1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/seq_file.h> 38 #include "md.h" 39 #include "raid1.h" 40 #include "bitmap.h" 41 42 #define DEBUG 0 43 #if DEBUG 44 #define PRINTK(x...) printk(x) 45 #else 46 #define PRINTK(x...) 47 #endif 48 49 /* 50 * Number of guaranteed r1bios in case of extreme VM load: 51 */ 52 #define NR_RAID1_BIOS 256 53 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 struct pool_info *pi = data; 63 r1bio_t *r1_bio; 64 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 65 66 /* allocate a r1bio with room for raid_disks entries in the bios array */ 67 r1_bio = kzalloc(size, gfp_flags); 68 if (!r1_bio && pi->mddev) 69 unplug_slaves(pi->mddev); 70 71 return r1_bio; 72 } 73 74 static void r1bio_pool_free(void *r1_bio, void *data) 75 { 76 kfree(r1_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 86 { 87 struct pool_info *pi = data; 88 struct page *page; 89 r1bio_t *r1_bio; 90 struct bio *bio; 91 int i, j; 92 93 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 94 if (!r1_bio) { 95 unplug_slaves(pi->mddev); 96 return NULL; 97 } 98 99 /* 100 * Allocate bios : 1 for reading, n-1 for writing 101 */ 102 for (j = pi->raid_disks ; j-- ; ) { 103 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 104 if (!bio) 105 goto out_free_bio; 106 r1_bio->bios[j] = bio; 107 } 108 /* 109 * Allocate RESYNC_PAGES data pages and attach them to 110 * the first bio. 111 * If this is a user-requested check/repair, allocate 112 * RESYNC_PAGES for each bio. 113 */ 114 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 115 j = pi->raid_disks; 116 else 117 j = 1; 118 while(j--) { 119 bio = r1_bio->bios[j]; 120 for (i = 0; i < RESYNC_PAGES; i++) { 121 page = alloc_page(gfp_flags); 122 if (unlikely(!page)) 123 goto out_free_pages; 124 125 bio->bi_io_vec[i].bv_page = page; 126 bio->bi_vcnt = i+1; 127 } 128 } 129 /* If not user-requests, copy the page pointers to all bios */ 130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 131 for (i=0; i<RESYNC_PAGES ; i++) 132 for (j=1; j<pi->raid_disks; j++) 133 r1_bio->bios[j]->bi_io_vec[i].bv_page = 134 r1_bio->bios[0]->bi_io_vec[i].bv_page; 135 } 136 137 r1_bio->master_bio = NULL; 138 139 return r1_bio; 140 141 out_free_pages: 142 for (j=0 ; j < pi->raid_disks; j++) 143 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 144 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 145 j = -1; 146 out_free_bio: 147 while ( ++j < pi->raid_disks ) 148 bio_put(r1_bio->bios[j]); 149 r1bio_pool_free(r1_bio, data); 150 return NULL; 151 } 152 153 static void r1buf_pool_free(void *__r1_bio, void *data) 154 { 155 struct pool_info *pi = data; 156 int i,j; 157 r1bio_t *r1bio = __r1_bio; 158 159 for (i = 0; i < RESYNC_PAGES; i++) 160 for (j = pi->raid_disks; j-- ;) { 161 if (j == 0 || 162 r1bio->bios[j]->bi_io_vec[i].bv_page != 163 r1bio->bios[0]->bi_io_vec[i].bv_page) 164 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 165 } 166 for (i=0 ; i < pi->raid_disks; i++) 167 bio_put(r1bio->bios[i]); 168 169 r1bio_pool_free(r1bio, data); 170 } 171 172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->raid_disks; i++) { 177 struct bio **bio = r1_bio->bios + i; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r1bio(r1bio_t *r1_bio) 185 { 186 conf_t *conf = r1_bio->mddev->private; 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r1_bio); 195 mempool_free(r1_bio, conf->r1bio_pool); 196 } 197 198 static void put_buf(r1bio_t *r1_bio) 199 { 200 conf_t *conf = r1_bio->mddev->private; 201 int i; 202 203 for (i=0; i<conf->raid_disks; i++) { 204 struct bio *bio = r1_bio->bios[i]; 205 if (bio->bi_end_io) 206 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 207 } 208 209 mempool_free(r1_bio, conf->r1buf_pool); 210 211 lower_barrier(conf); 212 } 213 214 static void reschedule_retry(r1bio_t *r1_bio) 215 { 216 unsigned long flags; 217 mddev_t *mddev = r1_bio->mddev; 218 conf_t *conf = mddev->private; 219 220 spin_lock_irqsave(&conf->device_lock, flags); 221 list_add(&r1_bio->retry_list, &conf->retry_list); 222 conf->nr_queued ++; 223 spin_unlock_irqrestore(&conf->device_lock, flags); 224 225 wake_up(&conf->wait_barrier); 226 md_wakeup_thread(mddev->thread); 227 } 228 229 /* 230 * raid_end_bio_io() is called when we have finished servicing a mirrored 231 * operation and are ready to return a success/failure code to the buffer 232 * cache layer. 233 */ 234 static void raid_end_bio_io(r1bio_t *r1_bio) 235 { 236 struct bio *bio = r1_bio->master_bio; 237 238 /* if nobody has done the final endio yet, do it now */ 239 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 240 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 241 (bio_data_dir(bio) == WRITE) ? "write" : "read", 242 (unsigned long long) bio->bi_sector, 243 (unsigned long long) bio->bi_sector + 244 (bio->bi_size >> 9) - 1); 245 246 bio_endio(bio, 247 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 248 } 249 free_r1bio(r1_bio); 250 } 251 252 /* 253 * Update disk head position estimator based on IRQ completion info. 254 */ 255 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 256 { 257 conf_t *conf = r1_bio->mddev->private; 258 259 conf->mirrors[disk].head_position = 260 r1_bio->sector + (r1_bio->sectors); 261 } 262 263 static void raid1_end_read_request(struct bio *bio, int error) 264 { 265 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 266 r1bio_t *r1_bio = bio->bi_private; 267 int mirror; 268 conf_t *conf = r1_bio->mddev->private; 269 270 mirror = r1_bio->read_disk; 271 /* 272 * this branch is our 'one mirror IO has finished' event handler: 273 */ 274 update_head_pos(mirror, r1_bio); 275 276 if (uptodate) 277 set_bit(R1BIO_Uptodate, &r1_bio->state); 278 else { 279 /* If all other devices have failed, we want to return 280 * the error upwards rather than fail the last device. 281 * Here we redefine "uptodate" to mean "Don't want to retry" 282 */ 283 unsigned long flags; 284 spin_lock_irqsave(&conf->device_lock, flags); 285 if (r1_bio->mddev->degraded == conf->raid_disks || 286 (r1_bio->mddev->degraded == conf->raid_disks-1 && 287 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 288 uptodate = 1; 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 } 291 292 if (uptodate) 293 raid_end_bio_io(r1_bio); 294 else { 295 /* 296 * oops, read error: 297 */ 298 char b[BDEVNAME_SIZE]; 299 if (printk_ratelimit()) 300 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n", 301 mdname(conf->mddev), 302 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 303 reschedule_retry(r1_bio); 304 } 305 306 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 307 } 308 309 static void raid1_end_write_request(struct bio *bio, int error) 310 { 311 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 312 r1bio_t *r1_bio = bio->bi_private; 313 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 314 conf_t *conf = r1_bio->mddev->private; 315 struct bio *to_put = NULL; 316 317 318 for (mirror = 0; mirror < conf->raid_disks; mirror++) 319 if (r1_bio->bios[mirror] == bio) 320 break; 321 322 /* 323 * 'one mirror IO has finished' event handler: 324 */ 325 r1_bio->bios[mirror] = NULL; 326 to_put = bio; 327 if (!uptodate) { 328 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 329 /* an I/O failed, we can't clear the bitmap */ 330 set_bit(R1BIO_Degraded, &r1_bio->state); 331 } else 332 /* 333 * Set R1BIO_Uptodate in our master bio, so that we 334 * will return a good error code for to the higher 335 * levels even if IO on some other mirrored buffer 336 * fails. 337 * 338 * The 'master' represents the composite IO operation 339 * to user-side. So if something waits for IO, then it 340 * will wait for the 'master' bio. 341 */ 342 set_bit(R1BIO_Uptodate, &r1_bio->state); 343 344 update_head_pos(mirror, r1_bio); 345 346 if (behind) { 347 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 348 atomic_dec(&r1_bio->behind_remaining); 349 350 /* 351 * In behind mode, we ACK the master bio once the I/O 352 * has safely reached all non-writemostly 353 * disks. Setting the Returned bit ensures that this 354 * gets done only once -- we don't ever want to return 355 * -EIO here, instead we'll wait 356 */ 357 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 358 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 359 /* Maybe we can return now */ 360 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 361 struct bio *mbio = r1_bio->master_bio; 362 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 363 (unsigned long long) mbio->bi_sector, 364 (unsigned long long) mbio->bi_sector + 365 (mbio->bi_size >> 9) - 1); 366 bio_endio(mbio, 0); 367 } 368 } 369 } 370 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 371 372 /* 373 * Let's see if all mirrored write operations have finished 374 * already. 375 */ 376 if (atomic_dec_and_test(&r1_bio->remaining)) { 377 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 378 /* free extra copy of the data pages */ 379 int i = bio->bi_vcnt; 380 while (i--) 381 safe_put_page(bio->bi_io_vec[i].bv_page); 382 } 383 /* clear the bitmap if all writes complete successfully */ 384 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 385 r1_bio->sectors, 386 !test_bit(R1BIO_Degraded, &r1_bio->state), 387 behind); 388 md_write_end(r1_bio->mddev); 389 raid_end_bio_io(r1_bio); 390 } 391 392 if (to_put) 393 bio_put(to_put); 394 } 395 396 397 /* 398 * This routine returns the disk from which the requested read should 399 * be done. There is a per-array 'next expected sequential IO' sector 400 * number - if this matches on the next IO then we use the last disk. 401 * There is also a per-disk 'last know head position' sector that is 402 * maintained from IRQ contexts, both the normal and the resync IO 403 * completion handlers update this position correctly. If there is no 404 * perfect sequential match then we pick the disk whose head is closest. 405 * 406 * If there are 2 mirrors in the same 2 devices, performance degrades 407 * because position is mirror, not device based. 408 * 409 * The rdev for the device selected will have nr_pending incremented. 410 */ 411 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 412 { 413 const sector_t this_sector = r1_bio->sector; 414 int new_disk = conf->last_used, disk = new_disk; 415 int wonly_disk = -1; 416 const int sectors = r1_bio->sectors; 417 sector_t new_distance, current_distance; 418 mdk_rdev_t *rdev; 419 420 rcu_read_lock(); 421 /* 422 * Check if we can balance. We can balance on the whole 423 * device if no resync is going on, or below the resync window. 424 * We take the first readable disk when above the resync window. 425 */ 426 retry: 427 if (conf->mddev->recovery_cp < MaxSector && 428 (this_sector + sectors >= conf->next_resync)) { 429 /* Choose the first operational device, for consistancy */ 430 new_disk = 0; 431 432 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 433 r1_bio->bios[new_disk] == IO_BLOCKED || 434 !rdev || !test_bit(In_sync, &rdev->flags) 435 || test_bit(WriteMostly, &rdev->flags); 436 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 437 438 if (rdev && test_bit(In_sync, &rdev->flags) && 439 r1_bio->bios[new_disk] != IO_BLOCKED) 440 wonly_disk = new_disk; 441 442 if (new_disk == conf->raid_disks - 1) { 443 new_disk = wonly_disk; 444 break; 445 } 446 } 447 goto rb_out; 448 } 449 450 451 /* make sure the disk is operational */ 452 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 453 r1_bio->bios[new_disk] == IO_BLOCKED || 454 !rdev || !test_bit(In_sync, &rdev->flags) || 455 test_bit(WriteMostly, &rdev->flags); 456 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 457 458 if (rdev && test_bit(In_sync, &rdev->flags) && 459 r1_bio->bios[new_disk] != IO_BLOCKED) 460 wonly_disk = new_disk; 461 462 if (new_disk <= 0) 463 new_disk = conf->raid_disks; 464 new_disk--; 465 if (new_disk == disk) { 466 new_disk = wonly_disk; 467 break; 468 } 469 } 470 471 if (new_disk < 0) 472 goto rb_out; 473 474 disk = new_disk; 475 /* now disk == new_disk == starting point for search */ 476 477 /* 478 * Don't change to another disk for sequential reads: 479 */ 480 if (conf->next_seq_sect == this_sector) 481 goto rb_out; 482 if (this_sector == conf->mirrors[new_disk].head_position) 483 goto rb_out; 484 485 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 486 487 /* Find the disk whose head is closest */ 488 489 do { 490 if (disk <= 0) 491 disk = conf->raid_disks; 492 disk--; 493 494 rdev = rcu_dereference(conf->mirrors[disk].rdev); 495 496 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 497 !test_bit(In_sync, &rdev->flags) || 498 test_bit(WriteMostly, &rdev->flags)) 499 continue; 500 501 if (!atomic_read(&rdev->nr_pending)) { 502 new_disk = disk; 503 break; 504 } 505 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 506 if (new_distance < current_distance) { 507 current_distance = new_distance; 508 new_disk = disk; 509 } 510 } while (disk != conf->last_used); 511 512 rb_out: 513 514 515 if (new_disk >= 0) { 516 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 517 if (!rdev) 518 goto retry; 519 atomic_inc(&rdev->nr_pending); 520 if (!test_bit(In_sync, &rdev->flags)) { 521 /* cannot risk returning a device that failed 522 * before we inc'ed nr_pending 523 */ 524 rdev_dec_pending(rdev, conf->mddev); 525 goto retry; 526 } 527 conf->next_seq_sect = this_sector + sectors; 528 conf->last_used = new_disk; 529 } 530 rcu_read_unlock(); 531 532 return new_disk; 533 } 534 535 static void unplug_slaves(mddev_t *mddev) 536 { 537 conf_t *conf = mddev->private; 538 int i; 539 540 rcu_read_lock(); 541 for (i=0; i<mddev->raid_disks; i++) { 542 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 543 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 544 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 545 546 atomic_inc(&rdev->nr_pending); 547 rcu_read_unlock(); 548 549 blk_unplug(r_queue); 550 551 rdev_dec_pending(rdev, mddev); 552 rcu_read_lock(); 553 } 554 } 555 rcu_read_unlock(); 556 } 557 558 static void raid1_unplug(struct request_queue *q) 559 { 560 mddev_t *mddev = q->queuedata; 561 562 unplug_slaves(mddev); 563 md_wakeup_thread(mddev->thread); 564 } 565 566 static int raid1_congested(void *data, int bits) 567 { 568 mddev_t *mddev = data; 569 conf_t *conf = mddev->private; 570 int i, ret = 0; 571 572 if (mddev_congested(mddev, bits)) 573 return 1; 574 575 rcu_read_lock(); 576 for (i = 0; i < mddev->raid_disks; i++) { 577 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 578 if (rdev && !test_bit(Faulty, &rdev->flags)) { 579 struct request_queue *q = bdev_get_queue(rdev->bdev); 580 581 /* Note the '|| 1' - when read_balance prefers 582 * non-congested targets, it can be removed 583 */ 584 if ((bits & (1<<BDI_async_congested)) || 1) 585 ret |= bdi_congested(&q->backing_dev_info, bits); 586 else 587 ret &= bdi_congested(&q->backing_dev_info, bits); 588 } 589 } 590 rcu_read_unlock(); 591 return ret; 592 } 593 594 595 static int flush_pending_writes(conf_t *conf) 596 { 597 /* Any writes that have been queued but are awaiting 598 * bitmap updates get flushed here. 599 * We return 1 if any requests were actually submitted. 600 */ 601 int rv = 0; 602 603 spin_lock_irq(&conf->device_lock); 604 605 if (conf->pending_bio_list.head) { 606 struct bio *bio; 607 bio = bio_list_get(&conf->pending_bio_list); 608 blk_remove_plug(conf->mddev->queue); 609 spin_unlock_irq(&conf->device_lock); 610 /* flush any pending bitmap writes to 611 * disk before proceeding w/ I/O */ 612 bitmap_unplug(conf->mddev->bitmap); 613 614 while (bio) { /* submit pending writes */ 615 struct bio *next = bio->bi_next; 616 bio->bi_next = NULL; 617 generic_make_request(bio); 618 bio = next; 619 } 620 rv = 1; 621 } else 622 spin_unlock_irq(&conf->device_lock); 623 return rv; 624 } 625 626 /* Barriers.... 627 * Sometimes we need to suspend IO while we do something else, 628 * either some resync/recovery, or reconfigure the array. 629 * To do this we raise a 'barrier'. 630 * The 'barrier' is a counter that can be raised multiple times 631 * to count how many activities are happening which preclude 632 * normal IO. 633 * We can only raise the barrier if there is no pending IO. 634 * i.e. if nr_pending == 0. 635 * We choose only to raise the barrier if no-one is waiting for the 636 * barrier to go down. This means that as soon as an IO request 637 * is ready, no other operations which require a barrier will start 638 * until the IO request has had a chance. 639 * 640 * So: regular IO calls 'wait_barrier'. When that returns there 641 * is no backgroup IO happening, It must arrange to call 642 * allow_barrier when it has finished its IO. 643 * backgroup IO calls must call raise_barrier. Once that returns 644 * there is no normal IO happeing. It must arrange to call 645 * lower_barrier when the particular background IO completes. 646 */ 647 #define RESYNC_DEPTH 32 648 649 static void raise_barrier(conf_t *conf) 650 { 651 spin_lock_irq(&conf->resync_lock); 652 653 /* Wait until no block IO is waiting */ 654 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 655 conf->resync_lock, 656 raid1_unplug(conf->mddev->queue)); 657 658 /* block any new IO from starting */ 659 conf->barrier++; 660 661 /* No wait for all pending IO to complete */ 662 wait_event_lock_irq(conf->wait_barrier, 663 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 664 conf->resync_lock, 665 raid1_unplug(conf->mddev->queue)); 666 667 spin_unlock_irq(&conf->resync_lock); 668 } 669 670 static void lower_barrier(conf_t *conf) 671 { 672 unsigned long flags; 673 BUG_ON(conf->barrier <= 0); 674 spin_lock_irqsave(&conf->resync_lock, flags); 675 conf->barrier--; 676 spin_unlock_irqrestore(&conf->resync_lock, flags); 677 wake_up(&conf->wait_barrier); 678 } 679 680 static void wait_barrier(conf_t *conf) 681 { 682 spin_lock_irq(&conf->resync_lock); 683 if (conf->barrier) { 684 conf->nr_waiting++; 685 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 686 conf->resync_lock, 687 raid1_unplug(conf->mddev->queue)); 688 conf->nr_waiting--; 689 } 690 conf->nr_pending++; 691 spin_unlock_irq(&conf->resync_lock); 692 } 693 694 static void allow_barrier(conf_t *conf) 695 { 696 unsigned long flags; 697 spin_lock_irqsave(&conf->resync_lock, flags); 698 conf->nr_pending--; 699 spin_unlock_irqrestore(&conf->resync_lock, flags); 700 wake_up(&conf->wait_barrier); 701 } 702 703 static void freeze_array(conf_t *conf) 704 { 705 /* stop syncio and normal IO and wait for everything to 706 * go quite. 707 * We increment barrier and nr_waiting, and then 708 * wait until nr_pending match nr_queued+1 709 * This is called in the context of one normal IO request 710 * that has failed. Thus any sync request that might be pending 711 * will be blocked by nr_pending, and we need to wait for 712 * pending IO requests to complete or be queued for re-try. 713 * Thus the number queued (nr_queued) plus this request (1) 714 * must match the number of pending IOs (nr_pending) before 715 * we continue. 716 */ 717 spin_lock_irq(&conf->resync_lock); 718 conf->barrier++; 719 conf->nr_waiting++; 720 wait_event_lock_irq(conf->wait_barrier, 721 conf->nr_pending == conf->nr_queued+1, 722 conf->resync_lock, 723 ({ flush_pending_writes(conf); 724 raid1_unplug(conf->mddev->queue); })); 725 spin_unlock_irq(&conf->resync_lock); 726 } 727 static void unfreeze_array(conf_t *conf) 728 { 729 /* reverse the effect of the freeze */ 730 spin_lock_irq(&conf->resync_lock); 731 conf->barrier--; 732 conf->nr_waiting--; 733 wake_up(&conf->wait_barrier); 734 spin_unlock_irq(&conf->resync_lock); 735 } 736 737 738 /* duplicate the data pages for behind I/O */ 739 static struct page **alloc_behind_pages(struct bio *bio) 740 { 741 int i; 742 struct bio_vec *bvec; 743 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 744 GFP_NOIO); 745 if (unlikely(!pages)) 746 goto do_sync_io; 747 748 bio_for_each_segment(bvec, bio, i) { 749 pages[i] = alloc_page(GFP_NOIO); 750 if (unlikely(!pages[i])) 751 goto do_sync_io; 752 memcpy(kmap(pages[i]) + bvec->bv_offset, 753 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 754 kunmap(pages[i]); 755 kunmap(bvec->bv_page); 756 } 757 758 return pages; 759 760 do_sync_io: 761 if (pages) 762 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 763 put_page(pages[i]); 764 kfree(pages); 765 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 766 return NULL; 767 } 768 769 static int make_request(mddev_t *mddev, struct bio * bio) 770 { 771 conf_t *conf = mddev->private; 772 mirror_info_t *mirror; 773 r1bio_t *r1_bio; 774 struct bio *read_bio; 775 int i, targets = 0, disks; 776 struct bitmap *bitmap; 777 unsigned long flags; 778 struct bio_list bl; 779 struct page **behind_pages = NULL; 780 const int rw = bio_data_dir(bio); 781 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 782 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 783 mdk_rdev_t *blocked_rdev; 784 785 /* 786 * Register the new request and wait if the reconstruction 787 * thread has put up a bar for new requests. 788 * Continue immediately if no resync is active currently. 789 */ 790 791 md_write_start(mddev, bio); /* wait on superblock update early */ 792 793 if (bio_data_dir(bio) == WRITE && 794 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 795 bio->bi_sector < mddev->suspend_hi) { 796 /* As the suspend_* range is controlled by 797 * userspace, we want an interruptible 798 * wait. 799 */ 800 DEFINE_WAIT(w); 801 for (;;) { 802 flush_signals(current); 803 prepare_to_wait(&conf->wait_barrier, 804 &w, TASK_INTERRUPTIBLE); 805 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 806 bio->bi_sector >= mddev->suspend_hi) 807 break; 808 schedule(); 809 } 810 finish_wait(&conf->wait_barrier, &w); 811 } 812 813 wait_barrier(conf); 814 815 bitmap = mddev->bitmap; 816 817 /* 818 * make_request() can abort the operation when READA is being 819 * used and no empty request is available. 820 * 821 */ 822 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 823 824 r1_bio->master_bio = bio; 825 r1_bio->sectors = bio->bi_size >> 9; 826 r1_bio->state = 0; 827 r1_bio->mddev = mddev; 828 r1_bio->sector = bio->bi_sector; 829 830 if (rw == READ) { 831 /* 832 * read balancing logic: 833 */ 834 int rdisk = read_balance(conf, r1_bio); 835 836 if (rdisk < 0) { 837 /* couldn't find anywhere to read from */ 838 raid_end_bio_io(r1_bio); 839 return 0; 840 } 841 mirror = conf->mirrors + rdisk; 842 843 if (test_bit(WriteMostly, &mirror->rdev->flags) && 844 bitmap) { 845 /* Reading from a write-mostly device must 846 * take care not to over-take any writes 847 * that are 'behind' 848 */ 849 wait_event(bitmap->behind_wait, 850 atomic_read(&bitmap->behind_writes) == 0); 851 } 852 r1_bio->read_disk = rdisk; 853 854 read_bio = bio_clone(bio, GFP_NOIO); 855 856 r1_bio->bios[rdisk] = read_bio; 857 858 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 859 read_bio->bi_bdev = mirror->rdev->bdev; 860 read_bio->bi_end_io = raid1_end_read_request; 861 read_bio->bi_rw = READ | do_sync; 862 read_bio->bi_private = r1_bio; 863 864 generic_make_request(read_bio); 865 return 0; 866 } 867 868 /* 869 * WRITE: 870 */ 871 /* first select target devices under spinlock and 872 * inc refcount on their rdev. Record them by setting 873 * bios[x] to bio 874 */ 875 disks = conf->raid_disks; 876 #if 0 877 { static int first=1; 878 if (first) printk("First Write sector %llu disks %d\n", 879 (unsigned long long)r1_bio->sector, disks); 880 first = 0; 881 } 882 #endif 883 retry_write: 884 blocked_rdev = NULL; 885 rcu_read_lock(); 886 for (i = 0; i < disks; i++) { 887 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 888 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 889 atomic_inc(&rdev->nr_pending); 890 blocked_rdev = rdev; 891 break; 892 } 893 if (rdev && !test_bit(Faulty, &rdev->flags)) { 894 atomic_inc(&rdev->nr_pending); 895 if (test_bit(Faulty, &rdev->flags)) { 896 rdev_dec_pending(rdev, mddev); 897 r1_bio->bios[i] = NULL; 898 } else { 899 r1_bio->bios[i] = bio; 900 targets++; 901 } 902 } else 903 r1_bio->bios[i] = NULL; 904 } 905 rcu_read_unlock(); 906 907 if (unlikely(blocked_rdev)) { 908 /* Wait for this device to become unblocked */ 909 int j; 910 911 for (j = 0; j < i; j++) 912 if (r1_bio->bios[j]) 913 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 914 915 allow_barrier(conf); 916 md_wait_for_blocked_rdev(blocked_rdev, mddev); 917 wait_barrier(conf); 918 goto retry_write; 919 } 920 921 BUG_ON(targets == 0); /* we never fail the last device */ 922 923 if (targets < conf->raid_disks) { 924 /* array is degraded, we will not clear the bitmap 925 * on I/O completion (see raid1_end_write_request) */ 926 set_bit(R1BIO_Degraded, &r1_bio->state); 927 } 928 929 /* do behind I/O ? 930 * Not if there are too many, or cannot allocate memory, 931 * or a reader on WriteMostly is waiting for behind writes 932 * to flush */ 933 if (bitmap && 934 (atomic_read(&bitmap->behind_writes) 935 < mddev->bitmap_info.max_write_behind) && 936 !waitqueue_active(&bitmap->behind_wait) && 937 (behind_pages = alloc_behind_pages(bio)) != NULL) 938 set_bit(R1BIO_BehindIO, &r1_bio->state); 939 940 atomic_set(&r1_bio->remaining, 0); 941 atomic_set(&r1_bio->behind_remaining, 0); 942 943 bio_list_init(&bl); 944 for (i = 0; i < disks; i++) { 945 struct bio *mbio; 946 if (!r1_bio->bios[i]) 947 continue; 948 949 mbio = bio_clone(bio, GFP_NOIO); 950 r1_bio->bios[i] = mbio; 951 952 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 953 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 954 mbio->bi_end_io = raid1_end_write_request; 955 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 956 mbio->bi_private = r1_bio; 957 958 if (behind_pages) { 959 struct bio_vec *bvec; 960 int j; 961 962 /* Yes, I really want the '__' version so that 963 * we clear any unused pointer in the io_vec, rather 964 * than leave them unchanged. This is important 965 * because when we come to free the pages, we won't 966 * know the originial bi_idx, so we just free 967 * them all 968 */ 969 __bio_for_each_segment(bvec, mbio, j, 0) 970 bvec->bv_page = behind_pages[j]; 971 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 972 atomic_inc(&r1_bio->behind_remaining); 973 } 974 975 atomic_inc(&r1_bio->remaining); 976 977 bio_list_add(&bl, mbio); 978 } 979 kfree(behind_pages); /* the behind pages are attached to the bios now */ 980 981 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 982 test_bit(R1BIO_BehindIO, &r1_bio->state)); 983 spin_lock_irqsave(&conf->device_lock, flags); 984 bio_list_merge(&conf->pending_bio_list, &bl); 985 bio_list_init(&bl); 986 987 blk_plug_device(mddev->queue); 988 spin_unlock_irqrestore(&conf->device_lock, flags); 989 990 /* In case raid1d snuck into freeze_array */ 991 wake_up(&conf->wait_barrier); 992 993 if (do_sync) 994 md_wakeup_thread(mddev->thread); 995 #if 0 996 while ((bio = bio_list_pop(&bl)) != NULL) 997 generic_make_request(bio); 998 #endif 999 1000 return 0; 1001 } 1002 1003 static void status(struct seq_file *seq, mddev_t *mddev) 1004 { 1005 conf_t *conf = mddev->private; 1006 int i; 1007 1008 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1009 conf->raid_disks - mddev->degraded); 1010 rcu_read_lock(); 1011 for (i = 0; i < conf->raid_disks; i++) { 1012 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1013 seq_printf(seq, "%s", 1014 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1015 } 1016 rcu_read_unlock(); 1017 seq_printf(seq, "]"); 1018 } 1019 1020 1021 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1022 { 1023 char b[BDEVNAME_SIZE]; 1024 conf_t *conf = mddev->private; 1025 1026 /* 1027 * If it is not operational, then we have already marked it as dead 1028 * else if it is the last working disks, ignore the error, let the 1029 * next level up know. 1030 * else mark the drive as failed 1031 */ 1032 if (test_bit(In_sync, &rdev->flags) 1033 && (conf->raid_disks - mddev->degraded) == 1) { 1034 /* 1035 * Don't fail the drive, act as though we were just a 1036 * normal single drive. 1037 * However don't try a recovery from this drive as 1038 * it is very likely to fail. 1039 */ 1040 mddev->recovery_disabled = 1; 1041 return; 1042 } 1043 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1044 unsigned long flags; 1045 spin_lock_irqsave(&conf->device_lock, flags); 1046 mddev->degraded++; 1047 set_bit(Faulty, &rdev->flags); 1048 spin_unlock_irqrestore(&conf->device_lock, flags); 1049 /* 1050 * if recovery is running, make sure it aborts. 1051 */ 1052 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1053 } else 1054 set_bit(Faulty, &rdev->flags); 1055 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1056 printk(KERN_ALERT "md/raid1:%s: Disk failure on %s, disabling device.\n" 1057 KERN_ALERT "md/raid1:%s: Operation continuing on %d devices.\n", 1058 mdname(mddev), bdevname(rdev->bdev, b), 1059 mdname(mddev), conf->raid_disks - mddev->degraded); 1060 } 1061 1062 static void print_conf(conf_t *conf) 1063 { 1064 int i; 1065 1066 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1067 if (!conf) { 1068 printk(KERN_DEBUG "(!conf)\n"); 1069 return; 1070 } 1071 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1072 conf->raid_disks); 1073 1074 rcu_read_lock(); 1075 for (i = 0; i < conf->raid_disks; i++) { 1076 char b[BDEVNAME_SIZE]; 1077 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1078 if (rdev) 1079 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1080 i, !test_bit(In_sync, &rdev->flags), 1081 !test_bit(Faulty, &rdev->flags), 1082 bdevname(rdev->bdev,b)); 1083 } 1084 rcu_read_unlock(); 1085 } 1086 1087 static void close_sync(conf_t *conf) 1088 { 1089 wait_barrier(conf); 1090 allow_barrier(conf); 1091 1092 mempool_destroy(conf->r1buf_pool); 1093 conf->r1buf_pool = NULL; 1094 } 1095 1096 static int raid1_spare_active(mddev_t *mddev) 1097 { 1098 int i; 1099 conf_t *conf = mddev->private; 1100 int count = 0; 1101 unsigned long flags; 1102 1103 /* 1104 * Find all failed disks within the RAID1 configuration 1105 * and mark them readable. 1106 * Called under mddev lock, so rcu protection not needed. 1107 */ 1108 for (i = 0; i < conf->raid_disks; i++) { 1109 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1110 if (rdev 1111 && !test_bit(Faulty, &rdev->flags) 1112 && !test_and_set_bit(In_sync, &rdev->flags)) { 1113 count++; 1114 sysfs_notify_dirent(rdev->sysfs_state); 1115 } 1116 } 1117 spin_lock_irqsave(&conf->device_lock, flags); 1118 mddev->degraded -= count; 1119 spin_unlock_irqrestore(&conf->device_lock, flags); 1120 1121 print_conf(conf); 1122 return count; 1123 } 1124 1125 1126 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1127 { 1128 conf_t *conf = mddev->private; 1129 int err = -EEXIST; 1130 int mirror = 0; 1131 mirror_info_t *p; 1132 int first = 0; 1133 int last = mddev->raid_disks - 1; 1134 1135 if (rdev->raid_disk >= 0) 1136 first = last = rdev->raid_disk; 1137 1138 for (mirror = first; mirror <= last; mirror++) 1139 if ( !(p=conf->mirrors+mirror)->rdev) { 1140 1141 disk_stack_limits(mddev->gendisk, rdev->bdev, 1142 rdev->data_offset << 9); 1143 /* as we don't honour merge_bvec_fn, we must 1144 * never risk violating it, so limit 1145 * ->max_segments to one lying with a single 1146 * page, as a one page request is never in 1147 * violation. 1148 */ 1149 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1150 blk_queue_max_segments(mddev->queue, 1); 1151 blk_queue_segment_boundary(mddev->queue, 1152 PAGE_CACHE_SIZE - 1); 1153 } 1154 1155 p->head_position = 0; 1156 rdev->raid_disk = mirror; 1157 err = 0; 1158 /* As all devices are equivalent, we don't need a full recovery 1159 * if this was recently any drive of the array 1160 */ 1161 if (rdev->saved_raid_disk < 0) 1162 conf->fullsync = 1; 1163 rcu_assign_pointer(p->rdev, rdev); 1164 break; 1165 } 1166 md_integrity_add_rdev(rdev, mddev); 1167 print_conf(conf); 1168 return err; 1169 } 1170 1171 static int raid1_remove_disk(mddev_t *mddev, int number) 1172 { 1173 conf_t *conf = mddev->private; 1174 int err = 0; 1175 mdk_rdev_t *rdev; 1176 mirror_info_t *p = conf->mirrors+ number; 1177 1178 print_conf(conf); 1179 rdev = p->rdev; 1180 if (rdev) { 1181 if (test_bit(In_sync, &rdev->flags) || 1182 atomic_read(&rdev->nr_pending)) { 1183 err = -EBUSY; 1184 goto abort; 1185 } 1186 /* Only remove non-faulty devices is recovery 1187 * is not possible. 1188 */ 1189 if (!test_bit(Faulty, &rdev->flags) && 1190 mddev->degraded < conf->raid_disks) { 1191 err = -EBUSY; 1192 goto abort; 1193 } 1194 p->rdev = NULL; 1195 synchronize_rcu(); 1196 if (atomic_read(&rdev->nr_pending)) { 1197 /* lost the race, try later */ 1198 err = -EBUSY; 1199 p->rdev = rdev; 1200 goto abort; 1201 } 1202 md_integrity_register(mddev); 1203 } 1204 abort: 1205 1206 print_conf(conf); 1207 return err; 1208 } 1209 1210 1211 static void end_sync_read(struct bio *bio, int error) 1212 { 1213 r1bio_t *r1_bio = bio->bi_private; 1214 int i; 1215 1216 for (i=r1_bio->mddev->raid_disks; i--; ) 1217 if (r1_bio->bios[i] == bio) 1218 break; 1219 BUG_ON(i < 0); 1220 update_head_pos(i, r1_bio); 1221 /* 1222 * we have read a block, now it needs to be re-written, 1223 * or re-read if the read failed. 1224 * We don't do much here, just schedule handling by raid1d 1225 */ 1226 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1227 set_bit(R1BIO_Uptodate, &r1_bio->state); 1228 1229 if (atomic_dec_and_test(&r1_bio->remaining)) 1230 reschedule_retry(r1_bio); 1231 } 1232 1233 static void end_sync_write(struct bio *bio, int error) 1234 { 1235 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1236 r1bio_t *r1_bio = bio->bi_private; 1237 mddev_t *mddev = r1_bio->mddev; 1238 conf_t *conf = mddev->private; 1239 int i; 1240 int mirror=0; 1241 1242 for (i = 0; i < conf->raid_disks; i++) 1243 if (r1_bio->bios[i] == bio) { 1244 mirror = i; 1245 break; 1246 } 1247 if (!uptodate) { 1248 int sync_blocks = 0; 1249 sector_t s = r1_bio->sector; 1250 long sectors_to_go = r1_bio->sectors; 1251 /* make sure these bits doesn't get cleared. */ 1252 do { 1253 bitmap_end_sync(mddev->bitmap, s, 1254 &sync_blocks, 1); 1255 s += sync_blocks; 1256 sectors_to_go -= sync_blocks; 1257 } while (sectors_to_go > 0); 1258 md_error(mddev, conf->mirrors[mirror].rdev); 1259 } 1260 1261 update_head_pos(mirror, r1_bio); 1262 1263 if (atomic_dec_and_test(&r1_bio->remaining)) { 1264 sector_t s = r1_bio->sectors; 1265 put_buf(r1_bio); 1266 md_done_sync(mddev, s, uptodate); 1267 } 1268 } 1269 1270 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1271 { 1272 conf_t *conf = mddev->private; 1273 int i; 1274 int disks = conf->raid_disks; 1275 struct bio *bio, *wbio; 1276 1277 bio = r1_bio->bios[r1_bio->read_disk]; 1278 1279 1280 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1281 /* We have read all readable devices. If we haven't 1282 * got the block, then there is no hope left. 1283 * If we have, then we want to do a comparison 1284 * and skip the write if everything is the same. 1285 * If any blocks failed to read, then we need to 1286 * attempt an over-write 1287 */ 1288 int primary; 1289 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1290 for (i=0; i<mddev->raid_disks; i++) 1291 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1292 md_error(mddev, conf->mirrors[i].rdev); 1293 1294 md_done_sync(mddev, r1_bio->sectors, 1); 1295 put_buf(r1_bio); 1296 return; 1297 } 1298 for (primary=0; primary<mddev->raid_disks; primary++) 1299 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1300 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1301 r1_bio->bios[primary]->bi_end_io = NULL; 1302 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1303 break; 1304 } 1305 r1_bio->read_disk = primary; 1306 for (i=0; i<mddev->raid_disks; i++) 1307 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1308 int j; 1309 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1310 struct bio *pbio = r1_bio->bios[primary]; 1311 struct bio *sbio = r1_bio->bios[i]; 1312 1313 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1314 for (j = vcnt; j-- ; ) { 1315 struct page *p, *s; 1316 p = pbio->bi_io_vec[j].bv_page; 1317 s = sbio->bi_io_vec[j].bv_page; 1318 if (memcmp(page_address(p), 1319 page_address(s), 1320 PAGE_SIZE)) 1321 break; 1322 } 1323 } else 1324 j = 0; 1325 if (j >= 0) 1326 mddev->resync_mismatches += r1_bio->sectors; 1327 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1328 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1329 sbio->bi_end_io = NULL; 1330 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1331 } else { 1332 /* fixup the bio for reuse */ 1333 int size; 1334 sbio->bi_vcnt = vcnt; 1335 sbio->bi_size = r1_bio->sectors << 9; 1336 sbio->bi_idx = 0; 1337 sbio->bi_phys_segments = 0; 1338 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1339 sbio->bi_flags |= 1 << BIO_UPTODATE; 1340 sbio->bi_next = NULL; 1341 sbio->bi_sector = r1_bio->sector + 1342 conf->mirrors[i].rdev->data_offset; 1343 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1344 size = sbio->bi_size; 1345 for (j = 0; j < vcnt ; j++) { 1346 struct bio_vec *bi; 1347 bi = &sbio->bi_io_vec[j]; 1348 bi->bv_offset = 0; 1349 if (size > PAGE_SIZE) 1350 bi->bv_len = PAGE_SIZE; 1351 else 1352 bi->bv_len = size; 1353 size -= PAGE_SIZE; 1354 memcpy(page_address(bi->bv_page), 1355 page_address(pbio->bi_io_vec[j].bv_page), 1356 PAGE_SIZE); 1357 } 1358 1359 } 1360 } 1361 } 1362 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1363 /* ouch - failed to read all of that. 1364 * Try some synchronous reads of other devices to get 1365 * good data, much like with normal read errors. Only 1366 * read into the pages we already have so we don't 1367 * need to re-issue the read request. 1368 * We don't need to freeze the array, because being in an 1369 * active sync request, there is no normal IO, and 1370 * no overlapping syncs. 1371 */ 1372 sector_t sect = r1_bio->sector; 1373 int sectors = r1_bio->sectors; 1374 int idx = 0; 1375 1376 while(sectors) { 1377 int s = sectors; 1378 int d = r1_bio->read_disk; 1379 int success = 0; 1380 mdk_rdev_t *rdev; 1381 1382 if (s > (PAGE_SIZE>>9)) 1383 s = PAGE_SIZE >> 9; 1384 do { 1385 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1386 /* No rcu protection needed here devices 1387 * can only be removed when no resync is 1388 * active, and resync is currently active 1389 */ 1390 rdev = conf->mirrors[d].rdev; 1391 if (sync_page_io(rdev->bdev, 1392 sect + rdev->data_offset, 1393 s<<9, 1394 bio->bi_io_vec[idx].bv_page, 1395 READ)) { 1396 success = 1; 1397 break; 1398 } 1399 } 1400 d++; 1401 if (d == conf->raid_disks) 1402 d = 0; 1403 } while (!success && d != r1_bio->read_disk); 1404 1405 if (success) { 1406 int start = d; 1407 /* write it back and re-read */ 1408 set_bit(R1BIO_Uptodate, &r1_bio->state); 1409 while (d != r1_bio->read_disk) { 1410 if (d == 0) 1411 d = conf->raid_disks; 1412 d--; 1413 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1414 continue; 1415 rdev = conf->mirrors[d].rdev; 1416 atomic_add(s, &rdev->corrected_errors); 1417 if (sync_page_io(rdev->bdev, 1418 sect + rdev->data_offset, 1419 s<<9, 1420 bio->bi_io_vec[idx].bv_page, 1421 WRITE) == 0) 1422 md_error(mddev, rdev); 1423 } 1424 d = start; 1425 while (d != r1_bio->read_disk) { 1426 if (d == 0) 1427 d = conf->raid_disks; 1428 d--; 1429 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1430 continue; 1431 rdev = conf->mirrors[d].rdev; 1432 if (sync_page_io(rdev->bdev, 1433 sect + rdev->data_offset, 1434 s<<9, 1435 bio->bi_io_vec[idx].bv_page, 1436 READ) == 0) 1437 md_error(mddev, rdev); 1438 } 1439 } else { 1440 char b[BDEVNAME_SIZE]; 1441 /* Cannot read from anywhere, array is toast */ 1442 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1443 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1444 " for block %llu\n", 1445 mdname(mddev), 1446 bdevname(bio->bi_bdev, b), 1447 (unsigned long long)r1_bio->sector); 1448 md_done_sync(mddev, r1_bio->sectors, 0); 1449 put_buf(r1_bio); 1450 return; 1451 } 1452 sectors -= s; 1453 sect += s; 1454 idx ++; 1455 } 1456 } 1457 1458 /* 1459 * schedule writes 1460 */ 1461 atomic_set(&r1_bio->remaining, 1); 1462 for (i = 0; i < disks ; i++) { 1463 wbio = r1_bio->bios[i]; 1464 if (wbio->bi_end_io == NULL || 1465 (wbio->bi_end_io == end_sync_read && 1466 (i == r1_bio->read_disk || 1467 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1468 continue; 1469 1470 wbio->bi_rw = WRITE; 1471 wbio->bi_end_io = end_sync_write; 1472 atomic_inc(&r1_bio->remaining); 1473 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1474 1475 generic_make_request(wbio); 1476 } 1477 1478 if (atomic_dec_and_test(&r1_bio->remaining)) { 1479 /* if we're here, all write(s) have completed, so clean up */ 1480 md_done_sync(mddev, r1_bio->sectors, 1); 1481 put_buf(r1_bio); 1482 } 1483 } 1484 1485 /* 1486 * This is a kernel thread which: 1487 * 1488 * 1. Retries failed read operations on working mirrors. 1489 * 2. Updates the raid superblock when problems encounter. 1490 * 3. Performs writes following reads for array syncronising. 1491 */ 1492 1493 static void fix_read_error(conf_t *conf, int read_disk, 1494 sector_t sect, int sectors) 1495 { 1496 mddev_t *mddev = conf->mddev; 1497 while(sectors) { 1498 int s = sectors; 1499 int d = read_disk; 1500 int success = 0; 1501 int start; 1502 mdk_rdev_t *rdev; 1503 1504 if (s > (PAGE_SIZE>>9)) 1505 s = PAGE_SIZE >> 9; 1506 1507 do { 1508 /* Note: no rcu protection needed here 1509 * as this is synchronous in the raid1d thread 1510 * which is the thread that might remove 1511 * a device. If raid1d ever becomes multi-threaded.... 1512 */ 1513 rdev = conf->mirrors[d].rdev; 1514 if (rdev && 1515 test_bit(In_sync, &rdev->flags) && 1516 sync_page_io(rdev->bdev, 1517 sect + rdev->data_offset, 1518 s<<9, 1519 conf->tmppage, READ)) 1520 success = 1; 1521 else { 1522 d++; 1523 if (d == conf->raid_disks) 1524 d = 0; 1525 } 1526 } while (!success && d != read_disk); 1527 1528 if (!success) { 1529 /* Cannot read from anywhere -- bye bye array */ 1530 md_error(mddev, conf->mirrors[read_disk].rdev); 1531 break; 1532 } 1533 /* write it back and re-read */ 1534 start = d; 1535 while (d != read_disk) { 1536 if (d==0) 1537 d = conf->raid_disks; 1538 d--; 1539 rdev = conf->mirrors[d].rdev; 1540 if (rdev && 1541 test_bit(In_sync, &rdev->flags)) { 1542 if (sync_page_io(rdev->bdev, 1543 sect + rdev->data_offset, 1544 s<<9, conf->tmppage, WRITE) 1545 == 0) 1546 /* Well, this device is dead */ 1547 md_error(mddev, rdev); 1548 } 1549 } 1550 d = start; 1551 while (d != read_disk) { 1552 char b[BDEVNAME_SIZE]; 1553 if (d==0) 1554 d = conf->raid_disks; 1555 d--; 1556 rdev = conf->mirrors[d].rdev; 1557 if (rdev && 1558 test_bit(In_sync, &rdev->flags)) { 1559 if (sync_page_io(rdev->bdev, 1560 sect + rdev->data_offset, 1561 s<<9, conf->tmppage, READ) 1562 == 0) 1563 /* Well, this device is dead */ 1564 md_error(mddev, rdev); 1565 else { 1566 atomic_add(s, &rdev->corrected_errors); 1567 printk(KERN_INFO 1568 "md/raid1:%s: read error corrected " 1569 "(%d sectors at %llu on %s)\n", 1570 mdname(mddev), s, 1571 (unsigned long long)(sect + 1572 rdev->data_offset), 1573 bdevname(rdev->bdev, b)); 1574 } 1575 } 1576 } 1577 sectors -= s; 1578 sect += s; 1579 } 1580 } 1581 1582 static void raid1d(mddev_t *mddev) 1583 { 1584 r1bio_t *r1_bio; 1585 struct bio *bio; 1586 unsigned long flags; 1587 conf_t *conf = mddev->private; 1588 struct list_head *head = &conf->retry_list; 1589 int unplug=0; 1590 mdk_rdev_t *rdev; 1591 1592 md_check_recovery(mddev); 1593 1594 for (;;) { 1595 char b[BDEVNAME_SIZE]; 1596 1597 unplug += flush_pending_writes(conf); 1598 1599 spin_lock_irqsave(&conf->device_lock, flags); 1600 if (list_empty(head)) { 1601 spin_unlock_irqrestore(&conf->device_lock, flags); 1602 break; 1603 } 1604 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1605 list_del(head->prev); 1606 conf->nr_queued--; 1607 spin_unlock_irqrestore(&conf->device_lock, flags); 1608 1609 mddev = r1_bio->mddev; 1610 conf = mddev->private; 1611 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1612 sync_request_write(mddev, r1_bio); 1613 unplug = 1; 1614 } else { 1615 int disk; 1616 1617 /* we got a read error. Maybe the drive is bad. Maybe just 1618 * the block and we can fix it. 1619 * We freeze all other IO, and try reading the block from 1620 * other devices. When we find one, we re-write 1621 * and check it that fixes the read error. 1622 * This is all done synchronously while the array is 1623 * frozen 1624 */ 1625 if (mddev->ro == 0) { 1626 freeze_array(conf); 1627 fix_read_error(conf, r1_bio->read_disk, 1628 r1_bio->sector, 1629 r1_bio->sectors); 1630 unfreeze_array(conf); 1631 } else 1632 md_error(mddev, 1633 conf->mirrors[r1_bio->read_disk].rdev); 1634 1635 bio = r1_bio->bios[r1_bio->read_disk]; 1636 if ((disk=read_balance(conf, r1_bio)) == -1) { 1637 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 1638 " read error for block %llu\n", 1639 mdname(mddev), 1640 bdevname(bio->bi_bdev,b), 1641 (unsigned long long)r1_bio->sector); 1642 raid_end_bio_io(r1_bio); 1643 } else { 1644 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC; 1645 r1_bio->bios[r1_bio->read_disk] = 1646 mddev->ro ? IO_BLOCKED : NULL; 1647 r1_bio->read_disk = disk; 1648 bio_put(bio); 1649 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1650 r1_bio->bios[r1_bio->read_disk] = bio; 1651 rdev = conf->mirrors[disk].rdev; 1652 if (printk_ratelimit()) 1653 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to" 1654 " other mirror: %s\n", 1655 mdname(mddev), 1656 (unsigned long long)r1_bio->sector, 1657 bdevname(rdev->bdev,b)); 1658 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1659 bio->bi_bdev = rdev->bdev; 1660 bio->bi_end_io = raid1_end_read_request; 1661 bio->bi_rw = READ | do_sync; 1662 bio->bi_private = r1_bio; 1663 unplug = 1; 1664 generic_make_request(bio); 1665 } 1666 } 1667 cond_resched(); 1668 } 1669 if (unplug) 1670 unplug_slaves(mddev); 1671 } 1672 1673 1674 static int init_resync(conf_t *conf) 1675 { 1676 int buffs; 1677 1678 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1679 BUG_ON(conf->r1buf_pool); 1680 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1681 conf->poolinfo); 1682 if (!conf->r1buf_pool) 1683 return -ENOMEM; 1684 conf->next_resync = 0; 1685 return 0; 1686 } 1687 1688 /* 1689 * perform a "sync" on one "block" 1690 * 1691 * We need to make sure that no normal I/O request - particularly write 1692 * requests - conflict with active sync requests. 1693 * 1694 * This is achieved by tracking pending requests and a 'barrier' concept 1695 * that can be installed to exclude normal IO requests. 1696 */ 1697 1698 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1699 { 1700 conf_t *conf = mddev->private; 1701 r1bio_t *r1_bio; 1702 struct bio *bio; 1703 sector_t max_sector, nr_sectors; 1704 int disk = -1; 1705 int i; 1706 int wonly = -1; 1707 int write_targets = 0, read_targets = 0; 1708 int sync_blocks; 1709 int still_degraded = 0; 1710 1711 if (!conf->r1buf_pool) 1712 if (init_resync(conf)) 1713 return 0; 1714 1715 max_sector = mddev->dev_sectors; 1716 if (sector_nr >= max_sector) { 1717 /* If we aborted, we need to abort the 1718 * sync on the 'current' bitmap chunk (there will 1719 * only be one in raid1 resync. 1720 * We can find the current addess in mddev->curr_resync 1721 */ 1722 if (mddev->curr_resync < max_sector) /* aborted */ 1723 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1724 &sync_blocks, 1); 1725 else /* completed sync */ 1726 conf->fullsync = 0; 1727 1728 bitmap_close_sync(mddev->bitmap); 1729 close_sync(conf); 1730 return 0; 1731 } 1732 1733 if (mddev->bitmap == NULL && 1734 mddev->recovery_cp == MaxSector && 1735 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1736 conf->fullsync == 0) { 1737 *skipped = 1; 1738 return max_sector - sector_nr; 1739 } 1740 /* before building a request, check if we can skip these blocks.. 1741 * This call the bitmap_start_sync doesn't actually record anything 1742 */ 1743 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1744 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1745 /* We can skip this block, and probably several more */ 1746 *skipped = 1; 1747 return sync_blocks; 1748 } 1749 /* 1750 * If there is non-resync activity waiting for a turn, 1751 * and resync is going fast enough, 1752 * then let it though before starting on this new sync request. 1753 */ 1754 if (!go_faster && conf->nr_waiting) 1755 msleep_interruptible(1000); 1756 1757 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1758 raise_barrier(conf); 1759 1760 conf->next_resync = sector_nr; 1761 1762 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1763 rcu_read_lock(); 1764 /* 1765 * If we get a correctably read error during resync or recovery, 1766 * we might want to read from a different device. So we 1767 * flag all drives that could conceivably be read from for READ, 1768 * and any others (which will be non-In_sync devices) for WRITE. 1769 * If a read fails, we try reading from something else for which READ 1770 * is OK. 1771 */ 1772 1773 r1_bio->mddev = mddev; 1774 r1_bio->sector = sector_nr; 1775 r1_bio->state = 0; 1776 set_bit(R1BIO_IsSync, &r1_bio->state); 1777 1778 for (i=0; i < conf->raid_disks; i++) { 1779 mdk_rdev_t *rdev; 1780 bio = r1_bio->bios[i]; 1781 1782 /* take from bio_init */ 1783 bio->bi_next = NULL; 1784 bio->bi_flags &= ~(BIO_POOL_MASK-1); 1785 bio->bi_flags |= 1 << BIO_UPTODATE; 1786 bio->bi_comp_cpu = -1; 1787 bio->bi_rw = READ; 1788 bio->bi_vcnt = 0; 1789 bio->bi_idx = 0; 1790 bio->bi_phys_segments = 0; 1791 bio->bi_size = 0; 1792 bio->bi_end_io = NULL; 1793 bio->bi_private = NULL; 1794 1795 rdev = rcu_dereference(conf->mirrors[i].rdev); 1796 if (rdev == NULL || 1797 test_bit(Faulty, &rdev->flags)) { 1798 still_degraded = 1; 1799 continue; 1800 } else if (!test_bit(In_sync, &rdev->flags)) { 1801 bio->bi_rw = WRITE; 1802 bio->bi_end_io = end_sync_write; 1803 write_targets ++; 1804 } else { 1805 /* may need to read from here */ 1806 bio->bi_rw = READ; 1807 bio->bi_end_io = end_sync_read; 1808 if (test_bit(WriteMostly, &rdev->flags)) { 1809 if (wonly < 0) 1810 wonly = i; 1811 } else { 1812 if (disk < 0) 1813 disk = i; 1814 } 1815 read_targets++; 1816 } 1817 atomic_inc(&rdev->nr_pending); 1818 bio->bi_sector = sector_nr + rdev->data_offset; 1819 bio->bi_bdev = rdev->bdev; 1820 bio->bi_private = r1_bio; 1821 } 1822 rcu_read_unlock(); 1823 if (disk < 0) 1824 disk = wonly; 1825 r1_bio->read_disk = disk; 1826 1827 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1828 /* extra read targets are also write targets */ 1829 write_targets += read_targets-1; 1830 1831 if (write_targets == 0 || read_targets == 0) { 1832 /* There is nowhere to write, so all non-sync 1833 * drives must be failed - so we are finished 1834 */ 1835 sector_t rv = max_sector - sector_nr; 1836 *skipped = 1; 1837 put_buf(r1_bio); 1838 return rv; 1839 } 1840 1841 if (max_sector > mddev->resync_max) 1842 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1843 nr_sectors = 0; 1844 sync_blocks = 0; 1845 do { 1846 struct page *page; 1847 int len = PAGE_SIZE; 1848 if (sector_nr + (len>>9) > max_sector) 1849 len = (max_sector - sector_nr) << 9; 1850 if (len == 0) 1851 break; 1852 if (sync_blocks == 0) { 1853 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1854 &sync_blocks, still_degraded) && 1855 !conf->fullsync && 1856 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1857 break; 1858 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1859 if ((len >> 9) > sync_blocks) 1860 len = sync_blocks<<9; 1861 } 1862 1863 for (i=0 ; i < conf->raid_disks; i++) { 1864 bio = r1_bio->bios[i]; 1865 if (bio->bi_end_io) { 1866 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1867 if (bio_add_page(bio, page, len, 0) == 0) { 1868 /* stop here */ 1869 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1870 while (i > 0) { 1871 i--; 1872 bio = r1_bio->bios[i]; 1873 if (bio->bi_end_io==NULL) 1874 continue; 1875 /* remove last page from this bio */ 1876 bio->bi_vcnt--; 1877 bio->bi_size -= len; 1878 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1879 } 1880 goto bio_full; 1881 } 1882 } 1883 } 1884 nr_sectors += len>>9; 1885 sector_nr += len>>9; 1886 sync_blocks -= (len>>9); 1887 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1888 bio_full: 1889 r1_bio->sectors = nr_sectors; 1890 1891 /* For a user-requested sync, we read all readable devices and do a 1892 * compare 1893 */ 1894 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1895 atomic_set(&r1_bio->remaining, read_targets); 1896 for (i=0; i<conf->raid_disks; i++) { 1897 bio = r1_bio->bios[i]; 1898 if (bio->bi_end_io == end_sync_read) { 1899 md_sync_acct(bio->bi_bdev, nr_sectors); 1900 generic_make_request(bio); 1901 } 1902 } 1903 } else { 1904 atomic_set(&r1_bio->remaining, 1); 1905 bio = r1_bio->bios[r1_bio->read_disk]; 1906 md_sync_acct(bio->bi_bdev, nr_sectors); 1907 generic_make_request(bio); 1908 1909 } 1910 return nr_sectors; 1911 } 1912 1913 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1914 { 1915 if (sectors) 1916 return sectors; 1917 1918 return mddev->dev_sectors; 1919 } 1920 1921 static conf_t *setup_conf(mddev_t *mddev) 1922 { 1923 conf_t *conf; 1924 int i; 1925 mirror_info_t *disk; 1926 mdk_rdev_t *rdev; 1927 int err = -ENOMEM; 1928 1929 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1930 if (!conf) 1931 goto abort; 1932 1933 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1934 GFP_KERNEL); 1935 if (!conf->mirrors) 1936 goto abort; 1937 1938 conf->tmppage = alloc_page(GFP_KERNEL); 1939 if (!conf->tmppage) 1940 goto abort; 1941 1942 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1943 if (!conf->poolinfo) 1944 goto abort; 1945 conf->poolinfo->raid_disks = mddev->raid_disks; 1946 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1947 r1bio_pool_free, 1948 conf->poolinfo); 1949 if (!conf->r1bio_pool) 1950 goto abort; 1951 1952 conf->poolinfo->mddev = mddev; 1953 1954 spin_lock_init(&conf->device_lock); 1955 list_for_each_entry(rdev, &mddev->disks, same_set) { 1956 int disk_idx = rdev->raid_disk; 1957 if (disk_idx >= mddev->raid_disks 1958 || disk_idx < 0) 1959 continue; 1960 disk = conf->mirrors + disk_idx; 1961 1962 disk->rdev = rdev; 1963 1964 disk->head_position = 0; 1965 } 1966 conf->raid_disks = mddev->raid_disks; 1967 conf->mddev = mddev; 1968 INIT_LIST_HEAD(&conf->retry_list); 1969 1970 spin_lock_init(&conf->resync_lock); 1971 init_waitqueue_head(&conf->wait_barrier); 1972 1973 bio_list_init(&conf->pending_bio_list); 1974 bio_list_init(&conf->flushing_bio_list); 1975 1976 conf->last_used = -1; 1977 for (i = 0; i < conf->raid_disks; i++) { 1978 1979 disk = conf->mirrors + i; 1980 1981 if (!disk->rdev || 1982 !test_bit(In_sync, &disk->rdev->flags)) { 1983 disk->head_position = 0; 1984 if (disk->rdev) 1985 conf->fullsync = 1; 1986 } else if (conf->last_used < 0) 1987 /* 1988 * The first working device is used as a 1989 * starting point to read balancing. 1990 */ 1991 conf->last_used = i; 1992 } 1993 1994 err = -EIO; 1995 if (conf->last_used < 0) { 1996 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 1997 mdname(mddev)); 1998 goto abort; 1999 } 2000 err = -ENOMEM; 2001 conf->thread = md_register_thread(raid1d, mddev, NULL); 2002 if (!conf->thread) { 2003 printk(KERN_ERR 2004 "md/raid1:%s: couldn't allocate thread\n", 2005 mdname(mddev)); 2006 goto abort; 2007 } 2008 2009 return conf; 2010 2011 abort: 2012 if (conf) { 2013 if (conf->r1bio_pool) 2014 mempool_destroy(conf->r1bio_pool); 2015 kfree(conf->mirrors); 2016 safe_put_page(conf->tmppage); 2017 kfree(conf->poolinfo); 2018 kfree(conf); 2019 } 2020 return ERR_PTR(err); 2021 } 2022 2023 static int run(mddev_t *mddev) 2024 { 2025 conf_t *conf; 2026 int i; 2027 mdk_rdev_t *rdev; 2028 2029 if (mddev->level != 1) { 2030 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2031 mdname(mddev), mddev->level); 2032 return -EIO; 2033 } 2034 if (mddev->reshape_position != MaxSector) { 2035 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2036 mdname(mddev)); 2037 return -EIO; 2038 } 2039 /* 2040 * copy the already verified devices into our private RAID1 2041 * bookkeeping area. [whatever we allocate in run(), 2042 * should be freed in stop()] 2043 */ 2044 if (mddev->private == NULL) 2045 conf = setup_conf(mddev); 2046 else 2047 conf = mddev->private; 2048 2049 if (IS_ERR(conf)) 2050 return PTR_ERR(conf); 2051 2052 mddev->queue->queue_lock = &conf->device_lock; 2053 list_for_each_entry(rdev, &mddev->disks, same_set) { 2054 disk_stack_limits(mddev->gendisk, rdev->bdev, 2055 rdev->data_offset << 9); 2056 /* as we don't honour merge_bvec_fn, we must never risk 2057 * violating it, so limit ->max_segments to 1 lying within 2058 * a single page, as a one page request is never in violation. 2059 */ 2060 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2061 blk_queue_max_segments(mddev->queue, 1); 2062 blk_queue_segment_boundary(mddev->queue, 2063 PAGE_CACHE_SIZE - 1); 2064 } 2065 } 2066 2067 mddev->degraded = 0; 2068 for (i=0; i < conf->raid_disks; i++) 2069 if (conf->mirrors[i].rdev == NULL || 2070 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2071 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2072 mddev->degraded++; 2073 2074 if (conf->raid_disks - mddev->degraded == 1) 2075 mddev->recovery_cp = MaxSector; 2076 2077 if (mddev->recovery_cp != MaxSector) 2078 printk(KERN_NOTICE "md/raid1:%s: not clean" 2079 " -- starting background reconstruction\n", 2080 mdname(mddev)); 2081 printk(KERN_INFO 2082 "md/raid1:%s: active with %d out of %d mirrors\n", 2083 mdname(mddev), mddev->raid_disks - mddev->degraded, 2084 mddev->raid_disks); 2085 2086 /* 2087 * Ok, everything is just fine now 2088 */ 2089 mddev->thread = conf->thread; 2090 conf->thread = NULL; 2091 mddev->private = conf; 2092 2093 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2094 2095 mddev->queue->unplug_fn = raid1_unplug; 2096 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2097 mddev->queue->backing_dev_info.congested_data = mddev; 2098 md_integrity_register(mddev); 2099 return 0; 2100 } 2101 2102 static int stop(mddev_t *mddev) 2103 { 2104 conf_t *conf = mddev->private; 2105 struct bitmap *bitmap = mddev->bitmap; 2106 2107 /* wait for behind writes to complete */ 2108 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2109 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2110 mdname(mddev)); 2111 /* need to kick something here to make sure I/O goes? */ 2112 wait_event(bitmap->behind_wait, 2113 atomic_read(&bitmap->behind_writes) == 0); 2114 } 2115 2116 raise_barrier(conf); 2117 lower_barrier(conf); 2118 2119 md_unregister_thread(mddev->thread); 2120 mddev->thread = NULL; 2121 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2122 if (conf->r1bio_pool) 2123 mempool_destroy(conf->r1bio_pool); 2124 kfree(conf->mirrors); 2125 kfree(conf->poolinfo); 2126 kfree(conf); 2127 mddev->private = NULL; 2128 return 0; 2129 } 2130 2131 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2132 { 2133 /* no resync is happening, and there is enough space 2134 * on all devices, so we can resize. 2135 * We need to make sure resync covers any new space. 2136 * If the array is shrinking we should possibly wait until 2137 * any io in the removed space completes, but it hardly seems 2138 * worth it. 2139 */ 2140 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2141 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2142 return -EINVAL; 2143 set_capacity(mddev->gendisk, mddev->array_sectors); 2144 revalidate_disk(mddev->gendisk); 2145 if (sectors > mddev->dev_sectors && 2146 mddev->recovery_cp == MaxSector) { 2147 mddev->recovery_cp = mddev->dev_sectors; 2148 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2149 } 2150 mddev->dev_sectors = sectors; 2151 mddev->resync_max_sectors = sectors; 2152 return 0; 2153 } 2154 2155 static int raid1_reshape(mddev_t *mddev) 2156 { 2157 /* We need to: 2158 * 1/ resize the r1bio_pool 2159 * 2/ resize conf->mirrors 2160 * 2161 * We allocate a new r1bio_pool if we can. 2162 * Then raise a device barrier and wait until all IO stops. 2163 * Then resize conf->mirrors and swap in the new r1bio pool. 2164 * 2165 * At the same time, we "pack" the devices so that all the missing 2166 * devices have the higher raid_disk numbers. 2167 */ 2168 mempool_t *newpool, *oldpool; 2169 struct pool_info *newpoolinfo; 2170 mirror_info_t *newmirrors; 2171 conf_t *conf = mddev->private; 2172 int cnt, raid_disks; 2173 unsigned long flags; 2174 int d, d2, err; 2175 2176 /* Cannot change chunk_size, layout, or level */ 2177 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2178 mddev->layout != mddev->new_layout || 2179 mddev->level != mddev->new_level) { 2180 mddev->new_chunk_sectors = mddev->chunk_sectors; 2181 mddev->new_layout = mddev->layout; 2182 mddev->new_level = mddev->level; 2183 return -EINVAL; 2184 } 2185 2186 err = md_allow_write(mddev); 2187 if (err) 2188 return err; 2189 2190 raid_disks = mddev->raid_disks + mddev->delta_disks; 2191 2192 if (raid_disks < conf->raid_disks) { 2193 cnt=0; 2194 for (d= 0; d < conf->raid_disks; d++) 2195 if (conf->mirrors[d].rdev) 2196 cnt++; 2197 if (cnt > raid_disks) 2198 return -EBUSY; 2199 } 2200 2201 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2202 if (!newpoolinfo) 2203 return -ENOMEM; 2204 newpoolinfo->mddev = mddev; 2205 newpoolinfo->raid_disks = raid_disks; 2206 2207 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2208 r1bio_pool_free, newpoolinfo); 2209 if (!newpool) { 2210 kfree(newpoolinfo); 2211 return -ENOMEM; 2212 } 2213 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2214 if (!newmirrors) { 2215 kfree(newpoolinfo); 2216 mempool_destroy(newpool); 2217 return -ENOMEM; 2218 } 2219 2220 raise_barrier(conf); 2221 2222 /* ok, everything is stopped */ 2223 oldpool = conf->r1bio_pool; 2224 conf->r1bio_pool = newpool; 2225 2226 for (d = d2 = 0; d < conf->raid_disks; d++) { 2227 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2228 if (rdev && rdev->raid_disk != d2) { 2229 char nm[20]; 2230 sprintf(nm, "rd%d", rdev->raid_disk); 2231 sysfs_remove_link(&mddev->kobj, nm); 2232 rdev->raid_disk = d2; 2233 sprintf(nm, "rd%d", rdev->raid_disk); 2234 sysfs_remove_link(&mddev->kobj, nm); 2235 if (sysfs_create_link(&mddev->kobj, 2236 &rdev->kobj, nm)) 2237 printk(KERN_WARNING 2238 "md/raid1:%s: cannot register " 2239 "%s\n", 2240 mdname(mddev), nm); 2241 } 2242 if (rdev) 2243 newmirrors[d2++].rdev = rdev; 2244 } 2245 kfree(conf->mirrors); 2246 conf->mirrors = newmirrors; 2247 kfree(conf->poolinfo); 2248 conf->poolinfo = newpoolinfo; 2249 2250 spin_lock_irqsave(&conf->device_lock, flags); 2251 mddev->degraded += (raid_disks - conf->raid_disks); 2252 spin_unlock_irqrestore(&conf->device_lock, flags); 2253 conf->raid_disks = mddev->raid_disks = raid_disks; 2254 mddev->delta_disks = 0; 2255 2256 conf->last_used = 0; /* just make sure it is in-range */ 2257 lower_barrier(conf); 2258 2259 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2260 md_wakeup_thread(mddev->thread); 2261 2262 mempool_destroy(oldpool); 2263 return 0; 2264 } 2265 2266 static void raid1_quiesce(mddev_t *mddev, int state) 2267 { 2268 conf_t *conf = mddev->private; 2269 2270 switch(state) { 2271 case 2: /* wake for suspend */ 2272 wake_up(&conf->wait_barrier); 2273 break; 2274 case 1: 2275 raise_barrier(conf); 2276 break; 2277 case 0: 2278 lower_barrier(conf); 2279 break; 2280 } 2281 } 2282 2283 static void *raid1_takeover(mddev_t *mddev) 2284 { 2285 /* raid1 can take over: 2286 * raid5 with 2 devices, any layout or chunk size 2287 */ 2288 if (mddev->level == 5 && mddev->raid_disks == 2) { 2289 conf_t *conf; 2290 mddev->new_level = 1; 2291 mddev->new_layout = 0; 2292 mddev->new_chunk_sectors = 0; 2293 conf = setup_conf(mddev); 2294 if (!IS_ERR(conf)) 2295 conf->barrier = 1; 2296 return conf; 2297 } 2298 return ERR_PTR(-EINVAL); 2299 } 2300 2301 static struct mdk_personality raid1_personality = 2302 { 2303 .name = "raid1", 2304 .level = 1, 2305 .owner = THIS_MODULE, 2306 .make_request = make_request, 2307 .run = run, 2308 .stop = stop, 2309 .status = status, 2310 .error_handler = error, 2311 .hot_add_disk = raid1_add_disk, 2312 .hot_remove_disk= raid1_remove_disk, 2313 .spare_active = raid1_spare_active, 2314 .sync_request = sync_request, 2315 .resize = raid1_resize, 2316 .size = raid1_size, 2317 .check_reshape = raid1_reshape, 2318 .quiesce = raid1_quiesce, 2319 .takeover = raid1_takeover, 2320 }; 2321 2322 static int __init raid_init(void) 2323 { 2324 return register_md_personality(&raid1_personality); 2325 } 2326 2327 static void raid_exit(void) 2328 { 2329 unregister_md_personality(&raid1_personality); 2330 } 2331 2332 module_init(raid_init); 2333 module_exit(raid_exit); 2334 MODULE_LICENSE("GPL"); 2335 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2336 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2337 MODULE_ALIAS("md-raid1"); 2338 MODULE_ALIAS("md-level-1"); 2339