = start;
1571 		while (d != read_disk) {
1572 			char b[BDEVNAME_SIZE];
1573 			if (d==0)
1574 				d = conf->raid_disks;
1575 			d--;
1576 			rdev = conf->mirrors[d].rdev;
1577 			if (rdev &&
1578 			    test_bit(In_sync, &rdev->flags)) {
1579 				if (sync_page_io(rdev->bdev,
1580 						 sect + rdev->data_offset,
1581 						 s<<9, conf->tmppage, READ)
1582 				    == 0)
1583 					/* Well, this device is dead */
1584 					md_error(mddev, rdev);
1585 				else {
1586 					atomic_add(s, &rdev->corrected_errors);
1587 					printk(KERN_INFO
1588 					       "md/raid1:%s: read error corrected "
1589 					       "(%d sectors at %llu on %s)\n",
1590 					       mdname(mddev), s,
1591 					       (unsigned long long)(sect +
1592 					           rdev->data_offset),
1593 					       bdevname(rdev->bdev, b));
1594 				}
1595 			}
1596 		}
1597 		sectors -= s;
1598 		sect += s;
1599 	}
1600 }
1601 
1602 static void raid1d(mddev_t *mddev)
1603 {
1604 	r1bio_t *r1_bio;
1605 	struct bio *bio;
1606 	unsigned long flags;
1607 	conf_t *conf = mddev->private;
1608 	struct list_head *head = &conf->retry_list;
1609 	int unplug=0;
1610 	mdk_rdev_t *rdev;
1611 
1612 	md_check_recovery(mddev);
1613 
1614 	for (;;) {
1615 		char b[BDEVNAME_SIZE];
1616 
1617 		unplug += flush_pending_writes(conf);
1618 
1619 		spin_lock_irqsave(&conf->device_lock, flags);
1620 		if (list_empty(head)) {
1621 			spin_unlock_irqrestore(&conf->device_lock, flags);
1622 			break;
1623 		}
1624 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1625 		list_del(head->prev);
1626 		conf->nr_queued--;
1627 		spin_unlock_irqrestore(&conf->device_lock, flags);
1628 
1629 		mddev = r1_bio->mddev;
1630 		conf = mddev->private;
1631 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1632 			sync_request_write(mddev, r1_bio);
1633 			unplug = 1;
1634 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1635 			/* some requests in the r1bio were REQ_HARDBARRIER
1636 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1637 			 * Better resubmit without the barrier.
1638 			 * We know which devices to resubmit for, because
1639 			 * all others have had their bios[] entry cleared.
1640 			 * We already have a nr_pending reference on these rdevs.
1641 			 */
1642 			int i;
1643 			const bool do_sync = (r1_bio->master_bio->bi_rw & REQ_SYNC);
1644 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1645 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1646 			for (i=0; i < conf->raid_disks; i++)
1647 				if (r1_bio->bios[i])
1648 					atomic_inc(&r1_bio->remaining);
1649 			for (i=0; i < conf->raid_disks; i++)
1650 				if (r1_bio->bios[i]) {
1651 					struct bio_vec *bvec;
1652 					int j;
1653 
1654 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1655 					/* copy pages from the failed bio, as
1656 					 * this might be a write-behind device */
1657 					__bio_for_each_segment(bvec, bio, j, 0)
1658 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1659 					bio_put(r1_bio->bios[i]);
1660 					bio->bi_sector = r1_bio->sector +
1661 						conf->mirrors[i].rdev->data_offset;
1662 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1663 					bio->bi_end_io = raid1_end_write_request;
1664 					bio->bi_rw = WRITE | do_sync;
1665 					bio->bi_private = r1_bio;
1666 					r1_bio->bios[i] = bio;
1667 					generic_make_request(bio);
1668 				}
1669 		} else {
1670 			int disk;
1671 
1672 			/* we got a read error. Maybe the drive is bad.  Maybe just
1673 			 * the block and we can fix it.
1674 			 * We freeze all other IO, and try reading the block from
1675 			 * other devices.  When we find one, we re-write
1676 			 * and check it that fixes the read error.
1677 			 * This is all done synchronously while the array is
1678 			 * frozen
1679 			 */
1680 			if (mddev->ro == 0) {
1681 				freeze_array(conf);
1682 				fix_read_error(conf, r1_bio->read_disk,
1683 					       r1_bio->sector,
1684 					       r1_bio->sectors);
1685 				unfreeze_array(conf);
1686 			} else
1687 				md_error(mddev,
1688 					 conf->mirrors[r1_bio->read_disk].rdev);
1689 
1690 			bio = r1_bio->bios[r1_bio->read_disk];
1691 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1692 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1693 				       " read error for block %llu\n",
1694 				       mdname(mddev),
1695 				       bdevname(bio->bi_bdev,b),
1696 				       (unsigned long long)r1_bio->sector);
1697 				raid_end_bio_io(r1_bio);
1698 			} else {
1699 				const bool do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1700 				r1_bio->bios[r1_bio->read_disk] =
1701 					mddev->ro ? IO_BLOCKED : NULL;
1702 				r1_bio->read_disk = disk;
1703 				bio_put(bio);
1704 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1705 				r1_bio->bios[r1_bio->read_disk] = bio;
1706 				rdev = conf->mirrors[disk].rdev;
1707 				if (printk_ratelimit())
1708 					printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1709 					       " other mirror: %s\n",
1710 					       mdname(mddev),
1711 					       (unsigned long long)r1_bio->sector,
1712 					       bdevname(rdev->bdev,b));
1713 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1714 				bio->bi_bdev = rdev->bdev;
1715 				bio->bi_end_io = raid1_end_read_request;
1716 				bio->bi_rw = READ | do_sync;
1717 				bio->bi_private = r1_bio;
1718 				unplug = 1;
1719 				generic_make_request(bio);
1720 			}
1721 		}
1722 		cond_resched();
1723 	}
1724 	if (unplug)
1725 		unplug_slaves(mddev);
1726 }
1727 
1728 
1729 static int init_resync(conf_t *conf)
1730 {
1731 	int buffs;
1732 
1733 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1734 	BUG_ON(conf->r1buf_pool);
1735 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1736 					  conf->poolinfo);
1737 	if (!conf->r1buf_pool)
1738 		return -ENOMEM;
1739 	conf->next_resync = 0;
1740 	return 0;
1741 }
1742 
1743 /*
1744  * perform a "sync" on one "block"
1745  *
1746  * We need to make sure that no normal I/O request - particularly write
1747  * requests - conflict with active sync requests.
1748  *
1749  * This is achieved by tracking pending requests and a 'barrier' concept
1750  * that can be installed to exclude normal IO requests.
1751  */
1752 
1753 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1754 {
1755 	conf_t *conf = mddev->private;
1756 	r1bio_t *r1_bio;
1757 	struct bio *bio;
1758 	sector_t max_sector, nr_sectors;
1759 	int disk = -1;
1760 	int i;
1761 	int wonly = -1;
1762 	int write_targets = 0, read_targets = 0;
1763 	int sync_blocks;
1764 	int still_degraded = 0;
1765 
1766 	if (!conf->r1buf_pool)
1767 		if (init_resync(conf))
1768 			return 0;
1769 
1770 	max_sector = mddev->dev_sectors;
1771 	if (sector_nr >= max_sector) {
1772 		/* If we aborted, we need to abort the
1773 		 * sync on the 'current' bitmap chunk (there will
1774 		 * only be one in raid1 resync.
1775 		 * We can find the current addess in mddev->curr_resync
1776 		 */
1777 		if (mddev->curr_resync < max_sector) /* aborted */
1778 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1779 						&sync_blocks, 1);
1780 		else /* completed sync */
1781 			conf->fullsync = 0;
1782 
1783 		bitmap_close_sync(mddev->bitmap);
1784 		close_sync(conf);
1785 		return 0;
1786 	}
1787 
1788 	if (mddev->bitmap == NULL &&
1789 	    mddev->recovery_cp == MaxSector &&
1790 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1791 	    conf->fullsync == 0) {
1792 		*skipped = 1;
1793 		return max_sector - sector_nr;
1794 	}
1795 	/* before building a request, check if we can skip these blocks..
1796 	 * This call the bitmap_start_sync doesn't actually record anything
1797 	 */
1798 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1799 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1800 		/* We can skip this block, and probably several more */
1801 		*skipped = 1;
1802 		return sync_blocks;
1803 	}
1804 	/*
1805 	 * If there is non-resync activity waiting for a turn,
1806 	 * and resync is going fast enough,
1807 	 * then let it though before starting on this new sync request.
1808 	 */
1809 	if (!go_faster && conf->nr_waiting)
1810 		msleep_interruptible(1000);
1811 
1812 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1813 	raise_barrier(conf);
1814 
1815 	conf->next_resync = sector_nr;
1816 
1817 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1818 	rcu_read_lock();
1819 	/*
1820 	 * If we get a correctably read error during resync or recovery,
1821 	 * we might want to read from a different device.  So we
1822 	 * flag all drives that could conceivably be read from for READ,
1823 	 * and any others (which will be non-In_sync devices) for WRITE.
1824 	 * If a read fails, we try reading from something else for which READ
1825 	 * is OK.
1826 	 */
1827 
1828 	r1_bio->mddev = mddev;
1829 	r1_bio->sector = sector_nr;
1830 	r1_bio->state = 0;
1831 	set_bit(R1BIO_IsSync, &r1_bio->state);
1832 
1833 	for (i=0; i < conf->raid_disks; i++) {
1834 		mdk_rdev_t *rdev;
1835 		bio = r1_bio->bios[i];
1836 
1837 		/* take from bio_init */
1838 		bio->bi_next = NULL;
1839 		bio->bi_flags |= 1 << BIO_UPTODATE;
1840 		bio->bi_rw = READ;
1841 		bio->bi_vcnt = 0;
1842 		bio->bi_idx = 0;
1843 		bio->bi_phys_segments = 0;
1844 		bio->bi_size = 0;
1845 		bio->bi_end_io = NULL;
1846 		bio->bi_private = NULL;
1847 
1848 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1849 		if (rdev == NULL ||
1850 			   test_bit(Faulty, &rdev->flags)) {
1851 			still_degraded = 1;
1852 			continue;
1853 		} else if (!test_bit(In_sync, &rdev->flags)) {
1854 			bio->bi_rw = WRITE;
1855 			bio->bi_end_io = end_sync_write;
1856 			write_targets ++;
1857 		} else {
1858 			/* may need to read from here */
1859 			bio->bi_rw = READ;
1860 			bio->bi_end_io = end_sync_read;
1861 			if (test_bit(WriteMostly, &rdev->flags)) {
1862 				if (wonly < 0)
1863 					wonly = i;
1864 			} else {
1865 				if (disk < 0)
1866 					disk = i;
1867 			}
1868 			read_targets++;
1869 		}
1870 		atomic_inc(&rdev->nr_pending);
1871 		bio->bi_sector = sector_nr + rdev->data_offset;
1872 		bio->bi_bdev = rdev->bdev;
1873 		bio->bi_private = r1_bio;
1874 	}
1875 	rcu_read_unlock();
1876 	if (disk < 0)
1877 		disk = wonly;
1878 	r1_bio->read_disk = disk;
1879 
1880 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1881 		/* extra read targets are also write targets */
1882 		write_targets += read_targets-1;
1883 
1884 	if (write_targets == 0 || read_targets == 0) {
1885 		/* There is nowhere to write, so all non-sync
1886 		 * drives must be failed - so we are finished
1887 		 */
1888 		sector_t rv = max_sector - sector_nr;
1889 		*skipped = 1;
1890 		put_buf(r1_bio);
1891 		return rv;
1892 	}
1893 
1894 	if (max_sector > mddev->resync_max)
1895 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1896 	nr_sectors = 0;
1897 	sync_blocks = 0;
1898 	do {
1899 		struct page *page;
1900 		int len = PAGE_SIZE;
1901 		if (sector_nr + (len>>9) > max_sector)
1902 			len = (max_sector - sector_nr) << 9;
1903 		if (len == 0)
1904 			break;
1905 		if (sync_blocks == 0) {
1906 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1907 					       &sync_blocks, still_degraded) &&
1908 			    !conf->fullsync &&
1909 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1910 				break;
1911 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1912 			if (len > (sync_blocks<<9))
1913 				len = sync_blocks<<9;
1914 		}
1915 
1916 		for (i=0 ; i < conf->raid_disks; i++) {
1917 			bio = r1_bio->bios[i];
1918 			if (bio->bi_end_io) {
1919 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1920 				if (bio_add_page(bio, page, len, 0) == 0) {
1921 					/* stop here */
1922 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1923 					while (i > 0) {
1924 						i--;
1925 						bio = r1_bio->bios[i];
1926 						if (bio->bi_end_io==NULL)
1927 							continue;
1928 						/* remove last page from this bio */
1929 						bio->bi_vcnt--;
1930 						bio->bi_size -= len;
1931 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1932 					}
1933 					goto bio_full;
1934 				}
1935 			}
1936 		}
1937 		nr_sectors += len>>9;
1938 		sector_nr += len>>9;
1939 		sync_blocks -= (len>>9);
1940 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1941  bio_full:
1942 	r1_bio->sectors = nr_sectors;
1943 
1944 	/* For a user-requested sync, we read all readable devices and do a
1945 	 * compare
1946 	 */
1947 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1948 		atomic_set(&r1_bio->remaining, read_targets);
1949 		for (i=0; i<conf->raid_disks; i++) {
1950 			bio = r1_bio->bios[i];
1951 			if (bio->bi_end_io == end_sync_read) {
1952 				md_sync_acct(bio->bi_bdev, nr_sectors);
1953 				generic_make_request(bio);
1954 			}
1955 		}
1956 	} else {
1957 		atomic_set(&r1_bio->remaining, 1);
1958 		bio = r1_bio->bios[r1_bio->read_disk];
1959 		md_sync_acct(bio->bi_bdev, nr_sectors);
1960 		generic_make_request(bio);
1961 
1962 	}
1963 	return nr_sectors;
1964 }
1965 
1966 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1967 {
1968 	if (sectors)
1969 		return sectors;
1970 
1971 	return mddev->dev_sectors;
1972 }
1973 
1974 static conf_t *setup_conf(mddev_t *mddev)
1975 {
1976 	conf_t *conf;
1977 	int i;
1978 	mirror_info_t *disk;
1979 	mdk_rdev_t *rdev;
1980 	int err = -ENOMEM;
1981 
1982 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1983 	if (!conf)
1984 		goto abort;
1985 
1986 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1987 				 GFP_KERNEL);
1988 	if (!conf->mirrors)
1989 		goto abort;
1990 
1991 	conf->tmppage = alloc_page(GFP_KERNEL);
1992 	if (!conf->tmppage)
1993 		goto abort;
1994 
1995 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1996 	if (!conf->poolinfo)
1997 		goto abort;
1998 	conf->poolinfo->raid_disks = mddev->raid_disks;
1999 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2000 					  r1bio_pool_free,
2001 					  conf->poolinfo);
2002 	if (!conf->r1bio_pool)
2003 		goto abort;
2004 
2005 	conf->poolinfo->mddev = mddev;
2006 
2007 	spin_lock_init(&conf->device_lock);
2008 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2009 		int disk_idx = rdev->raid_disk;
2010 		if (disk_idx >= mddev->raid_disks
2011 		    || disk_idx < 0)
2012 			continue;
2013 		disk = conf->mirrors + disk_idx;
2014 
2015 		disk->rdev = rdev;
2016 
2017 		disk->head_position = 0;
2018 	}
2019 	conf->raid_disks = mddev->raid_disks;
2020 	conf->mddev = mddev;
2021 	INIT_LIST_HEAD(&conf->retry_list);
2022 
2023 	spin_lock_init(&conf->resync_lock);
2024 	init_waitqueue_head(&conf->wait_barrier);
2025 
2026 	bio_list_init(&conf->pending_bio_list);
2027 	bio_list_init(&conf->flushing_bio_list);
2028 
2029 	conf->last_used = -1;
2030 	for (i = 0; i < conf->raid_disks; i++) {
2031 
2032 		disk = conf->mirrors + i;
2033 
2034 		if (!disk->rdev ||
2035 		    !test_bit(In_sync, &disk->rdev->flags)) {
2036 			disk->head_position = 0;
2037 			if (disk->rdev)
2038 				conf->fullsync = 1;
2039 		} else if (conf->last_used < 0)
2040 			/*
2041 			 * The first working device is used as a
2042 			 * starting point to read balancing.
2043 			 */
2044 			conf->last_used = i;
2045 	}
2046 
2047 	err = -EIO;
2048 	if (conf->last_used < 0) {
2049 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2050 		       mdname(mddev));
2051 		goto abort;
2052 	}
2053 	err = -ENOMEM;
2054 	conf->thread = md_register_thread(raid1d, mddev, NULL);
2055 	if (!conf->thread) {
2056 		printk(KERN_ERR
2057 		       "md/raid1:%s: couldn't allocate thread\n",
2058 		       mdname(mddev));
2059 		goto abort;
2060 	}
2061 
2062 	return conf;
2063 
2064  abort:
2065 	if (conf) {
2066 		if (conf->r1bio_pool)
2067 			mempool_destroy(conf->r1bio_pool);
2068 		kfree(conf->mirrors);
2069 		safe_put_page(conf->tmppage);
2070 		kfree(conf->poolinfo);
2071 		kfree(conf);
2072 	}
2073 	return ERR_PTR(err);
2074 }
2075 
2076 static int run(mddev_t *mddev)
2077 {
2078 	conf_t *conf;
2079 	int i;
2080 	mdk_rdev_t *rdev;
2081 
2082 	if (mddev->level != 1) {
2083 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2084 		       mdname(mddev), mddev->level);
2085 		return -EIO;
2086 	}
2087 	if (mddev->reshape_position != MaxSector) {
2088 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2089 		       mdname(mddev));
2090 		return -EIO;
2091 	}
2092 	/*
2093 	 * copy the already verified devices into our private RAID1
2094 	 * bookkeeping area. [whatever we allocate in run(),
2095 	 * should be freed in stop()]
2096 	 */
2097 	if (mddev->private == NULL)
2098 		conf = setup_conf(mddev);
2099 	else
2100 		conf = mddev->private;
2101 
2102 	if (IS_ERR(conf))
2103 		return PTR_ERR(conf);
2104 
2105 	mddev->queue->queue_lock = &conf->device_lock;
2106 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2107 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2108 				  rdev->data_offset << 9);
2109 		/* as we don't honour merge_bvec_fn, we must never risk
2110 		 * violating it, so limit ->max_segments to 1 lying within
2111 		 * a single page, as a one page request is never in violation.
2112 		 */
2113 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2114 			blk_queue_max_segments(mddev->queue, 1);
2115 			blk_queue_segment_boundary(mddev->queue,
2116 						   PAGE_CACHE_SIZE - 1);
2117 		}
2118 	}
2119 
2120 	mddev->degraded = 0;
2121 	for (i=0; i < conf->raid_disks; i++)
2122 		if (conf->mirrors[i].rdev == NULL ||
2123 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2124 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2125 			mddev->degraded++;
2126 
2127 	if (conf->raid_disks - mddev->degraded == 1)
2128 		mddev->recovery_cp = MaxSector;
2129 
2130 	if (mddev->recovery_cp != MaxSector)
2131 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2132 		       " -- starting background reconstruction\n",
2133 		       mdname(mddev));
2134 	printk(KERN_INFO
2135 		"md/raid1:%s: active with %d out of %d mirrors\n",
2136 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2137 		mddev->raid_disks);
2138 
2139 	/*
2140 	 * Ok, everything is just fine now
2141 	 */
2142 	mddev->thread = conf->thread;
2143 	conf->thread = NULL;
2144 	mddev->private = conf;
2145 
2146 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2147 
2148 	mddev->queue->unplug_fn = raid1_unplug;
2149 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2150 	mddev->queue->backing_dev_info.congested_data = mddev;
2151 	md_integrity_register(mddev);
2152 	return 0;
2153 }
2154 
2155 static int stop(mddev_t *mddev)
2156 {
2157 	conf_t *conf = mddev->private;
2158 	struct bitmap *bitmap = mddev->bitmap;
2159 
2160 	/* wait for behind writes to complete */
2161 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2162 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2163 		       mdname(mddev));
2164 		/* need to kick something here to make sure I/O goes? */
2165 		wait_event(bitmap->behind_wait,
2166 			   atomic_read(&bitmap->behind_writes) == 0);
2167 	}
2168 
2169 	raise_barrier(conf);
2170 	lower_barrier(conf);
2171 
2172 	md_unregister_thread(mddev->thread);
2173 	mddev->thread = NULL;
2174 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2175 	if (conf->r1bio_pool)
2176 		mempool_destroy(conf->r1bio_pool);
2177 	kfree(conf->mirrors);
2178 	kfree(conf->poolinfo);
2179 	kfree(conf);
2180 	mddev->private = NULL;
2181 	return 0;
2182 }
2183 
2184 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2185 {
2186 	/* no resync is happening, and there is enough space
2187 	 * on all devices, so we can resize.
2188 	 * We need to make sure resync covers any new space.
2189 	 * If the array is shrinking we should possibly wait until
2190 	 * any io in the removed space completes, but it hardly seems
2191 	 * worth it.
2192 	 */
2193 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2194 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2195 		return -EINVAL;
2196 	set_capacity(mddev->gendisk, mddev->array_sectors);
2197 	revalidate_disk(mddev->gendisk);
2198 	if (sectors > mddev->dev_sectors &&
2199 	    mddev->recovery_cp == MaxSector) {
2200 		mddev->recovery_cp = mddev->dev_sectors;
2201 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2202 	}
2203 	mddev->dev_sectors = sectors;
2204 	mddev->resync_max_sectors = sectors;
2205 	return 0;
2206 }
2207 
2208 static int raid1_reshape(mddev_t *mddev)
2209 {
2210 	/* We need to:
2211 	 * 1/ resize the r1bio_pool
2212 	 * 2/ resize conf->mirrors
2213 	 *
2214 	 * We allocate a new r1bio_pool if we can.
2215 	 * Then raise a device barrier and wait until all IO stops.
2216 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2217 	 *
2218 	 * At the same time, we "pack" the devices so that all the missing
2219 	 * devices have the higher raid_disk numbers.
2220 	 */
2221 	mempool_t *newpool, *oldpool;
2222 	struct pool_info *newpoolinfo;
2223 	mirror_info_t *newmirrors;
2224 	conf_t *conf = mddev->private;
2225 	int cnt, raid_disks;
2226 	unsigned long flags;
2227 	int d, d2, err;
2228 
2229 	/* Cannot change chunk_size, layout, or level */
2230 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2231 	    mddev->layout != mddev->new_layout ||
2232 	    mddev->level != mddev->new_level) {
2233 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2234 		mddev->new_layout = mddev->layout;
2235 		mddev->new_level = mddev->level;
2236 		return -EINVAL;
2237 	}
2238 
2239 	err = md_allow_write(mddev);
2240 	if (err)
2241 		return err;
2242 
2243 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2244 
2245 	if (raid_disks < conf->raid_disks) {
2246 		cnt=0;
2247 		for (d= 0; d < conf->raid_disks; d++)
2248 			if (conf->mirrors[d].rdev)
2249 				cnt++;
2250 		if (cnt > raid_disks)
2251 			return -EBUSY;
2252 	}
2253 
2254 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2255 	if (!newpoolinfo)
2256 		return -ENOMEM;
2257 	newpoolinfo->mddev = mddev;
2258 	newpoolinfo->raid_disks = raid_disks;
2259 
2260 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2261 				 r1bio_pool_free, newpoolinfo);
2262 	if (!newpool) {
2263 		kfree(newpoolinfo);
2264 		return -ENOMEM;
2265 	}
2266 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2267 	if (!newmirrors) {
2268 		kfree(newpoolinfo);
2269 		mempool_destroy(newpool);
2270 		return -ENOMEM;
2271 	}
2272 
2273 	raise_barrier(conf);
2274 
2275 	/* ok, everything is stopped */
2276 	oldpool = conf->r1bio_pool;
2277 	conf->r1bio_pool = newpool;
2278 
2279 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2280 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2281 		if (rdev && rdev->raid_disk != d2) {
2282 			char nm[20];
2283 			sprintf(nm, "rd%d", rdev->raid_disk);
2284 			sysfs_remove_link(&mddev->kobj, nm);
2285 			rdev->raid_disk = d2;
2286 			sprintf(nm, "rd%d", rdev->raid_disk);
2287 			sysfs_remove_link(&mddev->kobj, nm);
2288 			if (sysfs_create_link(&mddev->kobj,
2289 					      &rdev->kobj, nm))
2290 				printk(KERN_WARNING
2291 				       "md/raid1:%s: cannot register "
2292 				       "%s\n",
2293 				       mdname(mddev), nm);
2294 		}
2295 		if (rdev)
2296 			newmirrors[d2++].rdev = rdev;
2297 	}
2298 	kfree(conf->mirrors);
2299 	conf->mirrors = newmirrors;
2300 	kfree(conf->poolinfo);
2301 	conf->poolinfo = newpoolinfo;
2302 
2303 	spin_lock_irqsave(&conf->device_lock, flags);
2304 	mddev->degraded += (raid_disks - conf->raid_disks);
2305 	spin_unlock_irqrestore(&conf->device_lock, flags);
2306 	conf->raid_disks = mddev->raid_disks = raid_disks;
2307 	mddev->delta_disks = 0;
2308 
2309 	conf->last_used = 0; /* just make sure it is in-range */
2310 	lower_barrier(conf);
2311 
2312 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2313 	md_wakeup_thread(mddev->thread);
2314 
2315 	mempool_destroy(oldpool);
2316 	return 0;
2317 }
2318 
2319 static void raid1_quiesce(mddev_t *mddev, int state)
2320 {
2321 	conf_t *conf = mddev->private;
2322 
2323 	switch(state) {
2324 	case 2: /* wake for suspend */
2325 		wake_up(&conf->wait_barrier);
2326 		break;
2327 	case 1:
2328 		raise_barrier(conf);
2329 		break;
2330 	case 0:
2331 		lower_barrier(conf);
2332 		break;
2333 	}
2334 }
2335 
2336 static void *raid1_takeover(mddev_t *mddev)
2337 {
2338 	/* raid1 can take over:
2339 	 *  raid5 with 2 devices, any layout or chunk size
2340 	 */
2341 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2342 		conf_t *conf;
2343 		mddev->new_level = 1;
2344 		mddev->new_layout = 0;
2345 		mddev->new_chunk_sectors = 0;
2346 		conf = setup_conf(mddev);
2347 		if (!IS_ERR(conf))
2348 			conf->barrier = 1;
2349 		return conf;
2350 	}
2351 	return ERR_PTR(-EINVAL);
2352 }
2353 
2354 static struct mdk_personality raid1_personality =
2355 {
2356 	.name		= "raid1",
2357 	.level		= 1,
2358 	.owner		= THIS_MODULE,
2359 	.make_request	= make_request,
2360 	.run		= run,
2361 	.stop		= stop,
2362 	.status		= status,
2363 	.error_handler	= error,
2364 	.hot_add_disk	= raid1_add_disk,
2365 	.hot_remove_disk= raid1_remove_disk,
2366 	.spare_active	= raid1_spare_active,
2367 	.sync_request	= sync_request,
2368 	.resize		= raid1_resize,
2369 	.size		= raid1_size,
2370 	.check_reshape	= raid1_reshape,
2371 	.quiesce	= raid1_quiesce,
2372 	.takeover	= raid1_takeover,
2373 };
2374 
2375 static int __init raid_init(void)
2376 {
2377 	return register_md_personality(&raid1_personality);
2378 }
2379 
2380 static void raid_exit(void)
2381 {
2382 	unregister_md_personality(&raid1_personality);
2383 }
2384 
2385 module_init(raid_init);
2386 module_exit(raid_exit);
2387 MODULE_LICENSE("GPL");
2388 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2389 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2390 MODULE_ALIAS("md-raid1");
2391 MODULE_ALIAS("md-level-1");
2392