1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf); 70 static void lower_barrier(struct r1conf *conf); 71 72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 73 { 74 struct pool_info *pi = data; 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 76 77 /* allocate a r1bio with room for raid_disks entries in the bios array */ 78 return kzalloc(size, gfp_flags); 79 } 80 81 static void r1bio_pool_free(void *r1_bio, void *data) 82 { 83 kfree(r1_bio); 84 } 85 86 #define RESYNC_BLOCK_SIZE (64*1024) 87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 90 #define RESYNC_WINDOW (2048*1024) 91 92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 struct pool_info *pi = data; 95 struct page *page; 96 struct r1bio *r1_bio; 97 struct bio *bio; 98 int i, j; 99 100 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 101 if (!r1_bio) 102 return NULL; 103 104 /* 105 * Allocate bios : 1 for reading, n-1 for writing 106 */ 107 for (j = pi->raid_disks ; j-- ; ) { 108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 109 if (!bio) 110 goto out_free_bio; 111 r1_bio->bios[j] = bio; 112 } 113 /* 114 * Allocate RESYNC_PAGES data pages and attach them to 115 * the first bio. 116 * If this is a user-requested check/repair, allocate 117 * RESYNC_PAGES for each bio. 118 */ 119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 120 j = pi->raid_disks; 121 else 122 j = 1; 123 while(j--) { 124 bio = r1_bio->bios[j]; 125 for (i = 0; i < RESYNC_PAGES; i++) { 126 page = alloc_page(gfp_flags); 127 if (unlikely(!page)) 128 goto out_free_pages; 129 130 bio->bi_io_vec[i].bv_page = page; 131 bio->bi_vcnt = i+1; 132 } 133 } 134 /* If not user-requests, copy the page pointers to all bios */ 135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 136 for (i=0; i<RESYNC_PAGES ; i++) 137 for (j=1; j<pi->raid_disks; j++) 138 r1_bio->bios[j]->bi_io_vec[i].bv_page = 139 r1_bio->bios[0]->bi_io_vec[i].bv_page; 140 } 141 142 r1_bio->master_bio = NULL; 143 144 return r1_bio; 145 146 out_free_pages: 147 for (j=0 ; j < pi->raid_disks; j++) 148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 150 j = -1; 151 out_free_bio: 152 while (++j < pi->raid_disks) 153 bio_put(r1_bio->bios[j]); 154 r1bio_pool_free(r1_bio, data); 155 return NULL; 156 } 157 158 static void r1buf_pool_free(void *__r1_bio, void *data) 159 { 160 struct pool_info *pi = data; 161 int i,j; 162 struct r1bio *r1bio = __r1_bio; 163 164 for (i = 0; i < RESYNC_PAGES; i++) 165 for (j = pi->raid_disks; j-- ;) { 166 if (j == 0 || 167 r1bio->bios[j]->bi_io_vec[i].bv_page != 168 r1bio->bios[0]->bi_io_vec[i].bv_page) 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 170 } 171 for (i=0 ; i < pi->raid_disks; i++) 172 bio_put(r1bio->bios[i]); 173 174 r1bio_pool_free(r1bio, data); 175 } 176 177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 178 { 179 int i; 180 181 for (i = 0; i < conf->raid_disks * 2; i++) { 182 struct bio **bio = r1_bio->bios + i; 183 if (!BIO_SPECIAL(*bio)) 184 bio_put(*bio); 185 *bio = NULL; 186 } 187 } 188 189 static void free_r1bio(struct r1bio *r1_bio) 190 { 191 struct r1conf *conf = r1_bio->mddev->private; 192 193 put_all_bios(conf, r1_bio); 194 mempool_free(r1_bio, conf->r1bio_pool); 195 } 196 197 static void put_buf(struct r1bio *r1_bio) 198 { 199 struct r1conf *conf = r1_bio->mddev->private; 200 int i; 201 202 for (i = 0; i < conf->raid_disks * 2; i++) { 203 struct bio *bio = r1_bio->bios[i]; 204 if (bio->bi_end_io) 205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 206 } 207 208 mempool_free(r1_bio, conf->r1buf_pool); 209 210 lower_barrier(conf); 211 } 212 213 static void reschedule_retry(struct r1bio *r1_bio) 214 { 215 unsigned long flags; 216 struct mddev *mddev = r1_bio->mddev; 217 struct r1conf *conf = mddev->private; 218 219 spin_lock_irqsave(&conf->device_lock, flags); 220 list_add(&r1_bio->retry_list, &conf->retry_list); 221 conf->nr_queued ++; 222 spin_unlock_irqrestore(&conf->device_lock, flags); 223 224 wake_up(&conf->wait_barrier); 225 md_wakeup_thread(mddev->thread); 226 } 227 228 /* 229 * raid_end_bio_io() is called when we have finished servicing a mirrored 230 * operation and are ready to return a success/failure code to the buffer 231 * cache layer. 232 */ 233 static void call_bio_endio(struct r1bio *r1_bio) 234 { 235 struct bio *bio = r1_bio->master_bio; 236 int done; 237 struct r1conf *conf = r1_bio->mddev->private; 238 239 if (bio->bi_phys_segments) { 240 unsigned long flags; 241 spin_lock_irqsave(&conf->device_lock, flags); 242 bio->bi_phys_segments--; 243 done = (bio->bi_phys_segments == 0); 244 spin_unlock_irqrestore(&conf->device_lock, flags); 245 } else 246 done = 1; 247 248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 249 clear_bit(BIO_UPTODATE, &bio->bi_flags); 250 if (done) { 251 bio_endio(bio, 0); 252 /* 253 * Wake up any possible resync thread that waits for the device 254 * to go idle. 255 */ 256 allow_barrier(conf); 257 } 258 } 259 260 static void raid_end_bio_io(struct r1bio *r1_bio) 261 { 262 struct bio *bio = r1_bio->master_bio; 263 264 /* if nobody has done the final endio yet, do it now */ 265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 267 (bio_data_dir(bio) == WRITE) ? "write" : "read", 268 (unsigned long long) bio->bi_sector, 269 (unsigned long long) bio->bi_sector + 270 (bio->bi_size >> 9) - 1); 271 272 call_bio_endio(r1_bio); 273 } 274 free_r1bio(r1_bio); 275 } 276 277 /* 278 * Update disk head position estimator based on IRQ completion info. 279 */ 280 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 281 { 282 struct r1conf *conf = r1_bio->mddev->private; 283 284 conf->mirrors[disk].head_position = 285 r1_bio->sector + (r1_bio->sectors); 286 } 287 288 /* 289 * Find the disk number which triggered given bio 290 */ 291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 292 { 293 int mirror; 294 struct r1conf *conf = r1_bio->mddev->private; 295 int raid_disks = conf->raid_disks; 296 297 for (mirror = 0; mirror < raid_disks * 2; mirror++) 298 if (r1_bio->bios[mirror] == bio) 299 break; 300 301 BUG_ON(mirror == raid_disks * 2); 302 update_head_pos(mirror, r1_bio); 303 304 return mirror; 305 } 306 307 static void raid1_end_read_request(struct bio *bio, int error) 308 { 309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 310 struct r1bio *r1_bio = bio->bi_private; 311 int mirror; 312 struct r1conf *conf = r1_bio->mddev->private; 313 314 mirror = r1_bio->read_disk; 315 /* 316 * this branch is our 'one mirror IO has finished' event handler: 317 */ 318 update_head_pos(mirror, r1_bio); 319 320 if (uptodate) 321 set_bit(R1BIO_Uptodate, &r1_bio->state); 322 else { 323 /* If all other devices have failed, we want to return 324 * the error upwards rather than fail the last device. 325 * Here we redefine "uptodate" to mean "Don't want to retry" 326 */ 327 unsigned long flags; 328 spin_lock_irqsave(&conf->device_lock, flags); 329 if (r1_bio->mddev->degraded == conf->raid_disks || 330 (r1_bio->mddev->degraded == conf->raid_disks-1 && 331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 332 uptodate = 1; 333 spin_unlock_irqrestore(&conf->device_lock, flags); 334 } 335 336 if (uptodate) { 337 raid_end_bio_io(r1_bio); 338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 339 } else { 340 /* 341 * oops, read error: 342 */ 343 char b[BDEVNAME_SIZE]; 344 printk_ratelimited( 345 KERN_ERR "md/raid1:%s: %s: " 346 "rescheduling sector %llu\n", 347 mdname(conf->mddev), 348 bdevname(conf->mirrors[mirror].rdev->bdev, 349 b), 350 (unsigned long long)r1_bio->sector); 351 set_bit(R1BIO_ReadError, &r1_bio->state); 352 reschedule_retry(r1_bio); 353 /* don't drop the reference on read_disk yet */ 354 } 355 } 356 357 static void close_write(struct r1bio *r1_bio) 358 { 359 /* it really is the end of this request */ 360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 361 /* free extra copy of the data pages */ 362 int i = r1_bio->behind_page_count; 363 while (i--) 364 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 365 kfree(r1_bio->behind_bvecs); 366 r1_bio->behind_bvecs = NULL; 367 } 368 /* clear the bitmap if all writes complete successfully */ 369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 370 r1_bio->sectors, 371 !test_bit(R1BIO_Degraded, &r1_bio->state), 372 test_bit(R1BIO_BehindIO, &r1_bio->state)); 373 md_write_end(r1_bio->mddev); 374 } 375 376 static void r1_bio_write_done(struct r1bio *r1_bio) 377 { 378 if (!atomic_dec_and_test(&r1_bio->remaining)) 379 return; 380 381 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 382 reschedule_retry(r1_bio); 383 else { 384 close_write(r1_bio); 385 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 386 reschedule_retry(r1_bio); 387 else 388 raid_end_bio_io(r1_bio); 389 } 390 } 391 392 static void raid1_end_write_request(struct bio *bio, int error) 393 { 394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 395 struct r1bio *r1_bio = bio->bi_private; 396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 397 struct r1conf *conf = r1_bio->mddev->private; 398 struct bio *to_put = NULL; 399 400 mirror = find_bio_disk(r1_bio, bio); 401 402 /* 403 * 'one mirror IO has finished' event handler: 404 */ 405 if (!uptodate) { 406 set_bit(WriteErrorSeen, 407 &conf->mirrors[mirror].rdev->flags); 408 if (!test_and_set_bit(WantReplacement, 409 &conf->mirrors[mirror].rdev->flags)) 410 set_bit(MD_RECOVERY_NEEDED, & 411 conf->mddev->recovery); 412 413 set_bit(R1BIO_WriteError, &r1_bio->state); 414 } else { 415 /* 416 * Set R1BIO_Uptodate in our master bio, so that we 417 * will return a good error code for to the higher 418 * levels even if IO on some other mirrored buffer 419 * fails. 420 * 421 * The 'master' represents the composite IO operation 422 * to user-side. So if something waits for IO, then it 423 * will wait for the 'master' bio. 424 */ 425 sector_t first_bad; 426 int bad_sectors; 427 428 r1_bio->bios[mirror] = NULL; 429 to_put = bio; 430 set_bit(R1BIO_Uptodate, &r1_bio->state); 431 432 /* Maybe we can clear some bad blocks. */ 433 if (is_badblock(conf->mirrors[mirror].rdev, 434 r1_bio->sector, r1_bio->sectors, 435 &first_bad, &bad_sectors)) { 436 r1_bio->bios[mirror] = IO_MADE_GOOD; 437 set_bit(R1BIO_MadeGood, &r1_bio->state); 438 } 439 } 440 441 if (behind) { 442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 443 atomic_dec(&r1_bio->behind_remaining); 444 445 /* 446 * In behind mode, we ACK the master bio once the I/O 447 * has safely reached all non-writemostly 448 * disks. Setting the Returned bit ensures that this 449 * gets done only once -- we don't ever want to return 450 * -EIO here, instead we'll wait 451 */ 452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 453 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 454 /* Maybe we can return now */ 455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 456 struct bio *mbio = r1_bio->master_bio; 457 pr_debug("raid1: behind end write sectors" 458 " %llu-%llu\n", 459 (unsigned long long) mbio->bi_sector, 460 (unsigned long long) mbio->bi_sector + 461 (mbio->bi_size >> 9) - 1); 462 call_bio_endio(r1_bio); 463 } 464 } 465 } 466 if (r1_bio->bios[mirror] == NULL) 467 rdev_dec_pending(conf->mirrors[mirror].rdev, 468 conf->mddev); 469 470 /* 471 * Let's see if all mirrored write operations have finished 472 * already. 473 */ 474 r1_bio_write_done(r1_bio); 475 476 if (to_put) 477 bio_put(to_put); 478 } 479 480 481 /* 482 * This routine returns the disk from which the requested read should 483 * be done. There is a per-array 'next expected sequential IO' sector 484 * number - if this matches on the next IO then we use the last disk. 485 * There is also a per-disk 'last know head position' sector that is 486 * maintained from IRQ contexts, both the normal and the resync IO 487 * completion handlers update this position correctly. If there is no 488 * perfect sequential match then we pick the disk whose head is closest. 489 * 490 * If there are 2 mirrors in the same 2 devices, performance degrades 491 * because position is mirror, not device based. 492 * 493 * The rdev for the device selected will have nr_pending incremented. 494 */ 495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 496 { 497 const sector_t this_sector = r1_bio->sector; 498 int sectors; 499 int best_good_sectors; 500 int best_disk, best_dist_disk, best_pending_disk; 501 int has_nonrot_disk; 502 int disk; 503 sector_t best_dist; 504 unsigned int min_pending; 505 struct md_rdev *rdev; 506 int choose_first; 507 int choose_next_idle; 508 509 rcu_read_lock(); 510 /* 511 * Check if we can balance. We can balance on the whole 512 * device if no resync is going on, or below the resync window. 513 * We take the first readable disk when above the resync window. 514 */ 515 retry: 516 sectors = r1_bio->sectors; 517 best_disk = -1; 518 best_dist_disk = -1; 519 best_dist = MaxSector; 520 best_pending_disk = -1; 521 min_pending = UINT_MAX; 522 best_good_sectors = 0; 523 has_nonrot_disk = 0; 524 choose_next_idle = 0; 525 526 if (conf->mddev->recovery_cp < MaxSector && 527 (this_sector + sectors >= conf->next_resync)) 528 choose_first = 1; 529 else 530 choose_first = 0; 531 532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 533 sector_t dist; 534 sector_t first_bad; 535 int bad_sectors; 536 unsigned int pending; 537 bool nonrot; 538 539 rdev = rcu_dereference(conf->mirrors[disk].rdev); 540 if (r1_bio->bios[disk] == IO_BLOCKED 541 || rdev == NULL 542 || test_bit(Unmerged, &rdev->flags) 543 || test_bit(Faulty, &rdev->flags)) 544 continue; 545 if (!test_bit(In_sync, &rdev->flags) && 546 rdev->recovery_offset < this_sector + sectors) 547 continue; 548 if (test_bit(WriteMostly, &rdev->flags)) { 549 /* Don't balance among write-mostly, just 550 * use the first as a last resort */ 551 if (best_disk < 0) { 552 if (is_badblock(rdev, this_sector, sectors, 553 &first_bad, &bad_sectors)) { 554 if (first_bad < this_sector) 555 /* Cannot use this */ 556 continue; 557 best_good_sectors = first_bad - this_sector; 558 } else 559 best_good_sectors = sectors; 560 best_disk = disk; 561 } 562 continue; 563 } 564 /* This is a reasonable device to use. It might 565 * even be best. 566 */ 567 if (is_badblock(rdev, this_sector, sectors, 568 &first_bad, &bad_sectors)) { 569 if (best_dist < MaxSector) 570 /* already have a better device */ 571 continue; 572 if (first_bad <= this_sector) { 573 /* cannot read here. If this is the 'primary' 574 * device, then we must not read beyond 575 * bad_sectors from another device.. 576 */ 577 bad_sectors -= (this_sector - first_bad); 578 if (choose_first && sectors > bad_sectors) 579 sectors = bad_sectors; 580 if (best_good_sectors > sectors) 581 best_good_sectors = sectors; 582 583 } else { 584 sector_t good_sectors = first_bad - this_sector; 585 if (good_sectors > best_good_sectors) { 586 best_good_sectors = good_sectors; 587 best_disk = disk; 588 } 589 if (choose_first) 590 break; 591 } 592 continue; 593 } else 594 best_good_sectors = sectors; 595 596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 597 has_nonrot_disk |= nonrot; 598 pending = atomic_read(&rdev->nr_pending); 599 dist = abs(this_sector - conf->mirrors[disk].head_position); 600 if (choose_first) { 601 best_disk = disk; 602 break; 603 } 604 /* Don't change to another disk for sequential reads */ 605 if (conf->mirrors[disk].next_seq_sect == this_sector 606 || dist == 0) { 607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 608 struct raid1_info *mirror = &conf->mirrors[disk]; 609 610 best_disk = disk; 611 /* 612 * If buffered sequential IO size exceeds optimal 613 * iosize, check if there is idle disk. If yes, choose 614 * the idle disk. read_balance could already choose an 615 * idle disk before noticing it's a sequential IO in 616 * this disk. This doesn't matter because this disk 617 * will idle, next time it will be utilized after the 618 * first disk has IO size exceeds optimal iosize. In 619 * this way, iosize of the first disk will be optimal 620 * iosize at least. iosize of the second disk might be 621 * small, but not a big deal since when the second disk 622 * starts IO, the first disk is likely still busy. 623 */ 624 if (nonrot && opt_iosize > 0 && 625 mirror->seq_start != MaxSector && 626 mirror->next_seq_sect > opt_iosize && 627 mirror->next_seq_sect - opt_iosize >= 628 mirror->seq_start) { 629 choose_next_idle = 1; 630 continue; 631 } 632 break; 633 } 634 /* If device is idle, use it */ 635 if (pending == 0) { 636 best_disk = disk; 637 break; 638 } 639 640 if (choose_next_idle) 641 continue; 642 643 if (min_pending > pending) { 644 min_pending = pending; 645 best_pending_disk = disk; 646 } 647 648 if (dist < best_dist) { 649 best_dist = dist; 650 best_dist_disk = disk; 651 } 652 } 653 654 /* 655 * If all disks are rotational, choose the closest disk. If any disk is 656 * non-rotational, choose the disk with less pending request even the 657 * disk is rotational, which might/might not be optimal for raids with 658 * mixed ratation/non-rotational disks depending on workload. 659 */ 660 if (best_disk == -1) { 661 if (has_nonrot_disk) 662 best_disk = best_pending_disk; 663 else 664 best_disk = best_dist_disk; 665 } 666 667 if (best_disk >= 0) { 668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 669 if (!rdev) 670 goto retry; 671 atomic_inc(&rdev->nr_pending); 672 if (test_bit(Faulty, &rdev->flags)) { 673 /* cannot risk returning a device that failed 674 * before we inc'ed nr_pending 675 */ 676 rdev_dec_pending(rdev, conf->mddev); 677 goto retry; 678 } 679 sectors = best_good_sectors; 680 681 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 682 conf->mirrors[best_disk].seq_start = this_sector; 683 684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 685 } 686 rcu_read_unlock(); 687 *max_sectors = sectors; 688 689 return best_disk; 690 } 691 692 static int raid1_mergeable_bvec(struct request_queue *q, 693 struct bvec_merge_data *bvm, 694 struct bio_vec *biovec) 695 { 696 struct mddev *mddev = q->queuedata; 697 struct r1conf *conf = mddev->private; 698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 699 int max = biovec->bv_len; 700 701 if (mddev->merge_check_needed) { 702 int disk; 703 rcu_read_lock(); 704 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 705 struct md_rdev *rdev = rcu_dereference( 706 conf->mirrors[disk].rdev); 707 if (rdev && !test_bit(Faulty, &rdev->flags)) { 708 struct request_queue *q = 709 bdev_get_queue(rdev->bdev); 710 if (q->merge_bvec_fn) { 711 bvm->bi_sector = sector + 712 rdev->data_offset; 713 bvm->bi_bdev = rdev->bdev; 714 max = min(max, q->merge_bvec_fn( 715 q, bvm, biovec)); 716 } 717 } 718 } 719 rcu_read_unlock(); 720 } 721 return max; 722 723 } 724 725 int md_raid1_congested(struct mddev *mddev, int bits) 726 { 727 struct r1conf *conf = mddev->private; 728 int i, ret = 0; 729 730 if ((bits & (1 << BDI_async_congested)) && 731 conf->pending_count >= max_queued_requests) 732 return 1; 733 734 rcu_read_lock(); 735 for (i = 0; i < conf->raid_disks * 2; i++) { 736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 737 if (rdev && !test_bit(Faulty, &rdev->flags)) { 738 struct request_queue *q = bdev_get_queue(rdev->bdev); 739 740 BUG_ON(!q); 741 742 /* Note the '|| 1' - when read_balance prefers 743 * non-congested targets, it can be removed 744 */ 745 if ((bits & (1<<BDI_async_congested)) || 1) 746 ret |= bdi_congested(&q->backing_dev_info, bits); 747 else 748 ret &= bdi_congested(&q->backing_dev_info, bits); 749 } 750 } 751 rcu_read_unlock(); 752 return ret; 753 } 754 EXPORT_SYMBOL_GPL(md_raid1_congested); 755 756 static int raid1_congested(void *data, int bits) 757 { 758 struct mddev *mddev = data; 759 760 return mddev_congested(mddev, bits) || 761 md_raid1_congested(mddev, bits); 762 } 763 764 static void flush_pending_writes(struct r1conf *conf) 765 { 766 /* Any writes that have been queued but are awaiting 767 * bitmap updates get flushed here. 768 */ 769 spin_lock_irq(&conf->device_lock); 770 771 if (conf->pending_bio_list.head) { 772 struct bio *bio; 773 bio = bio_list_get(&conf->pending_bio_list); 774 conf->pending_count = 0; 775 spin_unlock_irq(&conf->device_lock); 776 /* flush any pending bitmap writes to 777 * disk before proceeding w/ I/O */ 778 bitmap_unplug(conf->mddev->bitmap); 779 wake_up(&conf->wait_barrier); 780 781 while (bio) { /* submit pending writes */ 782 struct bio *next = bio->bi_next; 783 bio->bi_next = NULL; 784 if (unlikely((bio->bi_rw & REQ_DISCARD) && 785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 786 /* Just ignore it */ 787 bio_endio(bio, 0); 788 else 789 generic_make_request(bio); 790 bio = next; 791 } 792 } else 793 spin_unlock_irq(&conf->device_lock); 794 } 795 796 /* Barriers.... 797 * Sometimes we need to suspend IO while we do something else, 798 * either some resync/recovery, or reconfigure the array. 799 * To do this we raise a 'barrier'. 800 * The 'barrier' is a counter that can be raised multiple times 801 * to count how many activities are happening which preclude 802 * normal IO. 803 * We can only raise the barrier if there is no pending IO. 804 * i.e. if nr_pending == 0. 805 * We choose only to raise the barrier if no-one is waiting for the 806 * barrier to go down. This means that as soon as an IO request 807 * is ready, no other operations which require a barrier will start 808 * until the IO request has had a chance. 809 * 810 * So: regular IO calls 'wait_barrier'. When that returns there 811 * is no backgroup IO happening, It must arrange to call 812 * allow_barrier when it has finished its IO. 813 * backgroup IO calls must call raise_barrier. Once that returns 814 * there is no normal IO happeing. It must arrange to call 815 * lower_barrier when the particular background IO completes. 816 */ 817 #define RESYNC_DEPTH 32 818 819 static void raise_barrier(struct r1conf *conf) 820 { 821 spin_lock_irq(&conf->resync_lock); 822 823 /* Wait until no block IO is waiting */ 824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 825 conf->resync_lock); 826 827 /* block any new IO from starting */ 828 conf->barrier++; 829 830 /* Now wait for all pending IO to complete */ 831 wait_event_lock_irq(conf->wait_barrier, 832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 833 conf->resync_lock); 834 835 spin_unlock_irq(&conf->resync_lock); 836 } 837 838 static void lower_barrier(struct r1conf *conf) 839 { 840 unsigned long flags; 841 BUG_ON(conf->barrier <= 0); 842 spin_lock_irqsave(&conf->resync_lock, flags); 843 conf->barrier--; 844 spin_unlock_irqrestore(&conf->resync_lock, flags); 845 wake_up(&conf->wait_barrier); 846 } 847 848 static void wait_barrier(struct r1conf *conf) 849 { 850 spin_lock_irq(&conf->resync_lock); 851 if (conf->barrier) { 852 conf->nr_waiting++; 853 /* Wait for the barrier to drop. 854 * However if there are already pending 855 * requests (preventing the barrier from 856 * rising completely), and the 857 * pre-process bio queue isn't empty, 858 * then don't wait, as we need to empty 859 * that queue to get the nr_pending 860 * count down. 861 */ 862 wait_event_lock_irq(conf->wait_barrier, 863 !conf->barrier || 864 (conf->nr_pending && 865 current->bio_list && 866 !bio_list_empty(current->bio_list)), 867 conf->resync_lock); 868 conf->nr_waiting--; 869 } 870 conf->nr_pending++; 871 spin_unlock_irq(&conf->resync_lock); 872 } 873 874 static void allow_barrier(struct r1conf *conf) 875 { 876 unsigned long flags; 877 spin_lock_irqsave(&conf->resync_lock, flags); 878 conf->nr_pending--; 879 spin_unlock_irqrestore(&conf->resync_lock, flags); 880 wake_up(&conf->wait_barrier); 881 } 882 883 static void freeze_array(struct r1conf *conf) 884 { 885 /* stop syncio and normal IO and wait for everything to 886 * go quite. 887 * We increment barrier and nr_waiting, and then 888 * wait until nr_pending match nr_queued+1 889 * This is called in the context of one normal IO request 890 * that has failed. Thus any sync request that might be pending 891 * will be blocked by nr_pending, and we need to wait for 892 * pending IO requests to complete or be queued for re-try. 893 * Thus the number queued (nr_queued) plus this request (1) 894 * must match the number of pending IOs (nr_pending) before 895 * we continue. 896 */ 897 spin_lock_irq(&conf->resync_lock); 898 conf->barrier++; 899 conf->nr_waiting++; 900 wait_event_lock_irq_cmd(conf->wait_barrier, 901 conf->nr_pending == conf->nr_queued+1, 902 conf->resync_lock, 903 flush_pending_writes(conf)); 904 spin_unlock_irq(&conf->resync_lock); 905 } 906 static void unfreeze_array(struct r1conf *conf) 907 { 908 /* reverse the effect of the freeze */ 909 spin_lock_irq(&conf->resync_lock); 910 conf->barrier--; 911 conf->nr_waiting--; 912 wake_up(&conf->wait_barrier); 913 spin_unlock_irq(&conf->resync_lock); 914 } 915 916 917 /* duplicate the data pages for behind I/O 918 */ 919 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 920 { 921 int i; 922 struct bio_vec *bvec; 923 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 924 GFP_NOIO); 925 if (unlikely(!bvecs)) 926 return; 927 928 bio_for_each_segment(bvec, bio, i) { 929 bvecs[i] = *bvec; 930 bvecs[i].bv_page = alloc_page(GFP_NOIO); 931 if (unlikely(!bvecs[i].bv_page)) 932 goto do_sync_io; 933 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 934 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 935 kunmap(bvecs[i].bv_page); 936 kunmap(bvec->bv_page); 937 } 938 r1_bio->behind_bvecs = bvecs; 939 r1_bio->behind_page_count = bio->bi_vcnt; 940 set_bit(R1BIO_BehindIO, &r1_bio->state); 941 return; 942 943 do_sync_io: 944 for (i = 0; i < bio->bi_vcnt; i++) 945 if (bvecs[i].bv_page) 946 put_page(bvecs[i].bv_page); 947 kfree(bvecs); 948 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 949 } 950 951 struct raid1_plug_cb { 952 struct blk_plug_cb cb; 953 struct bio_list pending; 954 int pending_cnt; 955 }; 956 957 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 958 { 959 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 960 cb); 961 struct mddev *mddev = plug->cb.data; 962 struct r1conf *conf = mddev->private; 963 struct bio *bio; 964 965 if (from_schedule || current->bio_list) { 966 spin_lock_irq(&conf->device_lock); 967 bio_list_merge(&conf->pending_bio_list, &plug->pending); 968 conf->pending_count += plug->pending_cnt; 969 spin_unlock_irq(&conf->device_lock); 970 wake_up(&conf->wait_barrier); 971 md_wakeup_thread(mddev->thread); 972 kfree(plug); 973 return; 974 } 975 976 /* we aren't scheduling, so we can do the write-out directly. */ 977 bio = bio_list_get(&plug->pending); 978 bitmap_unplug(mddev->bitmap); 979 wake_up(&conf->wait_barrier); 980 981 while (bio) { /* submit pending writes */ 982 struct bio *next = bio->bi_next; 983 bio->bi_next = NULL; 984 generic_make_request(bio); 985 bio = next; 986 } 987 kfree(plug); 988 } 989 990 static void make_request(struct mddev *mddev, struct bio * bio) 991 { 992 struct r1conf *conf = mddev->private; 993 struct raid1_info *mirror; 994 struct r1bio *r1_bio; 995 struct bio *read_bio; 996 int i, disks; 997 struct bitmap *bitmap; 998 unsigned long flags; 999 const int rw = bio_data_dir(bio); 1000 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1001 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 1002 const unsigned long do_discard = (bio->bi_rw 1003 & (REQ_DISCARD | REQ_SECURE)); 1004 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1005 struct md_rdev *blocked_rdev; 1006 struct blk_plug_cb *cb; 1007 struct raid1_plug_cb *plug = NULL; 1008 int first_clone; 1009 int sectors_handled; 1010 int max_sectors; 1011 1012 /* 1013 * Register the new request and wait if the reconstruction 1014 * thread has put up a bar for new requests. 1015 * Continue immediately if no resync is active currently. 1016 */ 1017 1018 md_write_start(mddev, bio); /* wait on superblock update early */ 1019 1020 if (bio_data_dir(bio) == WRITE && 1021 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 1022 bio->bi_sector < mddev->suspend_hi) { 1023 /* As the suspend_* range is controlled by 1024 * userspace, we want an interruptible 1025 * wait. 1026 */ 1027 DEFINE_WAIT(w); 1028 for (;;) { 1029 flush_signals(current); 1030 prepare_to_wait(&conf->wait_barrier, 1031 &w, TASK_INTERRUPTIBLE); 1032 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 1033 bio->bi_sector >= mddev->suspend_hi) 1034 break; 1035 schedule(); 1036 } 1037 finish_wait(&conf->wait_barrier, &w); 1038 } 1039 1040 wait_barrier(conf); 1041 1042 bitmap = mddev->bitmap; 1043 1044 /* 1045 * make_request() can abort the operation when READA is being 1046 * used and no empty request is available. 1047 * 1048 */ 1049 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1050 1051 r1_bio->master_bio = bio; 1052 r1_bio->sectors = bio->bi_size >> 9; 1053 r1_bio->state = 0; 1054 r1_bio->mddev = mddev; 1055 r1_bio->sector = bio->bi_sector; 1056 1057 /* We might need to issue multiple reads to different 1058 * devices if there are bad blocks around, so we keep 1059 * track of the number of reads in bio->bi_phys_segments. 1060 * If this is 0, there is only one r1_bio and no locking 1061 * will be needed when requests complete. If it is 1062 * non-zero, then it is the number of not-completed requests. 1063 */ 1064 bio->bi_phys_segments = 0; 1065 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1066 1067 if (rw == READ) { 1068 /* 1069 * read balancing logic: 1070 */ 1071 int rdisk; 1072 1073 read_again: 1074 rdisk = read_balance(conf, r1_bio, &max_sectors); 1075 1076 if (rdisk < 0) { 1077 /* couldn't find anywhere to read from */ 1078 raid_end_bio_io(r1_bio); 1079 return; 1080 } 1081 mirror = conf->mirrors + rdisk; 1082 1083 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1084 bitmap) { 1085 /* Reading from a write-mostly device must 1086 * take care not to over-take any writes 1087 * that are 'behind' 1088 */ 1089 wait_event(bitmap->behind_wait, 1090 atomic_read(&bitmap->behind_writes) == 0); 1091 } 1092 r1_bio->read_disk = rdisk; 1093 1094 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1095 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 1096 max_sectors); 1097 1098 r1_bio->bios[rdisk] = read_bio; 1099 1100 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 1101 read_bio->bi_bdev = mirror->rdev->bdev; 1102 read_bio->bi_end_io = raid1_end_read_request; 1103 read_bio->bi_rw = READ | do_sync; 1104 read_bio->bi_private = r1_bio; 1105 1106 if (max_sectors < r1_bio->sectors) { 1107 /* could not read all from this device, so we will 1108 * need another r1_bio. 1109 */ 1110 1111 sectors_handled = (r1_bio->sector + max_sectors 1112 - bio->bi_sector); 1113 r1_bio->sectors = max_sectors; 1114 spin_lock_irq(&conf->device_lock); 1115 if (bio->bi_phys_segments == 0) 1116 bio->bi_phys_segments = 2; 1117 else 1118 bio->bi_phys_segments++; 1119 spin_unlock_irq(&conf->device_lock); 1120 /* Cannot call generic_make_request directly 1121 * as that will be queued in __make_request 1122 * and subsequent mempool_alloc might block waiting 1123 * for it. So hand bio over to raid1d. 1124 */ 1125 reschedule_retry(r1_bio); 1126 1127 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1128 1129 r1_bio->master_bio = bio; 1130 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1131 r1_bio->state = 0; 1132 r1_bio->mddev = mddev; 1133 r1_bio->sector = bio->bi_sector + sectors_handled; 1134 goto read_again; 1135 } else 1136 generic_make_request(read_bio); 1137 return; 1138 } 1139 1140 /* 1141 * WRITE: 1142 */ 1143 if (conf->pending_count >= max_queued_requests) { 1144 md_wakeup_thread(mddev->thread); 1145 wait_event(conf->wait_barrier, 1146 conf->pending_count < max_queued_requests); 1147 } 1148 /* first select target devices under rcu_lock and 1149 * inc refcount on their rdev. Record them by setting 1150 * bios[x] to bio 1151 * If there are known/acknowledged bad blocks on any device on 1152 * which we have seen a write error, we want to avoid writing those 1153 * blocks. 1154 * This potentially requires several writes to write around 1155 * the bad blocks. Each set of writes gets it's own r1bio 1156 * with a set of bios attached. 1157 */ 1158 1159 disks = conf->raid_disks * 2; 1160 retry_write: 1161 blocked_rdev = NULL; 1162 rcu_read_lock(); 1163 max_sectors = r1_bio->sectors; 1164 for (i = 0; i < disks; i++) { 1165 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1166 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1167 atomic_inc(&rdev->nr_pending); 1168 blocked_rdev = rdev; 1169 break; 1170 } 1171 r1_bio->bios[i] = NULL; 1172 if (!rdev || test_bit(Faulty, &rdev->flags) 1173 || test_bit(Unmerged, &rdev->flags)) { 1174 if (i < conf->raid_disks) 1175 set_bit(R1BIO_Degraded, &r1_bio->state); 1176 continue; 1177 } 1178 1179 atomic_inc(&rdev->nr_pending); 1180 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1181 sector_t first_bad; 1182 int bad_sectors; 1183 int is_bad; 1184 1185 is_bad = is_badblock(rdev, r1_bio->sector, 1186 max_sectors, 1187 &first_bad, &bad_sectors); 1188 if (is_bad < 0) { 1189 /* mustn't write here until the bad block is 1190 * acknowledged*/ 1191 set_bit(BlockedBadBlocks, &rdev->flags); 1192 blocked_rdev = rdev; 1193 break; 1194 } 1195 if (is_bad && first_bad <= r1_bio->sector) { 1196 /* Cannot write here at all */ 1197 bad_sectors -= (r1_bio->sector - first_bad); 1198 if (bad_sectors < max_sectors) 1199 /* mustn't write more than bad_sectors 1200 * to other devices yet 1201 */ 1202 max_sectors = bad_sectors; 1203 rdev_dec_pending(rdev, mddev); 1204 /* We don't set R1BIO_Degraded as that 1205 * only applies if the disk is 1206 * missing, so it might be re-added, 1207 * and we want to know to recover this 1208 * chunk. 1209 * In this case the device is here, 1210 * and the fact that this chunk is not 1211 * in-sync is recorded in the bad 1212 * block log 1213 */ 1214 continue; 1215 } 1216 if (is_bad) { 1217 int good_sectors = first_bad - r1_bio->sector; 1218 if (good_sectors < max_sectors) 1219 max_sectors = good_sectors; 1220 } 1221 } 1222 r1_bio->bios[i] = bio; 1223 } 1224 rcu_read_unlock(); 1225 1226 if (unlikely(blocked_rdev)) { 1227 /* Wait for this device to become unblocked */ 1228 int j; 1229 1230 for (j = 0; j < i; j++) 1231 if (r1_bio->bios[j]) 1232 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1233 r1_bio->state = 0; 1234 allow_barrier(conf); 1235 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1236 wait_barrier(conf); 1237 goto retry_write; 1238 } 1239 1240 if (max_sectors < r1_bio->sectors) { 1241 /* We are splitting this write into multiple parts, so 1242 * we need to prepare for allocating another r1_bio. 1243 */ 1244 r1_bio->sectors = max_sectors; 1245 spin_lock_irq(&conf->device_lock); 1246 if (bio->bi_phys_segments == 0) 1247 bio->bi_phys_segments = 2; 1248 else 1249 bio->bi_phys_segments++; 1250 spin_unlock_irq(&conf->device_lock); 1251 } 1252 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1253 1254 atomic_set(&r1_bio->remaining, 1); 1255 atomic_set(&r1_bio->behind_remaining, 0); 1256 1257 first_clone = 1; 1258 for (i = 0; i < disks; i++) { 1259 struct bio *mbio; 1260 if (!r1_bio->bios[i]) 1261 continue; 1262 1263 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1264 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1265 1266 if (first_clone) { 1267 /* do behind I/O ? 1268 * Not if there are too many, or cannot 1269 * allocate memory, or a reader on WriteMostly 1270 * is waiting for behind writes to flush */ 1271 if (bitmap && 1272 (atomic_read(&bitmap->behind_writes) 1273 < mddev->bitmap_info.max_write_behind) && 1274 !waitqueue_active(&bitmap->behind_wait)) 1275 alloc_behind_pages(mbio, r1_bio); 1276 1277 bitmap_startwrite(bitmap, r1_bio->sector, 1278 r1_bio->sectors, 1279 test_bit(R1BIO_BehindIO, 1280 &r1_bio->state)); 1281 first_clone = 0; 1282 } 1283 if (r1_bio->behind_bvecs) { 1284 struct bio_vec *bvec; 1285 int j; 1286 1287 /* Yes, I really want the '__' version so that 1288 * we clear any unused pointer in the io_vec, rather 1289 * than leave them unchanged. This is important 1290 * because when we come to free the pages, we won't 1291 * know the original bi_idx, so we just free 1292 * them all 1293 */ 1294 __bio_for_each_segment(bvec, mbio, j, 0) 1295 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1296 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1297 atomic_inc(&r1_bio->behind_remaining); 1298 } 1299 1300 r1_bio->bios[i] = mbio; 1301 1302 mbio->bi_sector = (r1_bio->sector + 1303 conf->mirrors[i].rdev->data_offset); 1304 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1305 mbio->bi_end_io = raid1_end_write_request; 1306 mbio->bi_rw = 1307 WRITE | do_flush_fua | do_sync | do_discard | do_same; 1308 mbio->bi_private = r1_bio; 1309 1310 atomic_inc(&r1_bio->remaining); 1311 1312 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1313 if (cb) 1314 plug = container_of(cb, struct raid1_plug_cb, cb); 1315 else 1316 plug = NULL; 1317 spin_lock_irqsave(&conf->device_lock, flags); 1318 if (plug) { 1319 bio_list_add(&plug->pending, mbio); 1320 plug->pending_cnt++; 1321 } else { 1322 bio_list_add(&conf->pending_bio_list, mbio); 1323 conf->pending_count++; 1324 } 1325 spin_unlock_irqrestore(&conf->device_lock, flags); 1326 if (!plug) 1327 md_wakeup_thread(mddev->thread); 1328 } 1329 /* Mustn't call r1_bio_write_done before this next test, 1330 * as it could result in the bio being freed. 1331 */ 1332 if (sectors_handled < (bio->bi_size >> 9)) { 1333 r1_bio_write_done(r1_bio); 1334 /* We need another r1_bio. It has already been counted 1335 * in bio->bi_phys_segments 1336 */ 1337 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1338 r1_bio->master_bio = bio; 1339 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1340 r1_bio->state = 0; 1341 r1_bio->mddev = mddev; 1342 r1_bio->sector = bio->bi_sector + sectors_handled; 1343 goto retry_write; 1344 } 1345 1346 r1_bio_write_done(r1_bio); 1347 1348 /* In case raid1d snuck in to freeze_array */ 1349 wake_up(&conf->wait_barrier); 1350 } 1351 1352 static void status(struct seq_file *seq, struct mddev *mddev) 1353 { 1354 struct r1conf *conf = mddev->private; 1355 int i; 1356 1357 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1358 conf->raid_disks - mddev->degraded); 1359 rcu_read_lock(); 1360 for (i = 0; i < conf->raid_disks; i++) { 1361 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1362 seq_printf(seq, "%s", 1363 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1364 } 1365 rcu_read_unlock(); 1366 seq_printf(seq, "]"); 1367 } 1368 1369 1370 static void error(struct mddev *mddev, struct md_rdev *rdev) 1371 { 1372 char b[BDEVNAME_SIZE]; 1373 struct r1conf *conf = mddev->private; 1374 1375 /* 1376 * If it is not operational, then we have already marked it as dead 1377 * else if it is the last working disks, ignore the error, let the 1378 * next level up know. 1379 * else mark the drive as failed 1380 */ 1381 if (test_bit(In_sync, &rdev->flags) 1382 && (conf->raid_disks - mddev->degraded) == 1) { 1383 /* 1384 * Don't fail the drive, act as though we were just a 1385 * normal single drive. 1386 * However don't try a recovery from this drive as 1387 * it is very likely to fail. 1388 */ 1389 conf->recovery_disabled = mddev->recovery_disabled; 1390 return; 1391 } 1392 set_bit(Blocked, &rdev->flags); 1393 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1394 unsigned long flags; 1395 spin_lock_irqsave(&conf->device_lock, flags); 1396 mddev->degraded++; 1397 set_bit(Faulty, &rdev->flags); 1398 spin_unlock_irqrestore(&conf->device_lock, flags); 1399 /* 1400 * if recovery is running, make sure it aborts. 1401 */ 1402 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1403 } else 1404 set_bit(Faulty, &rdev->flags); 1405 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1406 printk(KERN_ALERT 1407 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1408 "md/raid1:%s: Operation continuing on %d devices.\n", 1409 mdname(mddev), bdevname(rdev->bdev, b), 1410 mdname(mddev), conf->raid_disks - mddev->degraded); 1411 } 1412 1413 static void print_conf(struct r1conf *conf) 1414 { 1415 int i; 1416 1417 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1418 if (!conf) { 1419 printk(KERN_DEBUG "(!conf)\n"); 1420 return; 1421 } 1422 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1423 conf->raid_disks); 1424 1425 rcu_read_lock(); 1426 for (i = 0; i < conf->raid_disks; i++) { 1427 char b[BDEVNAME_SIZE]; 1428 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1429 if (rdev) 1430 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1431 i, !test_bit(In_sync, &rdev->flags), 1432 !test_bit(Faulty, &rdev->flags), 1433 bdevname(rdev->bdev,b)); 1434 } 1435 rcu_read_unlock(); 1436 } 1437 1438 static void close_sync(struct r1conf *conf) 1439 { 1440 wait_barrier(conf); 1441 allow_barrier(conf); 1442 1443 mempool_destroy(conf->r1buf_pool); 1444 conf->r1buf_pool = NULL; 1445 } 1446 1447 static int raid1_spare_active(struct mddev *mddev) 1448 { 1449 int i; 1450 struct r1conf *conf = mddev->private; 1451 int count = 0; 1452 unsigned long flags; 1453 1454 /* 1455 * Find all failed disks within the RAID1 configuration 1456 * and mark them readable. 1457 * Called under mddev lock, so rcu protection not needed. 1458 */ 1459 for (i = 0; i < conf->raid_disks; i++) { 1460 struct md_rdev *rdev = conf->mirrors[i].rdev; 1461 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1462 if (repl 1463 && repl->recovery_offset == MaxSector 1464 && !test_bit(Faulty, &repl->flags) 1465 && !test_and_set_bit(In_sync, &repl->flags)) { 1466 /* replacement has just become active */ 1467 if (!rdev || 1468 !test_and_clear_bit(In_sync, &rdev->flags)) 1469 count++; 1470 if (rdev) { 1471 /* Replaced device not technically 1472 * faulty, but we need to be sure 1473 * it gets removed and never re-added 1474 */ 1475 set_bit(Faulty, &rdev->flags); 1476 sysfs_notify_dirent_safe( 1477 rdev->sysfs_state); 1478 } 1479 } 1480 if (rdev 1481 && !test_bit(Faulty, &rdev->flags) 1482 && !test_and_set_bit(In_sync, &rdev->flags)) { 1483 count++; 1484 sysfs_notify_dirent_safe(rdev->sysfs_state); 1485 } 1486 } 1487 spin_lock_irqsave(&conf->device_lock, flags); 1488 mddev->degraded -= count; 1489 spin_unlock_irqrestore(&conf->device_lock, flags); 1490 1491 print_conf(conf); 1492 return count; 1493 } 1494 1495 1496 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1497 { 1498 struct r1conf *conf = mddev->private; 1499 int err = -EEXIST; 1500 int mirror = 0; 1501 struct raid1_info *p; 1502 int first = 0; 1503 int last = conf->raid_disks - 1; 1504 struct request_queue *q = bdev_get_queue(rdev->bdev); 1505 1506 if (mddev->recovery_disabled == conf->recovery_disabled) 1507 return -EBUSY; 1508 1509 if (rdev->raid_disk >= 0) 1510 first = last = rdev->raid_disk; 1511 1512 if (q->merge_bvec_fn) { 1513 set_bit(Unmerged, &rdev->flags); 1514 mddev->merge_check_needed = 1; 1515 } 1516 1517 for (mirror = first; mirror <= last; mirror++) { 1518 p = conf->mirrors+mirror; 1519 if (!p->rdev) { 1520 1521 disk_stack_limits(mddev->gendisk, rdev->bdev, 1522 rdev->data_offset << 9); 1523 1524 p->head_position = 0; 1525 rdev->raid_disk = mirror; 1526 err = 0; 1527 /* As all devices are equivalent, we don't need a full recovery 1528 * if this was recently any drive of the array 1529 */ 1530 if (rdev->saved_raid_disk < 0) 1531 conf->fullsync = 1; 1532 rcu_assign_pointer(p->rdev, rdev); 1533 break; 1534 } 1535 if (test_bit(WantReplacement, &p->rdev->flags) && 1536 p[conf->raid_disks].rdev == NULL) { 1537 /* Add this device as a replacement */ 1538 clear_bit(In_sync, &rdev->flags); 1539 set_bit(Replacement, &rdev->flags); 1540 rdev->raid_disk = mirror; 1541 err = 0; 1542 conf->fullsync = 1; 1543 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1544 break; 1545 } 1546 } 1547 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1548 /* Some requests might not have seen this new 1549 * merge_bvec_fn. We must wait for them to complete 1550 * before merging the device fully. 1551 * First we make sure any code which has tested 1552 * our function has submitted the request, then 1553 * we wait for all outstanding requests to complete. 1554 */ 1555 synchronize_sched(); 1556 raise_barrier(conf); 1557 lower_barrier(conf); 1558 clear_bit(Unmerged, &rdev->flags); 1559 } 1560 md_integrity_add_rdev(rdev, mddev); 1561 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 1562 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1563 print_conf(conf); 1564 return err; 1565 } 1566 1567 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1568 { 1569 struct r1conf *conf = mddev->private; 1570 int err = 0; 1571 int number = rdev->raid_disk; 1572 struct raid1_info *p = conf->mirrors + number; 1573 1574 if (rdev != p->rdev) 1575 p = conf->mirrors + conf->raid_disks + number; 1576 1577 print_conf(conf); 1578 if (rdev == p->rdev) { 1579 if (test_bit(In_sync, &rdev->flags) || 1580 atomic_read(&rdev->nr_pending)) { 1581 err = -EBUSY; 1582 goto abort; 1583 } 1584 /* Only remove non-faulty devices if recovery 1585 * is not possible. 1586 */ 1587 if (!test_bit(Faulty, &rdev->flags) && 1588 mddev->recovery_disabled != conf->recovery_disabled && 1589 mddev->degraded < conf->raid_disks) { 1590 err = -EBUSY; 1591 goto abort; 1592 } 1593 p->rdev = NULL; 1594 synchronize_rcu(); 1595 if (atomic_read(&rdev->nr_pending)) { 1596 /* lost the race, try later */ 1597 err = -EBUSY; 1598 p->rdev = rdev; 1599 goto abort; 1600 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1601 /* We just removed a device that is being replaced. 1602 * Move down the replacement. We drain all IO before 1603 * doing this to avoid confusion. 1604 */ 1605 struct md_rdev *repl = 1606 conf->mirrors[conf->raid_disks + number].rdev; 1607 raise_barrier(conf); 1608 clear_bit(Replacement, &repl->flags); 1609 p->rdev = repl; 1610 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1611 lower_barrier(conf); 1612 clear_bit(WantReplacement, &rdev->flags); 1613 } else 1614 clear_bit(WantReplacement, &rdev->flags); 1615 err = md_integrity_register(mddev); 1616 } 1617 abort: 1618 1619 print_conf(conf); 1620 return err; 1621 } 1622 1623 1624 static void end_sync_read(struct bio *bio, int error) 1625 { 1626 struct r1bio *r1_bio = bio->bi_private; 1627 1628 update_head_pos(r1_bio->read_disk, r1_bio); 1629 1630 /* 1631 * we have read a block, now it needs to be re-written, 1632 * or re-read if the read failed. 1633 * We don't do much here, just schedule handling by raid1d 1634 */ 1635 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1636 set_bit(R1BIO_Uptodate, &r1_bio->state); 1637 1638 if (atomic_dec_and_test(&r1_bio->remaining)) 1639 reschedule_retry(r1_bio); 1640 } 1641 1642 static void end_sync_write(struct bio *bio, int error) 1643 { 1644 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1645 struct r1bio *r1_bio = bio->bi_private; 1646 struct mddev *mddev = r1_bio->mddev; 1647 struct r1conf *conf = mddev->private; 1648 int mirror=0; 1649 sector_t first_bad; 1650 int bad_sectors; 1651 1652 mirror = find_bio_disk(r1_bio, bio); 1653 1654 if (!uptodate) { 1655 sector_t sync_blocks = 0; 1656 sector_t s = r1_bio->sector; 1657 long sectors_to_go = r1_bio->sectors; 1658 /* make sure these bits doesn't get cleared. */ 1659 do { 1660 bitmap_end_sync(mddev->bitmap, s, 1661 &sync_blocks, 1); 1662 s += sync_blocks; 1663 sectors_to_go -= sync_blocks; 1664 } while (sectors_to_go > 0); 1665 set_bit(WriteErrorSeen, 1666 &conf->mirrors[mirror].rdev->flags); 1667 if (!test_and_set_bit(WantReplacement, 1668 &conf->mirrors[mirror].rdev->flags)) 1669 set_bit(MD_RECOVERY_NEEDED, & 1670 mddev->recovery); 1671 set_bit(R1BIO_WriteError, &r1_bio->state); 1672 } else if (is_badblock(conf->mirrors[mirror].rdev, 1673 r1_bio->sector, 1674 r1_bio->sectors, 1675 &first_bad, &bad_sectors) && 1676 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1677 r1_bio->sector, 1678 r1_bio->sectors, 1679 &first_bad, &bad_sectors) 1680 ) 1681 set_bit(R1BIO_MadeGood, &r1_bio->state); 1682 1683 if (atomic_dec_and_test(&r1_bio->remaining)) { 1684 int s = r1_bio->sectors; 1685 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1686 test_bit(R1BIO_WriteError, &r1_bio->state)) 1687 reschedule_retry(r1_bio); 1688 else { 1689 put_buf(r1_bio); 1690 md_done_sync(mddev, s, uptodate); 1691 } 1692 } 1693 } 1694 1695 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1696 int sectors, struct page *page, int rw) 1697 { 1698 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1699 /* success */ 1700 return 1; 1701 if (rw == WRITE) { 1702 set_bit(WriteErrorSeen, &rdev->flags); 1703 if (!test_and_set_bit(WantReplacement, 1704 &rdev->flags)) 1705 set_bit(MD_RECOVERY_NEEDED, & 1706 rdev->mddev->recovery); 1707 } 1708 /* need to record an error - either for the block or the device */ 1709 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1710 md_error(rdev->mddev, rdev); 1711 return 0; 1712 } 1713 1714 static int fix_sync_read_error(struct r1bio *r1_bio) 1715 { 1716 /* Try some synchronous reads of other devices to get 1717 * good data, much like with normal read errors. Only 1718 * read into the pages we already have so we don't 1719 * need to re-issue the read request. 1720 * We don't need to freeze the array, because being in an 1721 * active sync request, there is no normal IO, and 1722 * no overlapping syncs. 1723 * We don't need to check is_badblock() again as we 1724 * made sure that anything with a bad block in range 1725 * will have bi_end_io clear. 1726 */ 1727 struct mddev *mddev = r1_bio->mddev; 1728 struct r1conf *conf = mddev->private; 1729 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1730 sector_t sect = r1_bio->sector; 1731 int sectors = r1_bio->sectors; 1732 int idx = 0; 1733 1734 while(sectors) { 1735 int s = sectors; 1736 int d = r1_bio->read_disk; 1737 int success = 0; 1738 struct md_rdev *rdev; 1739 int start; 1740 1741 if (s > (PAGE_SIZE>>9)) 1742 s = PAGE_SIZE >> 9; 1743 do { 1744 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1745 /* No rcu protection needed here devices 1746 * can only be removed when no resync is 1747 * active, and resync is currently active 1748 */ 1749 rdev = conf->mirrors[d].rdev; 1750 if (sync_page_io(rdev, sect, s<<9, 1751 bio->bi_io_vec[idx].bv_page, 1752 READ, false)) { 1753 success = 1; 1754 break; 1755 } 1756 } 1757 d++; 1758 if (d == conf->raid_disks * 2) 1759 d = 0; 1760 } while (!success && d != r1_bio->read_disk); 1761 1762 if (!success) { 1763 char b[BDEVNAME_SIZE]; 1764 int abort = 0; 1765 /* Cannot read from anywhere, this block is lost. 1766 * Record a bad block on each device. If that doesn't 1767 * work just disable and interrupt the recovery. 1768 * Don't fail devices as that won't really help. 1769 */ 1770 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1771 " for block %llu\n", 1772 mdname(mddev), 1773 bdevname(bio->bi_bdev, b), 1774 (unsigned long long)r1_bio->sector); 1775 for (d = 0; d < conf->raid_disks * 2; d++) { 1776 rdev = conf->mirrors[d].rdev; 1777 if (!rdev || test_bit(Faulty, &rdev->flags)) 1778 continue; 1779 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1780 abort = 1; 1781 } 1782 if (abort) { 1783 conf->recovery_disabled = 1784 mddev->recovery_disabled; 1785 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1786 md_done_sync(mddev, r1_bio->sectors, 0); 1787 put_buf(r1_bio); 1788 return 0; 1789 } 1790 /* Try next page */ 1791 sectors -= s; 1792 sect += s; 1793 idx++; 1794 continue; 1795 } 1796 1797 start = d; 1798 /* write it back and re-read */ 1799 while (d != r1_bio->read_disk) { 1800 if (d == 0) 1801 d = conf->raid_disks * 2; 1802 d--; 1803 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1804 continue; 1805 rdev = conf->mirrors[d].rdev; 1806 if (r1_sync_page_io(rdev, sect, s, 1807 bio->bi_io_vec[idx].bv_page, 1808 WRITE) == 0) { 1809 r1_bio->bios[d]->bi_end_io = NULL; 1810 rdev_dec_pending(rdev, mddev); 1811 } 1812 } 1813 d = start; 1814 while (d != r1_bio->read_disk) { 1815 if (d == 0) 1816 d = conf->raid_disks * 2; 1817 d--; 1818 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1819 continue; 1820 rdev = conf->mirrors[d].rdev; 1821 if (r1_sync_page_io(rdev, sect, s, 1822 bio->bi_io_vec[idx].bv_page, 1823 READ) != 0) 1824 atomic_add(s, &rdev->corrected_errors); 1825 } 1826 sectors -= s; 1827 sect += s; 1828 idx ++; 1829 } 1830 set_bit(R1BIO_Uptodate, &r1_bio->state); 1831 set_bit(BIO_UPTODATE, &bio->bi_flags); 1832 return 1; 1833 } 1834 1835 static int process_checks(struct r1bio *r1_bio) 1836 { 1837 /* We have read all readable devices. If we haven't 1838 * got the block, then there is no hope left. 1839 * If we have, then we want to do a comparison 1840 * and skip the write if everything is the same. 1841 * If any blocks failed to read, then we need to 1842 * attempt an over-write 1843 */ 1844 struct mddev *mddev = r1_bio->mddev; 1845 struct r1conf *conf = mddev->private; 1846 int primary; 1847 int i; 1848 int vcnt; 1849 1850 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1851 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1852 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1853 r1_bio->bios[primary]->bi_end_io = NULL; 1854 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1855 break; 1856 } 1857 r1_bio->read_disk = primary; 1858 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1859 for (i = 0; i < conf->raid_disks * 2; i++) { 1860 int j; 1861 struct bio *pbio = r1_bio->bios[primary]; 1862 struct bio *sbio = r1_bio->bios[i]; 1863 int size; 1864 1865 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1866 continue; 1867 1868 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1869 for (j = vcnt; j-- ; ) { 1870 struct page *p, *s; 1871 p = pbio->bi_io_vec[j].bv_page; 1872 s = sbio->bi_io_vec[j].bv_page; 1873 if (memcmp(page_address(p), 1874 page_address(s), 1875 sbio->bi_io_vec[j].bv_len)) 1876 break; 1877 } 1878 } else 1879 j = 0; 1880 if (j >= 0) 1881 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 1882 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1883 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1884 /* No need to write to this device. */ 1885 sbio->bi_end_io = NULL; 1886 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1887 continue; 1888 } 1889 /* fixup the bio for reuse */ 1890 sbio->bi_vcnt = vcnt; 1891 sbio->bi_size = r1_bio->sectors << 9; 1892 sbio->bi_idx = 0; 1893 sbio->bi_phys_segments = 0; 1894 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1895 sbio->bi_flags |= 1 << BIO_UPTODATE; 1896 sbio->bi_next = NULL; 1897 sbio->bi_sector = r1_bio->sector + 1898 conf->mirrors[i].rdev->data_offset; 1899 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1900 size = sbio->bi_size; 1901 for (j = 0; j < vcnt ; j++) { 1902 struct bio_vec *bi; 1903 bi = &sbio->bi_io_vec[j]; 1904 bi->bv_offset = 0; 1905 if (size > PAGE_SIZE) 1906 bi->bv_len = PAGE_SIZE; 1907 else 1908 bi->bv_len = size; 1909 size -= PAGE_SIZE; 1910 memcpy(page_address(bi->bv_page), 1911 page_address(pbio->bi_io_vec[j].bv_page), 1912 PAGE_SIZE); 1913 } 1914 } 1915 return 0; 1916 } 1917 1918 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1919 { 1920 struct r1conf *conf = mddev->private; 1921 int i; 1922 int disks = conf->raid_disks * 2; 1923 struct bio *bio, *wbio; 1924 1925 bio = r1_bio->bios[r1_bio->read_disk]; 1926 1927 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1928 /* ouch - failed to read all of that. */ 1929 if (!fix_sync_read_error(r1_bio)) 1930 return; 1931 1932 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1933 if (process_checks(r1_bio) < 0) 1934 return; 1935 /* 1936 * schedule writes 1937 */ 1938 atomic_set(&r1_bio->remaining, 1); 1939 for (i = 0; i < disks ; i++) { 1940 wbio = r1_bio->bios[i]; 1941 if (wbio->bi_end_io == NULL || 1942 (wbio->bi_end_io == end_sync_read && 1943 (i == r1_bio->read_disk || 1944 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1945 continue; 1946 1947 wbio->bi_rw = WRITE; 1948 wbio->bi_end_io = end_sync_write; 1949 atomic_inc(&r1_bio->remaining); 1950 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1951 1952 generic_make_request(wbio); 1953 } 1954 1955 if (atomic_dec_and_test(&r1_bio->remaining)) { 1956 /* if we're here, all write(s) have completed, so clean up */ 1957 int s = r1_bio->sectors; 1958 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1959 test_bit(R1BIO_WriteError, &r1_bio->state)) 1960 reschedule_retry(r1_bio); 1961 else { 1962 put_buf(r1_bio); 1963 md_done_sync(mddev, s, 1); 1964 } 1965 } 1966 } 1967 1968 /* 1969 * This is a kernel thread which: 1970 * 1971 * 1. Retries failed read operations on working mirrors. 1972 * 2. Updates the raid superblock when problems encounter. 1973 * 3. Performs writes following reads for array synchronising. 1974 */ 1975 1976 static void fix_read_error(struct r1conf *conf, int read_disk, 1977 sector_t sect, int sectors) 1978 { 1979 struct mddev *mddev = conf->mddev; 1980 while(sectors) { 1981 int s = sectors; 1982 int d = read_disk; 1983 int success = 0; 1984 int start; 1985 struct md_rdev *rdev; 1986 1987 if (s > (PAGE_SIZE>>9)) 1988 s = PAGE_SIZE >> 9; 1989 1990 do { 1991 /* Note: no rcu protection needed here 1992 * as this is synchronous in the raid1d thread 1993 * which is the thread that might remove 1994 * a device. If raid1d ever becomes multi-threaded.... 1995 */ 1996 sector_t first_bad; 1997 int bad_sectors; 1998 1999 rdev = conf->mirrors[d].rdev; 2000 if (rdev && 2001 (test_bit(In_sync, &rdev->flags) || 2002 (!test_bit(Faulty, &rdev->flags) && 2003 rdev->recovery_offset >= sect + s)) && 2004 is_badblock(rdev, sect, s, 2005 &first_bad, &bad_sectors) == 0 && 2006 sync_page_io(rdev, sect, s<<9, 2007 conf->tmppage, READ, false)) 2008 success = 1; 2009 else { 2010 d++; 2011 if (d == conf->raid_disks * 2) 2012 d = 0; 2013 } 2014 } while (!success && d != read_disk); 2015 2016 if (!success) { 2017 /* Cannot read from anywhere - mark it bad */ 2018 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2019 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2020 md_error(mddev, rdev); 2021 break; 2022 } 2023 /* write it back and re-read */ 2024 start = d; 2025 while (d != read_disk) { 2026 if (d==0) 2027 d = conf->raid_disks * 2; 2028 d--; 2029 rdev = conf->mirrors[d].rdev; 2030 if (rdev && 2031 test_bit(In_sync, &rdev->flags)) 2032 r1_sync_page_io(rdev, sect, s, 2033 conf->tmppage, WRITE); 2034 } 2035 d = start; 2036 while (d != read_disk) { 2037 char b[BDEVNAME_SIZE]; 2038 if (d==0) 2039 d = conf->raid_disks * 2; 2040 d--; 2041 rdev = conf->mirrors[d].rdev; 2042 if (rdev && 2043 test_bit(In_sync, &rdev->flags)) { 2044 if (r1_sync_page_io(rdev, sect, s, 2045 conf->tmppage, READ)) { 2046 atomic_add(s, &rdev->corrected_errors); 2047 printk(KERN_INFO 2048 "md/raid1:%s: read error corrected " 2049 "(%d sectors at %llu on %s)\n", 2050 mdname(mddev), s, 2051 (unsigned long long)(sect + 2052 rdev->data_offset), 2053 bdevname(rdev->bdev, b)); 2054 } 2055 } 2056 } 2057 sectors -= s; 2058 sect += s; 2059 } 2060 } 2061 2062 static void bi_complete(struct bio *bio, int error) 2063 { 2064 complete((struct completion *)bio->bi_private); 2065 } 2066 2067 static int submit_bio_wait(int rw, struct bio *bio) 2068 { 2069 struct completion event; 2070 rw |= REQ_SYNC; 2071 2072 init_completion(&event); 2073 bio->bi_private = &event; 2074 bio->bi_end_io = bi_complete; 2075 submit_bio(rw, bio); 2076 wait_for_completion(&event); 2077 2078 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2079 } 2080 2081 static int narrow_write_error(struct r1bio *r1_bio, int i) 2082 { 2083 struct mddev *mddev = r1_bio->mddev; 2084 struct r1conf *conf = mddev->private; 2085 struct md_rdev *rdev = conf->mirrors[i].rdev; 2086 int vcnt, idx; 2087 struct bio_vec *vec; 2088 2089 /* bio has the data to be written to device 'i' where 2090 * we just recently had a write error. 2091 * We repeatedly clone the bio and trim down to one block, 2092 * then try the write. Where the write fails we record 2093 * a bad block. 2094 * It is conceivable that the bio doesn't exactly align with 2095 * blocks. We must handle this somehow. 2096 * 2097 * We currently own a reference on the rdev. 2098 */ 2099 2100 int block_sectors; 2101 sector_t sector; 2102 int sectors; 2103 int sect_to_write = r1_bio->sectors; 2104 int ok = 1; 2105 2106 if (rdev->badblocks.shift < 0) 2107 return 0; 2108 2109 block_sectors = 1 << rdev->badblocks.shift; 2110 sector = r1_bio->sector; 2111 sectors = ((sector + block_sectors) 2112 & ~(sector_t)(block_sectors - 1)) 2113 - sector; 2114 2115 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2116 vcnt = r1_bio->behind_page_count; 2117 vec = r1_bio->behind_bvecs; 2118 idx = 0; 2119 while (vec[idx].bv_page == NULL) 2120 idx++; 2121 } else { 2122 vcnt = r1_bio->master_bio->bi_vcnt; 2123 vec = r1_bio->master_bio->bi_io_vec; 2124 idx = r1_bio->master_bio->bi_idx; 2125 } 2126 while (sect_to_write) { 2127 struct bio *wbio; 2128 if (sectors > sect_to_write) 2129 sectors = sect_to_write; 2130 /* Write at 'sector' for 'sectors'*/ 2131 2132 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2133 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2134 wbio->bi_sector = r1_bio->sector; 2135 wbio->bi_rw = WRITE; 2136 wbio->bi_vcnt = vcnt; 2137 wbio->bi_size = r1_bio->sectors << 9; 2138 wbio->bi_idx = idx; 2139 2140 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 2141 wbio->bi_sector += rdev->data_offset; 2142 wbio->bi_bdev = rdev->bdev; 2143 if (submit_bio_wait(WRITE, wbio) == 0) 2144 /* failure! */ 2145 ok = rdev_set_badblocks(rdev, sector, 2146 sectors, 0) 2147 && ok; 2148 2149 bio_put(wbio); 2150 sect_to_write -= sectors; 2151 sector += sectors; 2152 sectors = block_sectors; 2153 } 2154 return ok; 2155 } 2156 2157 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2158 { 2159 int m; 2160 int s = r1_bio->sectors; 2161 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2162 struct md_rdev *rdev = conf->mirrors[m].rdev; 2163 struct bio *bio = r1_bio->bios[m]; 2164 if (bio->bi_end_io == NULL) 2165 continue; 2166 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2167 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2168 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2169 } 2170 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2171 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2172 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2173 md_error(conf->mddev, rdev); 2174 } 2175 } 2176 put_buf(r1_bio); 2177 md_done_sync(conf->mddev, s, 1); 2178 } 2179 2180 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2181 { 2182 int m; 2183 for (m = 0; m < conf->raid_disks * 2 ; m++) 2184 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2185 struct md_rdev *rdev = conf->mirrors[m].rdev; 2186 rdev_clear_badblocks(rdev, 2187 r1_bio->sector, 2188 r1_bio->sectors, 0); 2189 rdev_dec_pending(rdev, conf->mddev); 2190 } else if (r1_bio->bios[m] != NULL) { 2191 /* This drive got a write error. We need to 2192 * narrow down and record precise write 2193 * errors. 2194 */ 2195 if (!narrow_write_error(r1_bio, m)) { 2196 md_error(conf->mddev, 2197 conf->mirrors[m].rdev); 2198 /* an I/O failed, we can't clear the bitmap */ 2199 set_bit(R1BIO_Degraded, &r1_bio->state); 2200 } 2201 rdev_dec_pending(conf->mirrors[m].rdev, 2202 conf->mddev); 2203 } 2204 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2205 close_write(r1_bio); 2206 raid_end_bio_io(r1_bio); 2207 } 2208 2209 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2210 { 2211 int disk; 2212 int max_sectors; 2213 struct mddev *mddev = conf->mddev; 2214 struct bio *bio; 2215 char b[BDEVNAME_SIZE]; 2216 struct md_rdev *rdev; 2217 2218 clear_bit(R1BIO_ReadError, &r1_bio->state); 2219 /* we got a read error. Maybe the drive is bad. Maybe just 2220 * the block and we can fix it. 2221 * We freeze all other IO, and try reading the block from 2222 * other devices. When we find one, we re-write 2223 * and check it that fixes the read error. 2224 * This is all done synchronously while the array is 2225 * frozen 2226 */ 2227 if (mddev->ro == 0) { 2228 freeze_array(conf); 2229 fix_read_error(conf, r1_bio->read_disk, 2230 r1_bio->sector, r1_bio->sectors); 2231 unfreeze_array(conf); 2232 } else 2233 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2234 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2235 2236 bio = r1_bio->bios[r1_bio->read_disk]; 2237 bdevname(bio->bi_bdev, b); 2238 read_more: 2239 disk = read_balance(conf, r1_bio, &max_sectors); 2240 if (disk == -1) { 2241 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2242 " read error for block %llu\n", 2243 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2244 raid_end_bio_io(r1_bio); 2245 } else { 2246 const unsigned long do_sync 2247 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2248 if (bio) { 2249 r1_bio->bios[r1_bio->read_disk] = 2250 mddev->ro ? IO_BLOCKED : NULL; 2251 bio_put(bio); 2252 } 2253 r1_bio->read_disk = disk; 2254 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2255 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 2256 r1_bio->bios[r1_bio->read_disk] = bio; 2257 rdev = conf->mirrors[disk].rdev; 2258 printk_ratelimited(KERN_ERR 2259 "md/raid1:%s: redirecting sector %llu" 2260 " to other mirror: %s\n", 2261 mdname(mddev), 2262 (unsigned long long)r1_bio->sector, 2263 bdevname(rdev->bdev, b)); 2264 bio->bi_sector = r1_bio->sector + rdev->data_offset; 2265 bio->bi_bdev = rdev->bdev; 2266 bio->bi_end_io = raid1_end_read_request; 2267 bio->bi_rw = READ | do_sync; 2268 bio->bi_private = r1_bio; 2269 if (max_sectors < r1_bio->sectors) { 2270 /* Drat - have to split this up more */ 2271 struct bio *mbio = r1_bio->master_bio; 2272 int sectors_handled = (r1_bio->sector + max_sectors 2273 - mbio->bi_sector); 2274 r1_bio->sectors = max_sectors; 2275 spin_lock_irq(&conf->device_lock); 2276 if (mbio->bi_phys_segments == 0) 2277 mbio->bi_phys_segments = 2; 2278 else 2279 mbio->bi_phys_segments++; 2280 spin_unlock_irq(&conf->device_lock); 2281 generic_make_request(bio); 2282 bio = NULL; 2283 2284 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2285 2286 r1_bio->master_bio = mbio; 2287 r1_bio->sectors = (mbio->bi_size >> 9) 2288 - sectors_handled; 2289 r1_bio->state = 0; 2290 set_bit(R1BIO_ReadError, &r1_bio->state); 2291 r1_bio->mddev = mddev; 2292 r1_bio->sector = mbio->bi_sector + sectors_handled; 2293 2294 goto read_more; 2295 } else 2296 generic_make_request(bio); 2297 } 2298 } 2299 2300 static void raid1d(struct md_thread *thread) 2301 { 2302 struct mddev *mddev = thread->mddev; 2303 struct r1bio *r1_bio; 2304 unsigned long flags; 2305 struct r1conf *conf = mddev->private; 2306 struct list_head *head = &conf->retry_list; 2307 struct blk_plug plug; 2308 2309 md_check_recovery(mddev); 2310 2311 blk_start_plug(&plug); 2312 for (;;) { 2313 2314 flush_pending_writes(conf); 2315 2316 spin_lock_irqsave(&conf->device_lock, flags); 2317 if (list_empty(head)) { 2318 spin_unlock_irqrestore(&conf->device_lock, flags); 2319 break; 2320 } 2321 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2322 list_del(head->prev); 2323 conf->nr_queued--; 2324 spin_unlock_irqrestore(&conf->device_lock, flags); 2325 2326 mddev = r1_bio->mddev; 2327 conf = mddev->private; 2328 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2329 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2330 test_bit(R1BIO_WriteError, &r1_bio->state)) 2331 handle_sync_write_finished(conf, r1_bio); 2332 else 2333 sync_request_write(mddev, r1_bio); 2334 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2335 test_bit(R1BIO_WriteError, &r1_bio->state)) 2336 handle_write_finished(conf, r1_bio); 2337 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2338 handle_read_error(conf, r1_bio); 2339 else 2340 /* just a partial read to be scheduled from separate 2341 * context 2342 */ 2343 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2344 2345 cond_resched(); 2346 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2347 md_check_recovery(mddev); 2348 } 2349 blk_finish_plug(&plug); 2350 } 2351 2352 2353 static int init_resync(struct r1conf *conf) 2354 { 2355 int buffs; 2356 2357 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2358 BUG_ON(conf->r1buf_pool); 2359 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2360 conf->poolinfo); 2361 if (!conf->r1buf_pool) 2362 return -ENOMEM; 2363 conf->next_resync = 0; 2364 return 0; 2365 } 2366 2367 /* 2368 * perform a "sync" on one "block" 2369 * 2370 * We need to make sure that no normal I/O request - particularly write 2371 * requests - conflict with active sync requests. 2372 * 2373 * This is achieved by tracking pending requests and a 'barrier' concept 2374 * that can be installed to exclude normal IO requests. 2375 */ 2376 2377 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2378 { 2379 struct r1conf *conf = mddev->private; 2380 struct r1bio *r1_bio; 2381 struct bio *bio; 2382 sector_t max_sector, nr_sectors; 2383 int disk = -1; 2384 int i; 2385 int wonly = -1; 2386 int write_targets = 0, read_targets = 0; 2387 sector_t sync_blocks; 2388 int still_degraded = 0; 2389 int good_sectors = RESYNC_SECTORS; 2390 int min_bad = 0; /* number of sectors that are bad in all devices */ 2391 2392 if (!conf->r1buf_pool) 2393 if (init_resync(conf)) 2394 return 0; 2395 2396 max_sector = mddev->dev_sectors; 2397 if (sector_nr >= max_sector) { 2398 /* If we aborted, we need to abort the 2399 * sync on the 'current' bitmap chunk (there will 2400 * only be one in raid1 resync. 2401 * We can find the current addess in mddev->curr_resync 2402 */ 2403 if (mddev->curr_resync < max_sector) /* aborted */ 2404 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2405 &sync_blocks, 1); 2406 else /* completed sync */ 2407 conf->fullsync = 0; 2408 2409 bitmap_close_sync(mddev->bitmap); 2410 close_sync(conf); 2411 return 0; 2412 } 2413 2414 if (mddev->bitmap == NULL && 2415 mddev->recovery_cp == MaxSector && 2416 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2417 conf->fullsync == 0) { 2418 *skipped = 1; 2419 return max_sector - sector_nr; 2420 } 2421 /* before building a request, check if we can skip these blocks.. 2422 * This call the bitmap_start_sync doesn't actually record anything 2423 */ 2424 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2425 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2426 /* We can skip this block, and probably several more */ 2427 *skipped = 1; 2428 return sync_blocks; 2429 } 2430 /* 2431 * If there is non-resync activity waiting for a turn, 2432 * and resync is going fast enough, 2433 * then let it though before starting on this new sync request. 2434 */ 2435 if (!go_faster && conf->nr_waiting) 2436 msleep_interruptible(1000); 2437 2438 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2439 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2440 raise_barrier(conf); 2441 2442 conf->next_resync = sector_nr; 2443 2444 rcu_read_lock(); 2445 /* 2446 * If we get a correctably read error during resync or recovery, 2447 * we might want to read from a different device. So we 2448 * flag all drives that could conceivably be read from for READ, 2449 * and any others (which will be non-In_sync devices) for WRITE. 2450 * If a read fails, we try reading from something else for which READ 2451 * is OK. 2452 */ 2453 2454 r1_bio->mddev = mddev; 2455 r1_bio->sector = sector_nr; 2456 r1_bio->state = 0; 2457 set_bit(R1BIO_IsSync, &r1_bio->state); 2458 2459 for (i = 0; i < conf->raid_disks * 2; i++) { 2460 struct md_rdev *rdev; 2461 bio = r1_bio->bios[i]; 2462 2463 /* take from bio_init */ 2464 bio->bi_next = NULL; 2465 bio->bi_flags &= ~(BIO_POOL_MASK-1); 2466 bio->bi_flags |= 1 << BIO_UPTODATE; 2467 bio->bi_rw = READ; 2468 bio->bi_vcnt = 0; 2469 bio->bi_idx = 0; 2470 bio->bi_phys_segments = 0; 2471 bio->bi_size = 0; 2472 bio->bi_end_io = NULL; 2473 bio->bi_private = NULL; 2474 2475 rdev = rcu_dereference(conf->mirrors[i].rdev); 2476 if (rdev == NULL || 2477 test_bit(Faulty, &rdev->flags)) { 2478 if (i < conf->raid_disks) 2479 still_degraded = 1; 2480 } else if (!test_bit(In_sync, &rdev->flags)) { 2481 bio->bi_rw = WRITE; 2482 bio->bi_end_io = end_sync_write; 2483 write_targets ++; 2484 } else { 2485 /* may need to read from here */ 2486 sector_t first_bad = MaxSector; 2487 int bad_sectors; 2488 2489 if (is_badblock(rdev, sector_nr, good_sectors, 2490 &first_bad, &bad_sectors)) { 2491 if (first_bad > sector_nr) 2492 good_sectors = first_bad - sector_nr; 2493 else { 2494 bad_sectors -= (sector_nr - first_bad); 2495 if (min_bad == 0 || 2496 min_bad > bad_sectors) 2497 min_bad = bad_sectors; 2498 } 2499 } 2500 if (sector_nr < first_bad) { 2501 if (test_bit(WriteMostly, &rdev->flags)) { 2502 if (wonly < 0) 2503 wonly = i; 2504 } else { 2505 if (disk < 0) 2506 disk = i; 2507 } 2508 bio->bi_rw = READ; 2509 bio->bi_end_io = end_sync_read; 2510 read_targets++; 2511 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2512 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2513 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2514 /* 2515 * The device is suitable for reading (InSync), 2516 * but has bad block(s) here. Let's try to correct them, 2517 * if we are doing resync or repair. Otherwise, leave 2518 * this device alone for this sync request. 2519 */ 2520 bio->bi_rw = WRITE; 2521 bio->bi_end_io = end_sync_write; 2522 write_targets++; 2523 } 2524 } 2525 if (bio->bi_end_io) { 2526 atomic_inc(&rdev->nr_pending); 2527 bio->bi_sector = sector_nr + rdev->data_offset; 2528 bio->bi_bdev = rdev->bdev; 2529 bio->bi_private = r1_bio; 2530 } 2531 } 2532 rcu_read_unlock(); 2533 if (disk < 0) 2534 disk = wonly; 2535 r1_bio->read_disk = disk; 2536 2537 if (read_targets == 0 && min_bad > 0) { 2538 /* These sectors are bad on all InSync devices, so we 2539 * need to mark them bad on all write targets 2540 */ 2541 int ok = 1; 2542 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2543 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2544 struct md_rdev *rdev = conf->mirrors[i].rdev; 2545 ok = rdev_set_badblocks(rdev, sector_nr, 2546 min_bad, 0 2547 ) && ok; 2548 } 2549 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2550 *skipped = 1; 2551 put_buf(r1_bio); 2552 2553 if (!ok) { 2554 /* Cannot record the badblocks, so need to 2555 * abort the resync. 2556 * If there are multiple read targets, could just 2557 * fail the really bad ones ??? 2558 */ 2559 conf->recovery_disabled = mddev->recovery_disabled; 2560 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2561 return 0; 2562 } else 2563 return min_bad; 2564 2565 } 2566 if (min_bad > 0 && min_bad < good_sectors) { 2567 /* only resync enough to reach the next bad->good 2568 * transition */ 2569 good_sectors = min_bad; 2570 } 2571 2572 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2573 /* extra read targets are also write targets */ 2574 write_targets += read_targets-1; 2575 2576 if (write_targets == 0 || read_targets == 0) { 2577 /* There is nowhere to write, so all non-sync 2578 * drives must be failed - so we are finished 2579 */ 2580 sector_t rv; 2581 if (min_bad > 0) 2582 max_sector = sector_nr + min_bad; 2583 rv = max_sector - sector_nr; 2584 *skipped = 1; 2585 put_buf(r1_bio); 2586 return rv; 2587 } 2588 2589 if (max_sector > mddev->resync_max) 2590 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2591 if (max_sector > sector_nr + good_sectors) 2592 max_sector = sector_nr + good_sectors; 2593 nr_sectors = 0; 2594 sync_blocks = 0; 2595 do { 2596 struct page *page; 2597 int len = PAGE_SIZE; 2598 if (sector_nr + (len>>9) > max_sector) 2599 len = (max_sector - sector_nr) << 9; 2600 if (len == 0) 2601 break; 2602 if (sync_blocks == 0) { 2603 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2604 &sync_blocks, still_degraded) && 2605 !conf->fullsync && 2606 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2607 break; 2608 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2609 if ((len >> 9) > sync_blocks) 2610 len = sync_blocks<<9; 2611 } 2612 2613 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2614 bio = r1_bio->bios[i]; 2615 if (bio->bi_end_io) { 2616 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2617 if (bio_add_page(bio, page, len, 0) == 0) { 2618 /* stop here */ 2619 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2620 while (i > 0) { 2621 i--; 2622 bio = r1_bio->bios[i]; 2623 if (bio->bi_end_io==NULL) 2624 continue; 2625 /* remove last page from this bio */ 2626 bio->bi_vcnt--; 2627 bio->bi_size -= len; 2628 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2629 } 2630 goto bio_full; 2631 } 2632 } 2633 } 2634 nr_sectors += len>>9; 2635 sector_nr += len>>9; 2636 sync_blocks -= (len>>9); 2637 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2638 bio_full: 2639 r1_bio->sectors = nr_sectors; 2640 2641 /* For a user-requested sync, we read all readable devices and do a 2642 * compare 2643 */ 2644 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2645 atomic_set(&r1_bio->remaining, read_targets); 2646 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2647 bio = r1_bio->bios[i]; 2648 if (bio->bi_end_io == end_sync_read) { 2649 read_targets--; 2650 md_sync_acct(bio->bi_bdev, nr_sectors); 2651 generic_make_request(bio); 2652 } 2653 } 2654 } else { 2655 atomic_set(&r1_bio->remaining, 1); 2656 bio = r1_bio->bios[r1_bio->read_disk]; 2657 md_sync_acct(bio->bi_bdev, nr_sectors); 2658 generic_make_request(bio); 2659 2660 } 2661 return nr_sectors; 2662 } 2663 2664 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2665 { 2666 if (sectors) 2667 return sectors; 2668 2669 return mddev->dev_sectors; 2670 } 2671 2672 static struct r1conf *setup_conf(struct mddev *mddev) 2673 { 2674 struct r1conf *conf; 2675 int i; 2676 struct raid1_info *disk; 2677 struct md_rdev *rdev; 2678 int err = -ENOMEM; 2679 2680 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2681 if (!conf) 2682 goto abort; 2683 2684 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2685 * mddev->raid_disks * 2, 2686 GFP_KERNEL); 2687 if (!conf->mirrors) 2688 goto abort; 2689 2690 conf->tmppage = alloc_page(GFP_KERNEL); 2691 if (!conf->tmppage) 2692 goto abort; 2693 2694 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2695 if (!conf->poolinfo) 2696 goto abort; 2697 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2698 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2699 r1bio_pool_free, 2700 conf->poolinfo); 2701 if (!conf->r1bio_pool) 2702 goto abort; 2703 2704 conf->poolinfo->mddev = mddev; 2705 2706 err = -EINVAL; 2707 spin_lock_init(&conf->device_lock); 2708 rdev_for_each(rdev, mddev) { 2709 struct request_queue *q; 2710 int disk_idx = rdev->raid_disk; 2711 if (disk_idx >= mddev->raid_disks 2712 || disk_idx < 0) 2713 continue; 2714 if (test_bit(Replacement, &rdev->flags)) 2715 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2716 else 2717 disk = conf->mirrors + disk_idx; 2718 2719 if (disk->rdev) 2720 goto abort; 2721 disk->rdev = rdev; 2722 q = bdev_get_queue(rdev->bdev); 2723 if (q->merge_bvec_fn) 2724 mddev->merge_check_needed = 1; 2725 2726 disk->head_position = 0; 2727 disk->seq_start = MaxSector; 2728 } 2729 conf->raid_disks = mddev->raid_disks; 2730 conf->mddev = mddev; 2731 INIT_LIST_HEAD(&conf->retry_list); 2732 2733 spin_lock_init(&conf->resync_lock); 2734 init_waitqueue_head(&conf->wait_barrier); 2735 2736 bio_list_init(&conf->pending_bio_list); 2737 conf->pending_count = 0; 2738 conf->recovery_disabled = mddev->recovery_disabled - 1; 2739 2740 err = -EIO; 2741 for (i = 0; i < conf->raid_disks * 2; i++) { 2742 2743 disk = conf->mirrors + i; 2744 2745 if (i < conf->raid_disks && 2746 disk[conf->raid_disks].rdev) { 2747 /* This slot has a replacement. */ 2748 if (!disk->rdev) { 2749 /* No original, just make the replacement 2750 * a recovering spare 2751 */ 2752 disk->rdev = 2753 disk[conf->raid_disks].rdev; 2754 disk[conf->raid_disks].rdev = NULL; 2755 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2756 /* Original is not in_sync - bad */ 2757 goto abort; 2758 } 2759 2760 if (!disk->rdev || 2761 !test_bit(In_sync, &disk->rdev->flags)) { 2762 disk->head_position = 0; 2763 if (disk->rdev && 2764 (disk->rdev->saved_raid_disk < 0)) 2765 conf->fullsync = 1; 2766 } 2767 } 2768 2769 err = -ENOMEM; 2770 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2771 if (!conf->thread) { 2772 printk(KERN_ERR 2773 "md/raid1:%s: couldn't allocate thread\n", 2774 mdname(mddev)); 2775 goto abort; 2776 } 2777 2778 return conf; 2779 2780 abort: 2781 if (conf) { 2782 if (conf->r1bio_pool) 2783 mempool_destroy(conf->r1bio_pool); 2784 kfree(conf->mirrors); 2785 safe_put_page(conf->tmppage); 2786 kfree(conf->poolinfo); 2787 kfree(conf); 2788 } 2789 return ERR_PTR(err); 2790 } 2791 2792 static int stop(struct mddev *mddev); 2793 static int run(struct mddev *mddev) 2794 { 2795 struct r1conf *conf; 2796 int i; 2797 struct md_rdev *rdev; 2798 int ret; 2799 bool discard_supported = false; 2800 2801 if (mddev->level != 1) { 2802 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2803 mdname(mddev), mddev->level); 2804 return -EIO; 2805 } 2806 if (mddev->reshape_position != MaxSector) { 2807 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2808 mdname(mddev)); 2809 return -EIO; 2810 } 2811 /* 2812 * copy the already verified devices into our private RAID1 2813 * bookkeeping area. [whatever we allocate in run(), 2814 * should be freed in stop()] 2815 */ 2816 if (mddev->private == NULL) 2817 conf = setup_conf(mddev); 2818 else 2819 conf = mddev->private; 2820 2821 if (IS_ERR(conf)) 2822 return PTR_ERR(conf); 2823 2824 if (mddev->queue) 2825 blk_queue_max_write_same_sectors(mddev->queue, 2826 mddev->chunk_sectors); 2827 rdev_for_each(rdev, mddev) { 2828 if (!mddev->gendisk) 2829 continue; 2830 disk_stack_limits(mddev->gendisk, rdev->bdev, 2831 rdev->data_offset << 9); 2832 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2833 discard_supported = true; 2834 } 2835 2836 mddev->degraded = 0; 2837 for (i=0; i < conf->raid_disks; i++) 2838 if (conf->mirrors[i].rdev == NULL || 2839 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2840 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2841 mddev->degraded++; 2842 2843 if (conf->raid_disks - mddev->degraded == 1) 2844 mddev->recovery_cp = MaxSector; 2845 2846 if (mddev->recovery_cp != MaxSector) 2847 printk(KERN_NOTICE "md/raid1:%s: not clean" 2848 " -- starting background reconstruction\n", 2849 mdname(mddev)); 2850 printk(KERN_INFO 2851 "md/raid1:%s: active with %d out of %d mirrors\n", 2852 mdname(mddev), mddev->raid_disks - mddev->degraded, 2853 mddev->raid_disks); 2854 2855 /* 2856 * Ok, everything is just fine now 2857 */ 2858 mddev->thread = conf->thread; 2859 conf->thread = NULL; 2860 mddev->private = conf; 2861 2862 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2863 2864 if (mddev->queue) { 2865 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2866 mddev->queue->backing_dev_info.congested_data = mddev; 2867 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec); 2868 2869 if (discard_supported) 2870 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2871 mddev->queue); 2872 else 2873 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2874 mddev->queue); 2875 } 2876 2877 ret = md_integrity_register(mddev); 2878 if (ret) 2879 stop(mddev); 2880 return ret; 2881 } 2882 2883 static int stop(struct mddev *mddev) 2884 { 2885 struct r1conf *conf = mddev->private; 2886 struct bitmap *bitmap = mddev->bitmap; 2887 2888 /* wait for behind writes to complete */ 2889 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2890 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2891 mdname(mddev)); 2892 /* need to kick something here to make sure I/O goes? */ 2893 wait_event(bitmap->behind_wait, 2894 atomic_read(&bitmap->behind_writes) == 0); 2895 } 2896 2897 raise_barrier(conf); 2898 lower_barrier(conf); 2899 2900 md_unregister_thread(&mddev->thread); 2901 if (conf->r1bio_pool) 2902 mempool_destroy(conf->r1bio_pool); 2903 kfree(conf->mirrors); 2904 kfree(conf->poolinfo); 2905 kfree(conf); 2906 mddev->private = NULL; 2907 return 0; 2908 } 2909 2910 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2911 { 2912 /* no resync is happening, and there is enough space 2913 * on all devices, so we can resize. 2914 * We need to make sure resync covers any new space. 2915 * If the array is shrinking we should possibly wait until 2916 * any io in the removed space completes, but it hardly seems 2917 * worth it. 2918 */ 2919 sector_t newsize = raid1_size(mddev, sectors, 0); 2920 if (mddev->external_size && 2921 mddev->array_sectors > newsize) 2922 return -EINVAL; 2923 if (mddev->bitmap) { 2924 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 2925 if (ret) 2926 return ret; 2927 } 2928 md_set_array_sectors(mddev, newsize); 2929 set_capacity(mddev->gendisk, mddev->array_sectors); 2930 revalidate_disk(mddev->gendisk); 2931 if (sectors > mddev->dev_sectors && 2932 mddev->recovery_cp > mddev->dev_sectors) { 2933 mddev->recovery_cp = mddev->dev_sectors; 2934 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2935 } 2936 mddev->dev_sectors = sectors; 2937 mddev->resync_max_sectors = sectors; 2938 return 0; 2939 } 2940 2941 static int raid1_reshape(struct mddev *mddev) 2942 { 2943 /* We need to: 2944 * 1/ resize the r1bio_pool 2945 * 2/ resize conf->mirrors 2946 * 2947 * We allocate a new r1bio_pool if we can. 2948 * Then raise a device barrier and wait until all IO stops. 2949 * Then resize conf->mirrors and swap in the new r1bio pool. 2950 * 2951 * At the same time, we "pack" the devices so that all the missing 2952 * devices have the higher raid_disk numbers. 2953 */ 2954 mempool_t *newpool, *oldpool; 2955 struct pool_info *newpoolinfo; 2956 struct raid1_info *newmirrors; 2957 struct r1conf *conf = mddev->private; 2958 int cnt, raid_disks; 2959 unsigned long flags; 2960 int d, d2, err; 2961 2962 /* Cannot change chunk_size, layout, or level */ 2963 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2964 mddev->layout != mddev->new_layout || 2965 mddev->level != mddev->new_level) { 2966 mddev->new_chunk_sectors = mddev->chunk_sectors; 2967 mddev->new_layout = mddev->layout; 2968 mddev->new_level = mddev->level; 2969 return -EINVAL; 2970 } 2971 2972 err = md_allow_write(mddev); 2973 if (err) 2974 return err; 2975 2976 raid_disks = mddev->raid_disks + mddev->delta_disks; 2977 2978 if (raid_disks < conf->raid_disks) { 2979 cnt=0; 2980 for (d= 0; d < conf->raid_disks; d++) 2981 if (conf->mirrors[d].rdev) 2982 cnt++; 2983 if (cnt > raid_disks) 2984 return -EBUSY; 2985 } 2986 2987 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2988 if (!newpoolinfo) 2989 return -ENOMEM; 2990 newpoolinfo->mddev = mddev; 2991 newpoolinfo->raid_disks = raid_disks * 2; 2992 2993 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2994 r1bio_pool_free, newpoolinfo); 2995 if (!newpool) { 2996 kfree(newpoolinfo); 2997 return -ENOMEM; 2998 } 2999 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3000 GFP_KERNEL); 3001 if (!newmirrors) { 3002 kfree(newpoolinfo); 3003 mempool_destroy(newpool); 3004 return -ENOMEM; 3005 } 3006 3007 raise_barrier(conf); 3008 3009 /* ok, everything is stopped */ 3010 oldpool = conf->r1bio_pool; 3011 conf->r1bio_pool = newpool; 3012 3013 for (d = d2 = 0; d < conf->raid_disks; d++) { 3014 struct md_rdev *rdev = conf->mirrors[d].rdev; 3015 if (rdev && rdev->raid_disk != d2) { 3016 sysfs_unlink_rdev(mddev, rdev); 3017 rdev->raid_disk = d2; 3018 sysfs_unlink_rdev(mddev, rdev); 3019 if (sysfs_link_rdev(mddev, rdev)) 3020 printk(KERN_WARNING 3021 "md/raid1:%s: cannot register rd%d\n", 3022 mdname(mddev), rdev->raid_disk); 3023 } 3024 if (rdev) 3025 newmirrors[d2++].rdev = rdev; 3026 } 3027 kfree(conf->mirrors); 3028 conf->mirrors = newmirrors; 3029 kfree(conf->poolinfo); 3030 conf->poolinfo = newpoolinfo; 3031 3032 spin_lock_irqsave(&conf->device_lock, flags); 3033 mddev->degraded += (raid_disks - conf->raid_disks); 3034 spin_unlock_irqrestore(&conf->device_lock, flags); 3035 conf->raid_disks = mddev->raid_disks = raid_disks; 3036 mddev->delta_disks = 0; 3037 3038 lower_barrier(conf); 3039 3040 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3041 md_wakeup_thread(mddev->thread); 3042 3043 mempool_destroy(oldpool); 3044 return 0; 3045 } 3046 3047 static void raid1_quiesce(struct mddev *mddev, int state) 3048 { 3049 struct r1conf *conf = mddev->private; 3050 3051 switch(state) { 3052 case 2: /* wake for suspend */ 3053 wake_up(&conf->wait_barrier); 3054 break; 3055 case 1: 3056 raise_barrier(conf); 3057 break; 3058 case 0: 3059 lower_barrier(conf); 3060 break; 3061 } 3062 } 3063 3064 static void *raid1_takeover(struct mddev *mddev) 3065 { 3066 /* raid1 can take over: 3067 * raid5 with 2 devices, any layout or chunk size 3068 */ 3069 if (mddev->level == 5 && mddev->raid_disks == 2) { 3070 struct r1conf *conf; 3071 mddev->new_level = 1; 3072 mddev->new_layout = 0; 3073 mddev->new_chunk_sectors = 0; 3074 conf = setup_conf(mddev); 3075 if (!IS_ERR(conf)) 3076 conf->barrier = 1; 3077 return conf; 3078 } 3079 return ERR_PTR(-EINVAL); 3080 } 3081 3082 static struct md_personality raid1_personality = 3083 { 3084 .name = "raid1", 3085 .level = 1, 3086 .owner = THIS_MODULE, 3087 .make_request = make_request, 3088 .run = run, 3089 .stop = stop, 3090 .status = status, 3091 .error_handler = error, 3092 .hot_add_disk = raid1_add_disk, 3093 .hot_remove_disk= raid1_remove_disk, 3094 .spare_active = raid1_spare_active, 3095 .sync_request = sync_request, 3096 .resize = raid1_resize, 3097 .size = raid1_size, 3098 .check_reshape = raid1_reshape, 3099 .quiesce = raid1_quiesce, 3100 .takeover = raid1_takeover, 3101 }; 3102 3103 static int __init raid_init(void) 3104 { 3105 return register_md_personality(&raid1_personality); 3106 } 3107 3108 static void raid_exit(void) 3109 { 3110 unregister_md_personality(&raid1_personality); 3111 } 3112 3113 module_init(raid_init); 3114 module_exit(raid_exit); 3115 MODULE_LICENSE("GPL"); 3116 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3117 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3118 MODULE_ALIAS("md-raid1"); 3119 MODULE_ALIAS("md-level-1"); 3120 3121 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3122