xref: /linux/drivers/md/raid1.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
41 
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	struct pool_info *pi = data;
63 	r1bio_t *r1_bio;
64 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
65 
66 	/* allocate a r1bio with room for raid_disks entries in the bios array */
67 	r1_bio = kzalloc(size, gfp_flags);
68 	if (!r1_bio && pi->mddev)
69 		unplug_slaves(pi->mddev);
70 
71 	return r1_bio;
72 }
73 
74 static void r1bio_pool_free(void *r1_bio, void *data)
75 {
76 	kfree(r1_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
86 {
87 	struct pool_info *pi = data;
88 	struct page *page;
89 	r1bio_t *r1_bio;
90 	struct bio *bio;
91 	int i, j;
92 
93 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94 	if (!r1_bio) {
95 		unplug_slaves(pi->mddev);
96 		return NULL;
97 	}
98 
99 	/*
100 	 * Allocate bios : 1 for reading, n-1 for writing
101 	 */
102 	for (j = pi->raid_disks ; j-- ; ) {
103 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
104 		if (!bio)
105 			goto out_free_bio;
106 		r1_bio->bios[j] = bio;
107 	}
108 	/*
109 	 * Allocate RESYNC_PAGES data pages and attach them to
110 	 * the first bio.
111 	 * If this is a user-requested check/repair, allocate
112 	 * RESYNC_PAGES for each bio.
113 	 */
114 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115 		j = pi->raid_disks;
116 	else
117 		j = 1;
118 	while(j--) {
119 		bio = r1_bio->bios[j];
120 		for (i = 0; i < RESYNC_PAGES; i++) {
121 			page = alloc_page(gfp_flags);
122 			if (unlikely(!page))
123 				goto out_free_pages;
124 
125 			bio->bi_io_vec[i].bv_page = page;
126 			bio->bi_vcnt = i+1;
127 		}
128 	}
129 	/* If not user-requests, copy the page pointers to all bios */
130 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 		for (i=0; i<RESYNC_PAGES ; i++)
132 			for (j=1; j<pi->raid_disks; j++)
133 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
135 	}
136 
137 	r1_bio->master_bio = NULL;
138 
139 	return r1_bio;
140 
141 out_free_pages:
142 	for (j=0 ; j < pi->raid_disks; j++)
143 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
145 	j = -1;
146 out_free_bio:
147 	while ( ++j < pi->raid_disks )
148 		bio_put(r1_bio->bios[j]);
149 	r1bio_pool_free(r1_bio, data);
150 	return NULL;
151 }
152 
153 static void r1buf_pool_free(void *__r1_bio, void *data)
154 {
155 	struct pool_info *pi = data;
156 	int i,j;
157 	r1bio_t *r1bio = __r1_bio;
158 
159 	for (i = 0; i < RESYNC_PAGES; i++)
160 		for (j = pi->raid_disks; j-- ;) {
161 			if (j == 0 ||
162 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
163 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
164 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
165 		}
166 	for (i=0 ; i < pi->raid_disks; i++)
167 		bio_put(r1bio->bios[i]);
168 
169 	r1bio_pool_free(r1bio, data);
170 }
171 
172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->raid_disks; i++) {
177 		struct bio **bio = r1_bio->bios + i;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r1bio(r1bio_t *r1_bio)
185 {
186 	conf_t *conf = r1_bio->mddev->private;
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r1_bio);
195 	mempool_free(r1_bio, conf->r1bio_pool);
196 }
197 
198 static void put_buf(r1bio_t *r1_bio)
199 {
200 	conf_t *conf = r1_bio->mddev->private;
201 	int i;
202 
203 	for (i=0; i<conf->raid_disks; i++) {
204 		struct bio *bio = r1_bio->bios[i];
205 		if (bio->bi_end_io)
206 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
207 	}
208 
209 	mempool_free(r1_bio, conf->r1buf_pool);
210 
211 	lower_barrier(conf);
212 }
213 
214 static void reschedule_retry(r1bio_t *r1_bio)
215 {
216 	unsigned long flags;
217 	mddev_t *mddev = r1_bio->mddev;
218 	conf_t *conf = mddev->private;
219 
220 	spin_lock_irqsave(&conf->device_lock, flags);
221 	list_add(&r1_bio->retry_list, &conf->retry_list);
222 	conf->nr_queued ++;
223 	spin_unlock_irqrestore(&conf->device_lock, flags);
224 
225 	wake_up(&conf->wait_barrier);
226 	md_wakeup_thread(mddev->thread);
227 }
228 
229 /*
230  * raid_end_bio_io() is called when we have finished servicing a mirrored
231  * operation and are ready to return a success/failure code to the buffer
232  * cache layer.
233  */
234 static void raid_end_bio_io(r1bio_t *r1_bio)
235 {
236 	struct bio *bio = r1_bio->master_bio;
237 
238 	/* if nobody has done the final endio yet, do it now */
239 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
242 			(unsigned long long) bio->bi_sector,
243 			(unsigned long long) bio->bi_sector +
244 				(bio->bi_size >> 9) - 1);
245 
246 		bio_endio(bio,
247 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
248 	}
249 	free_r1bio(r1_bio);
250 }
251 
252 /*
253  * Update disk head position estimator based on IRQ completion info.
254  */
255 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
256 {
257 	conf_t *conf = r1_bio->mddev->private;
258 
259 	conf->mirrors[disk].head_position =
260 		r1_bio->sector + (r1_bio->sectors);
261 }
262 
263 static void raid1_end_read_request(struct bio *bio, int error)
264 {
265 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
266 	r1bio_t *r1_bio = bio->bi_private;
267 	int mirror;
268 	conf_t *conf = r1_bio->mddev->private;
269 
270 	mirror = r1_bio->read_disk;
271 	/*
272 	 * this branch is our 'one mirror IO has finished' event handler:
273 	 */
274 	update_head_pos(mirror, r1_bio);
275 
276 	if (uptodate)
277 		set_bit(R1BIO_Uptodate, &r1_bio->state);
278 	else {
279 		/* If all other devices have failed, we want to return
280 		 * the error upwards rather than fail the last device.
281 		 * Here we redefine "uptodate" to mean "Don't want to retry"
282 		 */
283 		unsigned long flags;
284 		spin_lock_irqsave(&conf->device_lock, flags);
285 		if (r1_bio->mddev->degraded == conf->raid_disks ||
286 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288 			uptodate = 1;
289 		spin_unlock_irqrestore(&conf->device_lock, flags);
290 	}
291 
292 	if (uptodate)
293 		raid_end_bio_io(r1_bio);
294 	else {
295 		/*
296 		 * oops, read error:
297 		 */
298 		char b[BDEVNAME_SIZE];
299 		if (printk_ratelimit())
300 			printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
301 			       mdname(conf->mddev),
302 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
303 		reschedule_retry(r1_bio);
304 	}
305 
306 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
307 }
308 
309 static void raid1_end_write_request(struct bio *bio, int error)
310 {
311 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
312 	r1bio_t *r1_bio = bio->bi_private;
313 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
314 	conf_t *conf = r1_bio->mddev->private;
315 	struct bio *to_put = NULL;
316 
317 
318 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
319 		if (r1_bio->bios[mirror] == bio)
320 			break;
321 
322 	/*
323 	 * 'one mirror IO has finished' event handler:
324 	 */
325 	r1_bio->bios[mirror] = NULL;
326 	to_put = bio;
327 	if (!uptodate) {
328 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
329 		/* an I/O failed, we can't clear the bitmap */
330 		set_bit(R1BIO_Degraded, &r1_bio->state);
331 	} else
332 		/*
333 		 * Set R1BIO_Uptodate in our master bio, so that we
334 		 * will return a good error code for to the higher
335 		 * levels even if IO on some other mirrored buffer
336 		 * fails.
337 		 *
338 		 * The 'master' represents the composite IO operation
339 		 * to user-side. So if something waits for IO, then it
340 		 * will wait for the 'master' bio.
341 		 */
342 		set_bit(R1BIO_Uptodate, &r1_bio->state);
343 
344 	update_head_pos(mirror, r1_bio);
345 
346 	if (behind) {
347 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
348 			atomic_dec(&r1_bio->behind_remaining);
349 
350 		/*
351 		 * In behind mode, we ACK the master bio once the I/O
352 		 * has safely reached all non-writemostly
353 		 * disks. Setting the Returned bit ensures that this
354 		 * gets done only once -- we don't ever want to return
355 		 * -EIO here, instead we'll wait
356 		 */
357 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
358 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
359 			/* Maybe we can return now */
360 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
361 				struct bio *mbio = r1_bio->master_bio;
362 				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
363 				       (unsigned long long) mbio->bi_sector,
364 				       (unsigned long long) mbio->bi_sector +
365 				       (mbio->bi_size >> 9) - 1);
366 				bio_endio(mbio, 0);
367 			}
368 		}
369 	}
370 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
371 
372 	/*
373 	 * Let's see if all mirrored write operations have finished
374 	 * already.
375 	 */
376 	if (atomic_dec_and_test(&r1_bio->remaining)) {
377 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
378 			/* free extra copy of the data pages */
379 			int i = bio->bi_vcnt;
380 			while (i--)
381 				safe_put_page(bio->bi_io_vec[i].bv_page);
382 		}
383 		/* clear the bitmap if all writes complete successfully */
384 		bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
385 				r1_bio->sectors,
386 				!test_bit(R1BIO_Degraded, &r1_bio->state),
387 				behind);
388 		md_write_end(r1_bio->mddev);
389 		raid_end_bio_io(r1_bio);
390 	}
391 
392 	if (to_put)
393 		bio_put(to_put);
394 }
395 
396 
397 /*
398  * This routine returns the disk from which the requested read should
399  * be done. There is a per-array 'next expected sequential IO' sector
400  * number - if this matches on the next IO then we use the last disk.
401  * There is also a per-disk 'last know head position' sector that is
402  * maintained from IRQ contexts, both the normal and the resync IO
403  * completion handlers update this position correctly. If there is no
404  * perfect sequential match then we pick the disk whose head is closest.
405  *
406  * If there are 2 mirrors in the same 2 devices, performance degrades
407  * because position is mirror, not device based.
408  *
409  * The rdev for the device selected will have nr_pending incremented.
410  */
411 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
412 {
413 	const sector_t this_sector = r1_bio->sector;
414 	int new_disk = conf->last_used, disk = new_disk;
415 	int wonly_disk = -1;
416 	const int sectors = r1_bio->sectors;
417 	sector_t new_distance, current_distance;
418 	mdk_rdev_t *rdev;
419 
420 	rcu_read_lock();
421 	/*
422 	 * Check if we can balance. We can balance on the whole
423 	 * device if no resync is going on, or below the resync window.
424 	 * We take the first readable disk when above the resync window.
425 	 */
426  retry:
427 	if (conf->mddev->recovery_cp < MaxSector &&
428 	    (this_sector + sectors >= conf->next_resync)) {
429 		/* Choose the first operational device, for consistancy */
430 		new_disk = 0;
431 
432 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
433 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
434 		     !rdev || !test_bit(In_sync, &rdev->flags)
435 			     || test_bit(WriteMostly, &rdev->flags);
436 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
437 
438 			if (rdev && test_bit(In_sync, &rdev->flags) &&
439 				r1_bio->bios[new_disk] != IO_BLOCKED)
440 				wonly_disk = new_disk;
441 
442 			if (new_disk == conf->raid_disks - 1) {
443 				new_disk = wonly_disk;
444 				break;
445 			}
446 		}
447 		goto rb_out;
448 	}
449 
450 
451 	/* make sure the disk is operational */
452 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
453 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
454 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
455 		     test_bit(WriteMostly, &rdev->flags);
456 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
457 
458 		if (rdev && test_bit(In_sync, &rdev->flags) &&
459 		    r1_bio->bios[new_disk] != IO_BLOCKED)
460 			wonly_disk = new_disk;
461 
462 		if (new_disk <= 0)
463 			new_disk = conf->raid_disks;
464 		new_disk--;
465 		if (new_disk == disk) {
466 			new_disk = wonly_disk;
467 			break;
468 		}
469 	}
470 
471 	if (new_disk < 0)
472 		goto rb_out;
473 
474 	disk = new_disk;
475 	/* now disk == new_disk == starting point for search */
476 
477 	/*
478 	 * Don't change to another disk for sequential reads:
479 	 */
480 	if (conf->next_seq_sect == this_sector)
481 		goto rb_out;
482 	if (this_sector == conf->mirrors[new_disk].head_position)
483 		goto rb_out;
484 
485 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
486 
487 	/* Find the disk whose head is closest */
488 
489 	do {
490 		if (disk <= 0)
491 			disk = conf->raid_disks;
492 		disk--;
493 
494 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
495 
496 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
497 		    !test_bit(In_sync, &rdev->flags) ||
498 		    test_bit(WriteMostly, &rdev->flags))
499 			continue;
500 
501 		if (!atomic_read(&rdev->nr_pending)) {
502 			new_disk = disk;
503 			break;
504 		}
505 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
506 		if (new_distance < current_distance) {
507 			current_distance = new_distance;
508 			new_disk = disk;
509 		}
510 	} while (disk != conf->last_used);
511 
512  rb_out:
513 
514 
515 	if (new_disk >= 0) {
516 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
517 		if (!rdev)
518 			goto retry;
519 		atomic_inc(&rdev->nr_pending);
520 		if (!test_bit(In_sync, &rdev->flags)) {
521 			/* cannot risk returning a device that failed
522 			 * before we inc'ed nr_pending
523 			 */
524 			rdev_dec_pending(rdev, conf->mddev);
525 			goto retry;
526 		}
527 		conf->next_seq_sect = this_sector + sectors;
528 		conf->last_used = new_disk;
529 	}
530 	rcu_read_unlock();
531 
532 	return new_disk;
533 }
534 
535 static void unplug_slaves(mddev_t *mddev)
536 {
537 	conf_t *conf = mddev->private;
538 	int i;
539 
540 	rcu_read_lock();
541 	for (i=0; i<mddev->raid_disks; i++) {
542 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
543 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
544 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
545 
546 			atomic_inc(&rdev->nr_pending);
547 			rcu_read_unlock();
548 
549 			blk_unplug(r_queue);
550 
551 			rdev_dec_pending(rdev, mddev);
552 			rcu_read_lock();
553 		}
554 	}
555 	rcu_read_unlock();
556 }
557 
558 static void raid1_unplug(struct request_queue *q)
559 {
560 	mddev_t *mddev = q->queuedata;
561 
562 	unplug_slaves(mddev);
563 	md_wakeup_thread(mddev->thread);
564 }
565 
566 static int raid1_congested(void *data, int bits)
567 {
568 	mddev_t *mddev = data;
569 	conf_t *conf = mddev->private;
570 	int i, ret = 0;
571 
572 	if (mddev_congested(mddev, bits))
573 		return 1;
574 
575 	rcu_read_lock();
576 	for (i = 0; i < mddev->raid_disks; i++) {
577 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
578 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
579 			struct request_queue *q = bdev_get_queue(rdev->bdev);
580 
581 			/* Note the '|| 1' - when read_balance prefers
582 			 * non-congested targets, it can be removed
583 			 */
584 			if ((bits & (1<<BDI_async_congested)) || 1)
585 				ret |= bdi_congested(&q->backing_dev_info, bits);
586 			else
587 				ret &= bdi_congested(&q->backing_dev_info, bits);
588 		}
589 	}
590 	rcu_read_unlock();
591 	return ret;
592 }
593 
594 
595 static int flush_pending_writes(conf_t *conf)
596 {
597 	/* Any writes that have been queued but are awaiting
598 	 * bitmap updates get flushed here.
599 	 * We return 1 if any requests were actually submitted.
600 	 */
601 	int rv = 0;
602 
603 	spin_lock_irq(&conf->device_lock);
604 
605 	if (conf->pending_bio_list.head) {
606 		struct bio *bio;
607 		bio = bio_list_get(&conf->pending_bio_list);
608 		blk_remove_plug(conf->mddev->queue);
609 		spin_unlock_irq(&conf->device_lock);
610 		/* flush any pending bitmap writes to
611 		 * disk before proceeding w/ I/O */
612 		bitmap_unplug(conf->mddev->bitmap);
613 
614 		while (bio) { /* submit pending writes */
615 			struct bio *next = bio->bi_next;
616 			bio->bi_next = NULL;
617 			generic_make_request(bio);
618 			bio = next;
619 		}
620 		rv = 1;
621 	} else
622 		spin_unlock_irq(&conf->device_lock);
623 	return rv;
624 }
625 
626 /* Barriers....
627  * Sometimes we need to suspend IO while we do something else,
628  * either some resync/recovery, or reconfigure the array.
629  * To do this we raise a 'barrier'.
630  * The 'barrier' is a counter that can be raised multiple times
631  * to count how many activities are happening which preclude
632  * normal IO.
633  * We can only raise the barrier if there is no pending IO.
634  * i.e. if nr_pending == 0.
635  * We choose only to raise the barrier if no-one is waiting for the
636  * barrier to go down.  This means that as soon as an IO request
637  * is ready, no other operations which require a barrier will start
638  * until the IO request has had a chance.
639  *
640  * So: regular IO calls 'wait_barrier'.  When that returns there
641  *    is no backgroup IO happening,  It must arrange to call
642  *    allow_barrier when it has finished its IO.
643  * backgroup IO calls must call raise_barrier.  Once that returns
644  *    there is no normal IO happeing.  It must arrange to call
645  *    lower_barrier when the particular background IO completes.
646  */
647 #define RESYNC_DEPTH 32
648 
649 static void raise_barrier(conf_t *conf)
650 {
651 	spin_lock_irq(&conf->resync_lock);
652 
653 	/* Wait until no block IO is waiting */
654 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
655 			    conf->resync_lock,
656 			    raid1_unplug(conf->mddev->queue));
657 
658 	/* block any new IO from starting */
659 	conf->barrier++;
660 
661 	/* No wait for all pending IO to complete */
662 	wait_event_lock_irq(conf->wait_barrier,
663 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
664 			    conf->resync_lock,
665 			    raid1_unplug(conf->mddev->queue));
666 
667 	spin_unlock_irq(&conf->resync_lock);
668 }
669 
670 static void lower_barrier(conf_t *conf)
671 {
672 	unsigned long flags;
673 	BUG_ON(conf->barrier <= 0);
674 	spin_lock_irqsave(&conf->resync_lock, flags);
675 	conf->barrier--;
676 	spin_unlock_irqrestore(&conf->resync_lock, flags);
677 	wake_up(&conf->wait_barrier);
678 }
679 
680 static void wait_barrier(conf_t *conf)
681 {
682 	spin_lock_irq(&conf->resync_lock);
683 	if (conf->barrier) {
684 		conf->nr_waiting++;
685 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
686 				    conf->resync_lock,
687 				    raid1_unplug(conf->mddev->queue));
688 		conf->nr_waiting--;
689 	}
690 	conf->nr_pending++;
691 	spin_unlock_irq(&conf->resync_lock);
692 }
693 
694 static void allow_barrier(conf_t *conf)
695 {
696 	unsigned long flags;
697 	spin_lock_irqsave(&conf->resync_lock, flags);
698 	conf->nr_pending--;
699 	spin_unlock_irqrestore(&conf->resync_lock, flags);
700 	wake_up(&conf->wait_barrier);
701 }
702 
703 static void freeze_array(conf_t *conf)
704 {
705 	/* stop syncio and normal IO and wait for everything to
706 	 * go quite.
707 	 * We increment barrier and nr_waiting, and then
708 	 * wait until nr_pending match nr_queued+1
709 	 * This is called in the context of one normal IO request
710 	 * that has failed. Thus any sync request that might be pending
711 	 * will be blocked by nr_pending, and we need to wait for
712 	 * pending IO requests to complete or be queued for re-try.
713 	 * Thus the number queued (nr_queued) plus this request (1)
714 	 * must match the number of pending IOs (nr_pending) before
715 	 * we continue.
716 	 */
717 	spin_lock_irq(&conf->resync_lock);
718 	conf->barrier++;
719 	conf->nr_waiting++;
720 	wait_event_lock_irq(conf->wait_barrier,
721 			    conf->nr_pending == conf->nr_queued+1,
722 			    conf->resync_lock,
723 			    ({ flush_pending_writes(conf);
724 			       raid1_unplug(conf->mddev->queue); }));
725 	spin_unlock_irq(&conf->resync_lock);
726 }
727 static void unfreeze_array(conf_t *conf)
728 {
729 	/* reverse the effect of the freeze */
730 	spin_lock_irq(&conf->resync_lock);
731 	conf->barrier--;
732 	conf->nr_waiting--;
733 	wake_up(&conf->wait_barrier);
734 	spin_unlock_irq(&conf->resync_lock);
735 }
736 
737 
738 /* duplicate the data pages for behind I/O */
739 static struct page **alloc_behind_pages(struct bio *bio)
740 {
741 	int i;
742 	struct bio_vec *bvec;
743 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
744 					GFP_NOIO);
745 	if (unlikely(!pages))
746 		goto do_sync_io;
747 
748 	bio_for_each_segment(bvec, bio, i) {
749 		pages[i] = alloc_page(GFP_NOIO);
750 		if (unlikely(!pages[i]))
751 			goto do_sync_io;
752 		memcpy(kmap(pages[i]) + bvec->bv_offset,
753 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
754 		kunmap(pages[i]);
755 		kunmap(bvec->bv_page);
756 	}
757 
758 	return pages;
759 
760 do_sync_io:
761 	if (pages)
762 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
763 			put_page(pages[i]);
764 	kfree(pages);
765 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
766 	return NULL;
767 }
768 
769 static int make_request(mddev_t *mddev, struct bio * bio)
770 {
771 	conf_t *conf = mddev->private;
772 	mirror_info_t *mirror;
773 	r1bio_t *r1_bio;
774 	struct bio *read_bio;
775 	int i, targets = 0, disks;
776 	struct bitmap *bitmap;
777 	unsigned long flags;
778 	struct bio_list bl;
779 	struct page **behind_pages = NULL;
780 	const int rw = bio_data_dir(bio);
781 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
782 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
783 	mdk_rdev_t *blocked_rdev;
784 
785 	/*
786 	 * Register the new request and wait if the reconstruction
787 	 * thread has put up a bar for new requests.
788 	 * Continue immediately if no resync is active currently.
789 	 */
790 
791 	md_write_start(mddev, bio); /* wait on superblock update early */
792 
793 	if (bio_data_dir(bio) == WRITE &&
794 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
795 	    bio->bi_sector < mddev->suspend_hi) {
796 		/* As the suspend_* range is controlled by
797 		 * userspace, we want an interruptible
798 		 * wait.
799 		 */
800 		DEFINE_WAIT(w);
801 		for (;;) {
802 			flush_signals(current);
803 			prepare_to_wait(&conf->wait_barrier,
804 					&w, TASK_INTERRUPTIBLE);
805 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
806 			    bio->bi_sector >= mddev->suspend_hi)
807 				break;
808 			schedule();
809 		}
810 		finish_wait(&conf->wait_barrier, &w);
811 	}
812 
813 	wait_barrier(conf);
814 
815 	bitmap = mddev->bitmap;
816 
817 	/*
818 	 * make_request() can abort the operation when READA is being
819 	 * used and no empty request is available.
820 	 *
821 	 */
822 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
823 
824 	r1_bio->master_bio = bio;
825 	r1_bio->sectors = bio->bi_size >> 9;
826 	r1_bio->state = 0;
827 	r1_bio->mddev = mddev;
828 	r1_bio->sector = bio->bi_sector;
829 
830 	if (rw == READ) {
831 		/*
832 		 * read balancing logic:
833 		 */
834 		int rdisk = read_balance(conf, r1_bio);
835 
836 		if (rdisk < 0) {
837 			/* couldn't find anywhere to read from */
838 			raid_end_bio_io(r1_bio);
839 			return 0;
840 		}
841 		mirror = conf->mirrors + rdisk;
842 
843 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
844 		    bitmap) {
845 			/* Reading from a write-mostly device must
846 			 * take care not to over-take any writes
847 			 * that are 'behind'
848 			 */
849 			wait_event(bitmap->behind_wait,
850 				   atomic_read(&bitmap->behind_writes) == 0);
851 		}
852 		r1_bio->read_disk = rdisk;
853 
854 		read_bio = bio_clone(bio, GFP_NOIO);
855 
856 		r1_bio->bios[rdisk] = read_bio;
857 
858 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
859 		read_bio->bi_bdev = mirror->rdev->bdev;
860 		read_bio->bi_end_io = raid1_end_read_request;
861 		read_bio->bi_rw = READ | do_sync;
862 		read_bio->bi_private = r1_bio;
863 
864 		generic_make_request(read_bio);
865 		return 0;
866 	}
867 
868 	/*
869 	 * WRITE:
870 	 */
871 	/* first select target devices under spinlock and
872 	 * inc refcount on their rdev.  Record them by setting
873 	 * bios[x] to bio
874 	 */
875 	disks = conf->raid_disks;
876 #if 0
877 	{ static int first=1;
878 	if (first) printk("First Write sector %llu disks %d\n",
879 			  (unsigned long long)r1_bio->sector, disks);
880 	first = 0;
881 	}
882 #endif
883  retry_write:
884 	blocked_rdev = NULL;
885 	rcu_read_lock();
886 	for (i = 0;  i < disks; i++) {
887 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
888 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
889 			atomic_inc(&rdev->nr_pending);
890 			blocked_rdev = rdev;
891 			break;
892 		}
893 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
894 			atomic_inc(&rdev->nr_pending);
895 			if (test_bit(Faulty, &rdev->flags)) {
896 				rdev_dec_pending(rdev, mddev);
897 				r1_bio->bios[i] = NULL;
898 			} else {
899 				r1_bio->bios[i] = bio;
900 				targets++;
901 			}
902 		} else
903 			r1_bio->bios[i] = NULL;
904 	}
905 	rcu_read_unlock();
906 
907 	if (unlikely(blocked_rdev)) {
908 		/* Wait for this device to become unblocked */
909 		int j;
910 
911 		for (j = 0; j < i; j++)
912 			if (r1_bio->bios[j])
913 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
914 
915 		allow_barrier(conf);
916 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
917 		wait_barrier(conf);
918 		goto retry_write;
919 	}
920 
921 	BUG_ON(targets == 0); /* we never fail the last device */
922 
923 	if (targets < conf->raid_disks) {
924 		/* array is degraded, we will not clear the bitmap
925 		 * on I/O completion (see raid1_end_write_request) */
926 		set_bit(R1BIO_Degraded, &r1_bio->state);
927 	}
928 
929 	/* do behind I/O ?
930 	 * Not if there are too many, or cannot allocate memory,
931 	 * or a reader on WriteMostly is waiting for behind writes
932 	 * to flush */
933 	if (bitmap &&
934 	    (atomic_read(&bitmap->behind_writes)
935 	     < mddev->bitmap_info.max_write_behind) &&
936 	    !waitqueue_active(&bitmap->behind_wait) &&
937 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
938 		set_bit(R1BIO_BehindIO, &r1_bio->state);
939 
940 	atomic_set(&r1_bio->remaining, 0);
941 	atomic_set(&r1_bio->behind_remaining, 0);
942 
943 	bio_list_init(&bl);
944 	for (i = 0; i < disks; i++) {
945 		struct bio *mbio;
946 		if (!r1_bio->bios[i])
947 			continue;
948 
949 		mbio = bio_clone(bio, GFP_NOIO);
950 		r1_bio->bios[i] = mbio;
951 
952 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
953 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
954 		mbio->bi_end_io	= raid1_end_write_request;
955 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
956 		mbio->bi_private = r1_bio;
957 
958 		if (behind_pages) {
959 			struct bio_vec *bvec;
960 			int j;
961 
962 			/* Yes, I really want the '__' version so that
963 			 * we clear any unused pointer in the io_vec, rather
964 			 * than leave them unchanged.  This is important
965 			 * because when we come to free the pages, we won't
966 			 * know the originial bi_idx, so we just free
967 			 * them all
968 			 */
969 			__bio_for_each_segment(bvec, mbio, j, 0)
970 				bvec->bv_page = behind_pages[j];
971 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
972 				atomic_inc(&r1_bio->behind_remaining);
973 		}
974 
975 		atomic_inc(&r1_bio->remaining);
976 
977 		bio_list_add(&bl, mbio);
978 	}
979 	kfree(behind_pages); /* the behind pages are attached to the bios now */
980 
981 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
982 				test_bit(R1BIO_BehindIO, &r1_bio->state));
983 	spin_lock_irqsave(&conf->device_lock, flags);
984 	bio_list_merge(&conf->pending_bio_list, &bl);
985 	bio_list_init(&bl);
986 
987 	blk_plug_device(mddev->queue);
988 	spin_unlock_irqrestore(&conf->device_lock, flags);
989 
990 	/* In case raid1d snuck into freeze_array */
991 	wake_up(&conf->wait_barrier);
992 
993 	if (do_sync)
994 		md_wakeup_thread(mddev->thread);
995 #if 0
996 	while ((bio = bio_list_pop(&bl)) != NULL)
997 		generic_make_request(bio);
998 #endif
999 
1000 	return 0;
1001 }
1002 
1003 static void status(struct seq_file *seq, mddev_t *mddev)
1004 {
1005 	conf_t *conf = mddev->private;
1006 	int i;
1007 
1008 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1009 		   conf->raid_disks - mddev->degraded);
1010 	rcu_read_lock();
1011 	for (i = 0; i < conf->raid_disks; i++) {
1012 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1013 		seq_printf(seq, "%s",
1014 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1015 	}
1016 	rcu_read_unlock();
1017 	seq_printf(seq, "]");
1018 }
1019 
1020 
1021 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1022 {
1023 	char b[BDEVNAME_SIZE];
1024 	conf_t *conf = mddev->private;
1025 
1026 	/*
1027 	 * If it is not operational, then we have already marked it as dead
1028 	 * else if it is the last working disks, ignore the error, let the
1029 	 * next level up know.
1030 	 * else mark the drive as failed
1031 	 */
1032 	if (test_bit(In_sync, &rdev->flags)
1033 	    && (conf->raid_disks - mddev->degraded) == 1) {
1034 		/*
1035 		 * Don't fail the drive, act as though we were just a
1036 		 * normal single drive.
1037 		 * However don't try a recovery from this drive as
1038 		 * it is very likely to fail.
1039 		 */
1040 		mddev->recovery_disabled = 1;
1041 		return;
1042 	}
1043 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1044 		unsigned long flags;
1045 		spin_lock_irqsave(&conf->device_lock, flags);
1046 		mddev->degraded++;
1047 		set_bit(Faulty, &rdev->flags);
1048 		spin_unlock_irqrestore(&conf->device_lock, flags);
1049 		/*
1050 		 * if recovery is running, make sure it aborts.
1051 		 */
1052 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1053 	} else
1054 		set_bit(Faulty, &rdev->flags);
1055 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1056 	printk(KERN_ALERT "md/raid1:%s: Disk failure on %s, disabling device.\n"
1057 	       KERN_ALERT "md/raid1:%s: Operation continuing on %d devices.\n",
1058 	       mdname(mddev), bdevname(rdev->bdev, b),
1059 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1060 }
1061 
1062 static void print_conf(conf_t *conf)
1063 {
1064 	int i;
1065 
1066 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1067 	if (!conf) {
1068 		printk(KERN_DEBUG "(!conf)\n");
1069 		return;
1070 	}
1071 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1072 		conf->raid_disks);
1073 
1074 	rcu_read_lock();
1075 	for (i = 0; i < conf->raid_disks; i++) {
1076 		char b[BDEVNAME_SIZE];
1077 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1078 		if (rdev)
1079 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1080 			       i, !test_bit(In_sync, &rdev->flags),
1081 			       !test_bit(Faulty, &rdev->flags),
1082 			       bdevname(rdev->bdev,b));
1083 	}
1084 	rcu_read_unlock();
1085 }
1086 
1087 static void close_sync(conf_t *conf)
1088 {
1089 	wait_barrier(conf);
1090 	allow_barrier(conf);
1091 
1092 	mempool_destroy(conf->r1buf_pool);
1093 	conf->r1buf_pool = NULL;
1094 }
1095 
1096 static int raid1_spare_active(mddev_t *mddev)
1097 {
1098 	int i;
1099 	conf_t *conf = mddev->private;
1100 	int count = 0;
1101 	unsigned long flags;
1102 
1103 	/*
1104 	 * Find all failed disks within the RAID1 configuration
1105 	 * and mark them readable.
1106 	 * Called under mddev lock, so rcu protection not needed.
1107 	 */
1108 	for (i = 0; i < conf->raid_disks; i++) {
1109 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1110 		if (rdev
1111 		    && !test_bit(Faulty, &rdev->flags)
1112 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1113 			count++;
1114 			sysfs_notify_dirent(rdev->sysfs_state);
1115 		}
1116 	}
1117 	spin_lock_irqsave(&conf->device_lock, flags);
1118 	mddev->degraded -= count;
1119 	spin_unlock_irqrestore(&conf->device_lock, flags);
1120 
1121 	print_conf(conf);
1122 	return count;
1123 }
1124 
1125 
1126 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1127 {
1128 	conf_t *conf = mddev->private;
1129 	int err = -EEXIST;
1130 	int mirror = 0;
1131 	mirror_info_t *p;
1132 	int first = 0;
1133 	int last = mddev->raid_disks - 1;
1134 
1135 	if (rdev->raid_disk >= 0)
1136 		first = last = rdev->raid_disk;
1137 
1138 	for (mirror = first; mirror <= last; mirror++)
1139 		if ( !(p=conf->mirrors+mirror)->rdev) {
1140 
1141 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1142 					  rdev->data_offset << 9);
1143 			/* as we don't honour merge_bvec_fn, we must
1144 			 * never risk violating it, so limit
1145 			 * ->max_segments to one lying with a single
1146 			 * page, as a one page request is never in
1147 			 * violation.
1148 			 */
1149 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1150 				blk_queue_max_segments(mddev->queue, 1);
1151 				blk_queue_segment_boundary(mddev->queue,
1152 							   PAGE_CACHE_SIZE - 1);
1153 			}
1154 
1155 			p->head_position = 0;
1156 			rdev->raid_disk = mirror;
1157 			err = 0;
1158 			/* As all devices are equivalent, we don't need a full recovery
1159 			 * if this was recently any drive of the array
1160 			 */
1161 			if (rdev->saved_raid_disk < 0)
1162 				conf->fullsync = 1;
1163 			rcu_assign_pointer(p->rdev, rdev);
1164 			break;
1165 		}
1166 	md_integrity_add_rdev(rdev, mddev);
1167 	print_conf(conf);
1168 	return err;
1169 }
1170 
1171 static int raid1_remove_disk(mddev_t *mddev, int number)
1172 {
1173 	conf_t *conf = mddev->private;
1174 	int err = 0;
1175 	mdk_rdev_t *rdev;
1176 	mirror_info_t *p = conf->mirrors+ number;
1177 
1178 	print_conf(conf);
1179 	rdev = p->rdev;
1180 	if (rdev) {
1181 		if (test_bit(In_sync, &rdev->flags) ||
1182 		    atomic_read(&rdev->nr_pending)) {
1183 			err = -EBUSY;
1184 			goto abort;
1185 		}
1186 		/* Only remove non-faulty devices is recovery
1187 		 * is not possible.
1188 		 */
1189 		if (!test_bit(Faulty, &rdev->flags) &&
1190 		    mddev->degraded < conf->raid_disks) {
1191 			err = -EBUSY;
1192 			goto abort;
1193 		}
1194 		p->rdev = NULL;
1195 		synchronize_rcu();
1196 		if (atomic_read(&rdev->nr_pending)) {
1197 			/* lost the race, try later */
1198 			err = -EBUSY;
1199 			p->rdev = rdev;
1200 			goto abort;
1201 		}
1202 		md_integrity_register(mddev);
1203 	}
1204 abort:
1205 
1206 	print_conf(conf);
1207 	return err;
1208 }
1209 
1210 
1211 static void end_sync_read(struct bio *bio, int error)
1212 {
1213 	r1bio_t *r1_bio = bio->bi_private;
1214 	int i;
1215 
1216 	for (i=r1_bio->mddev->raid_disks; i--; )
1217 		if (r1_bio->bios[i] == bio)
1218 			break;
1219 	BUG_ON(i < 0);
1220 	update_head_pos(i, r1_bio);
1221 	/*
1222 	 * we have read a block, now it needs to be re-written,
1223 	 * or re-read if the read failed.
1224 	 * We don't do much here, just schedule handling by raid1d
1225 	 */
1226 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1227 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1228 
1229 	if (atomic_dec_and_test(&r1_bio->remaining))
1230 		reschedule_retry(r1_bio);
1231 }
1232 
1233 static void end_sync_write(struct bio *bio, int error)
1234 {
1235 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1236 	r1bio_t *r1_bio = bio->bi_private;
1237 	mddev_t *mddev = r1_bio->mddev;
1238 	conf_t *conf = mddev->private;
1239 	int i;
1240 	int mirror=0;
1241 
1242 	for (i = 0; i < conf->raid_disks; i++)
1243 		if (r1_bio->bios[i] == bio) {
1244 			mirror = i;
1245 			break;
1246 		}
1247 	if (!uptodate) {
1248 		int sync_blocks = 0;
1249 		sector_t s = r1_bio->sector;
1250 		long sectors_to_go = r1_bio->sectors;
1251 		/* make sure these bits doesn't get cleared. */
1252 		do {
1253 			bitmap_end_sync(mddev->bitmap, s,
1254 					&sync_blocks, 1);
1255 			s += sync_blocks;
1256 			sectors_to_go -= sync_blocks;
1257 		} while (sectors_to_go > 0);
1258 		md_error(mddev, conf->mirrors[mirror].rdev);
1259 	}
1260 
1261 	update_head_pos(mirror, r1_bio);
1262 
1263 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1264 		sector_t s = r1_bio->sectors;
1265 		put_buf(r1_bio);
1266 		md_done_sync(mddev, s, uptodate);
1267 	}
1268 }
1269 
1270 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1271 {
1272 	conf_t *conf = mddev->private;
1273 	int i;
1274 	int disks = conf->raid_disks;
1275 	struct bio *bio, *wbio;
1276 
1277 	bio = r1_bio->bios[r1_bio->read_disk];
1278 
1279 
1280 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1281 		/* We have read all readable devices.  If we haven't
1282 		 * got the block, then there is no hope left.
1283 		 * If we have, then we want to do a comparison
1284 		 * and skip the write if everything is the same.
1285 		 * If any blocks failed to read, then we need to
1286 		 * attempt an over-write
1287 		 */
1288 		int primary;
1289 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1290 			for (i=0; i<mddev->raid_disks; i++)
1291 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1292 					md_error(mddev, conf->mirrors[i].rdev);
1293 
1294 			md_done_sync(mddev, r1_bio->sectors, 1);
1295 			put_buf(r1_bio);
1296 			return;
1297 		}
1298 		for (primary=0; primary<mddev->raid_disks; primary++)
1299 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1300 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1301 				r1_bio->bios[primary]->bi_end_io = NULL;
1302 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1303 				break;
1304 			}
1305 		r1_bio->read_disk = primary;
1306 		for (i=0; i<mddev->raid_disks; i++)
1307 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1308 				int j;
1309 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1310 				struct bio *pbio = r1_bio->bios[primary];
1311 				struct bio *sbio = r1_bio->bios[i];
1312 
1313 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1314 					for (j = vcnt; j-- ; ) {
1315 						struct page *p, *s;
1316 						p = pbio->bi_io_vec[j].bv_page;
1317 						s = sbio->bi_io_vec[j].bv_page;
1318 						if (memcmp(page_address(p),
1319 							   page_address(s),
1320 							   PAGE_SIZE))
1321 							break;
1322 					}
1323 				} else
1324 					j = 0;
1325 				if (j >= 0)
1326 					mddev->resync_mismatches += r1_bio->sectors;
1327 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1328 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1329 					sbio->bi_end_io = NULL;
1330 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1331 				} else {
1332 					/* fixup the bio for reuse */
1333 					int size;
1334 					sbio->bi_vcnt = vcnt;
1335 					sbio->bi_size = r1_bio->sectors << 9;
1336 					sbio->bi_idx = 0;
1337 					sbio->bi_phys_segments = 0;
1338 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1339 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1340 					sbio->bi_next = NULL;
1341 					sbio->bi_sector = r1_bio->sector +
1342 						conf->mirrors[i].rdev->data_offset;
1343 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1344 					size = sbio->bi_size;
1345 					for (j = 0; j < vcnt ; j++) {
1346 						struct bio_vec *bi;
1347 						bi = &sbio->bi_io_vec[j];
1348 						bi->bv_offset = 0;
1349 						if (size > PAGE_SIZE)
1350 							bi->bv_len = PAGE_SIZE;
1351 						else
1352 							bi->bv_len = size;
1353 						size -= PAGE_SIZE;
1354 						memcpy(page_address(bi->bv_page),
1355 						       page_address(pbio->bi_io_vec[j].bv_page),
1356 						       PAGE_SIZE);
1357 					}
1358 
1359 				}
1360 			}
1361 	}
1362 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1363 		/* ouch - failed to read all of that.
1364 		 * Try some synchronous reads of other devices to get
1365 		 * good data, much like with normal read errors.  Only
1366 		 * read into the pages we already have so we don't
1367 		 * need to re-issue the read request.
1368 		 * We don't need to freeze the array, because being in an
1369 		 * active sync request, there is no normal IO, and
1370 		 * no overlapping syncs.
1371 		 */
1372 		sector_t sect = r1_bio->sector;
1373 		int sectors = r1_bio->sectors;
1374 		int idx = 0;
1375 
1376 		while(sectors) {
1377 			int s = sectors;
1378 			int d = r1_bio->read_disk;
1379 			int success = 0;
1380 			mdk_rdev_t *rdev;
1381 
1382 			if (s > (PAGE_SIZE>>9))
1383 				s = PAGE_SIZE >> 9;
1384 			do {
1385 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1386 					/* No rcu protection needed here devices
1387 					 * can only be removed when no resync is
1388 					 * active, and resync is currently active
1389 					 */
1390 					rdev = conf->mirrors[d].rdev;
1391 					if (sync_page_io(rdev->bdev,
1392 							 sect + rdev->data_offset,
1393 							 s<<9,
1394 							 bio->bi_io_vec[idx].bv_page,
1395 							 READ)) {
1396 						success = 1;
1397 						break;
1398 					}
1399 				}
1400 				d++;
1401 				if (d == conf->raid_disks)
1402 					d = 0;
1403 			} while (!success && d != r1_bio->read_disk);
1404 
1405 			if (success) {
1406 				int start = d;
1407 				/* write it back and re-read */
1408 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1409 				while (d != r1_bio->read_disk) {
1410 					if (d == 0)
1411 						d = conf->raid_disks;
1412 					d--;
1413 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1414 						continue;
1415 					rdev = conf->mirrors[d].rdev;
1416 					atomic_add(s, &rdev->corrected_errors);
1417 					if (sync_page_io(rdev->bdev,
1418 							 sect + rdev->data_offset,
1419 							 s<<9,
1420 							 bio->bi_io_vec[idx].bv_page,
1421 							 WRITE) == 0)
1422 						md_error(mddev, rdev);
1423 				}
1424 				d = start;
1425 				while (d != r1_bio->read_disk) {
1426 					if (d == 0)
1427 						d = conf->raid_disks;
1428 					d--;
1429 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1430 						continue;
1431 					rdev = conf->mirrors[d].rdev;
1432 					if (sync_page_io(rdev->bdev,
1433 							 sect + rdev->data_offset,
1434 							 s<<9,
1435 							 bio->bi_io_vec[idx].bv_page,
1436 							 READ) == 0)
1437 						md_error(mddev, rdev);
1438 				}
1439 			} else {
1440 				char b[BDEVNAME_SIZE];
1441 				/* Cannot read from anywhere, array is toast */
1442 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1443 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1444 				       " for block %llu\n",
1445 				       mdname(mddev),
1446 				       bdevname(bio->bi_bdev, b),
1447 				       (unsigned long long)r1_bio->sector);
1448 				md_done_sync(mddev, r1_bio->sectors, 0);
1449 				put_buf(r1_bio);
1450 				return;
1451 			}
1452 			sectors -= s;
1453 			sect += s;
1454 			idx ++;
1455 		}
1456 	}
1457 
1458 	/*
1459 	 * schedule writes
1460 	 */
1461 	atomic_set(&r1_bio->remaining, 1);
1462 	for (i = 0; i < disks ; i++) {
1463 		wbio = r1_bio->bios[i];
1464 		if (wbio->bi_end_io == NULL ||
1465 		    (wbio->bi_end_io == end_sync_read &&
1466 		     (i == r1_bio->read_disk ||
1467 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1468 			continue;
1469 
1470 		wbio->bi_rw = WRITE;
1471 		wbio->bi_end_io = end_sync_write;
1472 		atomic_inc(&r1_bio->remaining);
1473 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1474 
1475 		generic_make_request(wbio);
1476 	}
1477 
1478 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1479 		/* if we're here, all write(s) have completed, so clean up */
1480 		md_done_sync(mddev, r1_bio->sectors, 1);
1481 		put_buf(r1_bio);
1482 	}
1483 }
1484 
1485 /*
1486  * This is a kernel thread which:
1487  *
1488  *	1.	Retries failed read operations on working mirrors.
1489  *	2.	Updates the raid superblock when problems encounter.
1490  *	3.	Performs writes following reads for array syncronising.
1491  */
1492 
1493 static void fix_read_error(conf_t *conf, int read_disk,
1494 			   sector_t sect, int sectors)
1495 {
1496 	mddev_t *mddev = conf->mddev;
1497 	while(sectors) {
1498 		int s = sectors;
1499 		int d = read_disk;
1500 		int success = 0;
1501 		int start;
1502 		mdk_rdev_t *rdev;
1503 
1504 		if (s > (PAGE_SIZE>>9))
1505 			s = PAGE_SIZE >> 9;
1506 
1507 		do {
1508 			/* Note: no rcu protection needed here
1509 			 * as this is synchronous in the raid1d thread
1510 			 * which is the thread that might remove
1511 			 * a device.  If raid1d ever becomes multi-threaded....
1512 			 */
1513 			rdev = conf->mirrors[d].rdev;
1514 			if (rdev &&
1515 			    test_bit(In_sync, &rdev->flags) &&
1516 			    sync_page_io(rdev->bdev,
1517 					 sect + rdev->data_offset,
1518 					 s<<9,
1519 					 conf->tmppage, READ))
1520 				success = 1;
1521 			else {
1522 				d++;
1523 				if (d == conf->raid_disks)
1524 					d = 0;
1525 			}
1526 		} while (!success && d != read_disk);
1527 
1528 		if (!success) {
1529 			/* Cannot read from anywhere -- bye bye array */
1530 			md_error(mddev, conf->mirrors[read_disk].rdev);
1531 			break;
1532 		}
1533 		/* write it back and re-read */
1534 		start = d;
1535 		while (d != read_disk) {
1536 			if (d==0)
1537 				d = conf->raid_disks;
1538 			d--;
1539 			rdev = conf->mirrors[d].rdev;
1540 			if (rdev &&
1541 			    test_bit(In_sync, &rdev->flags)) {
1542 				if (sync_page_io(rdev->bdev,
1543 						 sect + rdev->data_offset,
1544 						 s<<9, conf->tmppage, WRITE)
1545 				    == 0)
1546 					/* Well, this device is dead */
1547 					md_error(mddev, rdev);
1548 			}
1549 		}
1550 		d = start;
1551 		while (d != read_disk) {
1552 			char b[BDEVNAME_SIZE];
1553 			if (d==0)
1554 				d = conf->raid_disks;
1555 			d--;
1556 			rdev = conf->mirrors[d].rdev;
1557 			if (rdev &&
1558 			    test_bit(In_sync, &rdev->flags)) {
1559 				if (sync_page_io(rdev->bdev,
1560 						 sect + rdev->data_offset,
1561 						 s<<9, conf->tmppage, READ)
1562 				    == 0)
1563 					/* Well, this device is dead */
1564 					md_error(mddev, rdev);
1565 				else {
1566 					atomic_add(s, &rdev->corrected_errors);
1567 					printk(KERN_INFO
1568 					       "md/raid1:%s: read error corrected "
1569 					       "(%d sectors at %llu on %s)\n",
1570 					       mdname(mddev), s,
1571 					       (unsigned long long)(sect +
1572 					           rdev->data_offset),
1573 					       bdevname(rdev->bdev, b));
1574 				}
1575 			}
1576 		}
1577 		sectors -= s;
1578 		sect += s;
1579 	}
1580 }
1581 
1582 static void raid1d(mddev_t *mddev)
1583 {
1584 	r1bio_t *r1_bio;
1585 	struct bio *bio;
1586 	unsigned long flags;
1587 	conf_t *conf = mddev->private;
1588 	struct list_head *head = &conf->retry_list;
1589 	int unplug=0;
1590 	mdk_rdev_t *rdev;
1591 
1592 	md_check_recovery(mddev);
1593 
1594 	for (;;) {
1595 		char b[BDEVNAME_SIZE];
1596 
1597 		unplug += flush_pending_writes(conf);
1598 
1599 		spin_lock_irqsave(&conf->device_lock, flags);
1600 		if (list_empty(head)) {
1601 			spin_unlock_irqrestore(&conf->device_lock, flags);
1602 			break;
1603 		}
1604 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1605 		list_del(head->prev);
1606 		conf->nr_queued--;
1607 		spin_unlock_irqrestore(&conf->device_lock, flags);
1608 
1609 		mddev = r1_bio->mddev;
1610 		conf = mddev->private;
1611 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1612 			sync_request_write(mddev, r1_bio);
1613 			unplug = 1;
1614 		} else {
1615 			int disk;
1616 
1617 			/* we got a read error. Maybe the drive is bad.  Maybe just
1618 			 * the block and we can fix it.
1619 			 * We freeze all other IO, and try reading the block from
1620 			 * other devices.  When we find one, we re-write
1621 			 * and check it that fixes the read error.
1622 			 * This is all done synchronously while the array is
1623 			 * frozen
1624 			 */
1625 			if (mddev->ro == 0) {
1626 				freeze_array(conf);
1627 				fix_read_error(conf, r1_bio->read_disk,
1628 					       r1_bio->sector,
1629 					       r1_bio->sectors);
1630 				unfreeze_array(conf);
1631 			} else
1632 				md_error(mddev,
1633 					 conf->mirrors[r1_bio->read_disk].rdev);
1634 
1635 			bio = r1_bio->bios[r1_bio->read_disk];
1636 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1637 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1638 				       " read error for block %llu\n",
1639 				       mdname(mddev),
1640 				       bdevname(bio->bi_bdev,b),
1641 				       (unsigned long long)r1_bio->sector);
1642 				raid_end_bio_io(r1_bio);
1643 			} else {
1644 				const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1645 				r1_bio->bios[r1_bio->read_disk] =
1646 					mddev->ro ? IO_BLOCKED : NULL;
1647 				r1_bio->read_disk = disk;
1648 				bio_put(bio);
1649 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1650 				r1_bio->bios[r1_bio->read_disk] = bio;
1651 				rdev = conf->mirrors[disk].rdev;
1652 				if (printk_ratelimit())
1653 					printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1654 					       " other mirror: %s\n",
1655 					       mdname(mddev),
1656 					       (unsigned long long)r1_bio->sector,
1657 					       bdevname(rdev->bdev,b));
1658 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1659 				bio->bi_bdev = rdev->bdev;
1660 				bio->bi_end_io = raid1_end_read_request;
1661 				bio->bi_rw = READ | do_sync;
1662 				bio->bi_private = r1_bio;
1663 				unplug = 1;
1664 				generic_make_request(bio);
1665 			}
1666 		}
1667 		cond_resched();
1668 	}
1669 	if (unplug)
1670 		unplug_slaves(mddev);
1671 }
1672 
1673 
1674 static int init_resync(conf_t *conf)
1675 {
1676 	int buffs;
1677 
1678 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1679 	BUG_ON(conf->r1buf_pool);
1680 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1681 					  conf->poolinfo);
1682 	if (!conf->r1buf_pool)
1683 		return -ENOMEM;
1684 	conf->next_resync = 0;
1685 	return 0;
1686 }
1687 
1688 /*
1689  * perform a "sync" on one "block"
1690  *
1691  * We need to make sure that no normal I/O request - particularly write
1692  * requests - conflict with active sync requests.
1693  *
1694  * This is achieved by tracking pending requests and a 'barrier' concept
1695  * that can be installed to exclude normal IO requests.
1696  */
1697 
1698 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1699 {
1700 	conf_t *conf = mddev->private;
1701 	r1bio_t *r1_bio;
1702 	struct bio *bio;
1703 	sector_t max_sector, nr_sectors;
1704 	int disk = -1;
1705 	int i;
1706 	int wonly = -1;
1707 	int write_targets = 0, read_targets = 0;
1708 	int sync_blocks;
1709 	int still_degraded = 0;
1710 
1711 	if (!conf->r1buf_pool)
1712 		if (init_resync(conf))
1713 			return 0;
1714 
1715 	max_sector = mddev->dev_sectors;
1716 	if (sector_nr >= max_sector) {
1717 		/* If we aborted, we need to abort the
1718 		 * sync on the 'current' bitmap chunk (there will
1719 		 * only be one in raid1 resync.
1720 		 * We can find the current addess in mddev->curr_resync
1721 		 */
1722 		if (mddev->curr_resync < max_sector) /* aborted */
1723 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1724 						&sync_blocks, 1);
1725 		else /* completed sync */
1726 			conf->fullsync = 0;
1727 
1728 		bitmap_close_sync(mddev->bitmap);
1729 		close_sync(conf);
1730 		return 0;
1731 	}
1732 
1733 	if (mddev->bitmap == NULL &&
1734 	    mddev->recovery_cp == MaxSector &&
1735 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1736 	    conf->fullsync == 0) {
1737 		*skipped = 1;
1738 		return max_sector - sector_nr;
1739 	}
1740 	/* before building a request, check if we can skip these blocks..
1741 	 * This call the bitmap_start_sync doesn't actually record anything
1742 	 */
1743 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1744 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1745 		/* We can skip this block, and probably several more */
1746 		*skipped = 1;
1747 		return sync_blocks;
1748 	}
1749 	/*
1750 	 * If there is non-resync activity waiting for a turn,
1751 	 * and resync is going fast enough,
1752 	 * then let it though before starting on this new sync request.
1753 	 */
1754 	if (!go_faster && conf->nr_waiting)
1755 		msleep_interruptible(1000);
1756 
1757 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1758 	raise_barrier(conf);
1759 
1760 	conf->next_resync = sector_nr;
1761 
1762 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1763 	rcu_read_lock();
1764 	/*
1765 	 * If we get a correctably read error during resync or recovery,
1766 	 * we might want to read from a different device.  So we
1767 	 * flag all drives that could conceivably be read from for READ,
1768 	 * and any others (which will be non-In_sync devices) for WRITE.
1769 	 * If a read fails, we try reading from something else for which READ
1770 	 * is OK.
1771 	 */
1772 
1773 	r1_bio->mddev = mddev;
1774 	r1_bio->sector = sector_nr;
1775 	r1_bio->state = 0;
1776 	set_bit(R1BIO_IsSync, &r1_bio->state);
1777 
1778 	for (i=0; i < conf->raid_disks; i++) {
1779 		mdk_rdev_t *rdev;
1780 		bio = r1_bio->bios[i];
1781 
1782 		/* take from bio_init */
1783 		bio->bi_next = NULL;
1784 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
1785 		bio->bi_flags |= 1 << BIO_UPTODATE;
1786 		bio->bi_comp_cpu = -1;
1787 		bio->bi_rw = READ;
1788 		bio->bi_vcnt = 0;
1789 		bio->bi_idx = 0;
1790 		bio->bi_phys_segments = 0;
1791 		bio->bi_size = 0;
1792 		bio->bi_end_io = NULL;
1793 		bio->bi_private = NULL;
1794 
1795 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1796 		if (rdev == NULL ||
1797 			   test_bit(Faulty, &rdev->flags)) {
1798 			still_degraded = 1;
1799 			continue;
1800 		} else if (!test_bit(In_sync, &rdev->flags)) {
1801 			bio->bi_rw = WRITE;
1802 			bio->bi_end_io = end_sync_write;
1803 			write_targets ++;
1804 		} else {
1805 			/* may need to read from here */
1806 			bio->bi_rw = READ;
1807 			bio->bi_end_io = end_sync_read;
1808 			if (test_bit(WriteMostly, &rdev->flags)) {
1809 				if (wonly < 0)
1810 					wonly = i;
1811 			} else {
1812 				if (disk < 0)
1813 					disk = i;
1814 			}
1815 			read_targets++;
1816 		}
1817 		atomic_inc(&rdev->nr_pending);
1818 		bio->bi_sector = sector_nr + rdev->data_offset;
1819 		bio->bi_bdev = rdev->bdev;
1820 		bio->bi_private = r1_bio;
1821 	}
1822 	rcu_read_unlock();
1823 	if (disk < 0)
1824 		disk = wonly;
1825 	r1_bio->read_disk = disk;
1826 
1827 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1828 		/* extra read targets are also write targets */
1829 		write_targets += read_targets-1;
1830 
1831 	if (write_targets == 0 || read_targets == 0) {
1832 		/* There is nowhere to write, so all non-sync
1833 		 * drives must be failed - so we are finished
1834 		 */
1835 		sector_t rv = max_sector - sector_nr;
1836 		*skipped = 1;
1837 		put_buf(r1_bio);
1838 		return rv;
1839 	}
1840 
1841 	if (max_sector > mddev->resync_max)
1842 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1843 	nr_sectors = 0;
1844 	sync_blocks = 0;
1845 	do {
1846 		struct page *page;
1847 		int len = PAGE_SIZE;
1848 		if (sector_nr + (len>>9) > max_sector)
1849 			len = (max_sector - sector_nr) << 9;
1850 		if (len == 0)
1851 			break;
1852 		if (sync_blocks == 0) {
1853 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1854 					       &sync_blocks, still_degraded) &&
1855 			    !conf->fullsync &&
1856 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1857 				break;
1858 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1859 			if ((len >> 9) > sync_blocks)
1860 				len = sync_blocks<<9;
1861 		}
1862 
1863 		for (i=0 ; i < conf->raid_disks; i++) {
1864 			bio = r1_bio->bios[i];
1865 			if (bio->bi_end_io) {
1866 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1867 				if (bio_add_page(bio, page, len, 0) == 0) {
1868 					/* stop here */
1869 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1870 					while (i > 0) {
1871 						i--;
1872 						bio = r1_bio->bios[i];
1873 						if (bio->bi_end_io==NULL)
1874 							continue;
1875 						/* remove last page from this bio */
1876 						bio->bi_vcnt--;
1877 						bio->bi_size -= len;
1878 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1879 					}
1880 					goto bio_full;
1881 				}
1882 			}
1883 		}
1884 		nr_sectors += len>>9;
1885 		sector_nr += len>>9;
1886 		sync_blocks -= (len>>9);
1887 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1888  bio_full:
1889 	r1_bio->sectors = nr_sectors;
1890 
1891 	/* For a user-requested sync, we read all readable devices and do a
1892 	 * compare
1893 	 */
1894 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1895 		atomic_set(&r1_bio->remaining, read_targets);
1896 		for (i=0; i<conf->raid_disks; i++) {
1897 			bio = r1_bio->bios[i];
1898 			if (bio->bi_end_io == end_sync_read) {
1899 				md_sync_acct(bio->bi_bdev, nr_sectors);
1900 				generic_make_request(bio);
1901 			}
1902 		}
1903 	} else {
1904 		atomic_set(&r1_bio->remaining, 1);
1905 		bio = r1_bio->bios[r1_bio->read_disk];
1906 		md_sync_acct(bio->bi_bdev, nr_sectors);
1907 		generic_make_request(bio);
1908 
1909 	}
1910 	return nr_sectors;
1911 }
1912 
1913 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1914 {
1915 	if (sectors)
1916 		return sectors;
1917 
1918 	return mddev->dev_sectors;
1919 }
1920 
1921 static conf_t *setup_conf(mddev_t *mddev)
1922 {
1923 	conf_t *conf;
1924 	int i;
1925 	mirror_info_t *disk;
1926 	mdk_rdev_t *rdev;
1927 	int err = -ENOMEM;
1928 
1929 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1930 	if (!conf)
1931 		goto abort;
1932 
1933 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1934 				 GFP_KERNEL);
1935 	if (!conf->mirrors)
1936 		goto abort;
1937 
1938 	conf->tmppage = alloc_page(GFP_KERNEL);
1939 	if (!conf->tmppage)
1940 		goto abort;
1941 
1942 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1943 	if (!conf->poolinfo)
1944 		goto abort;
1945 	conf->poolinfo->raid_disks = mddev->raid_disks;
1946 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1947 					  r1bio_pool_free,
1948 					  conf->poolinfo);
1949 	if (!conf->r1bio_pool)
1950 		goto abort;
1951 
1952 	conf->poolinfo->mddev = mddev;
1953 
1954 	spin_lock_init(&conf->device_lock);
1955 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1956 		int disk_idx = rdev->raid_disk;
1957 		if (disk_idx >= mddev->raid_disks
1958 		    || disk_idx < 0)
1959 			continue;
1960 		disk = conf->mirrors + disk_idx;
1961 
1962 		disk->rdev = rdev;
1963 
1964 		disk->head_position = 0;
1965 	}
1966 	conf->raid_disks = mddev->raid_disks;
1967 	conf->mddev = mddev;
1968 	INIT_LIST_HEAD(&conf->retry_list);
1969 
1970 	spin_lock_init(&conf->resync_lock);
1971 	init_waitqueue_head(&conf->wait_barrier);
1972 
1973 	bio_list_init(&conf->pending_bio_list);
1974 	bio_list_init(&conf->flushing_bio_list);
1975 
1976 	conf->last_used = -1;
1977 	for (i = 0; i < conf->raid_disks; i++) {
1978 
1979 		disk = conf->mirrors + i;
1980 
1981 		if (!disk->rdev ||
1982 		    !test_bit(In_sync, &disk->rdev->flags)) {
1983 			disk->head_position = 0;
1984 			if (disk->rdev)
1985 				conf->fullsync = 1;
1986 		} else if (conf->last_used < 0)
1987 			/*
1988 			 * The first working device is used as a
1989 			 * starting point to read balancing.
1990 			 */
1991 			conf->last_used = i;
1992 	}
1993 
1994 	err = -EIO;
1995 	if (conf->last_used < 0) {
1996 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1997 		       mdname(mddev));
1998 		goto abort;
1999 	}
2000 	err = -ENOMEM;
2001 	conf->thread = md_register_thread(raid1d, mddev, NULL);
2002 	if (!conf->thread) {
2003 		printk(KERN_ERR
2004 		       "md/raid1:%s: couldn't allocate thread\n",
2005 		       mdname(mddev));
2006 		goto abort;
2007 	}
2008 
2009 	return conf;
2010 
2011  abort:
2012 	if (conf) {
2013 		if (conf->r1bio_pool)
2014 			mempool_destroy(conf->r1bio_pool);
2015 		kfree(conf->mirrors);
2016 		safe_put_page(conf->tmppage);
2017 		kfree(conf->poolinfo);
2018 		kfree(conf);
2019 	}
2020 	return ERR_PTR(err);
2021 }
2022 
2023 static int run(mddev_t *mddev)
2024 {
2025 	conf_t *conf;
2026 	int i;
2027 	mdk_rdev_t *rdev;
2028 
2029 	if (mddev->level != 1) {
2030 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2031 		       mdname(mddev), mddev->level);
2032 		return -EIO;
2033 	}
2034 	if (mddev->reshape_position != MaxSector) {
2035 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2036 		       mdname(mddev));
2037 		return -EIO;
2038 	}
2039 	/*
2040 	 * copy the already verified devices into our private RAID1
2041 	 * bookkeeping area. [whatever we allocate in run(),
2042 	 * should be freed in stop()]
2043 	 */
2044 	if (mddev->private == NULL)
2045 		conf = setup_conf(mddev);
2046 	else
2047 		conf = mddev->private;
2048 
2049 	if (IS_ERR(conf))
2050 		return PTR_ERR(conf);
2051 
2052 	mddev->queue->queue_lock = &conf->device_lock;
2053 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2054 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2055 				  rdev->data_offset << 9);
2056 		/* as we don't honour merge_bvec_fn, we must never risk
2057 		 * violating it, so limit ->max_segments to 1 lying within
2058 		 * a single page, as a one page request is never in violation.
2059 		 */
2060 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2061 			blk_queue_max_segments(mddev->queue, 1);
2062 			blk_queue_segment_boundary(mddev->queue,
2063 						   PAGE_CACHE_SIZE - 1);
2064 		}
2065 	}
2066 
2067 	mddev->degraded = 0;
2068 	for (i=0; i < conf->raid_disks; i++)
2069 		if (conf->mirrors[i].rdev == NULL ||
2070 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2071 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2072 			mddev->degraded++;
2073 
2074 	if (conf->raid_disks - mddev->degraded == 1)
2075 		mddev->recovery_cp = MaxSector;
2076 
2077 	if (mddev->recovery_cp != MaxSector)
2078 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2079 		       " -- starting background reconstruction\n",
2080 		       mdname(mddev));
2081 	printk(KERN_INFO
2082 		"md/raid1:%s: active with %d out of %d mirrors\n",
2083 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2084 		mddev->raid_disks);
2085 
2086 	/*
2087 	 * Ok, everything is just fine now
2088 	 */
2089 	mddev->thread = conf->thread;
2090 	conf->thread = NULL;
2091 	mddev->private = conf;
2092 
2093 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2094 
2095 	mddev->queue->unplug_fn = raid1_unplug;
2096 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2097 	mddev->queue->backing_dev_info.congested_data = mddev;
2098 	md_integrity_register(mddev);
2099 	return 0;
2100 }
2101 
2102 static int stop(mddev_t *mddev)
2103 {
2104 	conf_t *conf = mddev->private;
2105 	struct bitmap *bitmap = mddev->bitmap;
2106 
2107 	/* wait for behind writes to complete */
2108 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2109 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2110 		       mdname(mddev));
2111 		/* need to kick something here to make sure I/O goes? */
2112 		wait_event(bitmap->behind_wait,
2113 			   atomic_read(&bitmap->behind_writes) == 0);
2114 	}
2115 
2116 	raise_barrier(conf);
2117 	lower_barrier(conf);
2118 
2119 	md_unregister_thread(mddev->thread);
2120 	mddev->thread = NULL;
2121 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2122 	if (conf->r1bio_pool)
2123 		mempool_destroy(conf->r1bio_pool);
2124 	kfree(conf->mirrors);
2125 	kfree(conf->poolinfo);
2126 	kfree(conf);
2127 	mddev->private = NULL;
2128 	return 0;
2129 }
2130 
2131 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2132 {
2133 	/* no resync is happening, and there is enough space
2134 	 * on all devices, so we can resize.
2135 	 * We need to make sure resync covers any new space.
2136 	 * If the array is shrinking we should possibly wait until
2137 	 * any io in the removed space completes, but it hardly seems
2138 	 * worth it.
2139 	 */
2140 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2141 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2142 		return -EINVAL;
2143 	set_capacity(mddev->gendisk, mddev->array_sectors);
2144 	revalidate_disk(mddev->gendisk);
2145 	if (sectors > mddev->dev_sectors &&
2146 	    mddev->recovery_cp == MaxSector) {
2147 		mddev->recovery_cp = mddev->dev_sectors;
2148 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2149 	}
2150 	mddev->dev_sectors = sectors;
2151 	mddev->resync_max_sectors = sectors;
2152 	return 0;
2153 }
2154 
2155 static int raid1_reshape(mddev_t *mddev)
2156 {
2157 	/* We need to:
2158 	 * 1/ resize the r1bio_pool
2159 	 * 2/ resize conf->mirrors
2160 	 *
2161 	 * We allocate a new r1bio_pool if we can.
2162 	 * Then raise a device barrier and wait until all IO stops.
2163 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2164 	 *
2165 	 * At the same time, we "pack" the devices so that all the missing
2166 	 * devices have the higher raid_disk numbers.
2167 	 */
2168 	mempool_t *newpool, *oldpool;
2169 	struct pool_info *newpoolinfo;
2170 	mirror_info_t *newmirrors;
2171 	conf_t *conf = mddev->private;
2172 	int cnt, raid_disks;
2173 	unsigned long flags;
2174 	int d, d2, err;
2175 
2176 	/* Cannot change chunk_size, layout, or level */
2177 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2178 	    mddev->layout != mddev->new_layout ||
2179 	    mddev->level != mddev->new_level) {
2180 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2181 		mddev->new_layout = mddev->layout;
2182 		mddev->new_level = mddev->level;
2183 		return -EINVAL;
2184 	}
2185 
2186 	err = md_allow_write(mddev);
2187 	if (err)
2188 		return err;
2189 
2190 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2191 
2192 	if (raid_disks < conf->raid_disks) {
2193 		cnt=0;
2194 		for (d= 0; d < conf->raid_disks; d++)
2195 			if (conf->mirrors[d].rdev)
2196 				cnt++;
2197 		if (cnt > raid_disks)
2198 			return -EBUSY;
2199 	}
2200 
2201 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2202 	if (!newpoolinfo)
2203 		return -ENOMEM;
2204 	newpoolinfo->mddev = mddev;
2205 	newpoolinfo->raid_disks = raid_disks;
2206 
2207 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2208 				 r1bio_pool_free, newpoolinfo);
2209 	if (!newpool) {
2210 		kfree(newpoolinfo);
2211 		return -ENOMEM;
2212 	}
2213 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2214 	if (!newmirrors) {
2215 		kfree(newpoolinfo);
2216 		mempool_destroy(newpool);
2217 		return -ENOMEM;
2218 	}
2219 
2220 	raise_barrier(conf);
2221 
2222 	/* ok, everything is stopped */
2223 	oldpool = conf->r1bio_pool;
2224 	conf->r1bio_pool = newpool;
2225 
2226 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2227 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2228 		if (rdev && rdev->raid_disk != d2) {
2229 			char nm[20];
2230 			sprintf(nm, "rd%d", rdev->raid_disk);
2231 			sysfs_remove_link(&mddev->kobj, nm);
2232 			rdev->raid_disk = d2;
2233 			sprintf(nm, "rd%d", rdev->raid_disk);
2234 			sysfs_remove_link(&mddev->kobj, nm);
2235 			if (sysfs_create_link(&mddev->kobj,
2236 					      &rdev->kobj, nm))
2237 				printk(KERN_WARNING
2238 				       "md/raid1:%s: cannot register "
2239 				       "%s\n",
2240 				       mdname(mddev), nm);
2241 		}
2242 		if (rdev)
2243 			newmirrors[d2++].rdev = rdev;
2244 	}
2245 	kfree(conf->mirrors);
2246 	conf->mirrors = newmirrors;
2247 	kfree(conf->poolinfo);
2248 	conf->poolinfo = newpoolinfo;
2249 
2250 	spin_lock_irqsave(&conf->device_lock, flags);
2251 	mddev->degraded += (raid_disks - conf->raid_disks);
2252 	spin_unlock_irqrestore(&conf->device_lock, flags);
2253 	conf->raid_disks = mddev->raid_disks = raid_disks;
2254 	mddev->delta_disks = 0;
2255 
2256 	conf->last_used = 0; /* just make sure it is in-range */
2257 	lower_barrier(conf);
2258 
2259 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2260 	md_wakeup_thread(mddev->thread);
2261 
2262 	mempool_destroy(oldpool);
2263 	return 0;
2264 }
2265 
2266 static void raid1_quiesce(mddev_t *mddev, int state)
2267 {
2268 	conf_t *conf = mddev->private;
2269 
2270 	switch(state) {
2271 	case 2: /* wake for suspend */
2272 		wake_up(&conf->wait_barrier);
2273 		break;
2274 	case 1:
2275 		raise_barrier(conf);
2276 		break;
2277 	case 0:
2278 		lower_barrier(conf);
2279 		break;
2280 	}
2281 }
2282 
2283 static void *raid1_takeover(mddev_t *mddev)
2284 {
2285 	/* raid1 can take over:
2286 	 *  raid5 with 2 devices, any layout or chunk size
2287 	 */
2288 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2289 		conf_t *conf;
2290 		mddev->new_level = 1;
2291 		mddev->new_layout = 0;
2292 		mddev->new_chunk_sectors = 0;
2293 		conf = setup_conf(mddev);
2294 		if (!IS_ERR(conf))
2295 			conf->barrier = 1;
2296 		return conf;
2297 	}
2298 	return ERR_PTR(-EINVAL);
2299 }
2300 
2301 static struct mdk_personality raid1_personality =
2302 {
2303 	.name		= "raid1",
2304 	.level		= 1,
2305 	.owner		= THIS_MODULE,
2306 	.make_request	= make_request,
2307 	.run		= run,
2308 	.stop		= stop,
2309 	.status		= status,
2310 	.error_handler	= error,
2311 	.hot_add_disk	= raid1_add_disk,
2312 	.hot_remove_disk= raid1_remove_disk,
2313 	.spare_active	= raid1_spare_active,
2314 	.sync_request	= sync_request,
2315 	.resize		= raid1_resize,
2316 	.size		= raid1_size,
2317 	.check_reshape	= raid1_reshape,
2318 	.quiesce	= raid1_quiesce,
2319 	.takeover	= raid1_takeover,
2320 };
2321 
2322 static int __init raid_init(void)
2323 {
2324 	return register_md_personality(&raid1_personality);
2325 }
2326 
2327 static void raid_exit(void)
2328 {
2329 	unregister_md_personality(&raid1_personality);
2330 }
2331 
2332 module_init(raid_init);
2333 module_exit(raid_exit);
2334 MODULE_LICENSE("GPL");
2335 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2336 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2337 MODULE_ALIAS("md-raid1");
2338 MODULE_ALIAS("md-level-1");
2339